Documentation/filesystems/Locking: update documentation on llseek() wrt BKL
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
56de7263 52#include <linux/compaction.h>
0d3d062a 53#include <trace/events/kmem.h>
718a3821 54#include <linux/ftrace_event.h>
1da177e4
LT
55
56#include <asm/tlbflush.h>
ac924c60 57#include <asm/div64.h>
1da177e4
LT
58#include "internal.h"
59
60/*
13808910 61 * Array of node states.
1da177e4 62 */
13808910
CL
63nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
64 [N_POSSIBLE] = NODE_MASK_ALL,
65 [N_ONLINE] = { { [0] = 1UL } },
66#ifndef CONFIG_NUMA
67 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
68#ifdef CONFIG_HIGHMEM
69 [N_HIGH_MEMORY] = { { [0] = 1UL } },
70#endif
71 [N_CPU] = { { [0] = 1UL } },
72#endif /* NUMA */
73};
74EXPORT_SYMBOL(node_states);
75
6c231b7b 76unsigned long totalram_pages __read_mostly;
cb45b0e9 77unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 78int percpu_pagelist_fraction;
dcce284a 79gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 80
452aa699
RW
81#ifdef CONFIG_PM_SLEEP
82/*
83 * The following functions are used by the suspend/hibernate code to temporarily
84 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
85 * while devices are suspended. To avoid races with the suspend/hibernate code,
86 * they should always be called with pm_mutex held (gfp_allowed_mask also should
87 * only be modified with pm_mutex held, unless the suspend/hibernate code is
88 * guaranteed not to run in parallel with that modification).
89 */
90void set_gfp_allowed_mask(gfp_t mask)
91{
92 WARN_ON(!mutex_is_locked(&pm_mutex));
93 gfp_allowed_mask = mask;
94}
95
96gfp_t clear_gfp_allowed_mask(gfp_t mask)
97{
98 gfp_t ret = gfp_allowed_mask;
99
100 WARN_ON(!mutex_is_locked(&pm_mutex));
101 gfp_allowed_mask &= ~mask;
102 return ret;
103}
104#endif /* CONFIG_PM_SLEEP */
105
d9c23400
MG
106#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
107int pageblock_order __read_mostly;
108#endif
109
d98c7a09 110static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 111
1da177e4
LT
112/*
113 * results with 256, 32 in the lowmem_reserve sysctl:
114 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
115 * 1G machine -> (16M dma, 784M normal, 224M high)
116 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
117 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
118 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
119 *
120 * TBD: should special case ZONE_DMA32 machines here - in those we normally
121 * don't need any ZONE_NORMAL reservation
1da177e4 122 */
2f1b6248 123int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 124#ifdef CONFIG_ZONE_DMA
2f1b6248 125 256,
4b51d669 126#endif
fb0e7942 127#ifdef CONFIG_ZONE_DMA32
2f1b6248 128 256,
fb0e7942 129#endif
e53ef38d 130#ifdef CONFIG_HIGHMEM
2a1e274a 131 32,
e53ef38d 132#endif
2a1e274a 133 32,
2f1b6248 134};
1da177e4
LT
135
136EXPORT_SYMBOL(totalram_pages);
1da177e4 137
15ad7cdc 138static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 139#ifdef CONFIG_ZONE_DMA
2f1b6248 140 "DMA",
4b51d669 141#endif
fb0e7942 142#ifdef CONFIG_ZONE_DMA32
2f1b6248 143 "DMA32",
fb0e7942 144#endif
2f1b6248 145 "Normal",
e53ef38d 146#ifdef CONFIG_HIGHMEM
2a1e274a 147 "HighMem",
e53ef38d 148#endif
2a1e274a 149 "Movable",
2f1b6248
CL
150};
151
1da177e4
LT
152int min_free_kbytes = 1024;
153
2c85f51d
JB
154static unsigned long __meminitdata nr_kernel_pages;
155static unsigned long __meminitdata nr_all_pages;
a3142c8e 156static unsigned long __meminitdata dma_reserve;
1da177e4 157
c713216d
MG
158#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159 /*
183ff22b 160 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
161 * ranges of memory (RAM) that may be registered with add_active_range().
162 * Ranges passed to add_active_range() will be merged if possible
163 * so the number of times add_active_range() can be called is
164 * related to the number of nodes and the number of holes
165 */
166 #ifdef CONFIG_MAX_ACTIVE_REGIONS
167 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
168 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169 #else
170 #if MAX_NUMNODES >= 32
171 /* If there can be many nodes, allow up to 50 holes per node */
172 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173 #else
174 /* By default, allow up to 256 distinct regions */
175 #define MAX_ACTIVE_REGIONS 256
176 #endif
177 #endif
178
98011f56
JB
179 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
180 static int __meminitdata nr_nodemap_entries;
181 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
182 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 183 static unsigned long __initdata required_kernelcore;
484f51f8 184 static unsigned long __initdata required_movablecore;
b69a7288 185 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
186
187 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188 int movable_zone;
189 EXPORT_SYMBOL(movable_zone);
c713216d
MG
190#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
191
418508c1
MS
192#if MAX_NUMNODES > 1
193int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 194int nr_online_nodes __read_mostly = 1;
418508c1 195EXPORT_SYMBOL(nr_node_ids);
62bc62a8 196EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
197#endif
198
9ef9acb0
MG
199int page_group_by_mobility_disabled __read_mostly;
200
b2a0ac88
MG
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
49255c61
MG
203
204 if (unlikely(page_group_by_mobility_disabled))
205 migratetype = MIGRATE_UNMOVABLE;
206
b2a0ac88
MG
207 set_pageblock_flags_group(page, (unsigned long)migratetype,
208 PB_migrate, PB_migrate_end);
209}
210
7f33d49a
RW
211bool oom_killer_disabled __read_mostly;
212
13e7444b 213#ifdef CONFIG_DEBUG_VM
c6a57e19 214static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 215{
bdc8cb98
DH
216 int ret = 0;
217 unsigned seq;
218 unsigned long pfn = page_to_pfn(page);
c6a57e19 219
bdc8cb98
DH
220 do {
221 seq = zone_span_seqbegin(zone);
222 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
223 ret = 1;
224 else if (pfn < zone->zone_start_pfn)
225 ret = 1;
226 } while (zone_span_seqretry(zone, seq));
227
228 return ret;
c6a57e19
DH
229}
230
231static int page_is_consistent(struct zone *zone, struct page *page)
232{
14e07298 233 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 234 return 0;
1da177e4 235 if (zone != page_zone(page))
c6a57e19
DH
236 return 0;
237
238 return 1;
239}
240/*
241 * Temporary debugging check for pages not lying within a given zone.
242 */
243static int bad_range(struct zone *zone, struct page *page)
244{
245 if (page_outside_zone_boundaries(zone, page))
1da177e4 246 return 1;
c6a57e19
DH
247 if (!page_is_consistent(zone, page))
248 return 1;
249
1da177e4
LT
250 return 0;
251}
13e7444b
NP
252#else
253static inline int bad_range(struct zone *zone, struct page *page)
254{
255 return 0;
256}
257#endif
258
224abf92 259static void bad_page(struct page *page)
1da177e4 260{
d936cf9b
HD
261 static unsigned long resume;
262 static unsigned long nr_shown;
263 static unsigned long nr_unshown;
264
2a7684a2
WF
265 /* Don't complain about poisoned pages */
266 if (PageHWPoison(page)) {
267 __ClearPageBuddy(page);
268 return;
269 }
270
d936cf9b
HD
271 /*
272 * Allow a burst of 60 reports, then keep quiet for that minute;
273 * or allow a steady drip of one report per second.
274 */
275 if (nr_shown == 60) {
276 if (time_before(jiffies, resume)) {
277 nr_unshown++;
278 goto out;
279 }
280 if (nr_unshown) {
1e9e6365
HD
281 printk(KERN_ALERT
282 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
283 nr_unshown);
284 nr_unshown = 0;
285 }
286 nr_shown = 0;
287 }
288 if (nr_shown++ == 0)
289 resume = jiffies + 60 * HZ;
290
1e9e6365 291 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 292 current->comm, page_to_pfn(page));
718a3821 293 dump_page(page);
3dc14741 294
1da177e4 295 dump_stack();
d936cf9b 296out:
8cc3b392
HD
297 /* Leave bad fields for debug, except PageBuddy could make trouble */
298 __ClearPageBuddy(page);
9f158333 299 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
300}
301
1da177e4
LT
302/*
303 * Higher-order pages are called "compound pages". They are structured thusly:
304 *
305 * The first PAGE_SIZE page is called the "head page".
306 *
307 * The remaining PAGE_SIZE pages are called "tail pages".
308 *
309 * All pages have PG_compound set. All pages have their ->private pointing at
310 * the head page (even the head page has this).
311 *
41d78ba5
HD
312 * The first tail page's ->lru.next holds the address of the compound page's
313 * put_page() function. Its ->lru.prev holds the order of allocation.
314 * This usage means that zero-order pages may not be compound.
1da177e4 315 */
d98c7a09
HD
316
317static void free_compound_page(struct page *page)
318{
d85f3385 319 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
320}
321
01ad1c08 322void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
323{
324 int i;
325 int nr_pages = 1 << order;
326
327 set_compound_page_dtor(page, free_compound_page);
328 set_compound_order(page, order);
329 __SetPageHead(page);
330 for (i = 1; i < nr_pages; i++) {
331 struct page *p = page + i;
332
333 __SetPageTail(p);
334 p->first_page = page;
335 }
336}
337
8cc3b392 338static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
339{
340 int i;
341 int nr_pages = 1 << order;
8cc3b392 342 int bad = 0;
1da177e4 343
8cc3b392
HD
344 if (unlikely(compound_order(page) != order) ||
345 unlikely(!PageHead(page))) {
224abf92 346 bad_page(page);
8cc3b392
HD
347 bad++;
348 }
1da177e4 349
6d777953 350 __ClearPageHead(page);
8cc3b392 351
18229df5
AW
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
1da177e4 354
e713a21d 355 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 356 bad_page(page);
8cc3b392
HD
357 bad++;
358 }
d85f3385 359 __ClearPageTail(p);
1da177e4 360 }
8cc3b392
HD
361
362 return bad;
1da177e4 363}
1da177e4 364
17cf4406
NP
365static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
366{
367 int i;
368
6626c5d5
AM
369 /*
370 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
371 * and __GFP_HIGHMEM from hard or soft interrupt context.
372 */
725d704e 373 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
374 for (i = 0; i < (1 << order); i++)
375 clear_highpage(page + i);
376}
377
6aa3001b
AM
378static inline void set_page_order(struct page *page, int order)
379{
4c21e2f2 380 set_page_private(page, order);
676165a8 381 __SetPageBuddy(page);
1da177e4
LT
382}
383
384static inline void rmv_page_order(struct page *page)
385{
676165a8 386 __ClearPageBuddy(page);
4c21e2f2 387 set_page_private(page, 0);
1da177e4
LT
388}
389
390/*
391 * Locate the struct page for both the matching buddy in our
392 * pair (buddy1) and the combined O(n+1) page they form (page).
393 *
394 * 1) Any buddy B1 will have an order O twin B2 which satisfies
395 * the following equation:
396 * B2 = B1 ^ (1 << O)
397 * For example, if the starting buddy (buddy2) is #8 its order
398 * 1 buddy is #10:
399 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 *
401 * 2) Any buddy B will have an order O+1 parent P which
402 * satisfies the following equation:
403 * P = B & ~(1 << O)
404 *
d6e05edc 405 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
406 */
407static inline struct page *
408__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
409{
410 unsigned long buddy_idx = page_idx ^ (1 << order);
411
412 return page + (buddy_idx - page_idx);
413}
414
415static inline unsigned long
416__find_combined_index(unsigned long page_idx, unsigned int order)
417{
418 return (page_idx & ~(1 << order));
419}
420
421/*
422 * This function checks whether a page is free && is the buddy
423 * we can do coalesce a page and its buddy if
13e7444b 424 * (a) the buddy is not in a hole &&
676165a8 425 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
426 * (c) a page and its buddy have the same order &&
427 * (d) a page and its buddy are in the same zone.
676165a8
NP
428 *
429 * For recording whether a page is in the buddy system, we use PG_buddy.
430 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 431 *
676165a8 432 * For recording page's order, we use page_private(page).
1da177e4 433 */
cb2b95e1
AW
434static inline int page_is_buddy(struct page *page, struct page *buddy,
435 int order)
1da177e4 436{
14e07298 437 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 438 return 0;
13e7444b 439
cb2b95e1
AW
440 if (page_zone_id(page) != page_zone_id(buddy))
441 return 0;
442
443 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 444 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 445 return 1;
676165a8 446 }
6aa3001b 447 return 0;
1da177e4
LT
448}
449
450/*
451 * Freeing function for a buddy system allocator.
452 *
453 * The concept of a buddy system is to maintain direct-mapped table
454 * (containing bit values) for memory blocks of various "orders".
455 * The bottom level table contains the map for the smallest allocatable
456 * units of memory (here, pages), and each level above it describes
457 * pairs of units from the levels below, hence, "buddies".
458 * At a high level, all that happens here is marking the table entry
459 * at the bottom level available, and propagating the changes upward
460 * as necessary, plus some accounting needed to play nicely with other
461 * parts of the VM system.
462 * At each level, we keep a list of pages, which are heads of continuous
676165a8 463 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 464 * order is recorded in page_private(page) field.
1da177e4
LT
465 * So when we are allocating or freeing one, we can derive the state of the
466 * other. That is, if we allocate a small block, and both were
467 * free, the remainder of the region must be split into blocks.
468 * If a block is freed, and its buddy is also free, then this
469 * triggers coalescing into a block of larger size.
470 *
471 * -- wli
472 */
473
48db57f8 474static inline void __free_one_page(struct page *page,
ed0ae21d
MG
475 struct zone *zone, unsigned int order,
476 int migratetype)
1da177e4
LT
477{
478 unsigned long page_idx;
6dda9d55
CZ
479 unsigned long combined_idx;
480 struct page *buddy;
1da177e4 481
224abf92 482 if (unlikely(PageCompound(page)))
8cc3b392
HD
483 if (unlikely(destroy_compound_page(page, order)))
484 return;
1da177e4 485
ed0ae21d
MG
486 VM_BUG_ON(migratetype == -1);
487
1da177e4
LT
488 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489
f2260e6b 490 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 491 VM_BUG_ON(bad_range(zone, page));
1da177e4 492
1da177e4 493 while (order < MAX_ORDER-1) {
1da177e4 494 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 495 if (!page_is_buddy(page, buddy, order))
3c82d0ce 496 break;
13e7444b 497
3c82d0ce 498 /* Our buddy is free, merge with it and move up one order. */
1da177e4 499 list_del(&buddy->lru);
b2a0ac88 500 zone->free_area[order].nr_free--;
1da177e4 501 rmv_page_order(buddy);
13e7444b 502 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
503 page = page + (combined_idx - page_idx);
504 page_idx = combined_idx;
505 order++;
506 }
507 set_page_order(page, order);
6dda9d55
CZ
508
509 /*
510 * If this is not the largest possible page, check if the buddy
511 * of the next-highest order is free. If it is, it's possible
512 * that pages are being freed that will coalesce soon. In case,
513 * that is happening, add the free page to the tail of the list
514 * so it's less likely to be used soon and more likely to be merged
515 * as a higher order page
516 */
517 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
518 struct page *higher_page, *higher_buddy;
519 combined_idx = __find_combined_index(page_idx, order);
520 higher_page = page + combined_idx - page_idx;
521 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
522 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
523 list_add_tail(&page->lru,
524 &zone->free_area[order].free_list[migratetype]);
525 goto out;
526 }
527 }
528
529 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
530out:
1da177e4
LT
531 zone->free_area[order].nr_free++;
532}
533
092cead6
KM
534/*
535 * free_page_mlock() -- clean up attempts to free and mlocked() page.
536 * Page should not be on lru, so no need to fix that up.
537 * free_pages_check() will verify...
538 */
539static inline void free_page_mlock(struct page *page)
540{
092cead6
KM
541 __dec_zone_page_state(page, NR_MLOCK);
542 __count_vm_event(UNEVICTABLE_MLOCKFREED);
543}
092cead6 544
224abf92 545static inline int free_pages_check(struct page *page)
1da177e4 546{
92be2e33
NP
547 if (unlikely(page_mapcount(page) |
548 (page->mapping != NULL) |
a3af9c38 549 (atomic_read(&page->_count) != 0) |
8cc3b392 550 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 551 bad_page(page);
79f4b7bf 552 return 1;
8cc3b392 553 }
79f4b7bf
HD
554 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
555 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
556 return 0;
1da177e4
LT
557}
558
559/*
5f8dcc21 560 * Frees a number of pages from the PCP lists
1da177e4 561 * Assumes all pages on list are in same zone, and of same order.
207f36ee 562 * count is the number of pages to free.
1da177e4
LT
563 *
564 * If the zone was previously in an "all pages pinned" state then look to
565 * see if this freeing clears that state.
566 *
567 * And clear the zone's pages_scanned counter, to hold off the "all pages are
568 * pinned" detection logic.
569 */
5f8dcc21
MG
570static void free_pcppages_bulk(struct zone *zone, int count,
571 struct per_cpu_pages *pcp)
1da177e4 572{
5f8dcc21 573 int migratetype = 0;
a6f9edd6 574 int batch_free = 0;
5f8dcc21 575
c54ad30c 576 spin_lock(&zone->lock);
93e4a89a 577 zone->all_unreclaimable = 0;
1da177e4 578 zone->pages_scanned = 0;
f2260e6b 579
5f8dcc21 580 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 581 while (count) {
48db57f8 582 struct page *page;
5f8dcc21
MG
583 struct list_head *list;
584
585 /*
a6f9edd6
MG
586 * Remove pages from lists in a round-robin fashion. A
587 * batch_free count is maintained that is incremented when an
588 * empty list is encountered. This is so more pages are freed
589 * off fuller lists instead of spinning excessively around empty
590 * lists
5f8dcc21
MG
591 */
592 do {
a6f9edd6 593 batch_free++;
5f8dcc21
MG
594 if (++migratetype == MIGRATE_PCPTYPES)
595 migratetype = 0;
596 list = &pcp->lists[migratetype];
597 } while (list_empty(list));
48db57f8 598
a6f9edd6
MG
599 do {
600 page = list_entry(list->prev, struct page, lru);
601 /* must delete as __free_one_page list manipulates */
602 list_del(&page->lru);
a7016235
HD
603 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
604 __free_one_page(page, zone, 0, page_private(page));
605 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 606 } while (--count && --batch_free && !list_empty(list));
1da177e4 607 }
c54ad30c 608 spin_unlock(&zone->lock);
1da177e4
LT
609}
610
ed0ae21d
MG
611static void free_one_page(struct zone *zone, struct page *page, int order,
612 int migratetype)
1da177e4 613{
006d22d9 614 spin_lock(&zone->lock);
93e4a89a 615 zone->all_unreclaimable = 0;
006d22d9 616 zone->pages_scanned = 0;
f2260e6b
MG
617
618 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 619 __free_one_page(page, zone, order, migratetype);
006d22d9 620 spin_unlock(&zone->lock);
48db57f8
NP
621}
622
ec95f53a 623static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 624{
1da177e4 625 int i;
8cc3b392 626 int bad = 0;
1da177e4 627
f650316c 628 trace_mm_page_free_direct(page, order);
b1eeab67
VN
629 kmemcheck_free_shadow(page, order);
630
ec95f53a
KM
631 for (i = 0; i < (1 << order); i++) {
632 struct page *pg = page + i;
633
634 if (PageAnon(pg))
635 pg->mapping = NULL;
636 bad += free_pages_check(pg);
637 }
8cc3b392 638 if (bad)
ec95f53a 639 return false;
689bcebf 640
3ac7fe5a 641 if (!PageHighMem(page)) {
9858db50 642 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
643 debug_check_no_obj_freed(page_address(page),
644 PAGE_SIZE << order);
645 }
dafb1367 646 arch_free_page(page, order);
48db57f8 647 kernel_map_pages(page, 1 << order, 0);
dafb1367 648
ec95f53a
KM
649 return true;
650}
651
652static void __free_pages_ok(struct page *page, unsigned int order)
653{
654 unsigned long flags;
655 int wasMlocked = __TestClearPageMlocked(page);
656
657 if (!free_pages_prepare(page, order))
658 return;
659
c54ad30c 660 local_irq_save(flags);
c277331d 661 if (unlikely(wasMlocked))
da456f14 662 free_page_mlock(page);
f8891e5e 663 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
664 free_one_page(page_zone(page), page, order,
665 get_pageblock_migratetype(page));
c54ad30c 666 local_irq_restore(flags);
1da177e4
LT
667}
668
a226f6c8
DH
669/*
670 * permit the bootmem allocator to evade page validation on high-order frees
671 */
af370fb8 672void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
673{
674 if (order == 0) {
675 __ClearPageReserved(page);
676 set_page_count(page, 0);
7835e98b 677 set_page_refcounted(page);
545b1ea9 678 __free_page(page);
a226f6c8 679 } else {
a226f6c8
DH
680 int loop;
681
545b1ea9 682 prefetchw(page);
a226f6c8
DH
683 for (loop = 0; loop < BITS_PER_LONG; loop++) {
684 struct page *p = &page[loop];
685
545b1ea9
NP
686 if (loop + 1 < BITS_PER_LONG)
687 prefetchw(p + 1);
a226f6c8
DH
688 __ClearPageReserved(p);
689 set_page_count(p, 0);
690 }
691
7835e98b 692 set_page_refcounted(page);
545b1ea9 693 __free_pages(page, order);
a226f6c8
DH
694 }
695}
696
1da177e4
LT
697
698/*
699 * The order of subdivision here is critical for the IO subsystem.
