[JFFS2] Print correct node offset when complaining about broken data CRC
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
1da177e4
LT
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define BREAK_GFP_ORDER_HI 1
575#define BREAK_GFP_ORDER_LO 0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
a737b3e2
AM
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
1da177e4 582 */
065d41cb
PE
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585 page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
d85f3385 590 page = compound_head(page);
ddc2e812 591 BUG_ON(!PageSlab(page));
065d41cb
PE
592 return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597 page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
ddc2e812 602 BUG_ON(!PageSlab(page));
065d41cb
PE
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
b49af68f 608 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
b49af68f 614 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
6a2d7a95
ED
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
8fea4e96 632{
6a2d7a95
ED
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
635}
636
a737b3e2
AM
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
1da177e4
LT
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650 char *name;
651 char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
b28a02de 657 {NULL,}
1da177e4
LT
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 663static struct arraycache_init initarray_generic =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
665
666/* internal cache of cache description objs */
343e0d7a 667static struct kmem_cache cache_cache = {
b28a02de
PE
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
343e0d7a 671 .buffer_size = sizeof(struct kmem_cache),
b28a02de 672 .name = "kmem_cache",
1da177e4
LT
673};
674
056c6241
RT
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
f1aaee53 689 */
056c6241
RT
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
f1aaee53 694
f1aaee53
AV
695{
696 int q;
056c6241
RT
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
f1aaee53
AV
724 }
725}
f1aaee53 726#else
056c6241 727static inline void init_lock_keys(void)
f1aaee53
AV
728{
729}
730#endif
731
8f5be20b
RT
732/*
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
735 */
fc0abb14 736static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
737static struct list_head cache_chain;
738
1da177e4
LT
739/*
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
742 */
743static enum {
744 NONE,
e498be7d
CL
745 PARTIAL_AC,
746 PARTIAL_L3,
1da177e4
LT
747 FULL
748} g_cpucache_up;
749
39d24e64
MK
750/*
751 * used by boot code to determine if it can use slab based allocator
752 */
753int slab_is_available(void)
754{
755 return g_cpucache_up == FULL;
756}
757
52bad64d 758static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 759
343e0d7a 760static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
761{
762 return cachep->array[smp_processor_id()];
763}
764
a737b3e2
AM
765static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
1da177e4
LT
767{
768 struct cache_sizes *csizep = malloc_sizes;
769
770#if DEBUG
771 /* This happens if someone tries to call
b28a02de
PE
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
774 */
c7e43c78 775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
776#endif
777 while (size > csizep->cs_size)
778 csizep++;
779
780 /*
0abf40c1 781 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
782 * has cs_{dma,}cachep==NULL. Thus no special case
783 * for large kmalloc calls required.
784 */
4b51d669 785#ifdef CONFIG_ZONE_DMA
1da177e4
LT
786 if (unlikely(gfpflags & GFP_DMA))
787 return csizep->cs_dmacachep;
4b51d669 788#endif
1da177e4
LT
789 return csizep->cs_cachep;
790}
791
b221385b 792static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
793{
794 return __find_general_cachep(size, gfpflags);
795}
97e2bde4 796
fbaccacf 797static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 798{
fbaccacf
SR
799 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
800}
1da177e4 801
a737b3e2
AM
802/*
803 * Calculate the number of objects and left-over bytes for a given buffer size.
804 */
fbaccacf
SR
805static void cache_estimate(unsigned long gfporder, size_t buffer_size,
806 size_t align, int flags, size_t *left_over,
807 unsigned int *num)
808{
809 int nr_objs;
810 size_t mgmt_size;
811 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 812
fbaccacf
SR
813 /*
814 * The slab management structure can be either off the slab or
815 * on it. For the latter case, the memory allocated for a
816 * slab is used for:
817 *
818 * - The struct slab
819 * - One kmem_bufctl_t for each object
820 * - Padding to respect alignment of @align
821 * - @buffer_size bytes for each object
822 *
823 * If the slab management structure is off the slab, then the
824 * alignment will already be calculated into the size. Because
825 * the slabs are all pages aligned, the objects will be at the
826 * correct alignment when allocated.
827 */
828 if (flags & CFLGS_OFF_SLAB) {
829 mgmt_size = 0;
830 nr_objs = slab_size / buffer_size;
831
832 if (nr_objs > SLAB_LIMIT)
833 nr_objs = SLAB_LIMIT;
834 } else {
835 /*
836 * Ignore padding for the initial guess. The padding
837 * is at most @align-1 bytes, and @buffer_size is at
838 * least @align. In the worst case, this result will
839 * be one greater than the number of objects that fit
840 * into the memory allocation when taking the padding
841 * into account.
842 */
843 nr_objs = (slab_size - sizeof(struct slab)) /
844 (buffer_size + sizeof(kmem_bufctl_t));
845
846 /*
847 * This calculated number will be either the right
848 * amount, or one greater than what we want.
849 */
850 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
851 > slab_size)
852 nr_objs--;
853
854 if (nr_objs > SLAB_LIMIT)
855 nr_objs = SLAB_LIMIT;
856
857 mgmt_size = slab_mgmt_size(nr_objs, align);
858 }
859 *num = nr_objs;
860 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
861}
862
863#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
864
a737b3e2
AM
865static void __slab_error(const char *function, struct kmem_cache *cachep,
866 char *msg)
1da177e4
LT
867{
868 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 869 function, cachep->name, msg);
1da177e4
LT
870 dump_stack();
871}
872
3395ee05
PM
873/*
874 * By default on NUMA we use alien caches to stage the freeing of
875 * objects allocated from other nodes. This causes massive memory
876 * inefficiencies when using fake NUMA setup to split memory into a
877 * large number of small nodes, so it can be disabled on the command
878 * line
879 */
880
881static int use_alien_caches __read_mostly = 1;
882static int __init noaliencache_setup(char *s)
883{
884 use_alien_caches = 0;
885 return 1;
886}
887__setup("noaliencache", noaliencache_setup);
888
8fce4d8e
CL
889#ifdef CONFIG_NUMA
890/*
891 * Special reaping functions for NUMA systems called from cache_reap().
892 * These take care of doing round robin flushing of alien caches (containing
893 * objects freed on different nodes from which they were allocated) and the
894 * flushing of remote pcps by calling drain_node_pages.
895 */
896static DEFINE_PER_CPU(unsigned long, reap_node);
897
898static void init_reap_node(int cpu)
899{
900 int node;
901
902 node = next_node(cpu_to_node(cpu), node_online_map);
903 if (node == MAX_NUMNODES)
442295c9 904 node = first_node(node_online_map);
8fce4d8e 905
7f6b8876 906 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
907}
908
909static void next_reap_node(void)
910{
911 int node = __get_cpu_var(reap_node);
912
8fce4d8e
CL
913 node = next_node(node, node_online_map);
914 if (unlikely(node >= MAX_NUMNODES))
915 node = first_node(node_online_map);
916 __get_cpu_var(reap_node) = node;
917}
918
919#else
920#define init_reap_node(cpu) do { } while (0)
921#define next_reap_node(void) do { } while (0)
922#endif
923
1da177e4
LT
924/*
925 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
926 * via the workqueue/eventd.
927 * Add the CPU number into the expiration time to minimize the possibility of
928 * the CPUs getting into lockstep and contending for the global cache chain
929 * lock.
930 */
931static void __devinit start_cpu_timer(int cpu)
932{
52bad64d 933 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
934
935 /*
936 * When this gets called from do_initcalls via cpucache_init(),
937 * init_workqueues() has already run, so keventd will be setup
938 * at that time.
939 */
52bad64d 940 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 941 init_reap_node(cpu);
65f27f38 942 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
943 schedule_delayed_work_on(cpu, reap_work,
944 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
945 }
946}
947
e498be7d 948static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 949 int batchcount)
1da177e4 950{
b28a02de 951 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
952 struct array_cache *nc = NULL;
953
e498be7d 954 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
955 if (nc) {
956 nc->avail = 0;
957 nc->limit = entries;
958 nc->batchcount = batchcount;
959 nc->touched = 0;
e498be7d 960 spin_lock_init(&nc->lock);
1da177e4
LT
961 }
962 return nc;
963}
964
3ded175a
CL
965/*
966 * Transfer objects in one arraycache to another.
967 * Locking must be handled by the caller.
968 *
969 * Return the number of entries transferred.
970 */
971static int transfer_objects(struct array_cache *to,
972 struct array_cache *from, unsigned int max)
973{
974 /* Figure out how many entries to transfer */
975 int nr = min(min(from->avail, max), to->limit - to->avail);
976
977 if (!nr)
978 return 0;
979
980 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
981 sizeof(void *) *nr);
982
983 from->avail -= nr;
984 to->avail += nr;
985 to->touched = 1;
986 return nr;
987}
988
765c4507
CL
989#ifndef CONFIG_NUMA
990
991#define drain_alien_cache(cachep, alien) do { } while (0)
992#define reap_alien(cachep, l3) do { } while (0)
993
994static inline struct array_cache **alloc_alien_cache(int node, int limit)
995{
996 return (struct array_cache **)BAD_ALIEN_MAGIC;
997}
998
999static inline void free_alien_cache(struct array_cache **ac_ptr)
1000{
1001}
1002
1003static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1004{
1005 return 0;
1006}
1007
1008static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1009 gfp_t flags)
1010{
1011 return NULL;
1012}
1013
8b98c169 1014static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1015 gfp_t flags, int nodeid)
1016{
1017 return NULL;
1018}
1019
1020#else /* CONFIG_NUMA */
1021
8b98c169 1022static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1023static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1024
5295a74c 1025static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1026{
1027 struct array_cache **ac_ptr;
8ef82866 1028 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1029 int i;
1030
1031 if (limit > 1)
1032 limit = 12;
1033 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1034 if (ac_ptr) {
1035 for_each_node(i) {
1036 if (i == node || !node_online(i)) {
1037 ac_ptr[i] = NULL;
1038 continue;
1039 }
1040 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1041 if (!ac_ptr[i]) {
b28a02de 1042 for (i--; i <= 0; i--)
e498be7d
CL
1043 kfree(ac_ptr[i]);
1044 kfree(ac_ptr);
1045 return NULL;
1046 }
1047 }
1048 }
1049 return ac_ptr;
1050}
1051
5295a74c 1052static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1053{
1054 int i;
1055
1056 if (!ac_ptr)
1057 return;
e498be7d 1058 for_each_node(i)
b28a02de 1059 kfree(ac_ptr[i]);
e498be7d
CL
1060 kfree(ac_ptr);
1061}
1062
343e0d7a 1063static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1064 struct array_cache *ac, int node)
e498be7d
CL
1065{
1066 struct kmem_list3 *rl3 = cachep->nodelists[node];
1067
1068 if (ac->avail) {
1069 spin_lock(&rl3->list_lock);
e00946fe
CL
1070 /*
1071 * Stuff objects into the remote nodes shared array first.
1072 * That way we could avoid the overhead of putting the objects
1073 * into the free lists and getting them back later.
1074 */
693f7d36
JS
1075 if (rl3->shared)
1076 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1077
ff69416e 1078 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1079 ac->avail = 0;
1080 spin_unlock(&rl3->list_lock);
1081 }
1082}
1083
8fce4d8e
CL
1084/*
1085 * Called from cache_reap() to regularly drain alien caches round robin.
1086 */
1087static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1088{
1089 int node = __get_cpu_var(reap_node);
1090
1091 if (l3->alien) {
1092 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1093
1094 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1095 __drain_alien_cache(cachep, ac, node);
1096 spin_unlock_irq(&ac->lock);
1097 }
1098 }
1099}
1100
a737b3e2
AM
1101static void drain_alien_cache(struct kmem_cache *cachep,
1102 struct array_cache **alien)
e498be7d 1103{
b28a02de 1104 int i = 0;
e498be7d
CL
1105 struct array_cache *ac;
1106 unsigned long flags;
1107
1108 for_each_online_node(i) {
4484ebf1 1109 ac = alien[i];
e498be7d
CL
1110 if (ac) {
1111 spin_lock_irqsave(&ac->lock, flags);
1112 __drain_alien_cache(cachep, ac, i);
1113 spin_unlock_irqrestore(&ac->lock, flags);
1114 }
1115 }
1116}
729bd0b7 1117
873623df 1118static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1119{
1120 struct slab *slabp = virt_to_slab(objp);
1121 int nodeid = slabp->nodeid;
1122 struct kmem_list3 *l3;
1123 struct array_cache *alien = NULL;
1ca4cb24
PE
1124 int node;
1125
1126 node = numa_node_id();
729bd0b7
PE
1127
1128 /*
1129 * Make sure we are not freeing a object from another node to the array
1130 * cache on this cpu.
1131 */
62918a03 1132 if (likely(slabp->nodeid == node))
729bd0b7
PE
1133 return 0;
1134
1ca4cb24 1135 l3 = cachep->nodelists[node];
729bd0b7
PE
1136 STATS_INC_NODEFREES(cachep);
1137 if (l3->alien && l3->alien[nodeid]) {
1138 alien = l3->alien[nodeid];
873623df 1139 spin_lock(&alien->lock);
729bd0b7
PE
1140 if (unlikely(alien->avail == alien->limit)) {
1141 STATS_INC_ACOVERFLOW(cachep);
1142 __drain_alien_cache(cachep, alien, nodeid);
1143 }
1144 alien->entry[alien->avail++] = objp;
1145 spin_unlock(&alien->lock);
1146 } else {
1147 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1148 free_block(cachep, &objp, 1, nodeid);
1149 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1150 }
1151 return 1;
1152}
e498be7d
CL
1153#endif
1154
8c78f307 1155static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1156 unsigned long action, void *hcpu)
1da177e4
LT
1157{
1158 long cpu = (long)hcpu;
343e0d7a 1159 struct kmem_cache *cachep;
e498be7d
CL
1160 struct kmem_list3 *l3 = NULL;
1161 int node = cpu_to_node(cpu);
1162 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1163
1164 switch (action) {
38c3bd96 1165 case CPU_LOCK_ACQUIRE:
fc0abb14 1166 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1167 break;
1168 case CPU_UP_PREPARE:
8bb78442 1169 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1170 /*
1171 * We need to do this right in the beginning since
e498be7d
CL
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
1174 * kmem_list3 and not this cpu's kmem_list3
1175 */
1176
1da177e4 1177 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1178 /*
1179 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1180 * begin anything. Make sure some other cpu on this
1181 * node has not already allocated this
1182 */
1183 if (!cachep->nodelists[node]) {
a737b3e2
AM
1184 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1185 if (!l3)
e498be7d
CL
1186 goto bad;
1187 kmem_list3_init(l3);
1188 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1189 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1190
4484ebf1
RT
1191 /*
1192 * The l3s don't come and go as CPUs come and
1193 * go. cache_chain_mutex is sufficient
1194 * protection here.
