Linux 3.4-rc3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
f41d911f 28
5b61b0ba
MG
29#define RCU_KTHREAD_PRIO 1
30
31#ifdef CONFIG_RCU_BOOST
32#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33#else
34#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35#endif
36
26845c28
PM
37/*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42static void __init rcu_bootup_announce_oddness(void)
43{
44#ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46#endif
47#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50#endif
51#ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53#endif
54#ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57#endif
58#ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60#endif
61#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63#endif
81a294c4 64#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
a858af28
PM
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66#endif
67#if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
69#endif
70#if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
72#endif
73}
74
f41d911f
PM
75#ifdef CONFIG_TREE_PREEMPT_RCU
76
e99033c5 77struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
f41d911f 78DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
27f4d280 79static struct rcu_state *rcu_state = &rcu_preempt_state;
f41d911f 80
10f39bb1 81static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06
PM
82static int rcu_preempted_readers_exp(struct rcu_node *rnp);
83
f41d911f
PM
84/*
85 * Tell them what RCU they are running.
86 */
0e0fc1c2 87static void __init rcu_bootup_announce(void)
f41d911f 88{
6cc68793 89 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
26845c28 90 rcu_bootup_announce_oddness();
f41d911f
PM
91}
92
93/*
94 * Return the number of RCU-preempt batches processed thus far
95 * for debug and statistics.
96 */
97long rcu_batches_completed_preempt(void)
98{
99 return rcu_preempt_state.completed;
100}
101EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
102
103/*
104 * Return the number of RCU batches processed thus far for debug & stats.
105 */
106long rcu_batches_completed(void)
107{
108 return rcu_batches_completed_preempt();
109}
110EXPORT_SYMBOL_GPL(rcu_batches_completed);
111
bf66f18e
PM
112/*
113 * Force a quiescent state for preemptible RCU.
114 */
115void rcu_force_quiescent_state(void)
116{
117 force_quiescent_state(&rcu_preempt_state, 0);
118}
119EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
120
f41d911f 121/*
6cc68793 122 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
123 * that this just means that the task currently running on the CPU is
124 * not in a quiescent state. There might be any number of tasks blocked
125 * while in an RCU read-side critical section.
25502a6c
PM
126 *
127 * Unlike the other rcu_*_qs() functions, callers to this function
128 * must disable irqs in order to protect the assignment to
129 * ->rcu_read_unlock_special.
f41d911f 130 */
c3422bea 131static void rcu_preempt_qs(int cpu)
f41d911f
PM
132{
133 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 134
e4cc1f22 135 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 136 barrier();
e4cc1f22 137 if (rdp->passed_quiesce == 0)
d4c08f2a 138 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
e4cc1f22 139 rdp->passed_quiesce = 1;
25502a6c 140 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
141}
142
143/*
c3422bea
PM
144 * We have entered the scheduler, and the current task might soon be
145 * context-switched away from. If this task is in an RCU read-side
146 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
147 * record that fact, so we enqueue the task on the blkd_tasks list.
148 * The task will dequeue itself when it exits the outermost enclosing
149 * RCU read-side critical section. Therefore, the current grace period
150 * cannot be permitted to complete until the blkd_tasks list entries
151 * predating the current grace period drain, in other words, until
152 * rnp->gp_tasks becomes NULL.
c3422bea
PM
153 *
154 * Caller must disable preemption.
f41d911f 155 */
c3422bea 156static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
157{
158 struct task_struct *t = current;
c3422bea 159 unsigned long flags;
f41d911f
PM
160 struct rcu_data *rdp;
161 struct rcu_node *rnp;
162
10f39bb1 163 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
164 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
165
166 /* Possibly blocking in an RCU read-side critical section. */
394f99a9 167 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 168 rnp = rdp->mynode;
1304afb2 169 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 170 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 171 t->rcu_blocked_node = rnp;
f41d911f
PM
172
173 /*
174 * If this CPU has already checked in, then this task
175 * will hold up the next grace period rather than the
176 * current grace period. Queue the task accordingly.
177 * If the task is queued for the current grace period
178 * (i.e., this CPU has not yet passed through a quiescent
179 * state for the current grace period), then as long
180 * as that task remains queued, the current grace period
12f5f524
PM
181 * cannot end. Note that there is some uncertainty as
182 * to exactly when the current grace period started.
183 * We take a conservative approach, which can result
184 * in unnecessarily waiting on tasks that started very
185 * slightly after the current grace period began. C'est
186 * la vie!!!
b0e165c0
PM
187 *
188 * But first, note that the current CPU must still be
189 * on line!
f41d911f 190 */
b0e165c0 191 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 192 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
193 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
194 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
195 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
196#ifdef CONFIG_RCU_BOOST
197 if (rnp->boost_tasks != NULL)
198 rnp->boost_tasks = rnp->gp_tasks;
199#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
200 } else {
201 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
202 if (rnp->qsmask & rdp->grpmask)
203 rnp->gp_tasks = &t->rcu_node_entry;
204 }
d4c08f2a
PM
205 trace_rcu_preempt_task(rdp->rsp->name,
206 t->pid,
207 (rnp->qsmask & rdp->grpmask)
208 ? rnp->gpnum
209 : rnp->gpnum + 1);
1304afb2 210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
211 } else if (t->rcu_read_lock_nesting < 0 &&
212 t->rcu_read_unlock_special) {
213
214 /*
215 * Complete exit from RCU read-side critical section on
216 * behalf of preempted instance of __rcu_read_unlock().
217 */
218 rcu_read_unlock_special(t);
f41d911f
PM
219 }
220
221 /*
222 * Either we were not in an RCU read-side critical section to
223 * begin with, or we have now recorded that critical section
224 * globally. Either way, we can now note a quiescent state
225 * for this CPU. Again, if we were in an RCU read-side critical
226 * section, and if that critical section was blocking the current
227 * grace period, then the fact that the task has been enqueued
228 * means that we continue to block the current grace period.
229 */
e7d8842e 230 local_irq_save(flags);
25502a6c 231 rcu_preempt_qs(cpu);
e7d8842e 232 local_irq_restore(flags);
f41d911f
PM
233}
234
235/*
6cc68793 236 * Tree-preemptible RCU implementation for rcu_read_lock().
f41d911f
PM
237 * Just increment ->rcu_read_lock_nesting, shared state will be updated
238 * if we block.
239 */
240void __rcu_read_lock(void)
241{
80dcf60e 242 current->rcu_read_lock_nesting++;
f41d911f
PM
243 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
244}
245EXPORT_SYMBOL_GPL(__rcu_read_lock);
246
fc2219d4
PM
247/*
248 * Check for preempted RCU readers blocking the current grace period
249 * for the specified rcu_node structure. If the caller needs a reliable
250 * answer, it must hold the rcu_node's ->lock.
251 */
27f4d280 252static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 253{
12f5f524 254 return rnp->gp_tasks != NULL;
fc2219d4
PM
255}
256
b668c9cf
PM
257/*
258 * Record a quiescent state for all tasks that were previously queued
259 * on the specified rcu_node structure and that were blocking the current
260 * RCU grace period. The caller must hold the specified rnp->lock with
261 * irqs disabled, and this lock is released upon return, but irqs remain
262 * disabled.
263 */
d3f6bad3 264static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
265 __releases(rnp->lock)
266{
267 unsigned long mask;
268 struct rcu_node *rnp_p;
269
27f4d280 270 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
272 return; /* Still need more quiescent states! */
273 }
274
275 rnp_p = rnp->parent;
276 if (rnp_p == NULL) {
277 /*
278 * Either there is only one rcu_node in the tree,
279 * or tasks were kicked up to root rcu_node due to
280 * CPUs going offline.
281 */
d3f6bad3 282 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
283 return;
284 }
285
286 /* Report up the rest of the hierarchy. */
287 mask = rnp->grpmask;
1304afb2
PM
288 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
289 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
d3f6bad3 290 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
291}
292
12f5f524
PM
293/*
294 * Advance a ->blkd_tasks-list pointer to the next entry, instead
295 * returning NULL if at the end of the list.
296 */
297static struct list_head *rcu_next_node_entry(struct task_struct *t,
298 struct rcu_node *rnp)
299{
300 struct list_head *np;
301
302 np = t->rcu_node_entry.next;
303 if (np == &rnp->blkd_tasks)
304 np = NULL;
305 return np;
306}
307
b668c9cf
PM
308/*
309 * Handle special cases during rcu_read_unlock(), such as needing to
310 * notify RCU core processing or task having blocked during the RCU
311 * read-side critical section.
312 */
be0e1e21 313static noinline void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
314{
315 int empty;
d9a3da06 316 int empty_exp;
389abd48 317 int empty_exp_now;
f41d911f 318 unsigned long flags;
12f5f524 319 struct list_head *np;
82e78d80
PM
320#ifdef CONFIG_RCU_BOOST
321 struct rt_mutex *rbmp = NULL;
322#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
323 struct rcu_node *rnp;
324 int special;
325
326 /* NMI handlers cannot block and cannot safely manipulate state. */
327 if (in_nmi())
328 return;
329
330 local_irq_save(flags);
331
332 /*
333 * If RCU core is waiting for this CPU to exit critical section,
334 * let it know that we have done so.
