[PATCH] fs: fix-up schedule_timeout() usage
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284}
285
286static inline void __sigqueue_free(struct sigqueue *q)
287{
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293}
294
295static void flush_sigqueue(struct sigpending *queue)
296{
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305}
306
307/*
308 * Flush all pending signals for a task.
309 */
310
311void
312flush_signals(struct task_struct *t)
313{
314 unsigned long flags;
315
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
321}
322
323/*
324 * This function expects the tasklist_lock write-locked.
325 */
326void __exit_sighand(struct task_struct *tsk)
327{
328 struct sighand_struct * sighand = tsk->sighand;
329
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
334}
335
336void exit_sighand(struct task_struct *tsk)
337{
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
341}
342
343/*
344 * This function expects the tasklist_lock write-locked.
345 */
346void __exit_signal(struct task_struct *tsk)
347{
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
350
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
365 /*
366 * If there is any task waiting for the group exit
367 * then notify it:
368 */
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
372 }
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
376 /*
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
385 */
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
395 }
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
399 /*
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
412 */
413 exit_itimers(sig);
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
416 }
417}
418
419void exit_signal(struct task_struct *tsk)
420{
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
424}
425
426/*
427 * Flush all handlers for a task.
428 */
429
430void
431flush_signal_handlers(struct task_struct *t, int force_default)
432{
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
441 }
442}
443
444
445/* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
452
453void
454block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
455{
456 unsigned long flags;
457
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
463}
464
465/* Notify the system that blocking has ended. */
466
467void
468unblock_all_signals(void)
469{
470 unsigned long flags;
471
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
477}
478
479static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480{
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
483
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
486
487 /*
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
490 */
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
496 }
497 first = q;
498 }
499 }
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
507
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
511 */
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
518 }
519 return 1;
520}
521
522static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
524{
525 int sig = 0;
526
c33880aa
KK
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
529 * to self */
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
532 sig = SIGKILL;
533 }
534
535 if (likely(!sig))
536 sig = next_signal(pending, mask);
1da177e4
LT
537 if (sig) {
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
542 return 0;
543 }
544 }
545 }
546
547 if (!collect_signal(sig, pending, info))
548 sig = 0;
549
550 }
551 recalc_sigpending();
552
553 return sig;
554}
555
556/*
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
559 *
560 * All callers have to hold the siglock.
561 */
562int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563{
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
565 if (!signr)
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
567 mask, info);
568 if (signr && unlikely(sig_kernel_stop(signr))) {
569 /*
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
580 */
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
582 }
583 if ( signr &&
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
586 /*
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
591 */
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
595 }
596 return signr;
597}
598
599/*
600 * Tell a process that it has a new active signal..
601 *
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
606 *
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
609 */
610void signal_wake_up(struct task_struct *t, int resume)
611{
612 unsigned int mask;
613
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615
616 /*
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
622 */
623 mask = TASK_INTERRUPTIBLE;
624 if (resume)
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
627 kick_process(t);
628}
629
630/*
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
633 *
634 * All callers must be holding the siglock.
635 */
636static int rm_from_queue(unsigned long mask, struct sigpending *s)
637{
638 struct sigqueue *q, *n;
639
640 if (!sigtestsetmask(&s->signal, mask))
641 return 0;
642
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
648 __sigqueue_free(q);
649 }
650 }
651 return 1;
652}
653
654/*
655 * Bad permissions for sending the signal
656 */
657static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
659{
660 int error = -EINVAL;
7ed20e1a 661 if (!valid_signal(sig))
1da177e4
LT
662 return error;
663 error = -EPERM;
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
671 return error;
c2f0c7c3
SG
672
673 error = security_task_kill(t, info, sig);
674 if (!error)
675 audit_signal_info(sig, t); /* Let audit system see the signal */
676 return error;
1da177e4
LT
677}
678
679/* forward decl */
680static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 681 int to_self,
1da177e4
LT
682 int why);
683
684/*
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 */
691static void handle_stop_signal(int sig, struct task_struct *p)
692{
693 struct task_struct *t;
694
dd12f48d 695 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
696 /*
697 * The process is in the middle of dying already.
698 */
699 return;
700
701 if (sig_kernel_stop(sig)) {
702 /*
703 * This is a stop signal. Remove SIGCONT from all queues.
704 */
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 t = p;
707 do {
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
709 t = next_thread(t);
710 } while (t != p);
711 } else if (sig == SIGCONT) {
712 /*
713 * Remove all stop signals from all queues,
714 * and wake all threads.
715 */
716 if (unlikely(p->signal->group_stop_count > 0)) {
717 /*
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
728 */
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
bc505a47 732 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
733 spin_lock(&p->sighand->siglock);
734 }
735 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
736 t = p;
737 do {
738 unsigned int state;
739 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
740
741 /*
742 * If there is a handler for SIGCONT, we must make
743 * sure that no thread returns to user mode before
744 * we post the signal, in case it was the only
745 * thread eligible to run the signal handler--then
746 * it must not do anything between resuming and
747 * running the handler. With the TIF_SIGPENDING
748 * flag set, the thread will pause and acquire the
749 * siglock that we hold now and until we've queued
750 * the pending signal.
751 *
752 * Wake up the stopped thread _after_ setting
753 * TIF_SIGPENDING
754 */
755 state = TASK_STOPPED;
756 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
757 set_tsk_thread_flag(t, TIF_SIGPENDING);
758 state |= TASK_INTERRUPTIBLE;
759 }
760 wake_up_state(t, state);
761
762 t = next_thread(t);
763 } while (t != p);
764
765 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
766 /*
767 * We were in fact stopped, and are now continued.
768 * Notify the parent with CLD_CONTINUED.
769 */
770 p->signal->flags = SIGNAL_STOP_CONTINUED;
771 p->signal->group_exit_code = 0;
772 spin_unlock(&p->sighand->siglock);
bc505a47 773 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
774 spin_lock(&p->sighand->siglock);
775 } else {
776 /*
777 * We are not stopped, but there could be a stop
778 * signal in the middle of being processed after
779 * being removed from the queue. Clear that too.
780 */
781 p->signal->flags = 0;
782 }
783 } else if (sig == SIGKILL) {
784 /*
785 * Make sure that any pending stop signal already dequeued
786 * is undone by the wakeup for SIGKILL.
787 */
788 p->signal->flags = 0;
789 }
790}
791
792static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
793 struct sigpending *signals)
794{
795 struct sigqueue * q = NULL;
796 int ret = 0;
797
798 /*
799 * fast-pathed signals for kernel-internal things like SIGSTOP
800 * or SIGKILL.
801 */
802 if ((unsigned long)info == 2)
803 goto out_set;
804
805 /* Real-time signals must be queued if sent by sigqueue, or
806 some other real-time mechanism. It is implementation
807 defined whether kill() does so. We attempt to do so, on
808 the principle of least surprise, but since kill is not
809 allowed to fail with EAGAIN when low on memory we just
810 make sure at least one signal gets delivered and don't
811 pass on the info struct. */
812
813 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
814 ((unsigned long) info < 2 ||
815 info->si_code >= 0)));
816 if (q) {
817 list_add_tail(&q->list, &signals->list);
818 switch ((unsigned long) info) {
819 case 0:
820 q->info.si_signo = sig;
821 q->info.si_errno = 0;
822 q->info.si_code = SI_USER;
823 q->info.si_pid = current->pid;
824 q->info.si_uid = current->uid;
825 break;
826 case 1:
827 q->info.si_signo = sig;
828 q->info.si_errno = 0;
829 q->info.si_code = SI_KERNEL;
830 q->info.si_pid = 0;
831 q->info.si_uid = 0;
832 break;
833 default:
834 copy_siginfo(&q->info, info);
835 break;
836 }
837 } else {
838 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
839 && info->si_code != SI_USER)
840 /*
841 * Queue overflow, abort. We may abort if the signal was rt
842 * and sent by user using something other than kill().