700 * Please do not alter this order without good reasons and regression
701 * testing. Specifically, as large blocks of memory are subdivided,
702 * the order in which smaller blocks are delivered depends on the order
703 * they're subdivided in this function. This is the primary factor
704 * influencing the order in which pages are delivered to the IO
705 * subsystem according to empirical testing, and this is also justified
706 * by considering the behavior of a buddy system containing a single
707 * large block of memory acted on by a series of small allocations.
708 * This behavior is a critical factor in sglist merging's success.
709 *
710 * -- wli
711 */
085cc7d5 712static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
713 int low, int high, struct free_area *area,
714 int migratetype)
1da177e4
LT
715{
716 unsigned long size = 1 << high;
717
718 while (high > low) {
719 area--;
720 high--;
721 size >>= 1;
725d704e 722 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 723 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
724 area->nr_free++;
725 set_page_order(&page[size], high);
726 }
1da177e4
LT
727}
728
1da177e4
LT
729/*
730 * This page is about to be returned from the page allocator
731 */
2a7684a2 732static inline int check_new_page(struct page *page)
1da177e4 733{
92be2e33
NP
734 if (unlikely(page_mapcount(page) |
735 (page->mapping != NULL) |
a3af9c38 736 (atomic_read(&page->_count) != 0) |
8cc3b392 737 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 738 bad_page(page);
689bcebf 739 return 1;
8cc3b392 740 }
2a7684a2
WF
741 return 0;
742}
743
744static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
745{
746 int i;
747
748 for (i = 0; i < (1 << order); i++) {
749 struct page *p = page + i;
750 if (unlikely(check_new_page(p)))
751 return 1;
752 }
689bcebf 753
4c21e2f2 754 set_page_private(page, 0);
7835e98b 755 set_page_refcounted(page);
cc102509
NP
756
757 arch_alloc_page(page, order);
1da177e4 758 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
759
760 if (gfp_flags & __GFP_ZERO)
761 prep_zero_page(page, order, gfp_flags);
762
763 if (order && (gfp_flags & __GFP_COMP))
764 prep_compound_page(page, order);
765
689bcebf 766 return 0;
1da177e4
LT
767}
768
56fd56b8
MG
769/*
770 * Go through the free lists for the given migratetype and remove
771 * the smallest available page from the freelists
772 */
728ec980
MG
773static inline
774struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
775 int migratetype)
776{
777 unsigned int current_order;
778 struct free_area * area;
779 struct page *page;
780
781 /* Find a page of the appropriate size in the preferred list */
782 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
783 area = &(zone->free_area[current_order]);
784 if (list_empty(&area->free_list[migratetype]))
785 continue;
786
787 page = list_entry(area->free_list[migratetype].next,
788 struct page, lru);
789 list_del(&page->lru);
790 rmv_page_order(page);
791 area->nr_free--;
56fd56b8
MG
792 expand(zone, page, order, current_order, area, migratetype);
793 return page;
794 }
795
796 return NULL;
797}
798
799
b2a0ac88
MG
800/*
801 * This array describes the order lists are fallen back to when
802 * the free lists for the desirable migrate type are depleted
803 */
804static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
805 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
806 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
807 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
808 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
809};
810
c361be55
MG
811/*
812 * Move the free pages in a range to the free lists of the requested type.
d9c23400 813 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
814 * boundary. If alignment is required, use move_freepages_block()
815 */
b69a7288
AB
816static int move_freepages(struct zone *zone,
817 struct page *start_page, struct page *end_page,
818 int migratetype)
c361be55
MG
819{
820 struct page *page;
821 unsigned long order;
d100313f 822 int pages_moved = 0;
c361be55
MG
823
824#ifndef CONFIG_HOLES_IN_ZONE
825 /*
826 * page_zone is not safe to call in this context when
827 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
828 * anyway as we check zone boundaries in move_freepages_block().
829 * Remove at a later date when no bug reports exist related to
ac0e5b7a 830 * grouping pages by mobility
c361be55
MG
831 */
832 BUG_ON(page_zone(start_page) != page_zone(end_page));
833#endif
834
835 for (page = start_page; page <= end_page;) {
344c790e
AL
836 /* Make sure we are not inadvertently changing nodes */
837 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
838
c361be55
MG
839 if (!pfn_valid_within(page_to_pfn(page))) {
840 page++;
841 continue;
842 }
843
844 if (!PageBuddy(page)) {
845 page++;
846 continue;
847 }
848
849 order = page_order(page);
850 list_del(&page->lru);
851 list_add(&page->lru,
852 &zone->free_area[order].free_list[migratetype]);
853 page += 1 << order;
d100313f 854 pages_moved += 1 << order;
c361be55
MG
855 }
856
d100313f 857 return pages_moved;
c361be55
MG
858}
859
b69a7288
AB
860static int move_freepages_block(struct zone *zone, struct page *page,
861 int migratetype)
c361be55
MG
862{
863 unsigned long start_pfn, end_pfn;
864 struct page *start_page, *end_page;
865
866 start_pfn = page_to_pfn(page);
d9c23400 867 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 868 start_page = pfn_to_page(start_pfn);
d9c23400
MG
869 end_page = start_page + pageblock_nr_pages - 1;
870 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
871
872 /* Do not cross zone boundaries */
873 if (start_pfn < zone->zone_start_pfn)
874 start_page = page;
875 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
876 return 0;
877
878 return move_freepages(zone, start_page, end_page, migratetype);
879}
880
2f66a68f
MG
881static void change_pageblock_range(struct page *pageblock_page,
882 int start_order, int migratetype)
883{
884 int nr_pageblocks = 1 << (start_order - pageblock_order);
885
886 while (nr_pageblocks--) {
887 set_pageblock_migratetype(pageblock_page, migratetype);
888 pageblock_page += pageblock_nr_pages;
889 }
890}
891
b2a0ac88 892/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
893static inline struct page *
894__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
895{
896 struct free_area * area;
897 int current_order;
898 struct page *page;
899 int migratetype, i;
900
901 /* Find the largest possible block of pages in the other list */
902 for (current_order = MAX_ORDER-1; current_order >= order;
903 --current_order) {
904 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
905 migratetype = fallbacks[start_migratetype][i];
906
56fd56b8
MG
907 /* MIGRATE_RESERVE handled later if necessary */
908 if (migratetype == MIGRATE_RESERVE)
909 continue;
e010487d 910
b2a0ac88
MG
911 area = &(zone->free_area[current_order]);
912 if (list_empty(&area->free_list[migratetype]))
913 continue;
914
915 page = list_entry(area->free_list[migratetype].next,
916 struct page, lru);
917 area->nr_free--;
918
919 /*
c361be55 920 * If breaking a large block of pages, move all free
46dafbca
MG
921 * pages to the preferred allocation list. If falling
922 * back for a reclaimable kernel allocation, be more
923 * agressive about taking ownership of free pages
b2a0ac88 924 */
d9c23400 925 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
926 start_migratetype == MIGRATE_RECLAIMABLE ||
927 page_group_by_mobility_disabled) {
46dafbca
MG
928 unsigned long pages;
929 pages = move_freepages_block(zone, page,
930 start_migratetype);
931
932 /* Claim the whole block if over half of it is free */
dd5d241e
MG
933 if (pages >= (1 << (pageblock_order-1)) ||
934 page_group_by_mobility_disabled)
46dafbca
MG
935 set_pageblock_migratetype(page,
936 start_migratetype);
937
b2a0ac88 938 migratetype = start_migratetype;
c361be55 939 }
b2a0ac88
MG
940
941 /* Remove the page from the freelists */
942 list_del(&page->lru);
943 rmv_page_order(page);
b2a0ac88 944
2f66a68f
MG
945 /* Take ownership for orders >= pageblock_order */
946 if (current_order >= pageblock_order)
947 change_pageblock_range(page, current_order,
b2a0ac88
MG
948 start_migratetype);
949
950 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
951
952 trace_mm_page_alloc_extfrag(page, order, current_order,
953 start_migratetype, migratetype);
954
b2a0ac88
MG
955 return page;
956 }
957 }
958
728ec980 959 return NULL;
b2a0ac88
MG
960}
961
56fd56b8 962/*
1da177e4
LT
963 * Do the hard work of removing an element from the buddy allocator.
964 * Call me with the zone->lock already held.
965 */
b2a0ac88
MG
966static struct page *__rmqueue(struct zone *zone, unsigned int order,
967 int migratetype)
1da177e4 968{
1da177e4
LT
969 struct page *page;
970
728ec980 971retry_reserve:
56fd56b8 972 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 973
728ec980 974 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 975 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 976
728ec980
MG
977 /*
978 * Use MIGRATE_RESERVE rather than fail an allocation. goto
979 * is used because __rmqueue_smallest is an inline function
980 * and we want just one call site
981 */
982 if (!page) {
983 migratetype = MIGRATE_RESERVE;
984 goto retry_reserve;
985 }
986 }
987
0d3d062a 988 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 989 return page;
1da177e4
LT
990}
991
992/*
993 * Obtain a specified number of elements from the buddy allocator, all under
994 * a single hold of the lock, for efficiency. Add them to the supplied list.
995 * Returns the number of new pages which were placed at *list.
996 */
997static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 998 unsigned long count, struct list_head *list,
e084b2d9 999 int migratetype, int cold)
1da177e4 1000{
1da177e4 1001 int i;
1da177e4 1002
c54ad30c 1003 spin_lock(&zone->lock);
1da177e4 1004 for (i = 0; i < count; ++i) {
b2a0ac88 1005 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1006 if (unlikely(page == NULL))
1da177e4 1007 break;
81eabcbe
MG
1008
1009 /*
1010 * Split buddy pages returned by expand() are received here
1011 * in physical page order. The page is added to the callers and
1012 * list and the list head then moves forward. From the callers
1013 * perspective, the linked list is ordered by page number in
1014 * some conditions. This is useful for IO devices that can
1015 * merge IO requests if the physical pages are ordered
1016 * properly.
1017 */
e084b2d9
MG
1018 if (likely(cold == 0))
1019 list_add(&page->lru, list);
1020 else
1021 list_add_tail(&page->lru, list);
535131e6 1022 set_page_private(page, migratetype);
81eabcbe 1023 list = &page->lru;
1da177e4 1024 }
f2260e6b 1025 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1026 spin_unlock(&zone->lock);
085cc7d5 1027 return i;
1da177e4
LT
1028}
1029
4ae7c039 1030#ifdef CONFIG_NUMA
8fce4d8e 1031/*
4037d452
CL
1032 * Called from the vmstat counter updater to drain pagesets of this
1033 * currently executing processor on remote nodes after they have
1034 * expired.
1035 *
879336c3
CL
1036 * Note that this function must be called with the thread pinned to
1037 * a single processor.
8fce4d8e 1038 */
4037d452 1039void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1040{
4ae7c039 1041 unsigned long flags;
4037d452 1042 int to_drain;
4ae7c039 1043
4037d452
CL
1044 local_irq_save(flags);
1045 if (pcp->count >= pcp->batch)
1046 to_drain = pcp->batch;
1047 else
1048 to_drain = pcp->count;
5f8dcc21 1049 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1050 pcp->count -= to_drain;
1051 local_irq_restore(flags);
4ae7c039
CL
1052}
1053#endif
1054
9f8f2172
CL
1055/*
1056 * Drain pages of the indicated processor.
1057 *
1058 * The processor must either be the current processor and the
1059 * thread pinned to the current processor or a processor that
1060 * is not online.
1061 */
1062static void drain_pages(unsigned int cpu)
1da177e4 1063{
c54ad30c 1064 unsigned long flags;
1da177e4 1065 struct zone *zone;
1da177e4 1066
ee99c71c 1067 for_each_populated_zone(zone) {
1da177e4 1068 struct per_cpu_pageset *pset;
3dfa5721 1069 struct per_cpu_pages *pcp;
1da177e4 1070
99dcc3e5
CL
1071 local_irq_save(flags);
1072 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1073
1074 pcp = &pset->pcp;
5f8dcc21 1075 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1076 pcp->count = 0;
1077 local_irq_restore(flags);
1da177e4
LT
1078 }
1079}
1da177e4 1080
9f8f2172
CL
1081/*
1082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1083 */
1084void drain_local_pages(void *arg)
1085{
1086 drain_pages(smp_processor_id());
1087}
1088
1089/*
1090 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1091 */
1092void drain_all_pages(void)
1093{
15c8b6c1 1094 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1095}
1096
296699de 1097#ifdef CONFIG_HIBERNATION
1da177e4
LT
1098
1099void mark_free_pages(struct zone *zone)
1100{
f623f0db
RW
1101 unsigned long pfn, max_zone_pfn;
1102 unsigned long flags;
b2a0ac88 1103 int order, t;
1da177e4
LT
1104 struct list_head *curr;
1105
1106 if (!zone->spanned_pages)
1107 return;
1108
1109 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1110
1111 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1112 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1113 if (pfn_valid(pfn)) {
1114 struct page *page = pfn_to_page(pfn);
1115
7be98234
RW
1116 if (!swsusp_page_is_forbidden(page))
1117 swsusp_unset_page_free(page);
f623f0db 1118 }
1da177e4 1119
b2a0ac88
MG
1120 for_each_migratetype_order(order, t) {
1121 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1122 unsigned long i;
1da177e4 1123
f623f0db
RW
1124 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1125 for (i = 0; i < (1UL << order); i++)
7be98234 1126 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1127 }
b2a0ac88 1128 }
1da177e4
LT
1129 spin_unlock_irqrestore(&zone->lock, flags);
1130}
e2c55dc8 1131#endif /* CONFIG_PM */
1da177e4 1132
1da177e4
LT
1133/*
1134 * Free a 0-order page
fc91668e 1135 * cold == 1 ? free a cold page : free a hot page
1da177e4 1136 */
fc91668e 1137void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1138{
1139 struct zone *zone = page_zone(page);
1140 struct per_cpu_pages *pcp;
1141 unsigned long flags;
5f8dcc21 1142 int migratetype;
451ea25d 1143 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1144
ec95f53a 1145 if (!free_pages_prepare(page, 0))
689bcebf
HD
1146 return;
1147
5f8dcc21
MG
1148 migratetype = get_pageblock_migratetype(page);
1149 set_page_private(page, migratetype);
1da177e4 1150 local_irq_save(flags);
c277331d 1151 if (unlikely(wasMlocked))
da456f14 1152 free_page_mlock(page);
f8891e5e 1153 __count_vm_event(PGFREE);
da456f14 1154
5f8dcc21
MG
1155 /*
1156 * We only track unmovable, reclaimable and movable on pcp lists.
1157 * Free ISOLATE pages back to the allocator because they are being
1158 * offlined but treat RESERVE as movable pages so we can get those
1159 * areas back if necessary. Otherwise, we may have to free
1160 * excessively into the page allocator
1161 */
1162 if (migratetype >= MIGRATE_PCPTYPES) {
1163 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1164 free_one_page(zone, page, 0, migratetype);
1165 goto out;
1166 }
1167 migratetype = MIGRATE_MOVABLE;
1168 }
1169
99dcc3e5 1170 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1171 if (cold)
5f8dcc21 1172 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1173 else
5f8dcc21 1174 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1175 pcp->count++;
48db57f8 1176 if (pcp->count >= pcp->high) {
5f8dcc21 1177 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1178 pcp->count -= pcp->batch;
1179 }
5f8dcc21
MG
1180
1181out:
1da177e4 1182 local_irq_restore(flags);
1da177e4
LT
1183}
1184
8dfcc9ba
NP
1185/*
1186 * split_page takes a non-compound higher-order page, and splits it into
1187 * n (1<<order) sub-pages: page[0..n]
1188 * Each sub-page must be freed individually.
1189 *
1190 * Note: this is probably too low level an operation for use in drivers.
1191 * Please consult with lkml before using this in your driver.
1192 */
1193void split_page(struct page *page, unsigned int order)
1194{
1195 int i;
1196
725d704e
NP
1197 VM_BUG_ON(PageCompound(page));
1198 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1199
1200#ifdef CONFIG_KMEMCHECK
1201 /*
1202 * Split shadow pages too, because free(page[0]) would
1203 * otherwise free the whole shadow.
1204 */
1205 if (kmemcheck_page_is_tracked(page))
1206 split_page(virt_to_page(page[0].shadow), order);
1207#endif
1208
7835e98b
NP
1209 for (i = 1; i < (1 << order); i++)
1210 set_page_refcounted(page + i);
8dfcc9ba 1211}
8dfcc9ba 1212
748446bb
MG
1213/*
1214 * Similar to split_page except the page is already free. As this is only
1215 * being used for migration, the migratetype of the block also changes.
1216 * As this is called with interrupts disabled, the caller is responsible
1217 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1218 * are enabled.
1219 *
1220 * Note: this is probably too low level an operation for use in drivers.
1221 * Please consult with lkml before using this in your driver.
1222 */
1223int split_free_page(struct page *page)
1224{
1225 unsigned int order;
1226 unsigned long watermark;
1227 struct zone *zone;
1228
1229 BUG_ON(!PageBuddy(page));
1230
1231 zone = page_zone(page);
1232 order = page_order(page);
1233
1234 /* Obey watermarks as if the page was being allocated */
1235 watermark = low_wmark_pages(zone) + (1 << order);
1236 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1237 return 0;
1238
1239 /* Remove page from free list */
1240 list_del(&page->lru);
1241 zone->free_area[order].nr_free--;
1242 rmv_page_order(page);
1243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1244
1245 /* Split into individual pages */
1246 set_page_refcounted(page);
1247 split_page(page, order);
1248
1249 if (order >= pageblock_order - 1) {
1250 struct page *endpage = page + (1 << order) - 1;
1251 for (; page < endpage; page += pageblock_nr_pages)
1252 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1253 }
1254
1255 return 1 << order;
1256}
1257
1da177e4
LT
1258/*
1259 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1260 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1261 * or two.
1262 */
0a15c3e9
MG
1263static inline
1264struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1265 struct zone *zone, int order, gfp_t gfp_flags,
1266 int migratetype)
1da177e4
LT
1267{
1268 unsigned long flags;
689bcebf 1269 struct page *page;
1da177e4
LT
1270 int cold = !!(gfp_flags & __GFP_COLD);
1271
689bcebf 1272again:
48db57f8 1273 if (likely(order == 0)) {
1da177e4 1274 struct per_cpu_pages *pcp;
5f8dcc21 1275 struct list_head *list;
1da177e4 1276
1da177e4 1277 local_irq_save(flags);
99dcc3e5
CL
1278 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1279 list = &pcp->lists[migratetype];
5f8dcc21 1280 if (list_empty(list)) {
535131e6 1281 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1282 pcp->batch, list,
e084b2d9 1283 migratetype, cold);
5f8dcc21 1284 if (unlikely(list_empty(list)))
6fb332fa 1285 goto failed;
535131e6 1286 }
b92a6edd 1287
5f8dcc21
MG
1288 if (cold)
1289 page = list_entry(list->prev, struct page, lru);
1290 else
1291 page = list_entry(list->next, struct page, lru);
1292
b92a6edd
MG
1293 list_del(&page->lru);
1294 pcp->count--;
7fb1d9fc 1295 } else {
dab48dab
AM
1296 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1297 /*
1298 * __GFP_NOFAIL is not to be used in new code.
1299 *
1300 * All __GFP_NOFAIL callers should be fixed so that they
1301 * properly detect and handle allocation failures.
1302 *
1303 * We most definitely don't want callers attempting to
4923abf9 1304 * allocate greater than order-1 page units with
dab48dab
AM
1305 * __GFP_NOFAIL.
1306 */
4923abf9 1307 WARN_ON_ONCE(order > 1);
dab48dab 1308 }
1da177e4 1309 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1310 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1311 spin_unlock(&zone->lock);
1312 if (!page)
1313 goto failed;
6ccf80eb 1314 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1315 }
1316
f8891e5e 1317 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1318 zone_statistics(preferred_zone, zone);
a74609fa 1319 local_irq_restore(flags);
1da177e4 1320
725d704e 1321 VM_BUG_ON(bad_range(zone, page));
17cf4406 1322 if (prep_new_page(page, order, gfp_flags))
a74609fa 1323 goto again;
1da177e4 1324 return page;
a74609fa
NP
1325
1326failed:
1327 local_irq_restore(flags);
a74609fa 1328 return NULL;
1da177e4
LT
1329}
1330
41858966
MG
1331/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1332#define ALLOC_WMARK_MIN WMARK_MIN
1333#define ALLOC_WMARK_LOW WMARK_LOW
1334#define ALLOC_WMARK_HIGH WMARK_HIGH
1335#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1336
1337/* Mask to get the watermark bits */
1338#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1339
3148890b
NP
1340#define ALLOC_HARDER 0x10 /* try to alloc harder */
1341#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1342#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1343
933e312e
AM
1344#ifdef CONFIG_FAIL_PAGE_ALLOC
1345
1346static struct fail_page_alloc_attr {
1347 struct fault_attr attr;
1348
1349 u32 ignore_gfp_highmem;
1350 u32 ignore_gfp_wait;
54114994 1351 u32 min_order;
933e312e
AM
1352
1353#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1354
1355 struct dentry *ignore_gfp_highmem_file;
1356 struct dentry *ignore_gfp_wait_file;
54114994 1357 struct dentry *min_order_file;
933e312e
AM
1358
1359#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1360
1361} fail_page_alloc = {
1362 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1363 .ignore_gfp_wait = 1,
1364 .ignore_gfp_highmem = 1,
54114994 1365 .min_order = 1,
933e312e
AM
1366};
1367
1368static int __init setup_fail_page_alloc(char *str)
1369{
1370 return setup_fault_attr(&fail_page_alloc.attr, str);
1371}
1372__setup("fail_page_alloc=", setup_fail_page_alloc);
1373
1374static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1375{
54114994
AM
1376 if (order < fail_page_alloc.min_order)
1377 return 0;
933e312e
AM
1378 if (gfp_mask & __GFP_NOFAIL)
1379 return 0;
1380 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1381 return 0;
1382 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1383 return 0;
1384
1385 return should_fail(&fail_page_alloc.attr, 1 << order);
1386}
1387
1388#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1389
1390static int __init fail_page_alloc_debugfs(void)
1391{
1392 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1393 struct dentry *dir;
1394 int err;
1395
1396 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1397 "fail_page_alloc");
1398 if (err)
1399 return err;
1400 dir = fail_page_alloc.attr.dentries.dir;
1401
1402 fail_page_alloc.ignore_gfp_wait_file =
1403 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1404 &fail_page_alloc.ignore_gfp_wait);
1405
1406 fail_page_alloc.ignore_gfp_highmem_file =
1407 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1408 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1409 fail_page_alloc.min_order_file =
1410 debugfs_create_u32("min-order", mode, dir,
1411 &fail_page_alloc.min_order);
933e312e
AM
1412
1413 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1414 !fail_page_alloc.ignore_gfp_highmem_file ||
1415 !fail_page_alloc.min_order_file) {
933e312e
AM
1416 err = -ENOMEM;
1417 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1418 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1419 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1420 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1421 }
1422
1423 return err;
1424}
1425
1426late_initcall(fail_page_alloc_debugfs);
1427
1428#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1429
1430#else /* CONFIG_FAIL_PAGE_ALLOC */
1431
1432static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1433{
1434 return 0;
1435}
1436
1437#endif /* CONFIG_FAIL_PAGE_ALLOC */
1438
1da177e4
LT
1439/*
1440 * Return 1 if free pages are above 'mark'. This takes into account the order
1441 * of the allocation.