335 */
336 special = t->rcu_read_unlock_special;
337 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 338 rcu_preempt_qs(smp_processor_id());
f41d911f
PM
339 }
340
341 /* Hardware IRQ handlers cannot block. */
ec433f0c 342 if (in_irq() || in_serving_softirq()) {
f41d911f
PM
343 local_irq_restore(flags);
344 return;
345 }
346
347 /* Clean up if blocked during RCU read-side critical section. */
348 if (special & RCU_READ_UNLOCK_BLOCKED) {
349 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
350
dd5d19ba
PM
351 /*
352 * Remove this task from the list it blocked on. The
353 * task can migrate while we acquire the lock, but at
354 * most one time. So at most two passes through loop.
355 */
356 for (;;) {
86848966 357 rnp = t->rcu_blocked_node;
1304afb2 358 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
86848966 359 if (rnp == t->rcu_blocked_node)
dd5d19ba 360 break;
1304afb2 361 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 362 }
27f4d280 363 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
364 empty_exp = !rcu_preempted_readers_exp(rnp);
365 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 366 np = rcu_next_node_entry(t, rnp);
f41d911f 367 list_del_init(&t->rcu_node_entry);
82e78d80 368 t->rcu_blocked_node = NULL;
d4c08f2a
PM
369 trace_rcu_unlock_preempted_task("rcu_preempt",
370 rnp->gpnum, t->pid);
12f5f524
PM
371 if (&t->rcu_node_entry == rnp->gp_tasks)
372 rnp->gp_tasks = np;
373 if (&t->rcu_node_entry == rnp->exp_tasks)
374 rnp->exp_tasks = np;
27f4d280
PM
375#ifdef CONFIG_RCU_BOOST
376 if (&t->rcu_node_entry == rnp->boost_tasks)
377 rnp->boost_tasks = np;
82e78d80
PM
378 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
379 if (t->rcu_boost_mutex) {
380 rbmp = t->rcu_boost_mutex;
381 t->rcu_boost_mutex = NULL;
7765be2f 382 }
27f4d280 383#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
384
385 /*
386 * If this was the last task on the current list, and if
387 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
388 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
389 * so we must take a snapshot of the expedited state.
f41d911f 390 */
389abd48 391 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a
PM
392 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
393 trace_rcu_quiescent_state_report("preempt_rcu",
394 rnp->gpnum,
395 0, rnp->qsmask,
396 rnp->level,
397 rnp->grplo,
398 rnp->grphi,
399 !!rnp->gp_tasks);
d3f6bad3 400 rcu_report_unblock_qs_rnp(rnp, flags);
d4c08f2a
PM
401 } else
402 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 403
27f4d280
PM
404#ifdef CONFIG_RCU_BOOST
405 /* Unboost if we were boosted. */
82e78d80
PM
406 if (rbmp)
407 rt_mutex_unlock(rbmp);
27f4d280
PM
408#endif /* #ifdef CONFIG_RCU_BOOST */
409
d9a3da06
PM
410 /*
411 * If this was the last task on the expedited lists,
412 * then we need to report up the rcu_node hierarchy.
413 */
389abd48 414 if (!empty_exp && empty_exp_now)
b40d293e 415 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
416 } else {
417 local_irq_restore(flags);
f41d911f 418 }
f41d911f
PM
419}
420
421/*
6cc68793 422 * Tree-preemptible RCU implementation for rcu_read_unlock().
f41d911f
PM
423 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
424 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
425 * invoke rcu_read_unlock_special() to clean up after a context switch
426 * in an RCU read-side critical section and other special cases.
427 */
428void __rcu_read_unlock(void)
429{
430 struct task_struct *t = current;
431
10f39bb1
PM
432 if (t->rcu_read_lock_nesting != 1)
433 --t->rcu_read_lock_nesting;
434 else {
6206ab9b 435 barrier(); /* critical section before exit code. */
10f39bb1
PM
436 t->rcu_read_lock_nesting = INT_MIN;
437 barrier(); /* assign before ->rcu_read_unlock_special load */
be0e1e21
PM
438 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
439 rcu_read_unlock_special(t);
10f39bb1
PM
440 barrier(); /* ->rcu_read_unlock_special load before assign */
441 t->rcu_read_lock_nesting = 0;
be0e1e21 442 }
cba8244a 443#ifdef CONFIG_PROVE_LOCKING
10f39bb1
PM
444 {
445 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
446
447 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
448 }
cba8244a 449#endif /* #ifdef CONFIG_PROVE_LOCKING */
f41d911f
PM
450}
451EXPORT_SYMBOL_GPL(__rcu_read_unlock);
452
1ed509a2
PM
453#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
454
455/*
456 * Dump detailed information for all tasks blocking the current RCU
457 * grace period on the specified rcu_node structure.
458 */
459static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
460{
461 unsigned long flags;
1ed509a2
PM
462 struct task_struct *t;
463
27f4d280 464 if (!rcu_preempt_blocked_readers_cgp(rnp))
12f5f524
PM
465 return;
466 raw_spin_lock_irqsave(&rnp->lock, flags);
467 t = list_entry(rnp->gp_tasks,
468 struct task_struct, rcu_node_entry);
469 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
470 sched_show_task(t);
471 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
472}
473
474/*
475 * Dump detailed information for all tasks blocking the current RCU
476 * grace period.
477 */
478static void rcu_print_detail_task_stall(struct rcu_state *rsp)
479{
480 struct rcu_node *rnp = rcu_get_root(rsp);
481
482 rcu_print_detail_task_stall_rnp(rnp);
483 rcu_for_each_leaf_node(rsp, rnp)
484 rcu_print_detail_task_stall_rnp(rnp);
485}
486
487#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489static void rcu_print_detail_task_stall(struct rcu_state *rsp)
490{
491}
492
493#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
494
a858af28
PM
495#ifdef CONFIG_RCU_CPU_STALL_INFO
496
497static void rcu_print_task_stall_begin(struct rcu_node *rnp)
498{
499 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
500 rnp->level, rnp->grplo, rnp->grphi);
501}
502
503static void rcu_print_task_stall_end(void)
504{
505 printk(KERN_CONT "\n");
506}
507
508#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
509
510static void rcu_print_task_stall_begin(struct rcu_node *rnp)
511{
512}
513
514static void rcu_print_task_stall_end(void)
515{
516}
517
518#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
519
f41d911f
PM
520/*
521 * Scan the current list of tasks blocked within RCU read-side critical
522 * sections, printing out the tid of each.
523 */
9bc8b558 524static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 525{
f41d911f 526 struct task_struct *t;
9bc8b558 527 int ndetected = 0;
f41d911f 528
27f4d280 529 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 530 return 0;
a858af28 531 rcu_print_task_stall_begin(rnp);
12f5f524
PM
532 t = list_entry(rnp->gp_tasks,
533 struct task_struct, rcu_node_entry);
9bc8b558 534 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
a858af28 535 printk(KERN_CONT " P%d", t->pid);
9bc8b558
PM
536 ndetected++;
537 }
a858af28 538 rcu_print_task_stall_end();
9bc8b558 539 return ndetected;
f41d911f
PM
540}
541
53d84e00
PM
542/*
543 * Suppress preemptible RCU's CPU stall warnings by pushing the
544 * time of the next stall-warning message comfortably far into the
545 * future.
546 */
547static void rcu_preempt_stall_reset(void)
548{
549 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
550}
551
b0e165c0
PM
552/*
553 * Check that the list of blocked tasks for the newly completed grace
554 * period is in fact empty. It is a serious bug to complete a grace
555 * period that still has RCU readers blocked! This function must be
556 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
557 * must be held by the caller.
12f5f524
PM
558 *
559 * Also, if there are blocked tasks on the list, they automatically
560 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
561 */
562static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
563{
27f4d280 564 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
565 if (!list_empty(&rnp->blkd_tasks))
566 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 567 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
568}
569
33f76148
PM
570#ifdef CONFIG_HOTPLUG_CPU
571
dd5d19ba
PM
572/*
573 * Handle tasklist migration for case in which all CPUs covered by the
574 * specified rcu_node have gone offline. Move them up to the root
575 * rcu_node. The reason for not just moving them to the immediate
576 * parent is to remove the need for rcu_read_unlock_special() to
577 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
578 * Returns true if there were tasks blocking the current RCU grace
579 * period.
dd5d19ba 580 *
237c80c5
PM
581 * Returns 1 if there was previously a task blocking the current grace
582 * period on the specified rcu_node structure.
583 *
dd5d19ba
PM
584 * The caller must hold rnp->lock with irqs disabled.
