sched: Track the runnable average on a per-task entity basis
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
c82513e5 204 unsigned int nr_running, h_nr_running;
029632fb
PZ
205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
029632fb
PZ
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240#ifdef CONFIG_SMP
029632fb
PZ
241 /*
242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261#endif /* CONFIG_SMP */
262#ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270#endif /* CONFIG_CFS_BANDWIDTH */
271#endif /* CONFIG_FAIR_GROUP_SCHED */
272};
273
274static inline int rt_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
c82513e5 282 unsigned int rt_nr_running;
029632fb
PZ
283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286#ifdef CONFIG_SMP
287 int next; /* next highest */
288#endif
289 } highest_prio;
290#endif
291#ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296#endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303#ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309#endif
310};
311
312#ifdef CONFIG_SMP
313
314/*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335};
336
337extern struct root_domain def_root_domain;
338
339#endif /* CONFIG_SMP */
340
341/*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
c82513e5 356 unsigned int nr_running;
029632fb
PZ
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360#ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
1c792db7 362 unsigned long nohz_flags;
029632fb
PZ
363#endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
377#ifdef CONFIG_SMP
378 unsigned long h_load_throttle;
379#endif /* CONFIG_SMP */
380#endif /* CONFIG_FAIR_GROUP_SCHED */
381
029632fb
PZ
382#ifdef CONFIG_RT_GROUP_SCHED
383 struct list_head leaf_rt_rq_list;
384#endif
385
386 /*
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
391 */
392 unsigned long nr_uninterruptible;
393
394 struct task_struct *curr, *idle, *stop;
395 unsigned long next_balance;
396 struct mm_struct *prev_mm;
397
398 u64 clock;
399 u64 clock_task;
400
401 atomic_t nr_iowait;
402
403#ifdef CONFIG_SMP
404 struct root_domain *rd;
405 struct sched_domain *sd;
406
407 unsigned long cpu_power;
408
409 unsigned char idle_balance;
410 /* For active balancing */
411 int post_schedule;
412 int active_balance;
413 int push_cpu;
414 struct cpu_stop_work active_balance_work;
415 /* cpu of this runqueue: */
416 int cpu;
417 int online;
418
367456c7
PZ
419 struct list_head cfs_tasks;
420
029632fb
PZ
421 u64 rt_avg;
422 u64 age_stamp;
423 u64 idle_stamp;
424 u64 avg_idle;
425#endif
426
427#ifdef CONFIG_IRQ_TIME_ACCOUNTING
428 u64 prev_irq_time;
429#endif
430#ifdef CONFIG_PARAVIRT
431 u64 prev_steal_time;
432#endif
433#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
434 u64 prev_steal_time_rq;
435#endif
436
437 /* calc_load related fields */
438 unsigned long calc_load_update;
439 long calc_load_active;
440
441#ifdef CONFIG_SCHED_HRTICK
442#ifdef CONFIG_SMP
443 int hrtick_csd_pending;
444 struct call_single_data hrtick_csd;
445#endif
446 struct hrtimer hrtick_timer;
447#endif
448
449#ifdef CONFIG_SCHEDSTATS
450 /* latency stats */
451 struct sched_info rq_sched_info;
452 unsigned long long rq_cpu_time;
453 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
454
455 /* sys_sched_yield() stats */
456 unsigned int yld_count;
457
458 /* schedule() stats */
029632fb
PZ
459 unsigned int sched_count;
460 unsigned int sched_goidle;
461
462 /* try_to_wake_up() stats */
463 unsigned int ttwu_count;
464 unsigned int ttwu_local;
465#endif
466
467#ifdef CONFIG_SMP
468 struct llist_head wake_list;
469#endif
470};
471
472static inline int cpu_of(struct rq *rq)
473{
474#ifdef CONFIG_SMP
475 return rq->cpu;
476#else
477 return 0;
478#endif
479}
480
481DECLARE_PER_CPU(struct rq, runqueues);
482
518cd623
PZ
483#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
484#define this_rq() (&__get_cpu_var(runqueues))
485#define task_rq(p) cpu_rq(task_cpu(p))
486#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
487#define raw_rq() (&__raw_get_cpu_var(runqueues))
488
489#ifdef CONFIG_SMP
490
029632fb
PZ
491#define rcu_dereference_check_sched_domain(p) \
492 rcu_dereference_check((p), \
493 lockdep_is_held(&sched_domains_mutex))
494
495/*
496 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
497 * See detach_destroy_domains: synchronize_sched for details.
498 *
499 * The domain tree of any CPU may only be accessed from within
500 * preempt-disabled sections.
