rcu: Update trace_rcu_dyntick() header comment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
7b27d547 28#include <linux/stop_machine.h>
f41d911f 29
5b61b0ba
MG
30#define RCU_KTHREAD_PRIO 1
31
32#ifdef CONFIG_RCU_BOOST
33#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
34#else
35#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
36#endif
37
26845c28
PM
38/*
39 * Check the RCU kernel configuration parameters and print informative
40 * messages about anything out of the ordinary. If you like #ifdef, you
41 * will love this function.
42 */
43static void __init rcu_bootup_announce_oddness(void)
44{
45#ifdef CONFIG_RCU_TRACE
46 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
47#endif
48#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
49 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
50 CONFIG_RCU_FANOUT);
51#endif
52#ifdef CONFIG_RCU_FANOUT_EXACT
53 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
54#endif
55#ifdef CONFIG_RCU_FAST_NO_HZ
56 printk(KERN_INFO
57 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
58#endif
59#ifdef CONFIG_PROVE_RCU
60 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
61#endif
62#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
63 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
64#endif
81a294c4 65#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
26845c28
PM
66 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
67#endif
68#if NUM_RCU_LVL_4 != 0
69 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
70#endif
71}
72
f41d911f
PM
73#ifdef CONFIG_TREE_PREEMPT_RCU
74
e99033c5 75struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
f41d911f 76DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
27f4d280 77static struct rcu_state *rcu_state = &rcu_preempt_state;
f41d911f 78
10f39bb1 79static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06
PM
80static int rcu_preempted_readers_exp(struct rcu_node *rnp);
81
f41d911f
PM
82/*
83 * Tell them what RCU they are running.
84 */
0e0fc1c2 85static void __init rcu_bootup_announce(void)
f41d911f 86{
6cc68793 87 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
26845c28 88 rcu_bootup_announce_oddness();
f41d911f
PM
89}
90
91/*
92 * Return the number of RCU-preempt batches processed thus far
93 * for debug and statistics.
94 */
95long rcu_batches_completed_preempt(void)
96{
97 return rcu_preempt_state.completed;
98}
99EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
100
101/*
102 * Return the number of RCU batches processed thus far for debug & stats.
103 */
104long rcu_batches_completed(void)
105{
106 return rcu_batches_completed_preempt();
107}
108EXPORT_SYMBOL_GPL(rcu_batches_completed);
109
bf66f18e
PM
110/*
111 * Force a quiescent state for preemptible RCU.
112 */
113void rcu_force_quiescent_state(void)
114{
115 force_quiescent_state(&rcu_preempt_state, 0);
116}
117EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
118
f41d911f 119/*
6cc68793 120 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
121 * that this just means that the task currently running on the CPU is
122 * not in a quiescent state. There might be any number of tasks blocked
123 * while in an RCU read-side critical section.
25502a6c
PM
124 *
125 * Unlike the other rcu_*_qs() functions, callers to this function
126 * must disable irqs in order to protect the assignment to
127 * ->rcu_read_unlock_special.
f41d911f 128 */
c3422bea 129static void rcu_preempt_qs(int cpu)
f41d911f
PM
130{
131 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 132
e4cc1f22 133 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 134 barrier();
e4cc1f22 135 if (rdp->passed_quiesce == 0)
d4c08f2a 136 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
e4cc1f22 137 rdp->passed_quiesce = 1;
25502a6c 138 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
139}
140
141/*
c3422bea
PM
142 * We have entered the scheduler, and the current task might soon be
143 * context-switched away from. If this task is in an RCU read-side
144 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
145 * record that fact, so we enqueue the task on the blkd_tasks list.
146 * The task will dequeue itself when it exits the outermost enclosing
147 * RCU read-side critical section. Therefore, the current grace period
148 * cannot be permitted to complete until the blkd_tasks list entries
149 * predating the current grace period drain, in other words, until
150 * rnp->gp_tasks becomes NULL.
c3422bea
PM
151 *
152 * Caller must disable preemption.
f41d911f 153 */
c3422bea 154static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
155{
156 struct task_struct *t = current;
c3422bea 157 unsigned long flags;
f41d911f
PM
158 struct rcu_data *rdp;
159 struct rcu_node *rnp;
160
10f39bb1 161 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
162 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
163
164 /* Possibly blocking in an RCU read-side critical section. */
394f99a9 165 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 166 rnp = rdp->mynode;
1304afb2 167 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 168 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 169 t->rcu_blocked_node = rnp;
f41d911f
PM
170
171 /*
172 * If this CPU has already checked in, then this task
173 * will hold up the next grace period rather than the
174 * current grace period. Queue the task accordingly.
175 * If the task is queued for the current grace period
176 * (i.e., this CPU has not yet passed through a quiescent
177 * state for the current grace period), then as long
178 * as that task remains queued, the current grace period
12f5f524
PM
179 * cannot end. Note that there is some uncertainty as
180 * to exactly when the current grace period started.
