memcg: charged pages always have valid per-memcg zone info
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
8c7c6e34
KH
330/* for encoding cft->private value on file */
331#define _MEM (0)
332#define _MEMSWAP (1)
9490ff27 333#define _OOM_TYPE (2)
8c7c6e34
KH
334#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
337/* Used for OOM nofiier */
338#define OOM_CONTROL (0)
8c7c6e34 339
75822b44
BS
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
347#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 349
8c7c6e34
KH
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 353static void drain_all_stock_async(void);
8c7c6e34 354
f64c3f54
BS
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
d324236b
WF
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363 return &mem->css;
364}
365
f64c3f54 366static struct mem_cgroup_per_zone *
97a6c37b 367page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 368{
97a6c37b
JW
369 int nid = page_to_nid(page);
370 int zid = page_zonenum(page);
f64c3f54 371
f64c3f54
BS
372 return mem_cgroup_zoneinfo(mem, nid, zid);
373}
374
375static struct mem_cgroup_tree_per_zone *
376soft_limit_tree_node_zone(int nid, int zid)
377{
378 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
379}
380
381static struct mem_cgroup_tree_per_zone *
382soft_limit_tree_from_page(struct page *page)
383{
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
386
387 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388}
389
390static void
4e416953 391__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 392 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
393 struct mem_cgroup_tree_per_zone *mctz,
394 unsigned long long new_usage_in_excess)
f64c3f54
BS
395{
396 struct rb_node **p = &mctz->rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct mem_cgroup_per_zone *mz_node;
399
400 if (mz->on_tree)
401 return;
402
ef8745c1
KH
403 mz->usage_in_excess = new_usage_in_excess;
404 if (!mz->usage_in_excess)
405 return;
f64c3f54
BS
406 while (*p) {
407 parent = *p;
408 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
409 tree_node);
410 if (mz->usage_in_excess < mz_node->usage_in_excess)
411 p = &(*p)->rb_left;
412 /*
413 * We can't avoid mem cgroups that are over their soft
414 * limit by the same amount
415 */
416 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
417 p = &(*p)->rb_right;
418 }
419 rb_link_node(&mz->tree_node, parent, p);
420 rb_insert_color(&mz->tree_node, &mctz->rb_root);
421 mz->on_tree = true;
4e416953
BS
422}
423
424static void
425__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
426 struct mem_cgroup_per_zone *mz,
427 struct mem_cgroup_tree_per_zone *mctz)
428{
429 if (!mz->on_tree)
430 return;
431 rb_erase(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = false;
433}
434
f64c3f54
BS
435static void
436mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 spin_lock(&mctz->lock);
4e416953 441 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
442 spin_unlock(&mctz->lock);
443}
444
f64c3f54
BS
445
446static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
447{
ef8745c1 448 unsigned long long excess;
f64c3f54
BS
449 struct mem_cgroup_per_zone *mz;
450 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
451 int nid = page_to_nid(page);
452 int zid = page_zonenum(page);
f64c3f54
BS
453 mctz = soft_limit_tree_from_page(page);
454
455 /*
4e649152
KH
456 * Necessary to update all ancestors when hierarchy is used.
457 * because their event counter is not touched.
f64c3f54 458 */
4e649152
KH
459 for (; mem; mem = parent_mem_cgroup(mem)) {
460 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 461 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
462 /*
463 * We have to update the tree if mz is on RB-tree or
464 * mem is over its softlimit.
465 */
ef8745c1 466 if (excess || mz->on_tree) {
4e649152
KH
467 spin_lock(&mctz->lock);
468 /* if on-tree, remove it */
469 if (mz->on_tree)
470 __mem_cgroup_remove_exceeded(mem, mz, mctz);
471 /*
ef8745c1
KH
472 * Insert again. mz->usage_in_excess will be updated.
473 * If excess is 0, no tree ops.
4e649152 474 */
ef8745c1 475 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
476 spin_unlock(&mctz->lock);
477 }
f64c3f54
BS
478 }
479}
480
481static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
482{
483 int node, zone;
484 struct mem_cgroup_per_zone *mz;
485 struct mem_cgroup_tree_per_zone *mctz;
486
487 for_each_node_state(node, N_POSSIBLE) {
488 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
489 mz = mem_cgroup_zoneinfo(mem, node, zone);
490 mctz = soft_limit_tree_node_zone(node, zone);
491 mem_cgroup_remove_exceeded(mem, mz, mctz);
492 }
493 }
494}
495
4e416953
BS
496static struct mem_cgroup_per_zone *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498{
499 struct rb_node *rightmost = NULL;
26251eaf 500 struct mem_cgroup_per_zone *mz;
4e416953
BS
501
502retry:
26251eaf 503 mz = NULL;
4e416953
BS
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 !css_tryget(&mz->mem->css))
517 goto retry;
518done:
519 return mz;
520}
521
522static struct mem_cgroup_per_zone *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct mem_cgroup_per_zone *mz;
526
527 spin_lock(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock(&mctz->lock);
530 return mz;
531}
532
711d3d2c
KH
533/*
534 * Implementation Note: reading percpu statistics for memcg.
535 *
536 * Both of vmstat[] and percpu_counter has threshold and do periodic
537 * synchronization to implement "quick" read. There are trade-off between
538 * reading cost and precision of value. Then, we may have a chance to implement
539 * a periodic synchronizion of counter in memcg's counter.
540 *
541 * But this _read() function is used for user interface now. The user accounts
542 * memory usage by memory cgroup and he _always_ requires exact value because
543 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
544 * have to visit all online cpus and make sum. So, for now, unnecessary
545 * synchronization is not implemented. (just implemented for cpu hotplug)
546 *
547 * If there are kernel internal actions which can make use of some not-exact
548 * value, and reading all cpu value can be performance bottleneck in some
549 * common workload, threashold and synchonization as vmstat[] should be
550 * implemented.
551 */
c62b1a3b
KH
552static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
553 enum mem_cgroup_stat_index idx)
554{
555 int cpu;
556 s64 val = 0;
557
711d3d2c
KH
558 get_online_cpus();
559 for_each_online_cpu(cpu)
c62b1a3b 560 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
561#ifdef CONFIG_HOTPLUG_CPU
562 spin_lock(&mem->pcp_counter_lock);
563 val += mem->nocpu_base.count[idx];
564 spin_unlock(&mem->pcp_counter_lock);
565#endif
566 put_online_cpus();
c62b1a3b
KH
567 return val;
568}
569
570static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
571{
572 s64 ret;
573
574 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
575 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
576 return ret;
577}
578
0c3e73e8
BS
579static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
580 bool charge)
581{
582 int val = (charge) ? 1 : -1;
c62b1a3b 583 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
584}
585
c05555b5 586static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 587 bool file, int nr_pages)
d52aa412 588{
c62b1a3b
KH
589 preempt_disable();
590
e401f176
KH
591 if (file)
592 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 593 else
e401f176 594 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 595
e401f176
KH
596 /* pagein of a big page is an event. So, ignore page size */
597 if (nr_pages > 0)
c62b1a3b 598 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 599 else {
c62b1a3b 600 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
601 nr_pages = -nr_pages; /* for event */
602 }
e401f176
KH
603
604 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 605
c62b1a3b 606 preempt_enable();
6d12e2d8
KH
607}
608
14067bb3 609static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 610 enum lru_list idx)
6d12e2d8
KH
611{
612 int nid, zid;
613 struct mem_cgroup_per_zone *mz;
614 u64 total = 0;
615
616 for_each_online_node(nid)
617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
618 mz = mem_cgroup_zoneinfo(mem, nid, zid);
619 total += MEM_CGROUP_ZSTAT(mz, idx);
620 }
621 return total;
d52aa412
KH
622}
623
d2265e6f
KH
624static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
625{
626 s64 val;
627
628 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
629
630 return !(val & ((1 << event_mask_shift) - 1));
631}
632
633/*
634 * Check events in order.
635 *
636 */
637static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
638{
639 /* threshold event is triggered in finer grain than soft limit */
640 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
641 mem_cgroup_threshold(mem);
642 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
643 mem_cgroup_update_tree(mem, page);
644 }
645}
646
d5b69e38 647static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
648{
649 return container_of(cgroup_subsys_state(cont,
650 mem_cgroup_subsys_id), struct mem_cgroup,
651 css);
652}
653
cf475ad2 654struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 655{
31a78f23
BS
656 /*
657 * mm_update_next_owner() may clear mm->owner to NULL
658 * if it races with swapoff, page migration, etc.
659 * So this can be called with p == NULL.
660 */
661 if (unlikely(!p))
662 return NULL;
663
78fb7466
PE
664 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
665 struct mem_cgroup, css);
666}
667
54595fe2
KH
668static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
669{
670 struct mem_cgroup *mem = NULL;
0b7f569e
KH
671
672 if (!mm)
673 return NULL;
54595fe2
KH
674 /*
675 * Because we have no locks, mm->owner's may be being moved to other
676 * cgroup. We use css_tryget() here even if this looks
677 * pessimistic (rather than adding locks here).
678 */
679 rcu_read_lock();
680 do {
681 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
682 if (unlikely(!mem))
683 break;
684 } while (!css_tryget(&mem->css));
685 rcu_read_unlock();
686 return mem;
687}
688
7d74b06f
KH
689/* The caller has to guarantee "mem" exists before calling this */
690static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 691{
711d3d2c
KH
692 struct cgroup_subsys_state *css;
693 int found;
694
695 if (!mem) /* ROOT cgroup has the smallest ID */
696 return root_mem_cgroup; /*css_put/get against root is ignored*/
697 if (!mem->use_hierarchy) {
698 if (css_tryget(&mem->css))
699 return mem;
700 return NULL;
701 }
702 rcu_read_lock();
703 /*
704 * searching a memory cgroup which has the smallest ID under given
705 * ROOT cgroup. (ID >= 1)
706 */
707 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
708 if (css && css_tryget(css))
709 mem = container_of(css, struct mem_cgroup, css);
710 else
711 mem = NULL;
712 rcu_read_unlock();
713 return mem;
7d74b06f
KH
714}
715
716static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
717 struct mem_cgroup *root,
718 bool cond)
719{
720 int nextid = css_id(&iter->css) + 1;
721 int found;
722 int hierarchy_used;
14067bb3 723 struct cgroup_subsys_state *css;
14067bb3 724
7d74b06f 725 hierarchy_used = iter->use_hierarchy;
14067bb3 726
7d74b06f 727 css_put(&iter->css);
711d3d2c
KH
728 /* If no ROOT, walk all, ignore hierarchy */
729 if (!cond || (root && !hierarchy_used))
7d74b06f 730 return NULL;
14067bb3 731
711d3d2c
KH
732 if (!root)
733 root = root_mem_cgroup;
734
7d74b06f
KH
735 do {
736 iter = NULL;
14067bb3 737 rcu_read_lock();
7d74b06f
KH
738
739 css = css_get_next(&mem_cgroup_subsys, nextid,
740 &root->css, &found);
14067bb3 741 if (css && css_tryget(css))
7d74b06f 742 iter = container_of(css, struct mem_cgroup, css);
14067bb3 743 rcu_read_unlock();
7d74b06f 744 /* If css is NULL, no more cgroups will be found */
14067bb3 745 nextid = found + 1;
7d74b06f 746 } while (css && !iter);
14067bb3 747
7d74b06f 748 return iter;
14067bb3 749}
7d74b06f
KH
750/*
751 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
752 * be careful that "break" loop is not allowed. We have reference count.
753 * Instead of that modify "cond" to be false and "continue" to exit the loop.
754 */
755#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
756 for (iter = mem_cgroup_start_loop(root);\
757 iter != NULL;\
758 iter = mem_cgroup_get_next(iter, root, cond))
759
760#define for_each_mem_cgroup_tree(iter, root) \
761 for_each_mem_cgroup_tree_cond(iter, root, true)
762
711d3d2c
KH
763#define for_each_mem_cgroup_all(iter) \
764 for_each_mem_cgroup_tree_cond(iter, NULL, true)
765
14067bb3 766
4b3bde4c
BS
767static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
768{
769 return (mem == root_mem_cgroup);
770}
771
08e552c6
KH
772/*
773 * Following LRU functions are allowed to be used without PCG_LOCK.
774 * Operations are called by routine of global LRU independently from memcg.
775 * What we have to take care of here is validness of pc->mem_cgroup.
776 *
777 * Changes to pc->mem_cgroup happens when
778 * 1. charge
779 * 2. moving account
780 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
781 * It is added to LRU before charge.
782 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
783 * When moving account, the page is not on LRU. It's isolated.
784 */
4f98a2fe 785
08e552c6
KH
786void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
787{
788 struct page_cgroup *pc;
08e552c6 789 struct mem_cgroup_per_zone *mz;
6d12e2d8 790
f8d66542 791 if (mem_cgroup_disabled())
08e552c6
KH
792 return;
793 pc = lookup_page_cgroup(page);
794 /* can happen while we handle swapcache. */
4b3bde4c 795 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 796 return;
4b3bde4c 797 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
798 /*
799 * We don't check PCG_USED bit. It's cleared when the "page" is finally
800 * removed from global LRU.
801 */
97a6c37b 802 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
803 /* huge page split is done under lru_lock. so, we have no races. */
804 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
805 if (mem_cgroup_is_root(pc->mem_cgroup))
806 return;
807 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 808 list_del_init(&pc->lru);
6d12e2d8
KH
809}
810
08e552c6 811void mem_cgroup_del_lru(struct page *page)
6d12e2d8 812{
08e552c6
KH
813 mem_cgroup_del_lru_list(page, page_lru(page));
814}
b69408e8 815
3f58a829
MK
816/*
817 * Writeback is about to end against a page which has been marked for immediate
818 * reclaim. If it still appears to be reclaimable, move it to the tail of the
819 * inactive list.
820 */
821void mem_cgroup_rotate_reclaimable_page(struct page *page)
822{
823 struct mem_cgroup_per_zone *mz;
824 struct page_cgroup *pc;
825 enum lru_list lru = page_lru(page);
826
827 if (mem_cgroup_disabled())
828 return;
829
830 pc = lookup_page_cgroup(page);
831 /* unused or root page is not rotated. */
832 if (!PageCgroupUsed(pc))
833 return;
834 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
835 smp_rmb();
836 if (mem_cgroup_is_root(pc->mem_cgroup))
837 return;
97a6c37b 838 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
839 list_move_tail(&pc->lru, &mz->lists[lru]);
840}
841
08e552c6
KH
842void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
843{
844 struct mem_cgroup_per_zone *mz;
845 struct page_cgroup *pc;
b69408e8 846
f8d66542 847 if (mem_cgroup_disabled())
08e552c6 848 return;
6d12e2d8 849
08e552c6 850 pc = lookup_page_cgroup(page);
4b3bde4c 851 /* unused or root page is not rotated. */
713735b4
JW
852 if (!PageCgroupUsed(pc))
853 return;
854 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
855 smp_rmb();
856 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 857 return;
97a6c37b 858 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 859 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
860}
861
08e552c6 862void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 863{
08e552c6
KH
864 struct page_cgroup *pc;
865 struct mem_cgroup_per_zone *mz;
6d12e2d8 866
f8d66542 867 if (mem_cgroup_disabled())
08e552c6
KH
868 return;
869 pc = lookup_page_cgroup(page);
4b3bde4c 870 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 871 if (!PageCgroupUsed(pc))
894bc310 872 return;
713735b4
JW
873 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
874 smp_rmb();
97a6c37b 875 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
876 /* huge page split is done under lru_lock. so, we have no races. */
877 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
878 SetPageCgroupAcctLRU(pc);
879 if (mem_cgroup_is_root(pc->mem_cgroup))
880 return;
08e552c6
KH
881 list_add(&pc->lru, &mz->lists[lru]);
882}
544122e5 883
08e552c6 884/*
544122e5
KH
885 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
886 * lru because the page may.be reused after it's fully uncharged (because of
887 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
888 * it again. This function is only used to charge SwapCache. It's done under
889 * lock_page and expected that zone->lru_lock is never held.
08e552c6 890 */
544122e5 891static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 892{
544122e5
KH
893 unsigned long flags;
894 struct zone *zone = page_zone(page);
895 struct page_cgroup *pc = lookup_page_cgroup(page);
896
897 spin_lock_irqsave(&zone->lru_lock, flags);
898 /*
899 * Forget old LRU when this page_cgroup is *not* used. This Used bit
900 * is guarded by lock_page() because the page is SwapCache.
901 */
902 if (!PageCgroupUsed(pc))
903 mem_cgroup_del_lru_list(page, page_lru(page));
904 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
905}
906
544122e5
KH
907static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
908{
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
912
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 915 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
916 mem_cgroup_add_lru_list(page, page_lru(page));
917 spin_unlock_irqrestore(&zone->lru_lock, flags);
918}
919
920
08e552c6
KH
921void mem_cgroup_move_lists(struct page *page,
922 enum lru_list from, enum lru_list to)
923{
f8d66542 924 if (mem_cgroup_disabled())
08e552c6
KH
925 return;
926 mem_cgroup_del_lru_list(page, from);
927 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
928}
929
4c4a2214
DR
930int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
931{
932 int ret;
0b7f569e 933 struct mem_cgroup *curr = NULL;
158e0a2d 934 struct task_struct *p;
4c4a2214 935
158e0a2d
KH
936 p = find_lock_task_mm(task);
937 if (!p)
938 return 0;
939 curr = try_get_mem_cgroup_from_mm(p->mm);
940 task_unlock(p);
0b7f569e
KH
941 if (!curr)
942 return 0;
d31f56db
DN
943 /*
944 * We should check use_hierarchy of "mem" not "curr". Because checking
945 * use_hierarchy of "curr" here make this function true if hierarchy is
946 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
947 * hierarchy(even if use_hierarchy is disabled in "mem").
948 */
949 if (mem->use_hierarchy)
0b7f569e
KH
950 ret = css_is_ancestor(&curr->css, &mem->css);
951 else
952 ret = (curr == mem);
953 css_put(&curr->css);
4c4a2214
DR
954 return ret;
955}
956
c772be93 957static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
958{
959 unsigned long active;
960 unsigned long inactive;
c772be93
KM
961 unsigned long gb;
962 unsigned long inactive_ratio;
14797e23 963
14067bb3
KH
964 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
965 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 966
c772be93
KM
967 gb = (inactive + active) >> (30 - PAGE_SHIFT);
968 if (gb)
969 inactive_ratio = int_sqrt(10 * gb);
970 else
971 inactive_ratio = 1;
972
973 if (present_pages) {
974 present_pages[0] = inactive;
975 present_pages[1] = active;
976 }
977
978 return inactive_ratio;
979}
980
981int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
982{
983 unsigned long active;
984 unsigned long inactive;
985 unsigned long present_pages[2];
986 unsigned long inactive_ratio;
987
988 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
989
990 inactive = present_pages[0];
991 active = present_pages[1];
992
993 if (inactive * inactive_ratio < active)
14797e23
KM
994 return 1;
995
996 return 0;
997}
998
56e49d21
RR
999int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1000{
1001 unsigned long active;
1002 unsigned long inactive;
1003
1004 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1005 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1006
1007 return (active > inactive);
1008}
1009
a3d8e054
KM
1010unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1011 struct zone *zone,
1012 enum lru_list lru)
1013{
13d7e3a2 1014 int nid = zone_to_nid(zone);
a3d8e054
KM
1015 int zid = zone_idx(zone);
1016 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1017
1018 return MEM_CGROUP_ZSTAT(mz, lru);
1019}
1020
3e2f41f1
KM
1021struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1022 struct zone *zone)
1023{
13d7e3a2 1024 int nid = zone_to_nid(zone);
3e2f41f1
KM
1025 int zid = zone_idx(zone);
1026 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1027
1028 return &mz->reclaim_stat;
1029}
1030
1031struct zone_reclaim_stat *
1032mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1033{
1034 struct page_cgroup *pc;
1035 struct mem_cgroup_per_zone *mz;
1036
1037 if (mem_cgroup_disabled())
1038 return NULL;
1039
1040 pc = lookup_page_cgroup(page);
bd112db8
DN
1041 if (!PageCgroupUsed(pc))
1042 return NULL;
713735b4
JW
1043 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1044 smp_rmb();
97a6c37b 1045 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1046 return &mz->reclaim_stat;
1047}
1048
66e1707b
BS
1049unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1050 struct list_head *dst,
1051 unsigned long *scanned, int order,
1052 int mode, struct zone *z,
1053 struct mem_cgroup *mem_cont,
4f98a2fe 1054 int active, int file)
66e1707b
BS
1055{
1056 unsigned long nr_taken = 0;
1057 struct page *page;
1058 unsigned long scan;
1059 LIST_HEAD(pc_list);
1060 struct list_head *src;
ff7283fa 1061 struct page_cgroup *pc, *tmp;
13d7e3a2 1062 int nid = zone_to_nid(z);
1ecaab2b
KH
1063 int zid = zone_idx(z);
1064 struct mem_cgroup_per_zone *mz;
b7c46d15 1065 int lru = LRU_FILE * file + active;
2ffebca6 1066 int ret;
66e1707b 1067
cf475ad2 1068 BUG_ON(!mem_cont);
1ecaab2b 1069 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1070 src = &mz->lists[lru];
66e1707b 1071
ff7283fa
KH
1072 scan = 0;
1073 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1074 if (scan >= nr_to_scan)
ff7283fa 1075 break;
08e552c6 1076
52d4b9ac
KH
1077 if (unlikely(!PageCgroupUsed(pc)))
1078 continue;
5564e88b 1079
6b3ae58e 1080 page = lookup_cgroup_page(pc);
5564e88b 1081
436c6541 1082 if (unlikely(!PageLRU(page)))
ff7283fa 1083 continue;
ff7283fa 1084
436c6541 1085 scan++;
2ffebca6
KH
1086 ret = __isolate_lru_page(page, mode, file);
1087 switch (ret) {
1088 case 0:
66e1707b 1089 list_move(&page->lru, dst);
2ffebca6 1090 mem_cgroup_del_lru(page);
2c888cfb 1091 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1092 break;
1093 case -EBUSY:
1094 /* we don't affect global LRU but rotate in our LRU */
1095 mem_cgroup_rotate_lru_list(page, page_lru(page));
1096 break;
1097 default:
1098 break;
66e1707b
BS
1099 }
1100 }
1101
66e1707b 1102 *scanned = scan;
cc8e970c
KM
1103
1104 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1105 0, 0, 0, mode);
1106
66e1707b
BS
1107 return nr_taken;
1108}
1109
6d61ef40
BS
1110#define mem_cgroup_from_res_counter(counter, member) \
1111 container_of(counter, struct mem_cgroup, member)
1112
19942822 1113/**
9d11ea9f
JW
1114 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1115 * @mem: the memory cgroup
19942822 1116 *
9d11ea9f
JW
1117 * Returns the maximum amount of memory @mem can be charged with, in
1118 * bytes.
19942822 1119 */
9d11ea9f 1120static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1121{
9d11ea9f
JW
1122 unsigned long long margin;
1123
1124 margin = res_counter_margin(&mem->res);
1125 if (do_swap_account)
1126 margin = min(margin, res_counter_margin(&mem->memsw));
1127 return margin;
19942822
JW
1128}
1129
a7885eb8
KM
1130static unsigned int get_swappiness(struct mem_cgroup *memcg)
1131{
1132 struct cgroup *cgrp = memcg->css.cgroup;
1133 unsigned int swappiness;
1134
1135 /* root ? */
1136 if (cgrp->parent == NULL)
1137 return vm_swappiness;
1138
1139 spin_lock(&memcg->reclaim_param_lock);
1140 swappiness = memcg->swappiness;
1141 spin_unlock(&memcg->reclaim_param_lock);
1142
1143 return swappiness;
1144}
1145
32047e2a
KH
1146static void mem_cgroup_start_move(struct mem_cgroup *mem)
1147{
1148 int cpu;
1489ebad
KH
1149
1150 get_online_cpus();
1151 spin_lock(&mem->pcp_counter_lock);
1152 for_each_online_cpu(cpu)
32047e2a 1153 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1154 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1155 spin_unlock(&mem->pcp_counter_lock);
1156 put_online_cpus();
32047e2a
KH
1157
1158 synchronize_rcu();
1159}
1160
1161static void mem_cgroup_end_move(struct mem_cgroup *mem)
1162{
1163 int cpu;
1164
1165 if (!mem)
1166 return;
1489ebad
KH
1167 get_online_cpus();
1168 spin_lock(&mem->pcp_counter_lock);
1169 for_each_online_cpu(cpu)
32047e2a 1170 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1171 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1172 spin_unlock(&mem->pcp_counter_lock);
1173 put_online_cpus();
32047e2a
KH
1174}
1175/*
1176 * 2 routines for checking "mem" is under move_account() or not.
1177 *
1178 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1179 * for avoiding race in accounting. If true,
1180 * pc->mem_cgroup may be overwritten.
1181 *
1182 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1183 * under hierarchy of moving cgroups. This is for
1184 * waiting at hith-memory prressure caused by "move".
1185 */
1186
1187static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1188{
1189 VM_BUG_ON(!rcu_read_lock_held());
1190 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1191}
4b534334
KH
1192
1193static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1194{
2bd9bb20
KH
1195 struct mem_cgroup *from;
1196 struct mem_cgroup *to;
4b534334 1197 bool ret = false;
2bd9bb20
KH
1198 /*
1199 * Unlike task_move routines, we access mc.to, mc.from not under
1200 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1201 */
1202 spin_lock(&mc.lock);
1203 from = mc.from;
1204 to = mc.to;
1205 if (!from)
1206 goto unlock;
1207 if (from == mem || to == mem
1208 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1209 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1210 ret = true;
1211unlock:
1212 spin_unlock(&mc.lock);
4b534334
KH
1213 return ret;
1214}
1215
1216static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1217{
1218 if (mc.moving_task && current != mc.moving_task) {
1219 if (mem_cgroup_under_move(mem)) {
1220 DEFINE_WAIT(wait);
1221 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1222 /* moving charge context might have finished. */
1223 if (mc.moving_task)
1224 schedule();
1225 finish_wait(&mc.waitq, &wait);
1226 return true;
1227 }
1228 }
1229 return false;
1230}
1231
e222432b 1232/**
6a6135b6 1233 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1234 * @memcg: The memory cgroup that went over limit
1235 * @p: Task that is going to be killed
1236 *
1237 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1238 * enabled
1239 */
1240void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1241{
1242 struct cgroup *task_cgrp;
1243 struct cgroup *mem_cgrp;
1244 /*
1245 * Need a buffer in BSS, can't rely on allocations. The code relies
1246 * on the assumption that OOM is serialized for memory controller.
1247 * If this assumption is broken, revisit this code.
1248 */
1249 static char memcg_name[PATH_MAX];
1250 int ret;
1251
d31f56db 1252 if (!memcg || !p)
e222432b
BS
1253 return;
1254
1255
1256 rcu_read_lock();
1257
1258 mem_cgrp = memcg->css.cgroup;
1259 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1260
1261 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1262 if (ret < 0) {
1263 /*
1264 * Unfortunately, we are unable to convert to a useful name
1265 * But we'll still print out the usage information
1266 */
1267 rcu_read_unlock();
1268 goto done;
1269 }
1270 rcu_read_unlock();
1271
1272 printk(KERN_INFO "Task in %s killed", memcg_name);
1273
1274 rcu_read_lock();
1275 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1276 if (ret < 0) {
1277 rcu_read_unlock();
1278 goto done;
1279 }
1280 rcu_read_unlock();
1281
1282 /*
1283 * Continues from above, so we don't need an KERN_ level
1284 */
1285 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1286done:
1287
1288 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1289 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1290 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1291 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1292 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1293 "failcnt %llu\n",
1294 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1295 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1296 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1297}
1298
81d39c20
KH
1299/*
1300 * This function returns the number of memcg under hierarchy tree. Returns
1301 * 1(self count) if no children.
1302 */
1303static int mem_cgroup_count_children(struct mem_cgroup *mem)
1304{
1305 int num = 0;
7d74b06f
KH
1306 struct mem_cgroup *iter;
1307
1308 for_each_mem_cgroup_tree(iter, mem)
1309 num++;
81d39c20
KH
1310 return num;
1311}
1312
a63d83f4
DR
1313/*
1314 * Return the memory (and swap, if configured) limit for a memcg.
1315 */
1316u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1317{
1318 u64 limit;
1319 u64 memsw;
1320
f3e8eb70
JW
1321 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1322 limit += total_swap_pages << PAGE_SHIFT;
1323
a63d83f4
DR
1324 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1325 /*
1326 * If memsw is finite and limits the amount of swap space available
1327 * to this memcg, return that limit.
1328 */
1329 return min(limit, memsw);
1330}
1331
6d61ef40 1332/*
04046e1a
KH
1333 * Visit the first child (need not be the first child as per the ordering
1334 * of the cgroup list, since we track last_scanned_child) of @mem and use
1335 * that to reclaim free pages from.
1336 */
1337static struct mem_cgroup *
1338mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1339{
1340 struct mem_cgroup *ret = NULL;
1341 struct cgroup_subsys_state *css;
1342 int nextid, found;
1343
1344 if (!root_mem->use_hierarchy) {
1345 css_get(&root_mem->css);
1346 ret = root_mem;
1347 }
1348
1349 while (!ret) {
1350 rcu_read_lock();
1351 nextid = root_mem->last_scanned_child + 1;
1352 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1353 &found);
1354 if (css && css_tryget(css))
1355 ret = container_of(css, struct mem_cgroup, css);
1356
1357 rcu_read_unlock();
1358 /* Updates scanning parameter */
1359 spin_lock(&root_mem->reclaim_param_lock);
1360 if (!css) {
1361 /* this means start scan from ID:1 */
1362 root_mem->last_scanned_child = 0;
1363 } else
1364 root_mem->last_scanned_child = found;
1365 spin_unlock(&root_mem->reclaim_param_lock);
1366 }
1367
1368 return ret;
1369}
1370
1371/*
1372 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1373 * we reclaimed from, so that we don't end up penalizing one child extensively
1374 * based on its position in the children list.
6d61ef40
BS
1375 *
1376 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1377 *
1378 * We give up and return to the caller when we visit root_mem twice.
1379 * (other groups can be removed while we're walking....)
81d39c20
KH
1380 *
1381 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1382 */
1383static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1384 struct zone *zone,
75822b44
BS
1385 gfp_t gfp_mask,
1386 unsigned long reclaim_options)
6d61ef40 1387{
04046e1a
KH
1388 struct mem_cgroup *victim;
1389 int ret, total = 0;
1390 int loop = 0;
75822b44
BS
1391 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1392 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1393 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1394 unsigned long excess;
1395
1396 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1397
22a668d7
KH
1398 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1399 if (root_mem->memsw_is_minimum)
1400 noswap = true;
1401
4e416953 1402 while (1) {
04046e1a 1403 victim = mem_cgroup_select_victim(root_mem);
4e416953 1404 if (victim == root_mem) {
04046e1a 1405 loop++;
cdec2e42
KH
1406 if (loop >= 1)
1407 drain_all_stock_async();
4e416953
BS
1408 if (loop >= 2) {
1409 /*
1410 * If we have not been able to reclaim
1411 * anything, it might because there are
1412 * no reclaimable pages under this hierarchy
1413 */
1414 if (!check_soft || !total) {
1415 css_put(&victim->css);
1416 break;
1417 }
1418 /*
1419 * We want to do more targetted reclaim.
1420 * excess >> 2 is not to excessive so as to
1421 * reclaim too much, nor too less that we keep
1422 * coming back to reclaim from this cgroup
1423 */
1424 if (total >= (excess >> 2) ||
1425 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1426 css_put(&victim->css);
1427 break;
1428 }
1429 }
1430 }
c62b1a3b 1431 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1432 /* this cgroup's local usage == 0 */
1433 css_put(&victim->css);
6d61ef40
BS
1434 continue;
1435 }
04046e1a 1436 /* we use swappiness of local cgroup */
4e416953
BS
1437 if (check_soft)
1438 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1439 noswap, get_swappiness(victim), zone);
4e416953
BS
1440 else
1441 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1442 noswap, get_swappiness(victim));
04046e1a 1443 css_put(&victim->css);
81d39c20
KH
1444 /*
1445 * At shrinking usage, we can't check we should stop here or
1446 * reclaim more. It's depends on callers. last_scanned_child
1447 * will work enough for keeping fairness under tree.
1448 */
1449 if (shrink)
1450 return ret;
04046e1a 1451 total += ret;
4e416953 1452 if (check_soft) {
9d11ea9f 1453 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1454 return total;
9d11ea9f 1455 } else if (mem_cgroup_margin(root_mem))
04046e1a 1456 return 1 + total;
6d61ef40 1457 }
04046e1a 1458 return total;
6d61ef40
BS
1459}
1460
867578cb
KH
1461/*
1462 * Check OOM-Killer is already running under our hierarchy.
1463 * If someone is running, return false.
1464 */
1465static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1466{
7d74b06f
KH
1467 int x, lock_count = 0;
1468 struct mem_cgroup *iter;
a636b327 1469
7d74b06f
KH
1470 for_each_mem_cgroup_tree(iter, mem) {
1471 x = atomic_inc_return(&iter->oom_lock);
1472 lock_count = max(x, lock_count);
1473 }
867578cb
KH
1474
1475 if (lock_count == 1)
1476 return true;
1477 return false;
a636b327 1478}
0b7f569e 1479
7d74b06f 1480static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1481{
7d74b06f
KH
1482 struct mem_cgroup *iter;
1483
867578cb
KH
1484 /*
1485 * When a new child is created while the hierarchy is under oom,
1486 * mem_cgroup_oom_lock() may not be called. We have to use
1487 * atomic_add_unless() here.
1488 */
7d74b06f
KH
1489 for_each_mem_cgroup_tree(iter, mem)
1490 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1491 return 0;
1492}
1493
867578cb
KH
1494
1495static DEFINE_MUTEX(memcg_oom_mutex);
1496static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1497
dc98df5a
KH
1498struct oom_wait_info {
1499 struct mem_cgroup *mem;
1500 wait_queue_t wait;
1501};
1502
1503static int memcg_oom_wake_function(wait_queue_t *wait,
1504 unsigned mode, int sync, void *arg)
1505{
1506 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1507 struct oom_wait_info *oom_wait_info;
1508
1509 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1510
1511 if (oom_wait_info->mem == wake_mem)
1512 goto wakeup;
1513 /* if no hierarchy, no match */
1514 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1515 return 0;
1516 /*
1517 * Both of oom_wait_info->mem and wake_mem are stable under us.
1518 * Then we can use css_is_ancestor without taking care of RCU.
1519 */
1520 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1521 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1522 return 0;
1523
1524wakeup:
1525 return autoremove_wake_function(wait, mode, sync, arg);
1526}
1527
1528static void memcg_wakeup_oom(struct mem_cgroup *mem)
1529{
1530 /* for filtering, pass "mem" as argument. */
1531 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1532}
1533
3c11ecf4
KH
1534static void memcg_oom_recover(struct mem_cgroup *mem)
1535{
2bd9bb20 1536 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1537 memcg_wakeup_oom(mem);
1538}
1539
867578cb
KH
1540/*
1541 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1542 */
1543bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1544{
dc98df5a 1545 struct oom_wait_info owait;
3c11ecf4 1546 bool locked, need_to_kill;
867578cb 1547
dc98df5a
KH
1548 owait.mem = mem;
1549 owait.wait.flags = 0;
1550 owait.wait.func = memcg_oom_wake_function;
1551 owait.wait.private = current;
1552 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1553 need_to_kill = true;
867578cb
KH
1554 /* At first, try to OOM lock hierarchy under mem.*/
1555 mutex_lock(&memcg_oom_mutex);
1556 locked = mem_cgroup_oom_lock(mem);
1557 /*
1558 * Even if signal_pending(), we can't quit charge() loop without
1559 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1560 * under OOM is always welcomed, use TASK_KILLABLE here.
1561 */
3c11ecf4
KH
1562 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1563 if (!locked || mem->oom_kill_disable)
1564 need_to_kill = false;
1565 if (locked)
9490ff27 1566 mem_cgroup_oom_notify(mem);
867578cb
KH
1567 mutex_unlock(&memcg_oom_mutex);
1568
3c11ecf4
KH
1569 if (need_to_kill) {
1570 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1571 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1572 } else {
867578cb 1573 schedule();
dc98df5a 1574 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1575 }
1576 mutex_lock(&memcg_oom_mutex);
1577 mem_cgroup_oom_unlock(mem);
dc98df5a 1578 memcg_wakeup_oom(mem);
867578cb
KH
1579 mutex_unlock(&memcg_oom_mutex);
1580
1581 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1582 return false;
1583 /* Give chance to dying process */
1584 schedule_timeout(1);
1585 return true;
0b7f569e
KH
1586}
1587
d69b042f
BS
1588/*
1589 * Currently used to update mapped file statistics, but the routine can be
1590 * generalized to update other statistics as well.
32047e2a
KH
1591 *
1592 * Notes: Race condition
1593 *
1594 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1595 * it tends to be costly. But considering some conditions, we doesn't need
1596 * to do so _always_.
1597 *
1598 * Considering "charge", lock_page_cgroup() is not required because all
1599 * file-stat operations happen after a page is attached to radix-tree. There
1600 * are no race with "charge".
1601 *
1602 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1603 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1604 * if there are race with "uncharge". Statistics itself is properly handled
1605 * by flags.
1606 *
1607 * Considering "move", this is an only case we see a race. To make the race
1608 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1609 * possibility of race condition. If there is, we take a lock.
d69b042f 1610 */
26174efd 1611
2a7106f2
GT
1612void mem_cgroup_update_page_stat(struct page *page,
1613 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1614{
1615 struct mem_cgroup *mem;
32047e2a
KH
1616 struct page_cgroup *pc = lookup_page_cgroup(page);
1617 bool need_unlock = false;
dbd4ea78 1618 unsigned long uninitialized_var(flags);
d69b042f 1619
d69b042f
BS
1620 if (unlikely(!pc))
1621 return;
1622
32047e2a 1623 rcu_read_lock();
d69b042f 1624 mem = pc->mem_cgroup;
32047e2a
KH
1625 if (unlikely(!mem || !PageCgroupUsed(pc)))
1626 goto out;
1627 /* pc->mem_cgroup is unstable ? */
ca3e0214 1628 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1629 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1630 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1631 need_unlock = true;
1632 mem = pc->mem_cgroup;
1633 if (!mem || !PageCgroupUsed(pc))
1634 goto out;
1635 }
26174efd 1636
26174efd 1637 switch (idx) {
2a7106f2 1638 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1639 if (val > 0)
1640 SetPageCgroupFileMapped(pc);
1641 else if (!page_mapped(page))
0c270f8f 1642 ClearPageCgroupFileMapped(pc);
2a7106f2 1643 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1644 break;
1645 default:
1646 BUG();
8725d541 1647 }
d69b042f 1648
2a7106f2
GT
1649 this_cpu_add(mem->stat->count[idx], val);
1650
32047e2a
KH
1651out:
1652 if (unlikely(need_unlock))
dbd4ea78 1653 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1654 rcu_read_unlock();
1655 return;
d69b042f 1656}
2a7106f2 1657EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1658
cdec2e42
KH
1659/*
1660 * size of first charge trial. "32" comes from vmscan.c's magic value.
1661 * TODO: maybe necessary to use big numbers in big irons.
1662 */
1663#define CHARGE_SIZE (32 * PAGE_SIZE)
1664struct memcg_stock_pcp {
1665 struct mem_cgroup *cached; /* this never be root cgroup */
1666 int charge;
1667 struct work_struct work;
1668};
1669static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1670static atomic_t memcg_drain_count;
1671
1672/*
1673 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1674 * from local stock and true is returned. If the stock is 0 or charges from a
1675 * cgroup which is not current target, returns false. This stock will be
1676 * refilled.
1677 */
1678static bool consume_stock(struct mem_cgroup *mem)
1679{
1680 struct memcg_stock_pcp *stock;
1681 bool ret = true;
1682
1683 stock = &get_cpu_var(memcg_stock);
1684 if (mem == stock->cached && stock->charge)
1685 stock->charge -= PAGE_SIZE;
1686 else /* need to call res_counter_charge */
1687 ret = false;
1688 put_cpu_var(memcg_stock);
1689 return ret;
1690}
1691
1692/*
1693 * Returns stocks cached in percpu to res_counter and reset cached information.
1694 */
1695static void drain_stock(struct memcg_stock_pcp *stock)
1696{
1697 struct mem_cgroup *old = stock->cached;
1698
1699 if (stock->charge) {
1700 res_counter_uncharge(&old->res, stock->charge);
1701 if (do_swap_account)
1702 res_counter_uncharge(&old->memsw, stock->charge);
1703 }
1704 stock->cached = NULL;
1705 stock->charge = 0;
1706}
1707
1708/*
1709 * This must be called under preempt disabled or must be called by
1710 * a thread which is pinned to local cpu.
1711 */
1712static void drain_local_stock(struct work_struct *dummy)
1713{
1714 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1715 drain_stock(stock);
1716}
1717
1718/*
1719 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1720 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1721 */
1722static void refill_stock(struct mem_cgroup *mem, int val)
1723{
1724 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1725
1726 if (stock->cached != mem) { /* reset if necessary */
1727 drain_stock(stock);
1728 stock->cached = mem;
1729 }
1730 stock->charge += val;
1731 put_cpu_var(memcg_stock);
1732}
1733
1734/*
1735 * Tries to drain stocked charges in other cpus. This function is asynchronous
1736 * and just put a work per cpu for draining localy on each cpu. Caller can
1737 * expects some charges will be back to res_counter later but cannot wait for
1738 * it.
1739 */
1740static void drain_all_stock_async(void)
1741{
1742 int cpu;
1743 /* This function is for scheduling "drain" in asynchronous way.
1744 * The result of "drain" is not directly handled by callers. Then,
1745 * if someone is calling drain, we don't have to call drain more.
1746 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1747 * there is a race. We just do loose check here.
1748 */
1749 if (atomic_read(&memcg_drain_count))
1750 return;
1751 /* Notify other cpus that system-wide "drain" is running */
1752 atomic_inc(&memcg_drain_count);
1753 get_online_cpus();
1754 for_each_online_cpu(cpu) {
1755 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1756 schedule_work_on(cpu, &stock->work);
1757 }
1758 put_online_cpus();
1759 atomic_dec(&memcg_drain_count);
1760 /* We don't wait for flush_work */
1761}
1762
1763/* This is a synchronous drain interface. */
1764static void drain_all_stock_sync(void)
1765{
1766 /* called when force_empty is called */
1767 atomic_inc(&memcg_drain_count);
1768 schedule_on_each_cpu(drain_local_stock);
1769 atomic_dec(&memcg_drain_count);
1770}
1771
711d3d2c
KH
1772/*
1773 * This function drains percpu counter value from DEAD cpu and
1774 * move it to local cpu. Note that this function can be preempted.
1775 */
1776static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1777{
1778 int i;
1779
1780 spin_lock(&mem->pcp_counter_lock);
1781 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1782 s64 x = per_cpu(mem->stat->count[i], cpu);
1783
1784 per_cpu(mem->stat->count[i], cpu) = 0;
1785 mem->nocpu_base.count[i] += x;
1786 }
1489ebad
KH
1787 /* need to clear ON_MOVE value, works as a kind of lock. */
1788 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1789 spin_unlock(&mem->pcp_counter_lock);
1790}
1791
1792static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1793{
1794 int idx = MEM_CGROUP_ON_MOVE;
1795
1796 spin_lock(&mem->pcp_counter_lock);
1797 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1798 spin_unlock(&mem->pcp_counter_lock);
1799}
1800
1801static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1802 unsigned long action,
1803 void *hcpu)
1804{
1805 int cpu = (unsigned long)hcpu;
1806 struct memcg_stock_pcp *stock;
711d3d2c 1807 struct mem_cgroup *iter;
cdec2e42 1808
1489ebad
KH
1809 if ((action == CPU_ONLINE)) {
1810 for_each_mem_cgroup_all(iter)
1811 synchronize_mem_cgroup_on_move(iter, cpu);
1812 return NOTIFY_OK;
1813 }
1814
711d3d2c 1815 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1816 return NOTIFY_OK;
711d3d2c
KH
1817
1818 for_each_mem_cgroup_all(iter)
1819 mem_cgroup_drain_pcp_counter(iter, cpu);
1820
cdec2e42
KH
1821 stock = &per_cpu(memcg_stock, cpu);
1822 drain_stock(stock);
1823 return NOTIFY_OK;
1824}
1825
4b534334
KH
1826
1827/* See __mem_cgroup_try_charge() for details */
1828enum {
1829 CHARGE_OK, /* success */
1830 CHARGE_RETRY, /* need to retry but retry is not bad */
1831 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1832 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1833 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1834};
1835
1836static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1837 int csize, bool oom_check)
1838{
1839 struct mem_cgroup *mem_over_limit;
1840 struct res_counter *fail_res;
1841 unsigned long flags = 0;
1842 int ret;
1843
1844 ret = res_counter_charge(&mem->res, csize, &fail_res);
1845
1846 if (likely(!ret)) {
1847 if (!do_swap_account)
1848 return CHARGE_OK;
1849 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1850 if (likely(!ret))
1851 return CHARGE_OK;
1852
01c88e2d 1853 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1854 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1855 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1856 } else
1857 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1858 /*
1859 * csize can be either a huge page (HPAGE_SIZE), a batch of
1860 * regular pages (CHARGE_SIZE), or a single regular page
1861 * (PAGE_SIZE).
1862 *
1863 * Never reclaim on behalf of optional batching, retry with a
1864 * single page instead.
1865 */
1866 if (csize == CHARGE_SIZE)
4b534334
KH
1867 return CHARGE_RETRY;
1868
1869 if (!(gfp_mask & __GFP_WAIT))
1870 return CHARGE_WOULDBLOCK;
1871
1872 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1873 gfp_mask, flags);
9d11ea9f 1874 if (mem_cgroup_margin(mem_over_limit) >= csize)
19942822 1875 return CHARGE_RETRY;
4b534334 1876 /*
19942822
JW
1877 * Even though the limit is exceeded at this point, reclaim
1878 * may have been able to free some pages. Retry the charge
1879 * before killing the task.
1880 *
1881 * Only for regular pages, though: huge pages are rather
1882 * unlikely to succeed so close to the limit, and we fall back
1883 * to regular pages anyway in case of failure.
4b534334 1884 */
19942822 1885 if (csize == PAGE_SIZE && ret)
4b534334
KH
1886 return CHARGE_RETRY;
1887
1888 /*
1889 * At task move, charge accounts can be doubly counted. So, it's
1890 * better to wait until the end of task_move if something is going on.
1891 */
1892 if (mem_cgroup_wait_acct_move(mem_over_limit))
1893 return CHARGE_RETRY;
1894
1895 /* If we don't need to call oom-killer at el, return immediately */
1896 if (!oom_check)
1897 return CHARGE_NOMEM;
1898 /* check OOM */
1899 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1900 return CHARGE_OOM_DIE;
1901
1902 return CHARGE_RETRY;
1903}
1904
f817ed48
KH
1905/*
1906 * Unlike exported interface, "oom" parameter is added. if oom==true,
1907 * oom-killer can be invoked.
8a9f3ccd 1908 */
f817ed48 1909static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1910 gfp_t gfp_mask,
1911 struct mem_cgroup **memcg, bool oom,
1912 int page_size)
8a9f3ccd 1913{
4b534334
KH
1914 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1915 struct mem_cgroup *mem = NULL;
1916 int ret;
ec168510 1917 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1918
867578cb
KH
1919 /*
1920 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1921 * in system level. So, allow to go ahead dying process in addition to
1922 * MEMDIE process.
1923 */
1924 if (unlikely(test_thread_flag(TIF_MEMDIE)
1925 || fatal_signal_pending(current)))
1926 goto bypass;
a636b327 1927
8a9f3ccd 1928 /*
3be91277
HD
1929 * We always charge the cgroup the mm_struct belongs to.
1930 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1931 * thread group leader migrates. It's possible that mm is not
1932 * set, if so charge the init_mm (happens for pagecache usage).
1933 */
f75ca962
KH
1934 if (!*memcg && !mm)
1935 goto bypass;
1936again:
1937 if (*memcg) { /* css should be a valid one */
4b534334 1938 mem = *memcg;
f75ca962
KH
1939 VM_BUG_ON(css_is_removed(&mem->css));
1940 if (mem_cgroup_is_root(mem))
1941 goto done;
ec168510 1942 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1943 goto done;
4b534334
KH
1944 css_get(&mem->css);
1945 } else {
f75ca962 1946 struct task_struct *p;
54595fe2 1947
f75ca962
KH
1948 rcu_read_lock();
1949 p = rcu_dereference(mm->owner);
f75ca962 1950 /*
ebb76ce1
KH
1951 * Because we don't have task_lock(), "p" can exit.
1952 * In that case, "mem" can point to root or p can be NULL with
1953 * race with swapoff. Then, we have small risk of mis-accouning.
1954 * But such kind of mis-account by race always happens because
1955 * we don't have cgroup_mutex(). It's overkill and we allo that
1956 * small race, here.
1957 * (*) swapoff at el will charge against mm-struct not against
1958 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1959 */
1960 mem = mem_cgroup_from_task(p);
ebb76ce1 1961 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1962 rcu_read_unlock();
1963 goto done;
1964 }
ec168510 1965 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1966 /*
1967 * It seems dagerous to access memcg without css_get().
1968 * But considering how consume_stok works, it's not
1969 * necessary. If consume_stock success, some charges
1970 * from this memcg are cached on this cpu. So, we
1971 * don't need to call css_get()/css_tryget() before
1972 * calling consume_stock().
1973 */
1974 rcu_read_unlock();
1975 goto done;
1976 }
1977 /* after here, we may be blocked. we need to get refcnt */
1978 if (!css_tryget(&mem->css)) {
1979 rcu_read_unlock();
1980 goto again;
1981 }
1982 rcu_read_unlock();
1983 }
8a9f3ccd 1984
4b534334
KH
1985 do {
1986 bool oom_check;
7a81b88c 1987
4b534334 1988 /* If killed, bypass charge */
f75ca962
KH
1989 if (fatal_signal_pending(current)) {
1990 css_put(&mem->css);
4b534334 1991 goto bypass;
f75ca962 1992 }
6d61ef40 1993
4b534334
KH
1994 oom_check = false;
1995 if (oom && !nr_oom_retries) {
1996 oom_check = true;
1997 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1998 }
66e1707b 1999
4b534334 2000 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 2001
4b534334
KH
2002 switch (ret) {
2003 case CHARGE_OK:
2004 break;
2005 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 2006 csize = page_size;
f75ca962
KH
2007 css_put(&mem->css);
2008 mem = NULL;
2009 goto again;
4b534334 2010 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2011 css_put(&mem->css);
4b534334
KH
2012 goto nomem;
2013 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2014 if (!oom) {
2015 css_put(&mem->css);
867578cb 2016 goto nomem;
f75ca962 2017 }
4b534334
KH
2018 /* If oom, we never return -ENOMEM */
2019 nr_oom_retries--;
2020 break;
2021 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2022 css_put(&mem->css);
867578cb 2023 goto bypass;
66e1707b 2024 }
4b534334
KH
2025 } while (ret != CHARGE_OK);
2026
ec168510
AA
2027 if (csize > page_size)
2028 refill_stock(mem, csize - page_size);
f75ca962 2029 css_put(&mem->css);
0c3e73e8 2030done:
f75ca962 2031 *memcg = mem;
7a81b88c
KH
2032 return 0;
2033nomem:
f75ca962 2034 *memcg = NULL;
7a81b88c 2035 return -ENOMEM;
867578cb
KH
2036bypass:
2037 *memcg = NULL;
2038 return 0;
7a81b88c 2039}
8a9f3ccd 2040
a3032a2c
DN
2041/*
2042 * Somemtimes we have to undo a charge we got by try_charge().
2043 * This function is for that and do uncharge, put css's refcnt.
2044 * gotten by try_charge().
2045 */
854ffa8d
DN
2046static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2047 unsigned long count)
a3032a2c
DN
2048{
2049 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2050 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2051 if (do_swap_account)
854ffa8d 2052 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2053 }
854ffa8d
DN
2054}
2055
ec168510
AA
2056static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2057 int page_size)
854ffa8d 2058{
ec168510 2059 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2060}
2061
a3b2d692
KH
2062/*
2063 * A helper function to get mem_cgroup from ID. must be called under
2064 * rcu_read_lock(). The caller must check css_is_removed() or some if
2065 * it's concern. (dropping refcnt from swap can be called against removed
2066 * memcg.)
2067 */
2068static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2069{
2070 struct cgroup_subsys_state *css;
2071
2072 /* ID 0 is unused ID */
2073 if (!id)
2074 return NULL;
2075 css = css_lookup(&mem_cgroup_subsys, id);
2076 if (!css)
2077 return NULL;
2078 return container_of(css, struct mem_cgroup, css);
2079}
2080
e42d9d5d 2081struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2082{
e42d9d5d 2083 struct mem_cgroup *mem = NULL;
3c776e64 2084 struct page_cgroup *pc;
a3b2d692 2085 unsigned short id;
b5a84319
KH
2086 swp_entry_t ent;
2087
3c776e64
DN
2088 VM_BUG_ON(!PageLocked(page));
2089
3c776e64 2090 pc = lookup_page_cgroup(page);
c0bd3f63 2091 lock_page_cgroup(pc);
a3b2d692 2092 if (PageCgroupUsed(pc)) {
3c776e64 2093 mem = pc->mem_cgroup;
a3b2d692
KH
2094 if (mem && !css_tryget(&mem->css))
2095 mem = NULL;
e42d9d5d 2096 } else if (PageSwapCache(page)) {
3c776e64 2097 ent.val = page_private(page);
a3b2d692
KH
2098 id = lookup_swap_cgroup(ent);
2099 rcu_read_lock();
2100 mem = mem_cgroup_lookup(id);
2101 if (mem && !css_tryget(&mem->css))
2102 mem = NULL;
2103 rcu_read_unlock();
3c776e64 2104 }
c0bd3f63 2105 unlock_page_cgroup(pc);
b5a84319
KH
2106 return mem;
2107}
2108
ca3e0214 2109static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2110 struct page *page,
ca3e0214
KH
2111 struct page_cgroup *pc,
2112 enum charge_type ctype,
2113 int page_size)
7a81b88c 2114{
ca3e0214
KH
2115 int nr_pages = page_size >> PAGE_SHIFT;
2116
ca3e0214
KH
2117 lock_page_cgroup(pc);
2118 if (unlikely(PageCgroupUsed(pc))) {
2119 unlock_page_cgroup(pc);
2120 mem_cgroup_cancel_charge(mem, page_size);
2121 return;
2122 }
2123 /*
2124 * we don't need page_cgroup_lock about tail pages, becase they are not
2125 * accessed by any other context at this point.
2126 */
8a9f3ccd 2127 pc->mem_cgroup = mem;
261fb61a
KH
2128 /*
2129 * We access a page_cgroup asynchronously without lock_page_cgroup().
2130 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2131 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2132 * before USED bit, we need memory barrier here.
2133 * See mem_cgroup_add_lru_list(), etc.
2134 */
08e552c6 2135 smp_wmb();
4b3bde4c
BS
2136 switch (ctype) {
2137 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2138 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2139 SetPageCgroupCache(pc);
2140 SetPageCgroupUsed(pc);
2141 break;
2142 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2143 ClearPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 default:
2147 break;
2148 }
3be91277 2149
ca3e0214 2150 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2151 unlock_page_cgroup(pc);
430e4863
KH
2152 /*
2153 * "charge_statistics" updated event counter. Then, check it.
2154 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2155 * if they exceeds softlimit.
2156 */
5564e88b 2157 memcg_check_events(mem, page);
7a81b88c 2158}
66e1707b 2159
ca3e0214
KH
2160#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2161
2162#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2163 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2164/*
2165 * Because tail pages are not marked as "used", set it. We're under
2166 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2167 */
2168void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2169{
2170 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2171 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2172 unsigned long flags;
2173
3d37c4a9
KH
2174 if (mem_cgroup_disabled())
2175 return;
ca3e0214 2176 /*
ece35ca8 2177 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2178 * page state accounting.
2179 */
2180 move_lock_page_cgroup(head_pc, &flags);
2181
2182 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2183 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2184 if (PageCgroupAcctLRU(head_pc)) {
2185 enum lru_list lru;
2186 struct mem_cgroup_per_zone *mz;
2187
2188 /*
2189 * LRU flags cannot be copied because we need to add tail
2190 *.page to LRU by generic call and our hook will be called.
2191 * We hold lru_lock, then, reduce counter directly.
2192 */
2193 lru = page_lru(head);
97a6c37b 2194 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2195 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2196 }
ca3e0214
KH
2197 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2198 move_unlock_page_cgroup(head_pc, &flags);
2199}
2200#endif
2201
f817ed48 2202/**
de3638d9 2203 * mem_cgroup_move_account - move account of the page
5564e88b 2204 * @page: the page
f817ed48
KH
2205 * @pc: page_cgroup of the page.
2206 * @from: mem_cgroup which the page is moved from.
2207 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2208 * @uncharge: whether we should call uncharge and css_put against @from.
de3638d9 2209 * @charge_size: number of bytes to charge (regular or huge page)
f817ed48
KH
2210 *
2211 * The caller must confirm following.
08e552c6 2212 * - page is not on LRU (isolate_page() is useful.)
de3638d9 2213 * - compound_lock is held when charge_size > PAGE_SIZE
f817ed48 2214 *
854ffa8d
DN
2215 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2216 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2217 * true, this function does "uncharge" from old cgroup, but it doesn't if
2218 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2219 */
5564e88b 2220static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
de3638d9
JW
2221 struct mem_cgroup *from, struct mem_cgroup *to,
2222 bool uncharge, int charge_size)
f817ed48 2223{
987eba66 2224 int nr_pages = charge_size >> PAGE_SHIFT;
de3638d9
JW
2225 unsigned long flags;
2226 int ret;
987eba66 2227
f817ed48 2228 VM_BUG_ON(from == to);
5564e88b 2229 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2230 /*
2231 * The page is isolated from LRU. So, collapse function
2232 * will not handle this page. But page splitting can happen.
2233 * Do this check under compound_page_lock(). The caller should
2234 * hold it.
2235 */
2236 ret = -EBUSY;
5564e88b 2237 if (charge_size > PAGE_SIZE && !PageTransHuge(page))
de3638d9
JW
2238 goto out;
2239
2240 lock_page_cgroup(pc);
2241
2242 ret = -EINVAL;
2243 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2244 goto unlock;
2245
2246 move_lock_page_cgroup(pc, &flags);
f817ed48 2247
8725d541 2248 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2249 /* Update mapped_file data for mem_cgroup */
2250 preempt_disable();
2251 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2252 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2253 preempt_enable();
d69b042f 2254 }
987eba66 2255 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2256 if (uncharge)
2257 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2258 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2259
854ffa8d 2260 /* caller should have done css_get */
08e552c6 2261 pc->mem_cgroup = to;
987eba66 2262 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2263 /*
2264 * We charges against "to" which may not have any tasks. Then, "to"
2265 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2266 * this function is just force_empty() and move charge, so it's
2267 * garanteed that "to" is never removed. So, we don't check rmdir
2268 * status here.
88703267 2269 */
de3638d9
JW
2270 move_unlock_page_cgroup(pc, &flags);
2271 ret = 0;
2272unlock:
57f9fd7d 2273 unlock_page_cgroup(pc);
d2265e6f
KH
2274 /*
2275 * check events
2276 */
5564e88b
JW
2277 memcg_check_events(to, page);
2278 memcg_check_events(from, page);
de3638d9 2279out:
f817ed48
KH
2280 return ret;
2281}
2282
2283/*
2284 * move charges to its parent.
2285 */
2286
5564e88b
JW
2287static int mem_cgroup_move_parent(struct page *page,
2288 struct page_cgroup *pc,
f817ed48
KH
2289 struct mem_cgroup *child,
2290 gfp_t gfp_mask)
2291{
2292 struct cgroup *cg = child->css.cgroup;
2293 struct cgroup *pcg = cg->parent;
2294 struct mem_cgroup *parent;
52dbb905 2295 int page_size = PAGE_SIZE;
987eba66 2296 unsigned long flags;
f817ed48
KH
2297 int ret;
2298
2299 /* Is ROOT ? */
2300 if (!pcg)
2301 return -EINVAL;
2302
57f9fd7d
DN
2303 ret = -EBUSY;
2304 if (!get_page_unless_zero(page))
2305 goto out;
2306 if (isolate_lru_page(page))
2307 goto put;
52dbb905
KH
2308
2309 if (PageTransHuge(page))
2310 page_size = HPAGE_SIZE;
08e552c6 2311
f817ed48 2312 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2313 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2314 &parent, false, page_size);
a636b327 2315 if (ret || !parent)
57f9fd7d 2316 goto put_back;
f817ed48 2317
52dbb905 2318 if (page_size > PAGE_SIZE)
987eba66
KH
2319 flags = compound_lock_irqsave(page);
2320
5564e88b 2321 ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
854ffa8d 2322 if (ret)
52dbb905 2323 mem_cgroup_cancel_charge(parent, page_size);
8dba474f 2324
52dbb905 2325 if (page_size > PAGE_SIZE)
987eba66 2326 compound_unlock_irqrestore(page, flags);
8dba474f 2327put_back:
08e552c6 2328 putback_lru_page(page);
57f9fd7d 2329put:
40d58138 2330 put_page(page);
57f9fd7d 2331out:
f817ed48
KH
2332 return ret;
2333}
2334
7a81b88c
KH
2335/*
2336 * Charge the memory controller for page usage.
2337 * Return
2338 * 0 if the charge was successful
2339 * < 0 if the cgroup is over its limit
2340 */
2341static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2342 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2343{
73045c47 2344 struct mem_cgroup *mem = NULL;
8493ae43 2345 int page_size = PAGE_SIZE;
7a81b88c 2346 struct page_cgroup *pc;
8493ae43 2347 bool oom = true;
7a81b88c 2348 int ret;
ec168510 2349
37c2ac78 2350 if (PageTransHuge(page)) {
ec168510 2351 page_size <<= compound_order(page);
37c2ac78 2352 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2353 /*
2354 * Never OOM-kill a process for a huge page. The
2355 * fault handler will fall back to regular pages.
2356 */
2357 oom = false;
37c2ac78 2358 }
7a81b88c
KH
2359
2360 pc = lookup_page_cgroup(page);
af4a6621 2361 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2362
8493ae43 2363 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2364 if (ret || !mem)
7a81b88c
KH
2365 return ret;
2366
5564e88b 2367 __mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
8a9f3ccd 2368 return 0;
8a9f3ccd
BS
2369}
2370
7a81b88c
KH
2371int mem_cgroup_newpage_charge(struct page *page,
2372 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2373{
f8d66542 2374 if (mem_cgroup_disabled())
cede86ac 2375 return 0;
69029cd5
KH
2376 /*
2377 * If already mapped, we don't have to account.
2378 * If page cache, page->mapping has address_space.
2379 * But page->mapping may have out-of-use anon_vma pointer,
2380 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2381 * is NULL.
2382 */
2383 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2384 return 0;
2385 if (unlikely(!mm))
2386 mm = &init_mm;
217bc319 2387 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2388 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2389}
2390
83aae4c7
DN
2391static void
2392__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2393 enum charge_type ctype);
2394
e1a1cd59
BS
2395int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2396 gfp_t gfp_mask)
8697d331 2397{
b5a84319
KH
2398 int ret;
2399
f8d66542 2400 if (mem_cgroup_disabled())
cede86ac 2401 return 0;
52d4b9ac
KH
2402 if (PageCompound(page))
2403 return 0;
accf163e
KH
2404 /*
2405 * Corner case handling. This is called from add_to_page_cache()
2406 * in usual. But some FS (shmem) precharges this page before calling it
2407 * and call add_to_page_cache() with GFP_NOWAIT.
2408 *
2409 * For GFP_NOWAIT case, the page may be pre-charged before calling
2410 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2411 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2412 * And when the page is SwapCache, it should take swap information
2413 * into account. This is under lock_page() now.
accf163e
KH
2414 */
2415 if (!(gfp_mask & __GFP_WAIT)) {
2416 struct page_cgroup *pc;
2417
52d4b9ac
KH
2418 pc = lookup_page_cgroup(page);
2419 if (!pc)
2420 return 0;
2421 lock_page_cgroup(pc);
2422 if (PageCgroupUsed(pc)) {
2423 unlock_page_cgroup(pc);
accf163e
KH
2424 return 0;
2425 }
52d4b9ac 2426 unlock_page_cgroup(pc);
accf163e
KH
2427 }
2428
73045c47 2429 if (unlikely(!mm))
8697d331 2430 mm = &init_mm;
accf163e 2431
c05555b5
KH
2432 if (page_is_file_cache(page))
2433 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2434 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2435
83aae4c7
DN
2436 /* shmem */
2437 if (PageSwapCache(page)) {
56039efa 2438 struct mem_cgroup *mem;
73045c47 2439
83aae4c7
DN
2440 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2441 if (!ret)
2442 __mem_cgroup_commit_charge_swapin(page, mem,
2443 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2444 } else
2445 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2446 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2447
b5a84319 2448 return ret;
e8589cc1
KH
2449}
2450
54595fe2
KH
2451/*
2452 * While swap-in, try_charge -> commit or cancel, the page is locked.
2453 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2454 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2455 * "commit()" or removed by "cancel()"
2456 */
8c7c6e34
KH
2457int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2458 struct page *page,
2459 gfp_t mask, struct mem_cgroup **ptr)
2460{
2461 struct mem_cgroup *mem;
54595fe2 2462 int ret;
8c7c6e34 2463
56039efa
KH
2464 *ptr = NULL;
2465
f8d66542 2466 if (mem_cgroup_disabled())
8c7c6e34
KH
2467 return 0;
2468
2469 if (!do_swap_account)
2470 goto charge_cur_mm;
8c7c6e34
KH
2471 /*
2472 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2473 * the pte, and even removed page from swap cache: in those cases
2474 * do_swap_page()'s pte_same() test will fail; but there's also a
2475 * KSM case which does need to charge the page.
8c7c6e34
KH
2476 */
2477 if (!PageSwapCache(page))
407f9c8b 2478 goto charge_cur_mm;
e42d9d5d 2479 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2480 if (!mem)
2481 goto charge_cur_mm;
8c7c6e34 2482 *ptr = mem;
ec168510 2483 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2484 css_put(&mem->css);
2485 return ret;
8c7c6e34
KH
2486charge_cur_mm:
2487 if (unlikely(!mm))
2488 mm = &init_mm;
ec168510 2489 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2490}
2491
83aae4c7
DN
2492static void
2493__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2494 enum charge_type ctype)
7a81b88c
KH
2495{
2496 struct page_cgroup *pc;
2497
f8d66542 2498 if (mem_cgroup_disabled())
7a81b88c
KH
2499 return;
2500 if (!ptr)
2501 return;
88703267 2502 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2503 pc = lookup_page_cgroup(page);
544122e5 2504 mem_cgroup_lru_del_before_commit_swapcache(page);
5564e88b 2505 __mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
544122e5 2506 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2507 /*
2508 * Now swap is on-memory. This means this page may be
2509 * counted both as mem and swap....double count.
03f3c433
KH
2510 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2511 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2512 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2513 */
03f3c433 2514 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2515 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2516 unsigned short id;
8c7c6e34 2517 struct mem_cgroup *memcg;
a3b2d692
KH
2518
2519 id = swap_cgroup_record(ent, 0);
2520 rcu_read_lock();
2521 memcg = mem_cgroup_lookup(id);
8c7c6e34 2522 if (memcg) {
a3b2d692
KH
2523 /*
2524 * This recorded memcg can be obsolete one. So, avoid
2525 * calling css_tryget
2526 */
0c3e73e8 2527 if (!mem_cgroup_is_root(memcg))
4e649152 2528 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2529 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2530 mem_cgroup_put(memcg);
2531 }
a3b2d692 2532 rcu_read_unlock();
8c7c6e34 2533 }
88703267
KH
2534 /*
2535 * At swapin, we may charge account against cgroup which has no tasks.
2536 * So, rmdir()->pre_destroy() can be called while we do this charge.
2537 * In that case, we need to call pre_destroy() again. check it here.
2538 */
2539 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2540}
2541
83aae4c7
DN
2542void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2543{
2544 __mem_cgroup_commit_charge_swapin(page, ptr,
2545 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2546}
2547
7a81b88c
KH
2548void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2549{
f8d66542 2550 if (mem_cgroup_disabled())
7a81b88c
KH
2551 return;
2552 if (!mem)
2553 return;
ec168510 2554 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2555}
2556
569b846d 2557static void
ec168510
AA
2558__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2559 int page_size)
569b846d
KH
2560{
2561 struct memcg_batch_info *batch = NULL;
2562 bool uncharge_memsw = true;
2563 /* If swapout, usage of swap doesn't decrease */
2564 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2565 uncharge_memsw = false;
569b846d
KH
2566
2567 batch = &current->memcg_batch;
2568 /*
2569 * In usual, we do css_get() when we remember memcg pointer.
2570 * But in this case, we keep res->usage until end of a series of
2571 * uncharges. Then, it's ok to ignore memcg's refcnt.
2572 */
2573 if (!batch->memcg)
2574 batch->memcg = mem;
3c11ecf4
KH
2575 /*
2576 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2577 * In those cases, all pages freed continously can be expected to be in
2578 * the same cgroup and we have chance to coalesce uncharges.
2579 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2580 * because we want to do uncharge as soon as possible.
2581 */
2582
2583 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2584 goto direct_uncharge;
2585
ec168510
AA
2586 if (page_size != PAGE_SIZE)
2587 goto direct_uncharge;
2588
569b846d
KH
2589 /*
2590 * In typical case, batch->memcg == mem. This means we can
2591 * merge a series of uncharges to an uncharge of res_counter.
2592 * If not, we uncharge res_counter ony by one.
2593 */
2594 if (batch->memcg != mem)
2595 goto direct_uncharge;
2596 /* remember freed charge and uncharge it later */
2597 batch->bytes += PAGE_SIZE;
2598 if (uncharge_memsw)
2599 batch->memsw_bytes += PAGE_SIZE;
2600 return;
2601direct_uncharge:
ec168510 2602 res_counter_uncharge(&mem->res, page_size);
569b846d 2603 if (uncharge_memsw)
ec168510 2604 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2605 if (unlikely(batch->memcg != mem))
2606 memcg_oom_recover(mem);
569b846d
KH
2607 return;
2608}
7a81b88c 2609
8a9f3ccd 2610/*
69029cd5 2611 * uncharge if !page_mapped(page)
8a9f3ccd 2612 */
8c7c6e34 2613static struct mem_cgroup *
69029cd5 2614__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2615{
152c9ccb 2616 int count;
8289546e 2617 struct page_cgroup *pc;
8c7c6e34 2618 struct mem_cgroup *mem = NULL;
ec168510 2619 int page_size = PAGE_SIZE;
8a9f3ccd 2620
f8d66542 2621 if (mem_cgroup_disabled())
8c7c6e34 2622 return NULL;
4077960e 2623
d13d1443 2624 if (PageSwapCache(page))
8c7c6e34 2625 return NULL;
d13d1443 2626
37c2ac78 2627 if (PageTransHuge(page)) {
ec168510 2628 page_size <<= compound_order(page);
37c2ac78
AA
2629 VM_BUG_ON(!PageTransHuge(page));
2630 }
ec168510 2631
152c9ccb 2632 count = page_size >> PAGE_SHIFT;
8697d331 2633 /*
3c541e14 2634 * Check if our page_cgroup is valid
8697d331 2635 */
52d4b9ac
KH
2636 pc = lookup_page_cgroup(page);
2637 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2638 return NULL;
b9c565d5 2639
52d4b9ac 2640 lock_page_cgroup(pc);
d13d1443 2641
8c7c6e34
KH
2642 mem = pc->mem_cgroup;
2643
d13d1443
KH
2644 if (!PageCgroupUsed(pc))
2645 goto unlock_out;
2646
2647 switch (ctype) {
2648 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2649 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2650 /* See mem_cgroup_prepare_migration() */
2651 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2652 goto unlock_out;
2653 break;
2654 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2655 if (!PageAnon(page)) { /* Shared memory */
2656 if (page->mapping && !page_is_file_cache(page))
2657 goto unlock_out;
2658 } else if (page_mapped(page)) /* Anon */
2659 goto unlock_out;
2660 break;
2661 default:
2662 break;
52d4b9ac 2663 }
d13d1443 2664
ca3e0214 2665 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2666
52d4b9ac 2667 ClearPageCgroupUsed(pc);
544122e5
KH
2668 /*
2669 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2670 * freed from LRU. This is safe because uncharged page is expected not
2671 * to be reused (freed soon). Exception is SwapCache, it's handled by
2672 * special functions.
2673 */
b9c565d5 2674
52d4b9ac 2675 unlock_page_cgroup(pc);
f75ca962
KH
2676 /*
2677 * even after unlock, we have mem->res.usage here and this memcg
2678 * will never be freed.
2679 */
d2265e6f 2680 memcg_check_events(mem, page);
f75ca962
KH
2681 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2682 mem_cgroup_swap_statistics(mem, true);
2683 mem_cgroup_get(mem);
2684 }
2685 if (!mem_cgroup_is_root(mem))
ec168510 2686 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2687
8c7c6e34 2688 return mem;
d13d1443
KH
2689
2690unlock_out:
2691 unlock_page_cgroup(pc);
8c7c6e34 2692 return NULL;
3c541e14
BS
2693}
2694
69029cd5
KH
2695void mem_cgroup_uncharge_page(struct page *page)
2696{
52d4b9ac
KH
2697 /* early check. */
2698 if (page_mapped(page))
2699 return;
2700 if (page->mapping && !PageAnon(page))
2701 return;
69029cd5
KH
2702 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2703}
2704
2705void mem_cgroup_uncharge_cache_page(struct page *page)
2706{
2707 VM_BUG_ON(page_mapped(page));
b7abea96 2708 VM_BUG_ON(page->mapping);
69029cd5
KH
2709 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2710}
2711
569b846d
KH
2712/*
2713 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2714 * In that cases, pages are freed continuously and we can expect pages
2715 * are in the same memcg. All these calls itself limits the number of
2716 * pages freed at once, then uncharge_start/end() is called properly.
2717 * This may be called prural(2) times in a context,
2718 */
2719
2720void mem_cgroup_uncharge_start(void)
2721{
2722 current->memcg_batch.do_batch++;
2723 /* We can do nest. */
2724 if (current->memcg_batch.do_batch == 1) {
2725 current->memcg_batch.memcg = NULL;
2726 current->memcg_batch.bytes = 0;
2727 current->memcg_batch.memsw_bytes = 0;
2728 }
2729}
2730
2731void mem_cgroup_uncharge_end(void)
2732{
2733 struct memcg_batch_info *batch = &current->memcg_batch;
2734
2735 if (!batch->do_batch)
2736 return;
2737
2738 batch->do_batch--;
2739 if (batch->do_batch) /* If stacked, do nothing. */
2740 return;
2741
2742 if (!batch->memcg)
2743 return;
2744 /*
2745 * This "batch->memcg" is valid without any css_get/put etc...
2746 * bacause we hide charges behind us.
2747 */
2748 if (batch->bytes)
2749 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2750 if (batch->memsw_bytes)
2751 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2752 memcg_oom_recover(batch->memcg);
569b846d
KH
2753 /* forget this pointer (for sanity check) */
2754 batch->memcg = NULL;
2755}
2756
e767e056 2757#ifdef CONFIG_SWAP
8c7c6e34 2758/*
e767e056 2759 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2760 * memcg information is recorded to swap_cgroup of "ent"
2761 */
8a9478ca
KH
2762void
2763mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2764{
2765 struct mem_cgroup *memcg;
8a9478ca
KH
2766 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2767
2768 if (!swapout) /* this was a swap cache but the swap is unused ! */
2769 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2770
2771 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2772
f75ca962
KH
2773 /*
2774 * record memcg information, if swapout && memcg != NULL,
2775 * mem_cgroup_get() was called in uncharge().
2776 */
2777 if (do_swap_account && swapout && memcg)
a3b2d692 2778 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2779}
e767e056 2780#endif
8c7c6e34
KH
2781
2782#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2783/*
2784 * called from swap_entry_free(). remove record in swap_cgroup and
2785 * uncharge "memsw" account.
2786 */
2787void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2788{
8c7c6e34 2789 struct mem_cgroup *memcg;
a3b2d692 2790 unsigned short id;
8c7c6e34
KH
2791
2792 if (!do_swap_account)
2793 return;
2794
a3b2d692
KH
2795 id = swap_cgroup_record(ent, 0);
2796 rcu_read_lock();
2797 memcg = mem_cgroup_lookup(id);
8c7c6e34 2798 if (memcg) {
a3b2d692
KH
2799 /*
2800 * We uncharge this because swap is freed.
2801 * This memcg can be obsolete one. We avoid calling css_tryget
2802 */
0c3e73e8 2803 if (!mem_cgroup_is_root(memcg))
4e649152 2804 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2805 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2806 mem_cgroup_put(memcg);
2807 }
a3b2d692 2808 rcu_read_unlock();
d13d1443 2809}
02491447
DN
2810
2811/**
2812 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2813 * @entry: swap entry to be moved
2814 * @from: mem_cgroup which the entry is moved from
2815 * @to: mem_cgroup which the entry is moved to
483c30b5 2816 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2817 *
2818 * It succeeds only when the swap_cgroup's record for this entry is the same
2819 * as the mem_cgroup's id of @from.
2820 *
2821 * Returns 0 on success, -EINVAL on failure.
2822 *
2823 * The caller must have charged to @to, IOW, called res_counter_charge() about
2824 * both res and memsw, and called css_get().
2825 */
2826static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2827 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2828{
2829 unsigned short old_id, new_id;
2830
2831 old_id = css_id(&from->css);
2832 new_id = css_id(&to->css);
2833
2834 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2835 mem_cgroup_swap_statistics(from, false);
483c30b5 2836 mem_cgroup_swap_statistics(to, true);
02491447 2837 /*
483c30b5
DN
2838 * This function is only called from task migration context now.
2839 * It postpones res_counter and refcount handling till the end
2840 * of task migration(mem_cgroup_clear_mc()) for performance
2841 * improvement. But we cannot postpone mem_cgroup_get(to)
2842 * because if the process that has been moved to @to does
2843 * swap-in, the refcount of @to might be decreased to 0.
02491447 2844 */
02491447 2845 mem_cgroup_get(to);
483c30b5
DN
2846 if (need_fixup) {
2847 if (!mem_cgroup_is_root(from))
2848 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2849 mem_cgroup_put(from);
2850 /*
2851 * we charged both to->res and to->memsw, so we should
2852 * uncharge to->res.
2853 */
2854 if (!mem_cgroup_is_root(to))
2855 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2856 }
02491447
DN
2857 return 0;
2858 }
2859 return -EINVAL;
2860}
2861#else
2862static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2863 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2864{
2865 return -EINVAL;
2866}
8c7c6e34 2867#endif
d13d1443 2868
ae41be37 2869/*
01b1ae63
KH
2870 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2871 * page belongs to.
ae41be37 2872 */
ac39cf8c 2873int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2874 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2875{
2876 struct page_cgroup *pc;
e8589cc1 2877 struct mem_cgroup *mem = NULL;
ac39cf8c 2878 enum charge_type ctype;
e8589cc1 2879 int ret = 0;
8869b8f6 2880
56039efa
KH
2881 *ptr = NULL;
2882
ec168510 2883 VM_BUG_ON(PageTransHuge(page));
f8d66542 2884 if (mem_cgroup_disabled())
4077960e
BS
2885 return 0;
2886
52d4b9ac
KH
2887 pc = lookup_page_cgroup(page);
2888 lock_page_cgroup(pc);
2889 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2890 mem = pc->mem_cgroup;
2891 css_get(&mem->css);
ac39cf8c 2892 /*
2893 * At migrating an anonymous page, its mapcount goes down
2894 * to 0 and uncharge() will be called. But, even if it's fully
2895 * unmapped, migration may fail and this page has to be
2896 * charged again. We set MIGRATION flag here and delay uncharge
2897 * until end_migration() is called
2898 *
2899 * Corner Case Thinking
2900 * A)
2901 * When the old page was mapped as Anon and it's unmap-and-freed
2902 * while migration was ongoing.
2903 * If unmap finds the old page, uncharge() of it will be delayed
2904 * until end_migration(). If unmap finds a new page, it's
2905 * uncharged when it make mapcount to be 1->0. If unmap code
2906 * finds swap_migration_entry, the new page will not be mapped
2907 * and end_migration() will find it(mapcount==0).
2908 *
2909 * B)
2910 * When the old page was mapped but migraion fails, the kernel
2911 * remaps it. A charge for it is kept by MIGRATION flag even
2912 * if mapcount goes down to 0. We can do remap successfully
2913 * without charging it again.
2914 *
2915 * C)
2916 * The "old" page is under lock_page() until the end of
2917 * migration, so, the old page itself will not be swapped-out.
2918 * If the new page is swapped out before end_migraton, our
2919 * hook to usual swap-out path will catch the event.
2920 */
2921 if (PageAnon(page))
2922 SetPageCgroupMigration(pc);
e8589cc1 2923 }
52d4b9ac 2924 unlock_page_cgroup(pc);
ac39cf8c 2925 /*
2926 * If the page is not charged at this point,
2927 * we return here.
2928 */
2929 if (!mem)
2930 return 0;
01b1ae63 2931
93d5c9be 2932 *ptr = mem;
ef6a3c63 2933 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c 2934 css_put(&mem->css);/* drop extra refcnt */
2935 if (ret || *ptr == NULL) {
2936 if (PageAnon(page)) {
2937 lock_page_cgroup(pc);
2938 ClearPageCgroupMigration(pc);
2939 unlock_page_cgroup(pc);
2940 /*
2941 * The old page may be fully unmapped while we kept it.
2942 */
2943 mem_cgroup_uncharge_page(page);
2944 }
2945 return -ENOMEM;
e8589cc1 2946 }
ac39cf8c 2947 /*
2948 * We charge new page before it's used/mapped. So, even if unlock_page()
2949 * is called before end_migration, we can catch all events on this new
2950 * page. In the case new page is migrated but not remapped, new page's
2951 * mapcount will be finally 0 and we call uncharge in end_migration().
2952 */
2953 pc = lookup_page_cgroup(newpage);
2954 if (PageAnon(page))
2955 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2956 else if (page_is_file_cache(page))
2957 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2958 else
2959 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
5564e88b 2960 __mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
e8589cc1 2961 return ret;
ae41be37 2962}
8869b8f6 2963
69029cd5 2964/* remove redundant charge if migration failed*/
01b1ae63 2965void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2966 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2967{
ac39cf8c 2968 struct page *used, *unused;
01b1ae63 2969 struct page_cgroup *pc;
01b1ae63
KH
2970
2971 if (!mem)
2972 return;
ac39cf8c 2973 /* blocks rmdir() */
88703267 2974 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2975 if (!migration_ok) {
ac39cf8c 2976 used = oldpage;
2977 unused = newpage;
01b1ae63 2978 } else {
ac39cf8c 2979 used = newpage;
01b1ae63
KH
2980 unused = oldpage;
2981 }
69029cd5 2982 /*
ac39cf8c 2983 * We disallowed uncharge of pages under migration because mapcount
2984 * of the page goes down to zero, temporarly.
2985 * Clear the flag and check the page should be charged.
01b1ae63 2986 */
ac39cf8c 2987 pc = lookup_page_cgroup(oldpage);
2988 lock_page_cgroup(pc);
2989 ClearPageCgroupMigration(pc);
2990 unlock_page_cgroup(pc);
01b1ae63 2991
ac39cf8c 2992 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2993
01b1ae63 2994 /*
ac39cf8c 2995 * If a page is a file cache, radix-tree replacement is very atomic
2996 * and we can skip this check. When it was an Anon page, its mapcount
2997 * goes down to 0. But because we added MIGRATION flage, it's not
2998 * uncharged yet. There are several case but page->mapcount check
2999 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3000 * check. (see prepare_charge() also)
69029cd5 3001 */
ac39cf8c 3002 if (PageAnon(used))
3003 mem_cgroup_uncharge_page(used);
88703267 3004 /*
ac39cf8c 3005 * At migration, we may charge account against cgroup which has no
3006 * tasks.
88703267
KH
3007 * So, rmdir()->pre_destroy() can be called while we do this charge.
3008 * In that case, we need to call pre_destroy() again. check it here.
3009 */
3010 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3011}
78fb7466 3012
c9b0ed51 3013/*
ae3abae6
DN
3014 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3015 * Calling hierarchical_reclaim is not enough because we should update
3016 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3017 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3018 * not from the memcg which this page would be charged to.
3019 * try_charge_swapin does all of these works properly.
c9b0ed51 3020 */
ae3abae6 3021int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3022 struct mm_struct *mm,
3023 gfp_t gfp_mask)
c9b0ed51 3024{
56039efa 3025 struct mem_cgroup *mem;
ae3abae6 3026 int ret;
c9b0ed51 3027
f8d66542 3028 if (mem_cgroup_disabled())
cede86ac 3029 return 0;
c9b0ed51 3030
ae3abae6
DN
3031 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3032 if (!ret)
3033 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3034
ae3abae6 3035 return ret;
c9b0ed51
KH
3036}
3037
f212ad7c
DN
3038#ifdef CONFIG_DEBUG_VM
3039static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3040{
3041 struct page_cgroup *pc;
3042
3043 pc = lookup_page_cgroup(page);
3044 if (likely(pc) && PageCgroupUsed(pc))
3045 return pc;
3046 return NULL;
3047}
3048
3049bool mem_cgroup_bad_page_check(struct page *page)
3050{
3051 if (mem_cgroup_disabled())
3052 return false;
3053
3054 return lookup_page_cgroup_used(page) != NULL;
3055}
3056
3057void mem_cgroup_print_bad_page(struct page *page)
3058{
3059 struct page_cgroup *pc;
3060
3061 pc = lookup_page_cgroup_used(page);
3062 if (pc) {
3063 int ret = -1;
3064 char *path;
3065
3066 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3067 pc, pc->flags, pc->mem_cgroup);
3068
3069 path = kmalloc(PATH_MAX, GFP_KERNEL);
3070 if (path) {
3071 rcu_read_lock();
3072 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3073 path, PATH_MAX);
3074 rcu_read_unlock();
3075 }
3076
3077 printk(KERN_CONT "(%s)\n",
3078 (ret < 0) ? "cannot get the path" : path);
3079 kfree(path);
3080 }
3081}
3082#endif
3083
8c7c6e34
KH
3084static DEFINE_MUTEX(set_limit_mutex);
3085
d38d2a75 3086static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3087 unsigned long long val)
628f4235 3088{
81d39c20 3089 int retry_count;
3c11ecf4 3090 u64 memswlimit, memlimit;
628f4235 3091 int ret = 0;
81d39c20
KH
3092 int children = mem_cgroup_count_children(memcg);
3093 u64 curusage, oldusage;
3c11ecf4 3094 int enlarge;
81d39c20
KH
3095
3096 /*
3097 * For keeping hierarchical_reclaim simple, how long we should retry
3098 * is depends on callers. We set our retry-count to be function
3099 * of # of children which we should visit in this loop.
3100 */
3101 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3102
3103 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3104
3c11ecf4 3105 enlarge = 0;
8c7c6e34 3106 while (retry_count) {
628f4235
KH
3107 if (signal_pending(current)) {
3108 ret = -EINTR;
3109 break;
3110 }
8c7c6e34
KH
3111 /*
3112 * Rather than hide all in some function, I do this in
3113 * open coded manner. You see what this really does.
3114 * We have to guarantee mem->res.limit < mem->memsw.limit.
3115 */
3116 mutex_lock(&set_limit_mutex);
3117 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3118 if (memswlimit < val) {
3119 ret = -EINVAL;
3120 mutex_unlock(&set_limit_mutex);
628f4235
KH
3121 break;
3122 }
3c11ecf4
KH
3123
3124 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3125 if (memlimit < val)
3126 enlarge = 1;
3127
8c7c6e34 3128 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3129 if (!ret) {
3130 if (memswlimit == val)
3131 memcg->memsw_is_minimum = true;
3132 else
3133 memcg->memsw_is_minimum = false;
3134 }
8c7c6e34
KH
3135 mutex_unlock(&set_limit_mutex);
3136
3137 if (!ret)
3138 break;
3139
aa20d489 3140 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3141 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3142 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3143 /* Usage is reduced ? */
3144 if (curusage >= oldusage)
3145 retry_count--;
3146 else
3147 oldusage = curusage;
8c7c6e34 3148 }
3c11ecf4
KH
3149 if (!ret && enlarge)
3150 memcg_oom_recover(memcg);
14797e23 3151
8c7c6e34
KH
3152 return ret;
3153}
3154
338c8431
LZ
3155static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3156 unsigned long long val)
8c7c6e34 3157{
81d39c20 3158 int retry_count;
3c11ecf4 3159 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3160 int children = mem_cgroup_count_children(memcg);
3161 int ret = -EBUSY;
3c11ecf4 3162 int enlarge = 0;
8c7c6e34 3163
81d39c20
KH
3164 /* see mem_cgroup_resize_res_limit */
3165 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3166 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3167 while (retry_count) {
3168 if (signal_pending(current)) {
3169 ret = -EINTR;
3170 break;
3171 }
3172 /*
3173 * Rather than hide all in some function, I do this in
3174 * open coded manner. You see what this really does.
3175 * We have to guarantee mem->res.limit < mem->memsw.limit.
3176 */
3177 mutex_lock(&set_limit_mutex);
3178 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3179 if (memlimit > val) {
3180 ret = -EINVAL;
3181 mutex_unlock(&set_limit_mutex);
3182 break;
3183 }
3c11ecf4
KH
3184 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3185 if (memswlimit < val)
3186 enlarge = 1;
8c7c6e34 3187 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3188 if (!ret) {
3189 if (memlimit == val)
3190 memcg->memsw_is_minimum = true;
3191 else
3192 memcg->memsw_is_minimum = false;
3193 }
8c7c6e34
KH
3194 mutex_unlock(&set_limit_mutex);
3195
3196 if (!ret)
3197 break;
3198
4e416953 3199 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3200 MEM_CGROUP_RECLAIM_NOSWAP |
3201 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3202 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3203 /* Usage is reduced ? */
8c7c6e34 3204 if (curusage >= oldusage)
628f4235 3205 retry_count--;
81d39c20
KH
3206 else
3207 oldusage = curusage;
628f4235 3208 }
3c11ecf4
KH
3209 if (!ret && enlarge)
3210 memcg_oom_recover(memcg);
628f4235
KH
3211 return ret;
3212}
3213
4e416953 3214unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3215 gfp_t gfp_mask)
4e416953
BS
3216{
3217 unsigned long nr_reclaimed = 0;
3218 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3219 unsigned long reclaimed;
3220 int loop = 0;
3221 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3222 unsigned long long excess;
4e416953
BS
3223
3224 if (order > 0)
3225 return 0;
3226
00918b6a 3227 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3228 /*
3229 * This loop can run a while, specially if mem_cgroup's continuously
3230 * keep exceeding their soft limit and putting the system under
3231 * pressure
3232 */
3233 do {
3234 if (next_mz)
3235 mz = next_mz;
3236 else
3237 mz = mem_cgroup_largest_soft_limit_node(mctz);
3238 if (!mz)
3239 break;
3240
3241 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3242 gfp_mask,
3243 MEM_CGROUP_RECLAIM_SOFT);
3244 nr_reclaimed += reclaimed;
3245 spin_lock(&mctz->lock);
3246
3247 /*
3248 * If we failed to reclaim anything from this memory cgroup
3249 * it is time to move on to the next cgroup
3250 */
3251 next_mz = NULL;
3252 if (!reclaimed) {
3253 do {
3254 /*
3255 * Loop until we find yet another one.
3256 *
3257 * By the time we get the soft_limit lock
3258 * again, someone might have aded the
3259 * group back on the RB tree. Iterate to
3260 * make sure we get a different mem.
3261 * mem_cgroup_largest_soft_limit_node returns
3262 * NULL if no other cgroup is present on
3263 * the tree
3264 */
3265 next_mz =
3266 __mem_cgroup_largest_soft_limit_node(mctz);
3267 if (next_mz == mz) {
3268 css_put(&next_mz->mem->css);
3269 next_mz = NULL;
3270 } else /* next_mz == NULL or other memcg */
3271 break;
3272 } while (1);
3273 }
4e416953 3274 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3275 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3276 /*
3277 * One school of thought says that we should not add
3278 * back the node to the tree if reclaim returns 0.
3279 * But our reclaim could return 0, simply because due
3280 * to priority we are exposing a smaller subset of
3281 * memory to reclaim from. Consider this as a longer
3282 * term TODO.
3283 */
ef8745c1
KH
3284 /* If excess == 0, no tree ops */
3285 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3286 spin_unlock(&mctz->lock);
3287 css_put(&mz->mem->css);
3288 loop++;
3289 /*
3290 * Could not reclaim anything and there are no more
3291 * mem cgroups to try or we seem to be looping without
3292 * reclaiming anything.
3293 */
3294 if (!nr_reclaimed &&
3295 (next_mz == NULL ||
3296 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3297 break;
3298 } while (!nr_reclaimed);
3299 if (next_mz)
3300 css_put(&next_mz->mem->css);
3301 return nr_reclaimed;
3302}
3303
cc847582
KH
3304/*
3305 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3306 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3307 */
f817ed48 3308static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3309 int node, int zid, enum lru_list lru)
cc847582 3310{
08e552c6
KH
3311 struct zone *zone;
3312 struct mem_cgroup_per_zone *mz;
f817ed48 3313 struct page_cgroup *pc, *busy;
08e552c6 3314 unsigned long flags, loop;
072c56c1 3315 struct list_head *list;
f817ed48 3316 int ret = 0;
072c56c1 3317
08e552c6
KH
3318 zone = &NODE_DATA(node)->node_zones[zid];
3319 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3320 list = &mz->lists[lru];
cc847582 3321
f817ed48
KH
3322 loop = MEM_CGROUP_ZSTAT(mz, lru);
3323 /* give some margin against EBUSY etc...*/
3324 loop += 256;
3325 busy = NULL;
3326 while (loop--) {
5564e88b
JW
3327 struct page *page;
3328
f817ed48 3329 ret = 0;
08e552c6 3330 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3331 if (list_empty(list)) {
08e552c6 3332 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3333 break;
f817ed48
KH
3334 }
3335 pc = list_entry(list->prev, struct page_cgroup, lru);
3336 if (busy == pc) {
3337 list_move(&pc->lru, list);
648bcc77 3338 busy = NULL;
08e552c6 3339 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3340 continue;
3341 }
08e552c6 3342 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3343
6b3ae58e 3344 page = lookup_cgroup_page(pc);
5564e88b
JW
3345
3346 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3347 if (ret == -ENOMEM)
52d4b9ac 3348 break;
f817ed48
KH
3349
3350 if (ret == -EBUSY || ret == -EINVAL) {
3351 /* found lock contention or "pc" is obsolete. */
3352 busy = pc;
3353 cond_resched();
3354 } else
3355 busy = NULL;
cc847582 3356 }
08e552c6 3357
f817ed48
KH
3358 if (!ret && !list_empty(list))
3359 return -EBUSY;
3360 return ret;
cc847582
KH
3361}
3362
3363/*
3364 * make mem_cgroup's charge to be 0 if there is no task.
3365 * This enables deleting this mem_cgroup.
3366 */
c1e862c1 3367static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3368{
f817ed48
KH
3369 int ret;
3370 int node, zid, shrink;
3371 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3372 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3373
cc847582 3374 css_get(&mem->css);
f817ed48
KH
3375
3376 shrink = 0;
c1e862c1
KH
3377 /* should free all ? */
3378 if (free_all)
3379 goto try_to_free;
f817ed48 3380move_account:
fce66477 3381 do {
f817ed48 3382 ret = -EBUSY;
c1e862c1
KH
3383 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3384 goto out;
3385 ret = -EINTR;
3386 if (signal_pending(current))
cc847582 3387 goto out;
52d4b9ac
KH
3388 /* This is for making all *used* pages to be on LRU. */
3389 lru_add_drain_all();
cdec2e42 3390 drain_all_stock_sync();
f817ed48 3391 ret = 0;
32047e2a 3392 mem_cgroup_start_move(mem);
299b4eaa 3393 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3394 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3395 enum lru_list l;
f817ed48
KH
3396 for_each_lru(l) {
3397 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3398 node, zid, l);
f817ed48
KH
3399 if (ret)
3400 break;
3401 }
1ecaab2b 3402 }
f817ed48
KH
3403 if (ret)
3404 break;
3405 }
32047e2a 3406 mem_cgroup_end_move(mem);
3c11ecf4 3407 memcg_oom_recover(mem);
f817ed48
KH
3408 /* it seems parent cgroup doesn't have enough mem */
3409 if (ret == -ENOMEM)
3410 goto try_to_free;
52d4b9ac 3411 cond_resched();
fce66477
DN
3412 /* "ret" should also be checked to ensure all lists are empty. */
3413 } while (mem->res.usage > 0 || ret);
cc847582
KH
3414out:
3415 css_put(&mem->css);
3416 return ret;
f817ed48
KH
3417
3418try_to_free:
c1e862c1
KH
3419 /* returns EBUSY if there is a task or if we come here twice. */
3420 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3421 ret = -EBUSY;
3422 goto out;
3423 }
c1e862c1
KH
3424 /* we call try-to-free pages for make this cgroup empty */
3425 lru_add_drain_all();
f817ed48
KH
3426 /* try to free all pages in this cgroup */
3427 shrink = 1;
3428 while (nr_retries && mem->res.usage > 0) {
3429 int progress;
c1e862c1
KH
3430
3431 if (signal_pending(current)) {
3432 ret = -EINTR;
3433 goto out;
3434 }
a7885eb8
KM
3435 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3436 false, get_swappiness(mem));
c1e862c1 3437 if (!progress) {
f817ed48 3438 nr_retries--;
c1e862c1 3439 /* maybe some writeback is necessary */
8aa7e847 3440 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3441 }
f817ed48
KH
3442
3443 }
08e552c6 3444 lru_add_drain();
f817ed48 3445 /* try move_account...there may be some *locked* pages. */
fce66477 3446 goto move_account;
cc847582
KH
3447}
3448
c1e862c1
KH
3449int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3450{
3451 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3452}
3453
3454
18f59ea7
BS
3455static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3456{
3457 return mem_cgroup_from_cont(cont)->use_hierarchy;
3458}
3459
3460static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3461 u64 val)
3462{
3463 int retval = 0;
3464 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3465 struct cgroup *parent = cont->parent;
3466 struct mem_cgroup *parent_mem = NULL;
3467
3468 if (parent)
3469 parent_mem = mem_cgroup_from_cont(parent);
3470
3471 cgroup_lock();
3472 /*
af901ca1 3473 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3474 * in the child subtrees. If it is unset, then the change can
3475 * occur, provided the current cgroup has no children.
3476 *
3477 * For the root cgroup, parent_mem is NULL, we allow value to be
3478 * set if there are no children.
3479 */
3480 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3481 (val == 1 || val == 0)) {
3482 if (list_empty(&cont->children))
3483 mem->use_hierarchy = val;
3484 else
3485 retval = -EBUSY;
3486 } else
3487 retval = -EINVAL;
3488 cgroup_unlock();
3489
3490 return retval;
3491}
3492
0c3e73e8 3493
7d74b06f
KH
3494static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3495 enum mem_cgroup_stat_index idx)
0c3e73e8 3496{
7d74b06f
KH
3497 struct mem_cgroup *iter;
3498 s64 val = 0;
0c3e73e8 3499
7d74b06f
KH
3500 /* each per cpu's value can be minus.Then, use s64 */
3501 for_each_mem_cgroup_tree(iter, mem)
3502 val += mem_cgroup_read_stat(iter, idx);
3503
3504 if (val < 0) /* race ? */
3505 val = 0;
3506 return val;
0c3e73e8
BS
3507}
3508
104f3928
KS
3509static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3510{
7d74b06f 3511 u64 val;
104f3928
KS
3512
3513 if (!mem_cgroup_is_root(mem)) {
3514 if (!swap)
3515 return res_counter_read_u64(&mem->res, RES_USAGE);
3516 else
3517 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3518 }
3519
7d74b06f
KH
3520 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3521 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3522
7d74b06f
KH
3523 if (swap)
3524 val += mem_cgroup_get_recursive_idx_stat(mem,
3525 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3526
3527 return val << PAGE_SHIFT;
3528}
3529
2c3daa72 3530static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3531{
8c7c6e34 3532 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3533 u64 val;
8c7c6e34
KH
3534 int type, name;
3535
3536 type = MEMFILE_TYPE(cft->private);
3537 name = MEMFILE_ATTR(cft->private);
3538 switch (type) {
3539 case _MEM:
104f3928
KS
3540 if (name == RES_USAGE)
3541 val = mem_cgroup_usage(mem, false);
3542 else
0c3e73e8 3543 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3544 break;
3545 case _MEMSWAP:
104f3928
KS
3546 if (name == RES_USAGE)
3547 val = mem_cgroup_usage(mem, true);
3548 else
0c3e73e8 3549 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3550 break;
3551 default:
3552 BUG();
3553 break;
3554 }
3555 return val;
8cdea7c0 3556}
628f4235
KH
3557/*
3558 * The user of this function is...
3559 * RES_LIMIT.
3560 */
856c13aa
PM
3561static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3562 const char *buffer)
8cdea7c0 3563{
628f4235 3564 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3565 int type, name;
628f4235
KH
3566 unsigned long long val;
3567 int ret;
3568
8c7c6e34
KH
3569 type = MEMFILE_TYPE(cft->private);
3570 name = MEMFILE_ATTR(cft->private);
3571 switch (name) {
628f4235 3572 case RES_LIMIT:
4b3bde4c
BS
3573 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3574 ret = -EINVAL;
3575 break;
3576 }
628f4235
KH
3577 /* This function does all necessary parse...reuse it */
3578 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3579 if (ret)
3580 break;
3581 if (type == _MEM)
628f4235 3582 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3583 else
3584 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3585 break;
296c81d8
BS
3586 case RES_SOFT_LIMIT:
3587 ret = res_counter_memparse_write_strategy(buffer, &val);
3588 if (ret)
3589 break;
3590 /*
3591 * For memsw, soft limits are hard to implement in terms
3592 * of semantics, for now, we support soft limits for
3593 * control without swap
3594 */
3595 if (type == _MEM)
3596 ret = res_counter_set_soft_limit(&memcg->res, val);
3597 else
3598 ret = -EINVAL;
3599 break;
628f4235
KH
3600 default:
3601 ret = -EINVAL; /* should be BUG() ? */
3602 break;
3603 }
3604 return ret;
8cdea7c0
BS
3605}
3606
fee7b548
KH
3607static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3608 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3609{
3610 struct cgroup *cgroup;
3611 unsigned long long min_limit, min_memsw_limit, tmp;
3612
3613 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3614 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3615 cgroup = memcg->css.cgroup;
3616 if (!memcg->use_hierarchy)
3617 goto out;
3618
3619 while (cgroup->parent) {
3620 cgroup = cgroup->parent;
3621 memcg = mem_cgroup_from_cont(cgroup);
3622 if (!memcg->use_hierarchy)
3623 break;
3624 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3625 min_limit = min(min_limit, tmp);
3626 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3627 min_memsw_limit = min(min_memsw_limit, tmp);
3628 }
3629out:
3630 *mem_limit = min_limit;
3631 *memsw_limit = min_memsw_limit;
3632 return;
3633}
3634
29f2a4da 3635static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3636{
3637 struct mem_cgroup *mem;
8c7c6e34 3638 int type, name;
c84872e1
PE
3639
3640 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3641 type = MEMFILE_TYPE(event);
3642 name = MEMFILE_ATTR(event);
3643 switch (name) {
29f2a4da 3644 case RES_MAX_USAGE:
8c7c6e34
KH
3645 if (type == _MEM)
3646 res_counter_reset_max(&mem->res);
3647 else
3648 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3649 break;
3650 case RES_FAILCNT:
8c7c6e34
KH
3651 if (type == _MEM)
3652 res_counter_reset_failcnt(&mem->res);
3653 else
3654 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3655 break;
3656 }
f64c3f54 3657
85cc59db 3658 return 0;
c84872e1
PE
3659}
3660
7dc74be0
DN
3661static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3662 struct cftype *cft)
3663{
3664 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3665}
3666
02491447 3667#ifdef CONFIG_MMU
7dc74be0
DN
3668static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3669 struct cftype *cft, u64 val)
3670{
3671 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3672
3673 if (val >= (1 << NR_MOVE_TYPE))
3674 return -EINVAL;
3675 /*
3676 * We check this value several times in both in can_attach() and
3677 * attach(), so we need cgroup lock to prevent this value from being
3678 * inconsistent.
3679 */
3680 cgroup_lock();
3681 mem->move_charge_at_immigrate = val;
3682 cgroup_unlock();
3683
3684 return 0;
3685}
02491447
DN
3686#else
3687static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3688 struct cftype *cft, u64 val)
3689{
3690 return -ENOSYS;
3691}
3692#endif
7dc74be0 3693
14067bb3
KH
3694
3695/* For read statistics */
3696enum {
3697 MCS_CACHE,
3698 MCS_RSS,
d8046582 3699 MCS_FILE_MAPPED,
14067bb3
KH
3700 MCS_PGPGIN,
3701 MCS_PGPGOUT,
1dd3a273 3702 MCS_SWAP,
14067bb3
KH
3703 MCS_INACTIVE_ANON,
3704 MCS_ACTIVE_ANON,
3705 MCS_INACTIVE_FILE,
3706 MCS_ACTIVE_FILE,
3707 MCS_UNEVICTABLE,
3708 NR_MCS_STAT,
3709};
3710
3711struct mcs_total_stat {
3712 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3713};
3714
14067bb3
KH
3715struct {
3716 char *local_name;
3717 char *total_name;
3718} memcg_stat_strings[NR_MCS_STAT] = {
3719 {"cache", "total_cache"},
3720 {"rss", "total_rss"},
d69b042f 3721 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3722 {"pgpgin", "total_pgpgin"},
3723 {"pgpgout", "total_pgpgout"},
1dd3a273 3724 {"swap", "total_swap"},
14067bb3
KH
3725 {"inactive_anon", "total_inactive_anon"},
3726 {"active_anon", "total_active_anon"},
3727 {"inactive_file", "total_inactive_file"},
3728 {"active_file", "total_active_file"},
3729 {"unevictable", "total_unevictable"}
3730};
3731
3732
7d74b06f
KH
3733static void
3734mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3735{
14067bb3
KH
3736 s64 val;
3737
3738 /* per cpu stat */
c62b1a3b 3739 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3740 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3741 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3742 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3743 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3744 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3745 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3746 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3747 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3748 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3749 if (do_swap_account) {
c62b1a3b 3750 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3751 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3752 }
14067bb3
KH
3753
3754 /* per zone stat */
3755 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3756 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3757 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3758 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3759 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3760 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3761 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3762 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3763 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3764 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3765}
3766
3767static void
3768mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3769{
7d74b06f
KH
3770 struct mem_cgroup *iter;
3771
3772 for_each_mem_cgroup_tree(iter, mem)
3773 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3774}
3775
c64745cf
PM
3776static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3777 struct cgroup_map_cb *cb)
d2ceb9b7 3778{
d2ceb9b7 3779 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3780 struct mcs_total_stat mystat;
d2ceb9b7
KH
3781 int i;
3782
14067bb3
KH
3783 memset(&mystat, 0, sizeof(mystat));
3784 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3785
1dd3a273
DN
3786 for (i = 0; i < NR_MCS_STAT; i++) {
3787 if (i == MCS_SWAP && !do_swap_account)
3788 continue;
14067bb3 3789 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3790 }
7b854121 3791
14067bb3 3792 /* Hierarchical information */
fee7b548
KH
3793 {
3794 unsigned long long limit, memsw_limit;
3795 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3796 cb->fill(cb, "hierarchical_memory_limit", limit);
3797 if (do_swap_account)
3798 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3799 }
7f016ee8 3800
14067bb3
KH
3801 memset(&mystat, 0, sizeof(mystat));
3802 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3803 for (i = 0; i < NR_MCS_STAT; i++) {
3804 if (i == MCS_SWAP && !do_swap_account)
3805 continue;
14067bb3 3806 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3807 }
14067bb3 3808
7f016ee8 3809#ifdef CONFIG_DEBUG_VM
c772be93 3810 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3811
3812 {
3813 int nid, zid;
3814 struct mem_cgroup_per_zone *mz;
3815 unsigned long recent_rotated[2] = {0, 0};
3816 unsigned long recent_scanned[2] = {0, 0};
3817
3818 for_each_online_node(nid)
3819 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3820 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3821
3822 recent_rotated[0] +=
3823 mz->reclaim_stat.recent_rotated[0];
3824 recent_rotated[1] +=
3825 mz->reclaim_stat.recent_rotated[1];
3826 recent_scanned[0] +=
3827 mz->reclaim_stat.recent_scanned[0];
3828 recent_scanned[1] +=
3829 mz->reclaim_stat.recent_scanned[1];
3830 }
3831 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3832 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3833 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3834 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3835 }
3836#endif
3837
d2ceb9b7
KH
3838 return 0;
3839}
3840
a7885eb8
KM
3841static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3844
3845 return get_swappiness(memcg);
3846}
3847
3848static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3849 u64 val)
3850{
3851 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3852 struct mem_cgroup *parent;
068b38c1 3853
a7885eb8
KM
3854 if (val > 100)
3855 return -EINVAL;
3856
3857 if (cgrp->parent == NULL)
3858 return -EINVAL;
3859
3860 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3861
3862 cgroup_lock();
3863
a7885eb8
KM
3864 /* If under hierarchy, only empty-root can set this value */
3865 if ((parent->use_hierarchy) ||
068b38c1
LZ
3866 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3867 cgroup_unlock();
a7885eb8 3868 return -EINVAL;
068b38c1 3869 }
a7885eb8
KM
3870
3871 spin_lock(&memcg->reclaim_param_lock);
3872 memcg->swappiness = val;
3873 spin_unlock(&memcg->reclaim_param_lock);
3874
068b38c1
LZ
3875 cgroup_unlock();
3876
a7885eb8
KM
3877 return 0;
3878}
3879
2e72b634
KS
3880static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3881{
3882 struct mem_cgroup_threshold_ary *t;
3883 u64 usage;
3884 int i;
3885
3886 rcu_read_lock();
3887 if (!swap)
2c488db2 3888 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3889 else
2c488db2 3890 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3891
3892 if (!t)
3893 goto unlock;
3894
3895 usage = mem_cgroup_usage(memcg, swap);
3896
3897 /*
3898 * current_threshold points to threshold just below usage.
3899 * If it's not true, a threshold was crossed after last
3900 * call of __mem_cgroup_threshold().
3901 */
5407a562 3902 i = t->current_threshold;
2e72b634
KS
3903
3904 /*
3905 * Iterate backward over array of thresholds starting from
3906 * current_threshold and check if a threshold is crossed.
3907 * If none of thresholds below usage is crossed, we read
3908 * only one element of the array here.
3909 */
3910 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3911 eventfd_signal(t->entries[i].eventfd, 1);
3912
3913 /* i = current_threshold + 1 */
3914 i++;
3915
3916 /*
3917 * Iterate forward over array of thresholds starting from
3918 * current_threshold+1 and check if a threshold is crossed.
3919 * If none of thresholds above usage is crossed, we read
3920 * only one element of the array here.
3921 */
3922 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3923 eventfd_signal(t->entries[i].eventfd, 1);
3924
3925 /* Update current_threshold */
5407a562 3926 t->current_threshold = i - 1;
2e72b634
KS
3927unlock:
3928 rcu_read_unlock();
3929}
3930
3931static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3932{
ad4ca5f4
KS
3933 while (memcg) {
3934 __mem_cgroup_threshold(memcg, false);
3935 if (do_swap_account)
3936 __mem_cgroup_threshold(memcg, true);
3937
3938 memcg = parent_mem_cgroup(memcg);
3939 }
2e72b634
KS
3940}
3941
3942static int compare_thresholds(const void *a, const void *b)
3943{
3944 const struct mem_cgroup_threshold *_a = a;
3945 const struct mem_cgroup_threshold *_b = b;
3946
3947 return _a->threshold - _b->threshold;
3948}
3949
7d74b06f 3950static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3951{
3952 struct mem_cgroup_eventfd_list *ev;
3953
3954 list_for_each_entry(ev, &mem->oom_notify, list)
3955 eventfd_signal(ev->eventfd, 1);
3956 return 0;
3957}
3958
3959static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3960{
7d74b06f
KH
3961 struct mem_cgroup *iter;
3962
3963 for_each_mem_cgroup_tree(iter, mem)
3964 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3965}
3966
3967static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3968 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3969{
3970 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3971 struct mem_cgroup_thresholds *thresholds;
3972 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3973 int type = MEMFILE_TYPE(cft->private);
3974 u64 threshold, usage;
2c488db2 3975 int i, size, ret;
2e72b634
KS
3976
3977 ret = res_counter_memparse_write_strategy(args, &threshold);
3978 if (ret)
3979 return ret;
3980
3981 mutex_lock(&memcg->thresholds_lock);
2c488db2 3982
2e72b634 3983 if (type == _MEM)
2c488db2 3984 thresholds = &memcg->thresholds;
2e72b634 3985 else if (type == _MEMSWAP)
2c488db2 3986 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3987 else
3988 BUG();
3989
3990 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3991
3992 /* Check if a threshold crossed before adding a new one */
2c488db2 3993 if (thresholds->primary)
2e72b634
KS
3994 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3995
2c488db2 3996 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3997
3998 /* Allocate memory for new array of thresholds */
2c488db2 3999 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4000 GFP_KERNEL);
2c488db2 4001 if (!new) {
2e72b634
KS
4002 ret = -ENOMEM;
4003 goto unlock;
4004 }
2c488db2 4005 new->size = size;
2e72b634
KS
4006
4007 /* Copy thresholds (if any) to new array */
2c488db2
KS
4008 if (thresholds->primary) {
4009 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4010 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4011 }
4012
2e72b634 4013 /* Add new threshold */
2c488db2
KS
4014 new->entries[size - 1].eventfd = eventfd;
4015 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4016
4017 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4018 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4019 compare_thresholds, NULL);
4020
4021 /* Find current threshold */
2c488db2 4022 new->current_threshold = -1;
2e72b634 4023 for (i = 0; i < size; i++) {
2c488db2 4024 if (new->entries[i].threshold < usage) {
2e72b634 4025 /*
2c488db2
KS
4026 * new->current_threshold will not be used until
4027 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4028 * it here.
4029 */
2c488db2 4030 ++new->current_threshold;
2e72b634
KS
4031 }
4032 }
4033
2c488db2
KS
4034 /* Free old spare buffer and save old primary buffer as spare */
4035 kfree(thresholds->spare);
4036 thresholds->spare = thresholds->primary;
4037
4038 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4039
907860ed 4040 /* To be sure that nobody uses thresholds */
2e72b634
KS
4041 synchronize_rcu();
4042
2e72b634
KS
4043unlock:
4044 mutex_unlock(&memcg->thresholds_lock);
4045
4046 return ret;
4047}
4048
907860ed 4049static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4050 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4051{
4052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4053 struct mem_cgroup_thresholds *thresholds;
4054 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4055 int type = MEMFILE_TYPE(cft->private);
4056 u64 usage;
2c488db2 4057 int i, j, size;
2e72b634
KS
4058
4059 mutex_lock(&memcg->thresholds_lock);
4060 if (type == _MEM)
2c488db2 4061 thresholds = &memcg->thresholds;
2e72b634 4062 else if (type == _MEMSWAP)
2c488db2 4063 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4064 else
4065 BUG();
4066
4067 /*
4068 * Something went wrong if we trying to unregister a threshold
4069 * if we don't have thresholds
4070 */
4071 BUG_ON(!thresholds);
4072
4073 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4074
4075 /* Check if a threshold crossed before removing */
4076 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4077
4078 /* Calculate new number of threshold */
2c488db2
KS
4079 size = 0;
4080 for (i = 0; i < thresholds->primary->size; i++) {
4081 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4082 size++;
4083 }
4084
2c488db2 4085 new = thresholds->spare;
907860ed 4086
2e72b634
KS
4087 /* Set thresholds array to NULL if we don't have thresholds */
4088 if (!size) {
2c488db2
KS
4089 kfree(new);
4090 new = NULL;
907860ed 4091 goto swap_buffers;
2e72b634
KS
4092 }
4093
2c488db2 4094 new->size = size;
2e72b634
KS
4095
4096 /* Copy thresholds and find current threshold */
2c488db2
KS
4097 new->current_threshold = -1;
4098 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4099 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4100 continue;
4101
2c488db2
KS
4102 new->entries[j] = thresholds->primary->entries[i];
4103 if (new->entries[j].threshold < usage) {
2e72b634 4104 /*
2c488db2 4105 * new->current_threshold will not be used
2e72b634
KS
4106 * until rcu_assign_pointer(), so it's safe to increment
4107 * it here.
4108 */
2c488db2 4109 ++new->current_threshold;
2e72b634
KS
4110 }
4111 j++;
4112 }
4113
907860ed 4114swap_buffers:
2c488db2
KS
4115 /* Swap primary and spare array */
4116 thresholds->spare = thresholds->primary;
4117 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4118
907860ed 4119 /* To be sure that nobody uses thresholds */
2e72b634
KS
4120 synchronize_rcu();
4121
2e72b634 4122 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4123}
c1e862c1 4124
9490ff27
KH
4125static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4126 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4127{
4128 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4129 struct mem_cgroup_eventfd_list *event;
4130 int type = MEMFILE_TYPE(cft->private);
4131
4132 BUG_ON(type != _OOM_TYPE);
4133 event = kmalloc(sizeof(*event), GFP_KERNEL);
4134 if (!event)
4135 return -ENOMEM;
4136
4137 mutex_lock(&memcg_oom_mutex);
4138
4139 event->eventfd = eventfd;
4140 list_add(&event->list, &memcg->oom_notify);
4141
4142 /* already in OOM ? */
4143 if (atomic_read(&memcg->oom_lock))
4144 eventfd_signal(eventfd, 1);
4145 mutex_unlock(&memcg_oom_mutex);
4146
4147 return 0;
4148}
4149
907860ed 4150static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4151 struct cftype *cft, struct eventfd_ctx *eventfd)
4152{
4153 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4154 struct mem_cgroup_eventfd_list *ev, *tmp;
4155 int type = MEMFILE_TYPE(cft->private);
4156
4157 BUG_ON(type != _OOM_TYPE);
4158
4159 mutex_lock(&memcg_oom_mutex);
4160
4161 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4162 if (ev->eventfd == eventfd) {
4163 list_del(&ev->list);
4164 kfree(ev);
4165 }
4166 }
4167
4168 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4169}
4170
3c11ecf4
KH
4171static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4172 struct cftype *cft, struct cgroup_map_cb *cb)
4173{
4174 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4175
4176 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4177
4178 if (atomic_read(&mem->oom_lock))
4179 cb->fill(cb, "under_oom", 1);
4180 else
4181 cb->fill(cb, "under_oom", 0);
4182 return 0;
4183}
4184
3c11ecf4
KH
4185static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4186 struct cftype *cft, u64 val)
4187{
4188 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4189 struct mem_cgroup *parent;
4190
4191 /* cannot set to root cgroup and only 0 and 1 are allowed */
4192 if (!cgrp->parent || !((val == 0) || (val == 1)))
4193 return -EINVAL;
4194
4195 parent = mem_cgroup_from_cont(cgrp->parent);
4196
4197 cgroup_lock();
4198 /* oom-kill-disable is a flag for subhierarchy. */
4199 if ((parent->use_hierarchy) ||
4200 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4201 cgroup_unlock();
4202 return -EINVAL;
4203 }
4204 mem->oom_kill_disable = val;
4d845ebf
KH
4205 if (!val)
4206 memcg_oom_recover(mem);
3c11ecf4
KH
4207 cgroup_unlock();
4208 return 0;
4209}
4210
8cdea7c0
BS
4211static struct cftype mem_cgroup_files[] = {
4212 {
0eea1030 4213 .name = "usage_in_bytes",
8c7c6e34 4214 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4215 .read_u64 = mem_cgroup_read,
9490ff27
KH
4216 .register_event = mem_cgroup_usage_register_event,
4217 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4218 },
c84872e1
PE
4219 {
4220 .name = "max_usage_in_bytes",
8c7c6e34 4221 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4222 .trigger = mem_cgroup_reset,
c84872e1
PE
4223 .read_u64 = mem_cgroup_read,
4224 },
8cdea7c0 4225 {
0eea1030 4226 .name = "limit_in_bytes",
8c7c6e34 4227 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4228 .write_string = mem_cgroup_write,
2c3daa72 4229 .read_u64 = mem_cgroup_read,
8cdea7c0 4230 },
296c81d8
BS
4231 {
4232 .name = "soft_limit_in_bytes",
4233 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4234 .write_string = mem_cgroup_write,
4235 .read_u64 = mem_cgroup_read,
4236 },
8cdea7c0
BS
4237 {
4238 .name = "failcnt",
8c7c6e34 4239 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4240 .trigger = mem_cgroup_reset,
2c3daa72 4241 .read_u64 = mem_cgroup_read,
8cdea7c0 4242 },
d2ceb9b7
KH
4243 {
4244 .name = "stat",
c64745cf 4245 .read_map = mem_control_stat_show,
d2ceb9b7 4246 },
c1e862c1
KH
4247 {
4248 .name = "force_empty",
4249 .trigger = mem_cgroup_force_empty_write,
4250 },
18f59ea7
BS
4251 {
4252 .name = "use_hierarchy",
4253 .write_u64 = mem_cgroup_hierarchy_write,
4254 .read_u64 = mem_cgroup_hierarchy_read,
4255 },
a7885eb8
KM
4256 {
4257 .name = "swappiness",
4258 .read_u64 = mem_cgroup_swappiness_read,
4259 .write_u64 = mem_cgroup_swappiness_write,
4260 },
7dc74be0
DN
4261 {
4262 .name = "move_charge_at_immigrate",
4263 .read_u64 = mem_cgroup_move_charge_read,
4264 .write_u64 = mem_cgroup_move_charge_write,
4265 },
9490ff27
KH
4266 {
4267 .name = "oom_control",
3c11ecf4
KH
4268 .read_map = mem_cgroup_oom_control_read,
4269 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4270 .register_event = mem_cgroup_oom_register_event,
4271 .unregister_event = mem_cgroup_oom_unregister_event,
4272 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4273 },
8cdea7c0
BS
4274};
4275
8c7c6e34
KH
4276#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4277static struct cftype memsw_cgroup_files[] = {
4278 {
4279 .name = "memsw.usage_in_bytes",
4280 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4281 .read_u64 = mem_cgroup_read,
9490ff27
KH
4282 .register_event = mem_cgroup_usage_register_event,
4283 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4284 },
4285 {
4286 .name = "memsw.max_usage_in_bytes",
4287 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4288 .trigger = mem_cgroup_reset,
4289 .read_u64 = mem_cgroup_read,
4290 },
4291 {
4292 .name = "memsw.limit_in_bytes",
4293 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4294 .write_string = mem_cgroup_write,
4295 .read_u64 = mem_cgroup_read,
4296 },
4297 {
4298 .name = "memsw.failcnt",
4299 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4300 .trigger = mem_cgroup_reset,
4301 .read_u64 = mem_cgroup_read,
4302 },
4303};
4304
4305static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4306{
4307 if (!do_swap_account)
4308 return 0;
4309 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4310 ARRAY_SIZE(memsw_cgroup_files));
4311};
4312#else
4313static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4314{
4315 return 0;
4316}
4317#endif
4318
6d12e2d8
KH
4319static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4320{
4321 struct mem_cgroup_per_node *pn;
1ecaab2b 4322 struct mem_cgroup_per_zone *mz;
b69408e8 4323 enum lru_list l;
41e3355d 4324 int zone, tmp = node;
1ecaab2b
KH
4325 /*
4326 * This routine is called against possible nodes.
4327 * But it's BUG to call kmalloc() against offline node.
4328 *
4329 * TODO: this routine can waste much memory for nodes which will
4330 * never be onlined. It's better to use memory hotplug callback
4331 * function.
4332 */
41e3355d
KH
4333 if (!node_state(node, N_NORMAL_MEMORY))
4334 tmp = -1;
17295c88 4335 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4336 if (!pn)
4337 return 1;
1ecaab2b 4338
6d12e2d8 4339 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4340 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4341 mz = &pn->zoneinfo[zone];
b69408e8
CL
4342 for_each_lru(l)
4343 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4344 mz->usage_in_excess = 0;
4e416953
BS
4345 mz->on_tree = false;
4346 mz->mem = mem;
1ecaab2b 4347 }
6d12e2d8
KH
4348 return 0;
4349}
4350
1ecaab2b
KH
4351static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4352{
4353 kfree(mem->info.nodeinfo[node]);
4354}
4355
33327948
KH
4356static struct mem_cgroup *mem_cgroup_alloc(void)
4357{
4358 struct mem_cgroup *mem;
c62b1a3b 4359 int size = sizeof(struct mem_cgroup);
33327948 4360
c62b1a3b 4361 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4362 if (size < PAGE_SIZE)
17295c88 4363 mem = kzalloc(size, GFP_KERNEL);
33327948 4364 else
17295c88 4365 mem = vzalloc(size);
33327948 4366
e7bbcdf3
DC
4367 if (!mem)
4368 return NULL;
4369
c62b1a3b 4370 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4371 if (!mem->stat)
4372 goto out_free;
711d3d2c 4373 spin_lock_init(&mem->pcp_counter_lock);
33327948 4374 return mem;
d2e61b8d
DC
4375
4376out_free:
4377 if (size < PAGE_SIZE)
4378 kfree(mem);
4379 else
4380 vfree(mem);
4381 return NULL;
33327948
KH
4382}
4383
8c7c6e34
KH
4384/*
4385 * At destroying mem_cgroup, references from swap_cgroup can remain.
4386 * (scanning all at force_empty is too costly...)
4387 *
4388 * Instead of clearing all references at force_empty, we remember
4389 * the number of reference from swap_cgroup and free mem_cgroup when
4390 * it goes down to 0.
4391 *
8c7c6e34
KH
4392 * Removal of cgroup itself succeeds regardless of refs from swap.
4393 */
4394
a7ba0eef 4395static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4396{
08e552c6
KH
4397 int node;
4398
f64c3f54 4399 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4400 free_css_id(&mem_cgroup_subsys, &mem->css);
4401
08e552c6
KH
4402 for_each_node_state(node, N_POSSIBLE)
4403 free_mem_cgroup_per_zone_info(mem, node);
4404
c62b1a3b
KH
4405 free_percpu(mem->stat);
4406 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4407 kfree(mem);
4408 else
4409 vfree(mem);
4410}
4411
8c7c6e34
KH
4412static void mem_cgroup_get(struct mem_cgroup *mem)
4413{
4414 atomic_inc(&mem->refcnt);
4415}
4416
483c30b5 4417static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4418{
483c30b5 4419 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4420 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4421 __mem_cgroup_free(mem);
7bcc1bb1
DN
4422 if (parent)
4423 mem_cgroup_put(parent);
4424 }
8c7c6e34
KH
4425}
4426
483c30b5
DN
4427static void mem_cgroup_put(struct mem_cgroup *mem)
4428{
4429 __mem_cgroup_put(mem, 1);
4430}
4431
7bcc1bb1
DN
4432/*
4433 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4434 */
4435static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4436{
4437 if (!mem->res.parent)
4438 return NULL;
4439 return mem_cgroup_from_res_counter(mem->res.parent, res);
4440}
33327948 4441
c077719b
KH
4442#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4443static void __init enable_swap_cgroup(void)
4444{
f8d66542 4445 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4446 do_swap_account = 1;
4447}
4448#else
4449static void __init enable_swap_cgroup(void)
4450{
4451}
4452#endif
4453
f64c3f54
BS
4454static int mem_cgroup_soft_limit_tree_init(void)
4455{
4456 struct mem_cgroup_tree_per_node *rtpn;
4457 struct mem_cgroup_tree_per_zone *rtpz;
4458 int tmp, node, zone;
4459
4460 for_each_node_state(node, N_POSSIBLE) {
4461 tmp = node;
4462 if (!node_state(node, N_NORMAL_MEMORY))
4463 tmp = -1;
4464 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4465 if (!rtpn)
4466 return 1;
4467
4468 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4469
4470 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4471 rtpz = &rtpn->rb_tree_per_zone[zone];
4472 rtpz->rb_root = RB_ROOT;
4473 spin_lock_init(&rtpz->lock);
4474 }
4475 }
4476 return 0;
4477}
4478
0eb253e2 4479static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4480mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4481{
28dbc4b6 4482 struct mem_cgroup *mem, *parent;
04046e1a 4483 long error = -ENOMEM;
6d12e2d8 4484 int node;
8cdea7c0 4485
c8dad2bb
JB
4486 mem = mem_cgroup_alloc();
4487 if (!mem)
04046e1a 4488 return ERR_PTR(error);
78fb7466 4489
6d12e2d8
KH
4490 for_each_node_state(node, N_POSSIBLE)
4491 if (alloc_mem_cgroup_per_zone_info(mem, node))
4492 goto free_out;
f64c3f54 4493
c077719b 4494 /* root ? */
28dbc4b6 4495 if (cont->parent == NULL) {
cdec2e42 4496 int cpu;
c077719b 4497 enable_swap_cgroup();
28dbc4b6 4498 parent = NULL;
4b3bde4c 4499 root_mem_cgroup = mem;
f64c3f54
BS
4500 if (mem_cgroup_soft_limit_tree_init())
4501 goto free_out;
cdec2e42
KH
4502 for_each_possible_cpu(cpu) {
4503 struct memcg_stock_pcp *stock =
4504 &per_cpu(memcg_stock, cpu);
4505 INIT_WORK(&stock->work, drain_local_stock);
4506 }
711d3d2c 4507 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4508 } else {
28dbc4b6 4509 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4510 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4511 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4512 }
28dbc4b6 4513
18f59ea7
BS
4514 if (parent && parent->use_hierarchy) {
4515 res_counter_init(&mem->res, &parent->res);
4516 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4517 /*
4518 * We increment refcnt of the parent to ensure that we can
4519 * safely access it on res_counter_charge/uncharge.
4520 * This refcnt will be decremented when freeing this
4521 * mem_cgroup(see mem_cgroup_put).
4522 */
4523 mem_cgroup_get(parent);
18f59ea7
BS
4524 } else {
4525 res_counter_init(&mem->res, NULL);
4526 res_counter_init(&mem->memsw, NULL);
4527 }
04046e1a 4528 mem->last_scanned_child = 0;
2733c06a 4529 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4530 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4531
a7885eb8
KM
4532 if (parent)
4533 mem->swappiness = get_swappiness(parent);
a7ba0eef 4534 atomic_set(&mem->refcnt, 1);
7dc74be0 4535 mem->move_charge_at_immigrate = 0;
2e72b634 4536 mutex_init(&mem->thresholds_lock);
8cdea7c0 4537 return &mem->css;
6d12e2d8 4538free_out:
a7ba0eef 4539 __mem_cgroup_free(mem);
4b3bde4c 4540 root_mem_cgroup = NULL;
04046e1a 4541 return ERR_PTR(error);
8cdea7c0
BS
4542}
4543
ec64f515 4544static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4545 struct cgroup *cont)
4546{
4547 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4548
4549 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4550}
4551
8cdea7c0
BS
4552static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4553 struct cgroup *cont)
4554{
c268e994 4555 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4556
c268e994 4557 mem_cgroup_put(mem);
8cdea7c0
BS
4558}
4559
4560static int mem_cgroup_populate(struct cgroup_subsys *ss,
4561 struct cgroup *cont)
4562{
8c7c6e34
KH
4563 int ret;
4564
4565 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4566 ARRAY_SIZE(mem_cgroup_files));
4567
4568 if (!ret)
4569 ret = register_memsw_files(cont, ss);
4570 return ret;
8cdea7c0
BS
4571}
4572
02491447 4573#ifdef CONFIG_MMU
7dc74be0 4574/* Handlers for move charge at task migration. */
854ffa8d
DN
4575#define PRECHARGE_COUNT_AT_ONCE 256
4576static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4577{
854ffa8d
DN
4578 int ret = 0;
4579 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4580 struct mem_cgroup *mem = mc.to;
4581
854ffa8d
DN
4582 if (mem_cgroup_is_root(mem)) {
4583 mc.precharge += count;
4584 /* we don't need css_get for root */
4585 return ret;
4586 }
4587 /* try to charge at once */
4588 if (count > 1) {
4589 struct res_counter *dummy;
4590 /*
4591 * "mem" cannot be under rmdir() because we've already checked
4592 * by cgroup_lock_live_cgroup() that it is not removed and we
4593 * are still under the same cgroup_mutex. So we can postpone
4594 * css_get().
4595 */
4596 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4597 goto one_by_one;
4598 if (do_swap_account && res_counter_charge(&mem->memsw,
4599 PAGE_SIZE * count, &dummy)) {
4600 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4601 goto one_by_one;
4602 }
4603 mc.precharge += count;
854ffa8d
DN
4604 return ret;
4605 }
4606one_by_one:
4607 /* fall back to one by one charge */
4608 while (count--) {
4609 if (signal_pending(current)) {
4610 ret = -EINTR;
4611 break;
4612 }
4613 if (!batch_count--) {
4614 batch_count = PRECHARGE_COUNT_AT_ONCE;
4615 cond_resched();
4616 }
ec168510
AA
4617 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4618 PAGE_SIZE);
854ffa8d
DN
4619 if (ret || !mem)
4620 /* mem_cgroup_clear_mc() will do uncharge later */
4621 return -ENOMEM;
4622 mc.precharge++;
4623 }
4ffef5fe
DN
4624 return ret;
4625}
4626
4627/**
4628 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4629 * @vma: the vma the pte to be checked belongs
4630 * @addr: the address corresponding to the pte to be checked
4631 * @ptent: the pte to be checked
02491447 4632 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4633 *
4634 * Returns
4635 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4636 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4637 * move charge. if @target is not NULL, the page is stored in target->page
4638 * with extra refcnt got(Callers should handle it).
02491447
DN
4639 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4640 * target for charge migration. if @target is not NULL, the entry is stored
4641 * in target->ent.
4ffef5fe
DN
4642 *
4643 * Called with pte lock held.
4644 */
4ffef5fe
DN
4645union mc_target {
4646 struct page *page;
02491447 4647 swp_entry_t ent;
4ffef5fe
DN
4648};
4649
4ffef5fe
DN
4650enum mc_target_type {
4651 MC_TARGET_NONE, /* not used */
4652 MC_TARGET_PAGE,
02491447 4653 MC_TARGET_SWAP,
4ffef5fe
DN
4654};
4655
90254a65
DN
4656static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4657 unsigned long addr, pte_t ptent)
4ffef5fe 4658{
90254a65 4659 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4660
90254a65
DN
4661 if (!page || !page_mapped(page))
4662 return NULL;
4663 if (PageAnon(page)) {
4664 /* we don't move shared anon */
4665 if (!move_anon() || page_mapcount(page) > 2)
4666 return NULL;
87946a72
DN
4667 } else if (!move_file())
4668 /* we ignore mapcount for file pages */
90254a65
DN
4669 return NULL;
4670 if (!get_page_unless_zero(page))
4671 return NULL;
4672
4673 return page;
4674}
4675
4676static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4677 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4678{
4679 int usage_count;
4680 struct page *page = NULL;
4681 swp_entry_t ent = pte_to_swp_entry(ptent);
4682
4683 if (!move_anon() || non_swap_entry(ent))
4684 return NULL;
4685 usage_count = mem_cgroup_count_swap_user(ent, &page);
4686 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4687 if (page)
4688 put_page(page);
90254a65 4689 return NULL;
02491447 4690 }
90254a65
DN
4691 if (do_swap_account)
4692 entry->val = ent.val;
4693
4694 return page;
4695}
4696
87946a72
DN
4697static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4698 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4699{
4700 struct page *page = NULL;
4701 struct inode *inode;
4702 struct address_space *mapping;
4703 pgoff_t pgoff;
4704
4705 if (!vma->vm_file) /* anonymous vma */
4706 return NULL;
4707 if (!move_file())
4708 return NULL;
4709
4710 inode = vma->vm_file->f_path.dentry->d_inode;
4711 mapping = vma->vm_file->f_mapping;
4712 if (pte_none(ptent))
4713 pgoff = linear_page_index(vma, addr);
4714 else /* pte_file(ptent) is true */
4715 pgoff = pte_to_pgoff(ptent);
4716
4717 /* page is moved even if it's not RSS of this task(page-faulted). */
4718 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4719 page = find_get_page(mapping, pgoff);
4720 } else { /* shmem/tmpfs file. we should take account of swap too. */
4721 swp_entry_t ent;
4722 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4723 if (do_swap_account)
4724 entry->val = ent.val;
4725 }
4726
4727 return page;
4728}
4729
90254a65
DN
4730static int is_target_pte_for_mc(struct vm_area_struct *vma,
4731 unsigned long addr, pte_t ptent, union mc_target *target)
4732{
4733 struct page *page = NULL;
4734 struct page_cgroup *pc;
4735 int ret = 0;
4736 swp_entry_t ent = { .val = 0 };
4737
4738 if (pte_present(ptent))
4739 page = mc_handle_present_pte(vma, addr, ptent);
4740 else if (is_swap_pte(ptent))
4741 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4742 else if (pte_none(ptent) || pte_file(ptent))
4743 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4744
4745 if (!page && !ent.val)
4746 return 0;
02491447
DN
4747 if (page) {
4748 pc = lookup_page_cgroup(page);
4749 /*
4750 * Do only loose check w/o page_cgroup lock.
4751 * mem_cgroup_move_account() checks the pc is valid or not under
4752 * the lock.
4753 */
4754 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4755 ret = MC_TARGET_PAGE;
4756 if (target)
4757 target->page = page;
4758 }
4759 if (!ret || !target)
4760 put_page(page);
4761 }
90254a65
DN
4762 /* There is a swap entry and a page doesn't exist or isn't charged */
4763 if (ent.val && !ret &&
7f0f1546
KH
4764 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4765 ret = MC_TARGET_SWAP;
4766 if (target)
4767 target->ent = ent;
4ffef5fe 4768 }
4ffef5fe
DN
4769 return ret;
4770}
4771
4772static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4773 unsigned long addr, unsigned long end,
4774 struct mm_walk *walk)
4775{
4776 struct vm_area_struct *vma = walk->private;
4777 pte_t *pte;
4778 spinlock_t *ptl;
4779
03319327
DH
4780 split_huge_page_pmd(walk->mm, pmd);
4781
4ffef5fe
DN
4782 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4783 for (; addr != end; pte++, addr += PAGE_SIZE)
4784 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4785 mc.precharge++; /* increment precharge temporarily */
4786 pte_unmap_unlock(pte - 1, ptl);
4787 cond_resched();
4788
7dc74be0
DN
4789 return 0;
4790}
4791
4ffef5fe
DN
4792static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4793{
4794 unsigned long precharge;
4795 struct vm_area_struct *vma;
4796
dfe076b0 4797 down_read(&mm->mmap_sem);
4ffef5fe
DN
4798 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4799 struct mm_walk mem_cgroup_count_precharge_walk = {
4800 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4801 .mm = mm,
4802 .private = vma,
4803 };
4804 if (is_vm_hugetlb_page(vma))
4805 continue;
4ffef5fe
DN
4806 walk_page_range(vma->vm_start, vma->vm_end,
4807 &mem_cgroup_count_precharge_walk);
4808 }
dfe076b0 4809 up_read(&mm->mmap_sem);
4ffef5fe
DN
4810
4811 precharge = mc.precharge;
4812 mc.precharge = 0;
4813
4814 return precharge;
4815}
4816
4ffef5fe
DN
4817static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4818{
dfe076b0
DN
4819 unsigned long precharge = mem_cgroup_count_precharge(mm);
4820
4821 VM_BUG_ON(mc.moving_task);
4822 mc.moving_task = current;
4823 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4824}
4825
dfe076b0
DN
4826/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4827static void __mem_cgroup_clear_mc(void)
4ffef5fe 4828{
2bd9bb20
KH
4829 struct mem_cgroup *from = mc.from;
4830 struct mem_cgroup *to = mc.to;
4831
4ffef5fe 4832 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4833 if (mc.precharge) {
4834 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4835 mc.precharge = 0;
4836 }
4837 /*
4838 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4839 * we must uncharge here.
4840 */
4841 if (mc.moved_charge) {
4842 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4843 mc.moved_charge = 0;
4ffef5fe 4844 }
483c30b5
DN
4845 /* we must fixup refcnts and charges */
4846 if (mc.moved_swap) {
483c30b5
DN
4847 /* uncharge swap account from the old cgroup */
4848 if (!mem_cgroup_is_root(mc.from))
4849 res_counter_uncharge(&mc.from->memsw,
4850 PAGE_SIZE * mc.moved_swap);
4851 __mem_cgroup_put(mc.from, mc.moved_swap);
4852
4853 if (!mem_cgroup_is_root(mc.to)) {
4854 /*
4855 * we charged both to->res and to->memsw, so we should
4856 * uncharge to->res.
4857 */
4858 res_counter_uncharge(&mc.to->res,
4859 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4860 }
4861 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4862 mc.moved_swap = 0;
4863 }
dfe076b0
DN
4864 memcg_oom_recover(from);
4865 memcg_oom_recover(to);
4866 wake_up_all(&mc.waitq);
4867}
4868
4869static void mem_cgroup_clear_mc(void)
4870{
4871 struct mem_cgroup *from = mc.from;
4872
4873 /*
4874 * we must clear moving_task before waking up waiters at the end of
4875 * task migration.
4876 */
4877 mc.moving_task = NULL;
4878 __mem_cgroup_clear_mc();
2bd9bb20 4879 spin_lock(&mc.lock);
4ffef5fe
DN
4880 mc.from = NULL;
4881 mc.to = NULL;
2bd9bb20 4882 spin_unlock(&mc.lock);
32047e2a 4883 mem_cgroup_end_move(from);
4ffef5fe
DN
4884}
4885
7dc74be0
DN
4886static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4887 struct cgroup *cgroup,
4888 struct task_struct *p,
4889 bool threadgroup)
4890{
4891 int ret = 0;
4892 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4893
4894 if (mem->move_charge_at_immigrate) {
4895 struct mm_struct *mm;
4896 struct mem_cgroup *from = mem_cgroup_from_task(p);
4897
4898 VM_BUG_ON(from == mem);
4899
4900 mm = get_task_mm(p);
4901 if (!mm)
4902 return 0;
7dc74be0 4903 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4904 if (mm->owner == p) {
4905 VM_BUG_ON(mc.from);
4906 VM_BUG_ON(mc.to);
4907 VM_BUG_ON(mc.precharge);
854ffa8d 4908 VM_BUG_ON(mc.moved_charge);
483c30b5 4909 VM_BUG_ON(mc.moved_swap);
32047e2a 4910 mem_cgroup_start_move(from);
2bd9bb20 4911 spin_lock(&mc.lock);
4ffef5fe
DN
4912 mc.from = from;
4913 mc.to = mem;
2bd9bb20 4914 spin_unlock(&mc.lock);
dfe076b0 4915 /* We set mc.moving_task later */
4ffef5fe
DN
4916
4917 ret = mem_cgroup_precharge_mc(mm);
4918 if (ret)
4919 mem_cgroup_clear_mc();
dfe076b0
DN
4920 }
4921 mmput(mm);
7dc74be0
DN
4922 }
4923 return ret;
4924}
4925
4926static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4927 struct cgroup *cgroup,
4928 struct task_struct *p,
4929 bool threadgroup)
4930{
4ffef5fe 4931 mem_cgroup_clear_mc();
7dc74be0
DN
4932}
4933
4ffef5fe
DN
4934static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4935 unsigned long addr, unsigned long end,
4936 struct mm_walk *walk)
7dc74be0 4937{
4ffef5fe
DN
4938 int ret = 0;
4939 struct vm_area_struct *vma = walk->private;
4940 pte_t *pte;
4941 spinlock_t *ptl;
4942
03319327 4943 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4944retry:
4945 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4946 for (; addr != end; addr += PAGE_SIZE) {
4947 pte_t ptent = *(pte++);
4948 union mc_target target;
4949 int type;
4950 struct page *page;
4951 struct page_cgroup *pc;
02491447 4952 swp_entry_t ent;
4ffef5fe
DN
4953
4954 if (!mc.precharge)
4955 break;
4956
4957 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4958 switch (type) {
4959 case MC_TARGET_PAGE:
4960 page = target.page;
4961 if (isolate_lru_page(page))
4962 goto put;
4963 pc = lookup_page_cgroup(page);
5564e88b 4964 if (!mem_cgroup_move_account(page, pc,
987eba66 4965 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4966 mc.precharge--;
854ffa8d
DN
4967 /* we uncharge from mc.from later. */
4968 mc.moved_charge++;
4ffef5fe
DN
4969 }
4970 putback_lru_page(page);
4971put: /* is_target_pte_for_mc() gets the page */
4972 put_page(page);
4973 break;
02491447
DN
4974 case MC_TARGET_SWAP:
4975 ent = target.ent;
483c30b5
DN
4976 if (!mem_cgroup_move_swap_account(ent,
4977 mc.from, mc.to, false)) {
02491447 4978 mc.precharge--;
483c30b5
DN
4979 /* we fixup refcnts and charges later. */
4980 mc.moved_swap++;
4981 }
02491447 4982 break;
4ffef5fe
DN
4983 default:
4984 break;
4985 }
4986 }
4987 pte_unmap_unlock(pte - 1, ptl);
4988 cond_resched();
4989
4990 if (addr != end) {
4991 /*
4992 * We have consumed all precharges we got in can_attach().
4993 * We try charge one by one, but don't do any additional
4994 * charges to mc.to if we have failed in charge once in attach()
4995 * phase.
4996 */
854ffa8d 4997 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4998 if (!ret)
4999 goto retry;
5000 }
5001
5002 return ret;
5003}
5004
5005static void mem_cgroup_move_charge(struct mm_struct *mm)
5006{
5007 struct vm_area_struct *vma;
5008
5009 lru_add_drain_all();
dfe076b0
DN
5010retry:
5011 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5012 /*
5013 * Someone who are holding the mmap_sem might be waiting in
5014 * waitq. So we cancel all extra charges, wake up all waiters,
5015 * and retry. Because we cancel precharges, we might not be able
5016 * to move enough charges, but moving charge is a best-effort
5017 * feature anyway, so it wouldn't be a big problem.
5018 */
5019 __mem_cgroup_clear_mc();
5020 cond_resched();
5021 goto retry;
5022 }
4ffef5fe
DN
5023 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5024 int ret;
5025 struct mm_walk mem_cgroup_move_charge_walk = {
5026 .pmd_entry = mem_cgroup_move_charge_pte_range,
5027 .mm = mm,
5028 .private = vma,
5029 };
5030 if (is_vm_hugetlb_page(vma))
5031 continue;
4ffef5fe
DN
5032 ret = walk_page_range(vma->vm_start, vma->vm_end,
5033 &mem_cgroup_move_charge_walk);
5034 if (ret)
5035 /*
5036 * means we have consumed all precharges and failed in
5037 * doing additional charge. Just abandon here.
5038 */
5039 break;
5040 }
dfe076b0 5041 up_read(&mm->mmap_sem);
7dc74be0
DN
5042}
5043
67e465a7
BS
5044static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5045 struct cgroup *cont,
5046 struct cgroup *old_cont,
be367d09
BB
5047 struct task_struct *p,
5048 bool threadgroup)
67e465a7 5049{
dfe076b0
DN
5050 struct mm_struct *mm;
5051
5052 if (!mc.to)
4ffef5fe
DN
5053 /* no need to move charge */
5054 return;
5055
dfe076b0
DN
5056 mm = get_task_mm(p);
5057 if (mm) {
5058 mem_cgroup_move_charge(mm);
5059 mmput(mm);
5060 }
4ffef5fe 5061 mem_cgroup_clear_mc();
67e465a7 5062}
5cfb80a7
DN
5063#else /* !CONFIG_MMU */
5064static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5065 struct cgroup *cgroup,
5066 struct task_struct *p,
5067 bool threadgroup)
5068{
5069 return 0;
5070}
5071static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5072 struct cgroup *cgroup,
5073 struct task_struct *p,
5074 bool threadgroup)
5075{
5076}
5077static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5078 struct cgroup *cont,
5079 struct cgroup *old_cont,
5080 struct task_struct *p,
5081 bool threadgroup)
5082{
5083}
5084#endif
67e465a7 5085
8cdea7c0
BS
5086struct cgroup_subsys mem_cgroup_subsys = {
5087 .name = "memory",
5088 .subsys_id = mem_cgroup_subsys_id,
5089 .create = mem_cgroup_create,
df878fb0 5090 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5091 .destroy = mem_cgroup_destroy,
5092 .populate = mem_cgroup_populate,
7dc74be0
DN
5093 .can_attach = mem_cgroup_can_attach,
5094 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5095 .attach = mem_cgroup_move_task,
6d12e2d8 5096 .early_init = 0,
04046e1a 5097 .use_id = 1,
8cdea7c0 5098};
c077719b
KH
5099
5100#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5101static int __init enable_swap_account(char *s)
5102{
5103 /* consider enabled if no parameter or 1 is given */
fceda1bf 5104 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5105 really_do_swap_account = 1;
fceda1bf 5106 else if (!strcmp(s, "=0"))
a42c390c
MH
5107 really_do_swap_account = 0;
5108 return 1;
5109}
5110__setup("swapaccount", enable_swap_account);
c077719b
KH
5111
5112static int __init disable_swap_account(char *s)
5113{
552b372b 5114 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5115 enable_swap_account("=0");
c077719b
KH
5116 return 1;
5117}
5118__setup("noswapaccount", disable_swap_account);
5119#endif