843 */
844 return -EAGAIN;
845 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
846 /*
847 * Set up a return to indicate that we dropped
848 * the signal.
849 */
850 ret = info->si_sys_private;
851 }
852
853out_set:
854 sigaddset(&signals->signal, sig);
855 return ret;
856}
857
858#define LEGACY_QUEUE(sigptr, sig) \
859 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
860
861
862static int
863specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
864{
865 int ret = 0;
866
867 if (!irqs_disabled())
868 BUG();
869 assert_spin_locked(&t->sighand->siglock);
870
871 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
872 /*
873 * Set up a return to indicate that we dropped the signal.
874 */
875 ret = info->si_sys_private;
876
877 /* Short-circuit ignored signals. */
878 if (sig_ignored(t, sig))
879 goto out;
880
881 /* Support queueing exactly one non-rt signal, so that we
882 can get more detailed information about the cause of
883 the signal. */
884 if (LEGACY_QUEUE(&t->pending, sig))
885 goto out;
886
887 ret = send_signal(sig, info, t, &t->pending);
888 if (!ret && !sigismember(&t->blocked, sig))
889 signal_wake_up(t, sig == SIGKILL);
890out:
891 return ret;
892}
893
894/*
895 * Force a signal that the process can't ignore: if necessary
896 * we unblock the signal and change any SIG_IGN to SIG_DFL.
897 */
898
899int
900force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
901{
902 unsigned long int flags;
903 int ret;
904
905 spin_lock_irqsave(&t->sighand->siglock, flags);
906 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
907 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
908 sigdelset(&t->blocked, sig);
909 recalc_sigpending_tsk(t);
910 }
911 ret = specific_send_sig_info(sig, info, t);
912 spin_unlock_irqrestore(&t->sighand->siglock, flags);
913
914 return ret;
915}
916
917void
918force_sig_specific(int sig, struct task_struct *t)
919{
920 unsigned long int flags;
921
922 spin_lock_irqsave(&t->sighand->siglock, flags);
923 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
924 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
925 sigdelset(&t->blocked, sig);
926 recalc_sigpending_tsk(t);
927 specific_send_sig_info(sig, (void *)2, t);
928 spin_unlock_irqrestore(&t->sighand->siglock, flags);
929}
930
931/*
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
938 */
939#define wants_signal(sig, p, mask) \
940 (!sigismember(&(p)->blocked, sig) \
941 && !((p)->state & mask) \
942 && !((p)->flags & PF_EXITING) \
943 && (task_curr(p) || !signal_pending(p)))
944
945
946static void
947__group_complete_signal(int sig, struct task_struct *p)
948{
949 unsigned int mask;
950 struct task_struct *t;
951
952 /*
953 * Don't bother traced and stopped tasks (but
954 * SIGKILL will punch through that).
955 */
956 mask = TASK_STOPPED | TASK_TRACED;
957 if (sig == SIGKILL)
958 mask = 0;
959
960 /*
961 * Now find a thread we can wake up to take the signal off the queue.
962 *
963 * If the main thread wants the signal, it gets first crack.
964 * Probably the least surprising to the average bear.
965 */
966 if (wants_signal(sig, p, mask))
967 t = p;
968 else if (thread_group_empty(p))
969 /*
970 * There is just one thread and it does not need to be woken.
971 * It will dequeue unblocked signals before it runs again.
972 */
973 return;
974 else {
975 /*
976 * Otherwise try to find a suitable thread.
977 */
978 t = p->signal->curr_target;
979 if (t == NULL)
980 /* restart balancing at this thread */
981 t = p->signal->curr_target = p;
982 BUG_ON(t->tgid != p->tgid);
983
984 while (!wants_signal(sig, t, mask)) {
985 t = next_thread(t);
986 if (t == p->signal->curr_target)
987 /*
988 * No thread needs to be woken.
989 * Any eligible threads will see
990 * the signal in the queue soon.
991 */
992 return;
993 }
994 p->signal->curr_target = t;
995 }
996
997 /*
998 * Found a killable thread. If the signal will be fatal,
999 * then start taking the whole group down immediately.
1000 */
1001 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1002 !sigismember(&t->real_blocked, sig) &&
1003 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1004 /*
1005 * This signal will be fatal to the whole group.
1006 */
1007 if (!sig_kernel_coredump(sig)) {
1008 /*
1009 * Start a group exit and wake everybody up.
1010 * This way we don't have other threads
1011 * running and doing things after a slower
1012 * thread has the fatal signal pending.
1013 */
1014 p->signal->flags = SIGNAL_GROUP_EXIT;
1015 p->signal->group_exit_code = sig;
1016 p->signal->group_stop_count = 0;
1017 t = p;
1018 do {
1019 sigaddset(&t->pending.signal, SIGKILL);
1020 signal_wake_up(t, 1);
1021 t = next_thread(t);
1022 } while (t != p);
1023 return;
1024 }
1025
1026 /*
1027 * There will be a core dump. We make all threads other
1028 * than the chosen one go into a group stop so that nothing
1029 * happens until it gets scheduled, takes the signal off
1030 * the shared queue, and does the core dump. This is a
1031 * little more complicated than strictly necessary, but it
1032 * keeps the signal state that winds up in the core dump
1033 * unchanged from the death state, e.g. which thread had
1034 * the core-dump signal unblocked.
1035 */
1036 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1037 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1038 p->signal->group_stop_count = 0;
1039 p->signal->group_exit_task = t;
1040 t = p;
1041 do {
1042 p->signal->group_stop_count++;
1043 signal_wake_up(t, 0);
1044 t = next_thread(t);
1045 } while (t != p);
1046 wake_up_process(p->signal->group_exit_task);
1047 return;
1048 }
1049
1050 /*
1051 * The signal is already in the shared-pending queue.
1052 * Tell the chosen thread to wake up and dequeue it.
1053 */
1054 signal_wake_up(t, sig == SIGKILL);
1055 return;
1056}
1057
1058int
1059__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1060{
1061 int ret = 0;
1062
1063 assert_spin_locked(&p->sighand->siglock);
1064 handle_stop_signal(sig, p);
1065
1066 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1067 /*
1068 * Set up a return to indicate that we dropped the signal.
1069 */
1070 ret = info->si_sys_private;
1071
1072 /* Short-circuit ignored signals. */
1073 if (sig_ignored(p, sig))
1074 return ret;
1075
1076 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1077 /* This is a non-RT signal and we already have one queued. */
1078 return ret;
1079
1080 /*
1081 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1082 * We always use the shared queue for process-wide signals,
1083 * to avoid several races.
1084 */
1085 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1086 if (unlikely(ret))
1087 return ret;
1088
1089 __group_complete_signal(sig, p);
1090 return 0;
1091}
1092
1093/*
1094 * Nuke all other threads in the group.
1095 */
1096void zap_other_threads(struct task_struct *p)
1097{
1098 struct task_struct *t;
1099
1100 p->signal->flags = SIGNAL_GROUP_EXIT;
1101 p->signal->group_stop_count = 0;
1102
1103 if (thread_group_empty(p))
1104 return;
1105
1106 for (t = next_thread(p); t != p; t = next_thread(t)) {
1107 /*
1108 * Don't bother with already dead threads
1109 */
1110 if (t->exit_state)
1111 continue;
1112
1113 /*
1114 * We don't want to notify the parent, since we are
1115 * killed as part of a thread group due to another
1116 * thread doing an execve() or similar. So set the
1117 * exit signal to -1 to allow immediate reaping of
1118 * the process. But don't detach the thread group
1119 * leader.
1120 */
1121 if (t != p->group_leader)
1122 t->exit_signal = -1;
1123
1124 sigaddset(&t->pending.signal, SIGKILL);
1125 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1126 signal_wake_up(t, 1);
1127 }
1128}
1129
1130/*
1131 * Must be called with the tasklist_lock held for reading!