585 */
237c80c5
PM
586static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
587 struct rcu_node *rnp,
588 struct rcu_data *rdp)
dd5d19ba 589{
dd5d19ba
PM
590 struct list_head *lp;
591 struct list_head *lp_root;
d9a3da06 592 int retval = 0;
dd5d19ba 593 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 594 struct task_struct *t;
dd5d19ba 595
86848966
PM
596 if (rnp == rnp_root) {
597 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 598 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 599 }
12f5f524
PM
600
601 /* If we are on an internal node, complain bitterly. */
602 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
603
604 /*
12f5f524
PM
605 * Move tasks up to root rcu_node. Don't try to get fancy for
606 * this corner-case operation -- just put this node's tasks
607 * at the head of the root node's list, and update the root node's
608 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
609 * if non-NULL. This might result in waiting for more tasks than
610 * absolutely necessary, but this is a good performance/complexity
611 * tradeoff.
dd5d19ba 612 */
2036d94a 613 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
614 retval |= RCU_OFL_TASKS_NORM_GP;
615 if (rcu_preempted_readers_exp(rnp))
616 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
617 lp = &rnp->blkd_tasks;
618 lp_root = &rnp_root->blkd_tasks;
619 while (!list_empty(lp)) {
620 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
621 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
622 list_del(&t->rcu_node_entry);
623 t->rcu_blocked_node = rnp_root;
624 list_add(&t->rcu_node_entry, lp_root);
625 if (&t->rcu_node_entry == rnp->gp_tasks)
626 rnp_root->gp_tasks = rnp->gp_tasks;
627 if (&t->rcu_node_entry == rnp->exp_tasks)
628 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
629#ifdef CONFIG_RCU_BOOST
630 if (&t->rcu_node_entry == rnp->boost_tasks)
631 rnp_root->boost_tasks = rnp->boost_tasks;
632#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 633 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 634 }
27f4d280
PM
635
636#ifdef CONFIG_RCU_BOOST
637 /* In case root is being boosted and leaf is not. */
638 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
639 if (rnp_root->boost_tasks != NULL &&
640 rnp_root->boost_tasks != rnp_root->gp_tasks)
641 rnp_root->boost_tasks = rnp_root->gp_tasks;
642 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
643#endif /* #ifdef CONFIG_RCU_BOOST */
644
12f5f524
PM
645 rnp->gp_tasks = NULL;
646 rnp->exp_tasks = NULL;
237c80c5 647 return retval;
dd5d19ba
PM
648}
649
e5601400
PM
650#endif /* #ifdef CONFIG_HOTPLUG_CPU */
651
33f76148 652/*
6cc68793 653 * Do CPU-offline processing for preemptible RCU.
33f76148 654 */
e5601400 655static void rcu_preempt_cleanup_dead_cpu(int cpu)
33f76148 656{
e5601400 657 rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
33f76148
PM
658}
659
f41d911f
PM
660/*
661 * Check for a quiescent state from the current CPU. When a task blocks,
662 * the task is recorded in the corresponding CPU's rcu_node structure,
663 * which is checked elsewhere.
664 *
665 * Caller must disable hard irqs.
666 */
667static void rcu_preempt_check_callbacks(int cpu)
668{
669 struct task_struct *t = current;
670
671 if (t->rcu_read_lock_nesting == 0) {
c3422bea 672 rcu_preempt_qs(cpu);
f41d911f
PM
673 return;
674 }
10f39bb1
PM
675 if (t->rcu_read_lock_nesting > 0 &&
676 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 677 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
678}
679
680/*
6cc68793 681 * Process callbacks for preemptible RCU.
f41d911f
PM
682 */
683static void rcu_preempt_process_callbacks(void)
684{
685 __rcu_process_callbacks(&rcu_preempt_state,
686 &__get_cpu_var(rcu_preempt_data));
687}
688
a46e0899
PM
689#ifdef CONFIG_RCU_BOOST
690
09223371
SL
691static void rcu_preempt_do_callbacks(void)
692{
693 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
694}
695
a46e0899
PM
696#endif /* #ifdef CONFIG_RCU_BOOST */
697
f41d911f 698/*
6cc68793 699 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
700 */
701void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
702{
486e2593 703 __call_rcu(head, func, &rcu_preempt_state, 0);
f41d911f
PM
704}
705EXPORT_SYMBOL_GPL(call_rcu);
706
486e2593
PM
707/*
708 * Queue an RCU callback for lazy invocation after a grace period.
709 * This will likely be later named something like "call_rcu_lazy()",
710 * but this change will require some way of tagging the lazy RCU
711 * callbacks in the list of pending callbacks. Until then, this
712 * function may only be called from __kfree_rcu().
713 */
714void kfree_call_rcu(struct rcu_head *head,
715 void (*func)(struct rcu_head *rcu))
716{
717 __call_rcu(head, func, &rcu_preempt_state, 1);
718}
719EXPORT_SYMBOL_GPL(kfree_call_rcu);
720
6ebb237b
PM
721/**
722 * synchronize_rcu - wait until a grace period has elapsed.
723 *
724 * Control will return to the caller some time after a full grace
725 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
726 * read-side critical sections have completed. Note, however, that
727 * upon return from synchronize_rcu(), the caller might well be executing
728 * concurrently with new RCU read-side critical sections that began while
729 * synchronize_rcu() was waiting. RCU read-side critical sections are
730 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
6ebb237b
PM
731 */
732void synchronize_rcu(void)
733{
fe15d706
PM
734 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
735 !lock_is_held(&rcu_lock_map) &&
736 !lock_is_held(&rcu_sched_lock_map),
737 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
738 if (!rcu_scheduler_active)
739 return;
2c42818e 740 wait_rcu_gp(call_rcu);
6ebb237b
PM
741}
742EXPORT_SYMBOL_GPL(synchronize_rcu);
743
d9a3da06
PM
744static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
745static long sync_rcu_preempt_exp_count;
746static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
747
748/*
749 * Return non-zero if there are any tasks in RCU read-side critical
750 * sections blocking the current preemptible-RCU expedited grace period.
751 * If there is no preemptible-RCU expedited grace period currently in
752 * progress, returns zero unconditionally.
753 */
754static int rcu_preempted_readers_exp(struct rcu_node *rnp)
755{
12f5f524 756 return rnp->exp_tasks != NULL;
d9a3da06
PM
757}
758
759/*
760 * return non-zero if there is no RCU expedited grace period in progress
761 * for the specified rcu_node structure, in other words, if all CPUs and
762 * tasks covered by the specified rcu_node structure have done their bit
763 * for the current expedited grace period. Works only for preemptible
764 * RCU -- other RCU implementation use other means.
765 *
766 * Caller must hold sync_rcu_preempt_exp_mutex.
767 */
768static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
769{
770 return !rcu_preempted_readers_exp(rnp) &&
771 ACCESS_ONCE(rnp->expmask) == 0;
772}
773
774/*
775 * Report the exit from RCU read-side critical section for the last task
776 * that queued itself during or before the current expedited preemptible-RCU
777 * grace period. This event is reported either to the rcu_node structure on
778 * which the task was queued or to one of that rcu_node structure's ancestors,
779 * recursively up the tree. (Calm down, calm down, we do the recursion
780 * iteratively!)
781 *
b40d293e
TG
782 * Most callers will set the "wake" flag, but the task initiating the
783 * expedited grace period need not wake itself.
784 *
d9a3da06
PM
785 * Caller must hold sync_rcu_preempt_exp_mutex.
786 */
b40d293e
TG
787static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
788 bool wake)
d9a3da06
PM
789{
790 unsigned long flags;
791 unsigned long mask;
792
1304afb2 793 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 794 for (;;) {
131906b0
PM
795 if (!sync_rcu_preempt_exp_done(rnp)) {
796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 797 break;
131906b0 798 }
d9a3da06 799 if (rnp->parent == NULL) {
131906b0 800 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b40d293e
TG
801 if (wake)
802 wake_up(&sync_rcu_preempt_exp_wq);
d9a3da06
PM
803 break;
804 }
805 mask = rnp->grpmask;
1304afb2 806 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 807 rnp = rnp->parent;
1304afb2 808 raw_spin_lock(&rnp->lock); /* irqs already disabled */
d9a3da06
PM
809 rnp->expmask &= ~mask;
810 }
d9a3da06
PM
811}
812
813/*
814 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
815 * grace period for the specified rcu_node structure. If there are no such
816 * tasks, report it up the rcu_node hierarchy.
817 *
818 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
819 */
820static void
821sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
822{
1217ed1b 823 unsigned long flags;
12f5f524 824 int must_wait = 0;
d9a3da06 825
1217ed1b
PM
826 raw_spin_lock_irqsave(&rnp->lock, flags);
827 if (list_empty(&rnp->blkd_tasks))
828 raw_spin_unlock_irqrestore(&rnp->lock, flags);
829 else {
12f5f524 830 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 831 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
832 must_wait = 1;
833 }
d9a3da06 834 if (!must_wait)
b40d293e 835 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
836}
837
236fefaf
PM
838/**
839 * synchronize_rcu_expedited - Brute-force RCU grace period
840 *
841 * Wait for an RCU-preempt grace period, but expedite it. The basic
842 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
843 * the ->blkd_tasks lists and wait for this list to drain. This consumes
844 * significant time on all CPUs and is unfriendly to real-time workloads,
845 * so is thus not recommended for any sort of common-case code.
846 * In fact, if you are using synchronize_rcu_expedited() in a loop,
847 * please restructure your code to batch your updates, and then Use a
848 * single synchronize_rcu() instead.
849 *
850 * Note that it is illegal to call this function while holding any lock
851 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
852 * to call this function from a CPU-hotplug notifier. Failing to observe
853 * these restriction will result in deadlock.