1442 */
1443int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1444 int classzone_idx, int alloc_flags)
1da177e4
LT
1445{
1446 /* free_pages my go negative - that's OK */
d23ad423
CL
1447 long min = mark;
1448 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1449 int o;
1450
7fb1d9fc 1451 if (alloc_flags & ALLOC_HIGH)
1da177e4 1452 min -= min / 2;
7fb1d9fc 1453 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1454 min -= min / 4;
1455
1456 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1457 return 0;
1458 for (o = 0; o < order; o++) {
1459 /* At the next order, this order's pages become unavailable */
1460 free_pages -= z->free_area[o].nr_free << o;
1461
1462 /* Require fewer higher order pages to be free */
1463 min >>= 1;
1464
1465 if (free_pages <= min)
1466 return 0;
1467 }
1468 return 1;
1469}
1470
9276b1bc
PJ
1471#ifdef CONFIG_NUMA
1472/*
1473 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1474 * skip over zones that are not allowed by the cpuset, or that have
1475 * been recently (in last second) found to be nearly full. See further
1476 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1477 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1478 *
1479 * If the zonelist cache is present in the passed in zonelist, then
1480 * returns a pointer to the allowed node mask (either the current
37b07e41 1481 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1482 *
1483 * If the zonelist cache is not available for this zonelist, does
1484 * nothing and returns NULL.
1485 *
1486 * If the fullzones BITMAP in the zonelist cache is stale (more than
1487 * a second since last zap'd) then we zap it out (clear its bits.)
1488 *
1489 * We hold off even calling zlc_setup, until after we've checked the
1490 * first zone in the zonelist, on the theory that most allocations will
1491 * be satisfied from that first zone, so best to examine that zone as
1492 * quickly as we can.
1493 */
1494static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1495{
1496 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1497 nodemask_t *allowednodes; /* zonelist_cache approximation */
1498
1499 zlc = zonelist->zlcache_ptr;
1500 if (!zlc)
1501 return NULL;
1502
f05111f5 1503 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1504 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1505 zlc->last_full_zap = jiffies;
1506 }
1507
1508 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1509 &cpuset_current_mems_allowed :
37b07e41 1510 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1511 return allowednodes;
1512}
1513
1514/*
1515 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1516 * if it is worth looking at further for free memory:
1517 * 1) Check that the zone isn't thought to be full (doesn't have its
1518 * bit set in the zonelist_cache fullzones BITMAP).
1519 * 2) Check that the zones node (obtained from the zonelist_cache
1520 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1521 * Return true (non-zero) if zone is worth looking at further, or
1522 * else return false (zero) if it is not.
1523 *
1524 * This check -ignores- the distinction between various watermarks,
1525 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1526 * found to be full for any variation of these watermarks, it will
1527 * be considered full for up to one second by all requests, unless
1528 * we are so low on memory on all allowed nodes that we are forced
1529 * into the second scan of the zonelist.
1530 *
1531 * In the second scan we ignore this zonelist cache and exactly
1532 * apply the watermarks to all zones, even it is slower to do so.
1533 * We are low on memory in the second scan, and should leave no stone
1534 * unturned looking for a free page.
1535 */
dd1a239f 1536static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1537 nodemask_t *allowednodes)
1538{
1539 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1540 int i; /* index of *z in zonelist zones */
1541 int n; /* node that zone *z is on */
1542
1543 zlc = zonelist->zlcache_ptr;
1544 if (!zlc)
1545 return 1;
1546
dd1a239f 1547 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1548 n = zlc->z_to_n[i];
1549
1550 /* This zone is worth trying if it is allowed but not full */
1551 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1552}
1553
1554/*
1555 * Given 'z' scanning a zonelist, set the corresponding bit in
1556 * zlc->fullzones, so that subsequent attempts to allocate a page
1557 * from that zone don't waste time re-examining it.
1558 */
dd1a239f 1559static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1560{
1561 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1562 int i; /* index of *z in zonelist zones */
1563
1564 zlc = zonelist->zlcache_ptr;
1565 if (!zlc)
1566 return;
1567
dd1a239f 1568 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1569
1570 set_bit(i, zlc->fullzones);
1571}
1572
1573#else /* CONFIG_NUMA */
1574
1575static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1576{
1577 return NULL;
1578}
1579
dd1a239f 1580static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1581 nodemask_t *allowednodes)
1582{
1583 return 1;
1584}
1585
dd1a239f 1586static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1587{
1588}
1589#endif /* CONFIG_NUMA */
1590
7fb1d9fc 1591/*
0798e519 1592 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1593 * a page.
1594 */
1595static struct page *
19770b32 1596get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1597 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1598 struct zone *preferred_zone, int migratetype)
753ee728 1599{
dd1a239f 1600 struct zoneref *z;
7fb1d9fc 1601 struct page *page = NULL;
54a6eb5c 1602 int classzone_idx;
5117f45d 1603 struct zone *zone;
9276b1bc
PJ
1604 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1605 int zlc_active = 0; /* set if using zonelist_cache */
1606 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1607
19770b32 1608 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1609zonelist_scan:
7fb1d9fc 1610 /*
9276b1bc 1611 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1612 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1613 */
19770b32
MG
1614 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1615 high_zoneidx, nodemask) {
9276b1bc
PJ
1616 if (NUMA_BUILD && zlc_active &&
1617 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1618 continue;
7fb1d9fc 1619 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1620 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1621 goto try_next_zone;
7fb1d9fc 1622
41858966 1623 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1624 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1625 unsigned long mark;
fa5e084e
MG
1626 int ret;
1627
41858966 1628 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1629 if (zone_watermark_ok(zone, order, mark,
1630 classzone_idx, alloc_flags))
1631 goto try_this_zone;
1632
1633 if (zone_reclaim_mode == 0)
1634 goto this_zone_full;
1635
1636 ret = zone_reclaim(zone, gfp_mask, order);
1637 switch (ret) {
1638 case ZONE_RECLAIM_NOSCAN:
1639 /* did not scan */
1640 goto try_next_zone;
1641 case ZONE_RECLAIM_FULL:
1642 /* scanned but unreclaimable */
1643 goto this_zone_full;
1644 default:
1645 /* did we reclaim enough */
1646 if (!zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
9276b1bc 1648 goto this_zone_full;
0798e519 1649 }
7fb1d9fc
RS
1650 }
1651
fa5e084e 1652try_this_zone:
3dd28266
MG
1653 page = buffered_rmqueue(preferred_zone, zone, order,
1654 gfp_mask, migratetype);
0798e519 1655 if (page)
7fb1d9fc 1656 break;
9276b1bc
PJ
1657this_zone_full:
1658 if (NUMA_BUILD)
1659 zlc_mark_zone_full(zonelist, z);
1660try_next_zone:
62bc62a8 1661 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1662 /*
1663 * we do zlc_setup after the first zone is tried but only
1664 * if there are multiple nodes make it worthwhile
1665 */
9276b1bc
PJ
1666 allowednodes = zlc_setup(zonelist, alloc_flags);
1667 zlc_active = 1;
1668 did_zlc_setup = 1;
1669 }
54a6eb5c 1670 }
9276b1bc
PJ
1671
1672 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1673 /* Disable zlc cache for second zonelist scan */
1674 zlc_active = 0;
1675 goto zonelist_scan;
1676 }
7fb1d9fc 1677 return page;
753ee728
MH
1678}
1679
11e33f6a
MG
1680static inline int
1681should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1682 unsigned long pages_reclaimed)
1da177e4 1683{
11e33f6a
MG
1684 /* Do not loop if specifically requested */
1685 if (gfp_mask & __GFP_NORETRY)
1686 return 0;
1da177e4 1687
11e33f6a
MG
1688 /*
1689 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1690 * means __GFP_NOFAIL, but that may not be true in other
1691 * implementations.
1692 */
1693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1694 return 1;
1695
1696 /*
1697 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1698 * specified, then we retry until we no longer reclaim any pages
1699 * (above), or we've reclaimed an order of pages at least as
1700 * large as the allocation's order. In both cases, if the
1701 * allocation still fails, we stop retrying.
1702 */
1703 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1704 return 1;
cf40bd16 1705
11e33f6a
MG
1706 /*
1707 * Don't let big-order allocations loop unless the caller
1708 * explicitly requests that.
1709 */
1710 if (gfp_mask & __GFP_NOFAIL)
1711 return 1;
1da177e4 1712
11e33f6a
MG
1713 return 0;
1714}
933e312e 1715
11e33f6a
MG
1716static inline struct page *
1717__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1718 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1719 nodemask_t *nodemask, struct zone *preferred_zone,
1720 int migratetype)
11e33f6a
MG
1721{
1722 struct page *page;
1723
1724 /* Acquire the OOM killer lock for the zones in zonelist */
1725 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1726 schedule_timeout_uninterruptible(1);
1da177e4
LT
1727 return NULL;
1728 }
6b1de916 1729
11e33f6a
MG
1730 /*
1731 * Go through the zonelist yet one more time, keep very high watermark
1732 * here, this is only to catch a parallel oom killing, we must fail if
1733 * we're still under heavy pressure.
1734 */
1735 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1736 order, zonelist, high_zoneidx,
5117f45d 1737 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1738 preferred_zone, migratetype);
7fb1d9fc 1739 if (page)
11e33f6a
MG
1740 goto out;
1741
4365a567
KH
1742 if (!(gfp_mask & __GFP_NOFAIL)) {
1743 /* The OOM killer will not help higher order allocs */
1744 if (order > PAGE_ALLOC_COSTLY_ORDER)
1745 goto out;
1746 /*
1747 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1748 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1749 * The caller should handle page allocation failure by itself if
1750 * it specifies __GFP_THISNODE.
1751 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1752 */
1753 if (gfp_mask & __GFP_THISNODE)
1754 goto out;
1755 }
11e33f6a 1756 /* Exhausted what can be done so it's blamo time */
4365a567 1757 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1758
1759out:
1760 clear_zonelist_oom(zonelist, gfp_mask);
1761 return page;
1762}
1763
56de7263
MG
1764#ifdef CONFIG_COMPACTION
1765/* Try memory compaction for high-order allocations before reclaim */
1766static struct page *
1767__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1768 struct zonelist *zonelist, enum zone_type high_zoneidx,
1769 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1770 int migratetype, unsigned long *did_some_progress)
1771{
1772 struct page *page;
1773
4f92e258 1774 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1775 return NULL;
1776
1777 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1778 nodemask);
1779 if (*did_some_progress != COMPACT_SKIPPED) {
1780
1781 /* Page migration frees to the PCP lists but we want merging */
1782 drain_pages(get_cpu());
1783 put_cpu();
1784
1785 page = get_page_from_freelist(gfp_mask, nodemask,
1786 order, zonelist, high_zoneidx,
1787 alloc_flags, preferred_zone,
1788 migratetype);
1789 if (page) {
4f92e258
MG
1790 preferred_zone->compact_considered = 0;
1791 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1792 count_vm_event(COMPACTSUCCESS);
1793 return page;
1794 }
1795
1796 /*
1797 * It's bad if compaction run occurs and fails.
1798 * The most likely reason is that pages exist,
1799 * but not enough to satisfy watermarks.
1800 */
1801 count_vm_event(COMPACTFAIL);
4f92e258 1802 defer_compaction(preferred_zone);
56de7263
MG
1803
1804 cond_resched();
1805 }
1806
1807 return NULL;
1808}
1809#else
1810static inline struct page *
1811__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1812 struct zonelist *zonelist, enum zone_type high_zoneidx,
1813 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1814 int migratetype, unsigned long *did_some_progress)
1815{
1816 return NULL;
1817}
1818#endif /* CONFIG_COMPACTION */
1819
11e33f6a
MG
1820/* The really slow allocator path where we enter direct reclaim */
1821static inline struct page *
1822__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1823 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1824 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1825 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1826{
1827 struct page *page = NULL;
1828 struct reclaim_state reclaim_state;
1829 struct task_struct *p = current;
1830
1831 cond_resched();
1832
1833 /* We now go into synchronous reclaim */
1834 cpuset_memory_pressure_bump();
11e33f6a
MG
1835 p->flags |= PF_MEMALLOC;
1836 lockdep_set_current_reclaim_state(gfp_mask);
1837 reclaim_state.reclaimed_slab = 0;
1838 p->reclaim_state = &reclaim_state;
1839
1840 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1841
1842 p->reclaim_state = NULL;
1843 lockdep_clear_current_reclaim_state();
1844 p->flags &= ~PF_MEMALLOC;
1845
1846 cond_resched();
1847
1848 if (order != 0)
1849 drain_all_pages();
1850
1851 if (likely(*did_some_progress))
1852 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1853 zonelist, high_zoneidx,
3dd28266
MG
1854 alloc_flags, preferred_zone,
1855 migratetype);
11e33f6a
MG
1856 return page;
1857}
1858
1da177e4 1859/*
11e33f6a
MG
1860 * This is called in the allocator slow-path if the allocation request is of
1861 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1862 */
11e33f6a
MG
1863static inline struct page *
1864__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1865 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1866 nodemask_t *nodemask, struct zone *preferred_zone,
1867 int migratetype)
11e33f6a
MG
1868{
1869 struct page *page;
1870
1871 do {
1872 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1873 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1874 preferred_zone, migratetype);
11e33f6a
MG
1875
1876 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1877 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1878 } while (!page && (gfp_mask & __GFP_NOFAIL));
1879
1880 return page;
1881}
1882
1883static inline
1884void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1885 enum zone_type high_zoneidx)
1da177e4 1886{
dd1a239f
MG
1887 struct zoneref *z;
1888 struct zone *zone;
1da177e4 1889
11e33f6a
MG
1890 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1891 wakeup_kswapd(zone, order);
1892}
cf40bd16 1893
341ce06f
PZ
1894static inline int
1895gfp_to_alloc_flags(gfp_t gfp_mask)
1896{
1897 struct task_struct *p = current;
1898 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1899 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1900
a56f57ff
MG
1901 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1902 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1903
341ce06f
PZ
1904 /*
1905 * The caller may dip into page reserves a bit more if the caller
1906 * cannot run direct reclaim, or if the caller has realtime scheduling
1907 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1908 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1909 */
a56f57ff 1910 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1911
341ce06f
PZ
1912 if (!wait) {
1913 alloc_flags |= ALLOC_HARDER;
523b9458 1914 /*
341ce06f
PZ
1915 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1916 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1917 */
341ce06f 1918 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1919 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1920 alloc_flags |= ALLOC_HARDER;
1921
1922 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1923 if (!in_interrupt() &&
1924 ((p->flags & PF_MEMALLOC) ||
1925 unlikely(test_thread_flag(TIF_MEMDIE))))
1926 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1927 }
6b1de916 1928
341ce06f
PZ
1929 return alloc_flags;
1930}
1931
11e33f6a
MG
1932static inline struct page *
1933__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1934 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1935 nodemask_t *nodemask, struct zone *preferred_zone,
1936 int migratetype)
11e33f6a
MG
1937{
1938 const gfp_t wait = gfp_mask & __GFP_WAIT;
1939 struct page *page = NULL;
1940 int alloc_flags;
1941 unsigned long pages_reclaimed = 0;
1942 unsigned long did_some_progress;
1943 struct task_struct *p = current;
1da177e4 1944
72807a74
MG
1945 /*
1946 * In the slowpath, we sanity check order to avoid ever trying to
1947 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1948 * be using allocators in order of preference for an area that is
1949 * too large.
1950 */
1fc28b70
MG
1951 if (order >= MAX_ORDER) {
1952 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1953 return NULL;
1fc28b70 1954 }
1da177e4 1955
952f3b51
CL
1956 /*
1957 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1958 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1959 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1960 * using a larger set of nodes after it has established that the
1961 * allowed per node queues are empty and that nodes are
1962 * over allocated.
1963 */
1964 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1965 goto nopage;
1966
cc4a6851 1967restart:
11e33f6a 1968 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1969
9bf2229f 1970 /*
7fb1d9fc
RS
1971 * OK, we're below the kswapd watermark and have kicked background
1972 * reclaim. Now things get more complex, so set up alloc_flags according
1973 * to how we want to proceed.
9bf2229f 1974 */
341ce06f 1975 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1976
341ce06f 1977 /* This is the last chance, in general, before the goto nopage. */
19770b32 1978 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1979 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1980 preferred_zone, migratetype);
7fb1d9fc
RS
1981 if (page)
1982 goto got_pg;
1da177e4 1983
b43a57bb 1984rebalance:
11e33f6a 1985 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1986 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1987 page = __alloc_pages_high_priority(gfp_mask, order,
1988 zonelist, high_zoneidx, nodemask,
1989 preferred_zone, migratetype);
1990 if (page)
1991 goto got_pg;
1da177e4
LT
1992 }
1993
1994 /* Atomic allocations - we can't balance anything */
1995 if (!wait)
1996 goto nopage;
1997
341ce06f
PZ
1998 /* Avoid recursion of direct reclaim */
1999 if (p->flags & PF_MEMALLOC)
2000 goto nopage;
2001
6583bb64
DR
2002 /* Avoid allocations with no watermarks from looping endlessly */
2003 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2004 goto nopage;
2005
56de7263
MG
2006 /* Try direct compaction */
2007 page = __alloc_pages_direct_compact(gfp_mask, order,
2008 zonelist, high_zoneidx,
2009 nodemask,
2010 alloc_flags, preferred_zone,
2011 migratetype, &did_some_progress);
2012 if (page)
2013 goto got_pg;
2014
11e33f6a
MG
2015 /* Try direct reclaim and then allocating */
2016 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2017 zonelist, high_zoneidx,
2018 nodemask,
5117f45d 2019 alloc_flags, preferred_zone,
3dd28266 2020 migratetype, &did_some_progress);
11e33f6a
MG
2021 if (page)
2022 goto got_pg;
1da177e4 2023
e33c3b5e 2024 /*
11e33f6a
MG
2025 * If we failed to make any progress reclaiming, then we are
2026 * running out of options and have to consider going OOM
e33c3b5e 2027 */
11e33f6a
MG
2028 if (!did_some_progress) {
2029 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2030 if (oom_killer_disabled)
2031 goto nopage;
11e33f6a
MG
2032 page = __alloc_pages_may_oom(gfp_mask, order,
2033 zonelist, high_zoneidx,
3dd28266
MG
2034 nodemask, preferred_zone,
2035 migratetype);
11e33f6a
MG
2036 if (page)
2037 goto got_pg;
1da177e4 2038
11e33f6a 2039 /*
82553a93
DR
2040 * The OOM killer does not trigger for high-order
2041 * ~__GFP_NOFAIL allocations so if no progress is being
2042 * made, there are no other options and retrying is
2043 * unlikely to help.
11e33f6a 2044 */
82553a93
DR
2045 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2046 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 2047 goto nopage;
e2c55dc8 2048
ff0ceb9d
DR
2049 goto restart;
2050 }
1da177e4
LT
2051 }
2052
11e33f6a 2053 /* Check if we should retry the allocation */
a41f24ea 2054 pages_reclaimed += did_some_progress;
11e33f6a
MG
2055 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2056 /* Wait for some write requests to complete then retry */
8aa7e847 2057 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2058 goto rebalance;
2059 }
2060
2061nopage:
2062 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2063 printk(KERN_WARNING "%s: page allocation failure."
2064 " order:%d, mode:0x%x\n",
2065 p->comm, order, gfp_mask);
2066 dump_stack();
578c2fd6 2067 show_mem();
1da177e4 2068 }
b1eeab67 2069 return page;
1da177e4 2070got_pg:
b1eeab67
VN
2071 if (kmemcheck_enabled)
2072 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2073 return page;
11e33f6a 2074
1da177e4 2075}
11e33f6a
MG
2076
2077/*
2078 * This is the 'heart' of the zoned buddy allocator.
