[PATCH] remove unneeded SI_TIMER checks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340}
341
342/*
343 * This function expects the tasklist_lock write-locked.
344 */
345void __exit_signal(struct task_struct *tsk)
346{
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
25f407f0 399 * We are cleaning up the signal_struct here.
1da177e4 400 */
1da177e4
LT
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404}
405
406void exit_signal(struct task_struct *tsk)
407{
8d027de5
ON
408 atomic_dec(&tsk->signal->live);
409
1da177e4
LT
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413}
414
415/*
416 * Flush all handlers for a task.
417 */
418
419void
420flush_signal_handlers(struct task_struct *t, int force_default)
421{
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431}
432
433
434/* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442void
443block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452}
453
454/* Notify the system that blocking has ended. */
455
456void
457unblock_all_signals(void)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466}
467
468static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469{
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509}
510
511static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513{
514 int sig = 0;
515
c33880aa
KK
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
518 * to self */
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
521 sig = SIGKILL;
522 }
523
524 if (likely(!sig))
525 sig = next_signal(pending, mask);
1da177e4
LT
526 if (sig) {
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
531 return 0;
532 }
533 }
534 }
535
536 if (!collect_signal(sig, pending, info))
537 sig = 0;
538
539 }
540 recalc_sigpending();
541
542 return sig;
543}
544
545/*
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
548 *
549 * All callers have to hold the siglock.
550 */
551int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
552{
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
554 if (!signr)
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
556 mask, info);
557 if (signr && unlikely(sig_kernel_stop(signr))) {
558 /*
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
569 */
788e05a6
ON
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
572 }
573 if ( signr &&
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
576 /*
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
581 */
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
585 }
586 return signr;
587}
588
589/*
590 * Tell a process that it has a new active signal..
591 *
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
596 *
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
599 */
600void signal_wake_up(struct task_struct *t, int resume)
601{
602 unsigned int mask;
603
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
605
606 /*
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
612 */
613 mask = TASK_INTERRUPTIBLE;
614 if (resume)
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
617 kick_process(t);
618}
619
620/*
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
623 *
624 * All callers must be holding the siglock.
625 */
626static int rm_from_queue(unsigned long mask, struct sigpending *s)
627{
628 struct sigqueue *q, *n;
629
630 if (!sigtestsetmask(&s->signal, mask))
631 return 0;
632
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
638 __sigqueue_free(q);
639 }
640 }
641 return 1;
642}
643
644/*
645 * Bad permissions for sending the signal
646 */
647static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
649{
650 int error = -EINVAL;
7ed20e1a 651 if (!valid_signal(sig))
1da177e4
LT
652 return error;
653 error = -EPERM;
621d3121 654 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1da177e4
LT
655 && ((sig != SIGCONT) ||
656 (current->signal->session != t->signal->session))
657 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
658 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
659 && !capable(CAP_KILL))
660 return error;
c2f0c7c3
SG
661
662 error = security_task_kill(t, info, sig);
663 if (!error)
664 audit_signal_info(sig, t); /* Let audit system see the signal */
665 return error;
1da177e4
LT
666}
667
668/* forward decl */
669static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 670 int to_self,
1da177e4
LT
671 int why);
672
673/*
674 * Handle magic process-wide effects of stop/continue signals.
675 * Unlike the signal actions, these happen immediately at signal-generation
676 * time regardless of blocking, ignoring, or handling. This does the
677 * actual continuing for SIGCONT, but not the actual stopping for stop
678 * signals. The process stop is done as a signal action for SIG_DFL.
679 */
680static void handle_stop_signal(int sig, struct task_struct *p)
681{
682 struct task_struct *t;
683
dd12f48d 684 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
685 /*
686 * The process is in the middle of dying already.
687 */
688 return;
689
690 if (sig_kernel_stop(sig)) {
691 /*
692 * This is a stop signal. Remove SIGCONT from all queues.
693 */
694 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
695 t = p;
696 do {
697 rm_from_queue(sigmask(SIGCONT), &t->pending);
698 t = next_thread(t);
699 } while (t != p);
700 } else if (sig == SIGCONT) {
701 /*
702 * Remove all stop signals from all queues,
703 * and wake all threads.
704 */
705 if (unlikely(p->signal->group_stop_count > 0)) {
706 /*
707 * There was a group stop in progress. We'll
708 * pretend it finished before we got here. We are
709 * obliged to report it to the parent: if the
710 * SIGSTOP happened "after" this SIGCONT, then it
711 * would have cleared this pending SIGCONT. If it
712 * happened "before" this SIGCONT, then the parent
713 * got the SIGCHLD about the stop finishing before
714 * the continue happened. We do the notification
715 * now, and it's as if the stop had finished and
716 * the SIGCHLD was pending on entry to this kill.
717 */
718 p->signal->group_stop_count = 0;
719 p->signal->flags = SIGNAL_STOP_CONTINUED;
720 spin_unlock(&p->sighand->siglock);
bc505a47 721 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
722 spin_lock(&p->sighand->siglock);
723 }
724 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
725 t = p;
726 do {
727 unsigned int state;
728 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
729
730 /*
731 * If there is a handler for SIGCONT, we must make
732 * sure that no thread returns to user mode before
733 * we post the signal, in case it was the only
734 * thread eligible to run the signal handler--then
735 * it must not do anything between resuming and
736 * running the handler. With the TIF_SIGPENDING
737 * flag set, the thread will pause and acquire the
738 * siglock that we hold now and until we've queued
739 * the pending signal.
740 *
741 * Wake up the stopped thread _after_ setting
742 * TIF_SIGPENDING
743 */
744 state = TASK_STOPPED;
745 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
746 set_tsk_thread_flag(t, TIF_SIGPENDING);
747 state |= TASK_INTERRUPTIBLE;
748 }
749 wake_up_state(t, state);
750
751 t = next_thread(t);
752 } while (t != p);
753
754 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
755 /*
756 * We were in fact stopped, and are now continued.
757 * Notify the parent with CLD_CONTINUED.
758 */
759 p->signal->flags = SIGNAL_STOP_CONTINUED;
760 p->signal->group_exit_code = 0;
761 spin_unlock(&p->sighand->siglock);
bc505a47 762 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
763 spin_lock(&p->sighand->siglock);
764 } else {
765 /*
766 * We are not stopped, but there could be a stop
767 * signal in the middle of being processed after
768 * being removed from the queue. Clear that too.
769 */
770 p->signal->flags = 0;
771 }
772 } else if (sig == SIGKILL) {
773 /*
774 * Make sure that any pending stop signal already dequeued
775 * is undone by the wakeup for SIGKILL.
776 */
777 p->signal->flags = 0;
778 }
779}
780
781static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
782 struct sigpending *signals)
783{
784 struct sigqueue * q = NULL;
785 int ret = 0;
786
787 /*
788 * fast-pathed signals for kernel-internal things like SIGSTOP
789 * or SIGKILL.
790 */
b67a1b9e 791 if (info == SEND_SIG_FORCED)
1da177e4
LT
792 goto out_set;
793
794 /* Real-time signals must be queued if sent by sigqueue, or
795 some other real-time mechanism. It is implementation
796 defined whether kill() does so. We attempt to do so, on
797 the principle of least surprise, but since kill is not
798 allowed to fail with EAGAIN when low on memory we just
799 make sure at least one signal gets delivered and don't
800 pass on the info struct. */
801
802 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
621d3121 803 (is_si_special(info) ||
1da177e4
LT
804 info->si_code >= 0)));
805 if (q) {
806 list_add_tail(&q->list, &signals->list);
807 switch ((unsigned long) info) {
b67a1b9e 808 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
809 q->info.si_signo = sig;
810 q->info.si_errno = 0;
811 q->info.si_code = SI_USER;
812 q->info.si_pid = current->pid;
813 q->info.si_uid = current->uid;
814 break;
b67a1b9e 815 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
816 q->info.si_signo = sig;
817 q->info.si_errno = 0;
818 q->info.si_code = SI_KERNEL;
819 q->info.si_pid = 0;
820 q->info.si_uid = 0;
821 break;
822 default:
823 copy_siginfo(&q->info, info);
824 break;
825 }
621d3121
ON
826 } else if (!is_si_special(info)) {
827 if (sig >= SIGRTMIN && info->si_code != SI_USER)
1da177e4
LT
828 /*
829 * Queue overflow, abort. We may abort if the signal was rt
830 * and sent by user using something other than kill().