501 */
502#define for_each_domain(cpu, __sd) \
518cd623
PZ
503 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
504 __sd; __sd = __sd->parent)
029632fb 505
77e81365
SS
506#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
507
518cd623
PZ
508/**
509 * highest_flag_domain - Return highest sched_domain containing flag.
510 * @cpu: The cpu whose highest level of sched domain is to
511 * be returned.
512 * @flag: The flag to check for the highest sched_domain
513 * for the given cpu.
514 *
515 * Returns the highest sched_domain of a cpu which contains the given flag.
516 */
517static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
518{
519 struct sched_domain *sd, *hsd = NULL;
520
521 for_each_domain(cpu, sd) {
522 if (!(sd->flags & flag))
523 break;
524 hsd = sd;
525 }
526
527 return hsd;
528}
529
530DECLARE_PER_CPU(struct sched_domain *, sd_llc);
531DECLARE_PER_CPU(int, sd_llc_id);
532
c1174876
PZ
533extern int group_balance_cpu(struct sched_group *sg);
534
518cd623 535#endif /* CONFIG_SMP */
029632fb 536
391e43da
PZ
537#include "stats.h"
538#include "auto_group.h"
029632fb
PZ
539
540#ifdef CONFIG_CGROUP_SCHED
541
542/*
543 * Return the group to which this tasks belongs.
544 *
8323f26c
PZ
545 * We cannot use task_subsys_state() and friends because the cgroup
546 * subsystem changes that value before the cgroup_subsys::attach() method
547 * is called, therefore we cannot pin it and might observe the wrong value.
548 *
549 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
550 * core changes this before calling sched_move_task().
551 *
552 * Instead we use a 'copy' which is updated from sched_move_task() while
553 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
554 */
555static inline struct task_group *task_group(struct task_struct *p)
556{
8323f26c 557 return p->sched_task_group;
029632fb
PZ
558}
559
560/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
561static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
562{
563#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
564 struct task_group *tg = task_group(p);
565#endif
566
567#ifdef CONFIG_FAIR_GROUP_SCHED
568 p->se.cfs_rq = tg->cfs_rq[cpu];
569 p->se.parent = tg->se[cpu];
570#endif
571
572#ifdef CONFIG_RT_GROUP_SCHED
573 p->rt.rt_rq = tg->rt_rq[cpu];
574 p->rt.parent = tg->rt_se[cpu];
575#endif
576}
577
578#else /* CONFIG_CGROUP_SCHED */
579
580static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
581static inline struct task_group *task_group(struct task_struct *p)
582{
583 return NULL;
584}
585
586#endif /* CONFIG_CGROUP_SCHED */
587
588static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
589{
590 set_task_rq(p, cpu);
591#ifdef CONFIG_SMP
592 /*
593 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
594 * successfuly executed on another CPU. We must ensure that updates of
595 * per-task data have been completed by this moment.
596 */
597 smp_wmb();
598 task_thread_info(p)->cpu = cpu;
599#endif
600}
601
602/*
603 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604 */
605#ifdef CONFIG_SCHED_DEBUG
c5905afb 606# include <linux/static_key.h>
029632fb
PZ
607# define const_debug __read_mostly
608#else
609# define const_debug const
610#endif
611
612extern const_debug unsigned int sysctl_sched_features;
613
614#define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
617enum {
391e43da 618#include "features.h"
f8b6d1cc 619 __SCHED_FEAT_NR,
029632fb
PZ
620};
621
622#undef SCHED_FEAT
623
f8b6d1cc 624#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 625static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 626{
c5905afb 627 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
628}
629
c5905afb 630static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 631{
c5905afb 632 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
633}
634
635#define SCHED_FEAT(name, enabled) \
c5905afb 636static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
637{ \
638 return static_branch__##enabled(key); \
639}
640
641#include "features.h"
642
643#undef SCHED_FEAT
644
c5905afb 645extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
646#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
647#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 648#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 649#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
650
651static inline u64 global_rt_period(void)
652{
653 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
654}
655
656static inline u64 global_rt_runtime(void)
657{
658 if (sysctl_sched_rt_runtime < 0)
659 return RUNTIME_INF;
660
661 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
662}
663
664
665
666static inline int task_current(struct rq *rq, struct task_struct *p)
667{
668 return rq->curr == p;
669}
670
671static inline int task_running(struct rq *rq, struct task_struct *p)
672{
673#ifdef CONFIG_SMP
674 return p->on_cpu;
675#else
676 return task_current(rq, p);
677#endif
678}
679
680
681#ifndef prepare_arch_switch
682# define prepare_arch_switch(next) do { } while (0)
683#endif
684#ifndef finish_arch_switch
685# define finish_arch_switch(prev) do { } while (0)
686#endif
01f23e16
CM
687#ifndef finish_arch_post_lock_switch
688# define finish_arch_post_lock_switch() do { } while (0)
689#endif
029632fb
PZ
690
691#ifndef __ARCH_WANT_UNLOCKED_CTXSW
692static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
693{
694#ifdef CONFIG_SMP
695 /*
696 * We can optimise this out completely for !SMP, because the
697 * SMP rebalancing from interrupt is the only thing that cares
698 * here.
699 */
700 next->on_cpu = 1;
701#endif
702}
703
704static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
705{
706#ifdef CONFIG_SMP
707 /*
708 * After ->on_cpu is cleared, the task can be moved to a different CPU.
709 * We must ensure this doesn't happen until the switch is completely
710 * finished.
711 */
712 smp_wmb();
713 prev->on_cpu = 0;
714#endif
715#ifdef CONFIG_DEBUG_SPINLOCK
716 /* this is a valid case when another task releases the spinlock */
717 rq->lock.owner = current;
718#endif
719 /*
720 * If we are tracking spinlock dependencies then we have to
721 * fix up the runqueue lock - which gets 'carried over' from
722 * prev into current:
723 */
724 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
725
726 raw_spin_unlock_irq(&rq->lock);
727}
728
729#else /* __ARCH_WANT_UNLOCKED_CTXSW */
730static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
731{
732#ifdef CONFIG_SMP
733 /*
734 * We can optimise this out completely for !SMP, because the
735 * SMP rebalancing from interrupt is the only thing that cares
736 * here.
737 */
738 next->on_cpu = 1;
739#endif
029632fb 740 raw_spin_unlock(&rq->lock);
029632fb
PZ
741}
742
743static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
744{
745#ifdef CONFIG_SMP
746 /*
747 * After ->on_cpu is cleared, the task can be moved to a different CPU.
748 * We must ensure this doesn't happen until the switch is completely
749 * finished.
750 */
751 smp_wmb();
752 prev->on_cpu = 0;
753#endif
029632fb 754 local_irq_enable();
029632fb
PZ
755}
756#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
757
758
759static inline void update_load_add(struct load_weight *lw, unsigned long inc)
760{
761 lw->weight += inc;
762 lw->inv_weight = 0;
763}
764
765static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
766{
767 lw->weight -= dec;
768 lw->inv_weight = 0;
769}
770
771static inline void update_load_set(struct load_weight *lw, unsigned long w)
772{
773 lw->weight = w;
774 lw->inv_weight = 0;
775}
776
777/*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
786#define WEIGHT_IDLEPRIO 3
787#define WMULT_IDLEPRIO 1431655765
788
789/*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
800 */
801static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
810};
811
812/*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
819static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828};
829
830/* Time spent by the tasks of the cpu accounting group executing in ... */
831enum cpuacct_stat_index {
832 CPUACCT_STAT_USER, /* ... user mode */
833 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
834
835 CPUACCT_STAT_NSTATS,
836};
837
838
839#define sched_class_highest (&stop_sched_class)
840#define for_each_class(class) \
841 for (class = sched_class_highest; class; class = class->next)
842
843extern const struct sched_class stop_sched_class;
844extern const struct sched_class rt_sched_class;
845extern const struct sched_class fair_sched_class;
846extern const struct sched_class idle_sched_class;
847
848
849#ifdef CONFIG_SMP
850
851extern void trigger_load_balance(struct rq *rq, int cpu);
852extern void idle_balance(int this_cpu, struct rq *this_rq);
853
854#else /* CONFIG_SMP */
855
856static inline void idle_balance(int cpu, struct rq *rq)
857{
858}
859
860#endif
861
862extern void sysrq_sched_debug_show(void);
863extern void sched_init_granularity(void);
864extern void update_max_interval(void);
865extern void update_group_power(struct sched_domain *sd, int cpu);
866extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
867extern void init_sched_rt_class(void);
868extern void init_sched_fair_class(void);
869
870extern void resched_task(struct task_struct *p);
871extern void resched_cpu(int cpu);
872
873extern struct rt_bandwidth def_rt_bandwidth;
874extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
875
556061b0 876extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
877
878#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
879#include <linux/cgroup.h>
880/* track cpu usage of a group of tasks and its child groups */
881struct cpuacct {
882 struct cgroup_subsys_state css;
883 /* cpuusage holds pointer to a u64-type object on every cpu */
884 u64 __percpu *cpuusage;
885 struct kernel_cpustat __percpu *cpustat;
886};
887
73fbec60
FW
888extern struct cgroup_subsys cpuacct_subsys;
889extern struct cpuacct root_cpuacct;
890
54c707e9
GC
891/* return cpu accounting group corresponding to this container */
892static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
893{
894 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
895 struct cpuacct, css);
896}
897
898/* return cpu accounting group to which this task belongs */
899static inline struct cpuacct *task_ca(struct task_struct *tsk)
900{
901 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
902 struct cpuacct, css);
903}
904
905static inline struct cpuacct *parent_ca(struct cpuacct *ca)
906{
907 if (!ca || !ca->css.cgroup->parent)
908 return NULL;
909 return cgroup_ca(ca->css.cgroup->parent);
910}
911
029632fb 912extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
913#else
914static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
915#endif
916
73fbec60
FW
917#ifdef CONFIG_PARAVIRT
918static inline u64 steal_ticks(u64 steal)
919{
920 if (unlikely(steal > NSEC_PER_SEC))
921 return div_u64(steal, TICK_NSEC);
922
923 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
924}
925#endif
926
029632fb
PZ
927static inline void inc_nr_running(struct rq *rq)
928{
929 rq->nr_running++;
930}
931
932static inline void dec_nr_running(struct rq *rq)
933{
934 rq->nr_running--;
935}
936
937extern void update_rq_clock(struct rq *rq);
938
939extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
940extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
941
942extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
943
944extern const_debug unsigned int sysctl_sched_time_avg;
945extern const_debug unsigned int sysctl_sched_nr_migrate;
946extern const_debug unsigned int sysctl_sched_migration_cost;
947
948static inline u64 sched_avg_period(void)
949{
950 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
951}
952
029632fb
PZ
953#ifdef CONFIG_SCHED_HRTICK
954
955/*
956 * Use hrtick when:
957 * - enabled by features
958 * - hrtimer is actually high res
959 */
960static inline int hrtick_enabled(struct rq *rq)
961{
962 if (!sched_feat(HRTICK))
963 return 0;
964 if (!cpu_active(cpu_of(rq)))
965 return 0;
966 return hrtimer_is_hres_active(&rq->hrtick_timer);
967}
968
969void hrtick_start(struct rq *rq, u64 delay);
970
b39e66ea
MG
971#else
972
973static inline int hrtick_enabled(struct rq *rq)
974{
975 return 0;
976}
977
029632fb
PZ
978#endif /* CONFIG_SCHED_HRTICK */
979
980#ifdef CONFIG_SMP
981extern void sched_avg_update(struct rq *rq);
982static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
983{
984 rq->rt_avg += rt_delta;
985 sched_avg_update(rq);
986}
987#else
988static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
989static inline void sched_avg_update(struct rq *rq) { }
990#endif
991
992extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
993
994#ifdef CONFIG_SMP
995#ifdef CONFIG_PREEMPT
996
997static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
998
999/*
1000 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1001 * way at the expense of forcing extra atomic operations in all
1002 * invocations. This assures that the double_lock is acquired using the
1003 * same underlying policy as the spinlock_t on this architecture, which
1004 * reduces latency compared to the unfair variant below. However, it
1005 * also adds more overhead and therefore may reduce throughput.
1006 */
1007static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1008 __releases(this_rq->lock)
1009 __acquires(busiest->lock)
1010 __acquires(this_rq->lock)
1011{
1012 raw_spin_unlock(&this_rq->lock);
1013 double_rq_lock(this_rq, busiest);
1014
1015 return 1;
1016}
1017
1018#else
1019/*
1020 * Unfair double_lock_balance: Optimizes throughput at the expense of
1021 * latency by eliminating extra atomic operations when the locks are
1022 * already in proper order on entry. This favors lower cpu-ids and will
1023 * grant the double lock to lower cpus over higher ids under contention,
1024 * regardless of entry order into the function.
1025 */
1026static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1027 __releases(this_rq->lock)
1028 __acquires(busiest->lock)
1029 __acquires(this_rq->lock)
1030{
1031 int ret = 0;
1032
1033 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1034 if (busiest < this_rq) {
1035 raw_spin_unlock(&this_rq->lock);
1036 raw_spin_lock(&busiest->lock);
1037 raw_spin_lock_nested(&this_rq->lock,
1038 SINGLE_DEPTH_NESTING);
1039 ret = 1;
1040 } else
1041 raw_spin_lock_nested(&busiest->lock,
1042 SINGLE_DEPTH_NESTING);
1043 }
1044 return ret;
1045}
1046
1047#endif /* CONFIG_PREEMPT */
1048
1049/*
1050 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1051 */
1052static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1053{
1054 if (unlikely(!irqs_disabled())) {
1055 /* printk() doesn't work good under rq->lock */
1056 raw_spin_unlock(&this_rq->lock);
1057 BUG_ON(1);
1058 }
1059
1060 return _double_lock_balance(this_rq, busiest);
1061}
1062
1063static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1064 __releases(busiest->lock)
1065{
1066 raw_spin_unlock(&busiest->lock);
1067 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1068}
1069
1070/*
1071 * double_rq_lock - safely lock two runqueues
1072 *
1073 * Note this does not disable interrupts like task_rq_lock,
1074 * you need to do so manually before calling.
1075 */
1076static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1077 __acquires(rq1->lock)
1078 __acquires(rq2->lock)
1079{
1080 BUG_ON(!irqs_disabled());
1081 if (rq1 == rq2) {
1082 raw_spin_lock(&rq1->lock);
1083 __acquire(rq2->lock); /* Fake it out ;) */
1084 } else {
1085 if (rq1 < rq2) {
1086 raw_spin_lock(&rq1->lock);
1087 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1088 } else {
1089 raw_spin_lock(&rq2->lock);
1090 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1091 }
1092 }
1093}
1094
1095/*
1096 * double_rq_unlock - safely unlock two runqueues
1097 *
1098 * Note this does not restore interrupts like task_rq_unlock,
1099 * you need to do so manually after calling.
1100 */
1101static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1102 __releases(rq1->lock)
1103 __releases(rq2->lock)
1104{
1105 raw_spin_unlock(&rq1->lock);
1106 if (rq1 != rq2)
1107 raw_spin_unlock(&rq2->lock);
1108 else
1109 __release(rq2->lock);
1110}
1111
1112#else /* CONFIG_SMP */
1113
1114/*
1115 * double_rq_lock - safely lock two runqueues
1116 *
1117 * Note this does not disable interrupts like task_rq_lock,
1118 * you need to do so manually before calling.
1119 */
1120static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1121 __acquires(rq1->lock)
1122 __acquires(rq2->lock)
1123{
1124 BUG_ON(!irqs_disabled());
1125 BUG_ON(rq1 != rq2);
1126 raw_spin_lock(&rq1->lock);
1127 __acquire(rq2->lock); /* Fake it out ;) */
1128}
1129
1130/*
1131 * double_rq_unlock - safely unlock two runqueues
1132 *
1133 * Note this does not restore interrupts like task_rq_unlock,
1134 * you need to do so manually after calling.
1135 */
1136static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1137 __releases(rq1->lock)
1138 __releases(rq2->lock)
1139{
1140 BUG_ON(rq1 != rq2);
1141 raw_spin_unlock(&rq1->lock);
1142 __release(rq2->lock);
1143}
1144
1145#endif
1146
1147extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1148extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1149extern void print_cfs_stats(struct seq_file *m, int cpu);
1150extern void print_rt_stats(struct seq_file *m, int cpu);
1151
1152extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1153extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1154
1155extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1156
1157#ifdef CONFIG_NO_HZ
1158enum rq_nohz_flag_bits {
1159 NOHZ_TICK_STOPPED,
1160 NOHZ_BALANCE_KICK,
69e1e811 1161 NOHZ_IDLE,
1c792db7
SS
1162};
1163
1164#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1165#endif
73fbec60
FW
1166
1167#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1168
1169DECLARE_PER_CPU(u64, cpu_hardirq_time);
1170DECLARE_PER_CPU(u64, cpu_softirq_time);
1171
1172#ifndef CONFIG_64BIT
1173DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1174
1175static inline void irq_time_write_begin(void)
1176{
1177 __this_cpu_inc(irq_time_seq.sequence);
1178 smp_wmb();
1179}
1180
1181static inline void irq_time_write_end(void)
1182{
1183 smp_wmb();
1184 __this_cpu_inc(irq_time_seq.sequence);
1185}
1186
1187static inline u64 irq_time_read(int cpu)
1188{
1189 u64 irq_time;
1190 unsigned seq;
1191
1192 do {
1193 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1194 irq_time = per_cpu(cpu_softirq_time, cpu) +
1195 per_cpu(cpu_hardirq_time, cpu);
1196 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1197
1198 return irq_time;
1199}
1200#else /* CONFIG_64BIT */
1201static inline void irq_time_write_begin(void)
1202{
1203}
1204
1205static inline void irq_time_write_end(void)
1206{
1207}
1208
1209static inline u64 irq_time_read(int cpu)
1210{
1211 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1212}
1213#endif /* CONFIG_64BIT */
1214#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1215