2079 */
2080struct page *
2081__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2082 struct zonelist *zonelist, nodemask_t *nodemask)
2083{
2084 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2085 struct zone *preferred_zone;
11e33f6a 2086 struct page *page;
3dd28266 2087 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2088
dcce284a
BH
2089 gfp_mask &= gfp_allowed_mask;
2090
11e33f6a
MG
2091 lockdep_trace_alloc(gfp_mask);
2092
2093 might_sleep_if(gfp_mask & __GFP_WAIT);
2094
2095 if (should_fail_alloc_page(gfp_mask, order))
2096 return NULL;
2097
2098 /*
2099 * Check the zones suitable for the gfp_mask contain at least one
2100 * valid zone. It's possible to have an empty zonelist as a result
2101 * of GFP_THISNODE and a memoryless node
2102 */
2103 if (unlikely(!zonelist->_zonerefs->zone))
2104 return NULL;
2105
c0ff7453 2106 get_mems_allowed();
5117f45d
MG
2107 /* The preferred zone is used for statistics later */
2108 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2109 if (!preferred_zone) {
2110 put_mems_allowed();
5117f45d 2111 return NULL;
c0ff7453 2112 }
5117f45d
MG
2113
2114 /* First allocation attempt */
11e33f6a 2115 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2116 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2117 preferred_zone, migratetype);
11e33f6a
MG
2118 if (unlikely(!page))
2119 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2120 zonelist, high_zoneidx, nodemask,
3dd28266 2121 preferred_zone, migratetype);
c0ff7453 2122 put_mems_allowed();
11e33f6a 2123
4b4f278c 2124 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2125 return page;
1da177e4 2126}
d239171e 2127EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2128
2129/*
2130 * Common helper functions.
2131 */
920c7a5d 2132unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2133{
945a1113
AM
2134 struct page *page;
2135
2136 /*
2137 * __get_free_pages() returns a 32-bit address, which cannot represent
2138 * a highmem page
2139 */
2140 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2141
1da177e4
LT
2142 page = alloc_pages(gfp_mask, order);
2143 if (!page)
2144 return 0;
2145 return (unsigned long) page_address(page);
2146}
1da177e4
LT
2147EXPORT_SYMBOL(__get_free_pages);
2148
920c7a5d 2149unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2150{
945a1113 2151 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2152}
1da177e4
LT
2153EXPORT_SYMBOL(get_zeroed_page);
2154
2155void __pagevec_free(struct pagevec *pvec)
2156{
2157 int i = pagevec_count(pvec);
2158
4b4f278c
MG
2159 while (--i >= 0) {
2160 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2161 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2162 }
1da177e4
LT
2163}
2164
920c7a5d 2165void __free_pages(struct page *page, unsigned int order)
1da177e4 2166{
b5810039 2167 if (put_page_testzero(page)) {
1da177e4 2168 if (order == 0)
fc91668e 2169 free_hot_cold_page(page, 0);
1da177e4
LT
2170 else
2171 __free_pages_ok(page, order);
2172 }
2173}
2174
2175EXPORT_SYMBOL(__free_pages);
2176
920c7a5d 2177void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2178{
2179 if (addr != 0) {
725d704e 2180 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2181 __free_pages(virt_to_page((void *)addr), order);
2182 }
2183}
2184
2185EXPORT_SYMBOL(free_pages);
2186
2be0ffe2
TT
2187/**
2188 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2189 * @size: the number of bytes to allocate
2190 * @gfp_mask: GFP flags for the allocation
2191 *
2192 * This function is similar to alloc_pages(), except that it allocates the
2193 * minimum number of pages to satisfy the request. alloc_pages() can only
2194 * allocate memory in power-of-two pages.
2195 *
2196 * This function is also limited by MAX_ORDER.
2197 *
2198 * Memory allocated by this function must be released by free_pages_exact().
2199 */
2200void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2201{
2202 unsigned int order = get_order(size);
2203 unsigned long addr;
2204
2205 addr = __get_free_pages(gfp_mask, order);
2206 if (addr) {
2207 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2208 unsigned long used = addr + PAGE_ALIGN(size);
2209
5bfd7560 2210 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2211 while (used < alloc_end) {
2212 free_page(used);
2213 used += PAGE_SIZE;
2214 }
2215 }
2216
2217 return (void *)addr;
2218}
2219EXPORT_SYMBOL(alloc_pages_exact);
2220
2221/**
2222 * free_pages_exact - release memory allocated via alloc_pages_exact()
2223 * @virt: the value returned by alloc_pages_exact.
2224 * @size: size of allocation, same value as passed to alloc_pages_exact().
2225 *
2226 * Release the memory allocated by a previous call to alloc_pages_exact.
2227 */
2228void free_pages_exact(void *virt, size_t size)
2229{
2230 unsigned long addr = (unsigned long)virt;
2231 unsigned long end = addr + PAGE_ALIGN(size);
2232
2233 while (addr < end) {
2234 free_page(addr);
2235 addr += PAGE_SIZE;
2236 }
2237}
2238EXPORT_SYMBOL(free_pages_exact);
2239
1da177e4
LT
2240static unsigned int nr_free_zone_pages(int offset)
2241{
dd1a239f 2242 struct zoneref *z;
54a6eb5c
MG
2243 struct zone *zone;
2244
e310fd43 2245 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2246 unsigned int sum = 0;
2247
0e88460d 2248 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2249
54a6eb5c 2250 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2251 unsigned long size = zone->present_pages;
41858966 2252 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2253 if (size > high)
2254 sum += size - high;
1da177e4
LT
2255 }
2256
2257 return sum;
2258}
2259
2260/*
2261 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2262 */
2263unsigned int nr_free_buffer_pages(void)
2264{
af4ca457 2265 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2266}
c2f1a551 2267EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2268
2269/*
2270 * Amount of free RAM allocatable within all zones
2271 */
2272unsigned int nr_free_pagecache_pages(void)
2273{
2a1e274a 2274 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2275}
08e0f6a9
CL
2276
2277static inline void show_node(struct zone *zone)
1da177e4 2278{
08e0f6a9 2279 if (NUMA_BUILD)
25ba77c1 2280 printk("Node %d ", zone_to_nid(zone));
1da177e4 2281}
1da177e4 2282
1da177e4
LT
2283void si_meminfo(struct sysinfo *val)
2284{
2285 val->totalram = totalram_pages;
2286 val->sharedram = 0;
d23ad423 2287 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2288 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2289 val->totalhigh = totalhigh_pages;
2290 val->freehigh = nr_free_highpages();
1da177e4
LT
2291 val->mem_unit = PAGE_SIZE;
2292}
2293
2294EXPORT_SYMBOL(si_meminfo);
2295
2296#ifdef CONFIG_NUMA
2297void si_meminfo_node(struct sysinfo *val, int nid)
2298{
2299 pg_data_t *pgdat = NODE_DATA(nid);
2300
2301 val->totalram = pgdat->node_present_pages;
d23ad423 2302 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2303#ifdef CONFIG_HIGHMEM
1da177e4 2304 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2305 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2306 NR_FREE_PAGES);
98d2b0eb
CL
2307#else
2308 val->totalhigh = 0;
2309 val->freehigh = 0;
2310#endif
1da177e4
LT
2311 val->mem_unit = PAGE_SIZE;
2312}
2313#endif
2314
2315#define K(x) ((x) << (PAGE_SHIFT-10))
2316
2317/*
2318 * Show free area list (used inside shift_scroll-lock stuff)
2319 * We also calculate the percentage fragmentation. We do this by counting the
2320 * memory on each free list with the exception of the first item on the list.
2321 */
2322void show_free_areas(void)
2323{
c7241913 2324 int cpu;
1da177e4
LT
2325 struct zone *zone;
2326
ee99c71c 2327 for_each_populated_zone(zone) {
c7241913
JS
2328 show_node(zone);
2329 printk("%s per-cpu:\n", zone->name);
1da177e4 2330
6b482c67 2331 for_each_online_cpu(cpu) {
1da177e4
LT
2332 struct per_cpu_pageset *pageset;
2333
99dcc3e5 2334 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2335
3dfa5721
CL
2336 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2337 cpu, pageset->pcp.high,
2338 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2339 }
2340 }
2341
a731286d
KM
2342 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2343 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2344 " unevictable:%lu"
b76146ed 2345 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2346 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2347 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2348 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2349 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2350 global_page_state(NR_ISOLATED_ANON),
2351 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2352 global_page_state(NR_INACTIVE_FILE),
a731286d 2353 global_page_state(NR_ISOLATED_FILE),
7b854121 2354 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2355 global_page_state(NR_FILE_DIRTY),
ce866b34 2356 global_page_state(NR_WRITEBACK),
fd39fc85 2357 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2358 global_page_state(NR_FREE_PAGES),
3701b033
KM
2359 global_page_state(NR_SLAB_RECLAIMABLE),
2360 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2361 global_page_state(NR_FILE_MAPPED),
4b02108a 2362 global_page_state(NR_SHMEM),
a25700a5
AM
2363 global_page_state(NR_PAGETABLE),
2364 global_page_state(NR_BOUNCE));
1da177e4 2365
ee99c71c 2366 for_each_populated_zone(zone) {
1da177e4
LT
2367 int i;
2368
2369 show_node(zone);
2370 printk("%s"
2371 " free:%lukB"
2372 " min:%lukB"
2373 " low:%lukB"
2374 " high:%lukB"
4f98a2fe
RR
2375 " active_anon:%lukB"
2376 " inactive_anon:%lukB"
2377 " active_file:%lukB"
2378 " inactive_file:%lukB"
7b854121 2379 " unevictable:%lukB"
a731286d
KM
2380 " isolated(anon):%lukB"
2381 " isolated(file):%lukB"
1da177e4 2382 " present:%lukB"
4a0aa73f
KM
2383 " mlocked:%lukB"
2384 " dirty:%lukB"
2385 " writeback:%lukB"
2386 " mapped:%lukB"
4b02108a 2387 " shmem:%lukB"
4a0aa73f
KM
2388 " slab_reclaimable:%lukB"
2389 " slab_unreclaimable:%lukB"
c6a7f572 2390 " kernel_stack:%lukB"
4a0aa73f
KM
2391 " pagetables:%lukB"
2392 " unstable:%lukB"
2393 " bounce:%lukB"
2394 " writeback_tmp:%lukB"
1da177e4
LT
2395 " pages_scanned:%lu"
2396 " all_unreclaimable? %s"
2397 "\n",
2398 zone->name,
d23ad423 2399 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2400 K(min_wmark_pages(zone)),
2401 K(low_wmark_pages(zone)),
2402 K(high_wmark_pages(zone)),
4f98a2fe
RR
2403 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2404 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2405 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2406 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2407 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2408 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2409 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2410 K(zone->present_pages),
4a0aa73f
KM
2411 K(zone_page_state(zone, NR_MLOCK)),
2412 K(zone_page_state(zone, NR_FILE_DIRTY)),
2413 K(zone_page_state(zone, NR_WRITEBACK)),
2414 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2415 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2416 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2417 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2418 zone_page_state(zone, NR_KERNEL_STACK) *
2419 THREAD_SIZE / 1024,
4a0aa73f
KM
2420 K(zone_page_state(zone, NR_PAGETABLE)),
2421 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2422 K(zone_page_state(zone, NR_BOUNCE)),
2423 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2424 zone->pages_scanned,
93e4a89a 2425 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2426 );
2427 printk("lowmem_reserve[]:");
2428 for (i = 0; i < MAX_NR_ZONES; i++)
2429 printk(" %lu", zone->lowmem_reserve[i]);
2430 printk("\n");
2431 }
2432
ee99c71c 2433 for_each_populated_zone(zone) {
8f9de51a 2434 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2435
2436 show_node(zone);
2437 printk("%s: ", zone->name);
1da177e4
LT
2438
2439 spin_lock_irqsave(&zone->lock, flags);
2440 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2441 nr[order] = zone->free_area[order].nr_free;
2442 total += nr[order] << order;
1da177e4
LT
2443 }
2444 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2445 for (order = 0; order < MAX_ORDER; order++)
2446 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2447 printk("= %lukB\n", K(total));
2448 }
2449
e6f3602d
LW
2450 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2451
1da177e4
LT
2452 show_swap_cache_info();
2453}
2454
19770b32
MG
2455static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2456{
2457 zoneref->zone = zone;
2458 zoneref->zone_idx = zone_idx(zone);
2459}
2460
1da177e4
LT
2461/*
2462 * Builds allocation fallback zone lists.
1a93205b
CL
2463 *
2464 * Add all populated zones of a node to the zonelist.
1da177e4 2465 */
f0c0b2b8
KH
2466static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2467 int nr_zones, enum zone_type zone_type)
1da177e4 2468{
1a93205b
CL
2469 struct zone *zone;
2470
98d2b0eb 2471 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2472 zone_type++;
02a68a5e
CL
2473
2474 do {
2f6726e5 2475 zone_type--;
070f8032 2476 zone = pgdat->node_zones + zone_type;
1a93205b 2477 if (populated_zone(zone)) {
dd1a239f
MG
2478 zoneref_set_zone(zone,
2479 &zonelist->_zonerefs[nr_zones++]);
070f8032 2480 check_highest_zone(zone_type);
1da177e4 2481 }
02a68a5e 2482
2f6726e5 2483 } while (zone_type);
070f8032 2484 return nr_zones;
1da177e4
LT
2485}
2486
f0c0b2b8
KH
2487
2488/*
2489 * zonelist_order:
2490 * 0 = automatic detection of better ordering.
2491 * 1 = order by ([node] distance, -zonetype)
2492 * 2 = order by (-zonetype, [node] distance)
2493 *
2494 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2495 * the same zonelist. So only NUMA can configure this param.
2496 */
2497#define ZONELIST_ORDER_DEFAULT 0
2498#define ZONELIST_ORDER_NODE 1
2499#define ZONELIST_ORDER_ZONE 2
2500
2501/* zonelist order in the kernel.
2502 * set_zonelist_order() will set this to NODE or ZONE.
2503 */
2504static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2505static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2506
2507
1da177e4 2508#ifdef CONFIG_NUMA
f0c0b2b8
KH
2509/* The value user specified ....changed by config */
2510static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2511/* string for sysctl */
2512#define NUMA_ZONELIST_ORDER_LEN 16
2513char numa_zonelist_order[16] = "default";
2514
2515/*
2516 * interface for configure zonelist ordering.
2517 * command line option "numa_zonelist_order"
2518 * = "[dD]efault - default, automatic configuration.
2519 * = "[nN]ode - order by node locality, then by zone within node
2520 * = "[zZ]one - order by zone, then by locality within zone
2521 */
2522
2523static int __parse_numa_zonelist_order(char *s)
2524{
2525 if (*s == 'd' || *s == 'D') {
2526 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527 } else if (*s == 'n' || *s == 'N') {
2528 user_zonelist_order = ZONELIST_ORDER_NODE;
2529 } else if (*s == 'z' || *s == 'Z') {
2530 user_zonelist_order = ZONELIST_ORDER_ZONE;
2531 } else {
2532 printk(KERN_WARNING
2533 "Ignoring invalid numa_zonelist_order value: "
2534 "%s\n", s);
2535 return -EINVAL;
2536 }
2537 return 0;
2538}
2539
2540static __init int setup_numa_zonelist_order(char *s)
2541{
2542 if (s)
2543 return __parse_numa_zonelist_order(s);
2544 return 0;
2545}
2546early_param("numa_zonelist_order", setup_numa_zonelist_order);
2547
2548/*
2549 * sysctl handler for numa_zonelist_order
2550 */
2551int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2552 void __user *buffer, size_t *length,
f0c0b2b8
KH
2553 loff_t *ppos)
2554{
2555 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2556 int ret;
443c6f14 2557 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2558
443c6f14 2559 mutex_lock(&zl_order_mutex);
f0c0b2b8 2560 if (write)
443c6f14 2561 strcpy(saved_string, (char*)table->data);
8d65af78 2562 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2563 if (ret)
443c6f14 2564 goto out;
f0c0b2b8
KH
2565 if (write) {
2566 int oldval = user_zonelist_order;
2567 if (__parse_numa_zonelist_order((char*)table->data)) {
2568 /*
2569 * bogus value. restore saved string
2570 */
2571 strncpy((char*)table->data, saved_string,
2572 NUMA_ZONELIST_ORDER_LEN);
2573 user_zonelist_order = oldval;
4eaf3f64
HL
2574 } else if (oldval != user_zonelist_order) {
2575 mutex_lock(&zonelists_mutex);
1f522509 2576 build_all_zonelists(NULL);
4eaf3f64
HL
2577 mutex_unlock(&zonelists_mutex);
2578 }
f0c0b2b8 2579 }
443c6f14
AK
2580out:
2581 mutex_unlock(&zl_order_mutex);
2582 return ret;
f0c0b2b8
KH
2583}
2584
2585
62bc62a8 2586#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2587static int node_load[MAX_NUMNODES];
2588
1da177e4 2589/**
4dc3b16b 2590 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2591 * @node: node whose fallback list we're appending
2592 * @used_node_mask: nodemask_t of already used nodes
2593 *
2594 * We use a number of factors to determine which is the next node that should
2595 * appear on a given node's fallback list. The node should not have appeared
2596 * already in @node's fallback list, and it should be the next closest node
2597 * according to the distance array (which contains arbitrary distance values
2598 * from each node to each node in the system), and should also prefer nodes
2599 * with no CPUs, since presumably they'll have very little allocation pressure
2600 * on them otherwise.
2601 * It returns -1 if no node is found.
2602 */
f0c0b2b8 2603static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2604{
4cf808eb 2605 int n, val;
1da177e4
LT
2606 int min_val = INT_MAX;
2607 int best_node = -1;
a70f7302 2608 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2609
4cf808eb
LT
2610 /* Use the local node if we haven't already */
2611 if (!node_isset(node, *used_node_mask)) {
2612 node_set(node, *used_node_mask);
2613 return node;
2614 }
1da177e4 2615
37b07e41 2616 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2617
2618 /* Don't want a node to appear more than once */
2619 if (node_isset(n, *used_node_mask))
2620 continue;
2621
1da177e4
LT
2622 /* Use the distance array to find the distance */
2623 val = node_distance(node, n);
2624
4cf808eb
LT
2625 /* Penalize nodes under us ("prefer the next node") */
2626 val += (n < node);
2627
1da177e4 2628 /* Give preference to headless and unused nodes */
a70f7302
RR
2629 tmp = cpumask_of_node(n);
2630 if (!cpumask_empty(tmp))
1da177e4
LT
2631 val += PENALTY_FOR_NODE_WITH_CPUS;
2632
2633 /* Slight preference for less loaded node */
2634 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2635 val += node_load[n];
2636
2637 if (val < min_val) {
2638 min_val = val;
2639 best_node = n;
2640 }
2641 }
2642
2643 if (best_node >= 0)
2644 node_set(best_node, *used_node_mask);
2645
2646 return best_node;
2647}
2648
f0c0b2b8
KH
2649
2650/*
2651 * Build zonelists ordered by node and zones within node.
2652 * This results in maximum locality--normal zone overflows into local
2653 * DMA zone, if any--but risks exhausting DMA zone.
2654 */
2655static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2656{
f0c0b2b8 2657 int j;
1da177e4 2658 struct zonelist *zonelist;
f0c0b2b8 2659
54a6eb5c 2660 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2661 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2662 ;
2663 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2664 MAX_NR_ZONES - 1);
dd1a239f
MG
2665 zonelist->_zonerefs[j].zone = NULL;
2666 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2667}
2668
523b9458
CL
2669/*
2670 * Build gfp_thisnode zonelists
2671 */
2672static void build_thisnode_zonelists(pg_data_t *pgdat)
2673{
523b9458
CL
2674 int j;
2675 struct zonelist *zonelist;
2676
54a6eb5c
MG
2677 zonelist = &pgdat->node_zonelists[1];
2678 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2679 zonelist->_zonerefs[j].zone = NULL;
2680 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2681}
2682
f0c0b2b8
KH
2683/*
2684 * Build zonelists ordered by zone and nodes within zones.
2685 * This results in conserving DMA zone[s] until all Normal memory is
2686 * exhausted, but results in overflowing to remote node while memory
2687 * may still exist in local DMA zone.
2688 */
2689static int node_order[MAX_NUMNODES];
2690
2691static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2692{
f0c0b2b8
KH
2693 int pos, j, node;
2694 int zone_type; /* needs to be signed */
2695 struct zone *z;
2696 struct zonelist *zonelist;
2697
54a6eb5c
MG
2698 zonelist = &pgdat->node_zonelists[0];
2699 pos = 0;
2700 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2701 for (j = 0; j < nr_nodes; j++) {
2702 node = node_order[j];
2703 z = &NODE_DATA(node)->node_zones[zone_type];
2704 if (populated_zone(z)) {
dd1a239f
MG
2705 zoneref_set_zone(z,
2706 &zonelist->_zonerefs[pos++]);
54a6eb5c 2707 check_highest_zone(zone_type);
f0c0b2b8
KH
2708 }
2709 }
f0c0b2b8 2710 }
dd1a239f
MG
2711 zonelist->_zonerefs[pos].zone = NULL;
2712 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2713}
2714
2715static int default_zonelist_order(void)
2716{
2717 int nid, zone_type;
2718 unsigned long low_kmem_size,total_size;
2719 struct zone *z;
2720 int average_size;
2721 /*
88393161 2722 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2723 * If they are really small and used heavily, the system can fall
2724 * into OOM very easily.
e325c90f 2725 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2726 */
2727 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2728 low_kmem_size = 0;
2729 total_size = 0;
2730 for_each_online_node(nid) {
2731 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2732 z = &NODE_DATA(nid)->node_zones[zone_type];
2733 if (populated_zone(z)) {
2734 if (zone_type < ZONE_NORMAL)
2735 low_kmem_size += z->present_pages;
2736 total_size += z->present_pages;
e325c90f
DR
2737 } else if (zone_type == ZONE_NORMAL) {
2738 /*
2739 * If any node has only lowmem, then node order
2740 * is preferred to allow kernel allocations
2741 * locally; otherwise, they can easily infringe
2742 * on other nodes when there is an abundance of
2743 * lowmem available to allocate from.