1195 */
e498be7d
CL
1196 cachep->nodelists[node] = l3;
1197 }
1da177e4 1198
e498be7d
CL
1199 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1200 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1201 (1 + nr_cpus_node(node)) *
1202 cachep->batchcount + cachep->num;
e498be7d
CL
1203 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1204 }
1205
a737b3e2
AM
1206 /*
1207 * Now we can go ahead with allocating the shared arrays and
1208 * array caches
1209 */
e498be7d 1210 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1211 struct array_cache *nc;
63109846 1212 struct array_cache *shared = NULL;
3395ee05 1213 struct array_cache **alien = NULL;
cd105df4 1214
e498be7d 1215 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1216 cachep->batchcount);
1da177e4
LT
1217 if (!nc)
1218 goto bad;
63109846
ED
1219 if (cachep->shared) {
1220 shared = alloc_arraycache(node,
4484ebf1
RT
1221 cachep->shared * cachep->batchcount,
1222 0xbaadf00d);
63109846
ED
1223 if (!shared)
1224 goto bad;
1225 }
3395ee05
PM
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit);
1228 if (!alien)
1229 goto bad;
1230 }
1da177e4 1231 cachep->array[cpu] = nc;
e498be7d
CL
1232 l3 = cachep->nodelists[node];
1233 BUG_ON(!l3);
e498be7d 1234
4484ebf1
RT
1235 spin_lock_irq(&l3->list_lock);
1236 if (!l3->shared) {
1237 /*
1238 * We are serialised from CPU_DEAD or
1239 * CPU_UP_CANCELLED by the cpucontrol lock
1240 */
1241 l3->shared = shared;
1242 shared = NULL;
e498be7d 1243 }
4484ebf1
RT
1244#ifdef CONFIG_NUMA
1245 if (!l3->alien) {
1246 l3->alien = alien;
1247 alien = NULL;
1248 }
1249#endif
1250 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1251 kfree(shared);
1252 free_alien_cache(alien);
1da177e4 1253 }
1da177e4
LT
1254 break;
1255 case CPU_ONLINE:
8bb78442 1256 case CPU_ONLINE_FROZEN:
1da177e4
LT
1257 start_cpu_timer(cpu);
1258 break;
1259#ifdef CONFIG_HOTPLUG_CPU
5830c590 1260 case CPU_DOWN_PREPARE:
8bb78442 1261 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1262 /*
1263 * Shutdown cache reaper. Note that the cache_chain_mutex is
1264 * held so that if cache_reap() is invoked it cannot do
1265 * anything expensive but will only modify reap_work
1266 * and reschedule the timer.
1267 */
1268 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1269 /* Now the cache_reaper is guaranteed to be not running. */
1270 per_cpu(reap_work, cpu).work.func = NULL;
1271 break;
1272 case CPU_DOWN_FAILED:
8bb78442 1273 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1274 start_cpu_timer(cpu);
1275 break;
1da177e4 1276 case CPU_DEAD:
8bb78442 1277 case CPU_DEAD_FROZEN:
4484ebf1
RT
1278 /*
1279 * Even if all the cpus of a node are down, we don't free the
1280 * kmem_list3 of any cache. This to avoid a race between
1281 * cpu_down, and a kmalloc allocation from another cpu for
1282 * memory from the node of the cpu going down. The list3
1283 * structure is usually allocated from kmem_cache_create() and
1284 * gets destroyed at kmem_cache_destroy().
1285 */
1da177e4 1286 /* fall thru */
8f5be20b 1287#endif
1da177e4 1288 case CPU_UP_CANCELED:
8bb78442 1289 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1290 list_for_each_entry(cachep, &cache_chain, next) {
1291 struct array_cache *nc;
4484ebf1
RT
1292 struct array_cache *shared;
1293 struct array_cache **alien;
e498be7d 1294 cpumask_t mask;
1da177e4 1295
e498be7d 1296 mask = node_to_cpumask(node);
1da177e4
LT
1297 /* cpu is dead; no one can alloc from it. */
1298 nc = cachep->array[cpu];
1299 cachep->array[cpu] = NULL;
e498be7d
CL
1300 l3 = cachep->nodelists[node];
1301
1302 if (!l3)
4484ebf1 1303 goto free_array_cache;
e498be7d 1304
ca3b9b91 1305 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1306
1307 /* Free limit for this kmem_list3 */
1308 l3->free_limit -= cachep->batchcount;
1309 if (nc)
ff69416e 1310 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1311
1312 if (!cpus_empty(mask)) {
ca3b9b91 1313 spin_unlock_irq(&l3->list_lock);
4484ebf1 1314 goto free_array_cache;
b28a02de 1315 }
e498be7d 1316
4484ebf1
RT
1317 shared = l3->shared;
1318 if (shared) {
63109846
ED
1319 free_block(cachep, shared->entry,
1320 shared->avail, node);
e498be7d
CL
1321 l3->shared = NULL;
1322 }
e498be7d 1323
4484ebf1
RT
1324 alien = l3->alien;
1325 l3->alien = NULL;
1326
1327 spin_unlock_irq(&l3->list_lock);
1328
1329 kfree(shared);
1330 if (alien) {
1331 drain_alien_cache(cachep, alien);
1332 free_alien_cache(alien);
e498be7d 1333 }
4484ebf1 1334free_array_cache:
1da177e4
LT
1335 kfree(nc);
1336 }
4484ebf1
RT
1337 /*
1338 * In the previous loop, all the objects were freed to
1339 * the respective cache's slabs, now we can go ahead and
1340 * shrink each nodelist to its limit.
1341 */
1342 list_for_each_entry(cachep, &cache_chain, next) {
1343 l3 = cachep->nodelists[node];
1344 if (!l3)
1345 continue;
ed11d9eb 1346 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1347 }
38c3bd96
HC
1348 break;
1349 case CPU_LOCK_RELEASE:
fc0abb14 1350 mutex_unlock(&cache_chain_mutex);
1da177e4 1351 break;
1da177e4
LT
1352 }
1353 return NOTIFY_OK;
a737b3e2 1354bad:
1da177e4
LT
1355 return NOTIFY_BAD;
1356}
1357
74b85f37
CS
1358static struct notifier_block __cpuinitdata cpucache_notifier = {
1359 &cpuup_callback, NULL, 0
1360};
1da177e4 1361
e498be7d
CL
1362/*
1363 * swap the static kmem_list3 with kmalloced memory
1364 */
a737b3e2
AM
1365static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1366 int nodeid)
e498be7d
CL
1367{
1368 struct kmem_list3 *ptr;
1369
e498be7d
CL
1370 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1371 BUG_ON(!ptr);
1372
1373 local_irq_disable();
1374 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1375 /*
1376 * Do not assume that spinlocks can be initialized via memcpy:
1377 */
1378 spin_lock_init(&ptr->list_lock);
1379
e498be7d
CL
1380 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1381 cachep->nodelists[nodeid] = ptr;
1382 local_irq_enable();
1383}
1384
a737b3e2
AM
1385/*
1386 * Initialisation. Called after the page allocator have been initialised and
1387 * before smp_init().
1da177e4
LT
1388 */
1389void __init kmem_cache_init(void)
1390{
1391 size_t left_over;
1392 struct cache_sizes *sizes;
1393 struct cache_names *names;
e498be7d 1394 int i;
07ed76b2 1395 int order;
1ca4cb24 1396 int node;
e498be7d 1397
62918a03
SS
1398 if (num_possible_nodes() == 1)
1399 use_alien_caches = 0;
1400
e498be7d
CL
1401 for (i = 0; i < NUM_INIT_LISTS; i++) {
1402 kmem_list3_init(&initkmem_list3[i]);
1403 if (i < MAX_NUMNODES)
1404 cache_cache.nodelists[i] = NULL;
1405 }
1da177e4
LT
1406
1407 /*
1408 * Fragmentation resistance on low memory - only use bigger
1409 * page orders on machines with more than 32MB of memory.
1410 */
1411 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1412 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1413
1da177e4
LT
1414 /* Bootstrap is tricky, because several objects are allocated
1415 * from caches that do not exist yet:
a737b3e2
AM
1416 * 1) initialize the cache_cache cache: it contains the struct
1417 * kmem_cache structures of all caches, except cache_cache itself:
1418 * cache_cache is statically allocated.
e498be7d
CL
1419 * Initially an __init data area is used for the head array and the
1420 * kmem_list3 structures, it's replaced with a kmalloc allocated
1421 * array at the end of the bootstrap.
1da177e4 1422 * 2) Create the first kmalloc cache.
343e0d7a 1423 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1424 * An __init data area is used for the head array.
1425 * 3) Create the remaining kmalloc caches, with minimally sized
1426 * head arrays.
1da177e4
LT
1427 * 4) Replace the __init data head arrays for cache_cache and the first
1428 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1429 * 5) Replace the __init data for kmem_list3 for cache_cache and
1430 * the other cache's with kmalloc allocated memory.
1431 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1432 */
1433
1ca4cb24
PE
1434 node = numa_node_id();
1435
1da177e4 1436 /* 1) create the cache_cache */
1da177e4
LT
1437 INIT_LIST_HEAD(&cache_chain);
1438 list_add(&cache_cache.next, &cache_chain);
1439 cache_cache.colour_off = cache_line_size();
1440 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1441 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1442
8da3430d
ED
1443 /*
1444 * struct kmem_cache size depends on nr_node_ids, which
1445 * can be less than MAX_NUMNODES.
1446 */
1447 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1448 nr_node_ids * sizeof(struct kmem_list3 *);
1449#if DEBUG
1450 cache_cache.obj_size = cache_cache.buffer_size;
1451#endif
a737b3e2
AM
1452 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1453 cache_line_size());
6a2d7a95
ED
1454 cache_cache.reciprocal_buffer_size =
1455 reciprocal_value(cache_cache.buffer_size);
1da177e4 1456
07ed76b2
JS
1457 for (order = 0; order < MAX_ORDER; order++) {
1458 cache_estimate(order, cache_cache.buffer_size,
1459 cache_line_size(), 0, &left_over, &cache_cache.num);
1460 if (cache_cache.num)
1461 break;
1462 }
40094fa6 1463 BUG_ON(!cache_cache.num);
07ed76b2 1464 cache_cache.gfporder = order;
b28a02de 1465 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1466 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1467 sizeof(struct slab), cache_line_size());
1da177e4
LT
1468
1469 /* 2+3) create the kmalloc caches */
1470 sizes = malloc_sizes;
1471 names = cache_names;
1472
a737b3e2
AM
1473 /*
1474 * Initialize the caches that provide memory for the array cache and the
1475 * kmem_list3 structures first. Without this, further allocations will
1476 * bug.
e498be7d
CL
1477 */
1478
1479 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1480 sizes[INDEX_AC].cs_size,
1481 ARCH_KMALLOC_MINALIGN,
1482 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1483 NULL, NULL);
e498be7d 1484
a737b3e2 1485 if (INDEX_AC != INDEX_L3) {
e498be7d 1486 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1487 kmem_cache_create(names[INDEX_L3].name,
1488 sizes[INDEX_L3].cs_size,
1489 ARCH_KMALLOC_MINALIGN,
1490 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1491 NULL, NULL);
1492 }
e498be7d 1493
e0a42726
IM
1494 slab_early_init = 0;
1495
1da177e4 1496 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1497 /*
1498 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1499 * This should be particularly beneficial on SMP boxes, as it
1500 * eliminates "false sharing".
1501 * Note for systems short on memory removing the alignment will
e498be7d
CL
1502 * allow tighter packing of the smaller caches.
1503 */
a737b3e2 1504 if (!sizes->cs_cachep) {
e498be7d 1505 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1506 sizes->cs_size,
1507 ARCH_KMALLOC_MINALIGN,
1508 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1509 NULL, NULL);
1510 }
4b51d669
CL
1511#ifdef CONFIG_ZONE_DMA
1512 sizes->cs_dmacachep = kmem_cache_create(
1513 names->name_dma,
a737b3e2
AM
1514 sizes->cs_size,
1515 ARCH_KMALLOC_MINALIGN,
1516 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1517 SLAB_PANIC,
1518 NULL, NULL);
4b51d669 1519#endif
1da177e4
LT
1520 sizes++;
1521 names++;
1522 }
1523 /* 4) Replace the bootstrap head arrays */
1524 {
2b2d5493 1525 struct array_cache *ptr;
e498be7d 1526
1da177e4 1527 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1528
1da177e4 1529 local_irq_disable();
9a2dba4b
PE
1530 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1531 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1532 sizeof(struct arraycache_init));
2b2d5493
IM
1533 /*
1534 * Do not assume that spinlocks can be initialized via memcpy:
1535 */
1536 spin_lock_init(&ptr->lock);
1537
1da177e4
LT
1538 cache_cache.array[smp_processor_id()] = ptr;
1539 local_irq_enable();
e498be7d 1540
1da177e4 1541 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1542
1da177e4 1543 local_irq_disable();
9a2dba4b 1544 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1545 != &initarray_generic.cache);
9a2dba4b 1546 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1547 sizeof(struct arraycache_init));
2b2d5493
IM
1548 /*
1549 * Do not assume that spinlocks can be initialized via memcpy:
1550 */
1551 spin_lock_init(&ptr->lock);
1552
e498be7d 1553 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1554 ptr;
1da177e4
LT
1555 local_irq_enable();
1556 }
e498be7d
CL
1557 /* 5) Replace the bootstrap kmem_list3's */
1558 {
1ca4cb24
PE
1559 int nid;
1560
e498be7d 1561 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1562 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1563
1ca4cb24 1564 for_each_online_node(nid) {
e498be7d 1565 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1566 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1567
1568 if (INDEX_AC != INDEX_L3) {
1569 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1570 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1571 }
1572 }
1573 }
1da177e4 1574
e498be7d 1575 /* 6) resize the head arrays to their final sizes */
1da177e4 1576 {
343e0d7a 1577 struct kmem_cache *cachep;
fc0abb14 1578 mutex_lock(&cache_chain_mutex);
1da177e4 1579 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1580 if (enable_cpucache(cachep))
1581 BUG();
fc0abb14 1582 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1583 }
1584
056c6241
RT
1585 /* Annotate slab for lockdep -- annotate the malloc caches */
1586 init_lock_keys();
1587
1588
1da177e4
LT
1589 /* Done! */
1590 g_cpucache_up = FULL;
1591
a737b3e2
AM
1592 /*
1593 * Register a cpu startup notifier callback that initializes
1594 * cpu_cache_get for all new cpus
1da177e4
LT
1595 */
1596 register_cpu_notifier(&cpucache_notifier);
1da177e4 1597
a737b3e2
AM
1598 /*
1599 * The reap timers are started later, with a module init call: That part
1600 * of the kernel is not yet operational.
1da177e4
LT
1601 */
1602}
1603
1604static int __init cpucache_init(void)
1605{
1606 int cpu;
1607
a737b3e2
AM
1608 /*
1609 * Register the timers that return unneeded pages to the page allocator
1da177e4 1610 */
e498be7d 1611 for_each_online_cpu(cpu)
a737b3e2 1612 start_cpu_timer(cpu);
1da177e4
LT
1613 return 0;
1614}
1da177e4
LT
1615__initcall(cpucache_init);
1616
1617/*
1618 * Interface to system's page allocator. No need to hold the cache-lock.
1619 *
1620 * If we requested dmaable memory, we will get it. Even if we
1621 * did not request dmaable memory, we might get it, but that
1622 * would be relatively rare and ignorable.