181 * We take a conservative approach, which can result
182 * in unnecessarily waiting on tasks that started very
183 * slightly after the current grace period began. C'est
184 * la vie!!!
b0e165c0
PM
185 *
186 * But first, note that the current CPU must still be
187 * on line!
f41d911f 188 */
b0e165c0 189 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 190 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
191 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
192 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
193 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
194#ifdef CONFIG_RCU_BOOST
195 if (rnp->boost_tasks != NULL)
196 rnp->boost_tasks = rnp->gp_tasks;
197#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
198 } else {
199 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
200 if (rnp->qsmask & rdp->grpmask)
201 rnp->gp_tasks = &t->rcu_node_entry;
202 }
d4c08f2a
PM
203 trace_rcu_preempt_task(rdp->rsp->name,
204 t->pid,
205 (rnp->qsmask & rdp->grpmask)
206 ? rnp->gpnum
207 : rnp->gpnum + 1);
1304afb2 208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
209 } else if (t->rcu_read_lock_nesting < 0 &&
210 t->rcu_read_unlock_special) {
211
212 /*
213 * Complete exit from RCU read-side critical section on
214 * behalf of preempted instance of __rcu_read_unlock().
215 */
216 rcu_read_unlock_special(t);
f41d911f
PM
217 }
218
219 /*
220 * Either we were not in an RCU read-side critical section to
221 * begin with, or we have now recorded that critical section
222 * globally. Either way, we can now note a quiescent state
223 * for this CPU. Again, if we were in an RCU read-side critical
224 * section, and if that critical section was blocking the current
225 * grace period, then the fact that the task has been enqueued
226 * means that we continue to block the current grace period.
227 */
e7d8842e 228 local_irq_save(flags);
25502a6c 229 rcu_preempt_qs(cpu);
e7d8842e 230 local_irq_restore(flags);
f41d911f
PM
231}
232
233/*
6cc68793 234 * Tree-preemptible RCU implementation for rcu_read_lock().
f41d911f
PM
235 * Just increment ->rcu_read_lock_nesting, shared state will be updated
236 * if we block.
237 */
238void __rcu_read_lock(void)
239{
80dcf60e 240 current->rcu_read_lock_nesting++;
f41d911f
PM
241 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
242}
243EXPORT_SYMBOL_GPL(__rcu_read_lock);
244
fc2219d4
PM
245/*
246 * Check for preempted RCU readers blocking the current grace period
247 * for the specified rcu_node structure. If the caller needs a reliable
248 * answer, it must hold the rcu_node's ->lock.
249 */
27f4d280 250static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 251{
12f5f524 252 return rnp->gp_tasks != NULL;
fc2219d4
PM
253}
254
b668c9cf
PM
255/*
256 * Record a quiescent state for all tasks that were previously queued
257 * on the specified rcu_node structure and that were blocking the current
258 * RCU grace period. The caller must hold the specified rnp->lock with
259 * irqs disabled, and this lock is released upon return, but irqs remain
260 * disabled.
261 */
d3f6bad3 262static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
263 __releases(rnp->lock)
264{
265 unsigned long mask;
266 struct rcu_node *rnp_p;
267
27f4d280 268 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
270 return; /* Still need more quiescent states! */
271 }
272
273 rnp_p = rnp->parent;
274 if (rnp_p == NULL) {
275 /*
276 * Either there is only one rcu_node in the tree,
277 * or tasks were kicked up to root rcu_node due to
278 * CPUs going offline.
279 */
d3f6bad3 280 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
281 return;
282 }
283
284 /* Report up the rest of the hierarchy. */
285 mask = rnp->grpmask;
1304afb2
PM
286 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
287 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
d3f6bad3 288 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
289}
290
12f5f524
PM
291/*
292 * Advance a ->blkd_tasks-list pointer to the next entry, instead
293 * returning NULL if at the end of the list.
294 */
295static struct list_head *rcu_next_node_entry(struct task_struct *t,
296 struct rcu_node *rnp)
297{
298 struct list_head *np;
299
300 np = t->rcu_node_entry.next;
301 if (np == &rnp->blkd_tasks)
302 np = NULL;
303 return np;
304}
305
b668c9cf
PM
306/*
307 * Handle special cases during rcu_read_unlock(), such as needing to
308 * notify RCU core processing or task having blocked during the RCU
309 * read-side critical section.
310 */
be0e1e21 311static noinline void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
312{
313 int empty;
d9a3da06 314 int empty_exp;
389abd48 315 int empty_exp_now;
f41d911f 316 unsigned long flags;
12f5f524 317 struct list_head *np;
82e78d80
PM
318#ifdef CONFIG_RCU_BOOST
319 struct rt_mutex *rbmp = NULL;
320#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
321 struct rcu_node *rnp;
322 int special;
323
324 /* NMI handlers cannot block and cannot safely manipulate state. */
325 if (in_nmi())
326 return;
327
328 local_irq_save(flags);
329
330 /*
331 * If RCU core is waiting for this CPU to exit critical section,
332 * let it know that we have done so.
333 */
334 special = t->rcu_read_unlock_special;
335 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 336 rcu_preempt_qs(smp_processor_id());
f41d911f
PM
337 }
338
339 /* Hardware IRQ handlers cannot block. */
ec433f0c 340 if (in_irq() || in_serving_softirq()) {
f41d911f
PM
341 local_irq_restore(flags);
342 return;
343 }
344
345 /* Clean up if blocked during RCU read-side critical section. */
346 if (special & RCU_READ_UNLOCK_BLOCKED) {
347 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
348
dd5d19ba
PM
349 /*
350 * Remove this task from the list it blocked on. The
351 * task can migrate while we acquire the lock, but at
352 * most one time. So at most two passes through loop.