831 */
832 return -EAGAIN;
1da177e4
LT
833 }
834
835out_set:
836 sigaddset(&signals->signal, sig);
837 return ret;
838}
839
840#define LEGACY_QUEUE(sigptr, sig) \
841 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
842
843
844static int
845specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
846{
847 int ret = 0;
848
849 if (!irqs_disabled())
850 BUG();
851 assert_spin_locked(&t->sighand->siglock);
852
1da177e4
LT
853 /* Short-circuit ignored signals. */
854 if (sig_ignored(t, sig))
855 goto out;
856
857 /* Support queueing exactly one non-rt signal, so that we
858 can get more detailed information about the cause of
859 the signal. */
860 if (LEGACY_QUEUE(&t->pending, sig))
861 goto out;
862
863 ret = send_signal(sig, info, t, &t->pending);
864 if (!ret && !sigismember(&t->blocked, sig))
865 signal_wake_up(t, sig == SIGKILL);
866out:
867 return ret;
868}
869
870/*
871 * Force a signal that the process can't ignore: if necessary
872 * we unblock the signal and change any SIG_IGN to SIG_DFL.
873 */
874
875int
876force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
877{
878 unsigned long int flags;
879 int ret;
880
881 spin_lock_irqsave(&t->sighand->siglock, flags);
882 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
883 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
884 sigdelset(&t->blocked, sig);
885 recalc_sigpending_tsk(t);
886 }
887 ret = specific_send_sig_info(sig, info, t);
888 spin_unlock_irqrestore(&t->sighand->siglock, flags);
889
890 return ret;
891}
892
893void
894force_sig_specific(int sig, struct task_struct *t)
895{
896 unsigned long int flags;
897
898 spin_lock_irqsave(&t->sighand->siglock, flags);
899 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
900 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
901 sigdelset(&t->blocked, sig);
902 recalc_sigpending_tsk(t);
b67a1b9e 903 specific_send_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
904 spin_unlock_irqrestore(&t->sighand->siglock, flags);
905}
906
907/*
908 * Test if P wants to take SIG. After we've checked all threads with this,
909 * it's equivalent to finding no threads not blocking SIG. Any threads not
910 * blocking SIG were ruled out because they are not running and already
911 * have pending signals. Such threads will dequeue from the shared queue
912 * as soon as they're available, so putting the signal on the shared queue
913 * will be equivalent to sending it to one such thread.
914 */
188a1eaf
LT
915static inline int wants_signal(int sig, struct task_struct *p)
916{
917 if (sigismember(&p->blocked, sig))
918 return 0;
919 if (p->flags & PF_EXITING)
920 return 0;
921 if (sig == SIGKILL)
922 return 1;
923 if (p->state & (TASK_STOPPED | TASK_TRACED))
924 return 0;
925 return task_curr(p) || !signal_pending(p);
926}
1da177e4
LT
927
928static void
929__group_complete_signal(int sig, struct task_struct *p)
930{
1da177e4
LT
931 struct task_struct *t;
932
1da177e4
LT
933 /*
934 * Now find a thread we can wake up to take the signal off the queue.
935 *
936 * If the main thread wants the signal, it gets first crack.
937 * Probably the least surprising to the average bear.
938 */
188a1eaf 939 if (wants_signal(sig, p))
1da177e4
LT
940 t = p;
941 else if (thread_group_empty(p))
942 /*
943 * There is just one thread and it does not need to be woken.
944 * It will dequeue unblocked signals before it runs again.
945 */
946 return;
947 else {
948 /*
949 * Otherwise try to find a suitable thread.
950 */
951 t = p->signal->curr_target;
952 if (t == NULL)
953 /* restart balancing at this thread */
954 t = p->signal->curr_target = p;
955 BUG_ON(t->tgid != p->tgid);
956
188a1eaf 957 while (!wants_signal(sig, t)) {
1da177e4
LT
958 t = next_thread(t);
959 if (t == p->signal->curr_target)
960 /*
961 * No thread needs to be woken.
962 * Any eligible threads will see
963 * the signal in the queue soon.
964 */
965 return;
966 }
967 p->signal->curr_target = t;
968 }
969
970 /*
971 * Found a killable thread. If the signal will be fatal,
972 * then start taking the whole group down immediately.
973 */
974 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
975 !sigismember(&t->real_blocked, sig) &&
976 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
977 /*
978 * This signal will be fatal to the whole group.
979 */
980 if (!sig_kernel_coredump(sig)) {
981 /*
982 * Start a group exit and wake everybody up.
983 * This way we don't have other threads
984 * running and doing things after a slower
985 * thread has the fatal signal pending.
986 */
987 p->signal->flags = SIGNAL_GROUP_EXIT;
988 p->signal->group_exit_code = sig;
989 p->signal->group_stop_count = 0;
990 t = p;
991 do {
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
994 t = next_thread(t);
995 } while (t != p);
996 return;
997 }
998
999 /*
1000 * There will be a core dump. We make all threads other
1001 * than the chosen one go into a group stop so that nothing
1002 * happens until it gets scheduled, takes the signal off
1003 * the shared queue, and does the core dump. This is a
1004 * little more complicated than strictly necessary, but it
1005 * keeps the signal state that winds up in the core dump
1006 * unchanged from the death state, e.g. which thread had
1007 * the core-dump signal unblocked.
1008 */
1009 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1010 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1011 p->signal->group_stop_count = 0;
1012 p->signal->group_exit_task = t;
1013 t = p;
1014 do {
1015 p->signal->group_stop_count++;
1016 signal_wake_up(t, 0);
1017 t = next_thread(t);
1018 } while (t != p);
1019 wake_up_process(p->signal->group_exit_task);
1020 return;
1021 }
1022
1023 /*
1024 * The signal is already in the shared-pending queue.
1025 * Tell the chosen thread to wake up and dequeue it.
1026 */
1027 signal_wake_up(t, sig == SIGKILL);
1028 return;
1029}
1030
1031int
1032__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1033{
1034 int ret = 0;
1035
1036 assert_spin_locked(&p->sighand->siglock);
1037 handle_stop_signal(sig, p);
1038
1da177e4
LT
1039 /* Short-circuit ignored signals. */
1040 if (sig_ignored(p, sig))
1041 return ret;
1042
1043 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1044 /* This is a non-RT signal and we already have one queued. */
1045 return ret;
1046
1047 /*
1048 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1049 * We always use the shared queue for process-wide signals,
1050 * to avoid several races.
1051 */
1052 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1053 if (unlikely(ret))
1054 return ret;
1055
1056 __group_complete_signal(sig, p);
1057 return 0;
1058}
1059
1060/*
1061 * Nuke all other threads in the group.
1062 */
1063void zap_other_threads(struct task_struct *p)
1064{
1065 struct task_struct *t;
1066
1067 p->signal->flags = SIGNAL_GROUP_EXIT;
1068 p->signal->group_stop_count = 0;
1069
1070 if (thread_group_empty(p))
1071 return;
1072
1073 for (t = next_thread(p); t != p; t = next_thread(t)) {
1074 /*
1075 * Don't bother with already dead threads
1076 */
1077 if (t->exit_state)
1078 continue;
1079
1080 /*
1081 * We don't want to notify the parent, since we are
1082 * killed as part of a thread group due to another
1083 * thread doing an execve() or similar. So set the
1084 * exit signal to -1 to allow immediate reaping of
1085 * the process. But don't detach the thread group
1086 * leader.
1087 */
1088 if (t != p->group_leader)
1089 t->exit_signal = -1;
1090
30e0fca6 1091 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1092 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1093 signal_wake_up(t, 1);
1094 }
1095}
1096
1097/*
1098 * Must be called with the tasklist_lock held for reading!