1623 */
343e0d7a 1624static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1625{
1626 struct page *page;
e1b6aa6f 1627 int nr_pages;
1da177e4
LT
1628 int i;
1629
d6fef9da 1630#ifndef CONFIG_MMU
e1b6aa6f
CH
1631 /*
1632 * Nommu uses slab's for process anonymous memory allocations, and thus
1633 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1634 */
e1b6aa6f 1635 flags |= __GFP_COMP;
d6fef9da 1636#endif
765c4507 1637
3c517a61 1638 flags |= cachep->gfpflags;
e1b6aa6f
CH
1639
1640 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1641 if (!page)
1642 return NULL;
1da177e4 1643
e1b6aa6f 1644 nr_pages = (1 << cachep->gfporder);
1da177e4 1645 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1646 add_zone_page_state(page_zone(page),
1647 NR_SLAB_RECLAIMABLE, nr_pages);
1648 else
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1651 for (i = 0; i < nr_pages; i++)
1652 __SetPageSlab(page + i);
1653 return page_address(page);
1da177e4
LT
1654}
1655
1656/*
1657 * Interface to system's page release.
1658 */
343e0d7a 1659static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1660{
b28a02de 1661 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1662 struct page *page = virt_to_page(addr);
1663 const unsigned long nr_freed = i;
1664
972d1a7b
CL
1665 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1666 sub_zone_page_state(page_zone(page),
1667 NR_SLAB_RECLAIMABLE, nr_freed);
1668 else
1669 sub_zone_page_state(page_zone(page),
1670 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1671 while (i--) {
f205b2fe
NP
1672 BUG_ON(!PageSlab(page));
1673 __ClearPageSlab(page);
1da177e4
LT
1674 page++;
1675 }
1da177e4
LT
1676 if (current->reclaim_state)
1677 current->reclaim_state->reclaimed_slab += nr_freed;
1678 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1679}
1680
1681static void kmem_rcu_free(struct rcu_head *head)
1682{
b28a02de 1683 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1684 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1685
1686 kmem_freepages(cachep, slab_rcu->addr);
1687 if (OFF_SLAB(cachep))
1688 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1689}
1690
1691#if DEBUG
1692
1693#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1694static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1695 unsigned long caller)
1da177e4 1696{
3dafccf2 1697 int size = obj_size(cachep);
1da177e4 1698
3dafccf2 1699 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1700
b28a02de 1701 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1702 return;
1703
b28a02de
PE
1704 *addr++ = 0x12345678;
1705 *addr++ = caller;
1706 *addr++ = smp_processor_id();
1707 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1708 {
1709 unsigned long *sptr = &caller;
1710 unsigned long svalue;
1711
1712 while (!kstack_end(sptr)) {
1713 svalue = *sptr++;
1714 if (kernel_text_address(svalue)) {
b28a02de 1715 *addr++ = svalue;
1da177e4
LT
1716 size -= sizeof(unsigned long);
1717 if (size <= sizeof(unsigned long))
1718 break;
1719 }
1720 }
1721
1722 }
b28a02de 1723 *addr++ = 0x87654321;
1da177e4
LT
1724}
1725#endif
1726
343e0d7a 1727static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1728{
3dafccf2
MS
1729 int size = obj_size(cachep);
1730 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1731
1732 memset(addr, val, size);
b28a02de 1733 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1734}
1735
1736static void dump_line(char *data, int offset, int limit)
1737{
1738 int i;
aa83aa40
DJ
1739 unsigned char error = 0;
1740 int bad_count = 0;
1741
1da177e4 1742 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1743 for (i = 0; i < limit; i++) {
1744 if (data[offset + i] != POISON_FREE) {
1745 error = data[offset + i];
1746 bad_count++;
1747 }
b28a02de 1748 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1749 }
1da177e4 1750 printk("\n");
aa83aa40
DJ
1751
1752 if (bad_count == 1) {
1753 error ^= POISON_FREE;
1754 if (!(error & (error - 1))) {
1755 printk(KERN_ERR "Single bit error detected. Probably "
1756 "bad RAM.\n");
1757#ifdef CONFIG_X86
1758 printk(KERN_ERR "Run memtest86+ or a similar memory "
1759 "test tool.\n");
1760#else
1761 printk(KERN_ERR "Run a memory test tool.\n");
1762#endif
1763 }
1764 }
1da177e4
LT
1765}
1766#endif
1767
1768#if DEBUG
1769
343e0d7a 1770static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1771{
1772 int i, size;
1773 char *realobj;
1774
1775 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1776 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1777 *dbg_redzone1(cachep, objp),
1778 *dbg_redzone2(cachep, objp));
1da177e4
LT
1779 }
1780
1781 if (cachep->flags & SLAB_STORE_USER) {
1782 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1783 *dbg_userword(cachep, objp));
1da177e4 1784 print_symbol("(%s)",
a737b3e2 1785 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1786 printk("\n");
1787 }
3dafccf2
MS
1788 realobj = (char *)objp + obj_offset(cachep);
1789 size = obj_size(cachep);
b28a02de 1790 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1791 int limit;
1792 limit = 16;
b28a02de
PE
1793 if (i + limit > size)
1794 limit = size - i;
1da177e4
LT
1795 dump_line(realobj, i, limit);
1796 }
1797}
1798
343e0d7a 1799static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1800{
1801 char *realobj;
1802 int size, i;
1803 int lines = 0;
1804
3dafccf2
MS
1805 realobj = (char *)objp + obj_offset(cachep);
1806 size = obj_size(cachep);
1da177e4 1807
b28a02de 1808 for (i = 0; i < size; i++) {
1da177e4 1809 char exp = POISON_FREE;
b28a02de 1810 if (i == size - 1)
1da177e4
LT
1811 exp = POISON_END;
1812 if (realobj[i] != exp) {
1813 int limit;
1814 /* Mismatch ! */
1815 /* Print header */
1816 if (lines == 0) {
b28a02de 1817 printk(KERN_ERR
e94a40c5
DH
1818 "Slab corruption: %s start=%p, len=%d\n",
1819 cachep->name, realobj, size);
1da177e4
LT
1820 print_objinfo(cachep, objp, 0);
1821 }
1822 /* Hexdump the affected line */
b28a02de 1823 i = (i / 16) * 16;
1da177e4 1824 limit = 16;
b28a02de
PE
1825 if (i + limit > size)
1826 limit = size - i;
1da177e4
LT
1827 dump_line(realobj, i, limit);
1828 i += 16;
1829 lines++;
1830 /* Limit to 5 lines */
1831 if (lines > 5)
1832 break;
1833 }
1834 }
1835 if (lines != 0) {
1836 /* Print some data about the neighboring objects, if they
1837 * exist:
1838 */
6ed5eb22 1839 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1840 unsigned int objnr;
1da177e4 1841
8fea4e96 1842 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1843 if (objnr) {
8fea4e96 1844 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1845 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1846 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1847 realobj, size);
1da177e4
LT
1848 print_objinfo(cachep, objp, 2);
1849 }
b28a02de 1850 if (objnr + 1 < cachep->num) {
8fea4e96 1851 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1852 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1853 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1854 realobj, size);
1da177e4
LT
1855 print_objinfo(cachep, objp, 2);
1856 }
1857 }
1858}
1859#endif
1860
12dd36fa
MD
1861#if DEBUG
1862/**
911851e6
RD
1863 * slab_destroy_objs - destroy a slab and its objects
1864 * @cachep: cache pointer being destroyed
1865 * @slabp: slab pointer being destroyed
1866 *
1867 * Call the registered destructor for each object in a slab that is being
1868 * destroyed.
1da177e4 1869 */
343e0d7a 1870static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1871{
1da177e4
LT
1872 int i;
1873 for (i = 0; i < cachep->num; i++) {
8fea4e96 1874 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1875
1876 if (cachep->flags & SLAB_POISON) {
1877#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1878 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1879 OFF_SLAB(cachep))
b28a02de 1880 kernel_map_pages(virt_to_page(objp),
a737b3e2 1881 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1882 else
1883 check_poison_obj(cachep, objp);
1884#else
1885 check_poison_obj(cachep, objp);
1886#endif
1887 }
1888 if (cachep->flags & SLAB_RED_ZONE) {
1889 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1890 slab_error(cachep, "start of a freed object "
b28a02de 1891 "was overwritten");
1da177e4
LT
1892 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1893 slab_error(cachep, "end of a freed object "
b28a02de 1894 "was overwritten");
1da177e4 1895 }
1da177e4 1896 }
12dd36fa 1897}
1da177e4 1898#else
343e0d7a 1899static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1900{
12dd36fa 1901}
1da177e4
LT
1902#endif
1903
911851e6
RD
1904/**
1905 * slab_destroy - destroy and release all objects in a slab
1906 * @cachep: cache pointer being destroyed
1907 * @slabp: slab pointer being destroyed
1908 *
12dd36fa 1909 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1910 * Before calling the slab must have been unlinked from the cache. The
1911 * cache-lock is not held/needed.
12dd36fa 1912 */
343e0d7a 1913static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1914{
1915 void *addr = slabp->s_mem - slabp->colouroff;
1916
1917 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1918 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1919 struct slab_rcu *slab_rcu;
1920
b28a02de 1921 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1922 slab_rcu->cachep = cachep;
1923 slab_rcu->addr = addr;
1924 call_rcu(&slab_rcu->head, kmem_rcu_free);
1925 } else {
1926 kmem_freepages(cachep, addr);
873623df
IM
1927 if (OFF_SLAB(cachep))
1928 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1929 }
1930}
1931
a737b3e2
AM
1932/*
1933 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1934 * size of kmem_list3.
1935 */
a3a02be7 1936static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1937{
1938 int node;
1939
1940 for_each_online_node(node) {
b28a02de 1941 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1942 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1943 REAPTIMEOUT_LIST3 +
1944 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1945 }
1946}
1947
117f6eb1
CL
1948static void __kmem_cache_destroy(struct kmem_cache *cachep)
1949{
1950 int i;
1951 struct kmem_list3 *l3;
1952
1953 for_each_online_cpu(i)
1954 kfree(cachep->array[i]);
1955
1956 /* NUMA: free the list3 structures */
1957 for_each_online_node(i) {
1958 l3 = cachep->nodelists[i];
1959 if (l3) {
1960 kfree(l3->shared);
1961 free_alien_cache(l3->alien);
1962 kfree(l3);
1963 }
1964 }
1965 kmem_cache_free(&cache_cache, cachep);
1966}
1967
1968
4d268eba 1969/**
a70773dd
RD
1970 * calculate_slab_order - calculate size (page order) of slabs
1971 * @cachep: pointer to the cache that is being created
1972 * @size: size of objects to be created in this cache.
1973 * @align: required alignment for the objects.
1974 * @flags: slab allocation flags
1975 *
1976 * Also calculates the number of objects per slab.
4d268eba
PE
1977 *
1978 * This could be made much more intelligent. For now, try to avoid using
1979 * high order pages for slabs. When the gfp() functions are more friendly
1980 * towards high-order requests, this should be changed.
1981 */
a737b3e2 1982static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1983 size_t size, size_t align, unsigned long flags)
4d268eba 1984{
b1ab41c4 1985 unsigned long offslab_limit;
4d268eba 1986 size_t left_over = 0;
9888e6fa 1987 int gfporder;
4d268eba 1988
0aa817f0 1989 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1990 unsigned int num;
1991 size_t remainder;
1992
9888e6fa 1993 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1994 if (!num)
1995 continue;
9888e6fa 1996
b1ab41c4
IM
1997 if (flags & CFLGS_OFF_SLAB) {
1998 /*
1999 * Max number of objs-per-slab for caches which
2000 * use off-slab slabs. Needed to avoid a possible
2001 * looping condition in cache_grow().
2002 */
2003 offslab_limit = size - sizeof(struct slab);
2004 offslab_limit /= sizeof(kmem_bufctl_t);
2005
2006 if (num > offslab_limit)
2007 break;
2008 }
4d268eba 2009
9888e6fa 2010 /* Found something acceptable - save it away */
4d268eba 2011 cachep->num = num;
9888e6fa 2012 cachep->gfporder = gfporder;
4d268eba
PE
2013 left_over = remainder;
2014
f78bb8ad
LT
2015 /*
2016 * A VFS-reclaimable slab tends to have most allocations
2017 * as GFP_NOFS and we really don't want to have to be allocating
2018 * higher-order pages when we are unable to shrink dcache.
2019 */
2020 if (flags & SLAB_RECLAIM_ACCOUNT)
2021 break;
2022
4d268eba
PE
2023 /*
2024 * Large number of objects is good, but very large slabs are
2025 * currently bad for the gfp()s.
2026 */
9888e6fa 2027 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2028 break;
2029
9888e6fa
LT
2030 /*
2031 * Acceptable internal fragmentation?
2032 */
a737b3e2 2033 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2034 break;
2035 }
2036 return left_over;
2037}
2038
38bdc32a 2039static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2040{
2ed3a4ef
CL
2041 if (g_cpucache_up == FULL)
2042 return enable_cpucache(cachep);
2043
f30cf7d1
PE
2044 if (g_cpucache_up == NONE) {
2045 /*
2046 * Note: the first kmem_cache_create must create the cache
2047 * that's used by kmalloc(24), otherwise the creation of
2048 * further caches will BUG().
2049 */
2050 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2051
2052 /*
2053 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2054 * the first cache, then we need to set up all its list3s,
2055 * otherwise the creation of further caches will BUG().
2056 */
2057 set_up_list3s(cachep, SIZE_AC);
2058 if (INDEX_AC == INDEX_L3)
2059 g_cpucache_up = PARTIAL_L3;
2060 else
2061 g_cpucache_up = PARTIAL_AC;
2062 } else {
2063 cachep->array[smp_processor_id()] =
2064 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2065
2066 if (g_cpucache_up == PARTIAL_AC) {
2067 set_up_list3s(cachep, SIZE_L3);
2068 g_cpucache_up = PARTIAL_L3;
2069 } else {
2070 int node;
2071 for_each_online_node(node) {
2072 cachep->nodelists[node] =
2073 kmalloc_node(sizeof(struct kmem_list3),
2074 GFP_KERNEL, node);
2075 BUG_ON(!cachep->nodelists[node]);
2076 kmem_list3_init(cachep->nodelists[node]);
2077 }
2078 }
2079 }
2080 cachep->nodelists[numa_node_id()]->next_reap =
2081 jiffies + REAPTIMEOUT_LIST3 +
2082 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2083
2084 cpu_cache_get(cachep)->avail = 0;
2085 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2086 cpu_cache_get(cachep)->batchcount = 1;
2087 cpu_cache_get(cachep)->touched = 0;
2088 cachep->batchcount = 1;
2089 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2090 return 0;
f30cf7d1
PE
2091}
2092
1da177e4
LT
2093/**
2094 * kmem_cache_create - Create a cache.
2095 * @name: A string which is used in /proc/slabinfo to identify this cache.
2096 * @size: The size of objects to be created in this cache.
2097 * @align: The required alignment for the objects.
2098 * @flags: SLAB flags
2099 * @ctor: A constructor for the objects.
c59def9f 2100 * @dtor: A destructor for the objects (not implemented anymore).
1da177e4
LT
2101 *
2102 * Returns a ptr to the cache on success, NULL on failure.
2103 * Cannot be called within a int, but can be interrupted.
2104 * The @ctor is run when new pages are allocated by the cache
2105 * and the @dtor is run before the pages are handed back.
2106 *
2107 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2108 * the module calling this has to destroy the cache before getting unloaded.
2109 *
1da177e4
LT
2110 * The flags are
2111 *
2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113 * to catch references to uninitialised memory.
2114 *
2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116 * for buffer overruns.
2117 *
1da177e4
LT
2118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119 * cacheline. This can be beneficial if you're counting cycles as closely
2120 * as davem.