2744 */
2745 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2746 }
2747 }
2748 }
2749 if (!low_kmem_size || /* there are no DMA area. */
2750 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2751 return ZONELIST_ORDER_NODE;
2752 /*
2753 * look into each node's config.
2754 * If there is a node whose DMA/DMA32 memory is very big area on
2755 * local memory, NODE_ORDER may be suitable.
2756 */
37b07e41
LS
2757 average_size = total_size /
2758 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2759 for_each_online_node(nid) {
2760 low_kmem_size = 0;
2761 total_size = 0;
2762 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2763 z = &NODE_DATA(nid)->node_zones[zone_type];
2764 if (populated_zone(z)) {
2765 if (zone_type < ZONE_NORMAL)
2766 low_kmem_size += z->present_pages;
2767 total_size += z->present_pages;
2768 }
2769 }
2770 if (low_kmem_size &&
2771 total_size > average_size && /* ignore small node */
2772 low_kmem_size > total_size * 70/100)
2773 return ZONELIST_ORDER_NODE;
2774 }
2775 return ZONELIST_ORDER_ZONE;
2776}
2777
2778static void set_zonelist_order(void)
2779{
2780 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2781 current_zonelist_order = default_zonelist_order();
2782 else
2783 current_zonelist_order = user_zonelist_order;
2784}
2785
2786static void build_zonelists(pg_data_t *pgdat)
2787{
2788 int j, node, load;
2789 enum zone_type i;
1da177e4 2790 nodemask_t used_mask;
f0c0b2b8
KH
2791 int local_node, prev_node;
2792 struct zonelist *zonelist;
2793 int order = current_zonelist_order;
1da177e4
LT
2794
2795 /* initialize zonelists */
523b9458 2796 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2797 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2798 zonelist->_zonerefs[0].zone = NULL;
2799 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2800 }
2801
2802 /* NUMA-aware ordering of nodes */
2803 local_node = pgdat->node_id;
62bc62a8 2804 load = nr_online_nodes;
1da177e4
LT
2805 prev_node = local_node;
2806 nodes_clear(used_mask);
f0c0b2b8 2807
f0c0b2b8
KH
2808 memset(node_order, 0, sizeof(node_order));
2809 j = 0;
2810
1da177e4 2811 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2812 int distance = node_distance(local_node, node);
2813
2814 /*
2815 * If another node is sufficiently far away then it is better
2816 * to reclaim pages in a zone before going off node.
2817 */
2818 if (distance > RECLAIM_DISTANCE)
2819 zone_reclaim_mode = 1;
2820
1da177e4
LT
2821 /*
2822 * We don't want to pressure a particular node.
2823 * So adding penalty to the first node in same
2824 * distance group to make it round-robin.
2825 */
9eeff239 2826 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2827 node_load[node] = load;
2828
1da177e4
LT
2829 prev_node = node;
2830 load--;
f0c0b2b8
KH
2831 if (order == ZONELIST_ORDER_NODE)
2832 build_zonelists_in_node_order(pgdat, node);
2833 else
2834 node_order[j++] = node; /* remember order */
2835 }
1da177e4 2836
f0c0b2b8
KH
2837 if (order == ZONELIST_ORDER_ZONE) {
2838 /* calculate node order -- i.e., DMA last! */
2839 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2840 }
523b9458
CL
2841
2842 build_thisnode_zonelists(pgdat);
1da177e4
LT
2843}
2844
9276b1bc 2845/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2846static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2847{
54a6eb5c
MG
2848 struct zonelist *zonelist;
2849 struct zonelist_cache *zlc;
dd1a239f 2850 struct zoneref *z;
9276b1bc 2851
54a6eb5c
MG
2852 zonelist = &pgdat->node_zonelists[0];
2853 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2854 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2855 for (z = zonelist->_zonerefs; z->zone; z++)
2856 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2857}
2858
f0c0b2b8 2859
1da177e4
LT
2860#else /* CONFIG_NUMA */
2861
f0c0b2b8
KH
2862static void set_zonelist_order(void)
2863{
2864 current_zonelist_order = ZONELIST_ORDER_ZONE;
2865}
2866
2867static void build_zonelists(pg_data_t *pgdat)
1da177e4 2868{
19655d34 2869 int node, local_node;
54a6eb5c
MG
2870 enum zone_type j;
2871 struct zonelist *zonelist;
1da177e4
LT
2872
2873 local_node = pgdat->node_id;
1da177e4 2874
54a6eb5c
MG
2875 zonelist = &pgdat->node_zonelists[0];
2876 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2877
54a6eb5c
MG
2878 /*
2879 * Now we build the zonelist so that it contains the zones
2880 * of all the other nodes.
2881 * We don't want to pressure a particular node, so when
2882 * building the zones for node N, we make sure that the
2883 * zones coming right after the local ones are those from
2884 * node N+1 (modulo N)
2885 */
2886 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2887 if (!node_online(node))
2888 continue;
2889 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2890 MAX_NR_ZONES - 1);
1da177e4 2891 }
54a6eb5c
MG
2892 for (node = 0; node < local_node; node++) {
2893 if (!node_online(node))
2894 continue;
2895 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2896 MAX_NR_ZONES - 1);
2897 }
2898
dd1a239f
MG
2899 zonelist->_zonerefs[j].zone = NULL;
2900 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2901}
2902
9276b1bc 2903/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2904static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2905{
54a6eb5c 2906 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2907}
2908
1da177e4
LT
2909#endif /* CONFIG_NUMA */
2910
99dcc3e5
CL
2911/*
2912 * Boot pageset table. One per cpu which is going to be used for all
2913 * zones and all nodes. The parameters will be set in such a way
2914 * that an item put on a list will immediately be handed over to
2915 * the buddy list. This is safe since pageset manipulation is done
2916 * with interrupts disabled.
2917 *
2918 * The boot_pagesets must be kept even after bootup is complete for
2919 * unused processors and/or zones. They do play a role for bootstrapping
2920 * hotplugged processors.
2921 *
2922 * zoneinfo_show() and maybe other functions do
2923 * not check if the processor is online before following the pageset pointer.
2924 * Other parts of the kernel may not check if the zone is available.
2925 */
2926static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2927static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 2928static void setup_zone_pageset(struct zone *zone);
99dcc3e5 2929
4eaf3f64
HL
2930/*
2931 * Global mutex to protect against size modification of zonelists
2932 * as well as to serialize pageset setup for the new populated zone.
2933 */
2934DEFINE_MUTEX(zonelists_mutex);
2935
9b1a4d38 2936/* return values int ....just for stop_machine() */
1f522509 2937static __init_refok int __build_all_zonelists(void *data)
1da177e4 2938{
6811378e 2939 int nid;
99dcc3e5 2940 int cpu;
9276b1bc 2941
7f9cfb31
BL
2942#ifdef CONFIG_NUMA
2943 memset(node_load, 0, sizeof(node_load));
2944#endif
9276b1bc 2945 for_each_online_node(nid) {
7ea1530a
CL
2946 pg_data_t *pgdat = NODE_DATA(nid);
2947
2948 build_zonelists(pgdat);
2949 build_zonelist_cache(pgdat);
9276b1bc 2950 }
99dcc3e5 2951
1f522509
HL
2952#ifdef CONFIG_MEMORY_HOTPLUG
2953 /* Setup real pagesets for the new zone */
2954 if (data) {
2955 struct zone *zone = data;
2956 setup_zone_pageset(zone);
2957 }
2958#endif
2959
99dcc3e5
CL
2960 /*
2961 * Initialize the boot_pagesets that are going to be used
2962 * for bootstrapping processors. The real pagesets for
2963 * each zone will be allocated later when the per cpu
2964 * allocator is available.
2965 *
2966 * boot_pagesets are used also for bootstrapping offline
2967 * cpus if the system is already booted because the pagesets
2968 * are needed to initialize allocators on a specific cpu too.
2969 * F.e. the percpu allocator needs the page allocator which
2970 * needs the percpu allocator in order to allocate its pagesets
2971 * (a chicken-egg dilemma).
2972 */
2973 for_each_possible_cpu(cpu)
2974 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2975
6811378e
YG
2976 return 0;
2977}
2978
4eaf3f64
HL
2979/*
2980 * Called with zonelists_mutex held always
2981 * unless system_state == SYSTEM_BOOTING.
2982 */
1f522509 2983void build_all_zonelists(void *data)
6811378e 2984{
f0c0b2b8
KH
2985 set_zonelist_order();
2986
6811378e 2987 if (system_state == SYSTEM_BOOTING) {
423b41d7 2988 __build_all_zonelists(NULL);
68ad8df4 2989 mminit_verify_zonelist();
6811378e
YG
2990 cpuset_init_current_mems_allowed();
2991 } else {
183ff22b 2992 /* we have to stop all cpus to guarantee there is no user
6811378e 2993 of zonelist */
1f522509 2994 stop_machine(__build_all_zonelists, data, NULL);
6811378e
YG
2995 /* cpuset refresh routine should be here */
2996 }
bd1e22b8 2997 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2998 /*
2999 * Disable grouping by mobility if the number of pages in the
3000 * system is too low to allow the mechanism to work. It would be
3001 * more accurate, but expensive to check per-zone. This check is
3002 * made on memory-hotadd so a system can start with mobility
3003 * disabled and enable it later
3004 */
d9c23400 3005 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3006 page_group_by_mobility_disabled = 1;
3007 else
3008 page_group_by_mobility_disabled = 0;
3009
3010 printk("Built %i zonelists in %s order, mobility grouping %s. "
3011 "Total pages: %ld\n",
62bc62a8 3012 nr_online_nodes,
f0c0b2b8 3013 zonelist_order_name[current_zonelist_order],
9ef9acb0 3014 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3015 vm_total_pages);
3016#ifdef CONFIG_NUMA
3017 printk("Policy zone: %s\n", zone_names[policy_zone]);
3018#endif
1da177e4
LT
3019}
3020
3021/*
3022 * Helper functions to size the waitqueue hash table.
3023 * Essentially these want to choose hash table sizes sufficiently
3024 * large so that collisions trying to wait on pages are rare.
3025 * But in fact, the number of active page waitqueues on typical
3026 * systems is ridiculously low, less than 200. So this is even
3027 * conservative, even though it seems large.
3028 *
3029 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3030 * waitqueues, i.e. the size of the waitq table given the number of pages.
3031 */
3032#define PAGES_PER_WAITQUEUE 256
3033
cca448fe 3034#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3035static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3036{
3037 unsigned long size = 1;
3038
3039 pages /= PAGES_PER_WAITQUEUE;
3040
3041 while (size < pages)
3042 size <<= 1;
3043
3044 /*
3045 * Once we have dozens or even hundreds of threads sleeping
3046 * on IO we've got bigger problems than wait queue collision.
3047 * Limit the size of the wait table to a reasonable size.
3048 */
3049 size = min(size, 4096UL);
3050
3051 return max(size, 4UL);
3052}
cca448fe
YG
3053#else
3054/*
3055 * A zone's size might be changed by hot-add, so it is not possible to determine
3056 * a suitable size for its wait_table. So we use the maximum size now.
3057 *
3058 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3059 *
3060 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3061 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3062 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3063 *
3064 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3065 * or more by the traditional way. (See above). It equals:
3066 *
3067 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3068 * ia64(16K page size) : = ( 8G + 4M)byte.
3069 * powerpc (64K page size) : = (32G +16M)byte.
3070 */
3071static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3072{
3073 return 4096UL;
3074}
3075#endif
1da177e4
LT
3076
3077/*
3078 * This is an integer logarithm so that shifts can be used later
3079 * to extract the more random high bits from the multiplicative
3080 * hash function before the remainder is taken.
3081 */
3082static inline unsigned long wait_table_bits(unsigned long size)
3083{
3084 return ffz(~size);
3085}
3086
3087#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3088
56fd56b8 3089/*
d9c23400 3090 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3091 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3092 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3093 * higher will lead to a bigger reserve which will get freed as contiguous
3094 * blocks as reclaim kicks in
3095 */
3096static void setup_zone_migrate_reserve(struct zone *zone)
3097{
3098 unsigned long start_pfn, pfn, end_pfn;
3099 struct page *page;
78986a67
MG
3100 unsigned long block_migratetype;
3101 int reserve;
56fd56b8
MG
3102
3103 /* Get the start pfn, end pfn and the number of blocks to reserve */
3104 start_pfn = zone->zone_start_pfn;
3105 end_pfn = start_pfn + zone->spanned_pages;
41858966 3106 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3107 pageblock_order;
56fd56b8 3108
78986a67
MG
3109 /*
3110 * Reserve blocks are generally in place to help high-order atomic
3111 * allocations that are short-lived. A min_free_kbytes value that
3112 * would result in more than 2 reserve blocks for atomic allocations
3113 * is assumed to be in place to help anti-fragmentation for the
3114 * future allocation of hugepages at runtime.
3115 */
3116 reserve = min(2, reserve);
3117
d9c23400 3118 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3119 if (!pfn_valid(pfn))
3120 continue;
3121 page = pfn_to_page(pfn);
3122
344c790e
AL
3123 /* Watch out for overlapping nodes */
3124 if (page_to_nid(page) != zone_to_nid(zone))
3125 continue;
3126
56fd56b8
MG
3127 /* Blocks with reserved pages will never free, skip them. */
3128 if (PageReserved(page))
3129 continue;
3130
3131 block_migratetype = get_pageblock_migratetype(page);
3132
3133 /* If this block is reserved, account for it */
3134 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3135 reserve--;
3136 continue;
3137 }
3138
3139 /* Suitable for reserving if this block is movable */
3140 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3141 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3142 move_freepages_block(zone, page, MIGRATE_RESERVE);
3143 reserve--;
3144 continue;
3145 }
3146
3147 /*
3148 * If the reserve is met and this is a previous reserved block,
3149 * take it back
3150 */
3151 if (block_migratetype == MIGRATE_RESERVE) {
3152 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3153 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3154 }
3155 }
3156}
ac0e5b7a 3157
1da177e4
LT
3158/*
3159 * Initially all pages are reserved - free ones are freed
3160 * up by free_all_bootmem() once the early boot process is
3161 * done. Non-atomic initialization, single-pass.
3162 */
c09b4240 3163void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3164 unsigned long start_pfn, enum memmap_context context)
1da177e4 3165{
1da177e4 3166 struct page *page;
29751f69
AW
3167 unsigned long end_pfn = start_pfn + size;
3168 unsigned long pfn;
86051ca5 3169 struct zone *z;
1da177e4 3170
22b31eec
HD
3171 if (highest_memmap_pfn < end_pfn - 1)
3172 highest_memmap_pfn = end_pfn - 1;
3173
86051ca5 3174 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3175 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3176 /*
3177 * There can be holes in boot-time mem_map[]s
3178 * handed to this function. They do not
3179 * exist on hotplugged memory.
3180 */
3181 if (context == MEMMAP_EARLY) {
3182 if (!early_pfn_valid(pfn))
3183 continue;
3184 if (!early_pfn_in_nid(pfn, nid))
3185 continue;
3186 }
d41dee36
AW
3187 page = pfn_to_page(pfn);
3188 set_page_links(page, zone, nid, pfn);
708614e6 3189 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3190 init_page_count(page);
1da177e4
LT
3191 reset_page_mapcount(page);
3192 SetPageReserved(page);
b2a0ac88
MG
3193 /*
3194 * Mark the block movable so that blocks are reserved for
3195 * movable at startup. This will force kernel allocations
3196 * to reserve their blocks rather than leaking throughout
3197 * the address space during boot when many long-lived
56fd56b8
MG
3198 * kernel allocations are made. Later some blocks near
3199 * the start are marked MIGRATE_RESERVE by
3200 * setup_zone_migrate_reserve()
86051ca5
KH
3201 *
3202 * bitmap is created for zone's valid pfn range. but memmap
3203 * can be created for invalid pages (for alignment)
3204 * check here not to call set_pageblock_migratetype() against
3205 * pfn out of zone.
b2a0ac88 3206 */
86051ca5
KH
3207 if ((z->zone_start_pfn <= pfn)
3208 && (pfn < z->zone_start_pfn + z->spanned_pages)
3209 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3210 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3211
1da177e4
LT
3212 INIT_LIST_HEAD(&page->lru);
3213#ifdef WANT_PAGE_VIRTUAL
3214 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3215 if (!is_highmem_idx(zone))
3212c6be 3216 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3217#endif
1da177e4
LT
3218 }
3219}
3220
1e548deb 3221static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3222{
b2a0ac88
MG
3223 int order, t;
3224 for_each_migratetype_order(order, t) {
3225 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3226 zone->free_area[order].nr_free = 0;
3227 }
3228}
3229
3230#ifndef __HAVE_ARCH_MEMMAP_INIT
3231#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3232 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3233#endif
3234
1d6f4e60 3235static int zone_batchsize(struct zone *zone)
e7c8d5c9 3236{
3a6be87f 3237#ifdef CONFIG_MMU
e7c8d5c9
CL
3238 int batch;
3239
3240 /*
3241 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3242 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3243 *
3244 * OK, so we don't know how big the cache is. So guess.
3245 */
3246 batch = zone->present_pages / 1024;
ba56e91c
SR
3247 if (batch * PAGE_SIZE > 512 * 1024)
3248 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3249 batch /= 4; /* We effectively *= 4 below */
3250 if (batch < 1)
3251 batch = 1;
3252
3253 /*
0ceaacc9
NP
3254 * Clamp the batch to a 2^n - 1 value. Having a power
3255 * of 2 value was found to be more likely to have
3256 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3257 *
0ceaacc9
NP
3258 * For example if 2 tasks are alternately allocating
3259 * batches of pages, one task can end up with a lot
3260 * of pages of one half of the possible page colors
3261 * and the other with pages of the other colors.
e7c8d5c9 3262 */
9155203a 3263 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3264
e7c8d5c9 3265 return batch;
3a6be87f
DH
3266
3267#else
3268 /* The deferral and batching of frees should be suppressed under NOMMU
3269 * conditions.
3270 *
3271 * The problem is that NOMMU needs to be able to allocate large chunks
3272 * of contiguous memory as there's no hardware page translation to
3273 * assemble apparent contiguous memory from discontiguous pages.
3274 *
3275 * Queueing large contiguous runs of pages for batching, however,
3276 * causes the pages to actually be freed in smaller chunks. As there
3277 * can be a significant delay between the individual batches being
3278 * recycled, this leads to the once large chunks of space being
3279 * fragmented and becoming unavailable for high-order allocations.
3280 */
3281 return 0;
3282#endif
e7c8d5c9
CL
3283}
3284
b69a7288 3285static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3286{
3287 struct per_cpu_pages *pcp;
5f8dcc21 3288 int migratetype;
2caaad41 3289
1c6fe946
MD
3290 memset(p, 0, sizeof(*p));
3291
3dfa5721 3292 pcp = &p->pcp;
2caaad41 3293 pcp->count = 0;
2caaad41
CL
3294 pcp->high = 6 * batch;
3295 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3296 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3297 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3298}
3299
8ad4b1fb
RS
3300/*
3301 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3302 * to the value high for the pageset p.
3303 */
3304
3305static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3306 unsigned long high)
3307{
3308 struct per_cpu_pages *pcp;
3309
3dfa5721 3310 pcp = &p->pcp;
8ad4b1fb
RS
3311 pcp->high = high;
3312 pcp->batch = max(1UL, high/4);
3313 if ((high/4) > (PAGE_SHIFT * 8))
3314 pcp->batch = PAGE_SHIFT * 8;
3315}
3316
319774e2
WF
3317static __meminit void setup_zone_pageset(struct zone *zone)
3318{
3319 int cpu;
3320
3321 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3322
3323 for_each_possible_cpu(cpu) {
3324 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3325
3326 setup_pageset(pcp, zone_batchsize(zone));
3327
3328 if (percpu_pagelist_fraction)
3329 setup_pagelist_highmark(pcp,
3330 (zone->present_pages /
3331 percpu_pagelist_fraction));
3332 }
3333}
3334
2caaad41 3335/*
99dcc3e5
CL
3336 * Allocate per cpu pagesets and initialize them.
3337 * Before this call only boot pagesets were available.
e7c8d5c9 3338 */
99dcc3e5 3339void __init setup_per_cpu_pageset(void)
e7c8d5c9 3340{
99dcc3e5 3341 struct zone *zone;
e7c8d5c9 3342
319774e2
WF
3343 for_each_populated_zone(zone)
3344 setup_zone_pageset(zone);
e7c8d5c9
CL
3345}
3346
577a32f6 3347static noinline __init_refok
cca448fe 3348int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3349{
3350 int i;
3351 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3352 size_t alloc_size;
ed8ece2e
DH
3353
3354 /*
3355 * The per-page waitqueue mechanism uses hashed waitqueues
3356 * per zone.
3357 */
02b694de
YG
3358 zone->wait_table_hash_nr_entries =
3359 wait_table_hash_nr_entries(zone_size_pages);
3360 zone->wait_table_bits =
3361 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3362 alloc_size = zone->wait_table_hash_nr_entries
3363 * sizeof(wait_queue_head_t);
3364
cd94b9db 3365 if (!slab_is_available()) {
cca448fe
YG
3366 zone->wait_table = (wait_queue_head_t *)
3367 alloc_bootmem_node(pgdat, alloc_size);
3368 } else {
3369 /*
3370 * This case means that a zone whose size was 0 gets new memory
3371 * via memory hot-add.
3372 * But it may be the case that a new node was hot-added. In
3373 * this case vmalloc() will not be able to use this new node's
3374 * memory - this wait_table must be initialized to use this new
3375 * node itself as well.
3376 * To use this new node's memory, further consideration will be
3377 * necessary.