1099 */
1100int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1101{
1102 unsigned long flags;
1103 int ret;
1104
1105 ret = check_kill_permission(sig, info, p);
1106 if (!ret && sig && p->sighand) {
1107 spin_lock_irqsave(&p->sighand->siglock, flags);
1108 ret = __group_send_sig_info(sig, info, p);
1109 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1110 }
1111
1112 return ret;
1113}
1114
1115/*
1116 * kill_pg_info() sends a signal to a process group: this is what the tty
1117 * control characters do (^C, ^Z etc)
1118 */
1119
1120int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1121{
1122 struct task_struct *p = NULL;
1123 int retval, success;
1124
1125 if (pgrp <= 0)
1126 return -EINVAL;
1127
1128 success = 0;
1129 retval = -ESRCH;
1130 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1131 int err = group_send_sig_info(sig, info, p);
1132 success |= !err;
1133 retval = err;
1134 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1135 return success ? 0 : retval;
1136}
1137
1138int
1139kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1140{
1141 int retval;
1142
1143 read_lock(&tasklist_lock);
1144 retval = __kill_pg_info(sig, info, pgrp);
1145 read_unlock(&tasklist_lock);
1146
1147 return retval;
1148}
1149
1150int
1151kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1152{
1153 int error;
1154 struct task_struct *p;
1155
1156 read_lock(&tasklist_lock);
1157 p = find_task_by_pid(pid);
1158 error = -ESRCH;
1159 if (p)
1160 error = group_send_sig_info(sig, info, p);
1161 read_unlock(&tasklist_lock);
1162 return error;
1163}
1164
46113830
HW
1165/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1166int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1167 uid_t uid, uid_t euid)
1168{
1169 int ret = -EINVAL;
1170 struct task_struct *p;
1171
1172 if (!valid_signal(sig))
1173 return ret;
1174
1175 read_lock(&tasklist_lock);
1176 p = find_task_by_pid(pid);
1177 if (!p) {
1178 ret = -ESRCH;
1179 goto out_unlock;
1180 }
1181 if ((!info || ((unsigned long)info != 1 &&
1182 (unsigned long)info != 2 && SI_FROMUSER(info)))
1183 && (euid != p->suid) && (euid != p->uid)
1184 && (uid != p->suid) && (uid != p->uid)) {
1185 ret = -EPERM;
1186 goto out_unlock;
1187 }
1188 if (sig && p->sighand) {
1189 unsigned long flags;
1190 spin_lock_irqsave(&p->sighand->siglock, flags);
1191 ret = __group_send_sig_info(sig, info, p);
1192 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1193 }
1194out_unlock:
1195 read_unlock(&tasklist_lock);
1196 return ret;
1197}
1198EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1199
1200/*
1201 * kill_something_info() interprets pid in interesting ways just like kill(2).
1202 *
1203 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1204 * is probably wrong. Should make it like BSD or SYSV.
1205 */
1206
1207static int kill_something_info(int sig, struct siginfo *info, int pid)
1208{
1209 if (!pid) {
1210 return kill_pg_info(sig, info, process_group(current));
1211 } else if (pid == -1) {
1212 int retval = 0, count = 0;
1213 struct task_struct * p;
1214
1215 read_lock(&tasklist_lock);
1216 for_each_process(p) {
1217 if (p->pid > 1 && p->tgid != current->tgid) {
1218 int err = group_send_sig_info(sig, info, p);
1219 ++count;
1220 if (err != -EPERM)
1221 retval = err;
1222 }
1223 }
1224 read_unlock(&tasklist_lock);
1225 return count ? retval : -ESRCH;
1226 } else if (pid < 0) {
1227 return kill_pg_info(sig, info, -pid);
1228 } else {
1229 return kill_proc_info(sig, info, pid);
1230 }
1231}
1232
1233/*
1234 * These are for backward compatibility with the rest of the kernel source.
1235 */
1236
1237/*
1238 * These two are the most common entry points. They send a signal
1239 * just to the specific thread.
1240 */
1241int
1242send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1243{
1244 int ret;
1245 unsigned long flags;
1246
1247 /*
1248 * Make sure legacy kernel users don't send in bad values
1249 * (normal paths check this in check_kill_permission).
1250 */
7ed20e1a 1251 if (!valid_signal(sig))
1da177e4
LT
1252 return -EINVAL;
1253
1254 /*
1255 * We need the tasklist lock even for the specific
1256 * thread case (when we don't need to follow the group
1257 * lists) in order to avoid races with "p->sighand"
1258 * going away or changing from under us.
1259 */
1260 read_lock(&tasklist_lock);
1261 spin_lock_irqsave(&p->sighand->siglock, flags);
1262 ret = specific_send_sig_info(sig, info, p);
1263 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1264 read_unlock(&tasklist_lock);
1265 return ret;
1266}
1267
b67a1b9e
ON
1268#define __si_special(priv) \
1269 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1270
1da177e4
LT
1271int
1272send_sig(int sig, struct task_struct *p, int priv)
1273{
b67a1b9e 1274 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1275}
1276
1277/*
1278 * This is the entry point for "process-wide" signals.
1279 * They will go to an appropriate thread in the thread group.
1280 */
1281int
1282send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1283{
1284 int ret;
1285 read_lock(&tasklist_lock);
1286 ret = group_send_sig_info(sig, info, p);
1287 read_unlock(&tasklist_lock);
1288 return ret;
1289}
1290
1291void
1292force_sig(int sig, struct task_struct *p)
1293{
b67a1b9e 1294 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1295}
1296
1297/*
1298 * When things go south during signal handling, we
1299 * will force a SIGSEGV. And if the signal that caused
1300 * the problem was already a SIGSEGV, we'll want to
1301 * make sure we don't even try to deliver the signal..
1302 */
1303int
1304force_sigsegv(int sig, struct task_struct *p)
1305{
1306 if (sig == SIGSEGV) {
1307 unsigned long flags;
1308 spin_lock_irqsave(&p->sighand->siglock, flags);
1309 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1310 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1311 }
1312 force_sig(SIGSEGV, p);
1313 return 0;
1314}
1315
1316int
1317kill_pg(pid_t pgrp, int sig, int priv)
1318{
b67a1b9e 1319 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1320}
1321
1322int
1323kill_proc(pid_t pid, int sig, int priv)
1324{
b67a1b9e 1325 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1326}
1327
1328/*
1329 * These functions support sending signals using preallocated sigqueue
1330 * structures. This is needed "because realtime applications cannot
1331 * afford to lose notifications of asynchronous events, like timer
1332 * expirations or I/O completions". In the case of Posix Timers
1333 * we allocate the sigqueue structure from the timer_create. If this
1334 * allocation fails we are able to report the failure to the application
1335 * with an EAGAIN error.
1336 */
1337
1338struct sigqueue *sigqueue_alloc(void)
1339{
1340 struct sigqueue *q;
1341
1342 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1343 q->flags |= SIGQUEUE_PREALLOC;
1344 return(q);
1345}
1346
1347void sigqueue_free(struct sigqueue *q)
1348{
1349 unsigned long flags;
1350 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1351 /*
1352 * If the signal is still pending remove it from the
1353 * pending queue.
1354 */
1355 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1356 spinlock_t *lock = &current->sighand->siglock;
1357 read_lock(&tasklist_lock);
1358 spin_lock_irqsave(lock, flags);
1da177e4
LT
1359 if (!list_empty(&q->list))
1360 list_del_init(&q->list);
19a4fcb5 1361 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1362 read_unlock(&tasklist_lock);
1363 }
1364 q->flags &= ~SIGQUEUE_PREALLOC;
1365 __sigqueue_free(q);
1366}
1367
1368int
1369send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1370{
1371 unsigned long flags;
1372 int ret = 0;
1373
1da177e4 1374 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1375 read_lock(&tasklist_lock);
1376
1377 if (unlikely(p->flags & PF_EXITING)) {
1378 ret = -1;
1379 goto out_err;
1380 }
1381
1da177e4 1382 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1383
1da177e4
LT
1384 if (unlikely(!list_empty(&q->list))) {
1385 /*
1386 * If an SI_TIMER entry is already queue just increment
1387 * the overrun count.
1388 */
1389 if (q->info.si_code != SI_TIMER)
1390 BUG();
1391 q->info.si_overrun++;
1392 goto out;
e752dd6c 1393 }
1da177e4
LT
1394 /* Short-circuit ignored signals. */
1395 if (sig_ignored(p, sig)) {
1396 ret = 1;
1397 goto out;
1398 }
1399
1da177e4
LT
1400 list_add_tail(&q->list, &p->pending.list);
1401 sigaddset(&p->pending.signal, sig);
1402 if (!sigismember(&p->blocked, sig))
1403 signal_wake_up(p, sig == SIGKILL);
1404
1405out:
1406 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1407out_err:
1da177e4 1408 read_unlock(&tasklist_lock);
e752dd6c
ON
1409
1410 return ret;
1da177e4
LT
1411}
1412
1413int
1414send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1415{
1416 unsigned long flags;
1417 int ret = 0;
1418
1419 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1420 read_lock(&tasklist_lock);
1421 spin_lock_irqsave(&p->sighand->siglock, flags);
1422 handle_stop_signal(sig, p);
1423
1424 /* Short-circuit ignored signals. */
1425 if (sig_ignored(p, sig)) {
1426 ret = 1;
1427 goto out;
1428 }
1429
1430 if (unlikely(!list_empty(&q->list))) {
1431 /*
1432 * If an SI_TIMER entry is already queue just increment
1433 * the overrun count. Other uses should not try to
1434 * send the signal multiple times.
1435 */
1436 if (q->info.si_code != SI_TIMER)
1437 BUG();
1438 q->info.si_overrun++;
1439 goto out;
1440 }
1441
1442 /*
1443 * Put this signal on the shared-pending queue.
1444 * We always use the shared queue for process-wide signals,
1445 * to avoid several races.
1446 */
1da177e4
LT
1447 list_add_tail(&q->list, &p->signal->shared_pending.list);
1448 sigaddset(&p->signal->shared_pending.signal, sig);
1449
1450 __group_complete_signal(sig, p);
1451out:
1452 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1453 read_unlock(&tasklist_lock);
1454 return(ret);
1455}
1456
1457/*
1458 * Wake up any threads in the parent blocked in wait* syscalls.
1459 */
1460static inline void __wake_up_parent(struct task_struct *p,
1461 struct task_struct *parent)
1462{
1463 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1464}
1465
1466/*
1467 * Let a parent know about the death of a child.
1468 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1469 */
1470
1471void do_notify_parent(struct task_struct *tsk, int sig)
1472{
1473 struct siginfo info;
1474 unsigned long flags;
1475 struct sighand_struct *psig;
1476
1477 BUG_ON(sig == -1);
1478
1479 /* do_notify_parent_cldstop should have been called instead. */
1480 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1481
1482 BUG_ON(!tsk->ptrace &&
1483 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1484
1485 info.si_signo = sig;
1486 info.si_errno = 0;
1487 info.si_pid = tsk->pid;
1488 info.si_uid = tsk->uid;
1489
1490 /* FIXME: find out whether or not this is supposed to be c*time. */
1491 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1492 tsk->signal->utime));
1493 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1494 tsk->signal->stime));
1495
1496 info.si_status = tsk->exit_code & 0x7f;
1497 if (tsk->exit_code & 0x80)
1498 info.si_code = CLD_DUMPED;
1499 else if (tsk->exit_code & 0x7f)
1500 info.si_code = CLD_KILLED;
1501 else {
1502 info.si_code = CLD_EXITED;
1503 info.si_status = tsk->exit_code >> 8;
1504 }
1505
1506 psig = tsk->parent->sighand;
1507 spin_lock_irqsave(&psig->siglock, flags);
1508 if (sig == SIGCHLD &&
1509 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1510 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1511 /*
1512 * We are exiting and our parent doesn't care. POSIX.1
1513 * defines special semantics for setting SIGCHLD to SIG_IGN
1514 * or setting the SA_NOCLDWAIT flag: we should be reaped
1515 * automatically and not left for our parent's wait4 call.
1516 * Rather than having the parent do it as a magic kind of
1517 * signal handler, we just set this to tell do_exit that we
1518 * can be cleaned up without becoming a zombie. Note that
1519 * we still call __wake_up_parent in this case, because a
1520 * blocked sys_wait4 might now return -ECHILD.
1521 *
1522 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1523 * is implementation-defined: we do (if you don't want
1524 * it, just use SIG_IGN instead).
1525 */
1526 tsk->exit_signal = -1;
1527 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1528 sig = 0;
1529 }
7ed20e1a 1530 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1531 __group_send_sig_info(sig, &info, tsk->parent);
1532 __wake_up_parent(tsk, tsk->parent);
1533 spin_unlock_irqrestore(&psig->siglock, flags);
1534}
1535
bc505a47 1536static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1537{
1538 struct siginfo info;
1539 unsigned long flags;
bc505a47 1540 struct task_struct *parent;
1da177e4
LT
1541 struct sighand_struct *sighand;
1542
bc505a47
ON
1543 if (to_self)
1544 parent = tsk->parent;
1545 else {
1546 tsk = tsk->group_leader;
1547 parent = tsk->real_parent;
1548 }
1549
1da177e4
LT
1550 info.si_signo = SIGCHLD;
1551 info.si_errno = 0;
1552 info.si_pid = tsk->pid;
1553 info.si_uid = tsk->uid;
1554
1555 /* FIXME: find out whether or not this is supposed to be c*time. */
1556 info.si_utime = cputime_to_jiffies(tsk->utime);
1557 info.si_stime = cputime_to_jiffies(tsk->stime);
1558
1559 info.si_code = why;
1560 switch (why) {
1561 case CLD_CONTINUED:
1562 info.si_status = SIGCONT;
1563 break;
1564 case CLD_STOPPED:
1565 info.si_status = tsk->signal->group_exit_code & 0x7f;
1566 break;
1567 case CLD_TRAPPED:
1568 info.si_status = tsk->exit_code & 0x7f;
1569 break;
1570 default:
1571 BUG();
1572 }
1573
1574 sighand = parent->sighand;
1575 spin_lock_irqsave(&sighand->siglock, flags);
1576 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1577 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1578 __group_send_sig_info(SIGCHLD, &info, parent);
1579 /*
1580 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1581 */
1582 __wake_up_parent(tsk, parent);
1583 spin_unlock_irqrestore(&sighand->siglock, flags);
1584}
1585
1586/*
1587 * This must be called with current->sighand->siglock held.
1588 *
1589 * This should be the path for all ptrace stops.
1590 * We always set current->last_siginfo while stopped here.
1591 * That makes it a way to test a stopped process for
1592 * being ptrace-stopped vs being job-control-stopped.
1593 *
1594 * If we actually decide not to stop at all because the tracer is gone,
1595 * we leave nostop_code in current->exit_code.
1596 */
1597static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1598{
1599 /*
1600 * If there is a group stop in progress,
1601 * we must participate in the bookkeeping.
1602 */
1603 if (current->signal->group_stop_count > 0)
1604 --current->signal->group_stop_count;
1605
1606 current->last_siginfo = info;
1607 current->exit_code = exit_code;
1608
1609 /* Let the debugger run. */
1610 set_current_state(TASK_TRACED);
1611 spin_unlock_irq(&current->sighand->siglock);
1612 read_lock(&tasklist_lock);
1613 if (likely(current->ptrace & PT_PTRACED) &&
1614 likely(current->parent != current->real_parent ||
1615 !(current->ptrace & PT_ATTACHED)) &&
1616 (likely(current->parent->signal != current->signal) ||
1617 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1618 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1619 read_unlock(&tasklist_lock);
1620 schedule();
1621 } else {
1622 /*
1623 * By the time we got the lock, our tracer went away.
1624 * Don't stop here.
1625 */
1626 read_unlock(&tasklist_lock);
1627 set_current_state(TASK_RUNNING);
1628 current->exit_code = nostop_code;
1629 }
1630
1631 /*
1632 * We are back. Now reacquire the siglock before touching
1633 * last_siginfo, so that we are sure to have synchronized with
1634 * any signal-sending on another CPU that wants to examine it.
1635 */
1636 spin_lock_irq(&current->sighand->siglock);
1637 current->last_siginfo = NULL;
1638
1639 /*
1640 * Queued signals ignored us while we were stopped for tracing.
1641 * So check for any that we should take before resuming user mode.
1642 */
1643 recalc_sigpending();
1644}
1645
1646void ptrace_notify(int exit_code)
1647{
1648 siginfo_t info;
1649
1650 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1651
1652 memset(&info, 0, sizeof info);
1653 info.si_signo = SIGTRAP;
1654 info.si_code = exit_code;
1655 info.si_pid = current->pid;
1656 info.si_uid = current->uid;
1657
1658 /* Let the debugger run. */
1659 spin_lock_irq(&current->sighand->siglock);
1660 ptrace_stop(exit_code, 0, &info);
1661 spin_unlock_irq(&current->sighand->siglock);
1662}
1663
1da177e4
LT
1664static void
1665finish_stop(int stop_count)
1666{
bc505a47
ON
1667 int to_self;
1668
1da177e4
LT
1669 /*
1670 * If there are no other threads in the group, or if there is
1671 * a group stop in progress and we are the last to stop,
1672 * report to the parent. When ptraced, every thread reports itself.
1673 */
bc505a47
ON
1674 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1675 to_self = 1;
1676 else if (stop_count == 0)
1677 to_self = 0;
1678 else
1679 goto out;
1da177e4 1680
bc505a47
ON
1681 read_lock(&tasklist_lock);
1682 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1683 read_unlock(&tasklist_lock);
1684
1685out:
1da177e4
LT
1686 schedule();
1687 /*
1688 * Now we don't run again until continued.
1689 */
1690 current->exit_code = 0;
1691}
1692
1693/*
1694 * This performs the stopping for SIGSTOP and other stop signals.
1695 * We have to stop all threads in the thread group.
1696 * Returns nonzero if we've actually stopped and released the siglock.
1697 * Returns zero if we didn't stop and still hold the siglock.
1698 */
1699static int
1700do_signal_stop(int signr)
1701{
1702 struct signal_struct *sig = current->signal;
1703 struct sighand_struct *sighand = current->sighand;
1704 int stop_count = -1;
1705
1706 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1707 return 0;
1708
1709 if (sig->group_stop_count > 0) {
1710 /*
1711 * There is a group stop in progress. We don't need to
1712 * start another one.
1713 */
1714 signr = sig->group_exit_code;
1715 stop_count = --sig->group_stop_count;
1716 current->exit_code = signr;
1717 set_current_state(TASK_STOPPED);
1718 if (stop_count == 0)
1719 sig->flags = SIGNAL_STOP_STOPPED;
1720 spin_unlock_irq(&sighand->siglock);
1721 }
1722 else if (thread_group_empty(current)) {
1723 /*
1724 * Lock must be held through transition to stopped state.
1725 */
1726 current->exit_code = current->signal->group_exit_code = signr;
1727 set_current_state(TASK_STOPPED);
1728 sig->flags = SIGNAL_STOP_STOPPED;
1729 spin_unlock_irq(&sighand->siglock);
1730 }
1731 else {
1732 /*
1733 * There is no group stop already in progress.
1734 * We must initiate one now, but that requires
1735 * dropping siglock to get both the tasklist lock
1736 * and siglock again in the proper order. Note that
1737 * this allows an intervening SIGCONT to be posted.
1738 * We need to check for that and bail out if necessary.
1739 */
1740 struct task_struct *t;
1741
1742 spin_unlock_irq(&sighand->siglock);
1743
1744 /* signals can be posted during this window */
1745
1746 read_lock(&tasklist_lock);
1747 spin_lock_irq(&sighand->siglock);
1748
1749 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1750 /*
1751 * Another stop or continue happened while we
1752 * didn't have the lock. We can just swallow this
1753 * signal now. If we raced with a SIGCONT, that
1754 * should have just cleared it now. If we raced
1755 * with another processor delivering a stop signal,
1756 * then the SIGCONT that wakes us up should clear it.
1757 */
1758 read_unlock(&tasklist_lock);
1759 return 0;
1760 }
1761
1762 if (sig->group_stop_count == 0) {
1763 sig->group_exit_code = signr;
1764 stop_count = 0;
1765 for (t = next_thread(current); t != current;
1766 t = next_thread(t))
1767 /*
1768 * Setting state to TASK_STOPPED for a group
1769 * stop is always done with the siglock held,
1770 * so this check has no races.
1771 */
5acbc5cb
RM
1772 if (!t->exit_state &&
1773 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1774 stop_count++;
1775 signal_wake_up(t, 0);
1776 }
1777 sig->group_stop_count = stop_count;
1778 }
1779 else {
1780 /* A race with another thread while unlocked. */
1781 signr = sig->group_exit_code;
1782 stop_count = --sig->group_stop_count;
1783 }
1784
1785 current->exit_code = signr;
1786 set_current_state(TASK_STOPPED);
1787 if (stop_count == 0)
1788 sig->flags = SIGNAL_STOP_STOPPED;
1789
1790 spin_unlock_irq(&sighand->siglock);
1791 read_unlock(&tasklist_lock);
1792 }
1793
1794 finish_stop(stop_count);
1795 return 1;
1796}
1797
1798/*
1799 * Do appropriate magic when group_stop_count > 0.
1800 * We return nonzero if we stopped, after releasing the siglock.
1801 * We return zero if we still hold the siglock and should look
1802 * for another signal without checking group_stop_count again.
1803 */
1804static inline int handle_group_stop(void)
1805{
1806 int stop_count;
1807
1808 if (current->signal->group_exit_task == current) {
1809 /*
1810 * Group stop is so we can do a core dump,
1811 * We are the initiating thread, so get on with it.
1812 */
1813 current->signal->group_exit_task = NULL;
1814 return 0;
1815 }
1816
1817 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1818 /*
1819 * Group stop is so another thread can do a core dump,
1820 * or else we are racing against a death signal.
1821 * Just punt the stop so we can get the next signal.
1822 */
1823 return 0;
1824
1825 /*
1826 * There is a group stop in progress. We stop
1827 * without any associated signal being in our queue.
1828 */
1829 stop_count = --current->signal->group_stop_count;
1830 if (stop_count == 0)
1831 current->signal->flags = SIGNAL_STOP_STOPPED;
1832 current->exit_code = current->signal->group_exit_code;
1833 set_current_state(TASK_STOPPED);
1834 spin_unlock_irq(&current->sighand->siglock);
1835 finish_stop(stop_count);
1836 return 1;
1837}
1838
1839int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1840 struct pt_regs *regs, void *cookie)
1841{
1842 sigset_t *mask = &current->blocked;
1843 int signr = 0;
1844
1845relock:
1846 spin_lock_irq(&current->sighand->siglock);
1847 for (;;) {
1848 struct k_sigaction *ka;
1849
1850 if (unlikely(current->signal->group_stop_count > 0) &&
1851 handle_group_stop())
1852 goto relock;
1853
1854 signr = dequeue_signal(current, mask, info);
1855
1856 if (!signr)
1857 break; /* will return 0 */
1858
1859 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1860 ptrace_signal_deliver(regs, cookie);
1861
1862 /* Let the debugger run. */
1863 ptrace_stop(signr, signr, info);
1864
30e0fca6 1865 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1866 signr = current->exit_code;
30e0fca6 1867 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1868 continue;
1869
1870 current->exit_code = 0;
1871
1872 /* Update the siginfo structure if the signal has
1873 changed. If the debugger wanted something
1874 specific in the siginfo structure then it should
1875 have updated *info via PTRACE_SETSIGINFO. */
1876 if (signr != info->si_signo) {
1877 info->si_signo = signr;
1878 info->si_errno = 0;
1879 info->si_code = SI_USER;
1880 info->si_pid = current->parent->pid;
1881 info->si_uid = current->parent->uid;
1882 }
1883
1884 /* If the (new) signal is now blocked, requeue it. */
1885 if (sigismember(&current->blocked, signr)) {
1886 specific_send_sig_info(signr, info, current);
1887 continue;
1888 }
1889 }
1890
1891 ka = &current->sighand->action[signr-1];
1892 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1893 continue;
1894 if (ka->sa.sa_handler != SIG_DFL) {
1895 /* Run the handler. */
1896 *return_ka = *ka;
1897
1898 if (ka->sa.sa_flags & SA_ONESHOT)
1899 ka->sa.sa_handler = SIG_DFL;
1900
1901 break; /* will return non-zero "signr" value */
1902 }
1903
1904 /*
1905 * Now we are doing the default action for this signal.
1906 */
1907 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1908 continue;
1909
1910 /* Init gets no signals it doesn't want. */
1911 if (current->pid == 1)
1912 continue;
1913
1914 if (sig_kernel_stop(signr)) {
1915 /*
1916 * The default action is to stop all threads in
1917 * the thread group. The job control signals
1918 * do nothing in an orphaned pgrp, but SIGSTOP
1919 * always works. Note that siglock needs to be
1920 * dropped during the call to is_orphaned_pgrp()
1921 * because of lock ordering with tasklist_lock.
1922 * This allows an intervening SIGCONT to be posted.
1923 * We need to check for that and bail out if necessary.
1924 */
1925 if (signr != SIGSTOP) {
1926 spin_unlock_irq(&current->sighand->siglock);
1927
1928 /* signals can be posted during this window */
1929
1930 if (is_orphaned_pgrp(process_group(current)))
1931 goto relock;
1932
1933 spin_lock_irq(&current->sighand->siglock);
1934 }
1935
1936 if (likely(do_signal_stop(signr))) {
1937 /* It released the siglock. */
1938 goto relock;
1939 }
1940
1941 /*
1942 * We didn't actually stop, due to a race
1943 * with SIGCONT or something like that.
1944 */
1945 continue;
1946 }
1947
1948 spin_unlock_irq(&current->sighand->siglock);
1949
1950 /*
1951 * Anything else is fatal, maybe with a core dump.
1952 */
1953 current->flags |= PF_SIGNALED;
1954 if (sig_kernel_coredump(signr)) {
1955 /*
1956 * If it was able to dump core, this kills all
1957 * other threads in the group and synchronizes with
1958 * their demise. If we lost the race with another
1959 * thread getting here, it set group_exit_code
1960 * first and our do_group_exit call below will use
1961 * that value and ignore the one we pass it.
1962 */
1963 do_coredump((long)signr, signr, regs);
1964 }
1965
1966 /*
1967 * Death signals, no core dump.
1968 */
1969 do_group_exit(signr);
1970 /* NOTREACHED */
1971 }
1972 spin_unlock_irq(&current->sighand->siglock);
1973 return signr;
1974}
1975
1da177e4
LT
1976EXPORT_SYMBOL(recalc_sigpending);
1977EXPORT_SYMBOL_GPL(dequeue_signal);
1978EXPORT_SYMBOL(flush_signals);
1979EXPORT_SYMBOL(force_sig);
1980EXPORT_SYMBOL(kill_pg);
1981EXPORT_SYMBOL(kill_proc);
1982EXPORT_SYMBOL(ptrace_notify);
1983EXPORT_SYMBOL(send_sig);
1984EXPORT_SYMBOL(send_sig_info);
1985EXPORT_SYMBOL(sigprocmask);
1986EXPORT_SYMBOL(block_all_signals);
1987EXPORT_SYMBOL(unblock_all_signals);
1988
1989
1990/*
1991 * System call entry points.
1992 */
1993
1994asmlinkage long sys_restart_syscall(void)
1995{
1996 struct restart_block *restart = &current_thread_info()->restart_block;
1997 return restart->fn(restart);
1998}
1999
2000long do_no_restart_syscall(struct restart_block *param)
2001{
2002 return -EINTR;
2003}
2004
2005/*
2006 * We don't need to get the kernel lock - this is all local to this
2007 * particular thread.. (and that's good, because this is _heavily_
2008 * used by various programs)
2009 */
2010
2011/*
2012 * This is also useful for kernel threads that want to temporarily
2013 * (or permanently) block certain signals.
2014 *
2015 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2016 * interface happily blocks "unblockable" signals like SIGKILL
2017 * and friends.
2018 */
2019int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2020{
2021 int error;
2022 sigset_t old_block;
2023
2024 spin_lock_irq(&current->sighand->siglock);
2025 old_block = current->blocked;
2026 error = 0;
2027 switch (how) {
2028 case SIG_BLOCK:
2029 sigorsets(&current->blocked, &current->blocked, set);
2030 break;
2031 case SIG_UNBLOCK:
2032 signandsets(&current->blocked, &current->blocked, set);
2033 break;
2034 case SIG_SETMASK:
2035 current->blocked = *set;
2036 break;
2037 default:
2038 error = -EINVAL;
2039 }
2040 recalc_sigpending();
2041 spin_unlock_irq(&current->sighand->siglock);
2042 if (oldset)
2043 *oldset = old_block;
2044 return error;
2045}
2046
2047asmlinkage long
2048sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2049{
2050 int error = -EINVAL;
2051 sigset_t old_set, new_set;
2052
2053 /* XXX: Don't preclude handling different sized sigset_t's. */
2054 if (sigsetsize != sizeof(sigset_t))
2055 goto out;
2056
2057 if (set) {
2058 error = -EFAULT;
2059 if (copy_from_user(&new_set, set, sizeof(*set)))
2060 goto out;
2061 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2062
2063 error = sigprocmask(how, &new_set, &old_set);
2064 if (error)
2065 goto out;
2066 if (oset)
2067 goto set_old;
2068 } else if (oset) {
2069 spin_lock_irq(&current->sighand->siglock);
2070 old_set = current->blocked;
2071 spin_unlock_irq(&current->sighand->siglock);
2072
2073 set_old:
2074 error = -EFAULT;
2075 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2076 goto out;
2077 }
2078 error = 0;
2079out:
2080 return error;
2081}
2082
2083long do_sigpending(void __user *set, unsigned long sigsetsize)
2084{
2085 long error = -EINVAL;
2086 sigset_t pending;
2087
2088 if (sigsetsize > sizeof(sigset_t))
2089 goto out;
2090
2091 spin_lock_irq(&current->sighand->siglock);
2092 sigorsets(&pending, &current->pending.signal,
2093 &current->signal->shared_pending.signal);
2094 spin_unlock_irq(&current->sighand->siglock);
2095
2096 /* Outside the lock because only this thread touches it. */
2097 sigandsets(&pending, &current->blocked, &pending);
2098
2099 error = -EFAULT;
2100 if (!copy_to_user(set, &pending, sigsetsize))
2101 error = 0;
2102
2103out:
2104 return error;
2105}
2106
2107asmlinkage long
2108sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2109{
2110 return do_sigpending(set, sigsetsize);
2111}
2112
2113#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2114
2115int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2116{
2117 int err;
2118
2119 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2120 return -EFAULT;
2121 if (from->si_code < 0)
2122 return __copy_to_user(to, from, sizeof(siginfo_t))
2123 ? -EFAULT : 0;
2124 /*
2125 * If you change siginfo_t structure, please be sure
2126 * this code is fixed accordingly.
2127 * It should never copy any pad contained in the structure
2128 * to avoid security leaks, but must copy the generic
2129 * 3 ints plus the relevant union member.