2121 */
343e0d7a 2122struct kmem_cache *
1da177e4 2123kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2124 unsigned long flags,
2125 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2126 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2127{
2128 size_t left_over, slab_size, ralign;
7a7c381d 2129 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2130
2131 /*
2132 * Sanity checks... these are all serious usage bugs.
2133 */
a737b3e2 2134 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
0aa817f0 2135 size > KMALLOC_MAX_SIZE || dtor) {
a737b3e2
AM
2136 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2137 name);
b28a02de
PE
2138 BUG();
2139 }
1da177e4 2140
f0188f47 2141 /*
8f5be20b
RT
2142 * We use cache_chain_mutex to ensure a consistent view of
2143 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2144 */
fc0abb14 2145 mutex_lock(&cache_chain_mutex);
4f12bb4f 2146
7a7c381d 2147 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2148 char tmp;
2149 int res;
2150
2151 /*
2152 * This happens when the module gets unloaded and doesn't
2153 * destroy its slab cache and no-one else reuses the vmalloc
2154 * area of the module. Print a warning.
2155 */
138ae663 2156 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2157 if (res) {
b4169525 2158 printk(KERN_ERR
2159 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2160 pc->buffer_size);
4f12bb4f
AM
2161 continue;
2162 }
2163
b28a02de 2164 if (!strcmp(pc->name, name)) {
b4169525 2165 printk(KERN_ERR
2166 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2167 dump_stack();
2168 goto oops;
2169 }
2170 }
2171
1da177e4
LT
2172#if DEBUG
2173 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2174#if FORCED_DEBUG
2175 /*
2176 * Enable redzoning and last user accounting, except for caches with
2177 * large objects, if the increased size would increase the object size
2178 * above the next power of two: caches with object sizes just above a
2179 * power of two have a significant amount of internal fragmentation.
2180 */
a737b3e2 2181 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2182 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2183 if (!(flags & SLAB_DESTROY_BY_RCU))
2184 flags |= SLAB_POISON;
2185#endif
2186 if (flags & SLAB_DESTROY_BY_RCU)
2187 BUG_ON(flags & SLAB_POISON);
2188#endif
1da177e4 2189 /*
a737b3e2
AM
2190 * Always checks flags, a caller might be expecting debug support which
2191 * isn't available.
1da177e4 2192 */
40094fa6 2193 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2194
a737b3e2
AM
2195 /*
2196 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2197 * unaligned accesses for some archs when redzoning is used, and makes
2198 * sure any on-slab bufctl's are also correctly aligned.
2199 */
b28a02de
PE
2200 if (size & (BYTES_PER_WORD - 1)) {
2201 size += (BYTES_PER_WORD - 1);
2202 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2203 }
2204
a737b3e2
AM
2205 /* calculate the final buffer alignment: */
2206
1da177e4
LT
2207 /* 1) arch recommendation: can be overridden for debug */
2208 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2209 /*
2210 * Default alignment: as specified by the arch code. Except if
2211 * an object is really small, then squeeze multiple objects into
2212 * one cacheline.
1da177e4
LT
2213 */
2214 ralign = cache_line_size();
b28a02de 2215 while (size <= ralign / 2)
1da177e4
LT
2216 ralign /= 2;
2217 } else {
2218 ralign = BYTES_PER_WORD;
2219 }
ca5f9703
PE
2220
2221 /*
2222 * Redzoning and user store require word alignment. Note this will be
2223 * overridden by architecture or caller mandated alignment if either
2224 * is greater than BYTES_PER_WORD.
2225 */
2226 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2227 ralign = __alignof__(unsigned long long);
ca5f9703 2228
a44b56d3 2229 /* 2) arch mandated alignment */
1da177e4
LT
2230 if (ralign < ARCH_SLAB_MINALIGN) {
2231 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2232 }
a44b56d3 2233 /* 3) caller mandated alignment */
1da177e4
LT
2234 if (ralign < align) {
2235 ralign = align;
1da177e4 2236 }
a44b56d3 2237 /* disable debug if necessary */
b46b8f19 2238 if (ralign > __alignof__(unsigned long long))
a44b56d3 2239 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2240 /*
ca5f9703 2241 * 4) Store it.
1da177e4
LT
2242 */
2243 align = ralign;
2244
2245 /* Get cache's description obj. */
e94b1766 2246 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2247 if (!cachep)
4f12bb4f 2248 goto oops;
1da177e4
LT
2249
2250#if DEBUG
3dafccf2 2251 cachep->obj_size = size;
1da177e4 2252
ca5f9703
PE
2253 /*
2254 * Both debugging options require word-alignment which is calculated
2255 * into align above.
2256 */
1da177e4 2257 if (flags & SLAB_RED_ZONE) {
1da177e4 2258 /* add space for red zone words */
b46b8f19
DW
2259 cachep->obj_offset += sizeof(unsigned long long);
2260 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2261 }
2262 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2263 /* user store requires one word storage behind the end of
2264 * the real object.
1da177e4 2265 */
1da177e4
LT
2266 size += BYTES_PER_WORD;
2267 }
2268#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2269 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2270 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2271 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2272 size = PAGE_SIZE;
2273 }
2274#endif
2275#endif
2276
e0a42726
IM
2277 /*
2278 * Determine if the slab management is 'on' or 'off' slab.
2279 * (bootstrapping cannot cope with offslab caches so don't do
2280 * it too early on.)
2281 */
2282 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2283 /*
2284 * Size is large, assume best to place the slab management obj
2285 * off-slab (should allow better packing of objs).
2286 */
2287 flags |= CFLGS_OFF_SLAB;
2288
2289 size = ALIGN(size, align);
2290
f78bb8ad 2291 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2292
2293 if (!cachep->num) {
b4169525 2294 printk(KERN_ERR
2295 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2296 kmem_cache_free(&cache_cache, cachep);
2297 cachep = NULL;
4f12bb4f 2298 goto oops;
1da177e4 2299 }
b28a02de
PE
2300 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2301 + sizeof(struct slab), align);
1da177e4
LT
2302
2303 /*
2304 * If the slab has been placed off-slab, and we have enough space then
2305 * move it on-slab. This is at the expense of any extra colouring.
2306 */
2307 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2308 flags &= ~CFLGS_OFF_SLAB;
2309 left_over -= slab_size;
2310 }
2311
2312 if (flags & CFLGS_OFF_SLAB) {
2313 /* really off slab. No need for manual alignment */
b28a02de
PE
2314 slab_size =
2315 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2316 }
2317
2318 cachep->colour_off = cache_line_size();
2319 /* Offset must be a multiple of the alignment. */
2320 if (cachep->colour_off < align)
2321 cachep->colour_off = align;
b28a02de 2322 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2323 cachep->slab_size = slab_size;
2324 cachep->flags = flags;
2325 cachep->gfpflags = 0;
4b51d669 2326 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2327 cachep->gfpflags |= GFP_DMA;
3dafccf2 2328 cachep->buffer_size = size;
6a2d7a95 2329 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2330
e5ac9c5a 2331 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2332 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2333 /*
2334 * This is a possibility for one of the malloc_sizes caches.
2335 * But since we go off slab only for object size greater than
2336 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2337 * this should not happen at all.
2338 * But leave a BUG_ON for some lucky dude.
2339 */
2340 BUG_ON(!cachep->slabp_cache);
2341 }
1da177e4 2342 cachep->ctor = ctor;
1da177e4
LT
2343 cachep->name = name;
2344
2ed3a4ef
CL
2345 if (setup_cpu_cache(cachep)) {
2346 __kmem_cache_destroy(cachep);
2347 cachep = NULL;
2348 goto oops;
2349 }
1da177e4 2350
1da177e4
LT
2351 /* cache setup completed, link it into the list */
2352 list_add(&cachep->next, &cache_chain);
a737b3e2 2353oops:
1da177e4
LT
2354 if (!cachep && (flags & SLAB_PANIC))
2355 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2356 name);
fc0abb14 2357 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2358 return cachep;
2359}
2360EXPORT_SYMBOL(kmem_cache_create);
2361
2362#if DEBUG
2363static void check_irq_off(void)
2364{
2365 BUG_ON(!irqs_disabled());
2366}
2367
2368static void check_irq_on(void)
2369{
2370 BUG_ON(irqs_disabled());
2371}
2372
343e0d7a 2373static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2374{
2375#ifdef CONFIG_SMP
2376 check_irq_off();
e498be7d 2377 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2378#endif
2379}
e498be7d 2380
343e0d7a 2381static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2382{
2383#ifdef CONFIG_SMP
2384 check_irq_off();
2385 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2386#endif
2387}
2388
1da177e4
LT
2389#else
2390#define check_irq_off() do { } while(0)
2391#define check_irq_on() do { } while(0)
2392#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2393#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2394#endif
2395
aab2207c
CL
2396static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2397 struct array_cache *ac,
2398 int force, int node);
2399
1da177e4
LT
2400static void do_drain(void *arg)
2401{
a737b3e2 2402 struct kmem_cache *cachep = arg;
1da177e4 2403 struct array_cache *ac;
ff69416e 2404 int node = numa_node_id();
1da177e4
LT
2405
2406 check_irq_off();
9a2dba4b 2407 ac = cpu_cache_get(cachep);
ff69416e
CL
2408 spin_lock(&cachep->nodelists[node]->list_lock);
2409 free_block(cachep, ac->entry, ac->avail, node);
2410 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2411 ac->avail = 0;
2412}
2413
343e0d7a 2414static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2415{
e498be7d
CL
2416 struct kmem_list3 *l3;
2417 int node;
2418
a07fa394 2419 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2420 check_irq_on();
b28a02de 2421 for_each_online_node(node) {
e498be7d 2422 l3 = cachep->nodelists[node];
a4523a8b
RD
2423 if (l3 && l3->alien)
2424 drain_alien_cache(cachep, l3->alien);
2425 }
2426
2427 for_each_online_node(node) {
2428 l3 = cachep->nodelists[node];
2429 if (l3)
aab2207c 2430 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2431 }
1da177e4
LT
2432}
2433
ed11d9eb
CL
2434/*
2435 * Remove slabs from the list of free slabs.
2436 * Specify the number of slabs to drain in tofree.
2437 *
2438 * Returns the actual number of slabs released.
2439 */
2440static int drain_freelist(struct kmem_cache *cache,
2441 struct kmem_list3 *l3, int tofree)
1da177e4 2442{
ed11d9eb
CL
2443 struct list_head *p;
2444 int nr_freed;
1da177e4 2445 struct slab *slabp;
1da177e4 2446
ed11d9eb
CL
2447 nr_freed = 0;
2448 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2449
ed11d9eb 2450 spin_lock_irq(&l3->list_lock);
e498be7d 2451 p = l3->slabs_free.prev;
ed11d9eb
CL
2452 if (p == &l3->slabs_free) {
2453 spin_unlock_irq(&l3->list_lock);
2454 goto out;
2455 }
1da177e4 2456
ed11d9eb 2457 slabp = list_entry(p, struct slab, list);
1da177e4 2458#if DEBUG
40094fa6 2459 BUG_ON(slabp->inuse);
1da177e4
LT
2460#endif
2461 list_del(&slabp->list);
ed11d9eb
CL
2462 /*
2463 * Safe to drop the lock. The slab is no longer linked
2464 * to the cache.
2465 */
2466 l3->free_objects -= cache->num;
e498be7d 2467 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2468 slab_destroy(cache, slabp);
2469 nr_freed++;
1da177e4 2470 }
ed11d9eb
CL
2471out:
2472 return nr_freed;
1da177e4
LT
2473}
2474
8f5be20b 2475/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2476static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2477{
2478 int ret = 0, i = 0;
2479 struct kmem_list3 *l3;
2480
2481 drain_cpu_caches(cachep);
2482
2483 check_irq_on();
2484 for_each_online_node(i) {
2485 l3 = cachep->nodelists[i];
ed11d9eb
CL
2486 if (!l3)
2487 continue;
2488
2489 drain_freelist(cachep, l3, l3->free_objects);
2490
2491 ret += !list_empty(&l3->slabs_full) ||
2492 !list_empty(&l3->slabs_partial);
e498be7d
CL
2493 }
2494 return (ret ? 1 : 0);
2495}
2496
1da177e4
LT
2497/**
2498 * kmem_cache_shrink - Shrink a cache.
2499 * @cachep: The cache to shrink.
2500 *
2501 * Releases as many slabs as possible for a cache.
2502 * To help debugging, a zero exit status indicates all slabs were released.
2503 */
343e0d7a 2504int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2505{
8f5be20b 2506 int ret;
40094fa6 2507 BUG_ON(!cachep || in_interrupt());
1da177e4 2508
8f5be20b
RT
2509 mutex_lock(&cache_chain_mutex);
2510 ret = __cache_shrink(cachep);
2511 mutex_unlock(&cache_chain_mutex);
2512 return ret;
1da177e4
LT
2513}
2514EXPORT_SYMBOL(kmem_cache_shrink);
2515
2516/**
2517 * kmem_cache_destroy - delete a cache
2518 * @cachep: the cache to destroy
2519 *
72fd4a35 2520 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2521 *
2522 * It is expected this function will be called by a module when it is
2523 * unloaded. This will remove the cache completely, and avoid a duplicate
2524 * cache being allocated each time a module is loaded and unloaded, if the
2525 * module doesn't have persistent in-kernel storage across loads and unloads.
2526 *
2527 * The cache must be empty before calling this function.
2528 *
2529 * The caller must guarantee that noone will allocate memory from the cache
2530 * during the kmem_cache_destroy().
2531 */
133d205a 2532void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2533{
40094fa6 2534 BUG_ON(!cachep || in_interrupt());
1da177e4 2535
1da177e4 2536 /* Find the cache in the chain of caches. */
fc0abb14 2537 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2538 /*
2539 * the chain is never empty, cache_cache is never destroyed
2540 */
2541 list_del(&cachep->next);
1da177e4
LT
2542 if (__cache_shrink(cachep)) {
2543 slab_error(cachep, "Can't free all objects");
b28a02de 2544 list_add(&cachep->next, &cache_chain);
fc0abb14 2545 mutex_unlock(&cache_chain_mutex);
133d205a 2546 return;
1da177e4
LT
2547 }
2548
2549 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2550 synchronize_rcu();
1da177e4 2551
117f6eb1 2552 __kmem_cache_destroy(cachep);
8f5be20b 2553 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2554}
2555EXPORT_SYMBOL(kmem_cache_destroy);
2556
e5ac9c5a
RT
2557/*
2558 * Get the memory for a slab management obj.
2559 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2560 * always come from malloc_sizes caches. The slab descriptor cannot
2561 * come from the same cache which is getting created because,
2562 * when we are searching for an appropriate cache for these
2563 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2564 * If we are creating a malloc_sizes cache here it would not be visible to
2565 * kmem_find_general_cachep till the initialization is complete.
2566 * Hence we cannot have slabp_cache same as the original cache.