353 */
354 for (;;) {
86848966 355 rnp = t->rcu_blocked_node;
1304afb2 356 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
86848966 357 if (rnp == t->rcu_blocked_node)
dd5d19ba 358 break;
1304afb2 359 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 360 }
27f4d280 361 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
362 empty_exp = !rcu_preempted_readers_exp(rnp);
363 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 364 np = rcu_next_node_entry(t, rnp);
f41d911f 365 list_del_init(&t->rcu_node_entry);
82e78d80 366 t->rcu_blocked_node = NULL;
d4c08f2a
PM
367 trace_rcu_unlock_preempted_task("rcu_preempt",
368 rnp->gpnum, t->pid);
12f5f524
PM
369 if (&t->rcu_node_entry == rnp->gp_tasks)
370 rnp->gp_tasks = np;
371 if (&t->rcu_node_entry == rnp->exp_tasks)
372 rnp->exp_tasks = np;
27f4d280
PM
373#ifdef CONFIG_RCU_BOOST
374 if (&t->rcu_node_entry == rnp->boost_tasks)
375 rnp->boost_tasks = np;
82e78d80
PM
376 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
377 if (t->rcu_boost_mutex) {
378 rbmp = t->rcu_boost_mutex;
379 t->rcu_boost_mutex = NULL;
7765be2f 380 }
27f4d280 381#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
382
383 /*
384 * If this was the last task on the current list, and if
385 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
386 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
387 * so we must take a snapshot of the expedited state.
f41d911f 388 */
389abd48 389 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a
PM
390 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
391 trace_rcu_quiescent_state_report("preempt_rcu",
392 rnp->gpnum,
393 0, rnp->qsmask,
394 rnp->level,
395 rnp->grplo,
396 rnp->grphi,
397 !!rnp->gp_tasks);
d3f6bad3 398 rcu_report_unblock_qs_rnp(rnp, flags);
d4c08f2a
PM
399 } else
400 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 401
27f4d280
PM
402#ifdef CONFIG_RCU_BOOST
403 /* Unboost if we were boosted. */
82e78d80
PM
404 if (rbmp)
405 rt_mutex_unlock(rbmp);
27f4d280
PM
406#endif /* #ifdef CONFIG_RCU_BOOST */
407
d9a3da06
PM
408 /*
409 * If this was the last task on the expedited lists,
410 * then we need to report up the rcu_node hierarchy.
411 */
389abd48 412 if (!empty_exp && empty_exp_now)
b40d293e 413 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
414 } else {
415 local_irq_restore(flags);
f41d911f 416 }
f41d911f
PM
417}
418
419/*
6cc68793 420 * Tree-preemptible RCU implementation for rcu_read_unlock().
f41d911f
PM
421 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
422 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
423 * invoke rcu_read_unlock_special() to clean up after a context switch
424 * in an RCU read-side critical section and other special cases.
425 */
426void __rcu_read_unlock(void)
427{
428 struct task_struct *t = current;
429
10f39bb1
PM
430 if (t->rcu_read_lock_nesting != 1)
431 --t->rcu_read_lock_nesting;
432 else {
6206ab9b 433 barrier(); /* critical section before exit code. */
10f39bb1
PM
434 t->rcu_read_lock_nesting = INT_MIN;
435 barrier(); /* assign before ->rcu_read_unlock_special load */
be0e1e21
PM
436 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
437 rcu_read_unlock_special(t);
10f39bb1
PM
438 barrier(); /* ->rcu_read_unlock_special load before assign */
439 t->rcu_read_lock_nesting = 0;
be0e1e21 440 }
cba8244a 441#ifdef CONFIG_PROVE_LOCKING
10f39bb1
PM
442 {
443 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
444
445 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
446 }
cba8244a 447#endif /* #ifdef CONFIG_PROVE_LOCKING */
f41d911f
PM
448}
449EXPORT_SYMBOL_GPL(__rcu_read_unlock);
450
1ed509a2
PM
451#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
452
453/*
454 * Dump detailed information for all tasks blocking the current RCU
455 * grace period on the specified rcu_node structure.
456 */
457static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
458{
459 unsigned long flags;
1ed509a2
PM
460 struct task_struct *t;
461
27f4d280 462 if (!rcu_preempt_blocked_readers_cgp(rnp))
12f5f524
PM
463 return;
464 raw_spin_lock_irqsave(&rnp->lock, flags);
465 t = list_entry(rnp->gp_tasks,
466 struct task_struct, rcu_node_entry);
467 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
468 sched_show_task(t);
469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
470}
471
472/*
473 * Dump detailed information for all tasks blocking the current RCU
474 * grace period.
475 */
476static void rcu_print_detail_task_stall(struct rcu_state *rsp)
477{
478 struct rcu_node *rnp = rcu_get_root(rsp);
479
480 rcu_print_detail_task_stall_rnp(rnp);
481 rcu_for_each_leaf_node(rsp, rnp)
482 rcu_print_detail_task_stall_rnp(rnp);
483}
484
485#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
486
487static void rcu_print_detail_task_stall(struct rcu_state *rsp)
488{
489}
490
491#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
492
f41d911f
PM
493/*
494 * Scan the current list of tasks blocked within RCU read-side critical
495 * sections, printing out the tid of each.
496 */
9bc8b558 497static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 498{
f41d911f 499 struct task_struct *t;
9bc8b558 500 int ndetected = 0;
f41d911f 501
27f4d280 502 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 503 return 0;
12f5f524
PM
504 t = list_entry(rnp->gp_tasks,
505 struct task_struct, rcu_node_entry);
9bc8b558 506 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
12f5f524 507 printk(" P%d", t->pid);
9bc8b558
PM
508 ndetected++;
509 }
510 return ndetected;
f41d911f
PM
511}
512
53d84e00
PM
513/*
514 * Suppress preemptible RCU's CPU stall warnings by pushing the
515 * time of the next stall-warning message comfortably far into the
516 * future.