019129d5
PM
854 */
855void synchronize_rcu_expedited(void)
856{
d9a3da06
PM
857 unsigned long flags;
858 struct rcu_node *rnp;
859 struct rcu_state *rsp = &rcu_preempt_state;
860 long snap;
861 int trycount = 0;
862
863 smp_mb(); /* Caller's modifications seen first by other CPUs. */
864 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
865 smp_mb(); /* Above access cannot bleed into critical section. */
866
867 /*
868 * Acquire lock, falling back to synchronize_rcu() if too many
869 * lock-acquisition failures. Of course, if someone does the
870 * expedited grace period for us, just leave.
871 */
872 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
873 if (trycount++ < 10)
874 udelay(trycount * num_online_cpus());
875 else {
876 synchronize_rcu();
877 return;
878 }
879 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
880 goto mb_ret; /* Others did our work for us. */
881 }
882 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
883 goto unlock_mb_ret; /* Others did our work for us. */
884
12f5f524 885 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
886 synchronize_sched_expedited();
887
1304afb2 888 raw_spin_lock_irqsave(&rsp->onofflock, flags);
d9a3da06
PM
889
890 /* Initialize ->expmask for all non-leaf rcu_node structures. */
891 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1304afb2 892 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
d9a3da06 893 rnp->expmask = rnp->qsmaskinit;
1304afb2 894 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
d9a3da06
PM
895 }
896
12f5f524 897 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
898 rcu_for_each_leaf_node(rsp, rnp)
899 sync_rcu_preempt_exp_init(rsp, rnp);
900 if (NUM_RCU_NODES > 1)
901 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
902
1304afb2 903 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
d9a3da06 904
12f5f524 905 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
906 rnp = rcu_get_root(rsp);
907 wait_event(sync_rcu_preempt_exp_wq,
908 sync_rcu_preempt_exp_done(rnp));
909
910 /* Clean up and exit. */
911 smp_mb(); /* ensure expedited GP seen before counter increment. */
912 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
913unlock_mb_ret:
914 mutex_unlock(&sync_rcu_preempt_exp_mutex);
915mb_ret:
916 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
917}
918EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
919
f41d911f 920/*
6cc68793 921 * Check to see if there is any immediate preemptible-RCU-related work
f41d911f
PM
922 * to be done.
923 */
924static int rcu_preempt_pending(int cpu)
925{
926 return __rcu_pending(&rcu_preempt_state,
927 &per_cpu(rcu_preempt_data, cpu));
928}
929
930/*
30fbcc90 931 * Does preemptible RCU have callbacks on this CPU?
f41d911f 932 */
30fbcc90 933static int rcu_preempt_cpu_has_callbacks(int cpu)
f41d911f
PM
934{
935 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
936}
937
e74f4c45
PM
938/**
939 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
940 */
941void rcu_barrier(void)
942{
943 _rcu_barrier(&rcu_preempt_state, call_rcu);
944}
945EXPORT_SYMBOL_GPL(rcu_barrier);
946
f41d911f 947/*
6cc68793 948 * Initialize preemptible RCU's per-CPU data.
f41d911f
PM
949 */
950static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
951{
952 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
953}
954
e74f4c45 955/*
e5601400
PM
956 * Move preemptible RCU's callbacks from dying CPU to other online CPU
957 * and record a quiescent state.
e74f4c45 958 */
e5601400 959static void rcu_preempt_cleanup_dying_cpu(void)
e74f4c45 960{
e5601400 961 rcu_cleanup_dying_cpu(&rcu_preempt_state);
e74f4c45
PM
962}
963
1eba8f84 964/*
6cc68793 965 * Initialize preemptible RCU's state structures.
1eba8f84
PM
966 */
967static void __init __rcu_init_preempt(void)
968{
394f99a9 969 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
970}
971
f41d911f 972/*
6cc68793 973 * Check for a task exiting while in a preemptible-RCU read-side
f41d911f
PM
974 * critical section, clean up if so. No need to issue warnings,
975 * as debug_check_no_locks_held() already does this if lockdep
976 * is enabled.
977 */
978void exit_rcu(void)
979{
980 struct task_struct *t = current;
981
982 if (t->rcu_read_lock_nesting == 0)
983 return;
984 t->rcu_read_lock_nesting = 1;
13491a0e 985 __rcu_read_unlock();
f41d911f
PM
986}
987
988#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
989
27f4d280
PM
990static struct rcu_state *rcu_state = &rcu_sched_state;
991
f41d911f
PM
992/*
993 * Tell them what RCU they are running.
994 */
0e0fc1c2 995static void __init rcu_bootup_announce(void)
f41d911f
PM
996{
997 printk(KERN_INFO "Hierarchical RCU implementation.\n");
26845c28 998 rcu_bootup_announce_oddness();
f41d911f
PM
999}
1000
1001/*
1002 * Return the number of RCU batches processed thus far for debug & stats.
1003 */
1004long rcu_batches_completed(void)
1005{
1006 return rcu_batches_completed_sched();
1007}
1008EXPORT_SYMBOL_GPL(rcu_batches_completed);
1009
bf66f18e
PM
1010/*
1011 * Force a quiescent state for RCU, which, because there is no preemptible
1012 * RCU, becomes the same as rcu-sched.
1013 */
1014void rcu_force_quiescent_state(void)
1015{
1016 rcu_sched_force_quiescent_state();
1017}
1018EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1019
f41d911f 1020/*
6cc68793 1021 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1022 * CPUs being in quiescent states.
1023 */
c3422bea 1024static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
1025{
1026}
1027
fc2219d4 1028/*
6cc68793 1029 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
1030 * RCU readers.
1031 */
27f4d280 1032static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
1033{
1034 return 0;
1035}
1036
b668c9cf
PM
1037#ifdef CONFIG_HOTPLUG_CPU
1038
1039/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 1040static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 1041{
1304afb2 1042 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
1043}
1044
1045#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1ed509a2 1047/*
6cc68793 1048 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1049 * tasks blocked within RCU read-side critical sections.
1050 */
1051static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1052{
1053}
1054
f41d911f 1055/*
6cc68793 1056 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1057 * tasks blocked within RCU read-side critical sections.
1058 */
9bc8b558 1059static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1060{
9bc8b558 1061 return 0;
f41d911f
PM
1062}
1063
53d84e00
PM
1064/*
1065 * Because preemptible RCU does not exist, there is no need to suppress
1066 * its CPU stall warnings.
1067 */
1068static void rcu_preempt_stall_reset(void)
1069{
1070}
1071
b0e165c0 1072/*
6cc68793 1073 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1074 * so there is no need to check for blocked tasks. So check only for
1075 * bogus qsmask values.
b0e165c0
PM
1076 */
1077static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1078{
49e29126 1079 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1080}
1081
33f76148
PM
1082#ifdef CONFIG_HOTPLUG_CPU
1083
dd5d19ba 1084/*
6cc68793 1085 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1086 * tasks that were blocked within RCU read-side critical sections, and
1087 * such non-existent tasks cannot possibly have been blocking the current
1088 * grace period.
dd5d19ba 1089 */
237c80c5
PM
1090static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1091 struct rcu_node *rnp,
1092 struct rcu_data *rdp)
dd5d19ba 1093{
237c80c5 1094 return 0;
dd5d19ba
PM
1095}
1096
e5601400
PM
1097#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1098
33f76148 1099/*
6cc68793 1100 * Because preemptible RCU does not exist, it never needs CPU-offline
33f76148
PM
1101 * processing.
1102 */
e5601400 1103static void rcu_preempt_cleanup_dead_cpu(int cpu)
33f76148
PM
1104{
1105}
1106
f41d911f 1107/*
6cc68793 1108 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1109 * to check.
1110 */
1eba8f84 1111static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1112{
1113}
1114
1115/*
6cc68793 1116 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1117 * to process.
1118 */
1eba8f84 1119static void rcu_preempt_process_callbacks(void)
f41d911f
PM
1120{
1121}
1122
486e2593
PM
1123/*
1124 * Queue an RCU callback for lazy invocation after a grace period.
1125 * This will likely be later named something like "call_rcu_lazy()",
1126 * but this change will require some way of tagging the lazy RCU
1127 * callbacks in the list of pending callbacks. Until then, this
1128 * function may only be called from __kfree_rcu().
1129 *
1130 * Because there is no preemptible RCU, we use RCU-sched instead.
1131 */
1132void kfree_call_rcu(struct rcu_head *head,
1133 void (*func)(struct rcu_head *rcu))
1134{
1135 __call_rcu(head, func, &rcu_sched_state, 1);
1136}
1137EXPORT_SYMBOL_GPL(kfree_call_rcu);
1138
019129d5
PM
1139/*
1140 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1141 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1142 */
1143void synchronize_rcu_expedited(void)
1144{
1145 synchronize_sched_expedited();
1146}
1147EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1148
d9a3da06
PM
1149#ifdef CONFIG_HOTPLUG_CPU
1150
1151/*
6cc68793 1152 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1153 * report on tasks preempted in RCU read-side critical sections during
1154 * expedited RCU grace periods.