2567 */
343e0d7a 2568static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2569 int colour_off, gfp_t local_flags,
2570 int nodeid)
1da177e4
LT
2571{
2572 struct slab *slabp;
b28a02de 2573
1da177e4
LT
2574 if (OFF_SLAB(cachep)) {
2575 /* Slab management obj is off-slab. */
5b74ada7 2576 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2577 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2578 if (!slabp)
2579 return NULL;
2580 } else {
b28a02de 2581 slabp = objp + colour_off;
1da177e4
LT
2582 colour_off += cachep->slab_size;
2583 }
2584 slabp->inuse = 0;
2585 slabp->colouroff = colour_off;
b28a02de 2586 slabp->s_mem = objp + colour_off;
5b74ada7 2587 slabp->nodeid = nodeid;
1da177e4
LT
2588 return slabp;
2589}
2590
2591static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2592{
b28a02de 2593 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2594}
2595
343e0d7a 2596static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2597 struct slab *slabp)
1da177e4
LT
2598{
2599 int i;
2600
2601 for (i = 0; i < cachep->num; i++) {
8fea4e96 2602 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2603#if DEBUG
2604 /* need to poison the objs? */
2605 if (cachep->flags & SLAB_POISON)
2606 poison_obj(cachep, objp, POISON_FREE);
2607 if (cachep->flags & SLAB_STORE_USER)
2608 *dbg_userword(cachep, objp) = NULL;
2609
2610 if (cachep->flags & SLAB_RED_ZONE) {
2611 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2612 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2613 }
2614 /*
a737b3e2
AM
2615 * Constructors are not allowed to allocate memory from the same
2616 * cache which they are a constructor for. Otherwise, deadlock.
2617 * They must also be threaded.
1da177e4
LT
2618 */
2619 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2620 cachep->ctor(objp + obj_offset(cachep), cachep,
a35afb83 2621 0);
1da177e4
LT
2622
2623 if (cachep->flags & SLAB_RED_ZONE) {
2624 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2625 slab_error(cachep, "constructor overwrote the"
b28a02de 2626 " end of an object");
1da177e4
LT
2627 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2628 slab_error(cachep, "constructor overwrote the"
b28a02de 2629 " start of an object");
1da177e4 2630 }
a737b3e2
AM
2631 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2632 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2633 kernel_map_pages(virt_to_page(objp),
3dafccf2 2634 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2635#else
2636 if (cachep->ctor)
a35afb83 2637 cachep->ctor(objp, cachep, 0);
1da177e4 2638#endif
b28a02de 2639 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2640 }
b28a02de 2641 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2642 slabp->free = 0;
2643}
2644
343e0d7a 2645static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2646{
4b51d669
CL
2647 if (CONFIG_ZONE_DMA_FLAG) {
2648 if (flags & GFP_DMA)
2649 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2650 else
2651 BUG_ON(cachep->gfpflags & GFP_DMA);
2652 }
1da177e4
LT
2653}
2654
a737b3e2
AM
2655static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2656 int nodeid)
78d382d7 2657{
8fea4e96 2658 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2659 kmem_bufctl_t next;
2660
2661 slabp->inuse++;
2662 next = slab_bufctl(slabp)[slabp->free];
2663#if DEBUG
2664 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2665 WARN_ON(slabp->nodeid != nodeid);
2666#endif
2667 slabp->free = next;
2668
2669 return objp;
2670}
2671
a737b3e2
AM
2672static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2673 void *objp, int nodeid)
78d382d7 2674{
8fea4e96 2675 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2676
2677#if DEBUG
2678 /* Verify that the slab belongs to the intended node */
2679 WARN_ON(slabp->nodeid != nodeid);
2680
871751e2 2681 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2682 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2683 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2684 BUG();
2685 }
2686#endif
2687 slab_bufctl(slabp)[objnr] = slabp->free;
2688 slabp->free = objnr;
2689 slabp->inuse--;
2690}
2691
4776874f
PE
2692/*
2693 * Map pages beginning at addr to the given cache and slab. This is required
2694 * for the slab allocator to be able to lookup the cache and slab of a
2695 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2696 */
2697static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2698 void *addr)
1da177e4 2699{
4776874f 2700 int nr_pages;
1da177e4
LT
2701 struct page *page;
2702
4776874f 2703 page = virt_to_page(addr);
84097518 2704
4776874f 2705 nr_pages = 1;
84097518 2706 if (likely(!PageCompound(page)))
4776874f
PE
2707 nr_pages <<= cache->gfporder;
2708
1da177e4 2709 do {
4776874f
PE
2710 page_set_cache(page, cache);
2711 page_set_slab(page, slab);
1da177e4 2712 page++;
4776874f 2713 } while (--nr_pages);
1da177e4
LT
2714}
2715
2716/*
2717 * Grow (by 1) the number of slabs within a cache. This is called by
2718 * kmem_cache_alloc() when there are no active objs left in a cache.
2719 */
3c517a61
CL
2720static int cache_grow(struct kmem_cache *cachep,
2721 gfp_t flags, int nodeid, void *objp)
1da177e4 2722{
b28a02de 2723 struct slab *slabp;
b28a02de
PE
2724 size_t offset;
2725 gfp_t local_flags;
e498be7d 2726 struct kmem_list3 *l3;
1da177e4 2727
a737b3e2
AM
2728 /*
2729 * Be lazy and only check for valid flags here, keeping it out of the
2730 * critical path in kmem_cache_alloc().
1da177e4 2731 */
cfce6604 2732 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4 2733
a06d72c1 2734 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2735 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2736 check_irq_off();
2e1217cf
RT
2737 l3 = cachep->nodelists[nodeid];
2738 spin_lock(&l3->list_lock);
1da177e4
LT
2739
2740 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2741 offset = l3->colour_next;
2742 l3->colour_next++;
2743 if (l3->colour_next >= cachep->colour)
2744 l3->colour_next = 0;
2745 spin_unlock(&l3->list_lock);
1da177e4 2746
2e1217cf 2747 offset *= cachep->colour_off;
1da177e4
LT
2748
2749 if (local_flags & __GFP_WAIT)
2750 local_irq_enable();
2751
2752 /*
2753 * The test for missing atomic flag is performed here, rather than
2754 * the more obvious place, simply to reduce the critical path length
2755 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2756 * will eventually be caught here (where it matters).
2757 */
2758 kmem_flagcheck(cachep, flags);
2759
a737b3e2
AM
2760 /*
2761 * Get mem for the objs. Attempt to allocate a physical page from
2762 * 'nodeid'.
e498be7d 2763 */
3c517a61
CL
2764 if (!objp)
2765 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2766 if (!objp)
1da177e4
LT
2767 goto failed;
2768
2769 /* Get slab management. */
3c517a61
CL
2770 slabp = alloc_slabmgmt(cachep, objp, offset,
2771 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2772 if (!slabp)
1da177e4
LT
2773 goto opps1;
2774
e498be7d 2775 slabp->nodeid = nodeid;
4776874f 2776 slab_map_pages(cachep, slabp, objp);
1da177e4 2777
a35afb83 2778 cache_init_objs(cachep, slabp);
1da177e4
LT
2779
2780 if (local_flags & __GFP_WAIT)
2781 local_irq_disable();
2782 check_irq_off();
e498be7d 2783 spin_lock(&l3->list_lock);
1da177e4
LT
2784
2785 /* Make slab active. */
e498be7d 2786 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2787 STATS_INC_GROWN(cachep);
e498be7d
CL
2788 l3->free_objects += cachep->num;
2789 spin_unlock(&l3->list_lock);
1da177e4 2790 return 1;
a737b3e2 2791opps1:
1da177e4 2792 kmem_freepages(cachep, objp);
a737b3e2 2793failed:
1da177e4
LT
2794 if (local_flags & __GFP_WAIT)
2795 local_irq_disable();
2796 return 0;
2797}
2798
2799#if DEBUG
2800
2801/*
2802 * Perform extra freeing checks:
2803 * - detect bad pointers.
2804 * - POISON/RED_ZONE checking
1da177e4
LT
2805 */
2806static void kfree_debugcheck(const void *objp)
2807{
1da177e4
LT
2808 if (!virt_addr_valid(objp)) {
2809 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2810 (unsigned long)objp);
2811 BUG();
1da177e4 2812 }
1da177e4
LT
2813}
2814
58ce1fd5
PE
2815static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2816{
b46b8f19 2817 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2818
2819 redzone1 = *dbg_redzone1(cache, obj);
2820 redzone2 = *dbg_redzone2(cache, obj);
2821
2822 /*
2823 * Redzone is ok.
2824 */
2825 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2826 return;
2827
2828 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2829 slab_error(cache, "double free detected");
2830 else
2831 slab_error(cache, "memory outside object was overwritten");
2832
b46b8f19 2833 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2834 obj, redzone1, redzone2);
2835}
2836
343e0d7a 2837static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2838 void *caller)
1da177e4
LT
2839{
2840 struct page *page;
2841 unsigned int objnr;
2842 struct slab *slabp;
2843
3dafccf2 2844 objp -= obj_offset(cachep);
1da177e4 2845 kfree_debugcheck(objp);
b49af68f 2846 page = virt_to_head_page(objp);
1da177e4 2847
065d41cb 2848 slabp = page_get_slab(page);
1da177e4
LT
2849
2850 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2851 verify_redzone_free(cachep, objp);
1da177e4
LT
2852 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2853 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2854 }
2855 if (cachep->flags & SLAB_STORE_USER)
2856 *dbg_userword(cachep, objp) = caller;
2857
8fea4e96 2858 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2859
2860 BUG_ON(objnr >= cachep->num);
8fea4e96 2861 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2862
871751e2
AV
2863#ifdef CONFIG_DEBUG_SLAB_LEAK
2864 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2865#endif
1da177e4
LT
2866 if (cachep->flags & SLAB_POISON) {
2867#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2868 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2869 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2870 kernel_map_pages(virt_to_page(objp),
3dafccf2 2871 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2872 } else {
2873 poison_obj(cachep, objp, POISON_FREE);
2874 }
2875#else
2876 poison_obj(cachep, objp, POISON_FREE);
2877#endif
2878 }
2879 return objp;
2880}
2881
343e0d7a 2882static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2883{
2884 kmem_bufctl_t i;
2885 int entries = 0;
b28a02de 2886
1da177e4
LT
2887 /* Check slab's freelist to see if this obj is there. */
2888 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2889 entries++;
2890 if (entries > cachep->num || i >= cachep->num)
2891 goto bad;
2892 }
2893 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2894bad:
2895 printk(KERN_ERR "slab: Internal list corruption detected in "
2896 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2897 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2898 for (i = 0;
264132bc 2899 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2900 i++) {
a737b3e2 2901 if (i % 16 == 0)
1da177e4 2902 printk("\n%03x:", i);
b28a02de 2903 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2904 }
2905 printk("\n");
2906 BUG();
2907 }
2908}
2909#else
2910#define kfree_debugcheck(x) do { } while(0)
2911#define cache_free_debugcheck(x,objp,z) (objp)
2912#define check_slabp(x,y) do { } while(0)
2913#endif
2914
343e0d7a 2915static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2916{
2917 int batchcount;
2918 struct kmem_list3 *l3;
2919 struct array_cache *ac;
1ca4cb24
PE
2920 int node;
2921
2922 node = numa_node_id();
1da177e4
LT
2923
2924 check_irq_off();
9a2dba4b 2925 ac = cpu_cache_get(cachep);
a737b3e2 2926retry:
1da177e4
LT
2927 batchcount = ac->batchcount;
2928 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2929 /*
2930 * If there was little recent activity on this cache, then
2931 * perform only a partial refill. Otherwise we could generate
2932 * refill bouncing.
1da177e4
LT
2933 */
2934 batchcount = BATCHREFILL_LIMIT;
2935 }
1ca4cb24 2936 l3 = cachep->nodelists[node];
e498be7d
CL
2937
2938 BUG_ON(ac->avail > 0 || !l3);
2939 spin_lock(&l3->list_lock);
1da177e4 2940
3ded175a
CL
2941 /* See if we can refill from the shared array */
2942 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2943 goto alloc_done;
2944
1da177e4
LT
2945 while (batchcount > 0) {
2946 struct list_head *entry;
2947 struct slab *slabp;
2948 /* Get slab alloc is to come from. */
2949 entry = l3->slabs_partial.next;
2950 if (entry == &l3->slabs_partial) {
2951 l3->free_touched = 1;
2952 entry = l3->slabs_free.next;
2953 if (entry == &l3->slabs_free)
2954 goto must_grow;
2955 }
2956
2957 slabp = list_entry(entry, struct slab, list);
2958 check_slabp(cachep, slabp);
2959 check_spinlock_acquired(cachep);
714b8171
PE
2960
2961 /*
2962 * The slab was either on partial or free list so
2963 * there must be at least one object available for
2964 * allocation.
2965 */
2966 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2967
1da177e4 2968 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2969 STATS_INC_ALLOCED(cachep);
2970 STATS_INC_ACTIVE(cachep);
2971 STATS_SET_HIGH(cachep);
2972
78d382d7 2973 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2974 node);
1da177e4
LT
2975 }
2976 check_slabp(cachep, slabp);
2977
2978 /* move slabp to correct slabp list: */
2979 list_del(&slabp->list);
2980 if (slabp->free == BUFCTL_END)
2981 list_add(&slabp->list, &l3->slabs_full);
2982 else
2983 list_add(&slabp->list, &l3->slabs_partial);
2984 }
2985
a737b3e2 2986must_grow:
1da177e4 2987 l3->free_objects -= ac->avail;
a737b3e2 2988alloc_done:
e498be7d 2989 spin_unlock(&l3->list_lock);
1da177e4
LT
2990
2991 if (unlikely(!ac->avail)) {
2992 int x;
3c517a61 2993 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2994
a737b3e2 2995 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2996 ac = cpu_cache_get(cachep);
a737b3e2 2997 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2998 return NULL;
2999
a737b3e2 3000 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3001 goto retry;
3002 }
3003 ac->touched = 1;
e498be7d 3004 return ac->entry[--ac->avail];
1da177e4
LT
3005}
3006
a737b3e2
AM
3007static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3008 gfp_t flags)
1da177e4
LT
3009{
3010 might_sleep_if(flags & __GFP_WAIT);
3011#if DEBUG
3012 kmem_flagcheck(cachep, flags);
3013#endif
3014}
3015
3016#if DEBUG
a737b3e2
AM
3017static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3018 gfp_t flags, void *objp, void *caller)
1da177e4 3019{
b28a02de 3020 if (!objp)
1da177e4 3021 return objp;
b28a02de 3022 if (cachep->flags & SLAB_POISON) {
1da177e4 3023#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3024 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3025 kernel_map_pages(virt_to_page(objp),
3dafccf2 3026 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3027 else
3028 check_poison_obj(cachep, objp);
3029#else
3030 check_poison_obj(cachep, objp);
3031#endif
3032 poison_obj(cachep, objp, POISON_INUSE);
3033 }
3034 if (cachep->flags & SLAB_STORE_USER)
3035 *dbg_userword(cachep, objp) = caller;
3036
3037 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3038 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3039 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3040 slab_error(cachep, "double free, or memory outside"
3041 " object was overwritten");
b28a02de 3042 printk(KERN_ERR
b46b8f19 3043 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3044 objp, *dbg_redzone1(cachep, objp),
3045 *dbg_redzone2(cachep, objp));
1da177e4
LT
3046 }
3047 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3048 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3049 }
871751e2
AV
3050#ifdef CONFIG_DEBUG_SLAB_LEAK
3051 {
3052 struct slab *slabp;
3053 unsigned objnr;
3054
b49af68f 3055 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3056 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3057 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3058 }
3059#endif
3dafccf2 3060 objp += obj_offset(cachep);
4f104934 3061 if (cachep->ctor && cachep->flags & SLAB_POISON)
a35afb83 3062 cachep->ctor(objp, cachep, 0);
a44b56d3
KH
3063#if ARCH_SLAB_MINALIGN
3064 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3065 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3066 objp, ARCH_SLAB_MINALIGN);
3067 }
3068#endif
1da177e4
LT
3069 return objp;
3070}
3071#else
3072#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3073#endif
3074
8a8b6502
AM
3075#ifdef CONFIG_FAILSLAB
3076
3077static struct failslab_attr {
3078
3079 struct fault_attr attr;
3080
3081 u32 ignore_gfp_wait;
3082#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3083 struct dentry *ignore_gfp_wait_file;
3084#endif
3085
3086} failslab = {
3087 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3088 .ignore_gfp_wait = 1,
8a8b6502
AM
3089};
3090
3091static int __init setup_failslab(char *str)
3092{
3093 return setup_fault_attr(&failslab.attr, str);
3094}
3095__setup("failslab=", setup_failslab);
3096
3097static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3098{
3099 if (cachep == &cache_cache)
3100 return 0;
3101 if (flags & __GFP_NOFAIL)
3102 return 0;
3103 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3104 return 0;
3105
3106 return should_fail(&failslab.attr, obj_size(cachep));
3107}
3108
3109#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3110
3111static int __init failslab_debugfs(void)
3112{
3113 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3114 struct dentry *dir;
3115 int err;
3116
824ebef1 3117 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3118 if (err)
3119 return err;
3120 dir = failslab.attr.dentries.dir;
3121
3122 failslab.ignore_gfp_wait_file =
3123 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3124 &failslab.ignore_gfp_wait);
3125
3126 if (!failslab.ignore_gfp_wait_file) {
3127 err = -ENOMEM;
3128 debugfs_remove(failslab.ignore_gfp_wait_file);
3129 cleanup_fault_attr_dentries(&failslab.attr);
3130 }
3131
3132 return err;
3133}
3134
3135late_initcall(failslab_debugfs);
3136
3137#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3138
3139#else /* CONFIG_FAILSLAB */
3140
3141static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3142{
3143 return 0;
3144}
3145
3146#endif /* CONFIG_FAILSLAB */
3147
343e0d7a 3148static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3149{
b28a02de 3150 void *objp;
1da177e4
LT
3151 struct array_cache *ac;
3152
5c382300 3153 check_irq_off();
8a8b6502 3154
9a2dba4b 3155 ac = cpu_cache_get(cachep);
1da177e4
LT
3156 if (likely(ac->avail)) {
3157 STATS_INC_ALLOCHIT(cachep);
3158 ac->touched = 1;
e498be7d 3159 objp = ac->entry[--ac->avail];
1da177e4
LT
3160 } else {
3161 STATS_INC_ALLOCMISS(cachep);
3162 objp = cache_alloc_refill(cachep, flags);
3163 }
5c382300
AK
3164 return objp;
3165}
3166
e498be7d 3167#ifdef CONFIG_NUMA
c61afb18 3168/*
b2455396 3169 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3170 *
3171 * If we are in_interrupt, then process context, including cpusets and
3172 * mempolicy, may not apply and should not be used for allocation policy.