2130 */
2131 err = __put_user(from->si_signo, &to->si_signo);
2132 err |= __put_user(from->si_errno, &to->si_errno);
2133 err |= __put_user((short)from->si_code, &to->si_code);
2134 switch (from->si_code & __SI_MASK) {
2135 case __SI_KILL:
2136 err |= __put_user(from->si_pid, &to->si_pid);
2137 err |= __put_user(from->si_uid, &to->si_uid);
2138 break;
2139 case __SI_TIMER:
2140 err |= __put_user(from->si_tid, &to->si_tid);
2141 err |= __put_user(from->si_overrun, &to->si_overrun);
2142 err |= __put_user(from->si_ptr, &to->si_ptr);
2143 break;
2144 case __SI_POLL:
2145 err |= __put_user(from->si_band, &to->si_band);
2146 err |= __put_user(from->si_fd, &to->si_fd);
2147 break;
2148 case __SI_FAULT:
2149 err |= __put_user(from->si_addr, &to->si_addr);
2150#ifdef __ARCH_SI_TRAPNO
2151 err |= __put_user(from->si_trapno, &to->si_trapno);
2152#endif
2153 break;
2154 case __SI_CHLD:
2155 err |= __put_user(from->si_pid, &to->si_pid);
2156 err |= __put_user(from->si_uid, &to->si_uid);
2157 err |= __put_user(from->si_status, &to->si_status);
2158 err |= __put_user(from->si_utime, &to->si_utime);
2159 err |= __put_user(from->si_stime, &to->si_stime);
2160 break;
2161 case __SI_RT: /* This is not generated by the kernel as of now. */
2162 case __SI_MESGQ: /* But this is */
2163 err |= __put_user(from->si_pid, &to->si_pid);
2164 err |= __put_user(from->si_uid, &to->si_uid);
2165 err |= __put_user(from->si_ptr, &to->si_ptr);
2166 break;
2167 default: /* this is just in case for now ... */
2168 err |= __put_user(from->si_pid, &to->si_pid);
2169 err |= __put_user(from->si_uid, &to->si_uid);
2170 break;
2171 }
2172 return err;
2173}
2174
2175#endif
2176
2177asmlinkage long
2178sys_rt_sigtimedwait(const sigset_t __user *uthese,
2179 siginfo_t __user *uinfo,
2180 const struct timespec __user *uts,
2181 size_t sigsetsize)
2182{
2183 int ret, sig;
2184 sigset_t these;
2185 struct timespec ts;
2186 siginfo_t info;
2187 long timeout = 0;
2188
2189 /* XXX: Don't preclude handling different sized sigset_t's. */
2190 if (sigsetsize != sizeof(sigset_t))
2191 return -EINVAL;
2192
2193 if (copy_from_user(&these, uthese, sizeof(these)))
2194 return -EFAULT;
2195
2196 /*
2197 * Invert the set of allowed signals to get those we
2198 * want to block.
2199 */
2200 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2201 signotset(&these);
2202
2203 if (uts) {
2204 if (copy_from_user(&ts, uts, sizeof(ts)))
2205 return -EFAULT;
2206 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2207 || ts.tv_sec < 0)
2208 return -EINVAL;
2209 }
2210
2211 spin_lock_irq(&current->sighand->siglock);
2212 sig = dequeue_signal(current, &these, &info);
2213 if (!sig) {
2214 timeout = MAX_SCHEDULE_TIMEOUT;
2215 if (uts)
2216 timeout = (timespec_to_jiffies(&ts)
2217 + (ts.tv_sec || ts.tv_nsec));
2218
2219 if (timeout) {
2220 /* None ready -- temporarily unblock those we're
2221 * interested while we are sleeping in so that we'll
2222 * be awakened when they arrive. */
2223 current->real_blocked = current->blocked;
2224 sigandsets(&current->blocked, &current->blocked, &these);
2225 recalc_sigpending();
2226 spin_unlock_irq(&current->sighand->siglock);
2227
75bcc8c5 2228 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2229
3e1d1d28 2230 try_to_freeze();
1da177e4
LT
2231 spin_lock_irq(&current->sighand->siglock);
2232 sig = dequeue_signal(current, &these, &info);
2233 current->blocked = current->real_blocked;
2234 siginitset(&current->real_blocked, 0);
2235 recalc_sigpending();
2236 }
2237 }
2238 spin_unlock_irq(&current->sighand->siglock);
2239
2240 if (sig) {
2241 ret = sig;
2242 if (uinfo) {
2243 if (copy_siginfo_to_user(uinfo, &info))
2244 ret = -EFAULT;
2245 }
2246 } else {
2247 ret = -EAGAIN;
2248 if (timeout)
2249 ret = -EINTR;
2250 }
2251
2252 return ret;
2253}
2254
2255asmlinkage long
2256sys_kill(int pid, int sig)
2257{
2258 struct siginfo info;
2259
2260 info.si_signo = sig;
2261 info.si_errno = 0;
2262 info.si_code = SI_USER;
2263 info.si_pid = current->tgid;
2264 info.si_uid = current->uid;
2265
2266 return kill_something_info(sig, &info, pid);
2267}
2268
6dd69f10 2269static int do_tkill(int tgid, int pid, int sig)
1da177e4 2270{
1da177e4 2271 int error;
6dd69f10 2272 struct siginfo info;
1da177e4
LT
2273 struct task_struct *p;
2274
6dd69f10 2275 error = -ESRCH;
1da177e4
LT
2276 info.si_signo = sig;
2277 info.si_errno = 0;
2278 info.si_code = SI_TKILL;
2279 info.si_pid = current->tgid;
2280 info.si_uid = current->uid;
2281
2282 read_lock(&tasklist_lock);
2283 p = find_task_by_pid(pid);
6dd69f10 2284 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2285 error = check_kill_permission(sig, &info, p);
2286 /*
2287 * The null signal is a permissions and process existence
2288 * probe. No signal is actually delivered.
2289 */
2290 if (!error && sig && p->sighand) {
2291 spin_lock_irq(&p->sighand->siglock);
2292 handle_stop_signal(sig, p);
2293 error = specific_send_sig_info(sig, &info, p);
2294 spin_unlock_irq(&p->sighand->siglock);
2295 }
2296 }
2297 read_unlock(&tasklist_lock);
6dd69f10 2298
1da177e4
LT
2299 return error;
2300}
2301
6dd69f10
VL
2302/**
2303 * sys_tgkill - send signal to one specific thread
2304 * @tgid: the thread group ID of the thread
2305 * @pid: the PID of the thread
2306 * @sig: signal to be sent
2307 *
2308 * This syscall also checks the tgid and returns -ESRCH even if the PID
2309 * exists but it's not belonging to the target process anymore. This
2310 * method solves the problem of threads exiting and PIDs getting reused.
2311 */
2312asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2313{
2314 /* This is only valid for single tasks */
2315 if (pid <= 0 || tgid <= 0)
2316 return -EINVAL;
2317
2318 return do_tkill(tgid, pid, sig);
2319}
2320
1da177e4
LT
2321/*
2322 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2323 */
2324asmlinkage long
2325sys_tkill(int pid, int sig)
2326{
1da177e4
LT
2327 /* This is only valid for single tasks */
2328 if (pid <= 0)
2329 return -EINVAL;
2330
6dd69f10 2331 return do_tkill(0, pid, sig);
1da177e4
LT
2332}
2333
2334asmlinkage long
2335sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2336{
2337 siginfo_t info;
2338
2339 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2340 return -EFAULT;
2341
2342 /* Not even root can pretend to send signals from the kernel.
2343 Nor can they impersonate a kill(), which adds source info. */
2344 if (info.si_code >= 0)
2345 return -EPERM;
2346 info.si_signo = sig;
2347
2348 /* POSIX.1b doesn't mention process groups. */
2349 return kill_proc_info(sig, &info, pid);
2350}
2351
2352int
2353do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2354{
2355 struct k_sigaction *k;
2356
7ed20e1a 2357 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2358 return -EINVAL;
2359
2360 k = &current->sighand->action[sig-1];
2361
2362 spin_lock_irq(&current->sighand->siglock);
2363 if (signal_pending(current)) {
2364 /*
2365 * If there might be a fatal signal pending on multiple
2366 * threads, make sure we take it before changing the action.
2367 */
2368 spin_unlock_irq(&current->sighand->siglock);
2369 return -ERESTARTNOINTR;
2370 }
2371
2372 if (oact)
2373 *oact = *k;
2374
2375 if (act) {
2376 /*
2377 * POSIX 3.3.1.3:
2378 * "Setting a signal action to SIG_IGN for a signal that is
2379 * pending shall cause the pending signal to be discarded,
2380 * whether or not it is blocked."
2381 *
2382 * "Setting a signal action to SIG_DFL for a signal that is
2383 * pending and whose default action is to ignore the signal
2384 * (for example, SIGCHLD), shall cause the pending signal to
2385 * be discarded, whether or not it is blocked"
2386 */
2387 if (act->sa.sa_handler == SIG_IGN ||
2388 (act->sa.sa_handler == SIG_DFL &&
2389 sig_kernel_ignore(sig))) {
2390 /*
2391 * This is a fairly rare case, so we only take the
2392 * tasklist_lock once we're sure we'll need it.
2393 * Now we must do this little unlock and relock
2394 * dance to maintain the lock hierarchy.
2395 */
2396 struct task_struct *t = current;
2397 spin_unlock_irq(&t->sighand->siglock);
2398 read_lock(&tasklist_lock);
2399 spin_lock_irq(&t->sighand->siglock);
2400 *k = *act;
2401 sigdelsetmask(&k->sa.sa_mask,
2402 sigmask(SIGKILL) | sigmask(SIGSTOP));
2403 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2404 do {
2405 rm_from_queue(sigmask(sig), &t->pending);
2406 recalc_sigpending_tsk(t);
2407 t = next_thread(t);
2408 } while (t != current);
2409 spin_unlock_irq(&current->sighand->siglock);
2410 read_unlock(&tasklist_lock);
2411 return 0;
2412 }
2413
2414 *k = *act;
2415 sigdelsetmask(&k->sa.sa_mask,
2416 sigmask(SIGKILL) | sigmask(SIGSTOP));
2417 }
2418
2419 spin_unlock_irq(&current->sighand->siglock);
2420 return 0;
2421}
2422
2423int
2424do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2425{
2426 stack_t oss;
2427 int error;
2428
2429 if (uoss) {
2430 oss.ss_sp = (void __user *) current->sas_ss_sp;
2431 oss.ss_size = current->sas_ss_size;
2432 oss.ss_flags = sas_ss_flags(sp);
2433 }
2434
2435 if (uss) {
2436 void __user *ss_sp;
2437 size_t ss_size;
2438 int ss_flags;
2439
2440 error = -EFAULT;
2441 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2442 || __get_user(ss_sp, &uss->ss_sp)
2443 || __get_user(ss_flags, &uss->ss_flags)
2444 || __get_user(ss_size, &uss->ss_size))
2445 goto out;
2446
2447 error = -EPERM;
2448 if (on_sig_stack(sp))
2449 goto out;
2450
2451 error = -EINVAL;
2452 /*
2453 *
2454 * Note - this code used to test ss_flags incorrectly
2455 * old code may have been written using ss_flags==0
2456 * to mean ss_flags==SS_ONSTACK (as this was the only
2457 * way that worked) - this fix preserves that older
2458 * mechanism
2459 */
2460 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2461 goto out;
2462
2463 if (ss_flags == SS_DISABLE) {
2464 ss_size = 0;
2465 ss_sp = NULL;
2466 } else {
2467 error = -ENOMEM;
2468 if (ss_size < MINSIGSTKSZ)
2469 goto out;
2470 }
2471
2472 current->sas_ss_sp = (unsigned long) ss_sp;
2473 current->sas_ss_size = ss_size;
2474 }
2475
2476 if (uoss) {
2477 error = -EFAULT;
2478 if (copy_to_user(uoss, &oss, sizeof(oss)))
2479 goto out;
2480 }
2481
2482 error = 0;
2483out:
2484 return error;
2485}
2486
2487#ifdef __ARCH_WANT_SYS_SIGPENDING
2488
2489asmlinkage long
2490sys_sigpending(old_sigset_t __user *set)
2491{
2492 return do_sigpending(set, sizeof(*set));
2493}
2494
2495#endif
2496
2497#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2498/* Some platforms have their own version with special arguments others
2499 support only sys_rt_sigprocmask. */
2500
2501asmlinkage long
2502sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2503{
2504 int error;
2505 old_sigset_t old_set, new_set;
2506
2507 if (set) {
2508 error = -EFAULT;
2509 if (copy_from_user(&new_set, set, sizeof(*set)))
2510 goto out;
2511 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2512
2513 spin_lock_irq(&current->sighand->siglock);
2514 old_set = current->blocked.sig[0];
2515
2516 error = 0;
2517 switch (how) {
2518 default:
2519 error = -EINVAL;
2520 break;
2521 case SIG_BLOCK:
2522 sigaddsetmask(&current->blocked, new_set);
2523 break;
2524 case SIG_UNBLOCK:
2525 sigdelsetmask(&current->blocked, new_set);
2526 break;
2527 case SIG_SETMASK:
2528 current->blocked.sig[0] = new_set;
2529 break;
2530 }
2531
2532 recalc_sigpending();
2533 spin_unlock_irq(&current->sighand->siglock);
2534 if (error)
2535 goto out;
2536 if (oset)
2537 goto set_old;
2538 } else if (oset) {
2539 old_set = current->blocked.sig[0];
2540 set_old:
2541 error = -EFAULT;
2542 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2543 goto out;
2544 }
2545 error = 0;
2546out:
2547 return error;
2548}
2549#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2550
2551#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2552asmlinkage long
2553sys_rt_sigaction(int sig,
2554 const struct sigaction __user *act,
2555 struct sigaction __user *oact,
2556 size_t sigsetsize)
2557{
2558 struct k_sigaction new_sa, old_sa;
2559 int ret = -EINVAL;
2560
2561 /* XXX: Don't preclude handling different sized sigset_t's. */
2562 if (sigsetsize != sizeof(sigset_t))
2563 goto out;
2564
2565 if (act) {
2566 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2567 return -EFAULT;
2568 }
2569
2570 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2571
2572 if (!ret && oact) {
2573 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2574 return -EFAULT;
2575 }
2576out:
2577 return ret;
2578}
2579#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2580
2581#ifdef __ARCH_WANT_SYS_SGETMASK
2582
2583/*
2584 * For backwards compatibility. Functionality superseded by sigprocmask.
2585 */
2586asmlinkage long
2587sys_sgetmask(void)
2588{
2589 /* SMP safe */
2590 return current->blocked.sig[0];
2591}
2592
2593asmlinkage long
2594sys_ssetmask(int newmask)
2595{
2596 int old;
2597
2598 spin_lock_irq(&current->sighand->siglock);
2599 old = current->blocked.sig[0];
2600
2601 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2602 sigmask(SIGSTOP)));
2603 recalc_sigpending();
2604 spin_unlock_irq(&current->sighand->siglock);
2605
2606 return old;
2607}
2608#endif /* __ARCH_WANT_SGETMASK */
2609
2610#ifdef __ARCH_WANT_SYS_SIGNAL
2611/*
2612 * For backwards compatibility. Functionality superseded by sigaction.
2613 */
2614asmlinkage unsigned long
2615sys_signal(int sig, __sighandler_t handler)
2616{
2617 struct k_sigaction new_sa, old_sa;
2618 int ret;
2619
2620 new_sa.sa.sa_handler = handler;
2621 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2622
2623 ret = do_sigaction(sig, &new_sa, &old_sa);
2624
2625 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2626}
2627#endif /* __ARCH_WANT_SYS_SIGNAL */
2628
2629#ifdef __ARCH_WANT_SYS_PAUSE
2630
2631asmlinkage long
2632sys_pause(void)
2633{
2634 current->state = TASK_INTERRUPTIBLE;
2635 schedule();
2636 return -ERESTARTNOHAND;
2637}
2638
2639#endif
2640
2641void __init signals_init(void)
2642{
2643 sigqueue_cachep =
2644 kmem_cache_create("sigqueue",
2645 sizeof(struct sigqueue),
2646 __alignof__(struct sigqueue),
2647 SLAB_PANIC, NULL, NULL);
2648}