1155 */
b40d293e
TG
1156static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1157 bool wake)
d9a3da06 1158{
d9a3da06
PM
1159}
1160
1161#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1162
f41d911f 1163/*
6cc68793 1164 * Because preemptible RCU does not exist, it never has any work to do.
f41d911f
PM
1165 */
1166static int rcu_preempt_pending(int cpu)
1167{
1168 return 0;
1169}
1170
1171/*
30fbcc90 1172 * Because preemptible RCU does not exist, it never has callbacks
f41d911f 1173 */
30fbcc90 1174static int rcu_preempt_cpu_has_callbacks(int cpu)
f41d911f
PM
1175{
1176 return 0;
1177}
1178
e74f4c45 1179/*
6cc68793 1180 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1181 * another name for rcu_barrier_sched().
1182 */
1183void rcu_barrier(void)
1184{
1185 rcu_barrier_sched();
1186}
1187EXPORT_SYMBOL_GPL(rcu_barrier);
1188
f41d911f 1189/*
6cc68793 1190 * Because preemptible RCU does not exist, there is no per-CPU
f41d911f
PM
1191 * data to initialize.
1192 */
1193static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1194{
1195}
1196
e74f4c45 1197/*
e5601400 1198 * Because there is no preemptible RCU, there is no cleanup to do.
e74f4c45 1199 */
e5601400 1200static void rcu_preempt_cleanup_dying_cpu(void)
e74f4c45
PM
1201{
1202}
1203
1eba8f84 1204/*
6cc68793 1205 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1206 */
1207static void __init __rcu_init_preempt(void)
1208{
1209}
1210
f41d911f 1211#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1212
27f4d280
PM
1213#ifdef CONFIG_RCU_BOOST
1214
1215#include "rtmutex_common.h"
1216
0ea1f2eb
PM
1217#ifdef CONFIG_RCU_TRACE
1218
1219static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1220{
1221 if (list_empty(&rnp->blkd_tasks))
1222 rnp->n_balk_blkd_tasks++;
1223 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1224 rnp->n_balk_exp_gp_tasks++;
1225 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1226 rnp->n_balk_boost_tasks++;
1227 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1228 rnp->n_balk_notblocked++;
1229 else if (rnp->gp_tasks != NULL &&
a9f4793d 1230 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1231 rnp->n_balk_notyet++;
1232 else
1233 rnp->n_balk_nos++;
1234}
1235
1236#else /* #ifdef CONFIG_RCU_TRACE */
1237
1238static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1239{
1240}
1241
1242#endif /* #else #ifdef CONFIG_RCU_TRACE */
1243
27f4d280
PM
1244/*
1245 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1246 * or ->boost_tasks, advancing the pointer to the next task in the
1247 * ->blkd_tasks list.
1248 *
1249 * Note that irqs must be enabled: boosting the task can block.
1250 * Returns 1 if there are more tasks needing to be boosted.
1251 */
1252static int rcu_boost(struct rcu_node *rnp)
1253{
1254 unsigned long flags;
1255 struct rt_mutex mtx;
1256 struct task_struct *t;
1257 struct list_head *tb;
1258
1259 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1260 return 0; /* Nothing left to boost. */
1261
1262 raw_spin_lock_irqsave(&rnp->lock, flags);
1263
1264 /*
1265 * Recheck under the lock: all tasks in need of boosting
1266 * might exit their RCU read-side critical sections on their own.
1267 */
1268 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 return 0;
1271 }
1272
1273 /*
1274 * Preferentially boost tasks blocking expedited grace periods.
1275 * This cannot starve the normal grace periods because a second
1276 * expedited grace period must boost all blocked tasks, including
1277 * those blocking the pre-existing normal grace period.
1278 */
0ea1f2eb 1279 if (rnp->exp_tasks != NULL) {
27f4d280 1280 tb = rnp->exp_tasks;
0ea1f2eb
PM
1281 rnp->n_exp_boosts++;
1282 } else {
27f4d280 1283 tb = rnp->boost_tasks;
0ea1f2eb
PM
1284 rnp->n_normal_boosts++;
1285 }
1286 rnp->n_tasks_boosted++;
27f4d280
PM
1287
1288 /*
1289 * We boost task t by manufacturing an rt_mutex that appears to
1290 * be held by task t. We leave a pointer to that rt_mutex where
1291 * task t can find it, and task t will release the mutex when it
1292 * exits its outermost RCU read-side critical section. Then
1293 * simply acquiring this artificial rt_mutex will boost task
1294 * t's priority. (Thanks to tglx for suggesting this approach!)
1295 *
1296 * Note that task t must acquire rnp->lock to remove itself from
1297 * the ->blkd_tasks list, which it will do from exit() if from
1298 * nowhere else. We therefore are guaranteed that task t will
1299 * stay around at least until we drop rnp->lock. Note that
1300 * rnp->lock also resolves races between our priority boosting
1301 * and task t's exiting its outermost RCU read-side critical
1302 * section.
1303 */
1304 t = container_of(tb, struct task_struct, rcu_node_entry);
1305 rt_mutex_init_proxy_locked(&mtx, t);
1306 t->rcu_boost_mutex = &mtx;
27f4d280
PM
1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1309 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1310
4f89b336
PM
1311 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1312 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1313}
1314
1315/*
1316 * Timer handler to initiate waking up of boost kthreads that
1317 * have yielded the CPU due to excessive numbers of tasks to
1318 * boost. We wake up the per-rcu_node kthread, which in turn
1319 * will wake up the booster kthread.
1320 */
1321static void rcu_boost_kthread_timer(unsigned long arg)
1322{
1217ed1b 1323 invoke_rcu_node_kthread((struct rcu_node *)arg);
27f4d280
PM
1324}
1325
1326/*
1327 * Priority-boosting kthread. One per leaf rcu_node and one for the
1328 * root rcu_node.
1329 */
1330static int rcu_boost_kthread(void *arg)
1331{
1332 struct rcu_node *rnp = (struct rcu_node *)arg;
1333 int spincnt = 0;
1334 int more2boost;
1335
385680a9 1336 trace_rcu_utilization("Start boost kthread@init");
27f4d280 1337 for (;;) {
d71df90e 1338 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
385680a9 1339 trace_rcu_utilization("End boost kthread@rcu_wait");
08bca60a 1340 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
385680a9 1341 trace_rcu_utilization("Start boost kthread@rcu_wait");
d71df90e 1342 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1343 more2boost = rcu_boost(rnp);
1344 if (more2boost)
1345 spincnt++;
1346 else
1347 spincnt = 0;
1348 if (spincnt > 10) {
385680a9 1349 trace_rcu_utilization("End boost kthread@rcu_yield");
27f4d280 1350 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
385680a9 1351 trace_rcu_utilization("Start boost kthread@rcu_yield");
27f4d280
PM
1352 spincnt = 0;
1353 }
1354 }
1217ed1b 1355 /* NOTREACHED */
385680a9 1356 trace_rcu_utilization("End boost kthread@notreached");
27f4d280
PM
1357 return 0;
1358}
1359
1360/*
1361 * Check to see if it is time to start boosting RCU readers that are
1362 * blocking the current grace period, and, if so, tell the per-rcu_node
1363 * kthread to start boosting them. If there is an expedited grace
1364 * period in progress, it is always time to boost.
1365 *
1217ed1b
PM
1366 * The caller must hold rnp->lock, which this function releases,
1367 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1368 * so we don't need to worry about it going away.
27f4d280 1369 */
1217ed1b 1370static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1371{
1372 struct task_struct *t;
1373
0ea1f2eb
PM
1374 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1375 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1376 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1377 return;
0ea1f2eb 1378 }
27f4d280
PM
1379 if (rnp->exp_tasks != NULL ||
1380 (rnp->gp_tasks != NULL &&
1381 rnp->boost_tasks == NULL &&
1382 rnp->qsmask == 0 &&
1383 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1384 if (rnp->exp_tasks == NULL)
1385 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1386 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1387 t = rnp->boost_kthread_task;
1388 if (t != NULL)
1389 wake_up_process(t);
1217ed1b 1390 } else {
0ea1f2eb 1391 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393 }
27f4d280
PM
1394}
1395
a46e0899
PM
1396/*
1397 * Wake up the per-CPU kthread to invoke RCU callbacks.
1398 */
1399static void invoke_rcu_callbacks_kthread(void)
1400{
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121
SL
1405 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1406 current != __this_cpu_read(rcu_cpu_kthread_task))
1407 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
a46e0899
PM
1408 local_irq_restore(flags);
1409}
1410
dff1672d
PM
1411/*
1412 * Is the current CPU running the RCU-callbacks kthread?
1413 * Caller must have preemption disabled.
1414 */
1415static bool rcu_is_callbacks_kthread(void)
1416{
1417 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1418}
1419
0f962a5e
PM
1420/*
1421 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1422 * held, so no one should be messing with the existence of the boost
1423 * kthread.
1424 */
27f4d280
PM
1425static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1426 cpumask_var_t cm)
1427{
27f4d280
PM
1428 struct task_struct *t;
1429
27f4d280
PM
1430 t = rnp->boost_kthread_task;
1431 if (t != NULL)
1432 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
27f4d280
PM
1433}
1434
1435#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1436
1437/*
1438 * Do priority-boost accounting for the start of a new grace period.
1439 */
1440static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1441{
1442 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1443}
1444
27f4d280
PM
1445/*
1446 * Create an RCU-boost kthread for the specified node if one does not
1447 * already exist. We only create this kthread for preemptible RCU.
1448 * Returns zero if all is well, a negated errno otherwise.