3173 */
3174static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3175{
3176 int nid_alloc, nid_here;
3177
765c4507 3178 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3179 return NULL;
3180 nid_alloc = nid_here = numa_node_id();
3181 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3182 nid_alloc = cpuset_mem_spread_node();
3183 else if (current->mempolicy)
3184 nid_alloc = slab_node(current->mempolicy);
3185 if (nid_alloc != nid_here)
8b98c169 3186 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3187 return NULL;
3188}
3189
765c4507
CL
3190/*
3191 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3192 * certain node and fall back is permitted. First we scan all the
3193 * available nodelists for available objects. If that fails then we
3194 * perform an allocation without specifying a node. This allows the page
3195 * allocator to do its reclaim / fallback magic. We then insert the
3196 * slab into the proper nodelist and then allocate from it.
765c4507 3197 */
8c8cc2c1 3198static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3199{
8c8cc2c1
PE
3200 struct zonelist *zonelist;
3201 gfp_t local_flags;
765c4507
CL
3202 struct zone **z;
3203 void *obj = NULL;
3c517a61 3204 int nid;
8c8cc2c1
PE
3205
3206 if (flags & __GFP_THISNODE)
3207 return NULL;
3208
3209 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3210 ->node_zonelists[gfp_zone(flags)];
3211 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3212
3c517a61
CL
3213retry:
3214 /*
3215 * Look through allowed nodes for objects available
3216 * from existing per node queues.
3217 */
aedb0eb1 3218 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3219 nid = zone_to_nid(*z);
aedb0eb1 3220
02a0e53d 3221 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3222 cache->nodelists[nid] &&
3223 cache->nodelists[nid]->free_objects)
3224 obj = ____cache_alloc_node(cache,
3225 flags | GFP_THISNODE, nid);
3226 }
3227
cfce6604 3228 if (!obj) {
3c517a61
CL
3229 /*
3230 * This allocation will be performed within the constraints
3231 * of the current cpuset / memory policy requirements.
3232 * We may trigger various forms of reclaim on the allowed
3233 * set and go into memory reserves if necessary.
3234 */
dd47ea75
CL
3235 if (local_flags & __GFP_WAIT)
3236 local_irq_enable();
3237 kmem_flagcheck(cache, flags);
3c517a61 3238 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3239 if (local_flags & __GFP_WAIT)
3240 local_irq_disable();
3c517a61
CL
3241 if (obj) {
3242 /*
3243 * Insert into the appropriate per node queues
3244 */
3245 nid = page_to_nid(virt_to_page(obj));
3246 if (cache_grow(cache, flags, nid, obj)) {
3247 obj = ____cache_alloc_node(cache,
3248 flags | GFP_THISNODE, nid);
3249 if (!obj)
3250 /*
3251 * Another processor may allocate the
3252 * objects in the slab since we are
3253 * not holding any locks.
3254 */
3255 goto retry;
3256 } else {
b6a60451 3257 /* cache_grow already freed obj */
3c517a61
CL
3258 obj = NULL;
3259 }
3260 }
aedb0eb1 3261 }
765c4507
CL
3262 return obj;
3263}
3264
e498be7d
CL
3265/*
3266 * A interface to enable slab creation on nodeid
1da177e4 3267 */
8b98c169 3268static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3269 int nodeid)
e498be7d
CL
3270{
3271 struct list_head *entry;
b28a02de
PE
3272 struct slab *slabp;
3273 struct kmem_list3 *l3;
3274 void *obj;
b28a02de
PE
3275 int x;
3276
3277 l3 = cachep->nodelists[nodeid];
3278 BUG_ON(!l3);
3279
a737b3e2 3280retry:
ca3b9b91 3281 check_irq_off();
b28a02de
PE
3282 spin_lock(&l3->list_lock);
3283 entry = l3->slabs_partial.next;
3284 if (entry == &l3->slabs_partial) {
3285 l3->free_touched = 1;
3286 entry = l3->slabs_free.next;
3287 if (entry == &l3->slabs_free)
3288 goto must_grow;
3289 }
3290
3291 slabp = list_entry(entry, struct slab, list);
3292 check_spinlock_acquired_node(cachep, nodeid);
3293 check_slabp(cachep, slabp);
3294
3295 STATS_INC_NODEALLOCS(cachep);
3296 STATS_INC_ACTIVE(cachep);
3297 STATS_SET_HIGH(cachep);
3298
3299 BUG_ON(slabp->inuse == cachep->num);
3300
78d382d7 3301 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3302 check_slabp(cachep, slabp);
3303 l3->free_objects--;
3304 /* move slabp to correct slabp list: */
3305 list_del(&slabp->list);
3306
a737b3e2 3307 if (slabp->free == BUFCTL_END)
b28a02de 3308 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3309 else
b28a02de 3310 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3311
b28a02de
PE
3312 spin_unlock(&l3->list_lock);
3313 goto done;
e498be7d 3314
a737b3e2 3315must_grow:
b28a02de 3316 spin_unlock(&l3->list_lock);
3c517a61 3317 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3318 if (x)
3319 goto retry;
1da177e4 3320
8c8cc2c1 3321 return fallback_alloc(cachep, flags);
e498be7d 3322
a737b3e2 3323done:
b28a02de 3324 return obj;
e498be7d 3325}
8c8cc2c1
PE
3326
3327/**
3328 * kmem_cache_alloc_node - Allocate an object on the specified node
3329 * @cachep: The cache to allocate from.
3330 * @flags: See kmalloc().
3331 * @nodeid: node number of the target node.
3332 * @caller: return address of caller, used for debug information
3333 *
3334 * Identical to kmem_cache_alloc but it will allocate memory on the given
3335 * node, which can improve the performance for cpu bound structures.
3336 *
3337 * Fallback to other node is possible if __GFP_THISNODE is not set.
3338 */
3339static __always_inline void *
3340__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3341 void *caller)
3342{
3343 unsigned long save_flags;
3344 void *ptr;
3345
824ebef1
AM
3346 if (should_failslab(cachep, flags))
3347 return NULL;
3348
8c8cc2c1
PE
3349 cache_alloc_debugcheck_before(cachep, flags);
3350 local_irq_save(save_flags);
3351
3352 if (unlikely(nodeid == -1))
3353 nodeid = numa_node_id();
3354
3355 if (unlikely(!cachep->nodelists[nodeid])) {
3356 /* Node not bootstrapped yet */
3357 ptr = fallback_alloc(cachep, flags);
3358 goto out;
3359 }
3360
3361 if (nodeid == numa_node_id()) {
3362 /*
3363 * Use the locally cached objects if possible.
3364 * However ____cache_alloc does not allow fallback
3365 * to other nodes. It may fail while we still have
3366 * objects on other nodes available.
3367 */
3368 ptr = ____cache_alloc(cachep, flags);
3369 if (ptr)
3370 goto out;
3371 }
3372 /* ___cache_alloc_node can fall back to other nodes */
3373 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3374 out:
3375 local_irq_restore(save_flags);
3376 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3377
3378 return ptr;
3379}
3380
3381static __always_inline void *
3382__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3383{
3384 void *objp;
3385
3386 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3387 objp = alternate_node_alloc(cache, flags);
3388 if (objp)
3389 goto out;
3390 }
3391 objp = ____cache_alloc(cache, flags);
3392
3393 /*
3394 * We may just have run out of memory on the local node.
3395 * ____cache_alloc_node() knows how to locate memory on other nodes
3396 */
3397 if (!objp)
3398 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3399
3400 out:
3401 return objp;
3402}
3403#else
3404
3405static __always_inline void *
3406__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3407{
3408 return ____cache_alloc(cachep, flags);
3409}
3410
3411#endif /* CONFIG_NUMA */
3412
3413static __always_inline void *
3414__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3415{
3416 unsigned long save_flags;
3417 void *objp;
3418
824ebef1
AM
3419 if (should_failslab(cachep, flags))
3420 return NULL;
3421
8c8cc2c1
PE
3422 cache_alloc_debugcheck_before(cachep, flags);
3423 local_irq_save(save_flags);
3424 objp = __do_cache_alloc(cachep, flags);
3425 local_irq_restore(save_flags);
3426 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3427 prefetchw(objp);
3428
3429 return objp;
3430}
e498be7d
CL
3431
3432/*
3433 * Caller needs to acquire correct kmem_list's list_lock
3434 */
343e0d7a 3435static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3436 int node)
1da177e4
LT
3437{
3438 int i;
e498be7d 3439 struct kmem_list3 *l3;
1da177e4
LT
3440
3441 for (i = 0; i < nr_objects; i++) {
3442 void *objp = objpp[i];
3443 struct slab *slabp;
1da177e4 3444
6ed5eb22 3445 slabp = virt_to_slab(objp);
ff69416e 3446 l3 = cachep->nodelists[node];
1da177e4 3447 list_del(&slabp->list);
ff69416e 3448 check_spinlock_acquired_node(cachep, node);
1da177e4 3449 check_slabp(cachep, slabp);
78d382d7 3450 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3451 STATS_DEC_ACTIVE(cachep);
e498be7d 3452 l3->free_objects++;
1da177e4
LT
3453 check_slabp(cachep, slabp);
3454
3455 /* fixup slab chains */
3456 if (slabp->inuse == 0) {
e498be7d
CL
3457 if (l3->free_objects > l3->free_limit) {
3458 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3459 /* No need to drop any previously held
3460 * lock here, even if we have a off-slab slab
3461 * descriptor it is guaranteed to come from
3462 * a different cache, refer to comments before
3463 * alloc_slabmgmt.
3464 */
1da177e4
LT
3465 slab_destroy(cachep, slabp);
3466 } else {
e498be7d 3467 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3468 }
3469 } else {
3470 /* Unconditionally move a slab to the end of the
3471 * partial list on free - maximum time for the
3472 * other objects to be freed, too.
3473 */
e498be7d 3474 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3475 }
3476 }
3477}
3478
343e0d7a 3479static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3480{
3481 int batchcount;
e498be7d 3482 struct kmem_list3 *l3;
ff69416e 3483 int node = numa_node_id();
1da177e4
LT
3484
3485 batchcount = ac->batchcount;
3486#if DEBUG
3487 BUG_ON(!batchcount || batchcount > ac->avail);
3488#endif
3489 check_irq_off();
ff69416e 3490 l3 = cachep->nodelists[node];
873623df 3491 spin_lock(&l3->list_lock);
e498be7d
CL
3492 if (l3->shared) {
3493 struct array_cache *shared_array = l3->shared;
b28a02de 3494 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3495 if (max) {
3496 if (batchcount > max)
3497 batchcount = max;
e498be7d 3498 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3499 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3500 shared_array->avail += batchcount;
3501 goto free_done;
3502 }
3503 }
3504
ff69416e 3505 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3506free_done:
1da177e4
LT
3507#if STATS
3508 {
3509 int i = 0;
3510 struct list_head *p;
3511
e498be7d
CL
3512 p = l3->slabs_free.next;
3513 while (p != &(l3->slabs_free)) {
1da177e4
LT
3514 struct slab *slabp;
3515
3516 slabp = list_entry(p, struct slab, list);
3517 BUG_ON(slabp->inuse);
3518
3519 i++;
3520 p = p->next;
3521 }
3522 STATS_SET_FREEABLE(cachep, i);
3523 }
3524#endif
e498be7d 3525 spin_unlock(&l3->list_lock);
1da177e4 3526 ac->avail -= batchcount;
a737b3e2 3527 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3528}
3529
3530/*
a737b3e2
AM
3531 * Release an obj back to its cache. If the obj has a constructed state, it must
3532 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3533 */
873623df 3534static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3535{
9a2dba4b 3536 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3537
3538 check_irq_off();
3539 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3540
3cdc0ed0 3541 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3542 return;
3543
1da177e4
LT
3544 if (likely(ac->avail < ac->limit)) {
3545 STATS_INC_FREEHIT(cachep);
e498be7d 3546 ac->entry[ac->avail++] = objp;
1da177e4
LT
3547 return;
3548 } else {
3549 STATS_INC_FREEMISS(cachep);
3550 cache_flusharray(cachep, ac);
e498be7d 3551 ac->entry[ac->avail++] = objp;
1da177e4
LT
3552 }
3553}
3554
3555/**
3556 * kmem_cache_alloc - Allocate an object
3557 * @cachep: The cache to allocate from.
3558 * @flags: See kmalloc().
3559 *
3560 * Allocate an object from this cache. The flags are only relevant
3561 * if the cache has no available objects.