3378 */
8691f3a7 3379 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3380 }
3381 if (!zone->wait_table)
3382 return -ENOMEM;
ed8ece2e 3383
02b694de 3384 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3385 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3386
3387 return 0;
ed8ece2e
DH
3388}
3389
112067f0
SL
3390static int __zone_pcp_update(void *data)
3391{
3392 struct zone *zone = data;
3393 int cpu;
3394 unsigned long batch = zone_batchsize(zone), flags;
3395
2d30a1f6 3396 for_each_possible_cpu(cpu) {
112067f0
SL
3397 struct per_cpu_pageset *pset;
3398 struct per_cpu_pages *pcp;
3399
99dcc3e5 3400 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3401 pcp = &pset->pcp;
3402
3403 local_irq_save(flags);
5f8dcc21 3404 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3405 setup_pageset(pset, batch);
3406 local_irq_restore(flags);
3407 }
3408 return 0;
3409}
3410
3411void zone_pcp_update(struct zone *zone)
3412{
3413 stop_machine(__zone_pcp_update, zone, NULL);
3414}
3415
c09b4240 3416static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3417{
99dcc3e5
CL
3418 /*
3419 * per cpu subsystem is not up at this point. The following code
3420 * relies on the ability of the linker to provide the
3421 * offset of a (static) per cpu variable into the per cpu area.
3422 */
3423 zone->pageset = &boot_pageset;
ed8ece2e 3424
f5335c0f 3425 if (zone->present_pages)
99dcc3e5
CL
3426 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3427 zone->name, zone->present_pages,
3428 zone_batchsize(zone));
ed8ece2e
DH
3429}
3430
718127cc
YG
3431__meminit int init_currently_empty_zone(struct zone *zone,
3432 unsigned long zone_start_pfn,
a2f3aa02
DH
3433 unsigned long size,
3434 enum memmap_context context)
ed8ece2e
DH
3435{
3436 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3437 int ret;
3438 ret = zone_wait_table_init(zone, size);
3439 if (ret)
3440 return ret;
ed8ece2e
DH
3441 pgdat->nr_zones = zone_idx(zone) + 1;
3442
ed8ece2e
DH
3443 zone->zone_start_pfn = zone_start_pfn;
3444
708614e6
MG
3445 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3446 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3447 pgdat->node_id,
3448 (unsigned long)zone_idx(zone),
3449 zone_start_pfn, (zone_start_pfn + size));
3450
1e548deb 3451 zone_init_free_lists(zone);
718127cc
YG
3452
3453 return 0;
ed8ece2e
DH
3454}
3455
c713216d
MG
3456#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3457/*
3458 * Basic iterator support. Return the first range of PFNs for a node
3459 * Note: nid == MAX_NUMNODES returns first region regardless of node
3460 */
a3142c8e 3461static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3462{
3463 int i;
3464
3465 for (i = 0; i < nr_nodemap_entries; i++)
3466 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3467 return i;
3468
3469 return -1;
3470}
3471
3472/*
3473 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3474 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3475 */
a3142c8e 3476static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3477{
3478 for (index = index + 1; index < nr_nodemap_entries; index++)
3479 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3480 return index;
3481
3482 return -1;
3483}
3484
3485#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3486/*
3487 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3488 * Architectures may implement their own version but if add_active_range()
3489 * was used and there are no special requirements, this is a convenient
3490 * alternative
3491 */
f2dbcfa7 3492int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3493{
3494 int i;
3495
3496 for (i = 0; i < nr_nodemap_entries; i++) {
3497 unsigned long start_pfn = early_node_map[i].start_pfn;
3498 unsigned long end_pfn = early_node_map[i].end_pfn;
3499
3500 if (start_pfn <= pfn && pfn < end_pfn)
3501 return early_node_map[i].nid;
3502 }
cc2559bc
KH
3503 /* This is a memory hole */
3504 return -1;
c713216d
MG
3505}
3506#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3507
f2dbcfa7
KH
3508int __meminit early_pfn_to_nid(unsigned long pfn)
3509{
cc2559bc
KH
3510 int nid;
3511
3512 nid = __early_pfn_to_nid(pfn);
3513 if (nid >= 0)
3514 return nid;
3515 /* just returns 0 */
3516 return 0;
f2dbcfa7
KH
3517}
3518
cc2559bc
KH
3519#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3520bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3521{
3522 int nid;
3523
3524 nid = __early_pfn_to_nid(pfn);
3525 if (nid >= 0 && nid != node)
3526 return false;
3527 return true;
3528}
3529#endif
f2dbcfa7 3530
c713216d
MG
3531/* Basic iterator support to walk early_node_map[] */
3532#define for_each_active_range_index_in_nid(i, nid) \
3533 for (i = first_active_region_index_in_nid(nid); i != -1; \
3534 i = next_active_region_index_in_nid(i, nid))
3535
3536/**
3537 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3538 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3539 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3540 *
3541 * If an architecture guarantees that all ranges registered with
3542 * add_active_ranges() contain no holes and may be freed, this
3543 * this function may be used instead of calling free_bootmem() manually.
3544 */
3545void __init free_bootmem_with_active_regions(int nid,
3546 unsigned long max_low_pfn)
3547{
3548 int i;
3549
3550 for_each_active_range_index_in_nid(i, nid) {
3551 unsigned long size_pages = 0;
3552 unsigned long end_pfn = early_node_map[i].end_pfn;
3553
3554 if (early_node_map[i].start_pfn >= max_low_pfn)
3555 continue;
3556
3557 if (end_pfn > max_low_pfn)
3558 end_pfn = max_low_pfn;
3559
3560 size_pages = end_pfn - early_node_map[i].start_pfn;
3561 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3562 PFN_PHYS(early_node_map[i].start_pfn),
3563 size_pages << PAGE_SHIFT);
3564 }
3565}
3566
08677214
YL
3567int __init add_from_early_node_map(struct range *range, int az,
3568 int nr_range, int nid)
3569{
3570 int i;
3571 u64 start, end;
3572
3573 /* need to go over early_node_map to find out good range for node */
3574 for_each_active_range_index_in_nid(i, nid) {
3575 start = early_node_map[i].start_pfn;
3576 end = early_node_map[i].end_pfn;
3577 nr_range = add_range(range, az, nr_range, start, end);
3578 }
3579 return nr_range;
3580}
3581
2ee78f7b 3582#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3583void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3584 u64 goal, u64 limit)
3585{
3586 int i;
3587 void *ptr;
3588
3589 /* need to go over early_node_map to find out good range for node */
3590 for_each_active_range_index_in_nid(i, nid) {
3591 u64 addr;
3592 u64 ei_start, ei_last;
3593
3594 ei_last = early_node_map[i].end_pfn;
3595 ei_last <<= PAGE_SHIFT;
3596 ei_start = early_node_map[i].start_pfn;
3597 ei_start <<= PAGE_SHIFT;
3598 addr = find_early_area(ei_start, ei_last,
3599 goal, limit, size, align);
3600
3601 if (addr == -1ULL)
3602 continue;
3603
3604#if 0
3605 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3606 nid,
3607 ei_start, ei_last, goal, limit, size,
3608 align, addr);
3609#endif
3610
3611 ptr = phys_to_virt(addr);
3612 memset(ptr, 0, size);
3613 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3614 return ptr;
3615 }
3616
3617 return NULL;
3618}
2ee78f7b 3619#endif
08677214
YL
3620
3621
b5bc6c0e
YL
3622void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3623{
3624 int i;
d52d53b8 3625 int ret;
b5bc6c0e 3626
d52d53b8
YL
3627 for_each_active_range_index_in_nid(i, nid) {
3628 ret = work_fn(early_node_map[i].start_pfn,
3629 early_node_map[i].end_pfn, data);
3630 if (ret)
3631 break;
3632 }
b5bc6c0e 3633}
c713216d
MG
3634/**
3635 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3636 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3637 *
3638 * If an architecture guarantees that all ranges registered with
3639 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3640 * function may be used instead of calling memory_present() manually.
c713216d
MG
3641 */
3642void __init sparse_memory_present_with_active_regions(int nid)
3643{
3644 int i;
3645
3646 for_each_active_range_index_in_nid(i, nid)
3647 memory_present(early_node_map[i].nid,
3648 early_node_map[i].start_pfn,
3649 early_node_map[i].end_pfn);
3650}
3651
3652/**
3653 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3654 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3655 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3656 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3657 *
3658 * It returns the start and end page frame of a node based on information
3659 * provided by an arch calling add_active_range(). If called for a node
3660 * with no available memory, a warning is printed and the start and end
88ca3b94 3661 * PFNs will be 0.
c713216d 3662 */
a3142c8e 3663void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3664 unsigned long *start_pfn, unsigned long *end_pfn)
3665{
3666 int i;
3667 *start_pfn = -1UL;
3668 *end_pfn = 0;
3669
3670 for_each_active_range_index_in_nid(i, nid) {
3671 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3672 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3673 }
3674
633c0666 3675 if (*start_pfn == -1UL)
c713216d 3676 *start_pfn = 0;
c713216d
MG
3677}
3678
2a1e274a
MG
3679/*
3680 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3681 * assumption is made that zones within a node are ordered in monotonic
3682 * increasing memory addresses so that the "highest" populated zone is used
3683 */
b69a7288 3684static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3685{
3686 int zone_index;
3687 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3688 if (zone_index == ZONE_MOVABLE)
3689 continue;
3690
3691 if (arch_zone_highest_possible_pfn[zone_index] >
3692 arch_zone_lowest_possible_pfn[zone_index])
3693 break;
3694 }
3695
3696 VM_BUG_ON(zone_index == -1);
3697 movable_zone = zone_index;
3698}
3699
3700/*
3701 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3702 * because it is sized independant of architecture. Unlike the other zones,
3703 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3704 * in each node depending on the size of each node and how evenly kernelcore
3705 * is distributed. This helper function adjusts the zone ranges
3706 * provided by the architecture for a given node by using the end of the
3707 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3708 * zones within a node are in order of monotonic increases memory addresses
3709 */
b69a7288 3710static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3711 unsigned long zone_type,
3712 unsigned long node_start_pfn,
3713 unsigned long node_end_pfn,
3714 unsigned long *zone_start_pfn,
3715 unsigned long *zone_end_pfn)
3716{
3717 /* Only adjust if ZONE_MOVABLE is on this node */
3718 if (zone_movable_pfn[nid]) {
3719 /* Size ZONE_MOVABLE */
3720 if (zone_type == ZONE_MOVABLE) {
3721 *zone_start_pfn = zone_movable_pfn[nid];
3722 *zone_end_pfn = min(node_end_pfn,
3723 arch_zone_highest_possible_pfn[movable_zone]);
3724
3725 /* Adjust for ZONE_MOVABLE starting within this range */
3726 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3727 *zone_end_pfn > zone_movable_pfn[nid]) {
3728 *zone_end_pfn = zone_movable_pfn[nid];
3729
3730 /* Check if this whole range is within ZONE_MOVABLE */
3731 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3732 *zone_start_pfn = *zone_end_pfn;
3733 }
3734}
3735
c713216d
MG
3736/*
3737 * Return the number of pages a zone spans in a node, including holes
3738 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3739 */
6ea6e688 3740static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3741 unsigned long zone_type,
3742 unsigned long *ignored)
3743{
3744 unsigned long node_start_pfn, node_end_pfn;
3745 unsigned long zone_start_pfn, zone_end_pfn;
3746
3747 /* Get the start and end of the node and zone */
3748 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3749 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3750 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3751 adjust_zone_range_for_zone_movable(nid, zone_type,
3752 node_start_pfn, node_end_pfn,
3753 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3754
3755 /* Check that this node has pages within the zone's required range */
3756 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3757 return 0;
3758
3759 /* Move the zone boundaries inside the node if necessary */
3760 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3761 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3762
3763 /* Return the spanned pages */
3764 return zone_end_pfn - zone_start_pfn;
3765}
3766
3767/*
3768 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3769 * then all holes in the requested range will be accounted for.
c713216d 3770 */
32996250 3771unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3772 unsigned long range_start_pfn,
3773 unsigned long range_end_pfn)
3774{
3775 int i = 0;
3776 unsigned long prev_end_pfn = 0, hole_pages = 0;
3777 unsigned long start_pfn;
3778
3779 /* Find the end_pfn of the first active range of pfns in the node */
3780 i = first_active_region_index_in_nid(nid);
3781 if (i == -1)
3782 return 0;
3783
b5445f95
MG
3784 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3785
9c7cd687
MG
3786 /* Account for ranges before physical memory on this node */
3787 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3788 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3789
3790 /* Find all holes for the zone within the node */
3791 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3792
3793 /* No need to continue if prev_end_pfn is outside the zone */
3794 if (prev_end_pfn >= range_end_pfn)
3795 break;
3796
3797 /* Make sure the end of the zone is not within the hole */
3798 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3799 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3800
3801 /* Update the hole size cound and move on */
3802 if (start_pfn > range_start_pfn) {
3803 BUG_ON(prev_end_pfn > start_pfn);
3804 hole_pages += start_pfn - prev_end_pfn;
3805 }
3806 prev_end_pfn = early_node_map[i].end_pfn;
3807 }
3808
9c7cd687
MG
3809 /* Account for ranges past physical memory on this node */
3810 if (range_end_pfn > prev_end_pfn)
0c6cb974 3811 hole_pages += range_end_pfn -
9c7cd687
MG
3812 max(range_start_pfn, prev_end_pfn);
3813
c713216d
MG
3814 return hole_pages;
3815}
3816
3817/**
3818 * absent_pages_in_range - Return number of page frames in holes within a range
3819 * @start_pfn: The start PFN to start searching for holes
3820 * @end_pfn: The end PFN to stop searching for holes
3821 *
88ca3b94 3822 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3823 */
3824unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3825 unsigned long end_pfn)
3826{
3827 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3828}
3829
3830/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3831static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3832 unsigned long zone_type,
3833 unsigned long *ignored)
3834{
9c7cd687
MG
3835 unsigned long node_start_pfn, node_end_pfn;
3836 unsigned long zone_start_pfn, zone_end_pfn;
3837
3838 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3839 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3840 node_start_pfn);
3841 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3842 node_end_pfn);
3843
2a1e274a
MG
3844 adjust_zone_range_for_zone_movable(nid, zone_type,
3845 node_start_pfn, node_end_pfn,
3846 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3847 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3848}
0e0b864e 3849
c713216d 3850#else
6ea6e688 3851static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3852 unsigned long zone_type,
3853 unsigned long *zones_size)
3854{
3855 return zones_size[zone_type];
3856}
3857
6ea6e688 3858static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3859 unsigned long zone_type,
3860 unsigned long *zholes_size)
3861{
3862 if (!zholes_size)
3863 return 0;
3864
3865 return zholes_size[zone_type];
3866}
0e0b864e 3867
c713216d
MG
3868#endif
3869
a3142c8e 3870static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3871 unsigned long *zones_size, unsigned long *zholes_size)
3872{
3873 unsigned long realtotalpages, totalpages = 0;
3874 enum zone_type i;
3875
3876 for (i = 0; i < MAX_NR_ZONES; i++)
3877 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3878 zones_size);
3879 pgdat->node_spanned_pages = totalpages;
3880
3881 realtotalpages = totalpages;
3882 for (i = 0; i < MAX_NR_ZONES; i++)
3883 realtotalpages -=
3884 zone_absent_pages_in_node(pgdat->node_id, i,
3885 zholes_size);
3886 pgdat->node_present_pages = realtotalpages;
3887 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3888 realtotalpages);
3889}
3890
835c134e
MG
3891#ifndef CONFIG_SPARSEMEM
3892/*
3893 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3894 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3895 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3896 * round what is now in bits to nearest long in bits, then return it in
3897 * bytes.
3898 */
3899static unsigned long __init usemap_size(unsigned long zonesize)
3900{
3901 unsigned long usemapsize;
3902
d9c23400
MG
3903 usemapsize = roundup(zonesize, pageblock_nr_pages);
3904 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3905 usemapsize *= NR_PAGEBLOCK_BITS;
3906 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3907
3908 return usemapsize / 8;
3909}
3910
3911static void __init setup_usemap(struct pglist_data *pgdat,
3912 struct zone *zone, unsigned long zonesize)
3913{
3914 unsigned long usemapsize = usemap_size(zonesize);
3915 zone->pageblock_flags = NULL;
58a01a45 3916 if (usemapsize)
835c134e 3917 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3918}
3919#else
3920static void inline setup_usemap(struct pglist_data *pgdat,
3921 struct zone *zone, unsigned long zonesize) {}
3922#endif /* CONFIG_SPARSEMEM */
3923
d9c23400 3924#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3925
3926/* Return a sensible default order for the pageblock size. */
3927static inline int pageblock_default_order(void)
3928{
3929 if (HPAGE_SHIFT > PAGE_SHIFT)
3930 return HUGETLB_PAGE_ORDER;
3931
3932 return MAX_ORDER-1;
3933}
3934
d9c23400
MG
3935/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3936static inline void __init set_pageblock_order(unsigned int order)
3937{
3938 /* Check that pageblock_nr_pages has not already been setup */
3939 if (pageblock_order)
3940 return;
3941
3942 /*
3943 * Assume the largest contiguous order of interest is a huge page.
3944 * This value may be variable depending on boot parameters on IA64
3945 */
3946 pageblock_order = order;
3947}
3948#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3949
ba72cb8c
MG
3950/*
3951 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3952 * and pageblock_default_order() are unused as pageblock_order is set
3953 * at compile-time. See include/linux/pageblock-flags.h for the values of
3954 * pageblock_order based on the kernel config
3955 */
3956static inline int pageblock_default_order(unsigned int order)
3957{
3958 return MAX_ORDER-1;
3959}
d9c23400
MG
3960#define set_pageblock_order(x) do {} while (0)
3961
3962#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3963
1da177e4
LT
3964/*
3965 * Set up the zone data structures:
3966 * - mark all pages reserved
3967 * - mark all memory queues empty
3968 * - clear the memory bitmaps
3969 */
b5a0e011 3970static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3971 unsigned long *zones_size, unsigned long *zholes_size)
3972{
2f1b6248 3973 enum zone_type j;
ed8ece2e 3974 int nid = pgdat->node_id;
1da177e4 3975 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3976 int ret;
1da177e4 3977
208d54e5 3978 pgdat_resize_init(pgdat);
1da177e4
LT
3979 pgdat->nr_zones = 0;
3980 init_waitqueue_head(&pgdat->kswapd_wait);
3981 pgdat->kswapd_max_order = 0;
52d4b9ac 3982 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3983
3984 for (j = 0; j < MAX_NR_ZONES; j++) {
3985 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3986 unsigned long size, realsize, memmap_pages;
b69408e8 3987 enum lru_list l;
1da177e4 3988
c713216d
MG
3989 size = zone_spanned_pages_in_node(nid, j, zones_size);
3990 realsize = size - zone_absent_pages_in_node(nid, j,
3991 zholes_size);
1da177e4 3992
0e0b864e
MG
3993 /*
3994 * Adjust realsize so that it accounts for how much memory
3995 * is used by this zone for memmap. This affects the watermark
3996 * and per-cpu initialisations
3997 */
f7232154
JW
3998 memmap_pages =
3999 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4000 if (realsize >= memmap_pages) {
4001 realsize -= memmap_pages;
5594c8c8
YL
4002 if (memmap_pages)
4003 printk(KERN_DEBUG
4004 " %s zone: %lu pages used for memmap\n",
4005 zone_names[j], memmap_pages);
0e0b864e
MG
4006 } else
4007 printk(KERN_WARNING
4008 " %s zone: %lu pages exceeds realsize %lu\n",
4009 zone_names[j], memmap_pages, realsize);
4010
6267276f
CL
4011 /* Account for reserved pages */
4012 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4013 realsize -= dma_reserve;
d903ef9f 4014 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4015 zone_names[0], dma_reserve);
0e0b864e
MG
4016 }
4017
98d2b0eb 4018 if (!is_highmem_idx(j))
1da177e4
LT
4019 nr_kernel_pages += realsize;
4020 nr_all_pages += realsize;
4021
4022 zone->spanned_pages = size;
4023 zone->present_pages = realsize;
9614634f 4024#ifdef CONFIG_NUMA
d5f541ed 4025 zone->node = nid;
8417bba4 4026 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4027 / 100;
0ff38490 4028 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4029#endif
1da177e4
LT
4030 zone->name = zone_names[j];
4031 spin_lock_init(&zone->lock);
4032 spin_lock_init(&zone->lru_lock);
bdc8cb98 4033 zone_seqlock_init(zone);
1da177e4 4034 zone->zone_pgdat = pgdat;
1da177e4 4035
3bb1a852 4036 zone->prev_priority = DEF_PRIORITY;
1da177e4 4037
ed8ece2e 4038 zone_pcp_init(zone);
b69408e8
CL
4039 for_each_lru(l) {
4040 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4041 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4042 }
6e901571
KM
4043 zone->reclaim_stat.recent_rotated[0] = 0;
4044 zone->reclaim_stat.recent_rotated[1] = 0;
4045 zone->reclaim_stat.recent_scanned[0] = 0;
4046 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4047 zap_zone_vm_stats(zone);
e815af95 4048 zone->flags = 0;
1da177e4
LT
4049 if (!size)
4050 continue;
4051
ba72cb8c 4052 set_pageblock_order(pageblock_default_order());
835c134e 4053 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4054 ret = init_currently_empty_zone(zone, zone_start_pfn,
4055 size, MEMMAP_EARLY);
718127cc 4056 BUG_ON(ret);
76cdd58e 4057 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4058 zone_start_pfn += size;
1da177e4
LT
4059 }
4060}
4061
577a32f6 4062static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4063{
1da177e4
LT
4064 /* Skip empty nodes */
4065 if (!pgdat->node_spanned_pages)
4066 return;
4067
d41dee36 4068#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4069 /* ia64 gets its own node_mem_map, before this, without bootmem */
4070 if (!pgdat->node_mem_map) {
e984bb43 4071 unsigned long size, start, end;
d41dee36
AW
4072 struct page *map;
4073
e984bb43
BP
4074 /*
4075 * The zone's endpoints aren't required to be MAX_ORDER
4076 * aligned but the node_mem_map endpoints must be in order
4077 * for the buddy allocator to function correctly.
4078 */
4079 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4080 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4081 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4082 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4083 map = alloc_remap(pgdat->node_id, size);
4084 if (!map)
4085 map = alloc_bootmem_node(pgdat, size);
e984bb43 4086 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4087 }
12d810c1 4088#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4089 /*
4090 * With no DISCONTIG, the global mem_map is just set as node 0's
4091 */
c713216d 4092 if (pgdat == NODE_DATA(0)) {
1da177e4 4093 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4094#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4095 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4096 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4097#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4098 }
1da177e4 4099#endif
d41dee36 4100#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4101}
4102
9109fb7b
JW
4103void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4104 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4105{
9109fb7b
JW
4106 pg_data_t *pgdat = NODE_DATA(nid);
4107
1da177e4
LT
4108 pgdat->node_id = nid;
4109 pgdat->node_start_pfn = node_start_pfn;
c713216d 4110 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4111
4112 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4113#ifdef CONFIG_FLAT_NODE_MEM_MAP
4114 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4115 nid, (unsigned long)pgdat,
4116 (unsigned long)pgdat->node_mem_map);
4117#endif
1da177e4
LT
4118
4119 free_area_init_core(pgdat, zones_size, zholes_size);
4120}
4121
c713216d 4122#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4123
4124#if MAX_NUMNODES > 1
4125/*
4126 * Figure out the number of possible node ids.
4127 */
4128static void __init setup_nr_node_ids(void)
4129{
4130 unsigned int node;
4131 unsigned int highest = 0;
4132
4133 for_each_node_mask(node, node_possible_map)
4134 highest = node;
4135 nr_node_ids = highest + 1;
4136}
4137#else
4138static inline void setup_nr_node_ids(void)
4139{
4140}
4141#endif
4142
c713216d
MG
4143/**
4144 * add_active_range - Register a range of PFNs backed by physical memory
4145 * @nid: The node ID the range resides on
4146 * @start_pfn: The start PFN of the available physical memory
4147 * @end_pfn: The end PFN of the available physical memory
4148 *
4149 * These ranges are stored in an early_node_map[] and later used by
4150 * free_area_init_nodes() to calculate zone sizes and holes. If the
4151 * range spans a memory hole, it is up to the architecture to ensure
4152 * the memory is not freed by the bootmem allocator. If possible
4153 * the range being registered will be merged with existing ranges.
4154 */
4155void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4156 unsigned long end_pfn)
4157{
4158 int i;
4159
6b74ab97
MG
4160 mminit_dprintk(MMINIT_TRACE, "memory_register",
4161 "Entering add_active_range(%d, %#lx, %#lx) "
4162 "%d entries of %d used\n",
4163 nid, start_pfn, end_pfn,
4164 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4165
2dbb51c4
MG
4166 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4167
c713216d
MG
4168 /* Merge with existing active regions if possible */
4169 for (i = 0; i < nr_nodemap_entries; i++) {
4170 if (early_node_map[i].nid != nid)
4171 continue;
4172
4173 /* Skip if an existing region covers this new one */
4174 if (start_pfn >= early_node_map[i].start_pfn &&
4175 end_pfn <= early_node_map[i].end_pfn)
4176 return;
4177
4178 /* Merge forward if suitable */
4179 if (start_pfn <= early_node_map[i].end_pfn &&
4180 end_pfn > early_node_map[i].end_pfn) {
4181 early_node_map[i].end_pfn = end_pfn;
4182 return;
4183 }
4184
4185 /* Merge backward if suitable */
d2dbe08d 4186 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4187 end_pfn >= early_node_map[i].start_pfn) {
4188 early_node_map[i].start_pfn = start_pfn;
4189 return;
4190 }
4191 }
4192
4193 /* Check that early_node_map is large enough */
4194 if (i >= MAX_ACTIVE_REGIONS) {
4195 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4196 MAX_ACTIVE_REGIONS);
4197 return;
4198 }
4199
4200 early_node_map[i].nid = nid;
4201 early_node_map[i].start_pfn = start_pfn;
4202 early_node_map[i].end_pfn = end_pfn;
4203 nr_nodemap_entries = i + 1;
4204}
4205
4206/**
cc1050ba 4207 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4208 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4209 * @start_pfn: The new PFN of the range
4210 * @end_pfn: The new PFN of the range
c713216d
MG
4211 *
4212 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4213 * The map is kept near the end physical page range that has already been
4214 * registered. This function allows an arch to shrink an existing registered
4215 * range.
c713216d 4216 */
cc1050ba
YL
4217void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4218 unsigned long end_pfn)
c713216d 4219{
cc1a9d86
YL
4220 int i, j;
4221 int removed = 0;
c713216d 4222
cc1050ba
YL
4223 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4224 nid, start_pfn, end_pfn);
4225
c713216d 4226 /* Find the old active region end and shrink */
cc1a9d86 4227 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4228 if (early_node_map[i].start_pfn >= start_pfn &&
4229 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4230 /* clear it */
cc1050ba 4231 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4232 early_node_map[i].end_pfn = 0;
4233 removed = 1;
4234 continue;
4235 }
cc1050ba
YL
4236 if (early_node_map[i].start_pfn < start_pfn &&
4237 early_node_map[i].end_pfn > start_pfn) {
4238 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4239 early_node_map[i].end_pfn = start_pfn;
4240 if (temp_end_pfn > end_pfn)
4241 add_active_range(nid, end_pfn, temp_end_pfn);
4242 continue;
4243 }
4244 if (early_node_map[i].start_pfn >= start_pfn &&
4245 early_node_map[i].end_pfn > end_pfn &&
4246 early_node_map[i].start_pfn < end_pfn) {
4247 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4248 continue;
c713216d 4249 }
cc1a9d86
YL
4250 }
4251
4252 if (!removed)
4253 return;
4254
4255 /* remove the blank ones */
4256 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4257 if (early_node_map[i].nid != nid)
4258 continue;
4259 if (early_node_map[i].end_pfn)
4260 continue;
4261 /* we found it, get rid of it */
4262 for (j = i; j < nr_nodemap_entries - 1; j++)
4263 memcpy(&early_node_map[j], &early_node_map[j+1],
4264 sizeof(early_node_map[j]));
4265 j = nr_nodemap_entries - 1;
4266 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4267 nr_nodemap_entries--;
4268 }
c713216d
MG
4269}
4270
4271/**
4272 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4273 *
c713216d
MG
4274 * During discovery, it may be found that a table like SRAT is invalid
4275 * and an alternative discovery method must be used. This function removes
4276 * all currently registered regions.
4277 */
88ca3b94 4278void __init remove_all_active_ranges(void)
c713216d
MG
4279{
4280 memset(early_node_map, 0, sizeof(early_node_map));
4281 nr_nodemap_entries = 0;
4282}
4283
4284/* Compare two active node_active_regions */
4285static int __init cmp_node_active_region(const void *a, const void *b)
4286{
4287 struct node_active_region *arange = (struct node_active_region *)a;
4288 struct node_active_region *brange = (struct node_active_region *)b;
4289
4290 /* Done this way to avoid overflows */
4291 if (arange->start_pfn > brange->start_pfn)
4292 return 1;
4293 if (arange->start_pfn < brange->start_pfn)
4294 return -1;
4295
4296 return 0;
4297}
4298
4299/* sort the node_map by start_pfn */
32996250 4300void __init sort_node_map(void)
c713216d
MG
4301{
4302 sort(early_node_map, (size_t)nr_nodemap_entries,
4303 sizeof(struct node_active_region),
4304 cmp_node_active_region, NULL);
4305}
4306
a6af2bc3 4307/* Find the lowest pfn for a node */
b69a7288 4308static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4309{
4310 int i;
a6af2bc3 4311 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4312
c713216d
MG
4313 /* Assuming a sorted map, the first range found has the starting pfn */
4314 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4315 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4316
a6af2bc3
MG
4317 if (min_pfn == ULONG_MAX) {
4318 printk(KERN_WARNING
2bc0d261 4319 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4320 return 0;
4321 }
4322
4323 return min_pfn;
c713216d
MG
4324}
4325
4326/**
4327 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4328 *
4329 * It returns the minimum PFN based on information provided via
88ca3b94 4330 * add_active_range().
c713216d
MG
4331 */
4332unsigned long __init find_min_pfn_with_active_regions(void)
4333{
4334 return find_min_pfn_for_node(MAX_NUMNODES);
4335}
4336
37b07e41
LS
4337/*
4338 * early_calculate_totalpages()
4339 * Sum pages in active regions for movable zone.
4340 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4341 */
484f51f8 4342static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4343{
4344 int i;
4345 unsigned long totalpages = 0;
4346
37b07e41
LS
4347 for (i = 0; i < nr_nodemap_entries; i++) {
4348 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4349 early_node_map[i].start_pfn;
37b07e41
LS
4350 totalpages += pages;
4351 if (pages)
4352 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4353 }
4354 return totalpages;
7e63efef
MG
4355}
4356
2a1e274a
MG
4357/*
4358 * Find the PFN the Movable zone begins in each node. Kernel memory
4359 * is spread evenly between nodes as long as the nodes have enough
4360 * memory. When they don't, some nodes will have more kernelcore than
4361 * others
4362 */
b69a7288 4363static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4364{
4365 int i, nid;
4366 unsigned long usable_startpfn;
4367 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4368 /* save the state before borrow the nodemask */
4369 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4370 unsigned long totalpages = early_calculate_totalpages();
4371 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4372
7e63efef
MG
4373 /*
4374 * If movablecore was specified, calculate what size of
4375 * kernelcore that corresponds so that memory usable for
4376 * any allocation type is evenly spread. If both kernelcore
4377 * and movablecore are specified, then the value of kernelcore
4378 * will be used for required_kernelcore if it's greater than
4379 * what movablecore would have allowed.
4380 */
4381 if (required_movablecore) {
7e63efef
MG
4382 unsigned long corepages;
4383
4384 /*
4385 * Round-up so that ZONE_MOVABLE is at least as large as what
4386 * was requested by the user
4387 */
4388 required_movablecore =
4389 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4390 corepages = totalpages - required_movablecore;
4391
4392 required_kernelcore = max(required_kernelcore, corepages);
4393 }
4394
2a1e274a
MG
4395 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4396 if (!required_kernelcore)
66918dcd 4397 goto out;
2a1e274a
MG
4398
4399 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4400 find_usable_zone_for_movable();
4401 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4402
4403restart:
4404 /* Spread kernelcore memory as evenly as possible throughout nodes */
4405 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4406 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4407 /*
4408 * Recalculate kernelcore_node if the division per node
4409 * now exceeds what is necessary to satisfy the requested
4410 * amount of memory for the kernel
4411 */
4412 if (required_kernelcore < kernelcore_node)
4413 kernelcore_node = required_kernelcore / usable_nodes;
4414
4415 /*
4416 * As the map is walked, we track how much memory is usable
4417 * by the kernel using kernelcore_remaining. When it is
4418 * 0, the rest of the node is usable by ZONE_MOVABLE
4419 */
4420 kernelcore_remaining = kernelcore_node;
4421
4422 /* Go through each range of PFNs within this node */
4423 for_each_active_range_index_in_nid(i, nid) {
4424 unsigned long start_pfn, end_pfn;
4425 unsigned long size_pages;
4426
4427 start_pfn = max(early_node_map[i].start_pfn,
4428 zone_movable_pfn[nid]);
4429 end_pfn = early_node_map[i].end_pfn;
4430 if (start_pfn >= end_pfn)
4431 continue;
4432
4433 /* Account for what is only usable for kernelcore */
4434 if (start_pfn < usable_startpfn) {
4435 unsigned long kernel_pages;
4436 kernel_pages = min(end_pfn, usable_startpfn)
4437 - start_pfn;
4438
4439 kernelcore_remaining -= min(kernel_pages,
4440 kernelcore_remaining);
4441 required_kernelcore -= min(kernel_pages,
4442 required_kernelcore);
4443
4444 /* Continue if range is now fully accounted */
4445 if (end_pfn <= usable_startpfn) {
4446
4447 /*
4448 * Push zone_movable_pfn to the end so
4449 * that if we have to rebalance
4450 * kernelcore across nodes, we will
4451 * not double account here
4452 */
4453 zone_movable_pfn[nid] = end_pfn;
4454 continue;
4455 }
4456 start_pfn = usable_startpfn;
4457 }
4458
4459 /*
4460 * The usable PFN range for ZONE_MOVABLE is from
4461 * start_pfn->end_pfn. Calculate size_pages as the
4462 * number of pages used as kernelcore
4463 */
4464 size_pages = end_pfn - start_pfn;
4465 if (size_pages > kernelcore_remaining)
4466 size_pages = kernelcore_remaining;
4467 zone_movable_pfn[nid] = start_pfn + size_pages;
4468
4469 /*
4470 * Some kernelcore has been met, update counts and
4471 * break if the kernelcore for this node has been
4472 * satisified
4473 */
4474 required_kernelcore -= min(required_kernelcore,
4475 size_pages);
4476 kernelcore_remaining -= size_pages;
4477 if (!kernelcore_remaining)
4478 break;
4479 }
4480 }
4481
4482 /*
4483 * If there is still required_kernelcore, we do another pass with one
4484 * less node in the count. This will push zone_movable_pfn[nid] further
4485 * along on the nodes that still have memory until kernelcore is
4486 * satisified
4487 */
4488 usable_nodes--;
4489 if (usable_nodes && required_kernelcore > usable_nodes)
4490 goto restart;
4491
4492 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4493 for (nid = 0; nid < MAX_NUMNODES; nid++)
4494 zone_movable_pfn[nid] =
4495 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4496
4497out:
4498 /* restore the node_state */
4499 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4500}
4501
37b07e41
LS
4502/* Any regular memory on that node ? */
4503static void check_for_regular_memory(pg_data_t *pgdat)
4504{
4505#ifdef CONFIG_HIGHMEM
4506 enum zone_type zone_type;
4507
4508 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4509 struct zone *zone = &pgdat->node_zones[zone_type];
4510 if (zone->present_pages)
4511 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4512 }
4513#endif
4514}
4515
c713216d
MG
4516/**
4517 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4518 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4519 *
4520 * This will call free_area_init_node() for each active node in the system.
4521 * Using the page ranges provided by add_active_range(), the size of each
4522 * zone in each node and their holes is calculated. If the maximum PFN
4523 * between two adjacent zones match, it is assumed that the zone is empty.
4524 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4525 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4526 * starts where the previous one ended. For example, ZONE_DMA32 starts
4527 * at arch_max_dma_pfn.
4528 */
4529void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4530{
4531 unsigned long nid;
db99100d 4532 int i;
c713216d 4533
a6af2bc3
MG
4534 /* Sort early_node_map as initialisation assumes it is sorted */
4535 sort_node_map();
4536
c713216d
MG
4537 /* Record where the zone boundaries are */
4538 memset(arch_zone_lowest_possible_pfn, 0,
4539 sizeof(arch_zone_lowest_possible_pfn));
4540 memset(arch_zone_highest_possible_pfn, 0,
4541 sizeof(arch_zone_highest_possible_pfn));
4542 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4543 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4544 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4545 if (i == ZONE_MOVABLE)
4546 continue;
c713216d
MG
4547 arch_zone_lowest_possible_pfn[i] =
4548 arch_zone_highest_possible_pfn[i-1];
4549 arch_zone_highest_possible_pfn[i] =
4550 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4551 }
2a1e274a
MG
4552 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4553 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4554
4555 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4556 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4557 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4558
c713216d
MG
4559 /* Print out the zone ranges */
4560 printk("Zone PFN ranges:\n");
2a1e274a
MG
4561 for (i = 0; i < MAX_NR_ZONES; i++) {
4562 if (i == ZONE_MOVABLE)
4563 continue;
72f0ba02
DR
4564 printk(" %-8s ", zone_names[i]);
4565 if (arch_zone_lowest_possible_pfn[i] ==
4566 arch_zone_highest_possible_pfn[i])
4567 printk("empty\n");
4568 else
4569 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4570 arch_zone_lowest_possible_pfn[i],
4571 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4572 }
4573
4574 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4575 printk("Movable zone start PFN for each node\n");
4576 for (i = 0; i < MAX_NUMNODES; i++) {
4577 if (zone_movable_pfn[i])
4578 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4579 }
c713216d
MG
4580
4581 /* Print out the early_node_map[] */
4582 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4583 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4584 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4585 early_node_map[i].start_pfn,
4586 early_node_map[i].end_pfn);
4587
4588 /* Initialise every node */
708614e6 4589 mminit_verify_pageflags_layout();
8ef82866 4590 setup_nr_node_ids();
c713216d
MG
4591 for_each_online_node(nid) {
4592 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4593 free_area_init_node(nid, NULL,
c713216d 4594 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4595
4596 /* Any memory on that node */
4597 if (pgdat->node_present_pages)
4598 node_set_state(nid, N_HIGH_MEMORY);
4599 check_for_regular_memory(pgdat);
c713216d
MG
4600 }
4601}
2a1e274a 4602
7e63efef 4603static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4604{
4605 unsigned long long coremem;
4606 if (!p)
4607 return -EINVAL;
4608
4609 coremem = memparse(p, &p);
7e63efef 4610 *core = coremem >> PAGE_SHIFT;
2a1e274a 4611
7e63efef 4612 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4613 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4614
4615 return 0;
4616}
ed7ed365 4617
7e63efef
MG
4618/*
4619 * kernelcore=size sets the amount of memory for use for allocations that
4620 * cannot be reclaimed or migrated.
4621 */
4622static int __init cmdline_parse_kernelcore(char *p)
4623{
4624 return cmdline_parse_core(p, &required_kernelcore);
4625}
4626
4627/*
4628 * movablecore=size sets the amount of memory for use for allocations that
4629 * can be reclaimed or migrated.
4630 */
4631static int __init cmdline_parse_movablecore(char *p)
4632{
4633 return cmdline_parse_core(p, &required_movablecore);
4634}
4635
ed7ed365 4636early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4637early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4638
c713216d
MG
4639#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4640
0e0b864e 4641/**
88ca3b94
RD
4642 * set_dma_reserve - set the specified number of pages reserved in the first zone
4643 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4644 *
4645 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4646 * In the DMA zone, a significant percentage may be consumed by kernel image
4647 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4648 * function may optionally be used to account for unfreeable pages in the
4649 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4650 * smaller per-cpu batchsize.
0e0b864e
MG
4651 */
4652void __init set_dma_reserve(unsigned long new_dma_reserve)
4653{
4654 dma_reserve = new_dma_reserve;
4655}
4656
93b7504e 4657#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4658struct pglist_data __refdata contig_page_data = {
4659#ifndef CONFIG_NO_BOOTMEM
4660 .bdata = &bootmem_node_data[0]
4661#endif
4662 };
1da177e4 4663EXPORT_SYMBOL(contig_page_data);
93b7504e 4664#endif
1da177e4
LT
4665
4666void __init free_area_init(unsigned long *zones_size)
4667{
9109fb7b 4668 free_area_init_node(0, zones_size,
1da177e4
LT
4669 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4670}
1da177e4 4671
1da177e4
LT
4672static int page_alloc_cpu_notify(struct notifier_block *self,
4673 unsigned long action, void *hcpu)
4674{
4675 int cpu = (unsigned long)hcpu;
1da177e4 4676
8bb78442 4677 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4678 drain_pages(cpu);
4679
4680 /*
4681 * Spill the event counters of the dead processor
4682 * into the current processors event counters.
4683 * This artificially elevates the count of the current
4684 * processor.
4685 */
f8891e5e 4686 vm_events_fold_cpu(cpu);
9f8f2172
CL
4687
4688 /*
4689 * Zero the differential counters of the dead processor
4690 * so that the vm statistics are consistent.
4691 *
4692 * This is only okay since the processor is dead and cannot
4693 * race with what we are doing.
4694 */
2244b95a 4695 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4696 }
4697 return NOTIFY_OK;
4698}
1da177e4
LT
4699
4700void __init page_alloc_init(void)
4701{
4702 hotcpu_notifier(page_alloc_cpu_notify, 0);
4703}
4704
cb45b0e9
HA
4705/*
4706 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4707 * or min_free_kbytes changes.
4708 */
4709static void calculate_totalreserve_pages(void)
4710{
4711 struct pglist_data *pgdat;
4712 unsigned long reserve_pages = 0;
2f6726e5 4713 enum zone_type i, j;
cb45b0e9
HA
4714
4715 for_each_online_pgdat(pgdat) {
4716 for (i = 0; i < MAX_NR_ZONES; i++) {
4717 struct zone *zone = pgdat->node_zones + i;
4718 unsigned long max = 0;
4719
4720 /* Find valid and maximum lowmem_reserve in the zone */
4721 for (j = i; j < MAX_NR_ZONES; j++) {
4722 if (zone->lowmem_reserve[j] > max)
4723 max = zone->lowmem_reserve[j];
4724 }
4725
41858966
MG
4726 /* we treat the high watermark as reserved pages. */
4727 max += high_wmark_pages(zone);
cb45b0e9
HA
4728
4729 if (max > zone->present_pages)
4730 max = zone->present_pages;
4731 reserve_pages += max;
4732 }
4733 }
4734 totalreserve_pages = reserve_pages;
4735}
4736
1da177e4
LT
4737/*
4738 * setup_per_zone_lowmem_reserve - called whenever
4739 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4740 * has a correct pages reserved value, so an adequate number of
4741 * pages are left in the zone after a successful __alloc_pages().
4742 */
4743static void setup_per_zone_lowmem_reserve(void)
4744{
4745 struct pglist_data *pgdat;
2f6726e5 4746 enum zone_type j, idx;
1da177e4 4747
ec936fc5 4748 for_each_online_pgdat(pgdat) {
1da177e4
LT
4749 for (j = 0; j < MAX_NR_ZONES; j++) {
4750 struct zone *zone = pgdat->node_zones + j;
4751 unsigned long present_pages = zone->present_pages;
4752
4753 zone->lowmem_reserve[j] = 0;
4754
2f6726e5
CL
4755 idx = j;
4756 while (idx) {
1da177e4
LT
4757 struct zone *lower_zone;
4758
2f6726e5
CL
4759 idx--;
4760
1da177e4
LT
4761 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4762 sysctl_lowmem_reserve_ratio[idx] = 1;
4763
4764 lower_zone = pgdat->node_zones + idx;
4765 lower_zone->lowmem_reserve[j] = present_pages /
4766 sysctl_lowmem_reserve_ratio[idx];
4767 present_pages += lower_zone->present_pages;
4768 }
4769 }
4770 }
cb45b0e9
HA
4771
4772 /* update totalreserve_pages */
4773 calculate_totalreserve_pages();
1da177e4
LT
4774}
4775
88ca3b94 4776/**
bc75d33f 4777 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4778 * or when memory is hot-{added|removed}
88ca3b94 4779 *
bc75d33f
MK
4780 * Ensures that the watermark[min,low,high] values for each zone are set
4781 * correctly with respect to min_free_kbytes.
1da177e4 4782 */
bc75d33f 4783void setup_per_zone_wmarks(void)
1da177e4
LT
4784{
4785 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4786 unsigned long lowmem_pages = 0;
4787 struct zone *zone;
4788 unsigned long flags;
4789
4790 /* Calculate total number of !ZONE_HIGHMEM pages */
4791 for_each_zone(zone) {
4792 if (!is_highmem(zone))
4793 lowmem_pages += zone->present_pages;
4794 }
4795
4796 for_each_zone(zone) {
ac924c60
AM
4797 u64 tmp;
4798
1125b4e3 4799 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4800 tmp = (u64)pages_min * zone->present_pages;
4801 do_div(tmp, lowmem_pages);
1da177e4
LT
4802 if (is_highmem(zone)) {
4803 /*
669ed175
NP
4804 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4805 * need highmem pages, so cap pages_min to a small
4806 * value here.
4807 *
41858966 4808 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4809 * deltas controls asynch page reclaim, and so should
4810 * not be capped for highmem.
1da177e4
LT
4811 */
4812 int min_pages;
4813
4814 min_pages = zone->present_pages / 1024;
4815 if (min_pages < SWAP_CLUSTER_MAX)
4816 min_pages = SWAP_CLUSTER_MAX;
4817 if (min_pages > 128)
4818 min_pages = 128;
41858966 4819 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4820 } else {
669ed175
NP
4821 /*
4822 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4823 * proportionate to the zone's size.
4824 */
41858966 4825 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4826 }
4827
41858966
MG
4828 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4829 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4830 setup_zone_migrate_reserve(zone);
1125b4e3 4831 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4832 }
cb45b0e9
HA
4833
4834 /* update totalreserve_pages */
4835 calculate_totalreserve_pages();
1da177e4
LT
4836}
4837
55a4462a 4838/*
556adecb
RR
4839 * The inactive anon list should be small enough that the VM never has to
4840 * do too much work, but large enough that each inactive page has a chance
4841 * to be referenced again before it is swapped out.
4842 *
4843 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4844 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4845 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4846 * the anonymous pages are kept on the inactive list.
4847 *
4848 * total target max
4849 * memory ratio inactive anon
4850 * -------------------------------------
4851 * 10MB 1 5MB
4852 * 100MB 1 50MB
4853 * 1GB 3 250MB
4854 * 10GB 10 0.9GB
4855 * 100GB 31 3GB
4856 * 1TB 101 10GB
4857 * 10TB 320 32GB
4858 */
96cb4df5 4859void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4860{
96cb4df5 4861 unsigned int gb, ratio;
556adecb 4862
96cb4df5
MK
4863 /* Zone size in gigabytes */
4864 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4865 if (gb)
556adecb 4866 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4867 else
4868 ratio = 1;
556adecb 4869
96cb4df5
MK
4870 zone->inactive_ratio = ratio;
4871}
556adecb 4872
96cb4df5
MK
4873static void __init setup_per_zone_inactive_ratio(void)
4874{
4875 struct zone *zone;
4876
4877 for_each_zone(zone)
4878 calculate_zone_inactive_ratio(zone);
556adecb
RR
4879}
4880
1da177e4
LT
4881/*
4882 * Initialise min_free_kbytes.
4883 *
4884 * For small machines we want it small (128k min). For large machines
4885 * we want it large (64MB max). But it is not linear, because network
4886 * bandwidth does not increase linearly with machine size. We use
4887 *
4888 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4889 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4890 *
4891 * which yields
4892 *
4893 * 16MB: 512k
4894 * 32MB: 724k
4895 * 64MB: 1024k
4896 * 128MB: 1448k
4897 * 256MB: 2048k
4898 * 512MB: 2896k
4899 * 1024MB: 4096k
4900 * 2048MB: 5792k
4901 * 4096MB: 8192k
4902 * 8192MB: 11584k
4903 * 16384MB: 16384k
4904 */
bc75d33f 4905static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4906{
4907 unsigned long lowmem_kbytes;
4908
4909 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4910
4911 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4912 if (min_free_kbytes < 128)
4913 min_free_kbytes = 128;
4914 if (min_free_kbytes > 65536)
4915 min_free_kbytes = 65536;
bc75d33f 4916 setup_per_zone_wmarks();
1da177e4 4917 setup_per_zone_lowmem_reserve();
556adecb 4918 setup_per_zone_inactive_ratio();
1da177e4
LT
4919 return 0;
4920}
bc75d33f 4921module_init(init_per_zone_wmark_min)
1da177e4
LT
4922
4923/*
4924 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4925 * that we can call two helper functions whenever min_free_kbytes
4926 * changes.
4927 */
4928int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4929 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4930{
8d65af78 4931 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4932 if (write)
bc75d33f 4933 setup_per_zone_wmarks();
1da177e4
LT
4934 return 0;
4935}
4936
9614634f
CL
4937#ifdef CONFIG_NUMA
4938int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4939 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4940{
4941 struct zone *zone;
4942 int rc;
4943
8d65af78 4944 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4945 if (rc)
4946 return rc;
4947
4948 for_each_zone(zone)
8417bba4 4949 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4950 sysctl_min_unmapped_ratio) / 100;
4951 return 0;
4952}
0ff38490
CL
4953
4954int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4955 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4956{
4957 struct zone *zone;
4958 int rc;
4959
8d65af78 4960 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4961 if (rc)
4962 return rc;
4963
4964 for_each_zone(zone)
4965 zone->min_slab_pages = (zone->present_pages *
4966 sysctl_min_slab_ratio) / 100;
4967 return 0;
4968}
9614634f
CL
4969#endif
4970
1da177e4
LT
4971/*
4972 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4973 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4974 * whenever sysctl_lowmem_reserve_ratio changes.
4975 *
4976 * The reserve ratio obviously has absolutely no relation with the
41858966 4977 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4978 * if in function of the boot time zone sizes.
4979 */
4980int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4981 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4982{
8d65af78 4983 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4984 setup_per_zone_lowmem_reserve();
4985 return 0;
4986}
4987
8ad4b1fb
RS
4988/*
4989 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4990 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4991 * can have before it gets flushed back to buddy allocator.
4992 */
4993
4994int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4995 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4996{
4997 struct zone *zone;
4998 unsigned int cpu;
4999 int ret;
5000
8d65af78 5001 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5002 if (!write || (ret == -EINVAL))
5003 return ret;
364df0eb 5004 for_each_populated_zone(zone) {
99dcc3e5 5005 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5006 unsigned long high;
5007 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5008 setup_pagelist_highmark(
5009 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5010 }
5011 }
5012 return 0;
5013}
5014
f034b5d4 5015int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5016
5017#ifdef CONFIG_NUMA
5018static int __init set_hashdist(char *str)
5019{
5020 if (!str)
5021 return 0;
5022 hashdist = simple_strtoul(str, &str, 0);
5023 return 1;
5024}
5025__setup("hashdist=", set_hashdist);
5026#endif
5027
5028/*
5029 * allocate a large system hash table from bootmem
5030 * - it is assumed that the hash table must contain an exact power-of-2
5031 * quantity of entries
5032 * - limit is the number of hash buckets, not the total allocation size
5033 */
5034void *__init alloc_large_system_hash(const char *tablename,
5035 unsigned long bucketsize,
5036 unsigned long numentries,
5037 int scale,
5038 int flags,
5039 unsigned int *_hash_shift,
5040 unsigned int *_hash_mask,
5041 unsigned long limit)
5042{
5043 unsigned long long max = limit;
5044 unsigned long log2qty, size;
5045 void *table = NULL;
5046
5047 /* allow the kernel cmdline to have a say */
5048 if (!numentries) {
5049 /* round applicable memory size up to nearest megabyte */
04903664 5050 numentries = nr_kernel_pages;
1da177e4
LT
5051 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5052 numentries >>= 20 - PAGE_SHIFT;
5053 numentries <<= 20 - PAGE_SHIFT;
5054
5055 /* limit to 1 bucket per 2^scale bytes of low memory */
5056 if (scale > PAGE_SHIFT)
5057 numentries >>= (scale - PAGE_SHIFT);
5058 else
5059 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5060
5061 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5062 if (unlikely(flags & HASH_SMALL)) {
5063 /* Makes no sense without HASH_EARLY */
5064 WARN_ON(!(flags & HASH_EARLY));
5065 if (!(numentries >> *_hash_shift)) {
5066 numentries = 1UL << *_hash_shift;
5067 BUG_ON(!numentries);
5068 }
5069 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5070 numentries = PAGE_SIZE / bucketsize;
1da177e4 5071 }
6e692ed3 5072 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5073
5074 /* limit allocation size to 1/16 total memory by default */
5075 if (max == 0) {
5076 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5077 do_div(max, bucketsize);
5078 }
5079
5080 if (numentries > max)
5081 numentries = max;
5082
f0d1b0b3 5083 log2qty = ilog2(numentries);
1da177e4
LT
5084
5085 do {
5086 size = bucketsize << log2qty;
5087 if (flags & HASH_EARLY)
74768ed8 5088 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5089 else if (hashdist)
5090 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5091 else {
1037b83b
ED
5092 /*
5093 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5094 * some pages at the end of hash table which
5095 * alloc_pages_exact() automatically does
1037b83b 5096 */
264ef8a9 5097 if (get_order(size) < MAX_ORDER) {
a1dd268c 5098 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5099 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5100 }
1da177e4
LT
5101 }
5102 } while (!table && size > PAGE_SIZE && --log2qty);
5103
5104 if (!table)
5105 panic("Failed to allocate %s hash table\n", tablename);
5106
b49ad484 5107 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5108 tablename,
5109 (1U << log2qty),
f0d1b0b3 5110 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5111 size);
5112
5113 if (_hash_shift)
5114 *_hash_shift = log2qty;
5115 if (_hash_mask)
5116 *_hash_mask = (1 << log2qty) - 1;
5117
5118 return table;
5119}
a117e66e 5120
835c134e
MG
5121/* Return a pointer to the bitmap storing bits affecting a block of pages */
5122static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5123 unsigned long pfn)
5124{
5125#ifdef CONFIG_SPARSEMEM
5126 return __pfn_to_section(pfn)->pageblock_flags;
5127#else
5128 return zone->pageblock_flags;
5129#endif /* CONFIG_SPARSEMEM */
5130}
5131
5132static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5133{
5134#ifdef CONFIG_SPARSEMEM
5135 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5136 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5137#else
5138 pfn = pfn - zone->zone_start_pfn;
d9c23400 5139 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5140#endif /* CONFIG_SPARSEMEM */
5141}
5142
5143/**
d9c23400 5144 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5145 * @page: The page within the block of interest
5146 * @start_bitidx: The first bit of interest to retrieve
5147 * @end_bitidx: The last bit of interest
5148 * returns pageblock_bits flags
5149 */
5150unsigned long get_pageblock_flags_group(struct page *page,
5151 int start_bitidx, int end_bitidx)
5152{
5153 struct zone *zone;
5154 unsigned long *bitmap;
5155 unsigned long pfn, bitidx;
5156 unsigned long flags = 0;
5157 unsigned long value = 1;
5158
5159 zone = page_zone(page);
5160 pfn = page_to_pfn(page);
5161 bitmap = get_pageblock_bitmap(zone, pfn);
5162 bitidx = pfn_to_bitidx(zone, pfn);
5163
5164 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5165 if (test_bit(bitidx + start_bitidx, bitmap))
5166 flags |= value;
6220ec78 5167
835c134e
MG
5168 return flags;
5169}
5170
5171/**
d9c23400 5172 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5173 * @page: The page within the block of interest
5174 * @start_bitidx: The first bit of interest
5175 * @end_bitidx: The last bit of interest
5176 * @flags: The flags to set
5177 */
5178void set_pageblock_flags_group(struct page *page, unsigned long flags,
5179 int start_bitidx, int end_bitidx)
5180{
5181 struct zone *zone;
5182 unsigned long *bitmap;
5183 unsigned long pfn, bitidx;
5184 unsigned long value = 1;
5185
5186 zone = page_zone(page);
5187 pfn = page_to_pfn(page);
5188 bitmap = get_pageblock_bitmap(zone, pfn);
5189 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5190 VM_BUG_ON(pfn < zone->zone_start_pfn);
5191 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5192
5193 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5194 if (flags & value)
5195 __set_bit(bitidx + start_bitidx, bitmap);
5196 else
5197 __clear_bit(bitidx + start_bitidx, bitmap);
5198}
a5d76b54
KH
5199
5200/*
5201 * This is designed as sub function...plz see page_isolation.c also.
5202 * set/clear page block's type to be ISOLATE.
5203 * page allocater never alloc memory from ISOLATE block.
5204 */
5205
5206int set_migratetype_isolate(struct page *page)
5207{
5208 struct zone *zone;
925cc71e
RJ
5209 struct page *curr_page;
5210 unsigned long flags, pfn, iter;
5211 unsigned long immobile = 0;
5212 struct memory_isolate_notify arg;
5213 int notifier_ret;
a5d76b54 5214 int ret = -EBUSY;
8e7e40d9 5215 int zone_idx;
a5d76b54
KH
5216
5217 zone = page_zone(page);
8e7e40d9 5218 zone_idx = zone_idx(zone);
925cc71e 5219
a5d76b54 5220 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5221 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5222 zone_idx == ZONE_MOVABLE) {
5223 ret = 0;
5224 goto out;
5225 }
5226
5227 pfn = page_to_pfn(page);
5228 arg.start_pfn = pfn;
5229 arg.nr_pages = pageblock_nr_pages;
5230 arg.pages_found = 0;
5231
a5d76b54 5232 /*
925cc71e
RJ
5233 * It may be possible to isolate a pageblock even if the
5234 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5235 * notifier chain is used by balloon drivers to return the
5236 * number of pages in a range that are held by the balloon
5237 * driver to shrink memory. If all the pages are accounted for
5238 * by balloons, are free, or on the LRU, isolation can continue.
5239 * Later, for example, when memory hotplug notifier runs, these
5240 * pages reported as "can be isolated" should be isolated(freed)
5241 * by the balloon driver through the memory notifier chain.
a5d76b54 5242 */
925cc71e
RJ
5243 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5244 notifier_ret = notifier_to_errno(notifier_ret);
5245 if (notifier_ret || !arg.pages_found)
a5d76b54 5246 goto out;
925cc71e
RJ
5247
5248 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5249 if (!pfn_valid_within(pfn))
5250 continue;
5251
5252 curr_page = pfn_to_page(iter);
5253 if (!page_count(curr_page) || PageLRU(curr_page))
5254 continue;
5255
5256 immobile++;
5257 }
5258
5259 if (arg.pages_found == immobile)
5260 ret = 0;
5261
a5d76b54 5262out:
925cc71e
RJ
5263 if (!ret) {
5264 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5265 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5266 }
5267
a5d76b54
KH
5268 spin_unlock_irqrestore(&zone->lock, flags);
5269 if (!ret)
9f8f2172 5270 drain_all_pages();
a5d76b54
KH
5271 return ret;
5272}
5273
5274void unset_migratetype_isolate(struct page *page)
5275{
5276 struct zone *zone;
5277 unsigned long flags;
5278 zone = page_zone(page);
5279 spin_lock_irqsave(&zone->lock, flags);
5280 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5281 goto out;
5282 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5283 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5284out:
5285 spin_unlock_irqrestore(&zone->lock, flags);
5286}
0c0e6195
KH
5287
5288#ifdef CONFIG_MEMORY_HOTREMOVE
5289/*
5290 * All pages in the range must be isolated before calling this.
5291 */
5292void
5293__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5294{
5295 struct page *page;
5296 struct zone *zone;
5297 int order, i;
5298 unsigned long pfn;
5299 unsigned long flags;
5300 /* find the first valid pfn */
5301 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5302 if (pfn_valid(pfn))
5303 break;
5304 if (pfn == end_pfn)
5305 return;
5306 zone = page_zone(pfn_to_page(pfn));
5307 spin_lock_irqsave(&zone->lock, flags);
5308 pfn = start_pfn;
5309 while (pfn < end_pfn) {
5310 if (!pfn_valid(pfn)) {
5311 pfn++;
5312 continue;
5313 }
5314 page = pfn_to_page(pfn);
5315 BUG_ON(page_count(page));
5316 BUG_ON(!PageBuddy(page));
5317 order = page_order(page);
5318#ifdef CONFIG_DEBUG_VM
5319 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5320 pfn, 1 << order, end_pfn);
5321#endif
5322 list_del(&page->lru);
5323 rmv_page_order(page);
5324 zone->free_area[order].nr_free--;
5325 __mod_zone_page_state(zone, NR_FREE_PAGES,
5326 - (1UL << order));
5327 for (i = 0; i < (1 << order); i++)
5328 SetPageReserved((page+i));
5329 pfn += (1 << order);
5330 }
5331 spin_unlock_irqrestore(&zone->lock, flags);
5332}
5333#endif
8d22ba1b
WF
5334
5335#ifdef CONFIG_MEMORY_FAILURE
5336bool is_free_buddy_page(struct page *page)
5337{
5338 struct zone *zone = page_zone(page);
5339 unsigned long pfn = page_to_pfn(page);
5340 unsigned long flags;
5341 int order;
5342
5343 spin_lock_irqsave(&zone->lock, flags);
5344 for (order = 0; order < MAX_ORDER; order++) {
5345 struct page *page_head = page - (pfn & ((1 << order) - 1));
5346
5347 if (PageBuddy(page_head) && page_order(page_head) >= order)
5348 break;
5349 }
5350 spin_unlock_irqrestore(&zone->lock, flags);
5351
5352 return order < MAX_ORDER;
5353}
5354#endif
718a3821
WF
5355
5356static struct trace_print_flags pageflag_names[] = {
5357 {1UL << PG_locked, "locked" },
5358 {1UL << PG_error, "error" },
5359 {1UL << PG_referenced, "referenced" },
5360 {1UL << PG_uptodate, "uptodate" },
5361 {1UL << PG_dirty, "dirty" },
5362 {1UL << PG_lru, "lru" },
5363 {1UL << PG_active, "active" },
5364 {1UL << PG_slab, "slab" },
5365 {1UL << PG_owner_priv_1, "owner_priv_1" },
5366 {1UL << PG_arch_1, "arch_1" },
5367 {1UL << PG_reserved, "reserved" },
5368 {1UL << PG_private, "private" },
5369 {1UL << PG_private_2, "private_2" },
5370 {1UL << PG_writeback, "writeback" },
5371#ifdef CONFIG_PAGEFLAGS_EXTENDED
5372 {1UL << PG_head, "head" },
5373 {1UL << PG_tail, "tail" },
5374#else
5375 {1UL << PG_compound, "compound" },
5376#endif
5377 {1UL << PG_swapcache, "swapcache" },
5378 {1UL << PG_mappedtodisk, "mappedtodisk" },
5379 {1UL << PG_reclaim, "reclaim" },
5380 {1UL << PG_buddy, "buddy" },
5381 {1UL << PG_swapbacked, "swapbacked" },
5382 {1UL << PG_unevictable, "unevictable" },
5383#ifdef CONFIG_MMU
5384 {1UL << PG_mlocked, "mlocked" },
5385#endif
5386#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5387 {1UL << PG_uncached, "uncached" },
5388#endif
5389#ifdef CONFIG_MEMORY_FAILURE
5390 {1UL << PG_hwpoison, "hwpoison" },
5391#endif
5392 {-1UL, NULL },
5393};
5394
5395static void dump_page_flags(unsigned long flags)
5396{
5397 const char *delim = "";
5398 unsigned long mask;
5399 int i;
5400
5401 printk(KERN_ALERT "page flags: %#lx(", flags);
5402
5403 /* remove zone id */
5404 flags &= (1UL << NR_PAGEFLAGS) - 1;
5405
5406 for (i = 0; pageflag_names[i].name && flags; i++) {
5407
5408 mask = pageflag_names[i].mask;
5409 if ((flags & mask) != mask)
5410 continue;
5411
5412 flags &= ~mask;
5413 printk("%s%s", delim, pageflag_names[i].name);
5414 delim = "|";
5415 }
5416
5417 /* check for left over flags */
5418 if (flags)
5419 printk("%s%#lx", delim, flags);
5420
5421 printk(")\n");
5422}
5423
5424void dump_page(struct page *page)
5425{
5426 printk(KERN_ALERT
5427 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5428 page, page_count(page), page_mapcount(page),
5429 page->mapping, page->index);
5430 dump_page_flags(page->flags);
5431}