1132 */
1133int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1134{
1135 unsigned long flags;
1136 int ret;
1137
1138 ret = check_kill_permission(sig, info, p);
1139 if (!ret && sig && p->sighand) {
1140 spin_lock_irqsave(&p->sighand->siglock, flags);
1141 ret = __group_send_sig_info(sig, info, p);
1142 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1143 }
1144
1145 return ret;
1146}
1147
1148/*
1149 * kill_pg_info() sends a signal to a process group: this is what the tty
1150 * control characters do (^C, ^Z etc)
1151 */
1152
1153int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1154{
1155 struct task_struct *p = NULL;
1156 int retval, success;
1157
1158 if (pgrp <= 0)
1159 return -EINVAL;
1160
1161 success = 0;
1162 retval = -ESRCH;
1163 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1164 int err = group_send_sig_info(sig, info, p);
1165 success |= !err;
1166 retval = err;
1167 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1168 return success ? 0 : retval;
1169}
1170
1171int
1172kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1173{
1174 int retval;
1175
1176 read_lock(&tasklist_lock);
1177 retval = __kill_pg_info(sig, info, pgrp);
1178 read_unlock(&tasklist_lock);
1179
1180 return retval;
1181}
1182
1183int
1184kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1185{
1186 int error;
1187 struct task_struct *p;
1188
1189 read_lock(&tasklist_lock);
1190 p = find_task_by_pid(pid);
1191 error = -ESRCH;
1192 if (p)
1193 error = group_send_sig_info(sig, info, p);
1194 read_unlock(&tasklist_lock);
1195 return error;
1196}
1197
1198
1199/*
1200 * kill_something_info() interprets pid in interesting ways just like kill(2).
1201 *
1202 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1203 * is probably wrong. Should make it like BSD or SYSV.
1204 */
1205
1206static int kill_something_info(int sig, struct siginfo *info, int pid)
1207{
1208 if (!pid) {
1209 return kill_pg_info(sig, info, process_group(current));
1210 } else if (pid == -1) {
1211 int retval = 0, count = 0;
1212 struct task_struct * p;
1213
1214 read_lock(&tasklist_lock);
1215 for_each_process(p) {
1216 if (p->pid > 1 && p->tgid != current->tgid) {
1217 int err = group_send_sig_info(sig, info, p);
1218 ++count;
1219 if (err != -EPERM)
1220 retval = err;
1221 }
1222 }
1223 read_unlock(&tasklist_lock);
1224 return count ? retval : -ESRCH;
1225 } else if (pid < 0) {
1226 return kill_pg_info(sig, info, -pid);
1227 } else {
1228 return kill_proc_info(sig, info, pid);
1229 }
1230}
1231
1232/*
1233 * These are for backward compatibility with the rest of the kernel source.
1234 */
1235
1236/*
1237 * These two are the most common entry points. They send a signal
1238 * just to the specific thread.
1239 */
1240int
1241send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1242{
1243 int ret;
1244 unsigned long flags;
1245
1246 /*
1247 * Make sure legacy kernel users don't send in bad values
1248 * (normal paths check this in check_kill_permission).
1249 */
7ed20e1a 1250 if (!valid_signal(sig))
1da177e4
LT
1251 return -EINVAL;
1252
1253 /*
1254 * We need the tasklist lock even for the specific
1255 * thread case (when we don't need to follow the group
1256 * lists) in order to avoid races with "p->sighand"
1257 * going away or changing from under us.
1258 */
1259 read_lock(&tasklist_lock);
1260 spin_lock_irqsave(&p->sighand->siglock, flags);
1261 ret = specific_send_sig_info(sig, info, p);
1262 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1263 read_unlock(&tasklist_lock);
1264 return ret;
1265}
1266
1267int
1268send_sig(int sig, struct task_struct *p, int priv)
1269{
1270 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1271}
1272
1273/*
1274 * This is the entry point for "process-wide" signals.
1275 * They will go to an appropriate thread in the thread group.
1276 */
1277int
1278send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1279{
1280 int ret;
1281 read_lock(&tasklist_lock);
1282 ret = group_send_sig_info(sig, info, p);
1283 read_unlock(&tasklist_lock);
1284 return ret;
1285}
1286
1287void
1288force_sig(int sig, struct task_struct *p)
1289{
1290 force_sig_info(sig, (void*)1L, p);
1291}
1292
1293/*
1294 * When things go south during signal handling, we
1295 * will force a SIGSEGV. And if the signal that caused
1296 * the problem was already a SIGSEGV, we'll want to
1297 * make sure we don't even try to deliver the signal..
1298 */
1299int
1300force_sigsegv(int sig, struct task_struct *p)
1301{
1302 if (sig == SIGSEGV) {
1303 unsigned long flags;
1304 spin_lock_irqsave(&p->sighand->siglock, flags);
1305 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1306 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1307 }
1308 force_sig(SIGSEGV, p);
1309 return 0;
1310}
1311
1312int
1313kill_pg(pid_t pgrp, int sig, int priv)
1314{
1315 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1316}
1317
1318int
1319kill_proc(pid_t pid, int sig, int priv)
1320{
1321 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1322}
1323
1324/*
1325 * These functions support sending signals using preallocated sigqueue
1326 * structures. This is needed "because realtime applications cannot
1327 * afford to lose notifications of asynchronous events, like timer
1328 * expirations or I/O completions". In the case of Posix Timers
1329 * we allocate the sigqueue structure from the timer_create. If this
1330 * allocation fails we are able to report the failure to the application
1331 * with an EAGAIN error.
1332 */
1333
1334struct sigqueue *sigqueue_alloc(void)
1335{
1336 struct sigqueue *q;
1337
1338 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1339 q->flags |= SIGQUEUE_PREALLOC;
1340 return(q);
1341}
1342
1343void sigqueue_free(struct sigqueue *q)
1344{
1345 unsigned long flags;
1346 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1347 /*
1348 * If the signal is still pending remove it from the
1349 * pending queue.
1350 */
1351 if (unlikely(!list_empty(&q->list))) {
1352 read_lock(&tasklist_lock);
1353 spin_lock_irqsave(q->lock, flags);
1354 if (!list_empty(&q->list))
1355 list_del_init(&q->list);
1356 spin_unlock_irqrestore(q->lock, flags);
1357 read_unlock(&tasklist_lock);
1358 }
1359 q->flags &= ~SIGQUEUE_PREALLOC;
1360 __sigqueue_free(q);
1361}
1362
1363int
1364send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1365{
1366 unsigned long flags;
1367 int ret = 0;
1368
1da177e4 1369 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1370 read_lock(&tasklist_lock);
1371
1372 if (unlikely(p->flags & PF_EXITING)) {
1373 ret = -1;
1374 goto out_err;
1375 }
1376
1da177e4 1377 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1378
1da177e4
LT
1379 if (unlikely(!list_empty(&q->list))) {
1380 /*
1381 * If an SI_TIMER entry is already queue just increment
1382 * the overrun count.
1383 */
1384 if (q->info.si_code != SI_TIMER)
1385 BUG();
1386 q->info.si_overrun++;
1387 goto out;
e752dd6c 1388 }
1da177e4
LT
1389 /* Short-circuit ignored signals. */
1390 if (sig_ignored(p, sig)) {
1391 ret = 1;
1392 goto out;
1393 }
1394
1395 q->lock = &p->sighand->siglock;
1396 list_add_tail(&q->list, &p->pending.list);
1397 sigaddset(&p->pending.signal, sig);
1398 if (!sigismember(&p->blocked, sig))
1399 signal_wake_up(p, sig == SIGKILL);
1400
1401out:
1402 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1403out_err:
1da177e4 1404 read_unlock(&tasklist_lock);
e752dd6c
ON
1405
1406 return ret;
1da177e4
LT
1407}
1408
1409int
1410send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1411{
1412 unsigned long flags;
1413 int ret = 0;
1414
1415 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1416 read_lock(&tasklist_lock);
1417 spin_lock_irqsave(&p->sighand->siglock, flags);
1418 handle_stop_signal(sig, p);
1419
1420 /* Short-circuit ignored signals. */
1421 if (sig_ignored(p, sig)) {
1422 ret = 1;
1423 goto out;
1424 }
1425
1426 if (unlikely(!list_empty(&q->list))) {
1427 /*
1428 * If an SI_TIMER entry is already queue just increment
1429 * the overrun count. Other uses should not try to
1430 * send the signal multiple times.