1449 */
1450static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1451 struct rcu_node *rnp,
1452 int rnp_index)
1453{
1454 unsigned long flags;
1455 struct sched_param sp;
1456 struct task_struct *t;
1457
1458 if (&rcu_preempt_state != rsp)
1459 return 0;
a46e0899 1460 rsp->boost = 1;
27f4d280
PM
1461 if (rnp->boost_kthread_task != NULL)
1462 return 0;
1463 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1464 "rcub/%d", rnp_index);
27f4d280
PM
1465 if (IS_ERR(t))
1466 return PTR_ERR(t);
1467 raw_spin_lock_irqsave(&rnp->lock, flags);
1468 rnp->boost_kthread_task = t;
1469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1470 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1471 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1472 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1473 return 0;
1474}
1475
f8b7fc6b
PM
1476#ifdef CONFIG_HOTPLUG_CPU
1477
1478/*
1479 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1480 */
1481static void rcu_stop_cpu_kthread(int cpu)
1482{
1483 struct task_struct *t;
1484
1485 /* Stop the CPU's kthread. */
1486 t = per_cpu(rcu_cpu_kthread_task, cpu);
1487 if (t != NULL) {
1488 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1489 kthread_stop(t);
1490 }
1491}
1492
1493#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1494
1495static void rcu_kthread_do_work(void)
1496{
1497 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1498 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1499 rcu_preempt_do_callbacks();
1500}
1501
1502/*
1503 * Wake up the specified per-rcu_node-structure kthread.
1504 * Because the per-rcu_node kthreads are immortal, we don't need
1505 * to do anything to keep them alive.
1506 */
1507static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1508{
1509 struct task_struct *t;
1510
1511 t = rnp->node_kthread_task;
1512 if (t != NULL)
1513 wake_up_process(t);
1514}
1515
1516/*
1517 * Set the specified CPU's kthread to run RT or not, as specified by
1518 * the to_rt argument. The CPU-hotplug locks are held, so the task
1519 * is not going away.
1520 */
1521static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1522{
1523 int policy;
1524 struct sched_param sp;
1525 struct task_struct *t;
1526
1527 t = per_cpu(rcu_cpu_kthread_task, cpu);
1528 if (t == NULL)
1529 return;
1530 if (to_rt) {
1531 policy = SCHED_FIFO;
1532 sp.sched_priority = RCU_KTHREAD_PRIO;
1533 } else {
1534 policy = SCHED_NORMAL;
1535 sp.sched_priority = 0;
1536 }
1537 sched_setscheduler_nocheck(t, policy, &sp);
1538}
1539
1540/*
1541 * Timer handler to initiate the waking up of per-CPU kthreads that
1542 * have yielded the CPU due to excess numbers of RCU callbacks.
1543 * We wake up the per-rcu_node kthread, which in turn will wake up
1544 * the booster kthread.
1545 */
1546static void rcu_cpu_kthread_timer(unsigned long arg)
1547{
1548 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1549 struct rcu_node *rnp = rdp->mynode;
1550
1551 atomic_or(rdp->grpmask, &rnp->wakemask);
1552 invoke_rcu_node_kthread(rnp);
1553}
1554
1555/*
1556 * Drop to non-real-time priority and yield, but only after posting a
1557 * timer that will cause us to regain our real-time priority if we
1558 * remain preempted. Either way, we restore our real-time priority
1559 * before returning.
1560 */
1561static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1562{
1563 struct sched_param sp;
1564 struct timer_list yield_timer;
5b61b0ba 1565 int prio = current->rt_priority;
f8b7fc6b
PM
1566
1567 setup_timer_on_stack(&yield_timer, f, arg);
1568 mod_timer(&yield_timer, jiffies + 2);
1569 sp.sched_priority = 0;
1570 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1571 set_user_nice(current, 19);
1572 schedule();
5b61b0ba
MG
1573 set_user_nice(current, 0);
1574 sp.sched_priority = prio;
f8b7fc6b
PM
1575 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1576 del_timer(&yield_timer);
1577}
1578
1579/*
1580 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1581 * This can happen while the corresponding CPU is either coming online
1582 * or going offline. We cannot wait until the CPU is fully online
1583 * before starting the kthread, because the various notifier functions
1584 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1585 * the corresponding CPU is online.
1586 *
1587 * Return 1 if the kthread needs to stop, 0 otherwise.
1588 *
1589 * Caller must disable bh. This function can momentarily enable it.
1590 */
1591static int rcu_cpu_kthread_should_stop(int cpu)
1592{
1593 while (cpu_is_offline(cpu) ||
1594 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1595 smp_processor_id() != cpu) {
1596 if (kthread_should_stop())
1597 return 1;
1598 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1599 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1600 local_bh_enable();
1601 schedule_timeout_uninterruptible(1);
1602 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1603 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1604 local_bh_disable();
1605 }
1606 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1607 return 0;
1608}
1609
1610/*
1611 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1612 * RCU softirq used in flavors and configurations of RCU that do not
1613 * support RCU priority boosting.
f8b7fc6b
PM
1614 */
1615static int rcu_cpu_kthread(void *arg)
1616{
1617 int cpu = (int)(long)arg;
1618 unsigned long flags;
1619 int spincnt = 0;
1620 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1621 char work;
1622 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1623
385680a9 1624 trace_rcu_utilization("Start CPU kthread@init");
f8b7fc6b
PM
1625 for (;;) {
1626 *statusp = RCU_KTHREAD_WAITING;
385680a9 1627 trace_rcu_utilization("End CPU kthread@rcu_wait");
f8b7fc6b 1628 rcu_wait(*workp != 0 || kthread_should_stop());
385680a9 1629 trace_rcu_utilization("Start CPU kthread@rcu_wait");
f8b7fc6b
PM
1630 local_bh_disable();
1631 if (rcu_cpu_kthread_should_stop(cpu)) {
1632 local_bh_enable();
1633 break;
1634 }
1635 *statusp = RCU_KTHREAD_RUNNING;
1636 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1637 local_irq_save(flags);
1638 work = *workp;
1639 *workp = 0;
1640 local_irq_restore(flags);
1641 if (work)
1642 rcu_kthread_do_work();
1643 local_bh_enable();
1644 if (*workp != 0)
1645 spincnt++;
1646 else
1647 spincnt = 0;
1648 if (spincnt > 10) {
1649 *statusp = RCU_KTHREAD_YIELDING;
385680a9 1650 trace_rcu_utilization("End CPU kthread@rcu_yield");
f8b7fc6b 1651 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
385680a9 1652 trace_rcu_utilization("Start CPU kthread@rcu_yield");
f8b7fc6b
PM
1653 spincnt = 0;
1654 }
1655 }
1656 *statusp = RCU_KTHREAD_STOPPED;
385680a9 1657 trace_rcu_utilization("End CPU kthread@term");
f8b7fc6b
PM
1658 return 0;
1659}
1660
1661/*
1662 * Spawn a per-CPU kthread, setting up affinity and priority.
1663 * Because the CPU hotplug lock is held, no other CPU will be attempting
1664 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1665 * attempting to access it during boot, but the locking in kthread_bind()
1666 * will enforce sufficient ordering.
1667 *
1668 * Please note that we cannot simply refuse to wake up the per-CPU
1669 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1670 * which can result in softlockup complaints if the task ends up being
1671 * idle for more than a couple of minutes.
1672 *
1673 * However, please note also that we cannot bind the per-CPU kthread to its
1674 * CPU until that CPU is fully online. We also cannot wait until the
1675 * CPU is fully online before we create its per-CPU kthread, as this would
1676 * deadlock the system when CPU notifiers tried waiting for grace
1677 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1678 * is online. If its CPU is not yet fully online, then the code in
1679 * rcu_cpu_kthread() will wait until it is fully online, and then do
1680 * the binding.
1681 */
1682static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1683{
1684 struct sched_param sp;
1685 struct task_struct *t;
1686
b0d30417 1687 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1688 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1689 return 0;
1f288094
ED
1690 t = kthread_create_on_node(rcu_cpu_kthread,
1691 (void *)(long)cpu,
1692 cpu_to_node(cpu),
5b61b0ba 1693 "rcuc/%d", cpu);
f8b7fc6b
PM
1694 if (IS_ERR(t))
1695 return PTR_ERR(t);
1696 if (cpu_online(cpu))
1697 kthread_bind(t, cpu);
1698 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1699 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1700 sp.sched_priority = RCU_KTHREAD_PRIO;
1701 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1702 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1703 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1704 return 0;
1705}
1706
1707/*
1708 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1709 * kthreads when needed. We ignore requests to wake up kthreads
1710 * for offline CPUs, which is OK because force_quiescent_state()
1711 * takes care of this case.