517 */
518static void rcu_preempt_stall_reset(void)
519{
520 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
521}
522
b0e165c0
PM
523/*
524 * Check that the list of blocked tasks for the newly completed grace
525 * period is in fact empty. It is a serious bug to complete a grace
526 * period that still has RCU readers blocked! This function must be
527 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
528 * must be held by the caller.
12f5f524
PM
529 *
530 * Also, if there are blocked tasks on the list, they automatically
531 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
532 */
533static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
534{
27f4d280 535 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
536 if (!list_empty(&rnp->blkd_tasks))
537 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 538 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
539}
540
33f76148
PM
541#ifdef CONFIG_HOTPLUG_CPU
542
dd5d19ba
PM
543/*
544 * Handle tasklist migration for case in which all CPUs covered by the
545 * specified rcu_node have gone offline. Move them up to the root
546 * rcu_node. The reason for not just moving them to the immediate
547 * parent is to remove the need for rcu_read_unlock_special() to
548 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
549 * Returns true if there were tasks blocking the current RCU grace
550 * period.
dd5d19ba 551 *
237c80c5
PM
552 * Returns 1 if there was previously a task blocking the current grace
553 * period on the specified rcu_node structure.
554 *
dd5d19ba
PM
555 * The caller must hold rnp->lock with irqs disabled.
556 */
237c80c5
PM
557static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
558 struct rcu_node *rnp,
559 struct rcu_data *rdp)
dd5d19ba 560{
dd5d19ba
PM
561 struct list_head *lp;
562 struct list_head *lp_root;
d9a3da06 563 int retval = 0;
dd5d19ba 564 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 565 struct task_struct *t;
dd5d19ba 566
86848966
PM
567 if (rnp == rnp_root) {
568 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 569 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 570 }
12f5f524
PM
571
572 /* If we are on an internal node, complain bitterly. */
573 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
574
575 /*
12f5f524
PM
576 * Move tasks up to root rcu_node. Don't try to get fancy for
577 * this corner-case operation -- just put this node's tasks
578 * at the head of the root node's list, and update the root node's
579 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
580 * if non-NULL. This might result in waiting for more tasks than
581 * absolutely necessary, but this is a good performance/complexity
582 * tradeoff.
dd5d19ba 583 */
27f4d280 584 if (rcu_preempt_blocked_readers_cgp(rnp))
d9a3da06
PM
585 retval |= RCU_OFL_TASKS_NORM_GP;
586 if (rcu_preempted_readers_exp(rnp))
587 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
588 lp = &rnp->blkd_tasks;
589 lp_root = &rnp_root->blkd_tasks;
590 while (!list_empty(lp)) {
591 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
592 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
593 list_del(&t->rcu_node_entry);
594 t->rcu_blocked_node = rnp_root;
595 list_add(&t->rcu_node_entry, lp_root);
596 if (&t->rcu_node_entry == rnp->gp_tasks)
597 rnp_root->gp_tasks = rnp->gp_tasks;
598 if (&t->rcu_node_entry == rnp->exp_tasks)
599 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
600#ifdef CONFIG_RCU_BOOST
601 if (&t->rcu_node_entry == rnp->boost_tasks)
602 rnp_root->boost_tasks = rnp->boost_tasks;
603#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 604 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 605 }
27f4d280
PM
606
607#ifdef CONFIG_RCU_BOOST
608 /* In case root is being boosted and leaf is not. */
609 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
610 if (rnp_root->boost_tasks != NULL &&
611 rnp_root->boost_tasks != rnp_root->gp_tasks)
612 rnp_root->boost_tasks = rnp_root->gp_tasks;
613 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
614#endif /* #ifdef CONFIG_RCU_BOOST */
615
12f5f524
PM
616 rnp->gp_tasks = NULL;
617 rnp->exp_tasks = NULL;
237c80c5 618 return retval;
dd5d19ba
PM
619}
620
33f76148 621/*
6cc68793 622 * Do CPU-offline processing for preemptible RCU.
33f76148
PM
623 */
624static void rcu_preempt_offline_cpu(int cpu)
625{
626 __rcu_offline_cpu(cpu, &rcu_preempt_state);
627}
628
629#endif /* #ifdef CONFIG_HOTPLUG_CPU */
630
f41d911f
PM
631/*
632 * Check for a quiescent state from the current CPU. When a task blocks,
633 * the task is recorded in the corresponding CPU's rcu_node structure,
634 * which is checked elsewhere.
635 *
636 * Caller must disable hard irqs.
637 */
638static void rcu_preempt_check_callbacks(int cpu)
639{
640 struct task_struct *t = current;
641
642 if (t->rcu_read_lock_nesting == 0) {
c3422bea 643 rcu_preempt_qs(cpu);
f41d911f
PM
644 return;
645 }
10f39bb1
PM
646 if (t->rcu_read_lock_nesting > 0 &&
647 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 648 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
649}
650
651/*
6cc68793 652 * Process callbacks for preemptible RCU.
f41d911f
PM
653 */
654static void rcu_preempt_process_callbacks(void)
655{
656 __rcu_process_callbacks(&rcu_preempt_state,
657 &__get_cpu_var(rcu_preempt_data));
658}
659
a46e0899
PM
660#ifdef CONFIG_RCU_BOOST
661
09223371
SL
662static void rcu_preempt_do_callbacks(void)
663{
664 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
665}
666
a46e0899
PM
667#endif /* #ifdef CONFIG_RCU_BOOST */
668
f41d911f 669/*
6cc68793 670 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
671 */
672void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
673{
674 __call_rcu(head, func, &rcu_preempt_state);
675}
676EXPORT_SYMBOL_GPL(call_rcu);
677
6ebb237b
PM
678/**
679 * synchronize_rcu - wait until a grace period has elapsed.