3562 */
343e0d7a 3563void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3564{
7fd6b141 3565 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3566}
3567EXPORT_SYMBOL(kmem_cache_alloc);
3568
a8c0f9a4 3569/**
b8008b2b 3570 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3571 * @cache: The cache to allocate from.
3572 * @flags: See kmalloc().
3573 *
3574 * Allocate an object from this cache and set the allocated memory to zero.
3575 * The flags are only relevant if the cache has no available objects.
3576 */
3577void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3578{
3579 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3580 if (ret)
3581 memset(ret, 0, obj_size(cache));
3582 return ret;
3583}
3584EXPORT_SYMBOL(kmem_cache_zalloc);
3585
1da177e4
LT
3586/**
3587 * kmem_ptr_validate - check if an untrusted pointer might
3588 * be a slab entry.
3589 * @cachep: the cache we're checking against
3590 * @ptr: pointer to validate
3591 *
3592 * This verifies that the untrusted pointer looks sane:
3593 * it is _not_ a guarantee that the pointer is actually
3594 * part of the slab cache in question, but it at least
3595 * validates that the pointer can be dereferenced and
3596 * looks half-way sane.
3597 *
3598 * Currently only used for dentry validation.
3599 */
b7f869a2 3600int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3601{
b28a02de 3602 unsigned long addr = (unsigned long)ptr;
1da177e4 3603 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3604 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3605 unsigned long size = cachep->buffer_size;
1da177e4
LT
3606 struct page *page;
3607
3608 if (unlikely(addr < min_addr))
3609 goto out;
3610 if (unlikely(addr > (unsigned long)high_memory - size))
3611 goto out;
3612 if (unlikely(addr & align_mask))
3613 goto out;
3614 if (unlikely(!kern_addr_valid(addr)))
3615 goto out;
3616 if (unlikely(!kern_addr_valid(addr + size - 1)))
3617 goto out;
3618 page = virt_to_page(ptr);
3619 if (unlikely(!PageSlab(page)))
3620 goto out;
065d41cb 3621 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3622 goto out;
3623 return 1;
a737b3e2 3624out:
1da177e4
LT
3625 return 0;
3626}
3627
3628#ifdef CONFIG_NUMA
8b98c169
CH
3629void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3630{
3631 return __cache_alloc_node(cachep, flags, nodeid,
3632 __builtin_return_address(0));
3633}
1da177e4
LT
3634EXPORT_SYMBOL(kmem_cache_alloc_node);
3635
8b98c169
CH
3636static __always_inline void *
3637__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3638{
343e0d7a 3639 struct kmem_cache *cachep;
97e2bde4
MS
3640
3641 cachep = kmem_find_general_cachep(size, flags);
3642 if (unlikely(cachep == NULL))
3643 return NULL;
3644 return kmem_cache_alloc_node(cachep, flags, node);
3645}
8b98c169
CH
3646
3647#ifdef CONFIG_DEBUG_SLAB
3648void *__kmalloc_node(size_t size, gfp_t flags, int node)
3649{
3650 return __do_kmalloc_node(size, flags, node,
3651 __builtin_return_address(0));
3652}
dbe5e69d 3653EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3654
3655void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3656 int node, void *caller)
3657{
3658 return __do_kmalloc_node(size, flags, node, caller);
3659}
3660EXPORT_SYMBOL(__kmalloc_node_track_caller);
3661#else
3662void *__kmalloc_node(size_t size, gfp_t flags, int node)
3663{
3664 return __do_kmalloc_node(size, flags, node, NULL);
3665}
3666EXPORT_SYMBOL(__kmalloc_node);
3667#endif /* CONFIG_DEBUG_SLAB */
3668#endif /* CONFIG_NUMA */
1da177e4
LT
3669
3670/**
800590f5 3671 * __do_kmalloc - allocate memory
1da177e4 3672 * @size: how many bytes of memory are required.
800590f5 3673 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3674 * @caller: function caller for debug tracking of the caller
1da177e4 3675 */
7fd6b141
PE
3676static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3677 void *caller)
1da177e4 3678{
343e0d7a 3679 struct kmem_cache *cachep;
1da177e4 3680
97e2bde4
MS
3681 /* If you want to save a few bytes .text space: replace
3682 * __ with kmem_.
3683 * Then kmalloc uses the uninlined functions instead of the inline
3684 * functions.
3685 */
3686 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3687 if (unlikely(cachep == NULL))
3688 return NULL;
7fd6b141
PE
3689 return __cache_alloc(cachep, flags, caller);
3690}
3691
7fd6b141 3692
1d2c8eea 3693#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3694void *__kmalloc(size_t size, gfp_t flags)
3695{
871751e2 3696 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3697}
3698EXPORT_SYMBOL(__kmalloc);
3699
7fd6b141
PE
3700void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3701{
3702 return __do_kmalloc(size, flags, caller);
3703}
3704EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3705
3706#else
3707void *__kmalloc(size_t size, gfp_t flags)
3708{
3709 return __do_kmalloc(size, flags, NULL);
3710}
3711EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3712#endif
3713
fd76bab2
PE
3714/**
3715 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3716 * @p: object to reallocate memory for.
3717 * @new_size: how many bytes of memory are required.
3718 * @flags: the type of memory to allocate.
3719 *
3720 * The contents of the object pointed to are preserved up to the
3721 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3722 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3723 * %NULL pointer, the object pointed to is freed.
3724 */
3725void *krealloc(const void *p, size_t new_size, gfp_t flags)
3726{
3727 struct kmem_cache *cache, *new_cache;
3728 void *ret;
3729
3730 if (unlikely(!p))
3731 return kmalloc_track_caller(new_size, flags);
3732
3733 if (unlikely(!new_size)) {
3734 kfree(p);
3735 return NULL;
3736 }
3737
3738 cache = virt_to_cache(p);
3739 new_cache = __find_general_cachep(new_size, flags);
3740
3741 /*
3742 * If new size fits in the current cache, bail out.
3743 */
3744 if (likely(cache == new_cache))
3745 return (void *)p;
3746
3747 /*
3748 * We are on the slow-path here so do not use __cache_alloc
3749 * because it bloats kernel text.
3750 */
3751 ret = kmalloc_track_caller(new_size, flags);
3752 if (ret) {
3753 memcpy(ret, p, min(new_size, ksize(p)));
3754 kfree(p);
3755 }
3756 return ret;
3757}
3758EXPORT_SYMBOL(krealloc);
3759
1da177e4
LT
3760/**
3761 * kmem_cache_free - Deallocate an object
3762 * @cachep: The cache the allocation was from.
3763 * @objp: The previously allocated object.
3764 *
3765 * Free an object which was previously allocated from this
3766 * cache.
3767 */
343e0d7a 3768void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3769{
3770 unsigned long flags;
3771
ddc2e812
PE
3772 BUG_ON(virt_to_cache(objp) != cachep);
3773
1da177e4 3774 local_irq_save(flags);
898552c9 3775 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3776 __cache_free(cachep, objp);
1da177e4
LT
3777 local_irq_restore(flags);
3778}
3779EXPORT_SYMBOL(kmem_cache_free);
3780
1da177e4
LT
3781/**
3782 * kfree - free previously allocated memory
3783 * @objp: pointer returned by kmalloc.
3784 *
80e93eff
PE
3785 * If @objp is NULL, no operation is performed.
3786 *
1da177e4
LT
3787 * Don't free memory not originally allocated by kmalloc()
3788 * or you will run into trouble.
3789 */
3790void kfree(const void *objp)
3791{
343e0d7a 3792 struct kmem_cache *c;
1da177e4
LT
3793 unsigned long flags;
3794
3795 if (unlikely(!objp))
3796 return;
3797 local_irq_save(flags);
3798 kfree_debugcheck(objp);
6ed5eb22 3799 c = virt_to_cache(objp);
f9b8404c 3800 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3801 __cache_free(c, (void *)objp);
1da177e4
LT
3802 local_irq_restore(flags);
3803}
3804EXPORT_SYMBOL(kfree);
3805
343e0d7a 3806unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3807{
3dafccf2 3808 return obj_size(cachep);
1da177e4
LT
3809}
3810EXPORT_SYMBOL(kmem_cache_size);
3811
343e0d7a 3812const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3813{
3814 return cachep->name;
3815}
3816EXPORT_SYMBOL_GPL(kmem_cache_name);
3817
e498be7d 3818/*
0718dc2a 3819 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3820 */
343e0d7a 3821static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3822{
3823 int node;
3824 struct kmem_list3 *l3;
cafeb02e 3825 struct array_cache *new_shared;
3395ee05 3826 struct array_cache **new_alien = NULL;
e498be7d
CL
3827
3828 for_each_online_node(node) {
cafeb02e 3829
3395ee05
PM
3830 if (use_alien_caches) {
3831 new_alien = alloc_alien_cache(node, cachep->limit);
3832 if (!new_alien)
3833 goto fail;
3834 }
cafeb02e 3835
63109846
ED
3836 new_shared = NULL;
3837 if (cachep->shared) {
3838 new_shared = alloc_arraycache(node,
0718dc2a 3839 cachep->shared*cachep->batchcount,
a737b3e2 3840 0xbaadf00d);
63109846
ED
3841 if (!new_shared) {
3842 free_alien_cache(new_alien);
3843 goto fail;
3844 }
0718dc2a 3845 }
cafeb02e 3846
a737b3e2
AM
3847 l3 = cachep->nodelists[node];
3848 if (l3) {
cafeb02e
CL
3849 struct array_cache *shared = l3->shared;
3850
e498be7d
CL
3851 spin_lock_irq(&l3->list_lock);
3852
cafeb02e 3853 if (shared)
0718dc2a
CL
3854 free_block(cachep, shared->entry,
3855 shared->avail, node);
e498be7d 3856
cafeb02e
CL
3857 l3->shared = new_shared;
3858 if (!l3->alien) {
e498be7d
CL
3859 l3->alien = new_alien;
3860 new_alien = NULL;
3861 }
b28a02de 3862 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3863 cachep->batchcount + cachep->num;
e498be7d 3864 spin_unlock_irq(&l3->list_lock);
cafeb02e 3865 kfree(shared);
e498be7d
CL
3866 free_alien_cache(new_alien);
3867 continue;
3868 }
a737b3e2 3869 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3870 if (!l3) {
3871 free_alien_cache(new_alien);
3872 kfree(new_shared);
e498be7d 3873 goto fail;
0718dc2a 3874 }
e498be7d
CL
3875
3876 kmem_list3_init(l3);
3877 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3878 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3879 l3->shared = new_shared;
e498be7d 3880 l3->alien = new_alien;
b28a02de 3881 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3882 cachep->batchcount + cachep->num;
e498be7d
CL
3883 cachep->nodelists[node] = l3;
3884 }
cafeb02e 3885 return 0;
0718dc2a 3886
a737b3e2 3887fail:
0718dc2a
CL
3888 if (!cachep->next.next) {
3889 /* Cache is not active yet. Roll back what we did */
3890 node--;
3891 while (node >= 0) {
3892 if (cachep->nodelists[node]) {
3893 l3 = cachep->nodelists[node];
3894
3895 kfree(l3->shared);
3896 free_alien_cache(l3->alien);
3897 kfree(l3);
3898 cachep->nodelists[node] = NULL;
3899 }
3900 node--;
3901 }
3902 }
cafeb02e 3903 return -ENOMEM;
e498be7d
CL
3904}
3905
1da177e4 3906struct ccupdate_struct {
343e0d7a 3907 struct kmem_cache *cachep;
1da177e4
LT
3908 struct array_cache *new[NR_CPUS];
3909};
3910
3911static void do_ccupdate_local(void *info)
3912{
a737b3e2 3913 struct ccupdate_struct *new = info;
1da177e4
LT
3914 struct array_cache *old;
3915
3916 check_irq_off();
9a2dba4b 3917 old = cpu_cache_get(new->cachep);
e498be7d 3918
1da177e4
LT
3919 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3920 new->new[smp_processor_id()] = old;
3921}
3922
b5d8ca7c 3923/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3924static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3925 int batchcount, int shared)
1da177e4 3926{
d2e7b7d0 3927 struct ccupdate_struct *new;
2ed3a4ef 3928 int i;
1da177e4 3929
d2e7b7d0
SS
3930 new = kzalloc(sizeof(*new), GFP_KERNEL);
3931 if (!new)
3932 return -ENOMEM;
3933
e498be7d 3934 for_each_online_cpu(i) {
d2e7b7d0 3935 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3936 batchcount);
d2e7b7d0 3937 if (!new->new[i]) {
b28a02de 3938 for (i--; i >= 0; i--)
d2e7b7d0
SS
3939 kfree(new->new[i]);
3940 kfree(new);
e498be7d 3941 return -ENOMEM;
1da177e4
LT
3942 }
3943 }
d2e7b7d0 3944 new->cachep = cachep;
1da177e4 3945
d2e7b7d0 3946 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3947
1da177e4 3948 check_irq_on();
1da177e4
LT
3949 cachep->batchcount = batchcount;
3950 cachep->limit = limit;
e498be7d 3951 cachep->shared = shared;
1da177e4 3952
e498be7d 3953 for_each_online_cpu(i) {
d2e7b7d0 3954 struct array_cache *ccold = new->new[i];
1da177e4
LT
3955 if (!ccold)
3956 continue;
e498be7d 3957 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3958 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3959 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3960 kfree(ccold);
3961 }
d2e7b7d0 3962 kfree(new);
2ed3a4ef 3963 return alloc_kmemlist(cachep);
1da177e4
LT
3964}
3965
b5d8ca7c 3966/* Called with cache_chain_mutex held always */
2ed3a4ef 3967static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3968{
3969 int err;
3970 int limit, shared;
3971
a737b3e2
AM
3972 /*
3973 * The head array serves three purposes:
1da177e4
LT
3974 * - create a LIFO ordering, i.e. return objects that are cache-warm
3975 * - reduce the number of spinlock operations.
a737b3e2 3976 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3977 * bufctl chains: array operations are cheaper.
3978 * The numbers are guessed, we should auto-tune as described by
3979 * Bonwick.
3980 */
3dafccf2 3981 if (cachep->buffer_size > 131072)
1da177e4 3982 limit = 1;
3dafccf2 3983 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3984 limit = 8;
3dafccf2 3985 else if (cachep->buffer_size > 1024)
1da177e4 3986 limit = 24;
3dafccf2 3987 else if (cachep->buffer_size > 256)
1da177e4
LT
3988 limit = 54;
3989 else
3990 limit = 120;
3991
a737b3e2
AM
3992 /*
3993 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3994 * allocation behaviour: Most allocs on one cpu, most free operations
3995 * on another cpu. For these cases, an efficient object passing between
3996 * cpus is necessary. This is provided by a shared array. The array
3997 * replaces Bonwick's magazine layer.
3998 * On uniprocessor, it's functionally equivalent (but less efficient)
3999 * to a larger limit. Thus disabled by default.
4000 */
4001 shared = 0;
364fbb29 4002 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4003 shared = 8;
1da177e4
LT
4004
4005#if DEBUG
a737b3e2
AM
4006 /*
4007 * With debugging enabled, large batchcount lead to excessively long
4008 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4009 */
4010 if (limit > 32)
4011 limit = 32;
4012#endif
b28a02de 4013 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4014 if (err)
4015 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4016 cachep->name, -err);
2ed3a4ef 4017 return err;
1da177e4
LT
4018}
4019
1b55253a
CL
4020/*
4021 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4022 * necessary. Note that the l3 listlock also protects the array_cache
4023 * if drain_array() is used on the shared array.
1b55253a
CL
4024 */
4025void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4026 struct array_cache *ac, int force, int node)
1da177e4
LT
4027{
4028 int tofree;
4029
1b55253a
CL
4030 if (!ac || !ac->avail)
4031 return;
1da177e4
LT
4032 if (ac->touched && !force) {
4033 ac->touched = 0;
b18e7e65 4034 } else {
1b55253a 4035 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4036 if (ac->avail) {
4037 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4038 if (tofree > ac->avail)
4039 tofree = (ac->avail + 1) / 2;
4040 free_block(cachep, ac->entry, tofree, node);
4041 ac->avail -= tofree;
4042 memmove(ac->entry, &(ac->entry[tofree]),
4043 sizeof(void *) * ac->avail);
4044 }
1b55253a 4045 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4046 }
4047}
4048
4049/**
4050 * cache_reap - Reclaim memory from caches.
05fb6bf0 4051 * @w: work descriptor
1da177e4
LT
4052 *
4053 * Called from workqueue/eventd every few seconds.
4054 * Purpose:
4055 * - clear the per-cpu caches for this CPU.
4056 * - return freeable pages to the main free memory pool.
4057 *
a737b3e2
AM
4058 * If we cannot acquire the cache chain mutex then just give up - we'll try
4059 * again on the next iteration.
1da177e4 4060 */
7c5cae36 4061static void cache_reap(struct work_struct *w)
1da177e4 4062{
7a7c381d 4063 struct kmem_cache *searchp;
e498be7d 4064 struct kmem_list3 *l3;
aab2207c 4065 int node = numa_node_id();
7c5cae36
CL
4066 struct delayed_work *work =
4067 container_of(w, struct delayed_work, work);
1da177e4 4068
7c5cae36 4069 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4070 /* Give up. Setup the next iteration. */
7c5cae36 4071 goto out;
1da177e4 4072
7a7c381d 4073 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4074 check_irq_on();
4075
35386e3b
CL
4076 /*
4077 * We only take the l3 lock if absolutely necessary and we
4078 * have established with reasonable certainty that
4079 * we can do some work if the lock was obtained.
4080 */
aab2207c 4081 l3 = searchp->nodelists[node];
35386e3b 4082
8fce4d8e 4083 reap_alien(searchp, l3);
1da177e4 4084
aab2207c 4085 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4086
35386e3b
CL
4087 /*
4088 * These are racy checks but it does not matter
4089 * if we skip one check or scan twice.
4090 */
e498be7d 4091 if (time_after(l3->next_reap, jiffies))
35386e3b 4092 goto next;
1da177e4 4093
e498be7d 4094 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4095
aab2207c 4096 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4097
ed11d9eb 4098 if (l3->free_touched)
e498be7d 4099 l3->free_touched = 0;
ed11d9eb
CL
4100 else {
4101 int freed;
1da177e4 4102
ed11d9eb
CL
4103 freed = drain_freelist(searchp, l3, (l3->free_limit +
4104 5 * searchp->num - 1) / (5 * searchp->num));
4105 STATS_ADD_REAPED(searchp, freed);
4106 }
35386e3b 4107next:
1da177e4
LT
4108 cond_resched();
4109 }
4110 check_irq_on();
fc0abb14 4111 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4112 next_reap_node();
7c5cae36 4113out:
a737b3e2 4114 /* Set up the next iteration */
7c5cae36 4115 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4116}
4117
4118#ifdef CONFIG_PROC_FS
4119
85289f98 4120static void print_slabinfo_header(struct seq_file *m)
1da177e4 4121{
85289f98
PE
4122 /*
4123 * Output format version, so at least we can change it
4124 * without _too_ many complaints.
4125 */
1da177e4 4126#if STATS
85289f98 4127 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4128#else
85289f98 4129 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4130#endif
85289f98
PE
4131 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4132 "<objperslab> <pagesperslab>");
4133 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4134 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4135#if STATS
85289f98 4136 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4137 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4138 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4139#endif
85289f98
PE
4140 seq_putc(m, '\n');
4141}
4142
4143static void *s_start(struct seq_file *m, loff_t *pos)
4144{
4145 loff_t n = *pos;
4146 struct list_head *p;
4147
fc0abb14 4148 mutex_lock(&cache_chain_mutex);
85289f98
PE
4149 if (!n)
4150 print_slabinfo_header(m);
1da177e4
LT
4151 p = cache_chain.next;
4152 while (n--) {
4153 p = p->next;
4154 if (p == &cache_chain)
4155 return NULL;
4156 }
343e0d7a 4157 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4158}
4159
4160static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4161{
343e0d7a 4162 struct kmem_cache *cachep = p;
1da177e4 4163 ++*pos;
a737b3e2
AM
4164 return cachep->next.next == &cache_chain ?
4165 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4166}
4167
4168static void s_stop(struct seq_file *m, void *p)
4169{
fc0abb14 4170 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4171}
4172
4173static int s_show(struct seq_file *m, void *p)
4174{
343e0d7a 4175 struct kmem_cache *cachep = p;
b28a02de
PE
4176 struct slab *slabp;
4177 unsigned long active_objs;
4178 unsigned long num_objs;
4179 unsigned long active_slabs = 0;
4180 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4181 const char *name;
1da177e4 4182 char *error = NULL;
e498be7d
CL
4183 int node;
4184 struct kmem_list3 *l3;
1da177e4 4185
1da177e4
LT
4186 active_objs = 0;
4187 num_slabs = 0;
e498be7d
CL
4188 for_each_online_node(node) {
4189 l3 = cachep->nodelists[node];
4190 if (!l3)
4191 continue;
4192
ca3b9b91
RT
4193 check_irq_on();
4194 spin_lock_irq(&l3->list_lock);
e498be7d 4195
7a7c381d 4196 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4197 if (slabp->inuse != cachep->num && !error)
4198 error = "slabs_full accounting error";
4199 active_objs += cachep->num;
4200 active_slabs++;
4201 }
7a7c381d 4202 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4203 if (slabp->inuse == cachep->num && !error)
4204 error = "slabs_partial inuse accounting error";
4205 if (!slabp->inuse && !error)
4206 error = "slabs_partial/inuse accounting error";
4207 active_objs += slabp->inuse;
4208 active_slabs++;
4209 }
7a7c381d 4210 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4211 if (slabp->inuse && !error)
4212 error = "slabs_free/inuse accounting error";
4213 num_slabs++;
4214 }
4215 free_objects += l3->free_objects;
4484ebf1
RT
4216 if (l3->shared)
4217 shared_avail += l3->shared->avail;
e498be7d 4218
ca3b9b91 4219 spin_unlock_irq(&l3->list_lock);
1da177e4 4220 }
b28a02de
PE
4221 num_slabs += active_slabs;
4222 num_objs = num_slabs * cachep->num;
e498be7d 4223 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4224 error = "free_objects accounting error";
4225
b28a02de 4226 name = cachep->name;
1da177e4
LT
4227 if (error)
4228 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4229
4230 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4231 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4232 cachep->num, (1 << cachep->gfporder));
1da177e4 4233 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4234 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4235 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4236 active_slabs, num_slabs, shared_avail);
1da177e4 4237#if STATS
b28a02de 4238 { /* list3 stats */
1da177e4
LT
4239 unsigned long high = cachep->high_mark;
4240 unsigned long allocs = cachep->num_allocations;
4241 unsigned long grown = cachep->grown;
4242 unsigned long reaped = cachep->reaped;
4243 unsigned long errors = cachep->errors;
4244 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4245 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4246 unsigned long node_frees = cachep->node_frees;
fb7faf33 4247 unsigned long overflows = cachep->node_overflow;
1da177e4 4248
e498be7d 4249 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4250 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4251 reaped, errors, max_freeable, node_allocs,
fb7faf33 4252 node_frees, overflows);
1da177e4
LT
4253 }
4254 /* cpu stats */
4255 {
4256 unsigned long allochit = atomic_read(&cachep->allochit);
4257 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4258 unsigned long freehit = atomic_read(&cachep->freehit);
4259 unsigned long freemiss = atomic_read(&cachep->freemiss);
4260
4261 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4262 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4263 }
4264#endif
4265 seq_putc(m, '\n');
1da177e4
LT
4266 return 0;
4267}
4268
4269/*
4270 * slabinfo_op - iterator that generates /proc/slabinfo
4271 *
4272 * Output layout:
4273 * cache-name
4274 * num-active-objs
4275 * total-objs
4276 * object size
4277 * num-active-slabs
4278 * total-slabs
4279 * num-pages-per-slab
4280 * + further values on SMP and with statistics enabled
4281 */
4282
15ad7cdc 4283const struct seq_operations slabinfo_op = {
b28a02de
PE
4284 .start = s_start,
4285 .next = s_next,
4286 .stop = s_stop,
4287 .show = s_show,
1da177e4
LT
4288};
4289
4290#define MAX_SLABINFO_WRITE 128
4291/**
4292 * slabinfo_write - Tuning for the slab allocator
4293 * @file: unused
4294 * @buffer: user buffer
4295 * @count: data length
4296 * @ppos: unused
4297 */
b28a02de
PE
4298ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4299 size_t count, loff_t *ppos)
1da177e4 4300{
b28a02de 4301 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4302 int limit, batchcount, shared, res;
7a7c381d 4303 struct kmem_cache *cachep;
b28a02de 4304
1da177e4
LT
4305 if (count > MAX_SLABINFO_WRITE)
4306 return -EINVAL;
4307 if (copy_from_user(&kbuf, buffer, count))
4308 return -EFAULT;
b28a02de 4309 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4310
4311 tmp = strchr(kbuf, ' ');
4312 if (!tmp)
4313 return -EINVAL;
4314 *tmp = '\0';
4315 tmp++;
4316 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4317 return -EINVAL;
4318
4319 /* Find the cache in the chain of caches. */
fc0abb14 4320 mutex_lock(&cache_chain_mutex);
1da177e4 4321 res = -EINVAL;
7a7c381d 4322 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4323 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4324 if (limit < 1 || batchcount < 1 ||
4325 batchcount > limit || shared < 0) {
e498be7d 4326 res = 0;
1da177e4 4327 } else {
e498be7d 4328 res = do_tune_cpucache(cachep, limit,
b28a02de 4329 batchcount, shared);
1da177e4
LT
4330 }
4331 break;
4332 }
4333 }
fc0abb14 4334 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4335 if (res >= 0)
4336 res = count;
4337 return res;
4338}
871751e2
AV
4339
4340#ifdef CONFIG_DEBUG_SLAB_LEAK
4341
4342static void *leaks_start(struct seq_file *m, loff_t *pos)
4343{
4344 loff_t n = *pos;
4345 struct list_head *p;
4346
4347 mutex_lock(&cache_chain_mutex);
4348 p = cache_chain.next;
4349 while (n--) {
4350 p = p->next;
4351 if (p == &cache_chain)
4352 return NULL;
4353 }
4354 return list_entry(p, struct kmem_cache, next);
4355}
4356
4357static inline int add_caller(unsigned long *n, unsigned long v)
4358{
4359 unsigned long *p;
4360 int l;
4361 if (!v)
4362 return 1;
4363 l = n[1];
4364 p = n + 2;
4365 while (l) {
4366 int i = l/2;
4367 unsigned long *q = p + 2 * i;
4368 if (*q == v) {
4369 q[1]++;
4370 return 1;
4371 }
4372 if (*q > v) {
4373 l = i;
4374 } else {
4375 p = q + 2;
4376 l -= i + 1;
4377 }
4378 }
4379 if (++n[1] == n[0])
4380 return 0;
4381 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4382 p[0] = v;
4383 p[1] = 1;
4384 return 1;
4385}
4386
4387static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4388{
4389 void *p;
4390 int i;
4391 if (n[0] == n[1])
4392 return;
4393 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4394 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4395 continue;
4396 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4397 return;
4398 }
4399}
4400
4401static void show_symbol(struct seq_file *m, unsigned long address)
4402{
4403#ifdef CONFIG_KALLSYMS
871751e2 4404 unsigned long offset, size;
a5c43dae 4405 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4406
a5c43dae 4407 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4408 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4409 if (modname[0])
871751e2
AV
4410 seq_printf(m, " [%s]", modname);
4411 return;
4412 }
4413#endif
4414 seq_printf(m, "%p", (void *)address);
4415}
4416
4417static int leaks_show(struct seq_file *m, void *p)
4418{
4419 struct kmem_cache *cachep = p;
871751e2
AV
4420 struct slab *slabp;
4421 struct kmem_list3 *l3;
4422 const char *name;
4423 unsigned long *n = m->private;
4424 int node;
4425 int i;
4426
4427 if (!(cachep->flags & SLAB_STORE_USER))
4428 return 0;
4429 if (!(cachep->flags & SLAB_RED_ZONE))
4430 return 0;
4431
4432 /* OK, we can do it */
4433
4434 n[1] = 0;
4435
4436 for_each_online_node(node) {
4437 l3 = cachep->nodelists[node];
4438 if (!l3)
4439 continue;
4440
4441 check_irq_on();
4442 spin_lock_irq(&l3->list_lock);
4443
7a7c381d 4444 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4445 handle_slab(n, cachep, slabp);
7a7c381d 4446 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4447 handle_slab(n, cachep, slabp);
871751e2
AV
4448 spin_unlock_irq(&l3->list_lock);
4449 }
4450 name = cachep->name;
4451 if (n[0] == n[1]) {
4452 /* Increase the buffer size */
4453 mutex_unlock(&cache_chain_mutex);
4454 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4455 if (!m->private) {
4456 /* Too bad, we are really out */
4457 m->private = n;
4458 mutex_lock(&cache_chain_mutex);
4459 return -ENOMEM;
4460 }
4461 *(unsigned long *)m->private = n[0] * 2;
4462 kfree(n);
4463 mutex_lock(&cache_chain_mutex);
4464 /* Now make sure this entry will be retried */
4465 m->count = m->size;
4466 return 0;
4467 }
4468 for (i = 0; i < n[1]; i++) {
4469 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4470 show_symbol(m, n[2*i+2]);
4471 seq_putc(m, '\n');
4472 }
d2e7b7d0 4473
871751e2
AV
4474 return 0;
4475}
4476
15ad7cdc 4477const struct seq_operations slabstats_op = {
871751e2
AV
4478 .start = leaks_start,
4479 .next = s_next,
4480 .stop = s_stop,
4481 .show = leaks_show,
4482};
4483#endif
1da177e4
LT
4484#endif
4485
00e145b6
MS
4486/**
4487 * ksize - get the actual amount of memory allocated for a given object
4488 * @objp: Pointer to the object
4489 *
4490 * kmalloc may internally round up allocations and return more memory
4491 * than requested. ksize() can be used to determine the actual amount of
4492 * memory allocated. The caller may use this additional memory, even though
4493 * a smaller amount of memory was initially specified with the kmalloc call.
4494 * The caller must guarantee that objp points to a valid object previously
4495 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4496 * must not be freed during the duration of the call.
4497 */
fd76bab2 4498size_t ksize(const void *objp)
1da177e4 4499{
00e145b6
MS
4500 if (unlikely(objp == NULL))
4501 return 0;
1da177e4 4502
6ed5eb22 4503 return obj_size(virt_to_cache(objp));
1da177e4 4504}