1712 */
1713static int rcu_node_kthread(void *arg)
1714{
1715 int cpu;
1716 unsigned long flags;
1717 unsigned long mask;
1718 struct rcu_node *rnp = (struct rcu_node *)arg;
1719 struct sched_param sp;
1720 struct task_struct *t;
1721
1722 for (;;) {
1723 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1724 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1725 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1726 raw_spin_lock_irqsave(&rnp->lock, flags);
1727 mask = atomic_xchg(&rnp->wakemask, 0);
1728 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1729 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1730 if ((mask & 0x1) == 0)
1731 continue;
1732 preempt_disable();
1733 t = per_cpu(rcu_cpu_kthread_task, cpu);
1734 if (!cpu_online(cpu) || t == NULL) {
1735 preempt_enable();
1736 continue;
1737 }
1738 per_cpu(rcu_cpu_has_work, cpu) = 1;
1739 sp.sched_priority = RCU_KTHREAD_PRIO;
1740 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1741 preempt_enable();
1742 }
1743 }
1744 /* NOTREACHED */
1745 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1746 return 0;
1747}
1748
1749/*
1750 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1751 * served by the rcu_node in question. The CPU hotplug lock is still
1752 * held, so the value of rnp->qsmaskinit will be stable.
1753 *
1754 * We don't include outgoingcpu in the affinity set, use -1 if there is
1755 * no outgoing CPU. If there are no CPUs left in the affinity set,
1756 * this function allows the kthread to execute on any CPU.
1757 */
1758static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1759{
1760 cpumask_var_t cm;
1761 int cpu;
1762 unsigned long mask = rnp->qsmaskinit;
1763
1764 if (rnp->node_kthread_task == NULL)
1765 return;
1766 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1767 return;
1768 cpumask_clear(cm);
1769 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1770 if ((mask & 0x1) && cpu != outgoingcpu)
1771 cpumask_set_cpu(cpu, cm);
1772 if (cpumask_weight(cm) == 0) {
1773 cpumask_setall(cm);
1774 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1775 cpumask_clear_cpu(cpu, cm);
1776 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1777 }
1778 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1779 rcu_boost_kthread_setaffinity(rnp, cm);
1780 free_cpumask_var(cm);
1781}
1782
1783/*
1784 * Spawn a per-rcu_node kthread, setting priority and affinity.
1785 * Called during boot before online/offline can happen, or, if
1786 * during runtime, with the main CPU-hotplug locks held. So only
1787 * one of these can be executing at a time.
1788 */
1789static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1790 struct rcu_node *rnp)
1791{
1792 unsigned long flags;
1793 int rnp_index = rnp - &rsp->node[0];
1794 struct sched_param sp;
1795 struct task_struct *t;
1796
b0d30417 1797 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1798 rnp->qsmaskinit == 0)
1799 return 0;
1800 if (rnp->node_kthread_task == NULL) {
1801 t = kthread_create(rcu_node_kthread, (void *)rnp,
5b61b0ba 1802 "rcun/%d", rnp_index);
f8b7fc6b
PM
1803 if (IS_ERR(t))
1804 return PTR_ERR(t);
1805 raw_spin_lock_irqsave(&rnp->lock, flags);
1806 rnp->node_kthread_task = t;
1807 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1808 sp.sched_priority = 99;
1809 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1810 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1811 }
1812 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1813}
1814
1815/*
1816 * Spawn all kthreads -- called as soon as the scheduler is running.
1817 */
1818static int __init rcu_spawn_kthreads(void)
1819{
1820 int cpu;
1821 struct rcu_node *rnp;
1822
b0d30417 1823 rcu_scheduler_fully_active = 1;
f8b7fc6b
PM
1824 for_each_possible_cpu(cpu) {
1825 per_cpu(rcu_cpu_has_work, cpu) = 0;
1826 if (cpu_online(cpu))
1827 (void)rcu_spawn_one_cpu_kthread(cpu);
1828 }
1829 rnp = rcu_get_root(rcu_state);
1830 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1831 if (NUM_RCU_NODES > 1) {
1832 rcu_for_each_leaf_node(rcu_state, rnp)
1833 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1834 }
1835 return 0;
1836}
1837early_initcall(rcu_spawn_kthreads);
1838
1839static void __cpuinit rcu_prepare_kthreads(int cpu)
1840{
1841 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1842 struct rcu_node *rnp = rdp->mynode;
1843
1844 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
b0d30417 1845 if (rcu_scheduler_fully_active) {
f8b7fc6b
PM
1846 (void)rcu_spawn_one_cpu_kthread(cpu);
1847 if (rnp->node_kthread_task == NULL)
1848 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1849 }
1850}
1851
27f4d280
PM
1852#else /* #ifdef CONFIG_RCU_BOOST */
1853
1217ed1b 1854static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1855{
1217ed1b 1856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1857}
1858
a46e0899 1859static void invoke_rcu_callbacks_kthread(void)
27f4d280 1860{
a46e0899 1861 WARN_ON_ONCE(1);
27f4d280
PM
1862}
1863
dff1672d
PM
1864static bool rcu_is_callbacks_kthread(void)
1865{
1866 return false;
1867}
1868
27f4d280
PM
1869static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1870{
1871}
1872
f8b7fc6b
PM
1873#ifdef CONFIG_HOTPLUG_CPU
1874
1875static void rcu_stop_cpu_kthread(int cpu)
1876{
1877}
1878
1879#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1880
1881static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1882{
1883}
1884
1885static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1886{
1887}
1888
b0d30417
PM
1889static int __init rcu_scheduler_really_started(void)
1890{
1891 rcu_scheduler_fully_active = 1;
1892 return 0;
1893}
1894early_initcall(rcu_scheduler_really_started);
1895
f8b7fc6b
PM
1896static void __cpuinit rcu_prepare_kthreads(int cpu)
1897{
1898}
1899
27f4d280
PM
1900#endif /* #else #ifdef CONFIG_RCU_BOOST */
1901
8bd93a2c
PM
1902#if !defined(CONFIG_RCU_FAST_NO_HZ)
1903
1904/*
1905 * Check to see if any future RCU-related work will need to be done
1906 * by the current CPU, even if none need be done immediately, returning
1907 * 1 if so. This function is part of the RCU implementation; it is -not-
1908 * an exported member of the RCU API.
1909 *
7cb92499
PM
1910 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1911 * any flavor of RCU.
8bd93a2c
PM
1912 */
1913int rcu_needs_cpu(int cpu)
1914{
aea1b35e
PM
1915 return rcu_cpu_has_callbacks(cpu);
1916}
1917
7cb92499
PM
1918/*
1919 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1920 */
1921static void rcu_prepare_for_idle_init(int cpu)
1922{
1923}
1924
1925/*
1926 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1927 * after it.
1928 */
1929static void rcu_cleanup_after_idle(int cpu)
1930{
1931}
1932
aea1b35e 1933/*
a858af28 1934 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1935 * is nothing.
1936 */
1937static void rcu_prepare_for_idle(int cpu)
1938{
1939}
1940
8bd93a2c
PM
1941#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1942
f23f7fa1
PM
1943/*
1944 * This code is invoked when a CPU goes idle, at which point we want
1945 * to have the CPU do everything required for RCU so that it can enter
1946 * the energy-efficient dyntick-idle mode. This is handled by a
1947 * state machine implemented by rcu_prepare_for_idle() below.
1948 *
1949 * The following three proprocessor symbols control this state machine:
1950 *
1951 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1952 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1953 * scheduling-clock interrupt than to loop through the state machine
1954 * at full power.
1955 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1956 * optional if RCU does not need anything immediately from this
1957 * CPU, even if this CPU still has RCU callbacks queued. The first
1958 * times through the state machine are mandatory: we need to give
1959 * the state machine a chance to communicate a quiescent state
1960 * to the RCU core.
1961 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1962 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1963 * is sized to be roughly one RCU grace period. Those energy-efficiency
1964 * benchmarkers who might otherwise be tempted to set this to a large
1965 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1966 * system. And if you are -that- concerned about energy efficiency,
1967 * just power the system down and be done with it!
778d250a
PM
1968 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1969 * permitted to sleep in dyntick-idle mode with only lazy RCU
1970 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1971 *
1972 * The values below work well in practice. If future workloads require
1973 * adjustment, they can be converted into kernel config parameters, though
1974 * making the state machine smarter might be a better option.
1975 */
1976#define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1977#define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
7cb92499 1978#define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
778d250a 1979#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1980
a47cd880 1981static DEFINE_PER_CPU(int, rcu_dyntick_drain);
71da8132 1982static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
7cb92499 1983static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
778d250a
PM
1984static ktime_t rcu_idle_gp_wait; /* If some non-lazy callbacks. */
1985static ktime_t rcu_idle_lazy_gp_wait; /* If only lazy callbacks. */
8bd93a2c
PM
1986
1987/*
aea1b35e
PM
1988 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1989 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1990 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1991 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1992 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1993 * it is better to incur scheduling-clock interrupts than to spin
1994 * continuously for the same time duration!
1995 */
1996int rcu_needs_cpu(int cpu)
1997{
1998 /* If no callbacks, RCU doesn't need the CPU. */
1999 if (!rcu_cpu_has_callbacks(cpu))
2000 return 0;
2001 /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
2002 return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
2003}
2004
486e2593
PM
2005/*
2006 * Does the specified flavor of RCU have non-lazy callbacks pending on
2007 * the specified CPU? Both RCU flavor and CPU are specified by the
2008 * rcu_data structure.
2009 */
2010static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
2011{
2012 return rdp->qlen != rdp->qlen_lazy;
2013}
2014
2015#ifdef CONFIG_TREE_PREEMPT_RCU
2016
2017/*
2018 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
2019 * is no RCU-preempt in the kernel.)