680 *
681 * Control will return to the caller some time after a full grace
682 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
683 * read-side critical sections have completed. Note, however, that
684 * upon return from synchronize_rcu(), the caller might well be executing
685 * concurrently with new RCU read-side critical sections that began while
686 * synchronize_rcu() was waiting. RCU read-side critical sections are
687 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
6ebb237b
PM
688 */
689void synchronize_rcu(void)
690{
6ebb237b
PM
691 if (!rcu_scheduler_active)
692 return;
2c42818e 693 wait_rcu_gp(call_rcu);
6ebb237b
PM
694}
695EXPORT_SYMBOL_GPL(synchronize_rcu);
696
d9a3da06
PM
697static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
698static long sync_rcu_preempt_exp_count;
699static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
700
701/*
702 * Return non-zero if there are any tasks in RCU read-side critical
703 * sections blocking the current preemptible-RCU expedited grace period.
704 * If there is no preemptible-RCU expedited grace period currently in
705 * progress, returns zero unconditionally.
706 */
707static int rcu_preempted_readers_exp(struct rcu_node *rnp)
708{
12f5f524 709 return rnp->exp_tasks != NULL;
d9a3da06
PM
710}
711
712/*
713 * return non-zero if there is no RCU expedited grace period in progress
714 * for the specified rcu_node structure, in other words, if all CPUs and
715 * tasks covered by the specified rcu_node structure have done their bit
716 * for the current expedited grace period. Works only for preemptible
717 * RCU -- other RCU implementation use other means.
718 *
719 * Caller must hold sync_rcu_preempt_exp_mutex.
720 */
721static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
722{
723 return !rcu_preempted_readers_exp(rnp) &&
724 ACCESS_ONCE(rnp->expmask) == 0;
725}
726
727/*
728 * Report the exit from RCU read-side critical section for the last task
729 * that queued itself during or before the current expedited preemptible-RCU
730 * grace period. This event is reported either to the rcu_node structure on
731 * which the task was queued or to one of that rcu_node structure's ancestors,
732 * recursively up the tree. (Calm down, calm down, we do the recursion
733 * iteratively!)
734 *
b40d293e
TG
735 * Most callers will set the "wake" flag, but the task initiating the
736 * expedited grace period need not wake itself.
737 *
d9a3da06
PM
738 * Caller must hold sync_rcu_preempt_exp_mutex.
739 */
b40d293e
TG
740static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
741 bool wake)
d9a3da06
PM
742{
743 unsigned long flags;
744 unsigned long mask;
745
1304afb2 746 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 747 for (;;) {
131906b0
PM
748 if (!sync_rcu_preempt_exp_done(rnp)) {
749 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 750 break;
131906b0 751 }
d9a3da06 752 if (rnp->parent == NULL) {
131906b0 753 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b40d293e
TG
754 if (wake)
755 wake_up(&sync_rcu_preempt_exp_wq);
d9a3da06
PM
756 break;
757 }
758 mask = rnp->grpmask;
1304afb2 759 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 760 rnp = rnp->parent;
1304afb2 761 raw_spin_lock(&rnp->lock); /* irqs already disabled */
d9a3da06
PM
762 rnp->expmask &= ~mask;
763 }
d9a3da06
PM
764}
765
766/*
767 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
768 * grace period for the specified rcu_node structure. If there are no such
769 * tasks, report it up the rcu_node hierarchy.
770 *
771 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
772 */
773static void
774sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
775{
1217ed1b 776 unsigned long flags;
12f5f524 777 int must_wait = 0;
d9a3da06 778
1217ed1b
PM
779 raw_spin_lock_irqsave(&rnp->lock, flags);
780 if (list_empty(&rnp->blkd_tasks))
781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
782 else {
12f5f524 783 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 784 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
785 must_wait = 1;
786 }
d9a3da06 787 if (!must_wait)
b40d293e 788 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
789}
790
019129d5 791/*
d9a3da06
PM
792 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
793 * is to invoke synchronize_sched_expedited() to push all the tasks to
12f5f524 794 * the ->blkd_tasks lists and wait for this list to drain.
019129d5
PM
795 */
796void synchronize_rcu_expedited(void)
797{
d9a3da06
PM
798 unsigned long flags;
799 struct rcu_node *rnp;
800 struct rcu_state *rsp = &rcu_preempt_state;
801 long snap;
802 int trycount = 0;
803
804 smp_mb(); /* Caller's modifications seen first by other CPUs. */
805 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
806 smp_mb(); /* Above access cannot bleed into critical section. */
807
808 /*
809 * Acquire lock, falling back to synchronize_rcu() if too many
810 * lock-acquisition failures. Of course, if someone does the
811 * expedited grace period for us, just leave.
812 */
813 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
814 if (trycount++ < 10)
815 udelay(trycount * num_online_cpus());
816 else {
817 synchronize_rcu();
818 return;
819 }
820 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
821 goto mb_ret; /* Others did our work for us. */
822 }
823 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
824 goto unlock_mb_ret; /* Others did our work for us. */
825
12f5f524 826 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
827 synchronize_sched_expedited();
828
1304afb2 829 raw_spin_lock_irqsave(&rsp->onofflock, flags);
d9a3da06
PM
830
831 /* Initialize ->expmask for all non-leaf rcu_node structures. */
832 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1304afb2 833 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
d9a3da06 834 rnp->expmask = rnp->qsmaskinit;
1304afb2 835 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
d9a3da06
PM
836 }
837
12f5f524 838 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
839 rcu_for_each_leaf_node(rsp, rnp)
840 sync_rcu_preempt_exp_init(rsp, rnp);
841 if (NUM_RCU_NODES > 1)
842 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
843
1304afb2 844 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
d9a3da06 845
12f5f524 846 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
847 rnp = rcu_get_root(rsp);
848 wait_event(sync_rcu_preempt_exp_wq,
849 sync_rcu_preempt_exp_done(rnp));
850
851 /* Clean up and exit. */
852 smp_mb(); /* ensure expedited GP seen before counter increment. */
853 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
854unlock_mb_ret:
855 mutex_unlock(&sync_rcu_preempt_exp_mutex);
856mb_ret:
857 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
858}
859EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
860
f41d911f 861/*
6cc68793 862 * Check to see if there is any immediate preemptible-RCU-related work
f41d911f
PM
863 * to be done.
864 */
865static int rcu_preempt_pending(int cpu)
866{
867 return __rcu_pending(&rcu_preempt_state,
868 &per_cpu(rcu_preempt_data, cpu));
869}
870
871/*
6cc68793 872 * Does preemptible RCU need the CPU to stay out of dynticks mode?
f41d911f
PM
873 */
874static int rcu_preempt_needs_cpu(int cpu)
875{
876 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
877}
878
e74f4c45
PM
879/**
880 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
881 */
882void rcu_barrier(void)
883{
884 _rcu_barrier(&rcu_preempt_state, call_rcu);
885}
886EXPORT_SYMBOL_GPL(rcu_barrier);
887
f41d911f 888/*
6cc68793 889 * Initialize preemptible RCU's per-CPU data.
f41d911f
PM
890 */
891static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
892{
893 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
894}
895
e74f4c45 896/*
6cc68793 897 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
e74f4c45 898 */
29494be7 899static void rcu_preempt_send_cbs_to_online(void)
e74f4c45 900{
29494be7 901 rcu_send_cbs_to_online(&rcu_preempt_state);
e74f4c45
PM
902}
903
1eba8f84 904/*
6cc68793 905 * Initialize preemptible RCU's state structures.
1eba8f84
PM
906 */
907static void __init __rcu_init_preempt(void)
908{
394f99a9 909 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
910}
911
f41d911f 912/*
6cc68793 913 * Check for a task exiting while in a preemptible-RCU read-side
f41d911f
PM
914 * critical section, clean up if so. No need to issue warnings,
915 * as debug_check_no_locks_held() already does this if lockdep
916 * is enabled.
917 */
918void exit_rcu(void)
919{
920 struct task_struct *t = current;
921
922 if (t->rcu_read_lock_nesting == 0)
923 return;
924 t->rcu_read_lock_nesting = 1;
13491a0e 925 __rcu_read_unlock();
f41d911f
PM
926}
927
928#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
929
27f4d280
PM
930static struct rcu_state *rcu_state = &rcu_sched_state;
931
f41d911f
PM
932/*
933 * Tell them what RCU they are running.
934 */
0e0fc1c2 935static void __init rcu_bootup_announce(void)
f41d911f
PM
936{
937 printk(KERN_INFO "Hierarchical RCU implementation.\n");
26845c28 938 rcu_bootup_announce_oddness();
f41d911f
PM
939}
940
941/*
942 * Return the number of RCU batches processed thus far for debug & stats.
943 */
944long rcu_batches_completed(void)
945{
946 return rcu_batches_completed_sched();
947}
948EXPORT_SYMBOL_GPL(rcu_batches_completed);
949
bf66f18e
PM
950/*
951 * Force a quiescent state for RCU, which, because there is no preemptible
952 * RCU, becomes the same as rcu-sched.
953 */
954void rcu_force_quiescent_state(void)
955{
956 rcu_sched_force_quiescent_state();
957}
958EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
959
f41d911f 960/*
6cc68793 961 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
962 * CPUs being in quiescent states.
963 */
c3422bea 964static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
965{
966}
967
fc2219d4 968/*
6cc68793 969 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
970 * RCU readers.
971 */
27f4d280 972static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
973{
974 return 0;
975}
976
b668c9cf
PM
977#ifdef CONFIG_HOTPLUG_CPU
978
979/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 980static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 981{
1304afb2 982 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
983}
984
985#endif /* #ifdef CONFIG_HOTPLUG_CPU */
986
1ed509a2 987/*
6cc68793 988 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
989 * tasks blocked within RCU read-side critical sections.
990 */
991static void rcu_print_detail_task_stall(struct rcu_state *rsp)
992{
993}
994
f41d911f 995/*
6cc68793 996 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
997 * tasks blocked within RCU read-side critical sections.
998 */
9bc8b558 999static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1000{
9bc8b558 1001 return 0;
f41d911f
PM
1002}
1003
53d84e00
PM
1004/*
1005 * Because preemptible RCU does not exist, there is no need to suppress
1006 * its CPU stall warnings.
1007 */
1008static void rcu_preempt_stall_reset(void)
1009{
1010}
1011
b0e165c0 1012/*
6cc68793 1013 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1014 * so there is no need to check for blocked tasks. So check only for
1015 * bogus qsmask values.
b0e165c0
PM
1016 */
1017static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1018{
49e29126 1019 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1020}
1021
33f76148
PM
1022#ifdef CONFIG_HOTPLUG_CPU
1023
dd5d19ba 1024/*
6cc68793 1025 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1026 * tasks that were blocked within RCU read-side critical sections, and
1027 * such non-existent tasks cannot possibly have been blocking the current
1028 * grace period.
dd5d19ba 1029 */
237c80c5
PM
1030static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1031 struct rcu_node *rnp,
1032 struct rcu_data *rdp)
dd5d19ba 1033{
237c80c5 1034 return 0;
dd5d19ba
PM
1035}
1036
33f76148 1037/*
6cc68793 1038 * Because preemptible RCU does not exist, it never needs CPU-offline
33f76148
PM
1039 * processing.
1040 */
1041static void rcu_preempt_offline_cpu(int cpu)
1042{
1043}
1044
1045#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
f41d911f 1047/*
6cc68793 1048 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1049 * to check.
1050 */
1eba8f84 1051static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1052{
1053}
1054
1055/*
6cc68793 1056 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1057 * to process.
1058 */
1eba8f84 1059static void rcu_preempt_process_callbacks(void)
f41d911f
PM
1060{
1061}
1062
019129d5
PM
1063/*
1064 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1065 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1066 */
1067void synchronize_rcu_expedited(void)
1068{
1069 synchronize_sched_expedited();
1070}
1071EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1072
d9a3da06
PM
1073#ifdef CONFIG_HOTPLUG_CPU
1074
1075/*
6cc68793 1076 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1077 * report on tasks preempted in RCU read-side critical sections during
1078 * expedited RCU grace periods.
1079 */
b40d293e
TG
1080static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1081 bool wake)
d9a3da06 1082{
d9a3da06
PM
1083}
1084
1085#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1086
f41d911f 1087/*
6cc68793 1088 * Because preemptible RCU does not exist, it never has any work to do.
f41d911f
PM
1089 */
1090static int rcu_preempt_pending(int cpu)
1091{
1092 return 0;
1093}
1094
1095/*
6cc68793 1096 * Because preemptible RCU does not exist, it never needs any CPU.
f41d911f
PM
1097 */
1098static int rcu_preempt_needs_cpu(int cpu)
1099{
1100 return 0;
1101}
1102
e74f4c45 1103/*
6cc68793 1104 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1105 * another name for rcu_barrier_sched().
1106 */
1107void rcu_barrier(void)
1108{
1109 rcu_barrier_sched();
1110}
1111EXPORT_SYMBOL_GPL(rcu_barrier);
1112
f41d911f 1113/*
6cc68793 1114 * Because preemptible RCU does not exist, there is no per-CPU
f41d911f
PM
1115 * data to initialize.
1116 */
1117static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1118{
1119}
1120
e74f4c45 1121/*
6cc68793 1122 * Because there is no preemptible RCU, there are no callbacks to move.
e74f4c45 1123 */
29494be7 1124static void rcu_preempt_send_cbs_to_online(void)
e74f4c45
PM
1125{
1126}
1127
1eba8f84 1128/*
6cc68793 1129 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1130 */
1131static void __init __rcu_init_preempt(void)
1132{
1133}
1134
f41d911f 1135#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1136
27f4d280
PM
1137#ifdef CONFIG_RCU_BOOST
1138
1139#include "rtmutex_common.h"
1140
0ea1f2eb
PM
1141#ifdef CONFIG_RCU_TRACE
1142
1143static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1144{
1145 if (list_empty(&rnp->blkd_tasks))
1146 rnp->n_balk_blkd_tasks++;
1147 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1148 rnp->n_balk_exp_gp_tasks++;
1149 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1150 rnp->n_balk_boost_tasks++;
1151 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1152 rnp->n_balk_notblocked++;
1153 else if (rnp->gp_tasks != NULL &&
a9f4793d 1154 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1155 rnp->n_balk_notyet++;
1156 else
1157 rnp->n_balk_nos++;
1158}
1159
1160#else /* #ifdef CONFIG_RCU_TRACE */
1161
1162static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1163{
1164}
1165
1166#endif /* #else #ifdef CONFIG_RCU_TRACE */
1167
5342e269
PM
1168static struct lock_class_key rcu_boost_class;
1169
27f4d280
PM
1170/*
1171 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1172 * or ->boost_tasks, advancing the pointer to the next task in the
1173 * ->blkd_tasks list.
1174 *
1175 * Note that irqs must be enabled: boosting the task can block.
1176 * Returns 1 if there are more tasks needing to be boosted.
1177 */
1178static int rcu_boost(struct rcu_node *rnp)
1179{
1180 unsigned long flags;
1181 struct rt_mutex mtx;
1182 struct task_struct *t;
1183 struct list_head *tb;
1184
1185 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1186 return 0; /* Nothing left to boost. */
1187
1188 raw_spin_lock_irqsave(&rnp->lock, flags);
1189
1190 /*
1191 * Recheck under the lock: all tasks in need of boosting
1192 * might exit their RCU read-side critical sections on their own.
1193 */
1194 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return 0;
1197 }
1198
1199 /*
1200 * Preferentially boost tasks blocking expedited grace periods.