1431 */
1432 if (q->info.si_code != SI_TIMER)
1433 BUG();
1434 q->info.si_overrun++;
1435 goto out;
1436 }
1437
1438 /*
1439 * Put this signal on the shared-pending queue.
1440 * We always use the shared queue for process-wide signals,
1441 * to avoid several races.
1442 */
1443 q->lock = &p->sighand->siglock;
1444 list_add_tail(&q->list, &p->signal->shared_pending.list);
1445 sigaddset(&p->signal->shared_pending.signal, sig);
1446
1447 __group_complete_signal(sig, p);
1448out:
1449 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1450 read_unlock(&tasklist_lock);
1451 return(ret);
1452}
1453
1454/*
1455 * Wake up any threads in the parent blocked in wait* syscalls.
1456 */
1457static inline void __wake_up_parent(struct task_struct *p,
1458 struct task_struct *parent)
1459{
1460 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1461}
1462
1463/*
1464 * Let a parent know about the death of a child.
1465 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1466 */
1467
1468void do_notify_parent(struct task_struct *tsk, int sig)
1469{
1470 struct siginfo info;
1471 unsigned long flags;
1472 struct sighand_struct *psig;
1473
1474 BUG_ON(sig == -1);
1475
1476 /* do_notify_parent_cldstop should have been called instead. */
1477 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1478
1479 BUG_ON(!tsk->ptrace &&
1480 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1481
1482 info.si_signo = sig;
1483 info.si_errno = 0;
1484 info.si_pid = tsk->pid;
1485 info.si_uid = tsk->uid;
1486
1487 /* FIXME: find out whether or not this is supposed to be c*time. */
1488 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1489 tsk->signal->utime));
1490 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1491 tsk->signal->stime));
1492
1493 info.si_status = tsk->exit_code & 0x7f;
1494 if (tsk->exit_code & 0x80)
1495 info.si_code = CLD_DUMPED;
1496 else if (tsk->exit_code & 0x7f)
1497 info.si_code = CLD_KILLED;
1498 else {
1499 info.si_code = CLD_EXITED;
1500 info.si_status = tsk->exit_code >> 8;
1501 }
1502
1503 psig = tsk->parent->sighand;
1504 spin_lock_irqsave(&psig->siglock, flags);
1505 if (sig == SIGCHLD &&
1506 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1507 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1508 /*
1509 * We are exiting and our parent doesn't care. POSIX.1
1510 * defines special semantics for setting SIGCHLD to SIG_IGN
1511 * or setting the SA_NOCLDWAIT flag: we should be reaped
1512 * automatically and not left for our parent's wait4 call.
1513 * Rather than having the parent do it as a magic kind of
1514 * signal handler, we just set this to tell do_exit that we
1515 * can be cleaned up without becoming a zombie. Note that
1516 * we still call __wake_up_parent in this case, because a
1517 * blocked sys_wait4 might now return -ECHILD.
1518 *
1519 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1520 * is implementation-defined: we do (if you don't want
1521 * it, just use SIG_IGN instead).
1522 */
1523 tsk->exit_signal = -1;
1524 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1525 sig = 0;
1526 }
7ed20e1a 1527 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1528 __group_send_sig_info(sig, &info, tsk->parent);
1529 __wake_up_parent(tsk, tsk->parent);
1530 spin_unlock_irqrestore(&psig->siglock, flags);
1531}
1532
bc505a47 1533static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1534{
1535 struct siginfo info;
1536 unsigned long flags;
bc505a47 1537 struct task_struct *parent;
1da177e4
LT
1538 struct sighand_struct *sighand;
1539
bc505a47
ON
1540 if (to_self)
1541 parent = tsk->parent;
1542 else {
1543 tsk = tsk->group_leader;
1544 parent = tsk->real_parent;
1545 }
1546
1da177e4
LT
1547 info.si_signo = SIGCHLD;
1548 info.si_errno = 0;
1549 info.si_pid = tsk->pid;
1550 info.si_uid = tsk->uid;
1551
1552 /* FIXME: find out whether or not this is supposed to be c*time. */
1553 info.si_utime = cputime_to_jiffies(tsk->utime);
1554 info.si_stime = cputime_to_jiffies(tsk->stime);
1555
1556 info.si_code = why;
1557 switch (why) {
1558 case CLD_CONTINUED:
1559 info.si_status = SIGCONT;
1560 break;
1561 case CLD_STOPPED:
1562 info.si_status = tsk->signal->group_exit_code & 0x7f;
1563 break;
1564 case CLD_TRAPPED:
1565 info.si_status = tsk->exit_code & 0x7f;
1566 break;
1567 default:
1568 BUG();
1569 }
1570
1571 sighand = parent->sighand;
1572 spin_lock_irqsave(&sighand->siglock, flags);
1573 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1574 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1575 __group_send_sig_info(SIGCHLD, &info, parent);
1576 /*
1577 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1578 */
1579 __wake_up_parent(tsk, parent);
1580 spin_unlock_irqrestore(&sighand->siglock, flags);
1581}
1582
1583/*
1584 * This must be called with current->sighand->siglock held.
1585 *
1586 * This should be the path for all ptrace stops.
1587 * We always set current->last_siginfo while stopped here.
1588 * That makes it a way to test a stopped process for
1589 * being ptrace-stopped vs being job-control-stopped.
1590 *
1591 * If we actually decide not to stop at all because the tracer is gone,
1592 * we leave nostop_code in current->exit_code.
1593 */
1594static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1595{
1596 /*
1597 * If there is a group stop in progress,
1598 * we must participate in the bookkeeping.
1599 */
1600 if (current->signal->group_stop_count > 0)
1601 --current->signal->group_stop_count;
1602
1603 current->last_siginfo = info;
1604 current->exit_code = exit_code;
1605
1606 /* Let the debugger run. */
1607 set_current_state(TASK_TRACED);
1608 spin_unlock_irq(&current->sighand->siglock);
1609 read_lock(&tasklist_lock);
1610 if (likely(current->ptrace & PT_PTRACED) &&
1611 likely(current->parent != current->real_parent ||
1612 !(current->ptrace & PT_ATTACHED)) &&
1613 (likely(current->parent->signal != current->signal) ||
1614 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1615 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1616 read_unlock(&tasklist_lock);
1617 schedule();
1618 } else {
1619 /*
1620 * By the time we got the lock, our tracer went away.
1621 * Don't stop here.
1622 */
1623 read_unlock(&tasklist_lock);
1624 set_current_state(TASK_RUNNING);
1625 current->exit_code = nostop_code;
1626 }
1627
1628 /*
1629 * We are back. Now reacquire the siglock before touching
1630 * last_siginfo, so that we are sure to have synchronized with
1631 * any signal-sending on another CPU that wants to examine it.
1632 */
1633 spin_lock_irq(&current->sighand->siglock);
1634 current->last_siginfo = NULL;
1635
1636 /*
1637 * Queued signals ignored us while we were stopped for tracing.
1638 * So check for any that we should take before resuming user mode.
1639 */
1640 recalc_sigpending();
1641}
1642
1643void ptrace_notify(int exit_code)
1644{
1645 siginfo_t info;
1646
1647 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1648
1649 memset(&info, 0, sizeof info);
1650 info.si_signo = SIGTRAP;
1651 info.si_code = exit_code;
1652 info.si_pid = current->pid;
1653 info.si_uid = current->uid;
1654
1655 /* Let the debugger run. */
1656 spin_lock_irq(&current->sighand->siglock);
1657 ptrace_stop(exit_code, 0, &info);
1658 spin_unlock_irq(&current->sighand->siglock);
1659}
1660
1da177e4
LT
1661static void
1662finish_stop(int stop_count)
1663{
bc505a47
ON
1664 int to_self;
1665
1da177e4
LT
1666 /*
1667 * If there are no other threads in the group, or if there is
1668 * a group stop in progress and we are the last to stop,
1669 * report to the parent. When ptraced, every thread reports itself.
1670 */
bc505a47
ON
1671 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1672 to_self = 1;
1673 else if (stop_count == 0)
1674 to_self = 0;
1675 else
1676 goto out;
1da177e4 1677
bc505a47
ON
1678 read_lock(&tasklist_lock);
1679 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1680 read_unlock(&tasklist_lock);
1681
1682out:
1da177e4
LT
1683 schedule();
1684 /*
1685 * Now we don't run again until continued.
1686 */
1687 current->exit_code = 0;
1688}
1689
1690/*
1691 * This performs the stopping for SIGSTOP and other stop signals.
1692 * We have to stop all threads in the thread group.
1693 * Returns nonzero if we've actually stopped and released the siglock.
1694 * Returns zero if we didn't stop and still hold the siglock.
1695 */
1696static int
1697do_signal_stop(int signr)
1698{
1699 struct signal_struct *sig = current->signal;
1700 struct sighand_struct *sighand = current->sighand;
1701 int stop_count = -1;
1702
1703 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1704 return 0;
1705
1706 if (sig->group_stop_count > 0) {
1707 /*
1708 * There is a group stop in progress. We don't need to
1709 * start another one.
1710 */
1711 signr = sig->group_exit_code;
1712 stop_count = --sig->group_stop_count;
1713 current->exit_code = signr;
1714 set_current_state(TASK_STOPPED);
1715 if (stop_count == 0)
1716 sig->flags = SIGNAL_STOP_STOPPED;
1717 spin_unlock_irq(&sighand->siglock);
1718 }
1719 else if (thread_group_empty(current)) {
1720 /*
1721 * Lock must be held through transition to stopped state.
1722 */
1723 current->exit_code = current->signal->group_exit_code = signr;
1724 set_current_state(TASK_STOPPED);
1725 sig->flags = SIGNAL_STOP_STOPPED;
1726 spin_unlock_irq(&sighand->siglock);
1727 }
1728 else {
1729 /*
1730 * There is no group stop already in progress.
1731 * We must initiate one now, but that requires
1732 * dropping siglock to get both the tasklist lock
1733 * and siglock again in the proper order. Note that
1734 * this allows an intervening SIGCONT to be posted.
1735 * We need to check for that and bail out if necessary.
1736 */
1737 struct task_struct *t;
1738
1739 spin_unlock_irq(&sighand->siglock);
1740
1741 /* signals can be posted during this window */
1742
1743 read_lock(&tasklist_lock);
1744 spin_lock_irq(&sighand->siglock);
1745
1746 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1747 /*
1748 * Another stop or continue happened while we
1749 * didn't have the lock. We can just swallow this
1750 * signal now. If we raced with a SIGCONT, that
1751 * should have just cleared it now. If we raced
1752 * with another processor delivering a stop signal,
1753 * then the SIGCONT that wakes us up should clear it.
1754 */
1755 read_unlock(&tasklist_lock);
1756 return 0;
1757 }
1758
1759 if (sig->group_stop_count == 0) {
1760 sig->group_exit_code = signr;
1761 stop_count = 0;
1762 for (t = next_thread(current); t != current;
1763 t = next_thread(t))
1764 /*
1765 * Setting state to TASK_STOPPED for a group
1766 * stop is always done with the siglock held,
1767 * so this check has no races.
1768 */
1769 if (t->state < TASK_STOPPED) {
1770 stop_count++;
1771 signal_wake_up(t, 0);
1772 }
1773 sig->group_stop_count = stop_count;
1774 }
1775 else {
1776 /* A race with another thread while unlocked. */
1777 signr = sig->group_exit_code;
1778 stop_count = --sig->group_stop_count;
1779 }
1780
1781 current->exit_code = signr;
1782 set_current_state(TASK_STOPPED);
1783 if (stop_count == 0)
1784 sig->flags = SIGNAL_STOP_STOPPED;
1785
1786 spin_unlock_irq(&sighand->siglock);
1787 read_unlock(&tasklist_lock);
1788 }
1789
1790 finish_stop(stop_count);
1791 return 1;
1792}
1793
1794/*
1795 * Do appropriate magic when group_stop_count > 0.
1796 * We return nonzero if we stopped, after releasing the siglock.
1797 * We return zero if we still hold the siglock and should look
1798 * for another signal without checking group_stop_count again.
1799 */
1800static inline int handle_group_stop(void)
1801{
1802 int stop_count;
1803
1804 if (current->signal->group_exit_task == current) {
1805 /*
1806 * Group stop is so we can do a core dump,
1807 * We are the initiating thread, so get on with it.
1808 */
1809 current->signal->group_exit_task = NULL;
1810 return 0;
1811 }
1812
1813 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1814 /*
1815 * Group stop is so another thread can do a core dump,
1816 * or else we are racing against a death signal.
1817 * Just punt the stop so we can get the next signal.
1818 */
1819 return 0;
1820
1821 /*
1822 * There is a group stop in progress. We stop
1823 * without any associated signal being in our queue.
1824 */
1825 stop_count = --current->signal->group_stop_count;
1826 if (stop_count == 0)
1827 current->signal->flags = SIGNAL_STOP_STOPPED;
1828 current->exit_code = current->signal->group_exit_code;
1829 set_current_state(TASK_STOPPED);
1830 spin_unlock_irq(&current->sighand->siglock);
1831 finish_stop(stop_count);
1832 return 1;
1833}
1834
1835int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1836 struct pt_regs *regs, void *cookie)
1837{
1838 sigset_t *mask = &current->blocked;
1839 int signr = 0;
1840
1841relock:
1842 spin_lock_irq(&current->sighand->siglock);
1843 for (;;) {
1844 struct k_sigaction *ka;
1845
1846 if (unlikely(current->signal->group_stop_count > 0) &&
1847 handle_group_stop())
1848 goto relock;
1849
1850 signr = dequeue_signal(current, mask, info);
1851
1852 if (!signr)
1853 break; /* will return 0 */
1854
1855 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1856 ptrace_signal_deliver(regs, cookie);
1857
1858 /* Let the debugger run. */
1859 ptrace_stop(signr, signr, info);
1860
1861 /* We're back. Did the debugger cancel the sig? */
1862 signr = current->exit_code;
1863 if (signr == 0)
1864 continue;
1865
1866 current->exit_code = 0;
1867
1868 /* Update the siginfo structure if the signal has
1869 changed. If the debugger wanted something
1870 specific in the siginfo structure then it should
1871 have updated *info via PTRACE_SETSIGINFO. */
1872 if (signr != info->si_signo) {
1873 info->si_signo = signr;
1874 info->si_errno = 0;
1875 info->si_code = SI_USER;
1876 info->si_pid = current->parent->pid;
1877 info->si_uid = current->parent->uid;
1878 }
1879
1880 /* If the (new) signal is now blocked, requeue it. */
1881 if (sigismember(&current->blocked, signr)) {
1882 specific_send_sig_info(signr, info, current);
1883 continue;
1884 }
1885 }
1886
1887 ka = &current->sighand->action[signr-1];
1888 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1889 continue;
1890 if (ka->sa.sa_handler != SIG_DFL) {
1891 /* Run the handler. */
1892 *return_ka = *ka;
1893
1894 if (ka->sa.sa_flags & SA_ONESHOT)
1895 ka->sa.sa_handler = SIG_DFL;
1896
1897 break; /* will return non-zero "signr" value */
1898 }
1899
1900 /*
1901 * Now we are doing the default action for this signal.
1902 */
1903 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1904 continue;
1905
1906 /* Init gets no signals it doesn't want. */
1907 if (current->pid == 1)
1908 continue;
1909
1910 if (sig_kernel_stop(signr)) {
1911 /*
1912 * The default action is to stop all threads in
1913 * the thread group. The job control signals
1914 * do nothing in an orphaned pgrp, but SIGSTOP
1915 * always works. Note that siglock needs to be
1916 * dropped during the call to is_orphaned_pgrp()
1917 * because of lock ordering with tasklist_lock.
1918 * This allows an intervening SIGCONT to be posted.
1919 * We need to check for that and bail out if necessary.
1920 */
1921 if (signr != SIGSTOP) {
1922 spin_unlock_irq(&current->sighand->siglock);
1923
1924 /* signals can be posted during this window */
1925
1926 if (is_orphaned_pgrp(process_group(current)))
1927 goto relock;
1928
1929 spin_lock_irq(&current->sighand->siglock);
1930 }
1931
1932 if (likely(do_signal_stop(signr))) {
1933 /* It released the siglock. */
1934 goto relock;
1935 }
1936
1937 /*
1938 * We didn't actually stop, due to a race
1939 * with SIGCONT or something like that.
1940 */
1941 continue;
1942 }
1943
1944 spin_unlock_irq(&current->sighand->siglock);
1945
1946 /*
1947 * Anything else is fatal, maybe with a core dump.
1948 */
1949 current->flags |= PF_SIGNALED;
1950 if (sig_kernel_coredump(signr)) {
1951 /*
1952 * If it was able to dump core, this kills all
1953 * other threads in the group and synchronizes with
1954 * their demise. If we lost the race with another
1955 * thread getting here, it set group_exit_code
1956 * first and our do_group_exit call below will use
1957 * that value and ignore the one we pass it.
1958 */
1959 do_coredump((long)signr, signr, regs);
1960 }
1961
1962 /*
1963 * Death signals, no core dump.
1964 */
1965 do_group_exit(signr);
1966 /* NOTREACHED */
1967 }
1968 spin_unlock_irq(&current->sighand->siglock);
1969 return signr;
1970}
1971
1da177e4
LT
1972EXPORT_SYMBOL(recalc_sigpending);
1973EXPORT_SYMBOL_GPL(dequeue_signal);
1974EXPORT_SYMBOL(flush_signals);
1975EXPORT_SYMBOL(force_sig);
1976EXPORT_SYMBOL(kill_pg);
1977EXPORT_SYMBOL(kill_proc);
1978EXPORT_SYMBOL(ptrace_notify);
1979EXPORT_SYMBOL(send_sig);
1980EXPORT_SYMBOL(send_sig_info);
1981EXPORT_SYMBOL(sigprocmask);
1982EXPORT_SYMBOL(block_all_signals);
1983EXPORT_SYMBOL(unblock_all_signals);
1984
1985
1986/*
1987 * System call entry points.
1988 */
1989
1990asmlinkage long sys_restart_syscall(void)
1991{
1992 struct restart_block *restart = &current_thread_info()->restart_block;
1993 return restart->fn(restart);
1994}
1995
1996long do_no_restart_syscall(struct restart_block *param)
1997{
1998 return -EINTR;
1999}
2000
2001/*
2002 * We don't need to get the kernel lock - this is all local to this
2003 * particular thread.. (and that's good, because this is _heavily_
2004 * used by various programs)
2005 */
2006
2007/*
2008 * This is also useful for kernel threads that want to temporarily
2009 * (or permanently) block certain signals.
2010 *
2011 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2012 * interface happily blocks "unblockable" signals like SIGKILL
2013 * and friends.
2014 */
2015int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2016{
2017 int error;
2018 sigset_t old_block;
2019
2020 spin_lock_irq(&current->sighand->siglock);
2021 old_block = current->blocked;
2022 error = 0;
2023 switch (how) {
2024 case SIG_BLOCK:
2025 sigorsets(&current->blocked, &current->blocked, set);
2026 break;
2027 case SIG_UNBLOCK:
2028 signandsets(&current->blocked, &current->blocked, set);
2029 break;
2030 case SIG_SETMASK:
2031 current->blocked = *set;
2032 break;
2033 default:
2034 error = -EINVAL;
2035 }
2036 recalc_sigpending();
2037 spin_unlock_irq(&current->sighand->siglock);
2038 if (oldset)
2039 *oldset = old_block;
2040 return error;
2041}
2042
2043asmlinkage long
2044sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2045{
2046 int error = -EINVAL;
2047 sigset_t old_set, new_set;
2048
2049 /* XXX: Don't preclude handling different sized sigset_t's. */
2050 if (sigsetsize != sizeof(sigset_t))
2051 goto out;
2052
2053 if (set) {
2054 error = -EFAULT;
2055 if (copy_from_user(&new_set, set, sizeof(*set)))
2056 goto out;
2057 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2058
2059 error = sigprocmask(how, &new_set, &old_set);
2060 if (error)
2061 goto out;
2062 if (oset)
2063 goto set_old;
2064 } else if (oset) {
2065 spin_lock_irq(&current->sighand->siglock);
2066 old_set = current->blocked;
2067 spin_unlock_irq(&current->sighand->siglock);
2068
2069 set_old:
2070 error = -EFAULT;
2071 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2072 goto out;
2073 }
2074 error = 0;
2075out:
2076 return error;
2077}
2078
2079long do_sigpending(void __user *set, unsigned long sigsetsize)
2080{
2081 long error = -EINVAL;
2082 sigset_t pending;
2083
2084 if (sigsetsize > sizeof(sigset_t))
2085 goto out;
2086
2087 spin_lock_irq(&current->sighand->siglock);
2088 sigorsets(&pending, &current->pending.signal,
2089 &current->signal->shared_pending.signal);
2090 spin_unlock_irq(&current->sighand->siglock);
2091
2092 /* Outside the lock because only this thread touches it. */
2093 sigandsets(&pending, &current->blocked, &pending);
2094
2095 error = -EFAULT;
2096 if (!copy_to_user(set, &pending, sigsetsize))
2097 error = 0;
2098
2099out:
2100 return error;
2101}
2102
2103asmlinkage long
2104sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2105{
2106 return do_sigpending(set, sigsetsize);
2107}
2108
2109#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2110
2111int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2112{
2113 int err;
2114
2115 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2116 return -EFAULT;
2117 if (from->si_code < 0)
2118 return __copy_to_user(to, from, sizeof(siginfo_t))
2119 ? -EFAULT : 0;
2120 /*
2121 * If you change siginfo_t structure, please be sure
2122 * this code is fixed accordingly.
2123 * It should never copy any pad contained in the structure
2124 * to avoid security leaks, but must copy the generic
2125 * 3 ints plus the relevant union member.
2126 */
2127 err = __put_user(from->si_signo, &to->si_signo);
2128 err |= __put_user(from->si_errno, &to->si_errno);
2129 err |= __put_user((short)from->si_code, &to->si_code);
2130 switch (from->si_code & __SI_MASK) {
2131 case __SI_KILL:
2132 err |= __put_user(from->si_pid, &to->si_pid);
2133 err |= __put_user(from->si_uid, &to->si_uid);
2134 break;
2135 case __SI_TIMER:
2136 err |= __put_user(from->si_tid, &to->si_tid);
2137 err |= __put_user(from->si_overrun, &to->si_overrun);
2138 err |= __put_user(from->si_ptr, &to->si_ptr);
2139 break;
2140 case __SI_POLL:
2141 err |= __put_user(from->si_band, &to->si_band);
2142 err |= __put_user(from->si_fd, &to->si_fd);
2143 break;
2144 case __SI_FAULT:
2145 err |= __put_user(from->si_addr, &to->si_addr);
2146#ifdef __ARCH_SI_TRAPNO
2147 err |= __put_user(from->si_trapno, &to->si_trapno);
2148#endif
2149 break;
2150 case __SI_CHLD:
2151 err |= __put_user(from->si_pid, &to->si_pid);
2152 err |= __put_user(from->si_uid, &to->si_uid);
2153 err |= __put_user(from->si_status, &to->si_status);
2154 err |= __put_user(from->si_utime, &to->si_utime);
2155 err |= __put_user(from->si_stime, &to->si_stime);
2156 break;
2157 case __SI_RT: /* This is not generated by the kernel as of now. */
2158 case __SI_MESGQ: /* But this is */
2159 err |= __put_user(from->si_pid, &to->si_pid);
2160 err |= __put_user(from->si_uid, &to->si_uid);
2161 err |= __put_user(from->si_ptr, &to->si_ptr);
2162 break;
2163 default: /* this is just in case for now ... */
2164 err |= __put_user(from->si_pid, &to->si_pid);
2165 err |= __put_user(from->si_uid, &to->si_uid);
2166 break;
2167 }
2168 return err;
2169}
2170
2171#endif
2172
2173asmlinkage long
2174sys_rt_sigtimedwait(const sigset_t __user *uthese,
2175 siginfo_t __user *uinfo,
2176 const struct timespec __user *uts,
2177 size_t sigsetsize)
2178{
2179 int ret, sig;
2180 sigset_t these;
2181 struct timespec ts;
2182 siginfo_t info;
2183 long timeout = 0;
2184
2185 /* XXX: Don't preclude handling different sized sigset_t's. */
2186 if (sigsetsize != sizeof(sigset_t))
2187 return -EINVAL;
2188
2189 if (copy_from_user(&these, uthese, sizeof(these)))
2190 return -EFAULT;
2191
2192 /*
2193 * Invert the set of allowed signals to get those we
2194 * want to block.
2195 */
2196 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2197 signotset(&these);
2198
2199 if (uts) {
2200 if (copy_from_user(&ts, uts, sizeof(ts)))
2201 return -EFAULT;
2202 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2203 || ts.tv_sec < 0)
2204 return -EINVAL;
2205 }
2206
2207 spin_lock_irq(&current->sighand->siglock);
2208 sig = dequeue_signal(current, &these, &info);
2209 if (!sig) {
2210 timeout = MAX_SCHEDULE_TIMEOUT;
2211 if (uts)
2212 timeout = (timespec_to_jiffies(&ts)
2213 + (ts.tv_sec || ts.tv_nsec));
2214
2215 if (timeout) {
2216 /* None ready -- temporarily unblock those we're
2217 * interested while we are sleeping in so that we'll
2218 * be awakened when they arrive. */
2219 current->real_blocked = current->blocked;
2220 sigandsets(&current->blocked, &current->blocked, &these);
2221 recalc_sigpending();
2222 spin_unlock_irq(&current->sighand->siglock);
2223
2224 current->state = TASK_INTERRUPTIBLE;
2225 timeout = schedule_timeout(timeout);
2226
3e1d1d28 2227 try_to_freeze();
1da177e4
LT
2228 spin_lock_irq(&current->sighand->siglock);
2229 sig = dequeue_signal(current, &these, &info);
2230 current->blocked = current->real_blocked;
2231 siginitset(&current->real_blocked, 0);
2232 recalc_sigpending();
2233 }
2234 }
2235 spin_unlock_irq(&current->sighand->siglock);
2236
2237 if (sig) {
2238 ret = sig;
2239 if (uinfo) {
2240 if (copy_siginfo_to_user(uinfo, &info))
2241 ret = -EFAULT;
2242 }
2243 } else {
2244 ret = -EAGAIN;
2245 if (timeout)
2246 ret = -EINTR;
2247 }
2248
2249 return ret;
2250}
2251
2252asmlinkage long
2253sys_kill(int pid, int sig)
2254{
2255 struct siginfo info;
2256
2257 info.si_signo = sig;
2258 info.si_errno = 0;
2259 info.si_code = SI_USER;
2260 info.si_pid = current->tgid;
2261 info.si_uid = current->uid;
2262
2263 return kill_something_info(sig, &info, pid);
2264}
2265
2266/**
2267 * sys_tgkill - send signal to one specific thread
2268 * @tgid: the thread group ID of the thread
2269 * @pid: the PID of the thread
2270 * @sig: signal to be sent
2271 *
2272 * This syscall also checks the tgid and returns -ESRCH even if the PID
2273 * exists but it's not belonging to the target process anymore. This
2274 * method solves the problem of threads exiting and PIDs getting reused.
2275 */
2276asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2277{
2278 struct siginfo info;
2279 int error;
2280 struct task_struct *p;
2281
2282 /* This is only valid for single tasks */
2283 if (pid <= 0 || tgid <= 0)
2284 return -EINVAL;
2285
2286 info.si_signo = sig;
2287 info.si_errno = 0;
2288 info.si_code = SI_TKILL;
2289 info.si_pid = current->tgid;
2290 info.si_uid = current->uid;
2291
2292 read_lock(&tasklist_lock);
2293 p = find_task_by_pid(pid);
2294 error = -ESRCH;
2295 if (p && (p->tgid == tgid)) {
2296 error = check_kill_permission(sig, &info, p);
2297 /*
2298 * The null signal is a permissions and process existence
2299 * probe. No signal is actually delivered.
2300 */
2301 if (!error && sig && p->sighand) {
2302 spin_lock_irq(&p->sighand->siglock);
2303 handle_stop_signal(sig, p);
2304 error = specific_send_sig_info(sig, &info, p);
2305 spin_unlock_irq(&p->sighand->siglock);
2306 }
2307 }
2308 read_unlock(&tasklist_lock);
2309 return error;
2310}
2311
2312/*
2313 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2314 */
2315asmlinkage long
2316sys_tkill(int pid, int sig)
2317{
2318 struct siginfo info;
2319 int error;
2320 struct task_struct *p;
2321
2322 /* This is only valid for single tasks */
2323 if (pid <= 0)
2324 return -EINVAL;
2325
2326 info.si_signo = sig;
2327 info.si_errno = 0;
2328 info.si_code = SI_TKILL;
2329 info.si_pid = current->tgid;
2330 info.si_uid = current->uid;
2331
2332 read_lock(&tasklist_lock);
2333 p = find_task_by_pid(pid);
2334 error = -ESRCH;
2335 if (p) {
2336 error = check_kill_permission(sig, &info, p);
2337 /*
2338 * The null signal is a permissions and process existence
2339 * probe. No signal is actually delivered.
2340 */
2341 if (!error && sig && p->sighand) {
2342 spin_lock_irq(&p->sighand->siglock);
2343 handle_stop_signal(sig, p);
2344 error = specific_send_sig_info(sig, &info, p);
2345 spin_unlock_irq(&p->sighand->siglock);
2346 }
2347 }
2348 read_unlock(&tasklist_lock);
2349 return error;
2350}
2351
2352asmlinkage long
2353sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2354{
2355 siginfo_t info;
2356
2357 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2358 return -EFAULT;
2359
2360 /* Not even root can pretend to send signals from the kernel.
2361 Nor can they impersonate a kill(), which adds source info. */
2362 if (info.si_code >= 0)
2363 return -EPERM;
2364 info.si_signo = sig;
2365
2366 /* POSIX.1b doesn't mention process groups. */
2367 return kill_proc_info(sig, &info, pid);
2368}
2369
2370int
2371do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2372{
2373 struct k_sigaction *k;
2374
7ed20e1a 2375 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2376 return -EINVAL;
2377
2378 k = &current->sighand->action[sig-1];
2379
2380 spin_lock_irq(&current->sighand->siglock);
2381 if (signal_pending(current)) {
2382 /*
2383 * If there might be a fatal signal pending on multiple
2384 * threads, make sure we take it before changing the action.
2385 */
2386 spin_unlock_irq(&current->sighand->siglock);
2387 return -ERESTARTNOINTR;
2388 }
2389
2390 if (oact)
2391 *oact = *k;
2392
2393 if (act) {
2394 /*
2395 * POSIX 3.3.1.3:
2396 * "Setting a signal action to SIG_IGN for a signal that is
2397 * pending shall cause the pending signal to be discarded,
2398 * whether or not it is blocked."
2399 *
2400 * "Setting a signal action to SIG_DFL for a signal that is
2401 * pending and whose default action is to ignore the signal
2402 * (for example, SIGCHLD), shall cause the pending signal to
2403 * be discarded, whether or not it is blocked"
2404 */
2405 if (act->sa.sa_handler == SIG_IGN ||
2406 (act->sa.sa_handler == SIG_DFL &&
2407 sig_kernel_ignore(sig))) {
2408 /*
2409 * This is a fairly rare case, so we only take the
2410 * tasklist_lock once we're sure we'll need it.
2411 * Now we must do this little unlock and relock
2412 * dance to maintain the lock hierarchy.
2413 */
2414 struct task_struct *t = current;
2415 spin_unlock_irq(&t->sighand->siglock);
2416 read_lock(&tasklist_lock);
2417 spin_lock_irq(&t->sighand->siglock);
2418 *k = *act;
2419 sigdelsetmask(&k->sa.sa_mask,
2420 sigmask(SIGKILL) | sigmask(SIGSTOP));
2421 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2422 do {
2423 rm_from_queue(sigmask(sig), &t->pending);
2424 recalc_sigpending_tsk(t);
2425 t = next_thread(t);
2426 } while (t != current);
2427 spin_unlock_irq(&current->sighand->siglock);
2428 read_unlock(&tasklist_lock);
2429 return 0;
2430 }
2431
2432 *k = *act;
2433 sigdelsetmask(&k->sa.sa_mask,
2434 sigmask(SIGKILL) | sigmask(SIGSTOP));
2435 }
2436
2437 spin_unlock_irq(&current->sighand->siglock);
2438 return 0;
2439}
2440
2441int
2442do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2443{
2444 stack_t oss;
2445 int error;
2446
2447 if (uoss) {
2448 oss.ss_sp = (void __user *) current->sas_ss_sp;
2449 oss.ss_size = current->sas_ss_size;
2450 oss.ss_flags = sas_ss_flags(sp);
2451 }
2452
2453 if (uss) {
2454 void __user *ss_sp;
2455 size_t ss_size;
2456 int ss_flags;
2457
2458 error = -EFAULT;
2459 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2460 || __get_user(ss_sp, &uss->ss_sp)
2461 || __get_user(ss_flags, &uss->ss_flags)
2462 || __get_user(ss_size, &uss->ss_size))
2463 goto out;
2464
2465 error = -EPERM;
2466 if (on_sig_stack(sp))
2467 goto out;
2468
2469 error = -EINVAL;
2470 /*
2471 *
2472 * Note - this code used to test ss_flags incorrectly
2473 * old code may have been written using ss_flags==0
2474 * to mean ss_flags==SS_ONSTACK (as this was the only
2475 * way that worked) - this fix preserves that older
2476 * mechanism
2477 */
2478 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2479 goto out;
2480
2481 if (ss_flags == SS_DISABLE) {
2482 ss_size = 0;
2483 ss_sp = NULL;
2484 } else {
2485 error = -ENOMEM;
2486 if (ss_size < MINSIGSTKSZ)
2487 goto out;
2488 }
2489
2490 current->sas_ss_sp = (unsigned long) ss_sp;
2491 current->sas_ss_size = ss_size;
2492 }
2493
2494 if (uoss) {
2495 error = -EFAULT;
2496 if (copy_to_user(uoss, &oss, sizeof(oss)))
2497 goto out;
2498 }
2499
2500 error = 0;
2501out:
2502 return error;
2503}
2504
2505#ifdef __ARCH_WANT_SYS_SIGPENDING
2506
2507asmlinkage long
2508sys_sigpending(old_sigset_t __user *set)
2509{
2510 return do_sigpending(set, sizeof(*set));
2511}
2512
2513#endif
2514
2515#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2516/* Some platforms have their own version with special arguments others
2517 support only sys_rt_sigprocmask. */
2518
2519asmlinkage long
2520sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2521{
2522 int error;
2523 old_sigset_t old_set, new_set;
2524
2525 if (set) {
2526 error = -EFAULT;
2527 if (copy_from_user(&new_set, set, sizeof(*set)))
2528 goto out;
2529 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2530
2531 spin_lock_irq(&current->sighand->siglock);
2532 old_set = current->blocked.sig[0];
2533
2534 error = 0;
2535 switch (how) {
2536 default:
2537 error = -EINVAL;
2538 break;
2539 case SIG_BLOCK:
2540 sigaddsetmask(&current->blocked, new_set);
2541 break;
2542 case SIG_UNBLOCK:
2543 sigdelsetmask(&current->blocked, new_set);
2544 break;
2545 case SIG_SETMASK:
2546 current->blocked.sig[0] = new_set;
2547 break;
2548 }
2549
2550 recalc_sigpending();
2551 spin_unlock_irq(&current->sighand->siglock);
2552 if (error)
2553 goto out;
2554 if (oset)
2555 goto set_old;
2556 } else if (oset) {
2557 old_set = current->blocked.sig[0];
2558 set_old:
2559 error = -EFAULT;
2560 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2561 goto out;
2562 }
2563 error = 0;
2564out:
2565 return error;
2566}
2567#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2568
2569#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2570asmlinkage long
2571sys_rt_sigaction(int sig,
2572 const struct sigaction __user *act,
2573 struct sigaction __user *oact,
2574 size_t sigsetsize)
2575{
2576 struct k_sigaction new_sa, old_sa;
2577 int ret = -EINVAL;
2578
2579 /* XXX: Don't preclude handling different sized sigset_t's. */
2580 if (sigsetsize != sizeof(sigset_t))
2581 goto out;
2582
2583 if (act) {
2584 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2585 return -EFAULT;
2586 }
2587
2588 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2589
2590 if (!ret && oact) {
2591 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2592 return -EFAULT;
2593 }
2594out:
2595 return ret;
2596}
2597#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2598
2599#ifdef __ARCH_WANT_SYS_SGETMASK
2600
2601/*
2602 * For backwards compatibility. Functionality superseded by sigprocmask.
2603 */
2604asmlinkage long
2605sys_sgetmask(void)
2606{
2607 /* SMP safe */
2608 return current->blocked.sig[0];
2609}
2610
2611asmlinkage long
2612sys_ssetmask(int newmask)
2613{
2614 int old;
2615
2616 spin_lock_irq(&current->sighand->siglock);
2617 old = current->blocked.sig[0];
2618
2619 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2620 sigmask(SIGSTOP)));
2621 recalc_sigpending();
2622 spin_unlock_irq(&current->sighand->siglock);
2623
2624 return old;
2625}
2626#endif /* __ARCH_WANT_SGETMASK */
2627
2628#ifdef __ARCH_WANT_SYS_SIGNAL
2629/*
2630 * For backwards compatibility. Functionality superseded by sigaction.
2631 */
2632asmlinkage unsigned long
2633sys_signal(int sig, __sighandler_t handler)
2634{
2635 struct k_sigaction new_sa, old_sa;
2636 int ret;
2637
2638 new_sa.sa.sa_handler = handler;
2639 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2640
2641 ret = do_sigaction(sig, &new_sa, &old_sa);
2642
2643 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2644}
2645#endif /* __ARCH_WANT_SYS_SIGNAL */
2646
2647#ifdef __ARCH_WANT_SYS_PAUSE
2648
2649asmlinkage long
2650sys_pause(void)
2651{
2652 current->state = TASK_INTERRUPTIBLE;
2653 schedule();
2654 return -ERESTARTNOHAND;
2655}
2656
2657#endif
2658
2659void __init signals_init(void)
2660{
2661 sigqueue_cachep =
2662 kmem_cache_create("sigqueue",
2663 sizeof(struct sigqueue),
2664 __alignof__(struct sigqueue),
2665 SLAB_PANIC, NULL, NULL);
2666}