2020 */
2021static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2022{
2023 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
2024
2025 return __rcu_cpu_has_nonlazy_callbacks(rdp);
2026}
2027
2028#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2029
2030static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2031{
2032 return 0;
2033}
2034
2035#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
2036
2037/*
2038 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
2039 */
2040static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
2041{
2042 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
2043 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
2044 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
2045}
2046
7cb92499
PM
2047/*
2048 * Timer handler used to force CPU to start pushing its remaining RCU
2049 * callbacks in the case where it entered dyntick-idle mode with callbacks
2050 * pending. The hander doesn't really need to do anything because the
2051 * real work is done upon re-entry to idle, or by the next scheduling-clock
2052 * interrupt should idle not be re-entered.
2053 */
2054static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
2055{
2056 trace_rcu_prep_idle("Timer");
2057 return HRTIMER_NORESTART;
2058}
2059
2060/*
2061 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2062 */
2063static void rcu_prepare_for_idle_init(int cpu)
2064{
2065 static int firsttime = 1;
2066 struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2067
2068 hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2069 hrtp->function = rcu_idle_gp_timer_func;
2070 if (firsttime) {
2071 unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);
2072
2073 rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
778d250a
PM
2074 upj = jiffies_to_usecs(RCU_IDLE_LAZY_GP_DELAY);
2075 rcu_idle_lazy_gp_wait = ns_to_ktime(upj * (u64)1000);
7cb92499
PM
2076 firsttime = 0;
2077 }
2078}
2079
2080/*
2081 * Clean up for exit from idle. Because we are exiting from idle, there
2082 * is no longer any point to rcu_idle_gp_timer, so cancel it. This will
2083 * do nothing if this timer is not active, so just cancel it unconditionally.
2084 */
2085static void rcu_cleanup_after_idle(int cpu)
2086{
2087 hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
2088}
2089
aea1b35e
PM
2090/*
2091 * Check to see if any RCU-related work can be done by the current CPU,
2092 * and if so, schedule a softirq to get it done. This function is part
2093 * of the RCU implementation; it is -not- an exported member of the RCU API.
8bd93a2c 2094 *
aea1b35e
PM
2095 * The idea is for the current CPU to clear out all work required by the
2096 * RCU core for the current grace period, so that this CPU can be permitted
2097 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2098 * at the end of the grace period by whatever CPU ends the grace period.
2099 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2100 * number of wakeups by a modest integer factor.
a47cd880
PM
2101 *
2102 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2103 * disabled, we do one pass of force_quiescent_state(), then do a
a46e0899 2104 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
27f4d280 2105 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
aea1b35e
PM
2106 *
2107 * The caller must have disabled interrupts.
8bd93a2c 2108 */
aea1b35e 2109static void rcu_prepare_for_idle(int cpu)
8bd93a2c 2110{
3084f2f8 2111 /*
f535a607
PM
2112 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2113 * Also reset state to avoid prejudicing later attempts.
3084f2f8 2114 */
aea1b35e
PM
2115 if (!rcu_cpu_has_callbacks(cpu)) {
2116 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
3084f2f8 2117 per_cpu(rcu_dyntick_drain, cpu) = 0;
433cdddc 2118 trace_rcu_prep_idle("No callbacks");
aea1b35e 2119 return;
77e38ed3 2120 }
3084f2f8
PM
2121
2122 /*
2123 * If in holdoff mode, just return. We will presumably have
2124 * refrained from disabling the scheduling-clock tick.
2125 */
433cdddc
PM
2126 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2127 trace_rcu_prep_idle("In holdoff");
aea1b35e 2128 return;
433cdddc 2129 }
a47cd880
PM
2130
2131 /* Check and update the rcu_dyntick_drain sequencing. */
2132 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2133 /* First time through, initialize the counter. */
f23f7fa1
PM
2134 per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
2135 } else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
c3ce910b
PM
2136 !rcu_pending(cpu) &&
2137 !local_softirq_pending()) {
7cb92499 2138 /* Can we go dyntick-idle despite still having callbacks? */
f23f7fa1
PM
2139 trace_rcu_prep_idle("Dyntick with callbacks");
2140 per_cpu(rcu_dyntick_drain, cpu) = 0;
696a02cc 2141 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
486e2593
PM
2142 if (rcu_cpu_has_nonlazy_callbacks(cpu))
2143 hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2144 rcu_idle_gp_wait, HRTIMER_MODE_REL);
778d250a
PM
2145 else
2146 hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2147 rcu_idle_lazy_gp_wait, HRTIMER_MODE_REL);
f23f7fa1
PM
2148 return; /* Nothing more to do immediately. */
2149 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
a47cd880 2150 /* We have hit the limit, so time to give up. */
71da8132 2151 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
433cdddc 2152 trace_rcu_prep_idle("Begin holdoff");
aea1b35e
PM
2153 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2154 return;
a47cd880
PM
2155 }
2156
aea1b35e
PM
2157 /*
2158 * Do one step of pushing the remaining RCU callbacks through
2159 * the RCU core state machine.
2160 */
2161#ifdef CONFIG_TREE_PREEMPT_RCU
2162 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2163 rcu_preempt_qs(cpu);
2164 force_quiescent_state(&rcu_preempt_state, 0);
aea1b35e
PM
2165 }
2166#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
a47cd880
PM
2167 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2168 rcu_sched_qs(cpu);
2169 force_quiescent_state(&rcu_sched_state, 0);
a47cd880
PM
2170 }
2171 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2172 rcu_bh_qs(cpu);
2173 force_quiescent_state(&rcu_bh_state, 0);
8bd93a2c
PM
2174 }
2175
433cdddc
PM
2176 /*
2177 * If RCU callbacks are still pending, RCU still needs this CPU.
2178 * So try forcing the callbacks through the grace period.
2179 */
3ad0decf 2180 if (rcu_cpu_has_callbacks(cpu)) {
433cdddc 2181 trace_rcu_prep_idle("More callbacks");
a46e0899 2182 invoke_rcu_core();
c0cfbbb0 2183 } else
433cdddc 2184 trace_rcu_prep_idle("Callbacks drained");
8bd93a2c
PM
2185}
2186
2187#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
2188
2189#ifdef CONFIG_RCU_CPU_STALL_INFO
2190
2191#ifdef CONFIG_RCU_FAST_NO_HZ
2192
2193static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2194{
2195 struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2196
2197 sprintf(cp, "drain=%d %c timer=%lld",
2198 per_cpu(rcu_dyntick_drain, cpu),
2199 per_cpu(rcu_dyntick_holdoff, cpu) == jiffies ? 'H' : '.',
2200 hrtimer_active(hrtp)
2201 ? ktime_to_us(hrtimer_get_remaining(hrtp))
2202 : -1);
2203}
2204
2205#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2206
2207static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2208{
2209}
2210
2211#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2212
2213/* Initiate the stall-info list. */
2214static void print_cpu_stall_info_begin(void)
2215{
2216 printk(KERN_CONT "\n");
2217}
2218
2219/*
2220 * Print out diagnostic information for the specified stalled CPU.
2221 *
2222 * If the specified CPU is aware of the current RCU grace period
2223 * (flavor specified by rsp), then print the number of scheduling
2224 * clock interrupts the CPU has taken during the time that it has
2225 * been aware. Otherwise, print the number of RCU grace periods
2226 * that this CPU is ignorant of, for example, "1" if the CPU was
2227 * aware of the previous grace period.
2228 *
2229 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2230 */
2231static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2232{
2233 char fast_no_hz[72];
2234 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2235 struct rcu_dynticks *rdtp = rdp->dynticks;
2236 char *ticks_title;
2237 unsigned long ticks_value;
2238
2239 if (rsp->gpnum == rdp->gpnum) {
2240 ticks_title = "ticks this GP";
2241 ticks_value = rdp->ticks_this_gp;
2242 } else {
2243 ticks_title = "GPs behind";
2244 ticks_value = rsp->gpnum - rdp->gpnum;
2245 }
2246 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2247 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2248 cpu, ticks_value, ticks_title,
2249 atomic_read(&rdtp->dynticks) & 0xfff,
2250 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2251 fast_no_hz);
2252}
2253
2254/* Terminate the stall-info list. */
2255static void print_cpu_stall_info_end(void)
2256{
2257 printk(KERN_ERR "\t");
2258}
2259
2260/* Zero ->ticks_this_gp for all flavors of RCU. */
2261static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2262{
2263 rdp->ticks_this_gp = 0;
2264}
2265
2266/* Increment ->ticks_this_gp for all flavors of RCU. */
2267static void increment_cpu_stall_ticks(void)
2268{
2269 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2270 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2271#ifdef CONFIG_TREE_PREEMPT_RCU
2272 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2273#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2274}
2275
2276#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2277
2278static void print_cpu_stall_info_begin(void)
2279{
2280 printk(KERN_CONT " {");
2281}
2282
2283static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2284{
2285 printk(KERN_CONT " %d", cpu);
2286}
2287
2288static void print_cpu_stall_info_end(void)
2289{
2290 printk(KERN_CONT "} ");
2291}
2292
2293static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2294{
2295}
2296
2297static void increment_cpu_stall_ticks(void)
2298{
2299}
2300
2301#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */