Merge git://git.kernel.org/pub/scm/linux/kernel/git/brodo/pcmcia-fixes-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340}
341
342/*
343 * This function expects the tasklist_lock write-locked.
344 */
345void __exit_signal(struct task_struct *tsk)
346{
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
25f407f0 399 * We are cleaning up the signal_struct here.
1da177e4 400 */
1da177e4
LT
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404}
405
406void exit_signal(struct task_struct *tsk)
407{
8d027de5
ON
408 atomic_dec(&tsk->signal->live);
409
1da177e4
LT
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413}
414
415/*
416 * Flush all handlers for a task.
417 */
418
419void
420flush_signal_handlers(struct task_struct *t, int force_default)
421{
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431}
432
433
434/* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442void
443block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452}
453
454/* Notify the system that blocking has ended. */
455
456void
457unblock_all_signals(void)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466}
467
468static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469{
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509}
510
511static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513{
514 int sig = 0;
515
c33880aa
KK
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
518 * to self */
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
521 sig = SIGKILL;
522 }
523
524 if (likely(!sig))
525 sig = next_signal(pending, mask);
1da177e4
LT
526 if (sig) {
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
531 return 0;
532 }
533 }
534 }
535
536 if (!collect_signal(sig, pending, info))
537 sig = 0;
538
539 }
540 recalc_sigpending();
541
542 return sig;
543}
544
545/*
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
548 *
549 * All callers have to hold the siglock.
550 */
551int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
552{
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
554 if (!signr)
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
556 mask, info);
557 if (signr && unlikely(sig_kernel_stop(signr))) {
558 /*
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
569 */
788e05a6
ON
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
572 }
573 if ( signr &&
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
576 /*
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
581 */
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
585 }
586 return signr;
587}
588
589/*
590 * Tell a process that it has a new active signal..
591 *
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
596 *
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
599 */
600void signal_wake_up(struct task_struct *t, int resume)
601{
602 unsigned int mask;
603
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
605
606 /*
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
612 */
613 mask = TASK_INTERRUPTIBLE;
614 if (resume)
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
617 kick_process(t);
618}
619
620/*
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
623 *
624 * All callers must be holding the siglock.
625 */
626static int rm_from_queue(unsigned long mask, struct sigpending *s)
627{
628 struct sigqueue *q, *n;
629
630 if (!sigtestsetmask(&s->signal, mask))
631 return 0;
632
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
638 __sigqueue_free(q);
639 }
640 }
641 return 1;
642}
643
644/*
645 * Bad permissions for sending the signal
646 */
647static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
649{
650 int error = -EINVAL;
7ed20e1a 651 if (!valid_signal(sig))
1da177e4
LT
652 return error;
653 error = -EPERM;
621d3121 654 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1da177e4
LT
655 && ((sig != SIGCONT) ||
656 (current->signal->session != t->signal->session))
657 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
658 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
659 && !capable(CAP_KILL))
660 return error;
c2f0c7c3
SG
661
662 error = security_task_kill(t, info, sig);
663 if (!error)
664 audit_signal_info(sig, t); /* Let audit system see the signal */
665 return error;
1da177e4
LT
666}
667
668/* forward decl */
669static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 670 int to_self,
1da177e4
LT
671 int why);
672
673/*
674 * Handle magic process-wide effects of stop/continue signals.
675 * Unlike the signal actions, these happen immediately at signal-generation
676 * time regardless of blocking, ignoring, or handling. This does the
677 * actual continuing for SIGCONT, but not the actual stopping for stop
678 * signals. The process stop is done as a signal action for SIG_DFL.
679 */
680static void handle_stop_signal(int sig, struct task_struct *p)
681{
682 struct task_struct *t;
683
dd12f48d 684 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
685 /*
686 * The process is in the middle of dying already.
687 */
688 return;
689
690 if (sig_kernel_stop(sig)) {
691 /*
692 * This is a stop signal. Remove SIGCONT from all queues.
693 */
694 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
695 t = p;
696 do {
697 rm_from_queue(sigmask(SIGCONT), &t->pending);
698 t = next_thread(t);
699 } while (t != p);
700 } else if (sig == SIGCONT) {
701 /*
702 * Remove all stop signals from all queues,
703 * and wake all threads.
704 */
705 if (unlikely(p->signal->group_stop_count > 0)) {
706 /*
707 * There was a group stop in progress. We'll
708 * pretend it finished before we got here. We are
709 * obliged to report it to the parent: if the
710 * SIGSTOP happened "after" this SIGCONT, then it
711 * would have cleared this pending SIGCONT. If it
712 * happened "before" this SIGCONT, then the parent
713 * got the SIGCHLD about the stop finishing before
714 * the continue happened. We do the notification
715 * now, and it's as if the stop had finished and
716 * the SIGCHLD was pending on entry to this kill.
717 */
718 p->signal->group_stop_count = 0;
719 p->signal->flags = SIGNAL_STOP_CONTINUED;
720 spin_unlock(&p->sighand->siglock);
bc505a47 721 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
722 spin_lock(&p->sighand->siglock);
723 }
724 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
725 t = p;
726 do {
727 unsigned int state;
728 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
729
730 /*
731 * If there is a handler for SIGCONT, we must make
732 * sure that no thread returns to user mode before
733 * we post the signal, in case it was the only
734 * thread eligible to run the signal handler--then
735 * it must not do anything between resuming and
736 * running the handler. With the TIF_SIGPENDING
737 * flag set, the thread will pause and acquire the
738 * siglock that we hold now and until we've queued
739 * the pending signal.
740 *
741 * Wake up the stopped thread _after_ setting
742 * TIF_SIGPENDING
743 */
744 state = TASK_STOPPED;
745 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
746 set_tsk_thread_flag(t, TIF_SIGPENDING);
747 state |= TASK_INTERRUPTIBLE;
748 }
749 wake_up_state(t, state);
750
751 t = next_thread(t);
752 } while (t != p);
753
754 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
755 /*
756 * We were in fact stopped, and are now continued.
757 * Notify the parent with CLD_CONTINUED.
758 */
759 p->signal->flags = SIGNAL_STOP_CONTINUED;
760 p->signal->group_exit_code = 0;
761 spin_unlock(&p->sighand->siglock);
bc505a47 762 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
763 spin_lock(&p->sighand->siglock);
764 } else {
765 /*
766 * We are not stopped, but there could be a stop
767 * signal in the middle of being processed after
768 * being removed from the queue. Clear that too.
769 */
770 p->signal->flags = 0;
771 }
772 } else if (sig == SIGKILL) {
773 /*
774 * Make sure that any pending stop signal already dequeued
775 * is undone by the wakeup for SIGKILL.
776 */
777 p->signal->flags = 0;
778 }
779}
780
781static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
782 struct sigpending *signals)
783{
784 struct sigqueue * q = NULL;
785 int ret = 0;
786
787 /*
788 * fast-pathed signals for kernel-internal things like SIGSTOP
789 * or SIGKILL.
790 */
b67a1b9e 791 if (info == SEND_SIG_FORCED)
1da177e4
LT
792 goto out_set;
793
794 /* Real-time signals must be queued if sent by sigqueue, or
795 some other real-time mechanism. It is implementation
796 defined whether kill() does so. We attempt to do so, on
797 the principle of least surprise, but since kill is not
798 allowed to fail with EAGAIN when low on memory we just
799 make sure at least one signal gets delivered and don't
800 pass on the info struct. */
801
802 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
621d3121 803 (is_si_special(info) ||
1da177e4
LT
804 info->si_code >= 0)));
805 if (q) {
806 list_add_tail(&q->list, &signals->list);
807 switch ((unsigned long) info) {
b67a1b9e 808 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
809 q->info.si_signo = sig;
810 q->info.si_errno = 0;
811 q->info.si_code = SI_USER;
812 q->info.si_pid = current->pid;
813 q->info.si_uid = current->uid;
814 break;
b67a1b9e 815 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
816 q->info.si_signo = sig;
817 q->info.si_errno = 0;
818 q->info.si_code = SI_KERNEL;
819 q->info.si_pid = 0;
820 q->info.si_uid = 0;
821 break;
822 default:
823 copy_siginfo(&q->info, info);
824 break;
825 }
621d3121
ON
826 } else if (!is_si_special(info)) {
827 if (sig >= SIGRTMIN && info->si_code != SI_USER)
1da177e4
LT
828 /*
829 * Queue overflow, abort. We may abort if the signal was rt
830 * and sent by user using something other than kill().
831 */
832 return -EAGAIN;
1da177e4
LT
833 }
834
835out_set:
836 sigaddset(&signals->signal, sig);
837 return ret;
838}
839
840#define LEGACY_QUEUE(sigptr, sig) \
841 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
842
843
844static int
845specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
846{
847 int ret = 0;
848
849 if (!irqs_disabled())
850 BUG();
851 assert_spin_locked(&t->sighand->siglock);
852
1da177e4
LT
853 /* Short-circuit ignored signals. */
854 if (sig_ignored(t, sig))
855 goto out;
856
857 /* Support queueing exactly one non-rt signal, so that we
858 can get more detailed information about the cause of
859 the signal. */
860 if (LEGACY_QUEUE(&t->pending, sig))
861 goto out;
862
863 ret = send_signal(sig, info, t, &t->pending);
864 if (!ret && !sigismember(&t->blocked, sig))
865 signal_wake_up(t, sig == SIGKILL);
866out:
867 return ret;
868}
869
870/*
871 * Force a signal that the process can't ignore: if necessary
872 * we unblock the signal and change any SIG_IGN to SIG_DFL.
873 */
874
875int
876force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
877{
878 unsigned long int flags;
879 int ret;
880
881 spin_lock_irqsave(&t->sighand->siglock, flags);
b0423a0d 882 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
1da177e4 883 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
b0423a0d
PM
884 }
885 if (sigismember(&t->blocked, sig)) {
1da177e4 886 sigdelset(&t->blocked, sig);
1da177e4 887 }
b0423a0d 888 recalc_sigpending_tsk(t);
1da177e4
LT
889 ret = specific_send_sig_info(sig, info, t);
890 spin_unlock_irqrestore(&t->sighand->siglock, flags);
891
892 return ret;
893}
894
895void
896force_sig_specific(int sig, struct task_struct *t)
897{
b0423a0d 898 force_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
899}
900
901/*
902 * Test if P wants to take SIG. After we've checked all threads with this,
903 * it's equivalent to finding no threads not blocking SIG. Any threads not
904 * blocking SIG were ruled out because they are not running and already
905 * have pending signals. Such threads will dequeue from the shared queue
906 * as soon as they're available, so putting the signal on the shared queue
907 * will be equivalent to sending it to one such thread.
908 */
188a1eaf
LT
909static inline int wants_signal(int sig, struct task_struct *p)
910{
911 if (sigismember(&p->blocked, sig))
912 return 0;
913 if (p->flags & PF_EXITING)
914 return 0;
915 if (sig == SIGKILL)
916 return 1;
917 if (p->state & (TASK_STOPPED | TASK_TRACED))
918 return 0;
919 return task_curr(p) || !signal_pending(p);
920}
1da177e4
LT
921
922static void
923__group_complete_signal(int sig, struct task_struct *p)
924{
1da177e4
LT
925 struct task_struct *t;
926
1da177e4
LT
927 /*
928 * Now find a thread we can wake up to take the signal off the queue.
929 *
930 * If the main thread wants the signal, it gets first crack.
931 * Probably the least surprising to the average bear.
932 */
188a1eaf 933 if (wants_signal(sig, p))
1da177e4
LT
934 t = p;
935 else if (thread_group_empty(p))
936 /*
937 * There is just one thread and it does not need to be woken.
938 * It will dequeue unblocked signals before it runs again.
939 */
940 return;
941 else {
942 /*
943 * Otherwise try to find a suitable thread.
944 */
945 t = p->signal->curr_target;
946 if (t == NULL)
947 /* restart balancing at this thread */
948 t = p->signal->curr_target = p;
949 BUG_ON(t->tgid != p->tgid);
950
188a1eaf 951 while (!wants_signal(sig, t)) {
1da177e4
LT
952 t = next_thread(t);
953 if (t == p->signal->curr_target)
954 /*
955 * No thread needs to be woken.
956 * Any eligible threads will see
957 * the signal in the queue soon.
958 */
959 return;
960 }
961 p->signal->curr_target = t;
962 }
963
964 /*
965 * Found a killable thread. If the signal will be fatal,
966 * then start taking the whole group down immediately.
967 */
968 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
969 !sigismember(&t->real_blocked, sig) &&
970 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
971 /*
972 * This signal will be fatal to the whole group.
973 */
974 if (!sig_kernel_coredump(sig)) {
975 /*
976 * Start a group exit and wake everybody up.
977 * This way we don't have other threads
978 * running and doing things after a slower
979 * thread has the fatal signal pending.
980 */
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_exit_code = sig;
983 p->signal->group_stop_count = 0;
984 t = p;
985 do {
986 sigaddset(&t->pending.signal, SIGKILL);
987 signal_wake_up(t, 1);
988 t = next_thread(t);
989 } while (t != p);
990 return;
991 }
992
993 /*
994 * There will be a core dump. We make all threads other
995 * than the chosen one go into a group stop so that nothing
996 * happens until it gets scheduled, takes the signal off
997 * the shared queue, and does the core dump. This is a
998 * little more complicated than strictly necessary, but it
999 * keeps the signal state that winds up in the core dump
1000 * unchanged from the death state, e.g. which thread had
1001 * the core-dump signal unblocked.
1002 */
1003 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1004 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1005 p->signal->group_stop_count = 0;
1006 p->signal->group_exit_task = t;
1007 t = p;
1008 do {
1009 p->signal->group_stop_count++;
1010 signal_wake_up(t, 0);
1011 t = next_thread(t);
1012 } while (t != p);
1013 wake_up_process(p->signal->group_exit_task);
1014 return;
1015 }
1016
1017 /*
1018 * The signal is already in the shared-pending queue.
1019 * Tell the chosen thread to wake up and dequeue it.
1020 */
1021 signal_wake_up(t, sig == SIGKILL);
1022 return;
1023}
1024
1025int
1026__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1027{
1028 int ret = 0;
1029
1030 assert_spin_locked(&p->sighand->siglock);
1031 handle_stop_signal(sig, p);
1032
1da177e4
LT
1033 /* Short-circuit ignored signals. */
1034 if (sig_ignored(p, sig))
1035 return ret;
1036
1037 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1038 /* This is a non-RT signal and we already have one queued. */
1039 return ret;
1040
1041 /*
1042 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1043 * We always use the shared queue for process-wide signals,
1044 * to avoid several races.
1045 */
1046 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1047 if (unlikely(ret))
1048 return ret;
1049
1050 __group_complete_signal(sig, p);
1051 return 0;
1052}
1053
1054/*
1055 * Nuke all other threads in the group.
1056 */
1057void zap_other_threads(struct task_struct *p)
1058{
1059 struct task_struct *t;
1060
1061 p->signal->flags = SIGNAL_GROUP_EXIT;
1062 p->signal->group_stop_count = 0;
1063
1064 if (thread_group_empty(p))
1065 return;
1066
1067 for (t = next_thread(p); t != p; t = next_thread(t)) {
1068 /*
1069 * Don't bother with already dead threads
1070 */
1071 if (t->exit_state)
1072 continue;
1073
1074 /*
1075 * We don't want to notify the parent, since we are
1076 * killed as part of a thread group due to another
1077 * thread doing an execve() or similar. So set the
1078 * exit signal to -1 to allow immediate reaping of
1079 * the process. But don't detach the thread group
1080 * leader.
1081 */
1082 if (t != p->group_leader)
1083 t->exit_signal = -1;
1084
30e0fca6 1085 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1086 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1087 signal_wake_up(t, 1);
1088 }
1089}
1090
1091/*
1092 * Must be called with the tasklist_lock held for reading!
1093 */
1094int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1095{
1096 unsigned long flags;
1097 int ret;
1098
1099 ret = check_kill_permission(sig, info, p);
1100 if (!ret && sig && p->sighand) {
1101 spin_lock_irqsave(&p->sighand->siglock, flags);
1102 ret = __group_send_sig_info(sig, info, p);
1103 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1104 }
1105
1106 return ret;
1107}
1108
1109/*
1110 * kill_pg_info() sends a signal to a process group: this is what the tty
1111 * control characters do (^C, ^Z etc)
1112 */
1113
1114int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1115{
1116 struct task_struct *p = NULL;
1117 int retval, success;
1118
1119 if (pgrp <= 0)
1120 return -EINVAL;
1121
1122 success = 0;
1123 retval = -ESRCH;
1124 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1125 int err = group_send_sig_info(sig, info, p);
1126 success |= !err;
1127 retval = err;
1128 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1129 return success ? 0 : retval;
1130}
1131
1132int
1133kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1134{
1135 int retval;
1136
1137 read_lock(&tasklist_lock);
1138 retval = __kill_pg_info(sig, info, pgrp);
1139 read_unlock(&tasklist_lock);
1140
1141 return retval;
1142}
1143
1144int
1145kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1146{
1147 int error;
1148 struct task_struct *p;
1149
1150 read_lock(&tasklist_lock);
1151 p = find_task_by_pid(pid);
1152 error = -ESRCH;
1153 if (p)
1154 error = group_send_sig_info(sig, info, p);
1155 read_unlock(&tasklist_lock);
1156 return error;
1157}
1158
46113830
HW
1159/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1160int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1161 uid_t uid, uid_t euid)
1162{
1163 int ret = -EINVAL;
1164 struct task_struct *p;
1165
1166 if (!valid_signal(sig))
1167 return ret;
1168
1169 read_lock(&tasklist_lock);
1170 p = find_task_by_pid(pid);
1171 if (!p) {
1172 ret = -ESRCH;
1173 goto out_unlock;
1174 }
1175 if ((!info || ((unsigned long)info != 1 &&
1176 (unsigned long)info != 2 && SI_FROMUSER(info)))
1177 && (euid != p->suid) && (euid != p->uid)
1178 && (uid != p->suid) && (uid != p->uid)) {
1179 ret = -EPERM;
1180 goto out_unlock;
1181 }
1182 if (sig && p->sighand) {
1183 unsigned long flags;
1184 spin_lock_irqsave(&p->sighand->siglock, flags);
1185 ret = __group_send_sig_info(sig, info, p);
1186 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1187 }
1188out_unlock:
1189 read_unlock(&tasklist_lock);
1190 return ret;
1191}
1192EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1193
1194/*
1195 * kill_something_info() interprets pid in interesting ways just like kill(2).
1196 *
1197 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1198 * is probably wrong. Should make it like BSD or SYSV.
1199 */
1200
1201static int kill_something_info(int sig, struct siginfo *info, int pid)
1202{
1203 if (!pid) {
1204 return kill_pg_info(sig, info, process_group(current));
1205 } else if (pid == -1) {
1206 int retval = 0, count = 0;
1207 struct task_struct * p;
1208
1209 read_lock(&tasklist_lock);
1210 for_each_process(p) {
1211 if (p->pid > 1 && p->tgid != current->tgid) {
1212 int err = group_send_sig_info(sig, info, p);
1213 ++count;
1214 if (err != -EPERM)
1215 retval = err;
1216 }
1217 }
1218 read_unlock(&tasklist_lock);
1219 return count ? retval : -ESRCH;
1220 } else if (pid < 0) {
1221 return kill_pg_info(sig, info, -pid);
1222 } else {
1223 return kill_proc_info(sig, info, pid);
1224 }
1225}
1226
1227/*
1228 * These are for backward compatibility with the rest of the kernel source.
1229 */
1230
1231/*
1232 * These two are the most common entry points. They send a signal
1233 * just to the specific thread.
1234 */
1235int
1236send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1237{
1238 int ret;
1239 unsigned long flags;
1240
1241 /*
1242 * Make sure legacy kernel users don't send in bad values
1243 * (normal paths check this in check_kill_permission).
1244 */
7ed20e1a 1245 if (!valid_signal(sig))
1da177e4
LT
1246 return -EINVAL;
1247
1248 /*
1249 * We need the tasklist lock even for the specific
1250 * thread case (when we don't need to follow the group
1251 * lists) in order to avoid races with "p->sighand"
1252 * going away or changing from under us.
1253 */
1254 read_lock(&tasklist_lock);
1255 spin_lock_irqsave(&p->sighand->siglock, flags);
1256 ret = specific_send_sig_info(sig, info, p);
1257 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1258 read_unlock(&tasklist_lock);
1259 return ret;
1260}
1261
b67a1b9e
ON
1262#define __si_special(priv) \
1263 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1264
1da177e4
LT
1265int
1266send_sig(int sig, struct task_struct *p, int priv)
1267{
b67a1b9e 1268 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1269}
1270
1271/*
1272 * This is the entry point for "process-wide" signals.
1273 * They will go to an appropriate thread in the thread group.
1274 */
1275int
1276send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1277{
1278 int ret;
1279 read_lock(&tasklist_lock);
1280 ret = group_send_sig_info(sig, info, p);
1281 read_unlock(&tasklist_lock);
1282 return ret;
1283}
1284
1285void
1286force_sig(int sig, struct task_struct *p)
1287{
b67a1b9e 1288 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1289}
1290
1291/*
1292 * When things go south during signal handling, we
1293 * will force a SIGSEGV. And if the signal that caused
1294 * the problem was already a SIGSEGV, we'll want to
1295 * make sure we don't even try to deliver the signal..
1296 */
1297int
1298force_sigsegv(int sig, struct task_struct *p)
1299{
1300 if (sig == SIGSEGV) {
1301 unsigned long flags;
1302 spin_lock_irqsave(&p->sighand->siglock, flags);
1303 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1304 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 }
1306 force_sig(SIGSEGV, p);
1307 return 0;
1308}
1309
1310int
1311kill_pg(pid_t pgrp, int sig, int priv)
1312{
b67a1b9e 1313 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1314}
1315
1316int
1317kill_proc(pid_t pid, int sig, int priv)
1318{
b67a1b9e 1319 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1320}
1321
1322/*
1323 * These functions support sending signals using preallocated sigqueue
1324 * structures. This is needed "because realtime applications cannot
1325 * afford to lose notifications of asynchronous events, like timer
1326 * expirations or I/O completions". In the case of Posix Timers
1327 * we allocate the sigqueue structure from the timer_create. If this
1328 * allocation fails we are able to report the failure to the application
1329 * with an EAGAIN error.
1330 */
1331
1332struct sigqueue *sigqueue_alloc(void)
1333{
1334 struct sigqueue *q;
1335
1336 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1337 q->flags |= SIGQUEUE_PREALLOC;
1338 return(q);
1339}
1340
1341void sigqueue_free(struct sigqueue *q)
1342{
1343 unsigned long flags;
1344 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 /*
1346 * If the signal is still pending remove it from the
1347 * pending queue.
1348 */
1349 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1350 spinlock_t *lock = &current->sighand->siglock;
1351 read_lock(&tasklist_lock);
1352 spin_lock_irqsave(lock, flags);
1da177e4
LT
1353 if (!list_empty(&q->list))
1354 list_del_init(&q->list);
19a4fcb5 1355 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1356 read_unlock(&tasklist_lock);
1357 }
1358 q->flags &= ~SIGQUEUE_PREALLOC;
1359 __sigqueue_free(q);
1360}
1361
1362int
1363send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1364{
1365 unsigned long flags;
1366 int ret = 0;
1367
1da177e4 1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1369 read_lock(&tasklist_lock);
1370
1371 if (unlikely(p->flags & PF_EXITING)) {
1372 ret = -1;
1373 goto out_err;
1374 }
1375
1da177e4 1376 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1377
1da177e4
LT
1378 if (unlikely(!list_empty(&q->list))) {
1379 /*
1380 * If an SI_TIMER entry is already queue just increment
1381 * the overrun count.
1382 */
1383 if (q->info.si_code != SI_TIMER)
1384 BUG();
1385 q->info.si_overrun++;
1386 goto out;
e752dd6c 1387 }
1da177e4
LT
1388 /* Short-circuit ignored signals. */
1389 if (sig_ignored(p, sig)) {
1390 ret = 1;
1391 goto out;
1392 }
1393
1da177e4
LT
1394 list_add_tail(&q->list, &p->pending.list);
1395 sigaddset(&p->pending.signal, sig);
1396 if (!sigismember(&p->blocked, sig))
1397 signal_wake_up(p, sig == SIGKILL);
1398
1399out:
1400 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1401out_err:
1da177e4 1402 read_unlock(&tasklist_lock);
e752dd6c
ON
1403
1404 return ret;
1da177e4
LT
1405}
1406
1407int
1408send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409{
1410 unsigned long flags;
1411 int ret = 0;
1412
1413 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1414 read_lock(&tasklist_lock);
1415 spin_lock_irqsave(&p->sighand->siglock, flags);
1416 handle_stop_signal(sig, p);
1417
1418 /* Short-circuit ignored signals. */
1419 if (sig_ignored(p, sig)) {
1420 ret = 1;
1421 goto out;
1422 }
1423
1424 if (unlikely(!list_empty(&q->list))) {
1425 /*
1426 * If an SI_TIMER entry is already queue just increment
1427 * the overrun count. Other uses should not try to
1428 * send the signal multiple times.
1429 */
1430 if (q->info.si_code != SI_TIMER)
1431 BUG();
1432 q->info.si_overrun++;
1433 goto out;
1434 }
1435
1436 /*
1437 * Put this signal on the shared-pending queue.
1438 * We always use the shared queue for process-wide signals,
1439 * to avoid several races.
1440 */
1da177e4
LT
1441 list_add_tail(&q->list, &p->signal->shared_pending.list);
1442 sigaddset(&p->signal->shared_pending.signal, sig);
1443
1444 __group_complete_signal(sig, p);
1445out:
1446 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1447 read_unlock(&tasklist_lock);
1448 return(ret);
1449}
1450
1451/*
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1453 */
1454static inline void __wake_up_parent(struct task_struct *p,
1455 struct task_struct *parent)
1456{
1457 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1458}
1459
1460/*
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1463 */
1464
1465void do_notify_parent(struct task_struct *tsk, int sig)
1466{
1467 struct siginfo info;
1468 unsigned long flags;
1469 struct sighand_struct *psig;
1470
1471 BUG_ON(sig == -1);
1472
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1475
1476 BUG_ON(!tsk->ptrace &&
1477 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1478
1479 info.si_signo = sig;
1480 info.si_errno = 0;
1481 info.si_pid = tsk->pid;
1482 info.si_uid = tsk->uid;
1483
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1486 tsk->signal->utime));
1487 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1488 tsk->signal->stime));
1489
1490 info.si_status = tsk->exit_code & 0x7f;
1491 if (tsk->exit_code & 0x80)
1492 info.si_code = CLD_DUMPED;
1493 else if (tsk->exit_code & 0x7f)
1494 info.si_code = CLD_KILLED;
1495 else {
1496 info.si_code = CLD_EXITED;
1497 info.si_status = tsk->exit_code >> 8;
1498 }
1499
1500 psig = tsk->parent->sighand;
1501 spin_lock_irqsave(&psig->siglock, flags);
1502 if (sig == SIGCHLD &&
1503 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1504 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1505 /*
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1515 *
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1519 */
1520 tsk->exit_signal = -1;
1521 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1522 sig = 0;
1523 }
7ed20e1a 1524 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1525 __group_send_sig_info(sig, &info, tsk->parent);
1526 __wake_up_parent(tsk, tsk->parent);
1527 spin_unlock_irqrestore(&psig->siglock, flags);
1528}
1529
bc505a47 1530static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1531{
1532 struct siginfo info;
1533 unsigned long flags;
bc505a47 1534 struct task_struct *parent;
1da177e4
LT
1535 struct sighand_struct *sighand;
1536
bc505a47
ON
1537 if (to_self)
1538 parent = tsk->parent;
1539 else {
1540 tsk = tsk->group_leader;
1541 parent = tsk->real_parent;
1542 }
1543
1da177e4
LT
1544 info.si_signo = SIGCHLD;
1545 info.si_errno = 0;
1546 info.si_pid = tsk->pid;
1547 info.si_uid = tsk->uid;
1548
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info.si_utime = cputime_to_jiffies(tsk->utime);
1551 info.si_stime = cputime_to_jiffies(tsk->stime);
1552
1553 info.si_code = why;
1554 switch (why) {
1555 case CLD_CONTINUED:
1556 info.si_status = SIGCONT;
1557 break;
1558 case CLD_STOPPED:
1559 info.si_status = tsk->signal->group_exit_code & 0x7f;
1560 break;
1561 case CLD_TRAPPED:
1562 info.si_status = tsk->exit_code & 0x7f;
1563 break;
1564 default:
1565 BUG();
1566 }
1567
1568 sighand = parent->sighand;
1569 spin_lock_irqsave(&sighand->siglock, flags);
1570 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1571 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1572 __group_send_sig_info(SIGCHLD, &info, parent);
1573 /*
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1575 */
1576 __wake_up_parent(tsk, parent);
1577 spin_unlock_irqrestore(&sighand->siglock, flags);
1578}
1579
1580/*
1581 * This must be called with current->sighand->siglock held.
1582 *
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1587 *
1588 * If we actually decide not to stop at all because the tracer is gone,
1589 * we leave nostop_code in current->exit_code.
1590 */
1591static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1592{
1593 /*
1594 * If there is a group stop in progress,
1595 * we must participate in the bookkeeping.
1596 */
1597 if (current->signal->group_stop_count > 0)
1598 --current->signal->group_stop_count;
1599
1600 current->last_siginfo = info;
1601 current->exit_code = exit_code;
1602
1603 /* Let the debugger run. */
1604 set_current_state(TASK_TRACED);
1605 spin_unlock_irq(&current->sighand->siglock);
1606 read_lock(&tasklist_lock);
1607 if (likely(current->ptrace & PT_PTRACED) &&
1608 likely(current->parent != current->real_parent ||
1609 !(current->ptrace & PT_ATTACHED)) &&
1610 (likely(current->parent->signal != current->signal) ||
1611 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1612 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1613 read_unlock(&tasklist_lock);
1614 schedule();
1615 } else {
1616 /*
1617 * By the time we got the lock, our tracer went away.
1618 * Don't stop here.
1619 */
1620 read_unlock(&tasklist_lock);
1621 set_current_state(TASK_RUNNING);
1622 current->exit_code = nostop_code;
1623 }
1624
1625 /*
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1629 */
1630 spin_lock_irq(&current->sighand->siglock);
1631 current->last_siginfo = NULL;
1632
1633 /*
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1636 */
1637 recalc_sigpending();
1638}
1639
1640void ptrace_notify(int exit_code)
1641{
1642 siginfo_t info;
1643
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1645
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = current->pid;
1650 info.si_uid = current->uid;
1651
1652 /* Let the debugger run. */
1653 spin_lock_irq(&current->sighand->siglock);
1654 ptrace_stop(exit_code, 0, &info);
1655 spin_unlock_irq(&current->sighand->siglock);
1656}
1657
1da177e4
LT
1658static void
1659finish_stop(int stop_count)
1660{
bc505a47
ON
1661 int to_self;
1662
1da177e4
LT
1663 /*
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1667 */
bc505a47
ON
1668 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1669 to_self = 1;
1670 else if (stop_count == 0)
1671 to_self = 0;
1672 else
1673 goto out;
1da177e4 1674
bc505a47
ON
1675 read_lock(&tasklist_lock);
1676 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1677 read_unlock(&tasklist_lock);
1678
1679out:
1da177e4
LT
1680 schedule();
1681 /*
1682 * Now we don't run again until continued.
1683 */
1684 current->exit_code = 0;
1685}
1686
1687/*
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1692 */
1693static int
1694do_signal_stop(int signr)
1695{
1696 struct signal_struct *sig = current->signal;
1697 struct sighand_struct *sighand = current->sighand;
1698 int stop_count = -1;
1699
1700 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1701 return 0;
1702
1703 if (sig->group_stop_count > 0) {
1704 /*
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1707 */
1708 signr = sig->group_exit_code;
1709 stop_count = --sig->group_stop_count;
1710 current->exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1715 }
1716 else if (thread_group_empty(current)) {
1717 /*
1718 * Lock must be held through transition to stopped state.
1719 */
1720 current->exit_code = current->signal->group_exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 sig->flags = SIGNAL_STOP_STOPPED;
1723 spin_unlock_irq(&sighand->siglock);
1724 }
1725 else {
1726 /*
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1733 */
1734 struct task_struct *t;
1735
1736 spin_unlock_irq(&sighand->siglock);
1737
1738 /* signals can be posted during this window */
1739
1740 read_lock(&tasklist_lock);
1741 spin_lock_irq(&sighand->siglock);
1742
1743 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1744 /*
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1751 */
1752 read_unlock(&tasklist_lock);
1753 return 0;
1754 }
1755
1756 if (sig->group_stop_count == 0) {
1757 sig->group_exit_code = signr;
1758 stop_count = 0;
1759 for (t = next_thread(current); t != current;
1760 t = next_thread(t))
1761 /*
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1765 */
5acbc5cb
RM
1766 if (!t->exit_state &&
1767 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1768 stop_count++;
1769 signal_wake_up(t, 0);
1770 }
1771 sig->group_stop_count = stop_count;
1772 }
1773 else {
1774 /* A race with another thread while unlocked. */
1775 signr = sig->group_exit_code;
1776 stop_count = --sig->group_stop_count;
1777 }
1778
1779 current->exit_code = signr;
1780 set_current_state(TASK_STOPPED);
1781 if (stop_count == 0)
1782 sig->flags = SIGNAL_STOP_STOPPED;
1783
1784 spin_unlock_irq(&sighand->siglock);
1785 read_unlock(&tasklist_lock);
1786 }
1787
1788 finish_stop(stop_count);
1789 return 1;
1790}
1791
1792/*
1793 * Do appropriate magic when group_stop_count > 0.
1794 * We return nonzero if we stopped, after releasing the siglock.
1795 * We return zero if we still hold the siglock and should look
1796 * for another signal without checking group_stop_count again.
1797 */
1798static inline int handle_group_stop(void)
1799{
1800 int stop_count;
1801
1802 if (current->signal->group_exit_task == current) {
1803 /*
1804 * Group stop is so we can do a core dump,
1805 * We are the initiating thread, so get on with it.
1806 */
1807 current->signal->group_exit_task = NULL;
1808 return 0;
1809 }
1810
1811 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1812 /*
1813 * Group stop is so another thread can do a core dump,
1814 * or else we are racing against a death signal.
1815 * Just punt the stop so we can get the next signal.
1816 */
1817 return 0;
1818
1819 /*
1820 * There is a group stop in progress. We stop
1821 * without any associated signal being in our queue.
1822 */
1823 stop_count = --current->signal->group_stop_count;
1824 if (stop_count == 0)
1825 current->signal->flags = SIGNAL_STOP_STOPPED;
1826 current->exit_code = current->signal->group_exit_code;
1827 set_current_state(TASK_STOPPED);
1828 spin_unlock_irq(&current->sighand->siglock);
1829 finish_stop(stop_count);
1830 return 1;
1831}
1832
1833int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1834 struct pt_regs *regs, void *cookie)
1835{
1836 sigset_t *mask = &current->blocked;
1837 int signr = 0;
1838
1839relock:
1840 spin_lock_irq(&current->sighand->siglock);
1841 for (;;) {
1842 struct k_sigaction *ka;
1843
1844 if (unlikely(current->signal->group_stop_count > 0) &&
1845 handle_group_stop())
1846 goto relock;
1847
1848 signr = dequeue_signal(current, mask, info);
1849
1850 if (!signr)
1851 break; /* will return 0 */
1852
1853 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1854 ptrace_signal_deliver(regs, cookie);
1855
1856 /* Let the debugger run. */
1857 ptrace_stop(signr, signr, info);
1858
30e0fca6 1859 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1860 signr = current->exit_code;
30e0fca6 1861 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1862 continue;
1863
1864 current->exit_code = 0;
1865
1866 /* Update the siginfo structure if the signal has
1867 changed. If the debugger wanted something
1868 specific in the siginfo structure then it should
1869 have updated *info via PTRACE_SETSIGINFO. */
1870 if (signr != info->si_signo) {
1871 info->si_signo = signr;
1872 info->si_errno = 0;
1873 info->si_code = SI_USER;
1874 info->si_pid = current->parent->pid;
1875 info->si_uid = current->parent->uid;
1876 }
1877
1878 /* If the (new) signal is now blocked, requeue it. */
1879 if (sigismember(&current->blocked, signr)) {
1880 specific_send_sig_info(signr, info, current);
1881 continue;
1882 }
1883 }
1884
1885 ka = &current->sighand->action[signr-1];
1886 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1887 continue;
1888 if (ka->sa.sa_handler != SIG_DFL) {
1889 /* Run the handler. */
1890 *return_ka = *ka;
1891
1892 if (ka->sa.sa_flags & SA_ONESHOT)
1893 ka->sa.sa_handler = SIG_DFL;
1894
1895 break; /* will return non-zero "signr" value */
1896 }
1897
1898 /*
1899 * Now we are doing the default action for this signal.
1900 */
1901 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1902 continue;
1903
1904 /* Init gets no signals it doesn't want. */
1905 if (current->pid == 1)
1906 continue;
1907
1908 if (sig_kernel_stop(signr)) {
1909 /*
1910 * The default action is to stop all threads in
1911 * the thread group. The job control signals
1912 * do nothing in an orphaned pgrp, but SIGSTOP
1913 * always works. Note that siglock needs to be
1914 * dropped during the call to is_orphaned_pgrp()
1915 * because of lock ordering with tasklist_lock.
1916 * This allows an intervening SIGCONT to be posted.
1917 * We need to check for that and bail out if necessary.
1918 */
1919 if (signr != SIGSTOP) {
1920 spin_unlock_irq(&current->sighand->siglock);
1921
1922 /* signals can be posted during this window */
1923
1924 if (is_orphaned_pgrp(process_group(current)))
1925 goto relock;
1926
1927 spin_lock_irq(&current->sighand->siglock);
1928 }
1929
1930 if (likely(do_signal_stop(signr))) {
1931 /* It released the siglock. */
1932 goto relock;
1933 }
1934
1935 /*
1936 * We didn't actually stop, due to a race
1937 * with SIGCONT or something like that.
1938 */
1939 continue;
1940 }
1941
1942 spin_unlock_irq(&current->sighand->siglock);
1943
1944 /*
1945 * Anything else is fatal, maybe with a core dump.
1946 */
1947 current->flags |= PF_SIGNALED;
1948 if (sig_kernel_coredump(signr)) {
1949 /*
1950 * If it was able to dump core, this kills all
1951 * other threads in the group and synchronizes with
1952 * their demise. If we lost the race with another
1953 * thread getting here, it set group_exit_code
1954 * first and our do_group_exit call below will use
1955 * that value and ignore the one we pass it.
1956 */
1957 do_coredump((long)signr, signr, regs);
1958 }
1959
1960 /*
1961 * Death signals, no core dump.
1962 */
1963 do_group_exit(signr);
1964 /* NOTREACHED */
1965 }
1966 spin_unlock_irq(&current->sighand->siglock);
1967 return signr;
1968}
1969
1da177e4
LT
1970EXPORT_SYMBOL(recalc_sigpending);
1971EXPORT_SYMBOL_GPL(dequeue_signal);
1972EXPORT_SYMBOL(flush_signals);
1973EXPORT_SYMBOL(force_sig);
1974EXPORT_SYMBOL(kill_pg);
1975EXPORT_SYMBOL(kill_proc);
1976EXPORT_SYMBOL(ptrace_notify);
1977EXPORT_SYMBOL(send_sig);
1978EXPORT_SYMBOL(send_sig_info);
1979EXPORT_SYMBOL(sigprocmask);
1980EXPORT_SYMBOL(block_all_signals);
1981EXPORT_SYMBOL(unblock_all_signals);
1982
1983
1984/*
1985 * System call entry points.
1986 */
1987
1988asmlinkage long sys_restart_syscall(void)
1989{
1990 struct restart_block *restart = &current_thread_info()->restart_block;
1991 return restart->fn(restart);
1992}
1993
1994long do_no_restart_syscall(struct restart_block *param)
1995{
1996 return -EINTR;
1997}
1998
1999/*
2000 * We don't need to get the kernel lock - this is all local to this
2001 * particular thread.. (and that's good, because this is _heavily_
2002 * used by various programs)
2003 */
2004
2005/*
2006 * This is also useful for kernel threads that want to temporarily
2007 * (or permanently) block certain signals.
2008 *
2009 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2010 * interface happily blocks "unblockable" signals like SIGKILL
2011 * and friends.
2012 */
2013int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2014{
2015 int error;
2016 sigset_t old_block;
2017
2018 spin_lock_irq(&current->sighand->siglock);
2019 old_block = current->blocked;
2020 error = 0;
2021 switch (how) {
2022 case SIG_BLOCK:
2023 sigorsets(&current->blocked, &current->blocked, set);
2024 break;
2025 case SIG_UNBLOCK:
2026 signandsets(&current->blocked, &current->blocked, set);
2027 break;
2028 case SIG_SETMASK:
2029 current->blocked = *set;
2030 break;
2031 default:
2032 error = -EINVAL;
2033 }
2034 recalc_sigpending();
2035 spin_unlock_irq(&current->sighand->siglock);
2036 if (oldset)
2037 *oldset = old_block;
2038 return error;
2039}
2040
2041asmlinkage long
2042sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2043{
2044 int error = -EINVAL;
2045 sigset_t old_set, new_set;
2046
2047 /* XXX: Don't preclude handling different sized sigset_t's. */
2048 if (sigsetsize != sizeof(sigset_t))
2049 goto out;
2050
2051 if (set) {
2052 error = -EFAULT;
2053 if (copy_from_user(&new_set, set, sizeof(*set)))
2054 goto out;
2055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2056
2057 error = sigprocmask(how, &new_set, &old_set);
2058 if (error)
2059 goto out;
2060 if (oset)
2061 goto set_old;
2062 } else if (oset) {
2063 spin_lock_irq(&current->sighand->siglock);
2064 old_set = current->blocked;
2065 spin_unlock_irq(&current->sighand->siglock);
2066
2067 set_old:
2068 error = -EFAULT;
2069 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2070 goto out;
2071 }
2072 error = 0;
2073out:
2074 return error;
2075}
2076
2077long do_sigpending(void __user *set, unsigned long sigsetsize)
2078{
2079 long error = -EINVAL;
2080 sigset_t pending;
2081
2082 if (sigsetsize > sizeof(sigset_t))
2083 goto out;
2084
2085 spin_lock_irq(&current->sighand->siglock);
2086 sigorsets(&pending, &current->pending.signal,
2087 &current->signal->shared_pending.signal);
2088 spin_unlock_irq(&current->sighand->siglock);
2089
2090 /* Outside the lock because only this thread touches it. */
2091 sigandsets(&pending, &current->blocked, &pending);
2092
2093 error = -EFAULT;
2094 if (!copy_to_user(set, &pending, sigsetsize))
2095 error = 0;
2096
2097out:
2098 return error;
2099}
2100
2101asmlinkage long
2102sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2103{
2104 return do_sigpending(set, sigsetsize);
2105}
2106
2107#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2108
2109int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2110{
2111 int err;
2112
2113 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2114 return -EFAULT;
2115 if (from->si_code < 0)
2116 return __copy_to_user(to, from, sizeof(siginfo_t))
2117 ? -EFAULT : 0;
2118 /*
2119 * If you change siginfo_t structure, please be sure
2120 * this code is fixed accordingly.
2121 * It should never copy any pad contained in the structure
2122 * to avoid security leaks, but must copy the generic
2123 * 3 ints plus the relevant union member.
2124 */
2125 err = __put_user(from->si_signo, &to->si_signo);
2126 err |= __put_user(from->si_errno, &to->si_errno);
2127 err |= __put_user((short)from->si_code, &to->si_code);
2128 switch (from->si_code & __SI_MASK) {
2129 case __SI_KILL:
2130 err |= __put_user(from->si_pid, &to->si_pid);
2131 err |= __put_user(from->si_uid, &to->si_uid);
2132 break;
2133 case __SI_TIMER:
2134 err |= __put_user(from->si_tid, &to->si_tid);
2135 err |= __put_user(from->si_overrun, &to->si_overrun);
2136 err |= __put_user(from->si_ptr, &to->si_ptr);
2137 break;
2138 case __SI_POLL:
2139 err |= __put_user(from->si_band, &to->si_band);
2140 err |= __put_user(from->si_fd, &to->si_fd);
2141 break;
2142 case __SI_FAULT:
2143 err |= __put_user(from->si_addr, &to->si_addr);
2144#ifdef __ARCH_SI_TRAPNO
2145 err |= __put_user(from->si_trapno, &to->si_trapno);
2146#endif
2147 break;
2148 case __SI_CHLD:
2149 err |= __put_user(from->si_pid, &to->si_pid);
2150 err |= __put_user(from->si_uid, &to->si_uid);
2151 err |= __put_user(from->si_status, &to->si_status);
2152 err |= __put_user(from->si_utime, &to->si_utime);
2153 err |= __put_user(from->si_stime, &to->si_stime);
2154 break;
2155 case __SI_RT: /* This is not generated by the kernel as of now. */
2156 case __SI_MESGQ: /* But this is */
2157 err |= __put_user(from->si_pid, &to->si_pid);
2158 err |= __put_user(from->si_uid, &to->si_uid);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 default: /* this is just in case for now ... */
2162 err |= __put_user(from->si_pid, &to->si_pid);
2163 err |= __put_user(from->si_uid, &to->si_uid);
2164 break;
2165 }
2166 return err;
2167}
2168
2169#endif
2170
2171asmlinkage long
2172sys_rt_sigtimedwait(const sigset_t __user *uthese,
2173 siginfo_t __user *uinfo,
2174 const struct timespec __user *uts,
2175 size_t sigsetsize)
2176{
2177 int ret, sig;
2178 sigset_t these;
2179 struct timespec ts;
2180 siginfo_t info;
2181 long timeout = 0;
2182
2183 /* XXX: Don't preclude handling different sized sigset_t's. */
2184 if (sigsetsize != sizeof(sigset_t))
2185 return -EINVAL;
2186
2187 if (copy_from_user(&these, uthese, sizeof(these)))
2188 return -EFAULT;
2189
2190 /*
2191 * Invert the set of allowed signals to get those we
2192 * want to block.
2193 */
2194 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2195 signotset(&these);
2196
2197 if (uts) {
2198 if (copy_from_user(&ts, uts, sizeof(ts)))
2199 return -EFAULT;
2200 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2201 || ts.tv_sec < 0)
2202 return -EINVAL;
2203 }
2204
2205 spin_lock_irq(&current->sighand->siglock);
2206 sig = dequeue_signal(current, &these, &info);
2207 if (!sig) {
2208 timeout = MAX_SCHEDULE_TIMEOUT;
2209 if (uts)
2210 timeout = (timespec_to_jiffies(&ts)
2211 + (ts.tv_sec || ts.tv_nsec));
2212
2213 if (timeout) {
2214 /* None ready -- temporarily unblock those we're
2215 * interested while we are sleeping in so that we'll
2216 * be awakened when they arrive. */
2217 current->real_blocked = current->blocked;
2218 sigandsets(&current->blocked, &current->blocked, &these);
2219 recalc_sigpending();
2220 spin_unlock_irq(&current->sighand->siglock);
2221
75bcc8c5 2222 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2223
3e1d1d28 2224 try_to_freeze();
1da177e4
LT
2225 spin_lock_irq(&current->sighand->siglock);
2226 sig = dequeue_signal(current, &these, &info);
2227 current->blocked = current->real_blocked;
2228 siginitset(&current->real_blocked, 0);
2229 recalc_sigpending();
2230 }
2231 }
2232 spin_unlock_irq(&current->sighand->siglock);
2233
2234 if (sig) {
2235 ret = sig;
2236 if (uinfo) {
2237 if (copy_siginfo_to_user(uinfo, &info))
2238 ret = -EFAULT;
2239 }
2240 } else {
2241 ret = -EAGAIN;
2242 if (timeout)
2243 ret = -EINTR;
2244 }
2245
2246 return ret;
2247}
2248
2249asmlinkage long
2250sys_kill(int pid, int sig)
2251{
2252 struct siginfo info;
2253
2254 info.si_signo = sig;
2255 info.si_errno = 0;
2256 info.si_code = SI_USER;
2257 info.si_pid = current->tgid;
2258 info.si_uid = current->uid;
2259
2260 return kill_something_info(sig, &info, pid);
2261}
2262
6dd69f10 2263static int do_tkill(int tgid, int pid, int sig)
1da177e4 2264{
1da177e4 2265 int error;
6dd69f10 2266 struct siginfo info;
1da177e4
LT
2267 struct task_struct *p;
2268
6dd69f10 2269 error = -ESRCH;
1da177e4
LT
2270 info.si_signo = sig;
2271 info.si_errno = 0;
2272 info.si_code = SI_TKILL;
2273 info.si_pid = current->tgid;
2274 info.si_uid = current->uid;
2275
2276 read_lock(&tasklist_lock);
2277 p = find_task_by_pid(pid);
6dd69f10 2278 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2279 error = check_kill_permission(sig, &info, p);
2280 /*
2281 * The null signal is a permissions and process existence
2282 * probe. No signal is actually delivered.
2283 */
2284 if (!error && sig && p->sighand) {
2285 spin_lock_irq(&p->sighand->siglock);
2286 handle_stop_signal(sig, p);
2287 error = specific_send_sig_info(sig, &info, p);
2288 spin_unlock_irq(&p->sighand->siglock);
2289 }
2290 }
2291 read_unlock(&tasklist_lock);
6dd69f10 2292
1da177e4
LT
2293 return error;
2294}
2295
6dd69f10
VL
2296/**
2297 * sys_tgkill - send signal to one specific thread
2298 * @tgid: the thread group ID of the thread
2299 * @pid: the PID of the thread
2300 * @sig: signal to be sent
2301 *
2302 * This syscall also checks the tgid and returns -ESRCH even if the PID
2303 * exists but it's not belonging to the target process anymore. This
2304 * method solves the problem of threads exiting and PIDs getting reused.
2305 */
2306asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2307{
2308 /* This is only valid for single tasks */
2309 if (pid <= 0 || tgid <= 0)
2310 return -EINVAL;
2311
2312 return do_tkill(tgid, pid, sig);
2313}
2314
1da177e4
LT
2315/*
2316 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2317 */
2318asmlinkage long
2319sys_tkill(int pid, int sig)
2320{
1da177e4
LT
2321 /* This is only valid for single tasks */
2322 if (pid <= 0)
2323 return -EINVAL;
2324
6dd69f10 2325 return do_tkill(0, pid, sig);
1da177e4
LT
2326}
2327
2328asmlinkage long
2329sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2330{
2331 siginfo_t info;
2332
2333 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2334 return -EFAULT;
2335
2336 /* Not even root can pretend to send signals from the kernel.
2337 Nor can they impersonate a kill(), which adds source info. */
2338 if (info.si_code >= 0)
2339 return -EPERM;
2340 info.si_signo = sig;
2341
2342 /* POSIX.1b doesn't mention process groups. */
2343 return kill_proc_info(sig, &info, pid);
2344}
2345
2346int
2347do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2348{
2349 struct k_sigaction *k;
2350
7ed20e1a 2351 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2352 return -EINVAL;
2353
2354 k = &current->sighand->action[sig-1];
2355
2356 spin_lock_irq(&current->sighand->siglock);
2357 if (signal_pending(current)) {
2358 /*
2359 * If there might be a fatal signal pending on multiple
2360 * threads, make sure we take it before changing the action.
2361 */
2362 spin_unlock_irq(&current->sighand->siglock);
2363 return -ERESTARTNOINTR;
2364 }
2365
2366 if (oact)
2367 *oact = *k;
2368
2369 if (act) {
2370 /*
2371 * POSIX 3.3.1.3:
2372 * "Setting a signal action to SIG_IGN for a signal that is
2373 * pending shall cause the pending signal to be discarded,
2374 * whether or not it is blocked."
2375 *
2376 * "Setting a signal action to SIG_DFL for a signal that is
2377 * pending and whose default action is to ignore the signal
2378 * (for example, SIGCHLD), shall cause the pending signal to
2379 * be discarded, whether or not it is blocked"
2380 */
2381 if (act->sa.sa_handler == SIG_IGN ||
2382 (act->sa.sa_handler == SIG_DFL &&
2383 sig_kernel_ignore(sig))) {
2384 /*
2385 * This is a fairly rare case, so we only take the
2386 * tasklist_lock once we're sure we'll need it.
2387 * Now we must do this little unlock and relock
2388 * dance to maintain the lock hierarchy.
2389 */
2390 struct task_struct *t = current;
2391 spin_unlock_irq(&t->sighand->siglock);
2392 read_lock(&tasklist_lock);
2393 spin_lock_irq(&t->sighand->siglock);
2394 *k = *act;
2395 sigdelsetmask(&k->sa.sa_mask,
2396 sigmask(SIGKILL) | sigmask(SIGSTOP));
2397 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2398 do {
2399 rm_from_queue(sigmask(sig), &t->pending);
2400 recalc_sigpending_tsk(t);
2401 t = next_thread(t);
2402 } while (t != current);
2403 spin_unlock_irq(&current->sighand->siglock);
2404 read_unlock(&tasklist_lock);
2405 return 0;
2406 }
2407
2408 *k = *act;
2409 sigdelsetmask(&k->sa.sa_mask,
2410 sigmask(SIGKILL) | sigmask(SIGSTOP));
2411 }
2412
2413 spin_unlock_irq(&current->sighand->siglock);
2414 return 0;
2415}
2416
2417int
2418do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2419{
2420 stack_t oss;
2421 int error;
2422
2423 if (uoss) {
2424 oss.ss_sp = (void __user *) current->sas_ss_sp;
2425 oss.ss_size = current->sas_ss_size;
2426 oss.ss_flags = sas_ss_flags(sp);
2427 }
2428
2429 if (uss) {
2430 void __user *ss_sp;
2431 size_t ss_size;
2432 int ss_flags;
2433
2434 error = -EFAULT;
2435 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2436 || __get_user(ss_sp, &uss->ss_sp)
2437 || __get_user(ss_flags, &uss->ss_flags)
2438 || __get_user(ss_size, &uss->ss_size))
2439 goto out;
2440
2441 error = -EPERM;
2442 if (on_sig_stack(sp))
2443 goto out;
2444
2445 error = -EINVAL;
2446 /*
2447 *
2448 * Note - this code used to test ss_flags incorrectly
2449 * old code may have been written using ss_flags==0
2450 * to mean ss_flags==SS_ONSTACK (as this was the only
2451 * way that worked) - this fix preserves that older
2452 * mechanism
2453 */
2454 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2455 goto out;
2456
2457 if (ss_flags == SS_DISABLE) {
2458 ss_size = 0;
2459 ss_sp = NULL;
2460 } else {
2461 error = -ENOMEM;
2462 if (ss_size < MINSIGSTKSZ)
2463 goto out;
2464 }
2465
2466 current->sas_ss_sp = (unsigned long) ss_sp;
2467 current->sas_ss_size = ss_size;
2468 }
2469
2470 if (uoss) {
2471 error = -EFAULT;
2472 if (copy_to_user(uoss, &oss, sizeof(oss)))
2473 goto out;
2474 }
2475
2476 error = 0;
2477out:
2478 return error;
2479}
2480
2481#ifdef __ARCH_WANT_SYS_SIGPENDING
2482
2483asmlinkage long
2484sys_sigpending(old_sigset_t __user *set)
2485{
2486 return do_sigpending(set, sizeof(*set));
2487}
2488
2489#endif
2490
2491#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2492/* Some platforms have their own version with special arguments others
2493 support only sys_rt_sigprocmask. */
2494
2495asmlinkage long
2496sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2497{
2498 int error;
2499 old_sigset_t old_set, new_set;
2500
2501 if (set) {
2502 error = -EFAULT;
2503 if (copy_from_user(&new_set, set, sizeof(*set)))
2504 goto out;
2505 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2506
2507 spin_lock_irq(&current->sighand->siglock);
2508 old_set = current->blocked.sig[0];
2509
2510 error = 0;
2511 switch (how) {
2512 default:
2513 error = -EINVAL;
2514 break;
2515 case SIG_BLOCK:
2516 sigaddsetmask(&current->blocked, new_set);
2517 break;
2518 case SIG_UNBLOCK:
2519 sigdelsetmask(&current->blocked, new_set);
2520 break;
2521 case SIG_SETMASK:
2522 current->blocked.sig[0] = new_set;
2523 break;
2524 }
2525
2526 recalc_sigpending();
2527 spin_unlock_irq(&current->sighand->siglock);
2528 if (error)
2529 goto out;
2530 if (oset)
2531 goto set_old;
2532 } else if (oset) {
2533 old_set = current->blocked.sig[0];
2534 set_old:
2535 error = -EFAULT;
2536 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2537 goto out;
2538 }
2539 error = 0;
2540out:
2541 return error;
2542}
2543#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2544
2545#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2546asmlinkage long
2547sys_rt_sigaction(int sig,
2548 const struct sigaction __user *act,
2549 struct sigaction __user *oact,
2550 size_t sigsetsize)
2551{
2552 struct k_sigaction new_sa, old_sa;
2553 int ret = -EINVAL;
2554
2555 /* XXX: Don't preclude handling different sized sigset_t's. */
2556 if (sigsetsize != sizeof(sigset_t))
2557 goto out;
2558
2559 if (act) {
2560 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2561 return -EFAULT;
2562 }
2563
2564 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2565
2566 if (!ret && oact) {
2567 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2568 return -EFAULT;
2569 }
2570out:
2571 return ret;
2572}
2573#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2574
2575#ifdef __ARCH_WANT_SYS_SGETMASK
2576
2577/*
2578 * For backwards compatibility. Functionality superseded by sigprocmask.
2579 */
2580asmlinkage long
2581sys_sgetmask(void)
2582{
2583 /* SMP safe */
2584 return current->blocked.sig[0];
2585}
2586
2587asmlinkage long
2588sys_ssetmask(int newmask)
2589{
2590 int old;
2591
2592 spin_lock_irq(&current->sighand->siglock);
2593 old = current->blocked.sig[0];
2594
2595 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2596 sigmask(SIGSTOP)));
2597 recalc_sigpending();
2598 spin_unlock_irq(&current->sighand->siglock);
2599
2600 return old;
2601}
2602#endif /* __ARCH_WANT_SGETMASK */
2603
2604#ifdef __ARCH_WANT_SYS_SIGNAL
2605/*
2606 * For backwards compatibility. Functionality superseded by sigaction.
2607 */
2608asmlinkage unsigned long
2609sys_signal(int sig, __sighandler_t handler)
2610{
2611 struct k_sigaction new_sa, old_sa;
2612 int ret;
2613
2614 new_sa.sa.sa_handler = handler;
2615 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2616
2617 ret = do_sigaction(sig, &new_sa, &old_sa);
2618
2619 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2620}
2621#endif /* __ARCH_WANT_SYS_SIGNAL */
2622
2623#ifdef __ARCH_WANT_SYS_PAUSE
2624
2625asmlinkage long
2626sys_pause(void)
2627{
2628 current->state = TASK_INTERRUPTIBLE;
2629 schedule();
2630 return -ERESTARTNOHAND;
2631}
2632
2633#endif
2634
2635void __init signals_init(void)
2636{
2637 sigqueue_cachep =
2638 kmem_cache_create("sigqueue",
2639 sizeof(struct sigqueue),
2640 __alignof__(struct sigqueue),
2641 SLAB_PANIC, NULL, NULL);
2642}