mm: compaction: add /sys trigger for per-node memory compaction
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
0d3d062a 52#include <trace/events/kmem.h>
718a3821 53#include <linux/ftrace_event.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
ac924c60 56#include <asm/div64.h>
1da177e4
LT
57#include "internal.h"
58
59/*
13808910 60 * Array of node states.
1da177e4 61 */
13808910
CL
62nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 [N_POSSIBLE] = NODE_MASK_ALL,
64 [N_ONLINE] = { { [0] = 1UL } },
65#ifndef CONFIG_NUMA
66 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
67#ifdef CONFIG_HIGHMEM
68 [N_HIGH_MEMORY] = { { [0] = 1UL } },
69#endif
70 [N_CPU] = { { [0] = 1UL } },
71#endif /* NUMA */
72};
73EXPORT_SYMBOL(node_states);
74
6c231b7b 75unsigned long totalram_pages __read_mostly;
cb45b0e9 76unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 77int percpu_pagelist_fraction;
dcce284a 78gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 79
452aa699
RW
80#ifdef CONFIG_PM_SLEEP
81/*
82 * The following functions are used by the suspend/hibernate code to temporarily
83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84 * while devices are suspended. To avoid races with the suspend/hibernate code,
85 * they should always be called with pm_mutex held (gfp_allowed_mask also should
86 * only be modified with pm_mutex held, unless the suspend/hibernate code is
87 * guaranteed not to run in parallel with that modification).
88 */
89void set_gfp_allowed_mask(gfp_t mask)
90{
91 WARN_ON(!mutex_is_locked(&pm_mutex));
92 gfp_allowed_mask = mask;
93}
94
95gfp_t clear_gfp_allowed_mask(gfp_t mask)
96{
97 gfp_t ret = gfp_allowed_mask;
98
99 WARN_ON(!mutex_is_locked(&pm_mutex));
100 gfp_allowed_mask &= ~mask;
101 return ret;
102}
103#endif /* CONFIG_PM_SLEEP */
104
d9c23400
MG
105#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106int pageblock_order __read_mostly;
107#endif
108
d98c7a09 109static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 110
1da177e4
LT
111/*
112 * results with 256, 32 in the lowmem_reserve sysctl:
113 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114 * 1G machine -> (16M dma, 784M normal, 224M high)
115 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
118 *
119 * TBD: should special case ZONE_DMA32 machines here - in those we normally
120 * don't need any ZONE_NORMAL reservation
1da177e4 121 */
2f1b6248 122int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 123#ifdef CONFIG_ZONE_DMA
2f1b6248 124 256,
4b51d669 125#endif
fb0e7942 126#ifdef CONFIG_ZONE_DMA32
2f1b6248 127 256,
fb0e7942 128#endif
e53ef38d 129#ifdef CONFIG_HIGHMEM
2a1e274a 130 32,
e53ef38d 131#endif
2a1e274a 132 32,
2f1b6248 133};
1da177e4
LT
134
135EXPORT_SYMBOL(totalram_pages);
1da177e4 136
15ad7cdc 137static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 138#ifdef CONFIG_ZONE_DMA
2f1b6248 139 "DMA",
4b51d669 140#endif
fb0e7942 141#ifdef CONFIG_ZONE_DMA32
2f1b6248 142 "DMA32",
fb0e7942 143#endif
2f1b6248 144 "Normal",
e53ef38d 145#ifdef CONFIG_HIGHMEM
2a1e274a 146 "HighMem",
e53ef38d 147#endif
2a1e274a 148 "Movable",
2f1b6248
CL
149};
150
1da177e4
LT
151int min_free_kbytes = 1024;
152
2c85f51d
JB
153static unsigned long __meminitdata nr_kernel_pages;
154static unsigned long __meminitdata nr_all_pages;
a3142c8e 155static unsigned long __meminitdata dma_reserve;
1da177e4 156
c713216d
MG
157#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158 /*
183ff22b 159 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
160 * ranges of memory (RAM) that may be registered with add_active_range().
161 * Ranges passed to add_active_range() will be merged if possible
162 * so the number of times add_active_range() can be called is
163 * related to the number of nodes and the number of holes
164 */
165 #ifdef CONFIG_MAX_ACTIVE_REGIONS
166 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
168 #else
169 #if MAX_NUMNODES >= 32
170 /* If there can be many nodes, allow up to 50 holes per node */
171 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
172 #else
173 /* By default, allow up to 256 distinct regions */
174 #define MAX_ACTIVE_REGIONS 256
175 #endif
176 #endif
177
98011f56
JB
178 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
179 static int __meminitdata nr_nodemap_entries;
180 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
181 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 182 static unsigned long __initdata required_kernelcore;
484f51f8 183 static unsigned long __initdata required_movablecore;
b69a7288 184 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
185
186 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
187 int movable_zone;
188 EXPORT_SYMBOL(movable_zone);
c713216d
MG
189#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190
418508c1
MS
191#if MAX_NUMNODES > 1
192int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 193int nr_online_nodes __read_mostly = 1;
418508c1 194EXPORT_SYMBOL(nr_node_ids);
62bc62a8 195EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
196#endif
197
9ef9acb0
MG
198int page_group_by_mobility_disabled __read_mostly;
199
b2a0ac88
MG
200static void set_pageblock_migratetype(struct page *page, int migratetype)
201{
49255c61
MG
202
203 if (unlikely(page_group_by_mobility_disabled))
204 migratetype = MIGRATE_UNMOVABLE;
205
b2a0ac88
MG
206 set_pageblock_flags_group(page, (unsigned long)migratetype,
207 PB_migrate, PB_migrate_end);
208}
209
7f33d49a
RW
210bool oom_killer_disabled __read_mostly;
211
13e7444b 212#ifdef CONFIG_DEBUG_VM
c6a57e19 213static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 214{
bdc8cb98
DH
215 int ret = 0;
216 unsigned seq;
217 unsigned long pfn = page_to_pfn(page);
c6a57e19 218
bdc8cb98
DH
219 do {
220 seq = zone_span_seqbegin(zone);
221 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
222 ret = 1;
223 else if (pfn < zone->zone_start_pfn)
224 ret = 1;
225 } while (zone_span_seqretry(zone, seq));
226
227 return ret;
c6a57e19
DH
228}
229
230static int page_is_consistent(struct zone *zone, struct page *page)
231{
14e07298 232 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 233 return 0;
1da177e4 234 if (zone != page_zone(page))
c6a57e19
DH
235 return 0;
236
237 return 1;
238}
239/*
240 * Temporary debugging check for pages not lying within a given zone.
241 */
242static int bad_range(struct zone *zone, struct page *page)
243{
244 if (page_outside_zone_boundaries(zone, page))
1da177e4 245 return 1;
c6a57e19
DH
246 if (!page_is_consistent(zone, page))
247 return 1;
248
1da177e4
LT
249 return 0;
250}
13e7444b
NP
251#else
252static inline int bad_range(struct zone *zone, struct page *page)
253{
254 return 0;
255}
256#endif
257
224abf92 258static void bad_page(struct page *page)
1da177e4 259{
d936cf9b
HD
260 static unsigned long resume;
261 static unsigned long nr_shown;
262 static unsigned long nr_unshown;
263
2a7684a2
WF
264 /* Don't complain about poisoned pages */
265 if (PageHWPoison(page)) {
266 __ClearPageBuddy(page);
267 return;
268 }
269
d936cf9b
HD
270 /*
271 * Allow a burst of 60 reports, then keep quiet for that minute;
272 * or allow a steady drip of one report per second.
273 */
274 if (nr_shown == 60) {
275 if (time_before(jiffies, resume)) {
276 nr_unshown++;
277 goto out;
278 }
279 if (nr_unshown) {
1e9e6365
HD
280 printk(KERN_ALERT
281 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
282 nr_unshown);
283 nr_unshown = 0;
284 }
285 nr_shown = 0;
286 }
287 if (nr_shown++ == 0)
288 resume = jiffies + 60 * HZ;
289
1e9e6365 290 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 291 current->comm, page_to_pfn(page));
718a3821 292 dump_page(page);
3dc14741 293
1da177e4 294 dump_stack();
d936cf9b 295out:
8cc3b392
HD
296 /* Leave bad fields for debug, except PageBuddy could make trouble */
297 __ClearPageBuddy(page);
9f158333 298 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
299}
300
1da177e4
LT
301/*
302 * Higher-order pages are called "compound pages". They are structured thusly:
303 *
304 * The first PAGE_SIZE page is called the "head page".
305 *
306 * The remaining PAGE_SIZE pages are called "tail pages".
307 *
308 * All pages have PG_compound set. All pages have their ->private pointing at
309 * the head page (even the head page has this).
310 *
41d78ba5
HD
311 * The first tail page's ->lru.next holds the address of the compound page's
312 * put_page() function. Its ->lru.prev holds the order of allocation.
313 * This usage means that zero-order pages may not be compound.
1da177e4 314 */
d98c7a09
HD
315
316static void free_compound_page(struct page *page)
317{
d85f3385 318 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
319}
320
01ad1c08 321void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
322{
323 int i;
324 int nr_pages = 1 << order;
325
326 set_compound_page_dtor(page, free_compound_page);
327 set_compound_order(page, order);
328 __SetPageHead(page);
329 for (i = 1; i < nr_pages; i++) {
330 struct page *p = page + i;
331
332 __SetPageTail(p);
333 p->first_page = page;
334 }
335}
336
8cc3b392 337static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
338{
339 int i;
340 int nr_pages = 1 << order;
8cc3b392 341 int bad = 0;
1da177e4 342
8cc3b392
HD
343 if (unlikely(compound_order(page) != order) ||
344 unlikely(!PageHead(page))) {
224abf92 345 bad_page(page);
8cc3b392
HD
346 bad++;
347 }
1da177e4 348
6d777953 349 __ClearPageHead(page);
8cc3b392 350
18229df5
AW
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
1da177e4 353
e713a21d 354 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 355 bad_page(page);
8cc3b392
HD
356 bad++;
357 }
d85f3385 358 __ClearPageTail(p);
1da177e4 359 }
8cc3b392
HD
360
361 return bad;
1da177e4 362}
1da177e4 363
17cf4406
NP
364static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
365{
366 int i;
367
6626c5d5
AM
368 /*
369 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370 * and __GFP_HIGHMEM from hard or soft interrupt context.
371 */
725d704e 372 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
373 for (i = 0; i < (1 << order); i++)
374 clear_highpage(page + i);
375}
376
6aa3001b
AM
377static inline void set_page_order(struct page *page, int order)
378{
4c21e2f2 379 set_page_private(page, order);
676165a8 380 __SetPageBuddy(page);
1da177e4
LT
381}
382
383static inline void rmv_page_order(struct page *page)
384{
676165a8 385 __ClearPageBuddy(page);
4c21e2f2 386 set_page_private(page, 0);
1da177e4
LT
387}
388
389/*
390 * Locate the struct page for both the matching buddy in our
391 * pair (buddy1) and the combined O(n+1) page they form (page).
392 *
393 * 1) Any buddy B1 will have an order O twin B2 which satisfies
394 * the following equation:
395 * B2 = B1 ^ (1 << O)
396 * For example, if the starting buddy (buddy2) is #8 its order
397 * 1 buddy is #10:
398 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
399 *
400 * 2) Any buddy B will have an order O+1 parent P which
401 * satisfies the following equation:
402 * P = B & ~(1 << O)
403 *
d6e05edc 404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
405 */
406static inline struct page *
407__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
408{
409 unsigned long buddy_idx = page_idx ^ (1 << order);
410
411 return page + (buddy_idx - page_idx);
412}
413
414static inline unsigned long
415__find_combined_index(unsigned long page_idx, unsigned int order)
416{
417 return (page_idx & ~(1 << order));
418}
419
420/*
421 * This function checks whether a page is free && is the buddy
422 * we can do coalesce a page and its buddy if
13e7444b 423 * (a) the buddy is not in a hole &&
676165a8 424 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
425 * (c) a page and its buddy have the same order &&
426 * (d) a page and its buddy are in the same zone.
676165a8
NP
427 *
428 * For recording whether a page is in the buddy system, we use PG_buddy.
429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 430 *
676165a8 431 * For recording page's order, we use page_private(page).
1da177e4 432 */
cb2b95e1
AW
433static inline int page_is_buddy(struct page *page, struct page *buddy,
434 int order)
1da177e4 435{
14e07298 436 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 437 return 0;
13e7444b 438
cb2b95e1
AW
439 if (page_zone_id(page) != page_zone_id(buddy))
440 return 0;
441
442 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 443 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 444 return 1;
676165a8 445 }
6aa3001b 446 return 0;
1da177e4
LT
447}
448
449/*
450 * Freeing function for a buddy system allocator.
451 *
452 * The concept of a buddy system is to maintain direct-mapped table
453 * (containing bit values) for memory blocks of various "orders".
454 * The bottom level table contains the map for the smallest allocatable
455 * units of memory (here, pages), and each level above it describes
456 * pairs of units from the levels below, hence, "buddies".
457 * At a high level, all that happens here is marking the table entry
458 * at the bottom level available, and propagating the changes upward
459 * as necessary, plus some accounting needed to play nicely with other
460 * parts of the VM system.
461 * At each level, we keep a list of pages, which are heads of continuous
676165a8 462 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 463 * order is recorded in page_private(page) field.
1da177e4
LT
464 * So when we are allocating or freeing one, we can derive the state of the
465 * other. That is, if we allocate a small block, and both were
466 * free, the remainder of the region must be split into blocks.
467 * If a block is freed, and its buddy is also free, then this
468 * triggers coalescing into a block of larger size.
469 *
470 * -- wli
471 */
472
48db57f8 473static inline void __free_one_page(struct page *page,
ed0ae21d
MG
474 struct zone *zone, unsigned int order,
475 int migratetype)
1da177e4
LT
476{
477 unsigned long page_idx;
6dda9d55
CZ
478 unsigned long combined_idx;
479 struct page *buddy;
1da177e4 480
224abf92 481 if (unlikely(PageCompound(page)))
8cc3b392
HD
482 if (unlikely(destroy_compound_page(page, order)))
483 return;
1da177e4 484
ed0ae21d
MG
485 VM_BUG_ON(migratetype == -1);
486
1da177e4
LT
487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488
f2260e6b 489 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 490 VM_BUG_ON(bad_range(zone, page));
1da177e4 491
1da177e4 492 while (order < MAX_ORDER-1) {
1da177e4 493 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 494 if (!page_is_buddy(page, buddy, order))
3c82d0ce 495 break;
13e7444b 496
3c82d0ce 497 /* Our buddy is free, merge with it and move up one order. */
1da177e4 498 list_del(&buddy->lru);
b2a0ac88 499 zone->free_area[order].nr_free--;
1da177e4 500 rmv_page_order(buddy);
13e7444b 501 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
502 page = page + (combined_idx - page_idx);
503 page_idx = combined_idx;
504 order++;
505 }
506 set_page_order(page, order);
6dda9d55
CZ
507
508 /*
509 * If this is not the largest possible page, check if the buddy
510 * of the next-highest order is free. If it is, it's possible
511 * that pages are being freed that will coalesce soon. In case,
512 * that is happening, add the free page to the tail of the list
513 * so it's less likely to be used soon and more likely to be merged
514 * as a higher order page
515 */
516 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
517 struct page *higher_page, *higher_buddy;
518 combined_idx = __find_combined_index(page_idx, order);
519 higher_page = page + combined_idx - page_idx;
520 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
521 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
522 list_add_tail(&page->lru,
523 &zone->free_area[order].free_list[migratetype]);
524 goto out;
525 }
526 }
527
528 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
529out:
1da177e4
LT
530 zone->free_area[order].nr_free++;
531}
532
092cead6
KM
533/*
534 * free_page_mlock() -- clean up attempts to free and mlocked() page.
535 * Page should not be on lru, so no need to fix that up.
536 * free_pages_check() will verify...
537 */
538static inline void free_page_mlock(struct page *page)
539{
092cead6
KM
540 __dec_zone_page_state(page, NR_MLOCK);
541 __count_vm_event(UNEVICTABLE_MLOCKFREED);
542}
092cead6 543
224abf92 544static inline int free_pages_check(struct page *page)
1da177e4 545{
92be2e33
NP
546 if (unlikely(page_mapcount(page) |
547 (page->mapping != NULL) |
a3af9c38 548 (atomic_read(&page->_count) != 0) |
8cc3b392 549 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 550 bad_page(page);
79f4b7bf 551 return 1;
8cc3b392 552 }
79f4b7bf
HD
553 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
554 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
555 return 0;
1da177e4
LT
556}
557
558/*
5f8dcc21 559 * Frees a number of pages from the PCP lists
1da177e4 560 * Assumes all pages on list are in same zone, and of same order.
207f36ee 561 * count is the number of pages to free.
1da177e4
LT
562 *
563 * If the zone was previously in an "all pages pinned" state then look to
564 * see if this freeing clears that state.
565 *
566 * And clear the zone's pages_scanned counter, to hold off the "all pages are
567 * pinned" detection logic.
568 */
5f8dcc21
MG
569static void free_pcppages_bulk(struct zone *zone, int count,
570 struct per_cpu_pages *pcp)
1da177e4 571{
5f8dcc21 572 int migratetype = 0;
a6f9edd6 573 int batch_free = 0;
5f8dcc21 574
c54ad30c 575 spin_lock(&zone->lock);
93e4a89a 576 zone->all_unreclaimable = 0;
1da177e4 577 zone->pages_scanned = 0;
f2260e6b 578
5f8dcc21 579 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 580 while (count) {
48db57f8 581 struct page *page;
5f8dcc21
MG
582 struct list_head *list;
583
584 /*
a6f9edd6
MG
585 * Remove pages from lists in a round-robin fashion. A
586 * batch_free count is maintained that is incremented when an
587 * empty list is encountered. This is so more pages are freed
588 * off fuller lists instead of spinning excessively around empty
589 * lists
5f8dcc21
MG
590 */
591 do {
a6f9edd6 592 batch_free++;
5f8dcc21
MG
593 if (++migratetype == MIGRATE_PCPTYPES)
594 migratetype = 0;
595 list = &pcp->lists[migratetype];
596 } while (list_empty(list));
48db57f8 597
a6f9edd6
MG
598 do {
599 page = list_entry(list->prev, struct page, lru);
600 /* must delete as __free_one_page list manipulates */
601 list_del(&page->lru);
a7016235
HD
602 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
603 __free_one_page(page, zone, 0, page_private(page));
604 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 605 } while (--count && --batch_free && !list_empty(list));
1da177e4 606 }
c54ad30c 607 spin_unlock(&zone->lock);
1da177e4
LT
608}
609
ed0ae21d
MG
610static void free_one_page(struct zone *zone, struct page *page, int order,
611 int migratetype)
1da177e4 612{
006d22d9 613 spin_lock(&zone->lock);
93e4a89a 614 zone->all_unreclaimable = 0;
006d22d9 615 zone->pages_scanned = 0;
f2260e6b
MG
616
617 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 618 __free_one_page(page, zone, order, migratetype);
006d22d9 619 spin_unlock(&zone->lock);
48db57f8
NP
620}
621
622static void __free_pages_ok(struct page *page, unsigned int order)
623{
624 unsigned long flags;
1da177e4 625 int i;
8cc3b392 626 int bad = 0;
451ea25d 627 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 628
f650316c 629 trace_mm_page_free_direct(page, order);
b1eeab67
VN
630 kmemcheck_free_shadow(page, order);
631
1da177e4 632 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
633 bad += free_pages_check(page + i);
634 if (bad)
689bcebf
HD
635 return;
636
3ac7fe5a 637 if (!PageHighMem(page)) {
9858db50 638 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
639 debug_check_no_obj_freed(page_address(page),
640 PAGE_SIZE << order);
641 }
dafb1367 642 arch_free_page(page, order);
48db57f8 643 kernel_map_pages(page, 1 << order, 0);
dafb1367 644
c54ad30c 645 local_irq_save(flags);
c277331d 646 if (unlikely(wasMlocked))
da456f14 647 free_page_mlock(page);
f8891e5e 648 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
649 free_one_page(page_zone(page), page, order,
650 get_pageblock_migratetype(page));
c54ad30c 651 local_irq_restore(flags);
1da177e4
LT
652}
653
a226f6c8
DH
654/*
655 * permit the bootmem allocator to evade page validation on high-order frees
656 */
af370fb8 657void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
658{
659 if (order == 0) {
660 __ClearPageReserved(page);
661 set_page_count(page, 0);
7835e98b 662 set_page_refcounted(page);
545b1ea9 663 __free_page(page);
a226f6c8 664 } else {
a226f6c8
DH
665 int loop;
666
545b1ea9 667 prefetchw(page);
a226f6c8
DH
668 for (loop = 0; loop < BITS_PER_LONG; loop++) {
669 struct page *p = &page[loop];
670
545b1ea9
NP
671 if (loop + 1 < BITS_PER_LONG)
672 prefetchw(p + 1);
a226f6c8
DH
673 __ClearPageReserved(p);
674 set_page_count(p, 0);
675 }
676
7835e98b 677 set_page_refcounted(page);
545b1ea9 678 __free_pages(page, order);
a226f6c8
DH
679 }
680}
681
1da177e4
LT
682
683/*
684 * The order of subdivision here is critical for the IO subsystem.
685 * Please do not alter this order without good reasons and regression
686 * testing. Specifically, as large blocks of memory are subdivided,
687 * the order in which smaller blocks are delivered depends on the order
688 * they're subdivided in this function. This is the primary factor
689 * influencing the order in which pages are delivered to the IO
690 * subsystem according to empirical testing, and this is also justified
691 * by considering the behavior of a buddy system containing a single
692 * large block of memory acted on by a series of small allocations.
693 * This behavior is a critical factor in sglist merging's success.
694 *
695 * -- wli
696 */
085cc7d5 697static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
698 int low, int high, struct free_area *area,
699 int migratetype)
1da177e4
LT
700{
701 unsigned long size = 1 << high;
702
703 while (high > low) {
704 area--;
705 high--;
706 size >>= 1;
725d704e 707 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 708 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
709 area->nr_free++;
710 set_page_order(&page[size], high);
711 }
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This page is about to be returned from the page allocator
716 */
2a7684a2 717static inline int check_new_page(struct page *page)
1da177e4 718{
92be2e33
NP
719 if (unlikely(page_mapcount(page) |
720 (page->mapping != NULL) |
a3af9c38 721 (atomic_read(&page->_count) != 0) |
8cc3b392 722 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 723 bad_page(page);
689bcebf 724 return 1;
8cc3b392 725 }
2a7684a2
WF
726 return 0;
727}
728
729static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
730{
731 int i;
732
733 for (i = 0; i < (1 << order); i++) {
734 struct page *p = page + i;
735 if (unlikely(check_new_page(p)))
736 return 1;
737 }
689bcebf 738
4c21e2f2 739 set_page_private(page, 0);
7835e98b 740 set_page_refcounted(page);
cc102509
NP
741
742 arch_alloc_page(page, order);
1da177e4 743 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
744
745 if (gfp_flags & __GFP_ZERO)
746 prep_zero_page(page, order, gfp_flags);
747
748 if (order && (gfp_flags & __GFP_COMP))
749 prep_compound_page(page, order);
750
689bcebf 751 return 0;
1da177e4
LT
752}
753
56fd56b8
MG
754/*
755 * Go through the free lists for the given migratetype and remove
756 * the smallest available page from the freelists
757 */
728ec980
MG
758static inline
759struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
760 int migratetype)
761{
762 unsigned int current_order;
763 struct free_area * area;
764 struct page *page;
765
766 /* Find a page of the appropriate size in the preferred list */
767 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
768 area = &(zone->free_area[current_order]);
769 if (list_empty(&area->free_list[migratetype]))
770 continue;
771
772 page = list_entry(area->free_list[migratetype].next,
773 struct page, lru);
774 list_del(&page->lru);
775 rmv_page_order(page);
776 area->nr_free--;
56fd56b8
MG
777 expand(zone, page, order, current_order, area, migratetype);
778 return page;
779 }
780
781 return NULL;
782}
783
784
b2a0ac88
MG
785/*
786 * This array describes the order lists are fallen back to when
787 * the free lists for the desirable migrate type are depleted
788 */
789static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
790 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
791 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
792 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
793 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
794};
795
c361be55
MG
796/*
797 * Move the free pages in a range to the free lists of the requested type.
d9c23400 798 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
799 * boundary. If alignment is required, use move_freepages_block()
800 */
b69a7288
AB
801static int move_freepages(struct zone *zone,
802 struct page *start_page, struct page *end_page,
803 int migratetype)
c361be55
MG
804{
805 struct page *page;
806 unsigned long order;
d100313f 807 int pages_moved = 0;
c361be55
MG
808
809#ifndef CONFIG_HOLES_IN_ZONE
810 /*
811 * page_zone is not safe to call in this context when
812 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
813 * anyway as we check zone boundaries in move_freepages_block().
814 * Remove at a later date when no bug reports exist related to
ac0e5b7a 815 * grouping pages by mobility
c361be55
MG
816 */
817 BUG_ON(page_zone(start_page) != page_zone(end_page));
818#endif
819
820 for (page = start_page; page <= end_page;) {
344c790e
AL
821 /* Make sure we are not inadvertently changing nodes */
822 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
823
c361be55
MG
824 if (!pfn_valid_within(page_to_pfn(page))) {
825 page++;
826 continue;
827 }
828
829 if (!PageBuddy(page)) {
830 page++;
831 continue;
832 }
833
834 order = page_order(page);
835 list_del(&page->lru);
836 list_add(&page->lru,
837 &zone->free_area[order].free_list[migratetype]);
838 page += 1 << order;
d100313f 839 pages_moved += 1 << order;
c361be55
MG
840 }
841
d100313f 842 return pages_moved;
c361be55
MG
843}
844
b69a7288
AB
845static int move_freepages_block(struct zone *zone, struct page *page,
846 int migratetype)
c361be55
MG
847{
848 unsigned long start_pfn, end_pfn;
849 struct page *start_page, *end_page;
850
851 start_pfn = page_to_pfn(page);
d9c23400 852 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 853 start_page = pfn_to_page(start_pfn);
d9c23400
MG
854 end_page = start_page + pageblock_nr_pages - 1;
855 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
856
857 /* Do not cross zone boundaries */
858 if (start_pfn < zone->zone_start_pfn)
859 start_page = page;
860 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
861 return 0;
862
863 return move_freepages(zone, start_page, end_page, migratetype);
864}
865
2f66a68f
MG
866static void change_pageblock_range(struct page *pageblock_page,
867 int start_order, int migratetype)
868{
869 int nr_pageblocks = 1 << (start_order - pageblock_order);
870
871 while (nr_pageblocks--) {
872 set_pageblock_migratetype(pageblock_page, migratetype);
873 pageblock_page += pageblock_nr_pages;
874 }
875}
876
b2a0ac88 877/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
878static inline struct page *
879__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
880{
881 struct free_area * area;
882 int current_order;
883 struct page *page;
884 int migratetype, i;
885
886 /* Find the largest possible block of pages in the other list */
887 for (current_order = MAX_ORDER-1; current_order >= order;
888 --current_order) {
889 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
890 migratetype = fallbacks[start_migratetype][i];
891
56fd56b8
MG
892 /* MIGRATE_RESERVE handled later if necessary */
893 if (migratetype == MIGRATE_RESERVE)
894 continue;
e010487d 895
b2a0ac88
MG
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 area->nr_free--;
903
904 /*
c361be55 905 * If breaking a large block of pages, move all free
46dafbca
MG
906 * pages to the preferred allocation list. If falling
907 * back for a reclaimable kernel allocation, be more
908 * agressive about taking ownership of free pages
b2a0ac88 909 */
d9c23400 910 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
911 start_migratetype == MIGRATE_RECLAIMABLE ||
912 page_group_by_mobility_disabled) {
46dafbca
MG
913 unsigned long pages;
914 pages = move_freepages_block(zone, page,
915 start_migratetype);
916
917 /* Claim the whole block if over half of it is free */
dd5d241e
MG
918 if (pages >= (1 << (pageblock_order-1)) ||
919 page_group_by_mobility_disabled)
46dafbca
MG
920 set_pageblock_migratetype(page,
921 start_migratetype);
922
b2a0ac88 923 migratetype = start_migratetype;
c361be55 924 }
b2a0ac88
MG
925
926 /* Remove the page from the freelists */
927 list_del(&page->lru);
928 rmv_page_order(page);
b2a0ac88 929
2f66a68f
MG
930 /* Take ownership for orders >= pageblock_order */
931 if (current_order >= pageblock_order)
932 change_pageblock_range(page, current_order,
b2a0ac88
MG
933 start_migratetype);
934
935 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
936
937 trace_mm_page_alloc_extfrag(page, order, current_order,
938 start_migratetype, migratetype);
939
b2a0ac88
MG
940 return page;
941 }
942 }
943
728ec980 944 return NULL;
b2a0ac88
MG
945}
946
56fd56b8 947/*
1da177e4
LT
948 * Do the hard work of removing an element from the buddy allocator.
949 * Call me with the zone->lock already held.
950 */
b2a0ac88
MG
951static struct page *__rmqueue(struct zone *zone, unsigned int order,
952 int migratetype)
1da177e4 953{
1da177e4
LT
954 struct page *page;
955
728ec980 956retry_reserve:
56fd56b8 957 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 958
728ec980 959 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 960 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 961
728ec980
MG
962 /*
963 * Use MIGRATE_RESERVE rather than fail an allocation. goto
964 * is used because __rmqueue_smallest is an inline function
965 * and we want just one call site
966 */
967 if (!page) {
968 migratetype = MIGRATE_RESERVE;
969 goto retry_reserve;
970 }
971 }
972
0d3d062a 973 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 974 return page;
1da177e4
LT
975}
976
977/*
978 * Obtain a specified number of elements from the buddy allocator, all under
979 * a single hold of the lock, for efficiency. Add them to the supplied list.
980 * Returns the number of new pages which were placed at *list.
981 */
982static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 983 unsigned long count, struct list_head *list,
e084b2d9 984 int migratetype, int cold)
1da177e4 985{
1da177e4 986 int i;
1da177e4 987
c54ad30c 988 spin_lock(&zone->lock);
1da177e4 989 for (i = 0; i < count; ++i) {
b2a0ac88 990 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 991 if (unlikely(page == NULL))
1da177e4 992 break;
81eabcbe
MG
993
994 /*
995 * Split buddy pages returned by expand() are received here
996 * in physical page order. The page is added to the callers and
997 * list and the list head then moves forward. From the callers
998 * perspective, the linked list is ordered by page number in
999 * some conditions. This is useful for IO devices that can
1000 * merge IO requests if the physical pages are ordered
1001 * properly.
1002 */
e084b2d9
MG
1003 if (likely(cold == 0))
1004 list_add(&page->lru, list);
1005 else
1006 list_add_tail(&page->lru, list);
535131e6 1007 set_page_private(page, migratetype);
81eabcbe 1008 list = &page->lru;
1da177e4 1009 }
f2260e6b 1010 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1011 spin_unlock(&zone->lock);
085cc7d5 1012 return i;
1da177e4
LT
1013}
1014
4ae7c039 1015#ifdef CONFIG_NUMA
8fce4d8e 1016/*
4037d452
CL
1017 * Called from the vmstat counter updater to drain pagesets of this
1018 * currently executing processor on remote nodes after they have
1019 * expired.
1020 *
879336c3
CL
1021 * Note that this function must be called with the thread pinned to
1022 * a single processor.
8fce4d8e 1023 */
4037d452 1024void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1025{
4ae7c039 1026 unsigned long flags;
4037d452 1027 int to_drain;
4ae7c039 1028
4037d452
CL
1029 local_irq_save(flags);
1030 if (pcp->count >= pcp->batch)
1031 to_drain = pcp->batch;
1032 else
1033 to_drain = pcp->count;
5f8dcc21 1034 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1035 pcp->count -= to_drain;
1036 local_irq_restore(flags);
4ae7c039
CL
1037}
1038#endif
1039
9f8f2172
CL
1040/*
1041 * Drain pages of the indicated processor.
1042 *
1043 * The processor must either be the current processor and the
1044 * thread pinned to the current processor or a processor that
1045 * is not online.
1046 */
1047static void drain_pages(unsigned int cpu)
1da177e4 1048{
c54ad30c 1049 unsigned long flags;
1da177e4 1050 struct zone *zone;
1da177e4 1051
ee99c71c 1052 for_each_populated_zone(zone) {
1da177e4 1053 struct per_cpu_pageset *pset;
3dfa5721 1054 struct per_cpu_pages *pcp;
1da177e4 1055
99dcc3e5
CL
1056 local_irq_save(flags);
1057 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1058
1059 pcp = &pset->pcp;
5f8dcc21 1060 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1061 pcp->count = 0;
1062 local_irq_restore(flags);
1da177e4
LT
1063 }
1064}
1da177e4 1065
9f8f2172
CL
1066/*
1067 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1068 */
1069void drain_local_pages(void *arg)
1070{
1071 drain_pages(smp_processor_id());
1072}
1073
1074/*
1075 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1076 */
1077void drain_all_pages(void)
1078{
15c8b6c1 1079 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1080}
1081
296699de 1082#ifdef CONFIG_HIBERNATION
1da177e4
LT
1083
1084void mark_free_pages(struct zone *zone)
1085{
f623f0db
RW
1086 unsigned long pfn, max_zone_pfn;
1087 unsigned long flags;
b2a0ac88 1088 int order, t;
1da177e4
LT
1089 struct list_head *curr;
1090
1091 if (!zone->spanned_pages)
1092 return;
1093
1094 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1095
1096 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1097 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098 if (pfn_valid(pfn)) {
1099 struct page *page = pfn_to_page(pfn);
1100
7be98234
RW
1101 if (!swsusp_page_is_forbidden(page))
1102 swsusp_unset_page_free(page);
f623f0db 1103 }
1da177e4 1104
b2a0ac88
MG
1105 for_each_migratetype_order(order, t) {
1106 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1107 unsigned long i;
1da177e4 1108
f623f0db
RW
1109 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1110 for (i = 0; i < (1UL << order); i++)
7be98234 1111 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1112 }
b2a0ac88 1113 }
1da177e4
LT
1114 spin_unlock_irqrestore(&zone->lock, flags);
1115}
e2c55dc8 1116#endif /* CONFIG_PM */
1da177e4 1117
1da177e4
LT
1118/*
1119 * Free a 0-order page
fc91668e 1120 * cold == 1 ? free a cold page : free a hot page
1da177e4 1121 */
fc91668e 1122void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1123{
1124 struct zone *zone = page_zone(page);
1125 struct per_cpu_pages *pcp;
1126 unsigned long flags;
5f8dcc21 1127 int migratetype;
451ea25d 1128 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1129
c475dab6 1130 trace_mm_page_free_direct(page, 0);
b1eeab67
VN
1131 kmemcheck_free_shadow(page, 0);
1132
1da177e4
LT
1133 if (PageAnon(page))
1134 page->mapping = NULL;
224abf92 1135 if (free_pages_check(page))
689bcebf
HD
1136 return;
1137
3ac7fe5a 1138 if (!PageHighMem(page)) {
9858db50 1139 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1140 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1141 }
dafb1367 1142 arch_free_page(page, 0);
689bcebf
HD
1143 kernel_map_pages(page, 1, 0);
1144
5f8dcc21
MG
1145 migratetype = get_pageblock_migratetype(page);
1146 set_page_private(page, migratetype);
1da177e4 1147 local_irq_save(flags);
c277331d 1148 if (unlikely(wasMlocked))
da456f14 1149 free_page_mlock(page);
f8891e5e 1150 __count_vm_event(PGFREE);
da456f14 1151
5f8dcc21
MG
1152 /*
1153 * We only track unmovable, reclaimable and movable on pcp lists.
1154 * Free ISOLATE pages back to the allocator because they are being
1155 * offlined but treat RESERVE as movable pages so we can get those
1156 * areas back if necessary. Otherwise, we may have to free
1157 * excessively into the page allocator
1158 */
1159 if (migratetype >= MIGRATE_PCPTYPES) {
1160 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1161 free_one_page(zone, page, 0, migratetype);
1162 goto out;
1163 }
1164 migratetype = MIGRATE_MOVABLE;
1165 }
1166
99dcc3e5 1167 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1168 if (cold)
5f8dcc21 1169 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1170 else
5f8dcc21 1171 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1172 pcp->count++;
48db57f8 1173 if (pcp->count >= pcp->high) {
5f8dcc21 1174 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1175 pcp->count -= pcp->batch;
1176 }
5f8dcc21
MG
1177
1178out:
1da177e4 1179 local_irq_restore(flags);
1da177e4
LT
1180}
1181
8dfcc9ba
NP
1182/*
1183 * split_page takes a non-compound higher-order page, and splits it into
1184 * n (1<<order) sub-pages: page[0..n]
1185 * Each sub-page must be freed individually.
1186 *
1187 * Note: this is probably too low level an operation for use in drivers.
1188 * Please consult with lkml before using this in your driver.
1189 */
1190void split_page(struct page *page, unsigned int order)
1191{
1192 int i;
1193
725d704e
NP
1194 VM_BUG_ON(PageCompound(page));
1195 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1196
1197#ifdef CONFIG_KMEMCHECK
1198 /*
1199 * Split shadow pages too, because free(page[0]) would
1200 * otherwise free the whole shadow.
1201 */
1202 if (kmemcheck_page_is_tracked(page))
1203 split_page(virt_to_page(page[0].shadow), order);
1204#endif
1205
7835e98b
NP
1206 for (i = 1; i < (1 << order); i++)
1207 set_page_refcounted(page + i);
8dfcc9ba 1208}
8dfcc9ba 1209
748446bb
MG
1210/*
1211 * Similar to split_page except the page is already free. As this is only
1212 * being used for migration, the migratetype of the block also changes.
1213 * As this is called with interrupts disabled, the caller is responsible
1214 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1215 * are enabled.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220int split_free_page(struct page *page)
1221{
1222 unsigned int order;
1223 unsigned long watermark;
1224 struct zone *zone;
1225
1226 BUG_ON(!PageBuddy(page));
1227
1228 zone = page_zone(page);
1229 order = page_order(page);
1230
1231 /* Obey watermarks as if the page was being allocated */
1232 watermark = low_wmark_pages(zone) + (1 << order);
1233 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1234 return 0;
1235
1236 /* Remove page from free list */
1237 list_del(&page->lru);
1238 zone->free_area[order].nr_free--;
1239 rmv_page_order(page);
1240 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1241
1242 /* Split into individual pages */
1243 set_page_refcounted(page);
1244 split_page(page, order);
1245
1246 if (order >= pageblock_order - 1) {
1247 struct page *endpage = page + (1 << order) - 1;
1248 for (; page < endpage; page += pageblock_nr_pages)
1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1250 }
1251
1252 return 1 << order;
1253}
1254
1da177e4
LT
1255/*
1256 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1257 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1258 * or two.
1259 */
0a15c3e9
MG
1260static inline
1261struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1262 struct zone *zone, int order, gfp_t gfp_flags,
1263 int migratetype)
1da177e4
LT
1264{
1265 unsigned long flags;
689bcebf 1266 struct page *page;
1da177e4
LT
1267 int cold = !!(gfp_flags & __GFP_COLD);
1268
689bcebf 1269again:
48db57f8 1270 if (likely(order == 0)) {
1da177e4 1271 struct per_cpu_pages *pcp;
5f8dcc21 1272 struct list_head *list;
1da177e4 1273
1da177e4 1274 local_irq_save(flags);
99dcc3e5
CL
1275 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1276 list = &pcp->lists[migratetype];
5f8dcc21 1277 if (list_empty(list)) {
535131e6 1278 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1279 pcp->batch, list,
e084b2d9 1280 migratetype, cold);
5f8dcc21 1281 if (unlikely(list_empty(list)))
6fb332fa 1282 goto failed;
535131e6 1283 }
b92a6edd 1284
5f8dcc21
MG
1285 if (cold)
1286 page = list_entry(list->prev, struct page, lru);
1287 else
1288 page = list_entry(list->next, struct page, lru);
1289
b92a6edd
MG
1290 list_del(&page->lru);
1291 pcp->count--;
7fb1d9fc 1292 } else {
dab48dab
AM
1293 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1294 /*
1295 * __GFP_NOFAIL is not to be used in new code.
1296 *
1297 * All __GFP_NOFAIL callers should be fixed so that they
1298 * properly detect and handle allocation failures.
1299 *
1300 * We most definitely don't want callers attempting to
4923abf9 1301 * allocate greater than order-1 page units with
dab48dab
AM
1302 * __GFP_NOFAIL.
1303 */
4923abf9 1304 WARN_ON_ONCE(order > 1);
dab48dab 1305 }
1da177e4 1306 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1307 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1308 spin_unlock(&zone->lock);
1309 if (!page)
1310 goto failed;
6ccf80eb 1311 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1312 }
1313
f8891e5e 1314 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1315 zone_statistics(preferred_zone, zone);
a74609fa 1316 local_irq_restore(flags);
1da177e4 1317
725d704e 1318 VM_BUG_ON(bad_range(zone, page));
17cf4406 1319 if (prep_new_page(page, order, gfp_flags))
a74609fa 1320 goto again;
1da177e4 1321 return page;
a74609fa
NP
1322
1323failed:
1324 local_irq_restore(flags);
a74609fa 1325 return NULL;
1da177e4
LT
1326}
1327
41858966
MG
1328/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1329#define ALLOC_WMARK_MIN WMARK_MIN
1330#define ALLOC_WMARK_LOW WMARK_LOW
1331#define ALLOC_WMARK_HIGH WMARK_HIGH
1332#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1333
1334/* Mask to get the watermark bits */
1335#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1336
3148890b
NP
1337#define ALLOC_HARDER 0x10 /* try to alloc harder */
1338#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1339#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1340
933e312e
AM
1341#ifdef CONFIG_FAIL_PAGE_ALLOC
1342
1343static struct fail_page_alloc_attr {
1344 struct fault_attr attr;
1345
1346 u32 ignore_gfp_highmem;
1347 u32 ignore_gfp_wait;
54114994 1348 u32 min_order;
933e312e
AM
1349
1350#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1351
1352 struct dentry *ignore_gfp_highmem_file;
1353 struct dentry *ignore_gfp_wait_file;
54114994 1354 struct dentry *min_order_file;
933e312e
AM
1355
1356#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1357
1358} fail_page_alloc = {
1359 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1360 .ignore_gfp_wait = 1,
1361 .ignore_gfp_highmem = 1,
54114994 1362 .min_order = 1,
933e312e
AM
1363};
1364
1365static int __init setup_fail_page_alloc(char *str)
1366{
1367 return setup_fault_attr(&fail_page_alloc.attr, str);
1368}
1369__setup("fail_page_alloc=", setup_fail_page_alloc);
1370
1371static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1372{
54114994
AM
1373 if (order < fail_page_alloc.min_order)
1374 return 0;
933e312e
AM
1375 if (gfp_mask & __GFP_NOFAIL)
1376 return 0;
1377 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1378 return 0;
1379 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1380 return 0;
1381
1382 return should_fail(&fail_page_alloc.attr, 1 << order);
1383}
1384
1385#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1386
1387static int __init fail_page_alloc_debugfs(void)
1388{
1389 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1390 struct dentry *dir;
1391 int err;
1392
1393 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1394 "fail_page_alloc");
1395 if (err)
1396 return err;
1397 dir = fail_page_alloc.attr.dentries.dir;
1398
1399 fail_page_alloc.ignore_gfp_wait_file =
1400 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1401 &fail_page_alloc.ignore_gfp_wait);
1402
1403 fail_page_alloc.ignore_gfp_highmem_file =
1404 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1405 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1406 fail_page_alloc.min_order_file =
1407 debugfs_create_u32("min-order", mode, dir,
1408 &fail_page_alloc.min_order);
933e312e
AM
1409
1410 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1411 !fail_page_alloc.ignore_gfp_highmem_file ||
1412 !fail_page_alloc.min_order_file) {
933e312e
AM
1413 err = -ENOMEM;
1414 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1415 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1416 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1417 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1418 }
1419
1420 return err;
1421}
1422
1423late_initcall(fail_page_alloc_debugfs);
1424
1425#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1426
1427#else /* CONFIG_FAIL_PAGE_ALLOC */
1428
1429static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1430{
1431 return 0;
1432}
1433
1434#endif /* CONFIG_FAIL_PAGE_ALLOC */
1435
1da177e4
LT
1436/*
1437 * Return 1 if free pages are above 'mark'. This takes into account the order
1438 * of the allocation.
1439 */
1440int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1441 int classzone_idx, int alloc_flags)
1da177e4
LT
1442{
1443 /* free_pages my go negative - that's OK */
d23ad423
CL
1444 long min = mark;
1445 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1446 int o;
1447
7fb1d9fc 1448 if (alloc_flags & ALLOC_HIGH)
1da177e4 1449 min -= min / 2;
7fb1d9fc 1450 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1451 min -= min / 4;
1452
1453 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1454 return 0;
1455 for (o = 0; o < order; o++) {
1456 /* At the next order, this order's pages become unavailable */
1457 free_pages -= z->free_area[o].nr_free << o;
1458
1459 /* Require fewer higher order pages to be free */
1460 min >>= 1;
1461
1462 if (free_pages <= min)
1463 return 0;
1464 }
1465 return 1;
1466}
1467
9276b1bc
PJ
1468#ifdef CONFIG_NUMA
1469/*
1470 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1471 * skip over zones that are not allowed by the cpuset, or that have
1472 * been recently (in last second) found to be nearly full. See further
1473 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1474 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1475 *
1476 * If the zonelist cache is present in the passed in zonelist, then
1477 * returns a pointer to the allowed node mask (either the current
37b07e41 1478 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1479 *
1480 * If the zonelist cache is not available for this zonelist, does
1481 * nothing and returns NULL.
1482 *
1483 * If the fullzones BITMAP in the zonelist cache is stale (more than
1484 * a second since last zap'd) then we zap it out (clear its bits.)
1485 *
1486 * We hold off even calling zlc_setup, until after we've checked the
1487 * first zone in the zonelist, on the theory that most allocations will
1488 * be satisfied from that first zone, so best to examine that zone as
1489 * quickly as we can.
1490 */
1491static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1492{
1493 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1494 nodemask_t *allowednodes; /* zonelist_cache approximation */
1495
1496 zlc = zonelist->zlcache_ptr;
1497 if (!zlc)
1498 return NULL;
1499
f05111f5 1500 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1501 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1502 zlc->last_full_zap = jiffies;
1503 }
1504
1505 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1506 &cpuset_current_mems_allowed :
37b07e41 1507 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1508 return allowednodes;
1509}
1510
1511/*
1512 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1513 * if it is worth looking at further for free memory:
1514 * 1) Check that the zone isn't thought to be full (doesn't have its
1515 * bit set in the zonelist_cache fullzones BITMAP).
1516 * 2) Check that the zones node (obtained from the zonelist_cache
1517 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1518 * Return true (non-zero) if zone is worth looking at further, or
1519 * else return false (zero) if it is not.
1520 *
1521 * This check -ignores- the distinction between various watermarks,
1522 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1523 * found to be full for any variation of these watermarks, it will
1524 * be considered full for up to one second by all requests, unless
1525 * we are so low on memory on all allowed nodes that we are forced
1526 * into the second scan of the zonelist.
1527 *
1528 * In the second scan we ignore this zonelist cache and exactly
1529 * apply the watermarks to all zones, even it is slower to do so.
1530 * We are low on memory in the second scan, and should leave no stone
1531 * unturned looking for a free page.
1532 */
dd1a239f 1533static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1534 nodemask_t *allowednodes)
1535{
1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1537 int i; /* index of *z in zonelist zones */
1538 int n; /* node that zone *z is on */
1539
1540 zlc = zonelist->zlcache_ptr;
1541 if (!zlc)
1542 return 1;
1543
dd1a239f 1544 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1545 n = zlc->z_to_n[i];
1546
1547 /* This zone is worth trying if it is allowed but not full */
1548 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1549}
1550
1551/*
1552 * Given 'z' scanning a zonelist, set the corresponding bit in
1553 * zlc->fullzones, so that subsequent attempts to allocate a page
1554 * from that zone don't waste time re-examining it.
1555 */
dd1a239f 1556static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1557{
1558 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1559 int i; /* index of *z in zonelist zones */
1560
1561 zlc = zonelist->zlcache_ptr;
1562 if (!zlc)
1563 return;
1564
dd1a239f 1565 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1566
1567 set_bit(i, zlc->fullzones);
1568}
1569
1570#else /* CONFIG_NUMA */
1571
1572static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1573{
1574 return NULL;
1575}
1576
dd1a239f 1577static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1578 nodemask_t *allowednodes)
1579{
1580 return 1;
1581}
1582
dd1a239f 1583static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1584{
1585}
1586#endif /* CONFIG_NUMA */
1587
7fb1d9fc 1588/*
0798e519 1589 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1590 * a page.
1591 */
1592static struct page *
19770b32 1593get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1594 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1595 struct zone *preferred_zone, int migratetype)
753ee728 1596{
dd1a239f 1597 struct zoneref *z;
7fb1d9fc 1598 struct page *page = NULL;
54a6eb5c 1599 int classzone_idx;
5117f45d 1600 struct zone *zone;
9276b1bc
PJ
1601 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1602 int zlc_active = 0; /* set if using zonelist_cache */
1603 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1604
19770b32 1605 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1606zonelist_scan:
7fb1d9fc 1607 /*
9276b1bc 1608 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1609 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1610 */
19770b32
MG
1611 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1612 high_zoneidx, nodemask) {
9276b1bc
PJ
1613 if (NUMA_BUILD && zlc_active &&
1614 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1615 continue;
7fb1d9fc 1616 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1617 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1618 goto try_next_zone;
7fb1d9fc 1619
41858966 1620 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1621 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1622 unsigned long mark;
fa5e084e
MG
1623 int ret;
1624
41858966 1625 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1626 if (zone_watermark_ok(zone, order, mark,
1627 classzone_idx, alloc_flags))
1628 goto try_this_zone;
1629
1630 if (zone_reclaim_mode == 0)
1631 goto this_zone_full;
1632
1633 ret = zone_reclaim(zone, gfp_mask, order);
1634 switch (ret) {
1635 case ZONE_RECLAIM_NOSCAN:
1636 /* did not scan */
1637 goto try_next_zone;
1638 case ZONE_RECLAIM_FULL:
1639 /* scanned but unreclaimable */
1640 goto this_zone_full;
1641 default:
1642 /* did we reclaim enough */
1643 if (!zone_watermark_ok(zone, order, mark,
1644 classzone_idx, alloc_flags))
9276b1bc 1645 goto this_zone_full;
0798e519 1646 }
7fb1d9fc
RS
1647 }
1648
fa5e084e 1649try_this_zone:
3dd28266
MG
1650 page = buffered_rmqueue(preferred_zone, zone, order,
1651 gfp_mask, migratetype);
0798e519 1652 if (page)
7fb1d9fc 1653 break;
9276b1bc
PJ
1654this_zone_full:
1655 if (NUMA_BUILD)
1656 zlc_mark_zone_full(zonelist, z);
1657try_next_zone:
62bc62a8 1658 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1659 /*
1660 * we do zlc_setup after the first zone is tried but only
1661 * if there are multiple nodes make it worthwhile
1662 */
9276b1bc
PJ
1663 allowednodes = zlc_setup(zonelist, alloc_flags);
1664 zlc_active = 1;
1665 did_zlc_setup = 1;
1666 }
54a6eb5c 1667 }
9276b1bc
PJ
1668
1669 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1670 /* Disable zlc cache for second zonelist scan */
1671 zlc_active = 0;
1672 goto zonelist_scan;
1673 }
7fb1d9fc 1674 return page;
753ee728
MH
1675}
1676
11e33f6a
MG
1677static inline int
1678should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1679 unsigned long pages_reclaimed)
1da177e4 1680{
11e33f6a
MG
1681 /* Do not loop if specifically requested */
1682 if (gfp_mask & __GFP_NORETRY)
1683 return 0;
1da177e4 1684
11e33f6a
MG
1685 /*
1686 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1687 * means __GFP_NOFAIL, but that may not be true in other
1688 * implementations.
1689 */
1690 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1691 return 1;
1692
1693 /*
1694 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1695 * specified, then we retry until we no longer reclaim any pages
1696 * (above), or we've reclaimed an order of pages at least as
1697 * large as the allocation's order. In both cases, if the
1698 * allocation still fails, we stop retrying.
1699 */
1700 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1701 return 1;
cf40bd16 1702
11e33f6a
MG
1703 /*
1704 * Don't let big-order allocations loop unless the caller
1705 * explicitly requests that.
1706 */
1707 if (gfp_mask & __GFP_NOFAIL)
1708 return 1;
1da177e4 1709
11e33f6a
MG
1710 return 0;
1711}
933e312e 1712
11e33f6a
MG
1713static inline struct page *
1714__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1715 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1716 nodemask_t *nodemask, struct zone *preferred_zone,
1717 int migratetype)
11e33f6a
MG
1718{
1719 struct page *page;
1720
1721 /* Acquire the OOM killer lock for the zones in zonelist */
1722 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1723 schedule_timeout_uninterruptible(1);
1da177e4
LT
1724 return NULL;
1725 }
6b1de916 1726
11e33f6a
MG
1727 /*
1728 * Go through the zonelist yet one more time, keep very high watermark
1729 * here, this is only to catch a parallel oom killing, we must fail if
1730 * we're still under heavy pressure.
1731 */
1732 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1733 order, zonelist, high_zoneidx,
5117f45d 1734 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1735 preferred_zone, migratetype);
7fb1d9fc 1736 if (page)
11e33f6a
MG
1737 goto out;
1738
4365a567
KH
1739 if (!(gfp_mask & __GFP_NOFAIL)) {
1740 /* The OOM killer will not help higher order allocs */
1741 if (order > PAGE_ALLOC_COSTLY_ORDER)
1742 goto out;
1743 /*
1744 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1745 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1746 * The caller should handle page allocation failure by itself if
1747 * it specifies __GFP_THISNODE.
1748 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1749 */
1750 if (gfp_mask & __GFP_THISNODE)
1751 goto out;
1752 }
11e33f6a 1753 /* Exhausted what can be done so it's blamo time */
4365a567 1754 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1755
1756out:
1757 clear_zonelist_oom(zonelist, gfp_mask);
1758 return page;
1759}
1760
1761/* The really slow allocator path where we enter direct reclaim */
1762static inline struct page *
1763__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1764 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1765 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1766 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1767{
1768 struct page *page = NULL;
1769 struct reclaim_state reclaim_state;
1770 struct task_struct *p = current;
1771
1772 cond_resched();
1773
1774 /* We now go into synchronous reclaim */
1775 cpuset_memory_pressure_bump();
11e33f6a
MG
1776 p->flags |= PF_MEMALLOC;
1777 lockdep_set_current_reclaim_state(gfp_mask);
1778 reclaim_state.reclaimed_slab = 0;
1779 p->reclaim_state = &reclaim_state;
1780
1781 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1782
1783 p->reclaim_state = NULL;
1784 lockdep_clear_current_reclaim_state();
1785 p->flags &= ~PF_MEMALLOC;
1786
1787 cond_resched();
1788
1789 if (order != 0)
1790 drain_all_pages();
1791
1792 if (likely(*did_some_progress))
1793 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1794 zonelist, high_zoneidx,
3dd28266
MG
1795 alloc_flags, preferred_zone,
1796 migratetype);
11e33f6a
MG
1797 return page;
1798}
1799
1da177e4 1800/*
11e33f6a
MG
1801 * This is called in the allocator slow-path if the allocation request is of
1802 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1803 */
11e33f6a
MG
1804static inline struct page *
1805__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1806 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1807 nodemask_t *nodemask, struct zone *preferred_zone,
1808 int migratetype)
11e33f6a
MG
1809{
1810 struct page *page;
1811
1812 do {
1813 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1814 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1815 preferred_zone, migratetype);
11e33f6a
MG
1816
1817 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1818 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1819 } while (!page && (gfp_mask & __GFP_NOFAIL));
1820
1821 return page;
1822}
1823
1824static inline
1825void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1826 enum zone_type high_zoneidx)
1da177e4 1827{
dd1a239f
MG
1828 struct zoneref *z;
1829 struct zone *zone;
1da177e4 1830
11e33f6a
MG
1831 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1832 wakeup_kswapd(zone, order);
1833}
cf40bd16 1834
341ce06f
PZ
1835static inline int
1836gfp_to_alloc_flags(gfp_t gfp_mask)
1837{
1838 struct task_struct *p = current;
1839 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1840 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1841
a56f57ff
MG
1842 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1843 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1844
341ce06f
PZ
1845 /*
1846 * The caller may dip into page reserves a bit more if the caller
1847 * cannot run direct reclaim, or if the caller has realtime scheduling
1848 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1849 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1850 */
a56f57ff 1851 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1852
341ce06f
PZ
1853 if (!wait) {
1854 alloc_flags |= ALLOC_HARDER;
523b9458 1855 /*
341ce06f
PZ
1856 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1858 */
341ce06f 1859 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1860 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1861 alloc_flags |= ALLOC_HARDER;
1862
1863 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1864 if (!in_interrupt() &&
1865 ((p->flags & PF_MEMALLOC) ||
1866 unlikely(test_thread_flag(TIF_MEMDIE))))
1867 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1868 }
6b1de916 1869
341ce06f
PZ
1870 return alloc_flags;
1871}
1872
11e33f6a
MG
1873static inline struct page *
1874__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1875 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1876 nodemask_t *nodemask, struct zone *preferred_zone,
1877 int migratetype)
11e33f6a
MG
1878{
1879 const gfp_t wait = gfp_mask & __GFP_WAIT;
1880 struct page *page = NULL;
1881 int alloc_flags;
1882 unsigned long pages_reclaimed = 0;
1883 unsigned long did_some_progress;
1884 struct task_struct *p = current;
1da177e4 1885
72807a74
MG
1886 /*
1887 * In the slowpath, we sanity check order to avoid ever trying to
1888 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1889 * be using allocators in order of preference for an area that is
1890 * too large.
1891 */
1fc28b70
MG
1892 if (order >= MAX_ORDER) {
1893 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1894 return NULL;
1fc28b70 1895 }
1da177e4 1896
952f3b51
CL
1897 /*
1898 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1899 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1900 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1901 * using a larger set of nodes after it has established that the
1902 * allowed per node queues are empty and that nodes are
1903 * over allocated.
1904 */
1905 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1906 goto nopage;
1907
cc4a6851 1908restart:
11e33f6a 1909 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1910
9bf2229f 1911 /*
7fb1d9fc
RS
1912 * OK, we're below the kswapd watermark and have kicked background
1913 * reclaim. Now things get more complex, so set up alloc_flags according
1914 * to how we want to proceed.
9bf2229f 1915 */
341ce06f 1916 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1917
341ce06f 1918 /* This is the last chance, in general, before the goto nopage. */
19770b32 1919 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1920 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1921 preferred_zone, migratetype);
7fb1d9fc
RS
1922 if (page)
1923 goto got_pg;
1da177e4 1924
b43a57bb 1925rebalance:
11e33f6a 1926 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1927 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1928 page = __alloc_pages_high_priority(gfp_mask, order,
1929 zonelist, high_zoneidx, nodemask,
1930 preferred_zone, migratetype);
1931 if (page)
1932 goto got_pg;
1da177e4
LT
1933 }
1934
1935 /* Atomic allocations - we can't balance anything */
1936 if (!wait)
1937 goto nopage;
1938
341ce06f
PZ
1939 /* Avoid recursion of direct reclaim */
1940 if (p->flags & PF_MEMALLOC)
1941 goto nopage;
1942
6583bb64
DR
1943 /* Avoid allocations with no watermarks from looping endlessly */
1944 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1945 goto nopage;
1946
11e33f6a
MG
1947 /* Try direct reclaim and then allocating */
1948 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1949 zonelist, high_zoneidx,
1950 nodemask,
5117f45d 1951 alloc_flags, preferred_zone,
3dd28266 1952 migratetype, &did_some_progress);
11e33f6a
MG
1953 if (page)
1954 goto got_pg;
1da177e4 1955
e33c3b5e 1956 /*
11e33f6a
MG
1957 * If we failed to make any progress reclaiming, then we are
1958 * running out of options and have to consider going OOM
e33c3b5e 1959 */
11e33f6a
MG
1960 if (!did_some_progress) {
1961 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1962 if (oom_killer_disabled)
1963 goto nopage;
11e33f6a
MG
1964 page = __alloc_pages_may_oom(gfp_mask, order,
1965 zonelist, high_zoneidx,
3dd28266
MG
1966 nodemask, preferred_zone,
1967 migratetype);
11e33f6a
MG
1968 if (page)
1969 goto got_pg;
1da177e4 1970
11e33f6a 1971 /*
82553a93
DR
1972 * The OOM killer does not trigger for high-order
1973 * ~__GFP_NOFAIL allocations so if no progress is being
1974 * made, there are no other options and retrying is
1975 * unlikely to help.
11e33f6a 1976 */
82553a93
DR
1977 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1978 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1979 goto nopage;
e2c55dc8 1980
ff0ceb9d
DR
1981 goto restart;
1982 }
1da177e4
LT
1983 }
1984
11e33f6a 1985 /* Check if we should retry the allocation */
a41f24ea 1986 pages_reclaimed += did_some_progress;
11e33f6a
MG
1987 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1988 /* Wait for some write requests to complete then retry */
8aa7e847 1989 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1990 goto rebalance;
1991 }
1992
1993nopage:
1994 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1995 printk(KERN_WARNING "%s: page allocation failure."
1996 " order:%d, mode:0x%x\n",
1997 p->comm, order, gfp_mask);
1998 dump_stack();
578c2fd6 1999 show_mem();
1da177e4 2000 }
b1eeab67 2001 return page;
1da177e4 2002got_pg:
b1eeab67
VN
2003 if (kmemcheck_enabled)
2004 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2005 return page;
11e33f6a 2006
1da177e4 2007}
11e33f6a
MG
2008
2009/*
2010 * This is the 'heart' of the zoned buddy allocator.
2011 */
2012struct page *
2013__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2014 struct zonelist *zonelist, nodemask_t *nodemask)
2015{
2016 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2017 struct zone *preferred_zone;
11e33f6a 2018 struct page *page;
3dd28266 2019 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2020
dcce284a
BH
2021 gfp_mask &= gfp_allowed_mask;
2022
11e33f6a
MG
2023 lockdep_trace_alloc(gfp_mask);
2024
2025 might_sleep_if(gfp_mask & __GFP_WAIT);
2026
2027 if (should_fail_alloc_page(gfp_mask, order))
2028 return NULL;
2029
2030 /*
2031 * Check the zones suitable for the gfp_mask contain at least one
2032 * valid zone. It's possible to have an empty zonelist as a result
2033 * of GFP_THISNODE and a memoryless node
2034 */
2035 if (unlikely(!zonelist->_zonerefs->zone))
2036 return NULL;
2037
c0ff7453 2038 get_mems_allowed();
5117f45d
MG
2039 /* The preferred zone is used for statistics later */
2040 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2041 if (!preferred_zone) {
2042 put_mems_allowed();
5117f45d 2043 return NULL;
c0ff7453 2044 }
5117f45d
MG
2045
2046 /* First allocation attempt */
11e33f6a 2047 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2048 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2049 preferred_zone, migratetype);
11e33f6a
MG
2050 if (unlikely(!page))
2051 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2052 zonelist, high_zoneidx, nodemask,
3dd28266 2053 preferred_zone, migratetype);
c0ff7453 2054 put_mems_allowed();
11e33f6a 2055
4b4f278c 2056 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2057 return page;
1da177e4 2058}
d239171e 2059EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2060
2061/*
2062 * Common helper functions.
2063 */
920c7a5d 2064unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2065{
945a1113
AM
2066 struct page *page;
2067
2068 /*
2069 * __get_free_pages() returns a 32-bit address, which cannot represent
2070 * a highmem page
2071 */
2072 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2073
1da177e4
LT
2074 page = alloc_pages(gfp_mask, order);
2075 if (!page)
2076 return 0;
2077 return (unsigned long) page_address(page);
2078}
1da177e4
LT
2079EXPORT_SYMBOL(__get_free_pages);
2080
920c7a5d 2081unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2082{
945a1113 2083 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2084}
1da177e4
LT
2085EXPORT_SYMBOL(get_zeroed_page);
2086
2087void __pagevec_free(struct pagevec *pvec)
2088{
2089 int i = pagevec_count(pvec);
2090
4b4f278c
MG
2091 while (--i >= 0) {
2092 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2093 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2094 }
1da177e4
LT
2095}
2096
920c7a5d 2097void __free_pages(struct page *page, unsigned int order)
1da177e4 2098{
b5810039 2099 if (put_page_testzero(page)) {
1da177e4 2100 if (order == 0)
fc91668e 2101 free_hot_cold_page(page, 0);
1da177e4
LT
2102 else
2103 __free_pages_ok(page, order);
2104 }
2105}
2106
2107EXPORT_SYMBOL(__free_pages);
2108
920c7a5d 2109void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2110{
2111 if (addr != 0) {
725d704e 2112 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2113 __free_pages(virt_to_page((void *)addr), order);
2114 }
2115}
2116
2117EXPORT_SYMBOL(free_pages);
2118
2be0ffe2
TT
2119/**
2120 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2121 * @size: the number of bytes to allocate
2122 * @gfp_mask: GFP flags for the allocation
2123 *
2124 * This function is similar to alloc_pages(), except that it allocates the
2125 * minimum number of pages to satisfy the request. alloc_pages() can only
2126 * allocate memory in power-of-two pages.
2127 *
2128 * This function is also limited by MAX_ORDER.
2129 *
2130 * Memory allocated by this function must be released by free_pages_exact().
2131 */
2132void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2133{
2134 unsigned int order = get_order(size);
2135 unsigned long addr;
2136
2137 addr = __get_free_pages(gfp_mask, order);
2138 if (addr) {
2139 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2140 unsigned long used = addr + PAGE_ALIGN(size);
2141
5bfd7560 2142 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2143 while (used < alloc_end) {
2144 free_page(used);
2145 used += PAGE_SIZE;
2146 }
2147 }
2148
2149 return (void *)addr;
2150}
2151EXPORT_SYMBOL(alloc_pages_exact);
2152
2153/**
2154 * free_pages_exact - release memory allocated via alloc_pages_exact()
2155 * @virt: the value returned by alloc_pages_exact.
2156 * @size: size of allocation, same value as passed to alloc_pages_exact().
2157 *
2158 * Release the memory allocated by a previous call to alloc_pages_exact.
2159 */
2160void free_pages_exact(void *virt, size_t size)
2161{
2162 unsigned long addr = (unsigned long)virt;
2163 unsigned long end = addr + PAGE_ALIGN(size);
2164
2165 while (addr < end) {
2166 free_page(addr);
2167 addr += PAGE_SIZE;
2168 }
2169}
2170EXPORT_SYMBOL(free_pages_exact);
2171
1da177e4
LT
2172static unsigned int nr_free_zone_pages(int offset)
2173{
dd1a239f 2174 struct zoneref *z;
54a6eb5c
MG
2175 struct zone *zone;
2176
e310fd43 2177 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2178 unsigned int sum = 0;
2179
0e88460d 2180 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2181
54a6eb5c 2182 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2183 unsigned long size = zone->present_pages;
41858966 2184 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2185 if (size > high)
2186 sum += size - high;
1da177e4
LT
2187 }
2188
2189 return sum;
2190}
2191
2192/*
2193 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2194 */
2195unsigned int nr_free_buffer_pages(void)
2196{
af4ca457 2197 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2198}
c2f1a551 2199EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2200
2201/*
2202 * Amount of free RAM allocatable within all zones
2203 */
2204unsigned int nr_free_pagecache_pages(void)
2205{
2a1e274a 2206 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2207}
08e0f6a9
CL
2208
2209static inline void show_node(struct zone *zone)
1da177e4 2210{
08e0f6a9 2211 if (NUMA_BUILD)
25ba77c1 2212 printk("Node %d ", zone_to_nid(zone));
1da177e4 2213}
1da177e4 2214
1da177e4
LT
2215void si_meminfo(struct sysinfo *val)
2216{
2217 val->totalram = totalram_pages;
2218 val->sharedram = 0;
d23ad423 2219 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2220 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2221 val->totalhigh = totalhigh_pages;
2222 val->freehigh = nr_free_highpages();
1da177e4
LT
2223 val->mem_unit = PAGE_SIZE;
2224}
2225
2226EXPORT_SYMBOL(si_meminfo);
2227
2228#ifdef CONFIG_NUMA
2229void si_meminfo_node(struct sysinfo *val, int nid)
2230{
2231 pg_data_t *pgdat = NODE_DATA(nid);
2232
2233 val->totalram = pgdat->node_present_pages;
d23ad423 2234 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2235#ifdef CONFIG_HIGHMEM
1da177e4 2236 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2237 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2238 NR_FREE_PAGES);
98d2b0eb
CL
2239#else
2240 val->totalhigh = 0;
2241 val->freehigh = 0;
2242#endif
1da177e4
LT
2243 val->mem_unit = PAGE_SIZE;
2244}
2245#endif
2246
2247#define K(x) ((x) << (PAGE_SHIFT-10))
2248
2249/*
2250 * Show free area list (used inside shift_scroll-lock stuff)
2251 * We also calculate the percentage fragmentation. We do this by counting the
2252 * memory on each free list with the exception of the first item on the list.
2253 */
2254void show_free_areas(void)
2255{
c7241913 2256 int cpu;
1da177e4
LT
2257 struct zone *zone;
2258
ee99c71c 2259 for_each_populated_zone(zone) {
c7241913
JS
2260 show_node(zone);
2261 printk("%s per-cpu:\n", zone->name);
1da177e4 2262
6b482c67 2263 for_each_online_cpu(cpu) {
1da177e4
LT
2264 struct per_cpu_pageset *pageset;
2265
99dcc3e5 2266 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2267
3dfa5721
CL
2268 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2269 cpu, pageset->pcp.high,
2270 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2271 }
2272 }
2273
a731286d
KM
2274 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2275 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2276 " unevictable:%lu"
b76146ed 2277 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2278 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2279 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2280 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2281 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2282 global_page_state(NR_ISOLATED_ANON),
2283 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2284 global_page_state(NR_INACTIVE_FILE),
a731286d 2285 global_page_state(NR_ISOLATED_FILE),
7b854121 2286 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2287 global_page_state(NR_FILE_DIRTY),
ce866b34 2288 global_page_state(NR_WRITEBACK),
fd39fc85 2289 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2290 global_page_state(NR_FREE_PAGES),
3701b033
KM
2291 global_page_state(NR_SLAB_RECLAIMABLE),
2292 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2293 global_page_state(NR_FILE_MAPPED),
4b02108a 2294 global_page_state(NR_SHMEM),
a25700a5
AM
2295 global_page_state(NR_PAGETABLE),
2296 global_page_state(NR_BOUNCE));
1da177e4 2297
ee99c71c 2298 for_each_populated_zone(zone) {
1da177e4
LT
2299 int i;
2300
2301 show_node(zone);
2302 printk("%s"
2303 " free:%lukB"
2304 " min:%lukB"
2305 " low:%lukB"
2306 " high:%lukB"
4f98a2fe
RR
2307 " active_anon:%lukB"
2308 " inactive_anon:%lukB"
2309 " active_file:%lukB"
2310 " inactive_file:%lukB"
7b854121 2311 " unevictable:%lukB"
a731286d
KM
2312 " isolated(anon):%lukB"
2313 " isolated(file):%lukB"
1da177e4 2314 " present:%lukB"
4a0aa73f
KM
2315 " mlocked:%lukB"
2316 " dirty:%lukB"
2317 " writeback:%lukB"
2318 " mapped:%lukB"
4b02108a 2319 " shmem:%lukB"
4a0aa73f
KM
2320 " slab_reclaimable:%lukB"
2321 " slab_unreclaimable:%lukB"
c6a7f572 2322 " kernel_stack:%lukB"
4a0aa73f
KM
2323 " pagetables:%lukB"
2324 " unstable:%lukB"
2325 " bounce:%lukB"
2326 " writeback_tmp:%lukB"
1da177e4
LT
2327 " pages_scanned:%lu"
2328 " all_unreclaimable? %s"
2329 "\n",
2330 zone->name,
d23ad423 2331 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2332 K(min_wmark_pages(zone)),
2333 K(low_wmark_pages(zone)),
2334 K(high_wmark_pages(zone)),
4f98a2fe
RR
2335 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2336 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2337 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2338 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2339 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2340 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2341 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2342 K(zone->present_pages),
4a0aa73f
KM
2343 K(zone_page_state(zone, NR_MLOCK)),
2344 K(zone_page_state(zone, NR_FILE_DIRTY)),
2345 K(zone_page_state(zone, NR_WRITEBACK)),
2346 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2347 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2348 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2349 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2350 zone_page_state(zone, NR_KERNEL_STACK) *
2351 THREAD_SIZE / 1024,
4a0aa73f
KM
2352 K(zone_page_state(zone, NR_PAGETABLE)),
2353 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2354 K(zone_page_state(zone, NR_BOUNCE)),
2355 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2356 zone->pages_scanned,
93e4a89a 2357 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2358 );
2359 printk("lowmem_reserve[]:");
2360 for (i = 0; i < MAX_NR_ZONES; i++)
2361 printk(" %lu", zone->lowmem_reserve[i]);
2362 printk("\n");
2363 }
2364
ee99c71c 2365 for_each_populated_zone(zone) {
8f9de51a 2366 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2367
2368 show_node(zone);
2369 printk("%s: ", zone->name);
1da177e4
LT
2370
2371 spin_lock_irqsave(&zone->lock, flags);
2372 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2373 nr[order] = zone->free_area[order].nr_free;
2374 total += nr[order] << order;
1da177e4
LT
2375 }
2376 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2377 for (order = 0; order < MAX_ORDER; order++)
2378 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2379 printk("= %lukB\n", K(total));
2380 }
2381
e6f3602d
LW
2382 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2383
1da177e4
LT
2384 show_swap_cache_info();
2385}
2386
19770b32
MG
2387static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2388{
2389 zoneref->zone = zone;
2390 zoneref->zone_idx = zone_idx(zone);
2391}
2392
1da177e4
LT
2393/*
2394 * Builds allocation fallback zone lists.
1a93205b
CL
2395 *
2396 * Add all populated zones of a node to the zonelist.
1da177e4 2397 */
f0c0b2b8
KH
2398static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2399 int nr_zones, enum zone_type zone_type)
1da177e4 2400{
1a93205b
CL
2401 struct zone *zone;
2402
98d2b0eb 2403 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2404 zone_type++;
02a68a5e
CL
2405
2406 do {
2f6726e5 2407 zone_type--;
070f8032 2408 zone = pgdat->node_zones + zone_type;
1a93205b 2409 if (populated_zone(zone)) {
dd1a239f
MG
2410 zoneref_set_zone(zone,
2411 &zonelist->_zonerefs[nr_zones++]);
070f8032 2412 check_highest_zone(zone_type);
1da177e4 2413 }
02a68a5e 2414
2f6726e5 2415 } while (zone_type);
070f8032 2416 return nr_zones;
1da177e4
LT
2417}
2418
f0c0b2b8
KH
2419
2420/*
2421 * zonelist_order:
2422 * 0 = automatic detection of better ordering.
2423 * 1 = order by ([node] distance, -zonetype)
2424 * 2 = order by (-zonetype, [node] distance)
2425 *
2426 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2427 * the same zonelist. So only NUMA can configure this param.
2428 */
2429#define ZONELIST_ORDER_DEFAULT 0
2430#define ZONELIST_ORDER_NODE 1
2431#define ZONELIST_ORDER_ZONE 2
2432
2433/* zonelist order in the kernel.
2434 * set_zonelist_order() will set this to NODE or ZONE.
2435 */
2436static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2437static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2438
2439
1da177e4 2440#ifdef CONFIG_NUMA
f0c0b2b8
KH
2441/* The value user specified ....changed by config */
2442static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2443/* string for sysctl */
2444#define NUMA_ZONELIST_ORDER_LEN 16
2445char numa_zonelist_order[16] = "default";
2446
2447/*
2448 * interface for configure zonelist ordering.
2449 * command line option "numa_zonelist_order"
2450 * = "[dD]efault - default, automatic configuration.
2451 * = "[nN]ode - order by node locality, then by zone within node
2452 * = "[zZ]one - order by zone, then by locality within zone
2453 */
2454
2455static int __parse_numa_zonelist_order(char *s)
2456{
2457 if (*s == 'd' || *s == 'D') {
2458 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2459 } else if (*s == 'n' || *s == 'N') {
2460 user_zonelist_order = ZONELIST_ORDER_NODE;
2461 } else if (*s == 'z' || *s == 'Z') {
2462 user_zonelist_order = ZONELIST_ORDER_ZONE;
2463 } else {
2464 printk(KERN_WARNING
2465 "Ignoring invalid numa_zonelist_order value: "
2466 "%s\n", s);
2467 return -EINVAL;
2468 }
2469 return 0;
2470}
2471
2472static __init int setup_numa_zonelist_order(char *s)
2473{
2474 if (s)
2475 return __parse_numa_zonelist_order(s);
2476 return 0;
2477}
2478early_param("numa_zonelist_order", setup_numa_zonelist_order);
2479
2480/*
2481 * sysctl handler for numa_zonelist_order
2482 */
2483int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2484 void __user *buffer, size_t *length,
f0c0b2b8
KH
2485 loff_t *ppos)
2486{
2487 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2488 int ret;
443c6f14 2489 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2490
443c6f14 2491 mutex_lock(&zl_order_mutex);
f0c0b2b8 2492 if (write)
443c6f14 2493 strcpy(saved_string, (char*)table->data);
8d65af78 2494 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2495 if (ret)
443c6f14 2496 goto out;
f0c0b2b8
KH
2497 if (write) {
2498 int oldval = user_zonelist_order;
2499 if (__parse_numa_zonelist_order((char*)table->data)) {
2500 /*
2501 * bogus value. restore saved string
2502 */
2503 strncpy((char*)table->data, saved_string,
2504 NUMA_ZONELIST_ORDER_LEN);
2505 user_zonelist_order = oldval;
2506 } else if (oldval != user_zonelist_order)
2507 build_all_zonelists();
2508 }
443c6f14
AK
2509out:
2510 mutex_unlock(&zl_order_mutex);
2511 return ret;
f0c0b2b8
KH
2512}
2513
2514
62bc62a8 2515#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2516static int node_load[MAX_NUMNODES];
2517
1da177e4 2518/**
4dc3b16b 2519 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2520 * @node: node whose fallback list we're appending
2521 * @used_node_mask: nodemask_t of already used nodes
2522 *
2523 * We use a number of factors to determine which is the next node that should
2524 * appear on a given node's fallback list. The node should not have appeared
2525 * already in @node's fallback list, and it should be the next closest node
2526 * according to the distance array (which contains arbitrary distance values
2527 * from each node to each node in the system), and should also prefer nodes
2528 * with no CPUs, since presumably they'll have very little allocation pressure
2529 * on them otherwise.
2530 * It returns -1 if no node is found.
2531 */
f0c0b2b8 2532static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2533{
4cf808eb 2534 int n, val;
1da177e4
LT
2535 int min_val = INT_MAX;
2536 int best_node = -1;
a70f7302 2537 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2538
4cf808eb
LT
2539 /* Use the local node if we haven't already */
2540 if (!node_isset(node, *used_node_mask)) {
2541 node_set(node, *used_node_mask);
2542 return node;
2543 }
1da177e4 2544
37b07e41 2545 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2546
2547 /* Don't want a node to appear more than once */
2548 if (node_isset(n, *used_node_mask))
2549 continue;
2550
1da177e4
LT
2551 /* Use the distance array to find the distance */
2552 val = node_distance(node, n);
2553
4cf808eb
LT
2554 /* Penalize nodes under us ("prefer the next node") */
2555 val += (n < node);
2556
1da177e4 2557 /* Give preference to headless and unused nodes */
a70f7302
RR
2558 tmp = cpumask_of_node(n);
2559 if (!cpumask_empty(tmp))
1da177e4
LT
2560 val += PENALTY_FOR_NODE_WITH_CPUS;
2561
2562 /* Slight preference for less loaded node */
2563 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2564 val += node_load[n];
2565
2566 if (val < min_val) {
2567 min_val = val;
2568 best_node = n;
2569 }
2570 }
2571
2572 if (best_node >= 0)
2573 node_set(best_node, *used_node_mask);
2574
2575 return best_node;
2576}
2577
f0c0b2b8
KH
2578
2579/*
2580 * Build zonelists ordered by node and zones within node.
2581 * This results in maximum locality--normal zone overflows into local
2582 * DMA zone, if any--but risks exhausting DMA zone.
2583 */
2584static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2585{
f0c0b2b8 2586 int j;
1da177e4 2587 struct zonelist *zonelist;
f0c0b2b8 2588
54a6eb5c 2589 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2590 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2591 ;
2592 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2593 MAX_NR_ZONES - 1);
dd1a239f
MG
2594 zonelist->_zonerefs[j].zone = NULL;
2595 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2596}
2597
523b9458
CL
2598/*
2599 * Build gfp_thisnode zonelists
2600 */
2601static void build_thisnode_zonelists(pg_data_t *pgdat)
2602{
523b9458
CL
2603 int j;
2604 struct zonelist *zonelist;
2605
54a6eb5c
MG
2606 zonelist = &pgdat->node_zonelists[1];
2607 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2608 zonelist->_zonerefs[j].zone = NULL;
2609 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2610}
2611
f0c0b2b8
KH
2612/*
2613 * Build zonelists ordered by zone and nodes within zones.
2614 * This results in conserving DMA zone[s] until all Normal memory is
2615 * exhausted, but results in overflowing to remote node while memory
2616 * may still exist in local DMA zone.
2617 */
2618static int node_order[MAX_NUMNODES];
2619
2620static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2621{
f0c0b2b8
KH
2622 int pos, j, node;
2623 int zone_type; /* needs to be signed */
2624 struct zone *z;
2625 struct zonelist *zonelist;
2626
54a6eb5c
MG
2627 zonelist = &pgdat->node_zonelists[0];
2628 pos = 0;
2629 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2630 for (j = 0; j < nr_nodes; j++) {
2631 node = node_order[j];
2632 z = &NODE_DATA(node)->node_zones[zone_type];
2633 if (populated_zone(z)) {
dd1a239f
MG
2634 zoneref_set_zone(z,
2635 &zonelist->_zonerefs[pos++]);
54a6eb5c 2636 check_highest_zone(zone_type);
f0c0b2b8
KH
2637 }
2638 }
f0c0b2b8 2639 }
dd1a239f
MG
2640 zonelist->_zonerefs[pos].zone = NULL;
2641 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2642}
2643
2644static int default_zonelist_order(void)
2645{
2646 int nid, zone_type;
2647 unsigned long low_kmem_size,total_size;
2648 struct zone *z;
2649 int average_size;
2650 /*
88393161 2651 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2652 * If they are really small and used heavily, the system can fall
2653 * into OOM very easily.
e325c90f 2654 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2655 */
2656 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2657 low_kmem_size = 0;
2658 total_size = 0;
2659 for_each_online_node(nid) {
2660 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2661 z = &NODE_DATA(nid)->node_zones[zone_type];
2662 if (populated_zone(z)) {
2663 if (zone_type < ZONE_NORMAL)
2664 low_kmem_size += z->present_pages;
2665 total_size += z->present_pages;
e325c90f
DR
2666 } else if (zone_type == ZONE_NORMAL) {
2667 /*
2668 * If any node has only lowmem, then node order
2669 * is preferred to allow kernel allocations
2670 * locally; otherwise, they can easily infringe
2671 * on other nodes when there is an abundance of
2672 * lowmem available to allocate from.
2673 */
2674 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2675 }
2676 }
2677 }
2678 if (!low_kmem_size || /* there are no DMA area. */
2679 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2680 return ZONELIST_ORDER_NODE;
2681 /*
2682 * look into each node's config.
2683 * If there is a node whose DMA/DMA32 memory is very big area on
2684 * local memory, NODE_ORDER may be suitable.
2685 */
37b07e41
LS
2686 average_size = total_size /
2687 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2688 for_each_online_node(nid) {
2689 low_kmem_size = 0;
2690 total_size = 0;
2691 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2692 z = &NODE_DATA(nid)->node_zones[zone_type];
2693 if (populated_zone(z)) {
2694 if (zone_type < ZONE_NORMAL)
2695 low_kmem_size += z->present_pages;
2696 total_size += z->present_pages;
2697 }
2698 }
2699 if (low_kmem_size &&
2700 total_size > average_size && /* ignore small node */
2701 low_kmem_size > total_size * 70/100)
2702 return ZONELIST_ORDER_NODE;
2703 }
2704 return ZONELIST_ORDER_ZONE;
2705}
2706
2707static void set_zonelist_order(void)
2708{
2709 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2710 current_zonelist_order = default_zonelist_order();
2711 else
2712 current_zonelist_order = user_zonelist_order;
2713}
2714
2715static void build_zonelists(pg_data_t *pgdat)
2716{
2717 int j, node, load;
2718 enum zone_type i;
1da177e4 2719 nodemask_t used_mask;
f0c0b2b8
KH
2720 int local_node, prev_node;
2721 struct zonelist *zonelist;
2722 int order = current_zonelist_order;
1da177e4
LT
2723
2724 /* initialize zonelists */
523b9458 2725 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2726 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2727 zonelist->_zonerefs[0].zone = NULL;
2728 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2729 }
2730
2731 /* NUMA-aware ordering of nodes */
2732 local_node = pgdat->node_id;
62bc62a8 2733 load = nr_online_nodes;
1da177e4
LT
2734 prev_node = local_node;
2735 nodes_clear(used_mask);
f0c0b2b8 2736
f0c0b2b8
KH
2737 memset(node_order, 0, sizeof(node_order));
2738 j = 0;
2739
1da177e4 2740 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2741 int distance = node_distance(local_node, node);
2742
2743 /*
2744 * If another node is sufficiently far away then it is better
2745 * to reclaim pages in a zone before going off node.
2746 */
2747 if (distance > RECLAIM_DISTANCE)
2748 zone_reclaim_mode = 1;
2749
1da177e4
LT
2750 /*
2751 * We don't want to pressure a particular node.
2752 * So adding penalty to the first node in same
2753 * distance group to make it round-robin.
2754 */
9eeff239 2755 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2756 node_load[node] = load;
2757
1da177e4
LT
2758 prev_node = node;
2759 load--;
f0c0b2b8
KH
2760 if (order == ZONELIST_ORDER_NODE)
2761 build_zonelists_in_node_order(pgdat, node);
2762 else
2763 node_order[j++] = node; /* remember order */
2764 }
1da177e4 2765
f0c0b2b8
KH
2766 if (order == ZONELIST_ORDER_ZONE) {
2767 /* calculate node order -- i.e., DMA last! */
2768 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2769 }
523b9458
CL
2770
2771 build_thisnode_zonelists(pgdat);
1da177e4
LT
2772}
2773
9276b1bc 2774/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2775static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2776{
54a6eb5c
MG
2777 struct zonelist *zonelist;
2778 struct zonelist_cache *zlc;
dd1a239f 2779 struct zoneref *z;
9276b1bc 2780
54a6eb5c
MG
2781 zonelist = &pgdat->node_zonelists[0];
2782 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2783 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2784 for (z = zonelist->_zonerefs; z->zone; z++)
2785 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2786}
2787
f0c0b2b8 2788
1da177e4
LT
2789#else /* CONFIG_NUMA */
2790
f0c0b2b8
KH
2791static void set_zonelist_order(void)
2792{
2793 current_zonelist_order = ZONELIST_ORDER_ZONE;
2794}
2795
2796static void build_zonelists(pg_data_t *pgdat)
1da177e4 2797{
19655d34 2798 int node, local_node;
54a6eb5c
MG
2799 enum zone_type j;
2800 struct zonelist *zonelist;
1da177e4
LT
2801
2802 local_node = pgdat->node_id;
1da177e4 2803
54a6eb5c
MG
2804 zonelist = &pgdat->node_zonelists[0];
2805 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2806
54a6eb5c
MG
2807 /*
2808 * Now we build the zonelist so that it contains the zones
2809 * of all the other nodes.
2810 * We don't want to pressure a particular node, so when
2811 * building the zones for node N, we make sure that the
2812 * zones coming right after the local ones are those from
2813 * node N+1 (modulo N)
2814 */
2815 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2816 if (!node_online(node))
2817 continue;
2818 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2819 MAX_NR_ZONES - 1);
1da177e4 2820 }
54a6eb5c
MG
2821 for (node = 0; node < local_node; node++) {
2822 if (!node_online(node))
2823 continue;
2824 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2825 MAX_NR_ZONES - 1);
2826 }
2827
dd1a239f
MG
2828 zonelist->_zonerefs[j].zone = NULL;
2829 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2830}
2831
9276b1bc 2832/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2833static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2834{
54a6eb5c 2835 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2836}
2837
1da177e4
LT
2838#endif /* CONFIG_NUMA */
2839
99dcc3e5
CL
2840/*
2841 * Boot pageset table. One per cpu which is going to be used for all
2842 * zones and all nodes. The parameters will be set in such a way
2843 * that an item put on a list will immediately be handed over to
2844 * the buddy list. This is safe since pageset manipulation is done
2845 * with interrupts disabled.
2846 *
2847 * The boot_pagesets must be kept even after bootup is complete for
2848 * unused processors and/or zones. They do play a role for bootstrapping
2849 * hotplugged processors.
2850 *
2851 * zoneinfo_show() and maybe other functions do
2852 * not check if the processor is online before following the pageset pointer.
2853 * Other parts of the kernel may not check if the zone is available.
2854 */
2855static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2856static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2857
9b1a4d38 2858/* return values int ....just for stop_machine() */
f0c0b2b8 2859static int __build_all_zonelists(void *dummy)
1da177e4 2860{
6811378e 2861 int nid;
99dcc3e5 2862 int cpu;
9276b1bc 2863
7f9cfb31
BL
2864#ifdef CONFIG_NUMA
2865 memset(node_load, 0, sizeof(node_load));
2866#endif
9276b1bc 2867 for_each_online_node(nid) {
7ea1530a
CL
2868 pg_data_t *pgdat = NODE_DATA(nid);
2869
2870 build_zonelists(pgdat);
2871 build_zonelist_cache(pgdat);
9276b1bc 2872 }
99dcc3e5
CL
2873
2874 /*
2875 * Initialize the boot_pagesets that are going to be used
2876 * for bootstrapping processors. The real pagesets for
2877 * each zone will be allocated later when the per cpu
2878 * allocator is available.
2879 *
2880 * boot_pagesets are used also for bootstrapping offline
2881 * cpus if the system is already booted because the pagesets
2882 * are needed to initialize allocators on a specific cpu too.
2883 * F.e. the percpu allocator needs the page allocator which
2884 * needs the percpu allocator in order to allocate its pagesets
2885 * (a chicken-egg dilemma).
2886 */
2887 for_each_possible_cpu(cpu)
2888 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2889
6811378e
YG
2890 return 0;
2891}
2892
f0c0b2b8 2893void build_all_zonelists(void)
6811378e 2894{
f0c0b2b8
KH
2895 set_zonelist_order();
2896
6811378e 2897 if (system_state == SYSTEM_BOOTING) {
423b41d7 2898 __build_all_zonelists(NULL);
68ad8df4 2899 mminit_verify_zonelist();
6811378e
YG
2900 cpuset_init_current_mems_allowed();
2901 } else {
183ff22b 2902 /* we have to stop all cpus to guarantee there is no user
6811378e 2903 of zonelist */
9b1a4d38 2904 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2905 /* cpuset refresh routine should be here */
2906 }
bd1e22b8 2907 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2908 /*
2909 * Disable grouping by mobility if the number of pages in the
2910 * system is too low to allow the mechanism to work. It would be
2911 * more accurate, but expensive to check per-zone. This check is
2912 * made on memory-hotadd so a system can start with mobility
2913 * disabled and enable it later
2914 */
d9c23400 2915 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2916 page_group_by_mobility_disabled = 1;
2917 else
2918 page_group_by_mobility_disabled = 0;
2919
2920 printk("Built %i zonelists in %s order, mobility grouping %s. "
2921 "Total pages: %ld\n",
62bc62a8 2922 nr_online_nodes,
f0c0b2b8 2923 zonelist_order_name[current_zonelist_order],
9ef9acb0 2924 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2925 vm_total_pages);
2926#ifdef CONFIG_NUMA
2927 printk("Policy zone: %s\n", zone_names[policy_zone]);
2928#endif
1da177e4
LT
2929}
2930
2931/*
2932 * Helper functions to size the waitqueue hash table.
2933 * Essentially these want to choose hash table sizes sufficiently
2934 * large so that collisions trying to wait on pages are rare.
2935 * But in fact, the number of active page waitqueues on typical
2936 * systems is ridiculously low, less than 200. So this is even
2937 * conservative, even though it seems large.
2938 *
2939 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2940 * waitqueues, i.e. the size of the waitq table given the number of pages.
2941 */
2942#define PAGES_PER_WAITQUEUE 256
2943
cca448fe 2944#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2945static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2946{
2947 unsigned long size = 1;
2948
2949 pages /= PAGES_PER_WAITQUEUE;
2950
2951 while (size < pages)
2952 size <<= 1;
2953
2954 /*
2955 * Once we have dozens or even hundreds of threads sleeping
2956 * on IO we've got bigger problems than wait queue collision.
2957 * Limit the size of the wait table to a reasonable size.
2958 */
2959 size = min(size, 4096UL);
2960
2961 return max(size, 4UL);
2962}
cca448fe
YG
2963#else
2964/*
2965 * A zone's size might be changed by hot-add, so it is not possible to determine
2966 * a suitable size for its wait_table. So we use the maximum size now.
2967 *
2968 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2969 *
2970 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2971 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2972 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2973 *
2974 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2975 * or more by the traditional way. (See above). It equals:
2976 *
2977 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2978 * ia64(16K page size) : = ( 8G + 4M)byte.
2979 * powerpc (64K page size) : = (32G +16M)byte.
2980 */
2981static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2982{
2983 return 4096UL;
2984}
2985#endif
1da177e4
LT
2986
2987/*
2988 * This is an integer logarithm so that shifts can be used later
2989 * to extract the more random high bits from the multiplicative
2990 * hash function before the remainder is taken.
2991 */
2992static inline unsigned long wait_table_bits(unsigned long size)
2993{
2994 return ffz(~size);
2995}
2996
2997#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2998
56fd56b8 2999/*
d9c23400 3000 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3001 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3002 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3003 * higher will lead to a bigger reserve which will get freed as contiguous
3004 * blocks as reclaim kicks in
3005 */
3006static void setup_zone_migrate_reserve(struct zone *zone)
3007{
3008 unsigned long start_pfn, pfn, end_pfn;
3009 struct page *page;
78986a67
MG
3010 unsigned long block_migratetype;
3011 int reserve;
56fd56b8
MG
3012
3013 /* Get the start pfn, end pfn and the number of blocks to reserve */
3014 start_pfn = zone->zone_start_pfn;
3015 end_pfn = start_pfn + zone->spanned_pages;
41858966 3016 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3017 pageblock_order;
56fd56b8 3018
78986a67
MG
3019 /*
3020 * Reserve blocks are generally in place to help high-order atomic
3021 * allocations that are short-lived. A min_free_kbytes value that
3022 * would result in more than 2 reserve blocks for atomic allocations
3023 * is assumed to be in place to help anti-fragmentation for the
3024 * future allocation of hugepages at runtime.
3025 */
3026 reserve = min(2, reserve);
3027
d9c23400 3028 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3029 if (!pfn_valid(pfn))
3030 continue;
3031 page = pfn_to_page(pfn);
3032
344c790e
AL
3033 /* Watch out for overlapping nodes */
3034 if (page_to_nid(page) != zone_to_nid(zone))
3035 continue;
3036
56fd56b8
MG
3037 /* Blocks with reserved pages will never free, skip them. */
3038 if (PageReserved(page))
3039 continue;
3040
3041 block_migratetype = get_pageblock_migratetype(page);
3042
3043 /* If this block is reserved, account for it */
3044 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3045 reserve--;
3046 continue;
3047 }
3048
3049 /* Suitable for reserving if this block is movable */
3050 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3051 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3052 move_freepages_block(zone, page, MIGRATE_RESERVE);
3053 reserve--;
3054 continue;
3055 }
3056
3057 /*
3058 * If the reserve is met and this is a previous reserved block,
3059 * take it back
3060 */
3061 if (block_migratetype == MIGRATE_RESERVE) {
3062 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3063 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3064 }
3065 }
3066}
ac0e5b7a 3067
1da177e4
LT
3068/*
3069 * Initially all pages are reserved - free ones are freed
3070 * up by free_all_bootmem() once the early boot process is
3071 * done. Non-atomic initialization, single-pass.
3072 */
c09b4240 3073void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3074 unsigned long start_pfn, enum memmap_context context)
1da177e4 3075{
1da177e4 3076 struct page *page;
29751f69
AW
3077 unsigned long end_pfn = start_pfn + size;
3078 unsigned long pfn;
86051ca5 3079 struct zone *z;
1da177e4 3080
22b31eec
HD
3081 if (highest_memmap_pfn < end_pfn - 1)
3082 highest_memmap_pfn = end_pfn - 1;
3083
86051ca5 3084 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3085 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3086 /*
3087 * There can be holes in boot-time mem_map[]s
3088 * handed to this function. They do not
3089 * exist on hotplugged memory.
3090 */
3091 if (context == MEMMAP_EARLY) {
3092 if (!early_pfn_valid(pfn))
3093 continue;
3094 if (!early_pfn_in_nid(pfn, nid))
3095 continue;
3096 }
d41dee36
AW
3097 page = pfn_to_page(pfn);
3098 set_page_links(page, zone, nid, pfn);
708614e6 3099 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3100 init_page_count(page);
1da177e4
LT
3101 reset_page_mapcount(page);
3102 SetPageReserved(page);
b2a0ac88
MG
3103 /*
3104 * Mark the block movable so that blocks are reserved for
3105 * movable at startup. This will force kernel allocations
3106 * to reserve their blocks rather than leaking throughout
3107 * the address space during boot when many long-lived
56fd56b8
MG
3108 * kernel allocations are made. Later some blocks near
3109 * the start are marked MIGRATE_RESERVE by
3110 * setup_zone_migrate_reserve()
86051ca5
KH
3111 *
3112 * bitmap is created for zone's valid pfn range. but memmap
3113 * can be created for invalid pages (for alignment)
3114 * check here not to call set_pageblock_migratetype() against
3115 * pfn out of zone.
b2a0ac88 3116 */
86051ca5
KH
3117 if ((z->zone_start_pfn <= pfn)
3118 && (pfn < z->zone_start_pfn + z->spanned_pages)
3119 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3120 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3121
1da177e4
LT
3122 INIT_LIST_HEAD(&page->lru);
3123#ifdef WANT_PAGE_VIRTUAL
3124 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3125 if (!is_highmem_idx(zone))
3212c6be 3126 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3127#endif
1da177e4
LT
3128 }
3129}
3130
1e548deb 3131static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3132{
b2a0ac88
MG
3133 int order, t;
3134 for_each_migratetype_order(order, t) {
3135 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3136 zone->free_area[order].nr_free = 0;
3137 }
3138}
3139
3140#ifndef __HAVE_ARCH_MEMMAP_INIT
3141#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3142 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3143#endif
3144
1d6f4e60 3145static int zone_batchsize(struct zone *zone)
e7c8d5c9 3146{
3a6be87f 3147#ifdef CONFIG_MMU
e7c8d5c9
CL
3148 int batch;
3149
3150 /*
3151 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3152 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3153 *
3154 * OK, so we don't know how big the cache is. So guess.
3155 */
3156 batch = zone->present_pages / 1024;
ba56e91c
SR
3157 if (batch * PAGE_SIZE > 512 * 1024)
3158 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3159 batch /= 4; /* We effectively *= 4 below */
3160 if (batch < 1)
3161 batch = 1;
3162
3163 /*
0ceaacc9
NP
3164 * Clamp the batch to a 2^n - 1 value. Having a power
3165 * of 2 value was found to be more likely to have
3166 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3167 *
0ceaacc9
NP
3168 * For example if 2 tasks are alternately allocating
3169 * batches of pages, one task can end up with a lot
3170 * of pages of one half of the possible page colors
3171 * and the other with pages of the other colors.
e7c8d5c9 3172 */
9155203a 3173 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3174
e7c8d5c9 3175 return batch;
3a6be87f
DH
3176
3177#else
3178 /* The deferral and batching of frees should be suppressed under NOMMU
3179 * conditions.
3180 *
3181 * The problem is that NOMMU needs to be able to allocate large chunks
3182 * of contiguous memory as there's no hardware page translation to
3183 * assemble apparent contiguous memory from discontiguous pages.
3184 *
3185 * Queueing large contiguous runs of pages for batching, however,
3186 * causes the pages to actually be freed in smaller chunks. As there
3187 * can be a significant delay between the individual batches being
3188 * recycled, this leads to the once large chunks of space being
3189 * fragmented and becoming unavailable for high-order allocations.
3190 */
3191 return 0;
3192#endif
e7c8d5c9
CL
3193}
3194
b69a7288 3195static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3196{
3197 struct per_cpu_pages *pcp;
5f8dcc21 3198 int migratetype;
2caaad41 3199
1c6fe946
MD
3200 memset(p, 0, sizeof(*p));
3201
3dfa5721 3202 pcp = &p->pcp;
2caaad41 3203 pcp->count = 0;
2caaad41
CL
3204 pcp->high = 6 * batch;
3205 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3206 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3207 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3208}
3209
8ad4b1fb
RS
3210/*
3211 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3212 * to the value high for the pageset p.
3213 */
3214
3215static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3216 unsigned long high)
3217{
3218 struct per_cpu_pages *pcp;
3219
3dfa5721 3220 pcp = &p->pcp;
8ad4b1fb
RS
3221 pcp->high = high;
3222 pcp->batch = max(1UL, high/4);
3223 if ((high/4) > (PAGE_SHIFT * 8))
3224 pcp->batch = PAGE_SHIFT * 8;
3225}
3226
2caaad41 3227/*
99dcc3e5
CL
3228 * Allocate per cpu pagesets and initialize them.
3229 * Before this call only boot pagesets were available.
3230 * Boot pagesets will no longer be used by this processorr
3231 * after setup_per_cpu_pageset().
e7c8d5c9 3232 */
99dcc3e5 3233void __init setup_per_cpu_pageset(void)
e7c8d5c9 3234{
99dcc3e5
CL
3235 struct zone *zone;
3236 int cpu;
e7c8d5c9 3237
ee99c71c 3238 for_each_populated_zone(zone) {
99dcc3e5 3239 zone->pageset = alloc_percpu(struct per_cpu_pageset);
e7c8d5c9 3240
99dcc3e5
CL
3241 for_each_possible_cpu(cpu) {
3242 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
e7c8d5c9 3243
99dcc3e5 3244 setup_pageset(pcp, zone_batchsize(zone));
e7c8d5c9 3245
99dcc3e5
CL
3246 if (percpu_pagelist_fraction)
3247 setup_pagelist_highmark(pcp,
3248 (zone->present_pages /
3249 percpu_pagelist_fraction));
3250 }
e7c8d5c9 3251 }
e7c8d5c9
CL
3252}
3253
577a32f6 3254static noinline __init_refok
cca448fe 3255int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3256{
3257 int i;
3258 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3259 size_t alloc_size;
ed8ece2e
DH
3260
3261 /*
3262 * The per-page waitqueue mechanism uses hashed waitqueues
3263 * per zone.
3264 */
02b694de
YG
3265 zone->wait_table_hash_nr_entries =
3266 wait_table_hash_nr_entries(zone_size_pages);
3267 zone->wait_table_bits =
3268 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3269 alloc_size = zone->wait_table_hash_nr_entries
3270 * sizeof(wait_queue_head_t);
3271
cd94b9db 3272 if (!slab_is_available()) {
cca448fe
YG
3273 zone->wait_table = (wait_queue_head_t *)
3274 alloc_bootmem_node(pgdat, alloc_size);
3275 } else {
3276 /*
3277 * This case means that a zone whose size was 0 gets new memory
3278 * via memory hot-add.
3279 * But it may be the case that a new node was hot-added. In
3280 * this case vmalloc() will not be able to use this new node's
3281 * memory - this wait_table must be initialized to use this new
3282 * node itself as well.
3283 * To use this new node's memory, further consideration will be
3284 * necessary.
3285 */
8691f3a7 3286 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3287 }
3288 if (!zone->wait_table)
3289 return -ENOMEM;
ed8ece2e 3290
02b694de 3291 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3292 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3293
3294 return 0;
ed8ece2e
DH
3295}
3296
112067f0
SL
3297static int __zone_pcp_update(void *data)
3298{
3299 struct zone *zone = data;
3300 int cpu;
3301 unsigned long batch = zone_batchsize(zone), flags;
3302
2d30a1f6 3303 for_each_possible_cpu(cpu) {
112067f0
SL
3304 struct per_cpu_pageset *pset;
3305 struct per_cpu_pages *pcp;
3306
99dcc3e5 3307 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3308 pcp = &pset->pcp;
3309
3310 local_irq_save(flags);
5f8dcc21 3311 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3312 setup_pageset(pset, batch);
3313 local_irq_restore(flags);
3314 }
3315 return 0;
3316}
3317
3318void zone_pcp_update(struct zone *zone)
3319{
3320 stop_machine(__zone_pcp_update, zone, NULL);
3321}
3322
c09b4240 3323static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3324{
99dcc3e5
CL
3325 /*
3326 * per cpu subsystem is not up at this point. The following code
3327 * relies on the ability of the linker to provide the
3328 * offset of a (static) per cpu variable into the per cpu area.
3329 */
3330 zone->pageset = &boot_pageset;
ed8ece2e 3331
f5335c0f 3332 if (zone->present_pages)
99dcc3e5
CL
3333 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3334 zone->name, zone->present_pages,
3335 zone_batchsize(zone));
ed8ece2e
DH
3336}
3337
718127cc
YG
3338__meminit int init_currently_empty_zone(struct zone *zone,
3339 unsigned long zone_start_pfn,
a2f3aa02
DH
3340 unsigned long size,
3341 enum memmap_context context)
ed8ece2e
DH
3342{
3343 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3344 int ret;
3345 ret = zone_wait_table_init(zone, size);
3346 if (ret)
3347 return ret;
ed8ece2e
DH
3348 pgdat->nr_zones = zone_idx(zone) + 1;
3349
ed8ece2e
DH
3350 zone->zone_start_pfn = zone_start_pfn;
3351
708614e6
MG
3352 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3353 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3354 pgdat->node_id,
3355 (unsigned long)zone_idx(zone),
3356 zone_start_pfn, (zone_start_pfn + size));
3357
1e548deb 3358 zone_init_free_lists(zone);
718127cc
YG
3359
3360 return 0;
ed8ece2e
DH
3361}
3362
c713216d
MG
3363#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3364/*
3365 * Basic iterator support. Return the first range of PFNs for a node
3366 * Note: nid == MAX_NUMNODES returns first region regardless of node
3367 */
a3142c8e 3368static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3369{
3370 int i;
3371
3372 for (i = 0; i < nr_nodemap_entries; i++)
3373 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3374 return i;
3375
3376 return -1;
3377}
3378
3379/*
3380 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3381 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3382 */
a3142c8e 3383static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3384{
3385 for (index = index + 1; index < nr_nodemap_entries; index++)
3386 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3387 return index;
3388
3389 return -1;
3390}
3391
3392#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3393/*
3394 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3395 * Architectures may implement their own version but if add_active_range()
3396 * was used and there are no special requirements, this is a convenient
3397 * alternative
3398 */
f2dbcfa7 3399int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3400{
3401 int i;
3402
3403 for (i = 0; i < nr_nodemap_entries; i++) {
3404 unsigned long start_pfn = early_node_map[i].start_pfn;
3405 unsigned long end_pfn = early_node_map[i].end_pfn;
3406
3407 if (start_pfn <= pfn && pfn < end_pfn)
3408 return early_node_map[i].nid;
3409 }
cc2559bc
KH
3410 /* This is a memory hole */
3411 return -1;
c713216d
MG
3412}
3413#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3414
f2dbcfa7
KH
3415int __meminit early_pfn_to_nid(unsigned long pfn)
3416{
cc2559bc
KH
3417 int nid;
3418
3419 nid = __early_pfn_to_nid(pfn);
3420 if (nid >= 0)
3421 return nid;
3422 /* just returns 0 */
3423 return 0;
f2dbcfa7
KH
3424}
3425
cc2559bc
KH
3426#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3427bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3428{
3429 int nid;
3430
3431 nid = __early_pfn_to_nid(pfn);
3432 if (nid >= 0 && nid != node)
3433 return false;
3434 return true;
3435}
3436#endif
f2dbcfa7 3437
c713216d
MG
3438/* Basic iterator support to walk early_node_map[] */
3439#define for_each_active_range_index_in_nid(i, nid) \
3440 for (i = first_active_region_index_in_nid(nid); i != -1; \
3441 i = next_active_region_index_in_nid(i, nid))
3442
3443/**
3444 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3445 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3446 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3447 *
3448 * If an architecture guarantees that all ranges registered with
3449 * add_active_ranges() contain no holes and may be freed, this
3450 * this function may be used instead of calling free_bootmem() manually.
3451 */
3452void __init free_bootmem_with_active_regions(int nid,
3453 unsigned long max_low_pfn)
3454{
3455 int i;
3456
3457 for_each_active_range_index_in_nid(i, nid) {
3458 unsigned long size_pages = 0;
3459 unsigned long end_pfn = early_node_map[i].end_pfn;
3460
3461 if (early_node_map[i].start_pfn >= max_low_pfn)
3462 continue;
3463
3464 if (end_pfn > max_low_pfn)
3465 end_pfn = max_low_pfn;
3466
3467 size_pages = end_pfn - early_node_map[i].start_pfn;
3468 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3469 PFN_PHYS(early_node_map[i].start_pfn),
3470 size_pages << PAGE_SHIFT);
3471 }
3472}
3473
08677214
YL
3474int __init add_from_early_node_map(struct range *range, int az,
3475 int nr_range, int nid)
3476{
3477 int i;
3478 u64 start, end;
3479
3480 /* need to go over early_node_map to find out good range for node */
3481 for_each_active_range_index_in_nid(i, nid) {
3482 start = early_node_map[i].start_pfn;
3483 end = early_node_map[i].end_pfn;
3484 nr_range = add_range(range, az, nr_range, start, end);
3485 }
3486 return nr_range;
3487}
3488
2ee78f7b 3489#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3490void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3491 u64 goal, u64 limit)
3492{
3493 int i;
3494 void *ptr;
3495
3496 /* need to go over early_node_map to find out good range for node */
3497 for_each_active_range_index_in_nid(i, nid) {
3498 u64 addr;
3499 u64 ei_start, ei_last;
3500
3501 ei_last = early_node_map[i].end_pfn;
3502 ei_last <<= PAGE_SHIFT;
3503 ei_start = early_node_map[i].start_pfn;
3504 ei_start <<= PAGE_SHIFT;
3505 addr = find_early_area(ei_start, ei_last,
3506 goal, limit, size, align);
3507
3508 if (addr == -1ULL)
3509 continue;
3510
3511#if 0
3512 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3513 nid,
3514 ei_start, ei_last, goal, limit, size,
3515 align, addr);
3516#endif
3517
3518 ptr = phys_to_virt(addr);
3519 memset(ptr, 0, size);
3520 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3521 return ptr;
3522 }
3523
3524 return NULL;
3525}
2ee78f7b 3526#endif
08677214
YL
3527
3528
b5bc6c0e
YL
3529void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3530{
3531 int i;
d52d53b8 3532 int ret;
b5bc6c0e 3533
d52d53b8
YL
3534 for_each_active_range_index_in_nid(i, nid) {
3535 ret = work_fn(early_node_map[i].start_pfn,
3536 early_node_map[i].end_pfn, data);
3537 if (ret)
3538 break;
3539 }
b5bc6c0e 3540}
c713216d
MG
3541/**
3542 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3543 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3544 *
3545 * If an architecture guarantees that all ranges registered with
3546 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3547 * function may be used instead of calling memory_present() manually.
c713216d
MG
3548 */
3549void __init sparse_memory_present_with_active_regions(int nid)
3550{
3551 int i;
3552
3553 for_each_active_range_index_in_nid(i, nid)
3554 memory_present(early_node_map[i].nid,
3555 early_node_map[i].start_pfn,
3556 early_node_map[i].end_pfn);
3557}
3558
3559/**
3560 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3561 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3562 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3563 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3564 *
3565 * It returns the start and end page frame of a node based on information
3566 * provided by an arch calling add_active_range(). If called for a node
3567 * with no available memory, a warning is printed and the start and end
88ca3b94 3568 * PFNs will be 0.
c713216d 3569 */
a3142c8e 3570void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3571 unsigned long *start_pfn, unsigned long *end_pfn)
3572{
3573 int i;
3574 *start_pfn = -1UL;
3575 *end_pfn = 0;
3576
3577 for_each_active_range_index_in_nid(i, nid) {
3578 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3579 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3580 }
3581
633c0666 3582 if (*start_pfn == -1UL)
c713216d 3583 *start_pfn = 0;
c713216d
MG
3584}
3585
2a1e274a
MG
3586/*
3587 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3588 * assumption is made that zones within a node are ordered in monotonic
3589 * increasing memory addresses so that the "highest" populated zone is used
3590 */
b69a7288 3591static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3592{
3593 int zone_index;
3594 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3595 if (zone_index == ZONE_MOVABLE)
3596 continue;
3597
3598 if (arch_zone_highest_possible_pfn[zone_index] >
3599 arch_zone_lowest_possible_pfn[zone_index])
3600 break;
3601 }
3602
3603 VM_BUG_ON(zone_index == -1);
3604 movable_zone = zone_index;
3605}
3606
3607/*
3608 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3609 * because it is sized independant of architecture. Unlike the other zones,
3610 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3611 * in each node depending on the size of each node and how evenly kernelcore
3612 * is distributed. This helper function adjusts the zone ranges
3613 * provided by the architecture for a given node by using the end of the
3614 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3615 * zones within a node are in order of monotonic increases memory addresses
3616 */
b69a7288 3617static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3618 unsigned long zone_type,
3619 unsigned long node_start_pfn,
3620 unsigned long node_end_pfn,
3621 unsigned long *zone_start_pfn,
3622 unsigned long *zone_end_pfn)
3623{
3624 /* Only adjust if ZONE_MOVABLE is on this node */
3625 if (zone_movable_pfn[nid]) {
3626 /* Size ZONE_MOVABLE */
3627 if (zone_type == ZONE_MOVABLE) {
3628 *zone_start_pfn = zone_movable_pfn[nid];
3629 *zone_end_pfn = min(node_end_pfn,
3630 arch_zone_highest_possible_pfn[movable_zone]);
3631
3632 /* Adjust for ZONE_MOVABLE starting within this range */
3633 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3634 *zone_end_pfn > zone_movable_pfn[nid]) {
3635 *zone_end_pfn = zone_movable_pfn[nid];
3636
3637 /* Check if this whole range is within ZONE_MOVABLE */
3638 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3639 *zone_start_pfn = *zone_end_pfn;
3640 }
3641}
3642
c713216d
MG
3643/*
3644 * Return the number of pages a zone spans in a node, including holes
3645 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3646 */
6ea6e688 3647static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3648 unsigned long zone_type,
3649 unsigned long *ignored)
3650{
3651 unsigned long node_start_pfn, node_end_pfn;
3652 unsigned long zone_start_pfn, zone_end_pfn;
3653
3654 /* Get the start and end of the node and zone */
3655 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3656 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3657 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3658 adjust_zone_range_for_zone_movable(nid, zone_type,
3659 node_start_pfn, node_end_pfn,
3660 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3661
3662 /* Check that this node has pages within the zone's required range */
3663 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3664 return 0;
3665
3666 /* Move the zone boundaries inside the node if necessary */
3667 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3668 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3669
3670 /* Return the spanned pages */
3671 return zone_end_pfn - zone_start_pfn;
3672}
3673
3674/*
3675 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3676 * then all holes in the requested range will be accounted for.
c713216d 3677 */
32996250 3678unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3679 unsigned long range_start_pfn,
3680 unsigned long range_end_pfn)
3681{
3682 int i = 0;
3683 unsigned long prev_end_pfn = 0, hole_pages = 0;
3684 unsigned long start_pfn;
3685
3686 /* Find the end_pfn of the first active range of pfns in the node */
3687 i = first_active_region_index_in_nid(nid);
3688 if (i == -1)
3689 return 0;
3690
b5445f95
MG
3691 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3692
9c7cd687
MG
3693 /* Account for ranges before physical memory on this node */
3694 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3695 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3696
3697 /* Find all holes for the zone within the node */
3698 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3699
3700 /* No need to continue if prev_end_pfn is outside the zone */
3701 if (prev_end_pfn >= range_end_pfn)
3702 break;
3703
3704 /* Make sure the end of the zone is not within the hole */
3705 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3706 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3707
3708 /* Update the hole size cound and move on */
3709 if (start_pfn > range_start_pfn) {
3710 BUG_ON(prev_end_pfn > start_pfn);
3711 hole_pages += start_pfn - prev_end_pfn;
3712 }
3713 prev_end_pfn = early_node_map[i].end_pfn;
3714 }
3715
9c7cd687
MG
3716 /* Account for ranges past physical memory on this node */
3717 if (range_end_pfn > prev_end_pfn)
0c6cb974 3718 hole_pages += range_end_pfn -
9c7cd687
MG
3719 max(range_start_pfn, prev_end_pfn);
3720
c713216d
MG
3721 return hole_pages;
3722}
3723
3724/**
3725 * absent_pages_in_range - Return number of page frames in holes within a range
3726 * @start_pfn: The start PFN to start searching for holes
3727 * @end_pfn: The end PFN to stop searching for holes
3728 *
88ca3b94 3729 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3730 */
3731unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3732 unsigned long end_pfn)
3733{
3734 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3735}
3736
3737/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3738static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3739 unsigned long zone_type,
3740 unsigned long *ignored)
3741{
9c7cd687
MG
3742 unsigned long node_start_pfn, node_end_pfn;
3743 unsigned long zone_start_pfn, zone_end_pfn;
3744
3745 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3746 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3747 node_start_pfn);
3748 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3749 node_end_pfn);
3750
2a1e274a
MG
3751 adjust_zone_range_for_zone_movable(nid, zone_type,
3752 node_start_pfn, node_end_pfn,
3753 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3754 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3755}
0e0b864e 3756
c713216d 3757#else
6ea6e688 3758static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3759 unsigned long zone_type,
3760 unsigned long *zones_size)
3761{
3762 return zones_size[zone_type];
3763}
3764
6ea6e688 3765static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3766 unsigned long zone_type,
3767 unsigned long *zholes_size)
3768{
3769 if (!zholes_size)
3770 return 0;
3771
3772 return zholes_size[zone_type];
3773}
0e0b864e 3774
c713216d
MG
3775#endif
3776
a3142c8e 3777static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3778 unsigned long *zones_size, unsigned long *zholes_size)
3779{
3780 unsigned long realtotalpages, totalpages = 0;
3781 enum zone_type i;
3782
3783 for (i = 0; i < MAX_NR_ZONES; i++)
3784 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3785 zones_size);
3786 pgdat->node_spanned_pages = totalpages;
3787
3788 realtotalpages = totalpages;
3789 for (i = 0; i < MAX_NR_ZONES; i++)
3790 realtotalpages -=
3791 zone_absent_pages_in_node(pgdat->node_id, i,
3792 zholes_size);
3793 pgdat->node_present_pages = realtotalpages;
3794 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3795 realtotalpages);
3796}
3797
835c134e
MG
3798#ifndef CONFIG_SPARSEMEM
3799/*
3800 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3801 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3802 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3803 * round what is now in bits to nearest long in bits, then return it in
3804 * bytes.
3805 */
3806static unsigned long __init usemap_size(unsigned long zonesize)
3807{
3808 unsigned long usemapsize;
3809
d9c23400
MG
3810 usemapsize = roundup(zonesize, pageblock_nr_pages);
3811 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3812 usemapsize *= NR_PAGEBLOCK_BITS;
3813 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3814
3815 return usemapsize / 8;
3816}
3817
3818static void __init setup_usemap(struct pglist_data *pgdat,
3819 struct zone *zone, unsigned long zonesize)
3820{
3821 unsigned long usemapsize = usemap_size(zonesize);
3822 zone->pageblock_flags = NULL;
58a01a45 3823 if (usemapsize)
835c134e 3824 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3825}
3826#else
3827static void inline setup_usemap(struct pglist_data *pgdat,
3828 struct zone *zone, unsigned long zonesize) {}
3829#endif /* CONFIG_SPARSEMEM */
3830
d9c23400 3831#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3832
3833/* Return a sensible default order for the pageblock size. */
3834static inline int pageblock_default_order(void)
3835{
3836 if (HPAGE_SHIFT > PAGE_SHIFT)
3837 return HUGETLB_PAGE_ORDER;
3838
3839 return MAX_ORDER-1;
3840}
3841
d9c23400
MG
3842/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3843static inline void __init set_pageblock_order(unsigned int order)
3844{
3845 /* Check that pageblock_nr_pages has not already been setup */
3846 if (pageblock_order)
3847 return;
3848
3849 /*
3850 * Assume the largest contiguous order of interest is a huge page.
3851 * This value may be variable depending on boot parameters on IA64
3852 */
3853 pageblock_order = order;
3854}
3855#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3856
ba72cb8c
MG
3857/*
3858 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3859 * and pageblock_default_order() are unused as pageblock_order is set
3860 * at compile-time. See include/linux/pageblock-flags.h for the values of
3861 * pageblock_order based on the kernel config
3862 */
3863static inline int pageblock_default_order(unsigned int order)
3864{
3865 return MAX_ORDER-1;
3866}
d9c23400
MG
3867#define set_pageblock_order(x) do {} while (0)
3868
3869#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3870
1da177e4
LT
3871/*
3872 * Set up the zone data structures:
3873 * - mark all pages reserved
3874 * - mark all memory queues empty
3875 * - clear the memory bitmaps
3876 */
b5a0e011 3877static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3878 unsigned long *zones_size, unsigned long *zholes_size)
3879{
2f1b6248 3880 enum zone_type j;
ed8ece2e 3881 int nid = pgdat->node_id;
1da177e4 3882 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3883 int ret;
1da177e4 3884
208d54e5 3885 pgdat_resize_init(pgdat);
1da177e4
LT
3886 pgdat->nr_zones = 0;
3887 init_waitqueue_head(&pgdat->kswapd_wait);
3888 pgdat->kswapd_max_order = 0;
52d4b9ac 3889 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3890
3891 for (j = 0; j < MAX_NR_ZONES; j++) {
3892 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3893 unsigned long size, realsize, memmap_pages;
b69408e8 3894 enum lru_list l;
1da177e4 3895
c713216d
MG
3896 size = zone_spanned_pages_in_node(nid, j, zones_size);
3897 realsize = size - zone_absent_pages_in_node(nid, j,
3898 zholes_size);
1da177e4 3899
0e0b864e
MG
3900 /*
3901 * Adjust realsize so that it accounts for how much memory
3902 * is used by this zone for memmap. This affects the watermark
3903 * and per-cpu initialisations
3904 */
f7232154
JW
3905 memmap_pages =
3906 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3907 if (realsize >= memmap_pages) {
3908 realsize -= memmap_pages;
5594c8c8
YL
3909 if (memmap_pages)
3910 printk(KERN_DEBUG
3911 " %s zone: %lu pages used for memmap\n",
3912 zone_names[j], memmap_pages);
0e0b864e
MG
3913 } else
3914 printk(KERN_WARNING
3915 " %s zone: %lu pages exceeds realsize %lu\n",
3916 zone_names[j], memmap_pages, realsize);
3917
6267276f
CL
3918 /* Account for reserved pages */
3919 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3920 realsize -= dma_reserve;
d903ef9f 3921 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3922 zone_names[0], dma_reserve);
0e0b864e
MG
3923 }
3924
98d2b0eb 3925 if (!is_highmem_idx(j))
1da177e4
LT
3926 nr_kernel_pages += realsize;
3927 nr_all_pages += realsize;
3928
3929 zone->spanned_pages = size;
3930 zone->present_pages = realsize;
9614634f 3931#ifdef CONFIG_NUMA
d5f541ed 3932 zone->node = nid;
8417bba4 3933 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3934 / 100;
0ff38490 3935 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3936#endif
1da177e4
LT
3937 zone->name = zone_names[j];
3938 spin_lock_init(&zone->lock);
3939 spin_lock_init(&zone->lru_lock);
bdc8cb98 3940 zone_seqlock_init(zone);
1da177e4 3941 zone->zone_pgdat = pgdat;
1da177e4 3942
3bb1a852 3943 zone->prev_priority = DEF_PRIORITY;
1da177e4 3944
ed8ece2e 3945 zone_pcp_init(zone);
b69408e8
CL
3946 for_each_lru(l) {
3947 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 3948 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 3949 }
6e901571
KM
3950 zone->reclaim_stat.recent_rotated[0] = 0;
3951 zone->reclaim_stat.recent_rotated[1] = 0;
3952 zone->reclaim_stat.recent_scanned[0] = 0;
3953 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3954 zap_zone_vm_stats(zone);
e815af95 3955 zone->flags = 0;
1da177e4
LT
3956 if (!size)
3957 continue;
3958
ba72cb8c 3959 set_pageblock_order(pageblock_default_order());
835c134e 3960 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3961 ret = init_currently_empty_zone(zone, zone_start_pfn,
3962 size, MEMMAP_EARLY);
718127cc 3963 BUG_ON(ret);
76cdd58e 3964 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3965 zone_start_pfn += size;
1da177e4
LT
3966 }
3967}
3968
577a32f6 3969static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3970{
1da177e4
LT
3971 /* Skip empty nodes */
3972 if (!pgdat->node_spanned_pages)
3973 return;
3974
d41dee36 3975#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3976 /* ia64 gets its own node_mem_map, before this, without bootmem */
3977 if (!pgdat->node_mem_map) {
e984bb43 3978 unsigned long size, start, end;
d41dee36
AW
3979 struct page *map;
3980
e984bb43
BP
3981 /*
3982 * The zone's endpoints aren't required to be MAX_ORDER
3983 * aligned but the node_mem_map endpoints must be in order
3984 * for the buddy allocator to function correctly.
3985 */
3986 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3987 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3988 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3989 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3990 map = alloc_remap(pgdat->node_id, size);
3991 if (!map)
3992 map = alloc_bootmem_node(pgdat, size);
e984bb43 3993 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3994 }
12d810c1 3995#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3996 /*
3997 * With no DISCONTIG, the global mem_map is just set as node 0's
3998 */
c713216d 3999 if (pgdat == NODE_DATA(0)) {
1da177e4 4000 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4001#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4002 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4003 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4004#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4005 }
1da177e4 4006#endif
d41dee36 4007#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4008}
4009
9109fb7b
JW
4010void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4011 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4012{
9109fb7b
JW
4013 pg_data_t *pgdat = NODE_DATA(nid);
4014
1da177e4
LT
4015 pgdat->node_id = nid;
4016 pgdat->node_start_pfn = node_start_pfn;
c713216d 4017 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4018
4019 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4020#ifdef CONFIG_FLAT_NODE_MEM_MAP
4021 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4022 nid, (unsigned long)pgdat,
4023 (unsigned long)pgdat->node_mem_map);
4024#endif
1da177e4
LT
4025
4026 free_area_init_core(pgdat, zones_size, zholes_size);
4027}
4028
c713216d 4029#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4030
4031#if MAX_NUMNODES > 1
4032/*
4033 * Figure out the number of possible node ids.
4034 */
4035static void __init setup_nr_node_ids(void)
4036{
4037 unsigned int node;
4038 unsigned int highest = 0;
4039
4040 for_each_node_mask(node, node_possible_map)
4041 highest = node;
4042 nr_node_ids = highest + 1;
4043}
4044#else
4045static inline void setup_nr_node_ids(void)
4046{
4047}
4048#endif
4049
c713216d
MG
4050/**
4051 * add_active_range - Register a range of PFNs backed by physical memory
4052 * @nid: The node ID the range resides on
4053 * @start_pfn: The start PFN of the available physical memory
4054 * @end_pfn: The end PFN of the available physical memory
4055 *
4056 * These ranges are stored in an early_node_map[] and later used by
4057 * free_area_init_nodes() to calculate zone sizes and holes. If the
4058 * range spans a memory hole, it is up to the architecture to ensure
4059 * the memory is not freed by the bootmem allocator. If possible
4060 * the range being registered will be merged with existing ranges.
4061 */
4062void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4063 unsigned long end_pfn)
4064{
4065 int i;
4066
6b74ab97
MG
4067 mminit_dprintk(MMINIT_TRACE, "memory_register",
4068 "Entering add_active_range(%d, %#lx, %#lx) "
4069 "%d entries of %d used\n",
4070 nid, start_pfn, end_pfn,
4071 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4072
2dbb51c4
MG
4073 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4074
c713216d
MG
4075 /* Merge with existing active regions if possible */
4076 for (i = 0; i < nr_nodemap_entries; i++) {
4077 if (early_node_map[i].nid != nid)
4078 continue;
4079
4080 /* Skip if an existing region covers this new one */
4081 if (start_pfn >= early_node_map[i].start_pfn &&
4082 end_pfn <= early_node_map[i].end_pfn)
4083 return;
4084
4085 /* Merge forward if suitable */
4086 if (start_pfn <= early_node_map[i].end_pfn &&
4087 end_pfn > early_node_map[i].end_pfn) {
4088 early_node_map[i].end_pfn = end_pfn;
4089 return;
4090 }
4091
4092 /* Merge backward if suitable */
d2dbe08d 4093 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4094 end_pfn >= early_node_map[i].start_pfn) {
4095 early_node_map[i].start_pfn = start_pfn;
4096 return;
4097 }
4098 }
4099
4100 /* Check that early_node_map is large enough */
4101 if (i >= MAX_ACTIVE_REGIONS) {
4102 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4103 MAX_ACTIVE_REGIONS);
4104 return;
4105 }
4106
4107 early_node_map[i].nid = nid;
4108 early_node_map[i].start_pfn = start_pfn;
4109 early_node_map[i].end_pfn = end_pfn;
4110 nr_nodemap_entries = i + 1;
4111}
4112
4113/**
cc1050ba 4114 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4115 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4116 * @start_pfn: The new PFN of the range
4117 * @end_pfn: The new PFN of the range
c713216d
MG
4118 *
4119 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4120 * The map is kept near the end physical page range that has already been
4121 * registered. This function allows an arch to shrink an existing registered
4122 * range.
c713216d 4123 */
cc1050ba
YL
4124void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4125 unsigned long end_pfn)
c713216d 4126{
cc1a9d86
YL
4127 int i, j;
4128 int removed = 0;
c713216d 4129
cc1050ba
YL
4130 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4131 nid, start_pfn, end_pfn);
4132
c713216d 4133 /* Find the old active region end and shrink */
cc1a9d86 4134 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4135 if (early_node_map[i].start_pfn >= start_pfn &&
4136 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4137 /* clear it */
cc1050ba 4138 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4139 early_node_map[i].end_pfn = 0;
4140 removed = 1;
4141 continue;
4142 }
cc1050ba
YL
4143 if (early_node_map[i].start_pfn < start_pfn &&
4144 early_node_map[i].end_pfn > start_pfn) {
4145 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4146 early_node_map[i].end_pfn = start_pfn;
4147 if (temp_end_pfn > end_pfn)
4148 add_active_range(nid, end_pfn, temp_end_pfn);
4149 continue;
4150 }
4151 if (early_node_map[i].start_pfn >= start_pfn &&
4152 early_node_map[i].end_pfn > end_pfn &&
4153 early_node_map[i].start_pfn < end_pfn) {
4154 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4155 continue;
c713216d 4156 }
cc1a9d86
YL
4157 }
4158
4159 if (!removed)
4160 return;
4161
4162 /* remove the blank ones */
4163 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4164 if (early_node_map[i].nid != nid)
4165 continue;
4166 if (early_node_map[i].end_pfn)
4167 continue;
4168 /* we found it, get rid of it */
4169 for (j = i; j < nr_nodemap_entries - 1; j++)
4170 memcpy(&early_node_map[j], &early_node_map[j+1],
4171 sizeof(early_node_map[j]));
4172 j = nr_nodemap_entries - 1;
4173 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4174 nr_nodemap_entries--;
4175 }
c713216d
MG
4176}
4177
4178/**
4179 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4180 *
c713216d
MG
4181 * During discovery, it may be found that a table like SRAT is invalid
4182 * and an alternative discovery method must be used. This function removes
4183 * all currently registered regions.
4184 */
88ca3b94 4185void __init remove_all_active_ranges(void)
c713216d
MG
4186{
4187 memset(early_node_map, 0, sizeof(early_node_map));
4188 nr_nodemap_entries = 0;
4189}
4190
4191/* Compare two active node_active_regions */
4192static int __init cmp_node_active_region(const void *a, const void *b)
4193{
4194 struct node_active_region *arange = (struct node_active_region *)a;
4195 struct node_active_region *brange = (struct node_active_region *)b;
4196
4197 /* Done this way to avoid overflows */
4198 if (arange->start_pfn > brange->start_pfn)
4199 return 1;
4200 if (arange->start_pfn < brange->start_pfn)
4201 return -1;
4202
4203 return 0;
4204}
4205
4206/* sort the node_map by start_pfn */
32996250 4207void __init sort_node_map(void)
c713216d
MG
4208{
4209 sort(early_node_map, (size_t)nr_nodemap_entries,
4210 sizeof(struct node_active_region),
4211 cmp_node_active_region, NULL);
4212}
4213
a6af2bc3 4214/* Find the lowest pfn for a node */
b69a7288 4215static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4216{
4217 int i;
a6af2bc3 4218 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4219
c713216d
MG
4220 /* Assuming a sorted map, the first range found has the starting pfn */
4221 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4222 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4223
a6af2bc3
MG
4224 if (min_pfn == ULONG_MAX) {
4225 printk(KERN_WARNING
2bc0d261 4226 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4227 return 0;
4228 }
4229
4230 return min_pfn;
c713216d
MG
4231}
4232
4233/**
4234 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4235 *
4236 * It returns the minimum PFN based on information provided via
88ca3b94 4237 * add_active_range().
c713216d
MG
4238 */
4239unsigned long __init find_min_pfn_with_active_regions(void)
4240{
4241 return find_min_pfn_for_node(MAX_NUMNODES);
4242}
4243
37b07e41
LS
4244/*
4245 * early_calculate_totalpages()
4246 * Sum pages in active regions for movable zone.
4247 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4248 */
484f51f8 4249static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4250{
4251 int i;
4252 unsigned long totalpages = 0;
4253
37b07e41
LS
4254 for (i = 0; i < nr_nodemap_entries; i++) {
4255 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4256 early_node_map[i].start_pfn;
37b07e41
LS
4257 totalpages += pages;
4258 if (pages)
4259 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4260 }
4261 return totalpages;
7e63efef
MG
4262}
4263
2a1e274a
MG
4264/*
4265 * Find the PFN the Movable zone begins in each node. Kernel memory
4266 * is spread evenly between nodes as long as the nodes have enough
4267 * memory. When they don't, some nodes will have more kernelcore than
4268 * others
4269 */
b69a7288 4270static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4271{
4272 int i, nid;
4273 unsigned long usable_startpfn;
4274 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4275 /* save the state before borrow the nodemask */
4276 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4277 unsigned long totalpages = early_calculate_totalpages();
4278 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4279
7e63efef
MG
4280 /*
4281 * If movablecore was specified, calculate what size of
4282 * kernelcore that corresponds so that memory usable for
4283 * any allocation type is evenly spread. If both kernelcore
4284 * and movablecore are specified, then the value of kernelcore
4285 * will be used for required_kernelcore if it's greater than
4286 * what movablecore would have allowed.
4287 */
4288 if (required_movablecore) {
7e63efef
MG
4289 unsigned long corepages;
4290
4291 /*
4292 * Round-up so that ZONE_MOVABLE is at least as large as what
4293 * was requested by the user
4294 */
4295 required_movablecore =
4296 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4297 corepages = totalpages - required_movablecore;
4298
4299 required_kernelcore = max(required_kernelcore, corepages);
4300 }
4301
2a1e274a
MG
4302 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4303 if (!required_kernelcore)
66918dcd 4304 goto out;
2a1e274a
MG
4305
4306 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4307 find_usable_zone_for_movable();
4308 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4309
4310restart:
4311 /* Spread kernelcore memory as evenly as possible throughout nodes */
4312 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4313 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4314 /*
4315 * Recalculate kernelcore_node if the division per node
4316 * now exceeds what is necessary to satisfy the requested
4317 * amount of memory for the kernel
4318 */
4319 if (required_kernelcore < kernelcore_node)
4320 kernelcore_node = required_kernelcore / usable_nodes;
4321
4322 /*
4323 * As the map is walked, we track how much memory is usable
4324 * by the kernel using kernelcore_remaining. When it is
4325 * 0, the rest of the node is usable by ZONE_MOVABLE
4326 */
4327 kernelcore_remaining = kernelcore_node;
4328
4329 /* Go through each range of PFNs within this node */
4330 for_each_active_range_index_in_nid(i, nid) {
4331 unsigned long start_pfn, end_pfn;
4332 unsigned long size_pages;
4333
4334 start_pfn = max(early_node_map[i].start_pfn,
4335 zone_movable_pfn[nid]);
4336 end_pfn = early_node_map[i].end_pfn;
4337 if (start_pfn >= end_pfn)
4338 continue;
4339
4340 /* Account for what is only usable for kernelcore */
4341 if (start_pfn < usable_startpfn) {
4342 unsigned long kernel_pages;
4343 kernel_pages = min(end_pfn, usable_startpfn)
4344 - start_pfn;
4345
4346 kernelcore_remaining -= min(kernel_pages,
4347 kernelcore_remaining);
4348 required_kernelcore -= min(kernel_pages,
4349 required_kernelcore);
4350
4351 /* Continue if range is now fully accounted */
4352 if (end_pfn <= usable_startpfn) {
4353
4354 /*
4355 * Push zone_movable_pfn to the end so
4356 * that if we have to rebalance
4357 * kernelcore across nodes, we will
4358 * not double account here
4359 */
4360 zone_movable_pfn[nid] = end_pfn;
4361 continue;
4362 }
4363 start_pfn = usable_startpfn;
4364 }
4365
4366 /*
4367 * The usable PFN range for ZONE_MOVABLE is from
4368 * start_pfn->end_pfn. Calculate size_pages as the
4369 * number of pages used as kernelcore
4370 */
4371 size_pages = end_pfn - start_pfn;
4372 if (size_pages > kernelcore_remaining)
4373 size_pages = kernelcore_remaining;
4374 zone_movable_pfn[nid] = start_pfn + size_pages;
4375
4376 /*
4377 * Some kernelcore has been met, update counts and
4378 * break if the kernelcore for this node has been
4379 * satisified
4380 */
4381 required_kernelcore -= min(required_kernelcore,
4382 size_pages);
4383 kernelcore_remaining -= size_pages;
4384 if (!kernelcore_remaining)
4385 break;
4386 }
4387 }
4388
4389 /*
4390 * If there is still required_kernelcore, we do another pass with one
4391 * less node in the count. This will push zone_movable_pfn[nid] further
4392 * along on the nodes that still have memory until kernelcore is
4393 * satisified
4394 */
4395 usable_nodes--;
4396 if (usable_nodes && required_kernelcore > usable_nodes)
4397 goto restart;
4398
4399 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4400 for (nid = 0; nid < MAX_NUMNODES; nid++)
4401 zone_movable_pfn[nid] =
4402 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4403
4404out:
4405 /* restore the node_state */
4406 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4407}
4408
37b07e41
LS
4409/* Any regular memory on that node ? */
4410static void check_for_regular_memory(pg_data_t *pgdat)
4411{
4412#ifdef CONFIG_HIGHMEM
4413 enum zone_type zone_type;
4414
4415 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4416 struct zone *zone = &pgdat->node_zones[zone_type];
4417 if (zone->present_pages)
4418 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4419 }
4420#endif
4421}
4422
c713216d
MG
4423/**
4424 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4425 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4426 *
4427 * This will call free_area_init_node() for each active node in the system.
4428 * Using the page ranges provided by add_active_range(), the size of each
4429 * zone in each node and their holes is calculated. If the maximum PFN
4430 * between two adjacent zones match, it is assumed that the zone is empty.
4431 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4432 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4433 * starts where the previous one ended. For example, ZONE_DMA32 starts
4434 * at arch_max_dma_pfn.
4435 */
4436void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4437{
4438 unsigned long nid;
db99100d 4439 int i;
c713216d 4440
a6af2bc3
MG
4441 /* Sort early_node_map as initialisation assumes it is sorted */
4442 sort_node_map();
4443
c713216d
MG
4444 /* Record where the zone boundaries are */
4445 memset(arch_zone_lowest_possible_pfn, 0,
4446 sizeof(arch_zone_lowest_possible_pfn));
4447 memset(arch_zone_highest_possible_pfn, 0,
4448 sizeof(arch_zone_highest_possible_pfn));
4449 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4450 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4451 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4452 if (i == ZONE_MOVABLE)
4453 continue;
c713216d
MG
4454 arch_zone_lowest_possible_pfn[i] =
4455 arch_zone_highest_possible_pfn[i-1];
4456 arch_zone_highest_possible_pfn[i] =
4457 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4458 }
2a1e274a
MG
4459 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4460 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4461
4462 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4463 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4464 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4465
c713216d
MG
4466 /* Print out the zone ranges */
4467 printk("Zone PFN ranges:\n");
2a1e274a
MG
4468 for (i = 0; i < MAX_NR_ZONES; i++) {
4469 if (i == ZONE_MOVABLE)
4470 continue;
72f0ba02
DR
4471 printk(" %-8s ", zone_names[i]);
4472 if (arch_zone_lowest_possible_pfn[i] ==
4473 arch_zone_highest_possible_pfn[i])
4474 printk("empty\n");
4475 else
4476 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4477 arch_zone_lowest_possible_pfn[i],
4478 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4479 }
4480
4481 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4482 printk("Movable zone start PFN for each node\n");
4483 for (i = 0; i < MAX_NUMNODES; i++) {
4484 if (zone_movable_pfn[i])
4485 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4486 }
c713216d
MG
4487
4488 /* Print out the early_node_map[] */
4489 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4490 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4491 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4492 early_node_map[i].start_pfn,
4493 early_node_map[i].end_pfn);
4494
4495 /* Initialise every node */
708614e6 4496 mminit_verify_pageflags_layout();
8ef82866 4497 setup_nr_node_ids();
c713216d
MG
4498 for_each_online_node(nid) {
4499 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4500 free_area_init_node(nid, NULL,
c713216d 4501 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4502
4503 /* Any memory on that node */
4504 if (pgdat->node_present_pages)
4505 node_set_state(nid, N_HIGH_MEMORY);
4506 check_for_regular_memory(pgdat);
c713216d
MG
4507 }
4508}
2a1e274a 4509
7e63efef 4510static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4511{
4512 unsigned long long coremem;
4513 if (!p)
4514 return -EINVAL;
4515
4516 coremem = memparse(p, &p);
7e63efef 4517 *core = coremem >> PAGE_SHIFT;
2a1e274a 4518
7e63efef 4519 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4520 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4521
4522 return 0;
4523}
ed7ed365 4524
7e63efef
MG
4525/*
4526 * kernelcore=size sets the amount of memory for use for allocations that
4527 * cannot be reclaimed or migrated.
4528 */
4529static int __init cmdline_parse_kernelcore(char *p)
4530{
4531 return cmdline_parse_core(p, &required_kernelcore);
4532}
4533
4534/*
4535 * movablecore=size sets the amount of memory for use for allocations that
4536 * can be reclaimed or migrated.
4537 */
4538static int __init cmdline_parse_movablecore(char *p)
4539{
4540 return cmdline_parse_core(p, &required_movablecore);
4541}
4542
ed7ed365 4543early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4544early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4545
c713216d
MG
4546#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4547
0e0b864e 4548/**
88ca3b94
RD
4549 * set_dma_reserve - set the specified number of pages reserved in the first zone
4550 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4551 *
4552 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4553 * In the DMA zone, a significant percentage may be consumed by kernel image
4554 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4555 * function may optionally be used to account for unfreeable pages in the
4556 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4557 * smaller per-cpu batchsize.
0e0b864e
MG
4558 */
4559void __init set_dma_reserve(unsigned long new_dma_reserve)
4560{
4561 dma_reserve = new_dma_reserve;
4562}
4563
93b7504e 4564#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4565struct pglist_data __refdata contig_page_data = {
4566#ifndef CONFIG_NO_BOOTMEM
4567 .bdata = &bootmem_node_data[0]
4568#endif
4569 };
1da177e4 4570EXPORT_SYMBOL(contig_page_data);
93b7504e 4571#endif
1da177e4
LT
4572
4573void __init free_area_init(unsigned long *zones_size)
4574{
9109fb7b 4575 free_area_init_node(0, zones_size,
1da177e4
LT
4576 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4577}
1da177e4 4578
1da177e4
LT
4579static int page_alloc_cpu_notify(struct notifier_block *self,
4580 unsigned long action, void *hcpu)
4581{
4582 int cpu = (unsigned long)hcpu;
1da177e4 4583
8bb78442 4584 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4585 drain_pages(cpu);
4586
4587 /*
4588 * Spill the event counters of the dead processor
4589 * into the current processors event counters.
4590 * This artificially elevates the count of the current
4591 * processor.
4592 */
f8891e5e 4593 vm_events_fold_cpu(cpu);
9f8f2172
CL
4594
4595 /*
4596 * Zero the differential counters of the dead processor
4597 * so that the vm statistics are consistent.
4598 *
4599 * This is only okay since the processor is dead and cannot
4600 * race with what we are doing.
4601 */
2244b95a 4602 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4603 }
4604 return NOTIFY_OK;
4605}
1da177e4
LT
4606
4607void __init page_alloc_init(void)
4608{
4609 hotcpu_notifier(page_alloc_cpu_notify, 0);
4610}
4611
cb45b0e9
HA
4612/*
4613 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4614 * or min_free_kbytes changes.
4615 */
4616static void calculate_totalreserve_pages(void)
4617{
4618 struct pglist_data *pgdat;
4619 unsigned long reserve_pages = 0;
2f6726e5 4620 enum zone_type i, j;
cb45b0e9
HA
4621
4622 for_each_online_pgdat(pgdat) {
4623 for (i = 0; i < MAX_NR_ZONES; i++) {
4624 struct zone *zone = pgdat->node_zones + i;
4625 unsigned long max = 0;
4626
4627 /* Find valid and maximum lowmem_reserve in the zone */
4628 for (j = i; j < MAX_NR_ZONES; j++) {
4629 if (zone->lowmem_reserve[j] > max)
4630 max = zone->lowmem_reserve[j];
4631 }
4632
41858966
MG
4633 /* we treat the high watermark as reserved pages. */
4634 max += high_wmark_pages(zone);
cb45b0e9
HA
4635
4636 if (max > zone->present_pages)
4637 max = zone->present_pages;
4638 reserve_pages += max;
4639 }
4640 }
4641 totalreserve_pages = reserve_pages;
4642}
4643
1da177e4
LT
4644/*
4645 * setup_per_zone_lowmem_reserve - called whenever
4646 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4647 * has a correct pages reserved value, so an adequate number of
4648 * pages are left in the zone after a successful __alloc_pages().
4649 */
4650static void setup_per_zone_lowmem_reserve(void)
4651{
4652 struct pglist_data *pgdat;
2f6726e5 4653 enum zone_type j, idx;
1da177e4 4654
ec936fc5 4655 for_each_online_pgdat(pgdat) {
1da177e4
LT
4656 for (j = 0; j < MAX_NR_ZONES; j++) {
4657 struct zone *zone = pgdat->node_zones + j;
4658 unsigned long present_pages = zone->present_pages;
4659
4660 zone->lowmem_reserve[j] = 0;
4661
2f6726e5
CL
4662 idx = j;
4663 while (idx) {
1da177e4
LT
4664 struct zone *lower_zone;
4665
2f6726e5
CL
4666 idx--;
4667
1da177e4
LT
4668 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4669 sysctl_lowmem_reserve_ratio[idx] = 1;
4670
4671 lower_zone = pgdat->node_zones + idx;
4672 lower_zone->lowmem_reserve[j] = present_pages /
4673 sysctl_lowmem_reserve_ratio[idx];
4674 present_pages += lower_zone->present_pages;
4675 }
4676 }
4677 }
cb45b0e9
HA
4678
4679 /* update totalreserve_pages */
4680 calculate_totalreserve_pages();
1da177e4
LT
4681}
4682
88ca3b94 4683/**
bc75d33f 4684 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4685 * or when memory is hot-{added|removed}
88ca3b94 4686 *
bc75d33f
MK
4687 * Ensures that the watermark[min,low,high] values for each zone are set
4688 * correctly with respect to min_free_kbytes.
1da177e4 4689 */
bc75d33f 4690void setup_per_zone_wmarks(void)
1da177e4
LT
4691{
4692 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4693 unsigned long lowmem_pages = 0;
4694 struct zone *zone;
4695 unsigned long flags;
4696
4697 /* Calculate total number of !ZONE_HIGHMEM pages */
4698 for_each_zone(zone) {
4699 if (!is_highmem(zone))
4700 lowmem_pages += zone->present_pages;
4701 }
4702
4703 for_each_zone(zone) {
ac924c60
AM
4704 u64 tmp;
4705
1125b4e3 4706 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4707 tmp = (u64)pages_min * zone->present_pages;
4708 do_div(tmp, lowmem_pages);
1da177e4
LT
4709 if (is_highmem(zone)) {
4710 /*
669ed175
NP
4711 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4712 * need highmem pages, so cap pages_min to a small
4713 * value here.
4714 *
41858966 4715 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4716 * deltas controls asynch page reclaim, and so should
4717 * not be capped for highmem.
1da177e4
LT
4718 */
4719 int min_pages;
4720
4721 min_pages = zone->present_pages / 1024;
4722 if (min_pages < SWAP_CLUSTER_MAX)
4723 min_pages = SWAP_CLUSTER_MAX;
4724 if (min_pages > 128)
4725 min_pages = 128;
41858966 4726 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4727 } else {
669ed175
NP
4728 /*
4729 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4730 * proportionate to the zone's size.
4731 */
41858966 4732 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4733 }
4734
41858966
MG
4735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4737 setup_zone_migrate_reserve(zone);
1125b4e3 4738 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4739 }
cb45b0e9
HA
4740
4741 /* update totalreserve_pages */
4742 calculate_totalreserve_pages();
1da177e4
LT
4743}
4744
55a4462a 4745/*
556adecb
RR
4746 * The inactive anon list should be small enough that the VM never has to
4747 * do too much work, but large enough that each inactive page has a chance
4748 * to be referenced again before it is swapped out.
4749 *
4750 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4751 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4752 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4753 * the anonymous pages are kept on the inactive list.
4754 *
4755 * total target max
4756 * memory ratio inactive anon
4757 * -------------------------------------
4758 * 10MB 1 5MB
4759 * 100MB 1 50MB
4760 * 1GB 3 250MB
4761 * 10GB 10 0.9GB
4762 * 100GB 31 3GB
4763 * 1TB 101 10GB
4764 * 10TB 320 32GB
4765 */
96cb4df5 4766void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4767{
96cb4df5 4768 unsigned int gb, ratio;
556adecb 4769
96cb4df5
MK
4770 /* Zone size in gigabytes */
4771 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4772 if (gb)
556adecb 4773 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4774 else
4775 ratio = 1;
556adecb 4776
96cb4df5
MK
4777 zone->inactive_ratio = ratio;
4778}
556adecb 4779
96cb4df5
MK
4780static void __init setup_per_zone_inactive_ratio(void)
4781{
4782 struct zone *zone;
4783
4784 for_each_zone(zone)
4785 calculate_zone_inactive_ratio(zone);
556adecb
RR
4786}
4787
1da177e4
LT
4788/*
4789 * Initialise min_free_kbytes.
4790 *
4791 * For small machines we want it small (128k min). For large machines
4792 * we want it large (64MB max). But it is not linear, because network
4793 * bandwidth does not increase linearly with machine size. We use
4794 *
4795 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4796 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4797 *
4798 * which yields
4799 *
4800 * 16MB: 512k
4801 * 32MB: 724k
4802 * 64MB: 1024k
4803 * 128MB: 1448k
4804 * 256MB: 2048k
4805 * 512MB: 2896k
4806 * 1024MB: 4096k
4807 * 2048MB: 5792k
4808 * 4096MB: 8192k
4809 * 8192MB: 11584k
4810 * 16384MB: 16384k
4811 */
bc75d33f 4812static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4813{
4814 unsigned long lowmem_kbytes;
4815
4816 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4817
4818 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4819 if (min_free_kbytes < 128)
4820 min_free_kbytes = 128;
4821 if (min_free_kbytes > 65536)
4822 min_free_kbytes = 65536;
bc75d33f 4823 setup_per_zone_wmarks();
1da177e4 4824 setup_per_zone_lowmem_reserve();
556adecb 4825 setup_per_zone_inactive_ratio();
1da177e4
LT
4826 return 0;
4827}
bc75d33f 4828module_init(init_per_zone_wmark_min)
1da177e4
LT
4829
4830/*
4831 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4832 * that we can call two helper functions whenever min_free_kbytes
4833 * changes.
4834 */
4835int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4836 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4837{
8d65af78 4838 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4839 if (write)
bc75d33f 4840 setup_per_zone_wmarks();
1da177e4
LT
4841 return 0;
4842}
4843
9614634f
CL
4844#ifdef CONFIG_NUMA
4845int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4846 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4847{
4848 struct zone *zone;
4849 int rc;
4850
8d65af78 4851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4852 if (rc)
4853 return rc;
4854
4855 for_each_zone(zone)
8417bba4 4856 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4857 sysctl_min_unmapped_ratio) / 100;
4858 return 0;
4859}
0ff38490
CL
4860
4861int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4862 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4863{
4864 struct zone *zone;
4865 int rc;
4866
8d65af78 4867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4868 if (rc)
4869 return rc;
4870
4871 for_each_zone(zone)
4872 zone->min_slab_pages = (zone->present_pages *
4873 sysctl_min_slab_ratio) / 100;
4874 return 0;
4875}
9614634f
CL
4876#endif
4877
1da177e4
LT
4878/*
4879 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4880 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4881 * whenever sysctl_lowmem_reserve_ratio changes.
4882 *
4883 * The reserve ratio obviously has absolutely no relation with the
41858966 4884 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4885 * if in function of the boot time zone sizes.
4886 */
4887int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4888 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4889{
8d65af78 4890 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4891 setup_per_zone_lowmem_reserve();
4892 return 0;
4893}
4894
8ad4b1fb
RS
4895/*
4896 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4897 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4898 * can have before it gets flushed back to buddy allocator.
4899 */
4900
4901int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4902 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4903{
4904 struct zone *zone;
4905 unsigned int cpu;
4906 int ret;
4907
8d65af78 4908 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4909 if (!write || (ret == -EINVAL))
4910 return ret;
364df0eb 4911 for_each_populated_zone(zone) {
99dcc3e5 4912 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
4913 unsigned long high;
4914 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
4915 setup_pagelist_highmark(
4916 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
4917 }
4918 }
4919 return 0;
4920}
4921
f034b5d4 4922int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4923
4924#ifdef CONFIG_NUMA
4925static int __init set_hashdist(char *str)
4926{
4927 if (!str)
4928 return 0;
4929 hashdist = simple_strtoul(str, &str, 0);
4930 return 1;
4931}
4932__setup("hashdist=", set_hashdist);
4933#endif
4934
4935/*
4936 * allocate a large system hash table from bootmem
4937 * - it is assumed that the hash table must contain an exact power-of-2
4938 * quantity of entries
4939 * - limit is the number of hash buckets, not the total allocation size
4940 */
4941void *__init alloc_large_system_hash(const char *tablename,
4942 unsigned long bucketsize,
4943 unsigned long numentries,
4944 int scale,
4945 int flags,
4946 unsigned int *_hash_shift,
4947 unsigned int *_hash_mask,
4948 unsigned long limit)
4949{
4950 unsigned long long max = limit;
4951 unsigned long log2qty, size;
4952 void *table = NULL;
4953
4954 /* allow the kernel cmdline to have a say */
4955 if (!numentries) {
4956 /* round applicable memory size up to nearest megabyte */
04903664 4957 numentries = nr_kernel_pages;
1da177e4
LT
4958 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4959 numentries >>= 20 - PAGE_SHIFT;
4960 numentries <<= 20 - PAGE_SHIFT;
4961
4962 /* limit to 1 bucket per 2^scale bytes of low memory */
4963 if (scale > PAGE_SHIFT)
4964 numentries >>= (scale - PAGE_SHIFT);
4965 else
4966 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4967
4968 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
4969 if (unlikely(flags & HASH_SMALL)) {
4970 /* Makes no sense without HASH_EARLY */
4971 WARN_ON(!(flags & HASH_EARLY));
4972 if (!(numentries >> *_hash_shift)) {
4973 numentries = 1UL << *_hash_shift;
4974 BUG_ON(!numentries);
4975 }
4976 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 4977 numentries = PAGE_SIZE / bucketsize;
1da177e4 4978 }
6e692ed3 4979 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4980
4981 /* limit allocation size to 1/16 total memory by default */
4982 if (max == 0) {
4983 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4984 do_div(max, bucketsize);
4985 }
4986
4987 if (numentries > max)
4988 numentries = max;
4989
f0d1b0b3 4990 log2qty = ilog2(numentries);
1da177e4
LT
4991
4992 do {
4993 size = bucketsize << log2qty;
4994 if (flags & HASH_EARLY)
74768ed8 4995 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4996 else if (hashdist)
4997 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4998 else {
1037b83b
ED
4999 /*
5000 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5001 * some pages at the end of hash table which
5002 * alloc_pages_exact() automatically does
1037b83b 5003 */
264ef8a9 5004 if (get_order(size) < MAX_ORDER) {
a1dd268c 5005 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5006 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5007 }
1da177e4
LT
5008 }
5009 } while (!table && size > PAGE_SIZE && --log2qty);
5010
5011 if (!table)
5012 panic("Failed to allocate %s hash table\n", tablename);
5013
b49ad484 5014 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5015 tablename,
5016 (1U << log2qty),
f0d1b0b3 5017 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5018 size);
5019
5020 if (_hash_shift)
5021 *_hash_shift = log2qty;
5022 if (_hash_mask)
5023 *_hash_mask = (1 << log2qty) - 1;
5024
5025 return table;
5026}
a117e66e 5027
835c134e
MG
5028/* Return a pointer to the bitmap storing bits affecting a block of pages */
5029static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5030 unsigned long pfn)
5031{
5032#ifdef CONFIG_SPARSEMEM
5033 return __pfn_to_section(pfn)->pageblock_flags;
5034#else
5035 return zone->pageblock_flags;
5036#endif /* CONFIG_SPARSEMEM */
5037}
5038
5039static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5040{
5041#ifdef CONFIG_SPARSEMEM
5042 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5043 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5044#else
5045 pfn = pfn - zone->zone_start_pfn;
d9c23400 5046 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5047#endif /* CONFIG_SPARSEMEM */
5048}
5049
5050/**
d9c23400 5051 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5052 * @page: The page within the block of interest
5053 * @start_bitidx: The first bit of interest to retrieve
5054 * @end_bitidx: The last bit of interest
5055 * returns pageblock_bits flags
5056 */
5057unsigned long get_pageblock_flags_group(struct page *page,
5058 int start_bitidx, int end_bitidx)
5059{
5060 struct zone *zone;
5061 unsigned long *bitmap;
5062 unsigned long pfn, bitidx;
5063 unsigned long flags = 0;
5064 unsigned long value = 1;
5065
5066 zone = page_zone(page);
5067 pfn = page_to_pfn(page);
5068 bitmap = get_pageblock_bitmap(zone, pfn);
5069 bitidx = pfn_to_bitidx(zone, pfn);
5070
5071 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5072 if (test_bit(bitidx + start_bitidx, bitmap))
5073 flags |= value;
6220ec78 5074
835c134e
MG
5075 return flags;
5076}
5077
5078/**
d9c23400 5079 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5080 * @page: The page within the block of interest
5081 * @start_bitidx: The first bit of interest
5082 * @end_bitidx: The last bit of interest
5083 * @flags: The flags to set
5084 */
5085void set_pageblock_flags_group(struct page *page, unsigned long flags,
5086 int start_bitidx, int end_bitidx)
5087{
5088 struct zone *zone;
5089 unsigned long *bitmap;
5090 unsigned long pfn, bitidx;
5091 unsigned long value = 1;
5092
5093 zone = page_zone(page);
5094 pfn = page_to_pfn(page);
5095 bitmap = get_pageblock_bitmap(zone, pfn);
5096 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5097 VM_BUG_ON(pfn < zone->zone_start_pfn);
5098 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5099
5100 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5101 if (flags & value)
5102 __set_bit(bitidx + start_bitidx, bitmap);
5103 else
5104 __clear_bit(bitidx + start_bitidx, bitmap);
5105}
a5d76b54
KH
5106
5107/*
5108 * This is designed as sub function...plz see page_isolation.c also.
5109 * set/clear page block's type to be ISOLATE.
5110 * page allocater never alloc memory from ISOLATE block.
5111 */
5112
5113int set_migratetype_isolate(struct page *page)
5114{
5115 struct zone *zone;
925cc71e
RJ
5116 struct page *curr_page;
5117 unsigned long flags, pfn, iter;
5118 unsigned long immobile = 0;
5119 struct memory_isolate_notify arg;
5120 int notifier_ret;
a5d76b54 5121 int ret = -EBUSY;
8e7e40d9 5122 int zone_idx;
a5d76b54
KH
5123
5124 zone = page_zone(page);
8e7e40d9 5125 zone_idx = zone_idx(zone);
925cc71e 5126
a5d76b54 5127 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5128 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5129 zone_idx == ZONE_MOVABLE) {
5130 ret = 0;
5131 goto out;
5132 }
5133
5134 pfn = page_to_pfn(page);
5135 arg.start_pfn = pfn;
5136 arg.nr_pages = pageblock_nr_pages;
5137 arg.pages_found = 0;
5138
a5d76b54 5139 /*
925cc71e
RJ
5140 * It may be possible to isolate a pageblock even if the
5141 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5142 * notifier chain is used by balloon drivers to return the
5143 * number of pages in a range that are held by the balloon
5144 * driver to shrink memory. If all the pages are accounted for
5145 * by balloons, are free, or on the LRU, isolation can continue.
5146 * Later, for example, when memory hotplug notifier runs, these
5147 * pages reported as "can be isolated" should be isolated(freed)
5148 * by the balloon driver through the memory notifier chain.
a5d76b54 5149 */
925cc71e
RJ
5150 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5151 notifier_ret = notifier_to_errno(notifier_ret);
5152 if (notifier_ret || !arg.pages_found)
a5d76b54 5153 goto out;
925cc71e
RJ
5154
5155 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5156 if (!pfn_valid_within(pfn))
5157 continue;
5158
5159 curr_page = pfn_to_page(iter);
5160 if (!page_count(curr_page) || PageLRU(curr_page))
5161 continue;
5162
5163 immobile++;
5164 }
5165
5166 if (arg.pages_found == immobile)
5167 ret = 0;
5168
a5d76b54 5169out:
925cc71e
RJ
5170 if (!ret) {
5171 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5172 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5173 }
5174
a5d76b54
KH
5175 spin_unlock_irqrestore(&zone->lock, flags);
5176 if (!ret)
9f8f2172 5177 drain_all_pages();
a5d76b54
KH
5178 return ret;
5179}
5180
5181void unset_migratetype_isolate(struct page *page)
5182{
5183 struct zone *zone;
5184 unsigned long flags;
5185 zone = page_zone(page);
5186 spin_lock_irqsave(&zone->lock, flags);
5187 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5188 goto out;
5189 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5190 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5191out:
5192 spin_unlock_irqrestore(&zone->lock, flags);
5193}
0c0e6195
KH
5194
5195#ifdef CONFIG_MEMORY_HOTREMOVE
5196/*
5197 * All pages in the range must be isolated before calling this.
5198 */
5199void
5200__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5201{
5202 struct page *page;
5203 struct zone *zone;
5204 int order, i;
5205 unsigned long pfn;
5206 unsigned long flags;
5207 /* find the first valid pfn */
5208 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5209 if (pfn_valid(pfn))
5210 break;
5211 if (pfn == end_pfn)
5212 return;
5213 zone = page_zone(pfn_to_page(pfn));
5214 spin_lock_irqsave(&zone->lock, flags);
5215 pfn = start_pfn;
5216 while (pfn < end_pfn) {
5217 if (!pfn_valid(pfn)) {
5218 pfn++;
5219 continue;
5220 }
5221 page = pfn_to_page(pfn);
5222 BUG_ON(page_count(page));
5223 BUG_ON(!PageBuddy(page));
5224 order = page_order(page);
5225#ifdef CONFIG_DEBUG_VM
5226 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5227 pfn, 1 << order, end_pfn);
5228#endif
5229 list_del(&page->lru);
5230 rmv_page_order(page);
5231 zone->free_area[order].nr_free--;
5232 __mod_zone_page_state(zone, NR_FREE_PAGES,
5233 - (1UL << order));
5234 for (i = 0; i < (1 << order); i++)
5235 SetPageReserved((page+i));
5236 pfn += (1 << order);
5237 }
5238 spin_unlock_irqrestore(&zone->lock, flags);
5239}
5240#endif
8d22ba1b
WF
5241
5242#ifdef CONFIG_MEMORY_FAILURE
5243bool is_free_buddy_page(struct page *page)
5244{
5245 struct zone *zone = page_zone(page);
5246 unsigned long pfn = page_to_pfn(page);
5247 unsigned long flags;
5248 int order;
5249
5250 spin_lock_irqsave(&zone->lock, flags);
5251 for (order = 0; order < MAX_ORDER; order++) {
5252 struct page *page_head = page - (pfn & ((1 << order) - 1));
5253
5254 if (PageBuddy(page_head) && page_order(page_head) >= order)
5255 break;
5256 }
5257 spin_unlock_irqrestore(&zone->lock, flags);
5258
5259 return order < MAX_ORDER;
5260}
5261#endif
718a3821
WF
5262
5263static struct trace_print_flags pageflag_names[] = {
5264 {1UL << PG_locked, "locked" },
5265 {1UL << PG_error, "error" },
5266 {1UL << PG_referenced, "referenced" },
5267 {1UL << PG_uptodate, "uptodate" },
5268 {1UL << PG_dirty, "dirty" },
5269 {1UL << PG_lru, "lru" },
5270 {1UL << PG_active, "active" },
5271 {1UL << PG_slab, "slab" },
5272 {1UL << PG_owner_priv_1, "owner_priv_1" },
5273 {1UL << PG_arch_1, "arch_1" },
5274 {1UL << PG_reserved, "reserved" },
5275 {1UL << PG_private, "private" },
5276 {1UL << PG_private_2, "private_2" },
5277 {1UL << PG_writeback, "writeback" },
5278#ifdef CONFIG_PAGEFLAGS_EXTENDED
5279 {1UL << PG_head, "head" },
5280 {1UL << PG_tail, "tail" },
5281#else
5282 {1UL << PG_compound, "compound" },
5283#endif
5284 {1UL << PG_swapcache, "swapcache" },
5285 {1UL << PG_mappedtodisk, "mappedtodisk" },
5286 {1UL << PG_reclaim, "reclaim" },
5287 {1UL << PG_buddy, "buddy" },
5288 {1UL << PG_swapbacked, "swapbacked" },
5289 {1UL << PG_unevictable, "unevictable" },
5290#ifdef CONFIG_MMU
5291 {1UL << PG_mlocked, "mlocked" },
5292#endif
5293#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5294 {1UL << PG_uncached, "uncached" },
5295#endif
5296#ifdef CONFIG_MEMORY_FAILURE
5297 {1UL << PG_hwpoison, "hwpoison" },
5298#endif
5299 {-1UL, NULL },
5300};
5301
5302static void dump_page_flags(unsigned long flags)
5303{
5304 const char *delim = "";
5305 unsigned long mask;
5306 int i;
5307
5308 printk(KERN_ALERT "page flags: %#lx(", flags);
5309
5310 /* remove zone id */
5311 flags &= (1UL << NR_PAGEFLAGS) - 1;
5312
5313 for (i = 0; pageflag_names[i].name && flags; i++) {
5314
5315 mask = pageflag_names[i].mask;
5316 if ((flags & mask) != mask)
5317 continue;
5318
5319 flags &= ~mask;
5320 printk("%s%s", delim, pageflag_names[i].name);
5321 delim = "|";
5322 }
5323
5324 /* check for left over flags */
5325 if (flags)
5326 printk("%s%#lx", delim, flags);
5327
5328 printk(")\n");
5329}
5330
5331void dump_page(struct page *page)
5332{
5333 printk(KERN_ALERT
5334 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5335 page, page_count(page), page_mapcount(page),
5336 page->mapping, page->index);
5337 dump_page_flags(page->flags);
5338}