1201 * This cannot starve the normal grace periods because a second
1202 * expedited grace period must boost all blocked tasks, including
1203 * those blocking the pre-existing normal grace period.
1204 */
0ea1f2eb 1205 if (rnp->exp_tasks != NULL) {
27f4d280 1206 tb = rnp->exp_tasks;
0ea1f2eb
PM
1207 rnp->n_exp_boosts++;
1208 } else {
27f4d280 1209 tb = rnp->boost_tasks;
0ea1f2eb
PM
1210 rnp->n_normal_boosts++;
1211 }
1212 rnp->n_tasks_boosted++;
27f4d280
PM
1213
1214 /*
1215 * We boost task t by manufacturing an rt_mutex that appears to
1216 * be held by task t. We leave a pointer to that rt_mutex where
1217 * task t can find it, and task t will release the mutex when it
1218 * exits its outermost RCU read-side critical section. Then
1219 * simply acquiring this artificial rt_mutex will boost task
1220 * t's priority. (Thanks to tglx for suggesting this approach!)
1221 *
1222 * Note that task t must acquire rnp->lock to remove itself from
1223 * the ->blkd_tasks list, which it will do from exit() if from
1224 * nowhere else. We therefore are guaranteed that task t will
1225 * stay around at least until we drop rnp->lock. Note that
1226 * rnp->lock also resolves races between our priority boosting
1227 * and task t's exiting its outermost RCU read-side critical
1228 * section.
1229 */
1230 t = container_of(tb, struct task_struct, rcu_node_entry);
1231 rt_mutex_init_proxy_locked(&mtx, t);
5342e269
PM
1232 /* Avoid lockdep false positives. This rt_mutex is its own thing. */
1233 lockdep_set_class_and_name(&mtx.wait_lock, &rcu_boost_class,
1234 "rcu_boost_mutex");
27f4d280 1235 t->rcu_boost_mutex = &mtx;
27f4d280
PM
1236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1237 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1238 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1239
1240 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1241}
1242
1243/*
1244 * Timer handler to initiate waking up of boost kthreads that
1245 * have yielded the CPU due to excessive numbers of tasks to
1246 * boost. We wake up the per-rcu_node kthread, which in turn
1247 * will wake up the booster kthread.
1248 */
1249static void rcu_boost_kthread_timer(unsigned long arg)
1250{
1217ed1b 1251 invoke_rcu_node_kthread((struct rcu_node *)arg);
27f4d280
PM
1252}
1253
1254/*
1255 * Priority-boosting kthread. One per leaf rcu_node and one for the
1256 * root rcu_node.
1257 */
1258static int rcu_boost_kthread(void *arg)
1259{
1260 struct rcu_node *rnp = (struct rcu_node *)arg;
1261 int spincnt = 0;
1262 int more2boost;
1263
385680a9 1264 trace_rcu_utilization("Start boost kthread@init");
27f4d280 1265 for (;;) {
d71df90e 1266 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
385680a9 1267 trace_rcu_utilization("End boost kthread@rcu_wait");
08bca60a 1268 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
385680a9 1269 trace_rcu_utilization("Start boost kthread@rcu_wait");
d71df90e 1270 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1271 more2boost = rcu_boost(rnp);
1272 if (more2boost)
1273 spincnt++;
1274 else
1275 spincnt = 0;
1276 if (spincnt > 10) {
385680a9 1277 trace_rcu_utilization("End boost kthread@rcu_yield");
27f4d280 1278 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
385680a9 1279 trace_rcu_utilization("Start boost kthread@rcu_yield");
27f4d280
PM
1280 spincnt = 0;
1281 }
1282 }
1217ed1b 1283 /* NOTREACHED */
385680a9 1284 trace_rcu_utilization("End boost kthread@notreached");
27f4d280
PM
1285 return 0;
1286}
1287
1288/*
1289 * Check to see if it is time to start boosting RCU readers that are
1290 * blocking the current grace period, and, if so, tell the per-rcu_node
1291 * kthread to start boosting them. If there is an expedited grace
1292 * period in progress, it is always time to boost.
1293 *
1217ed1b
PM
1294 * The caller must hold rnp->lock, which this function releases,
1295 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1296 * so we don't need to worry about it going away.
27f4d280 1297 */
1217ed1b 1298static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1299{
1300 struct task_struct *t;
1301
0ea1f2eb
PM
1302 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1303 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1305 return;
0ea1f2eb 1306 }
27f4d280
PM
1307 if (rnp->exp_tasks != NULL ||
1308 (rnp->gp_tasks != NULL &&
1309 rnp->boost_tasks == NULL &&
1310 rnp->qsmask == 0 &&
1311 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1312 if (rnp->exp_tasks == NULL)
1313 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1315 t = rnp->boost_kthread_task;
1316 if (t != NULL)
1317 wake_up_process(t);
1217ed1b 1318 } else {
0ea1f2eb 1319 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1320 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1321 }
27f4d280
PM
1322}
1323
a46e0899
PM
1324/*
1325 * Wake up the per-CPU kthread to invoke RCU callbacks.
1326 */
1327static void invoke_rcu_callbacks_kthread(void)
1328{
1329 unsigned long flags;
1330
1331 local_irq_save(flags);
1332 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121
SL
1333 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1334 current != __this_cpu_read(rcu_cpu_kthread_task))
1335 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
a46e0899
PM
1336 local_irq_restore(flags);
1337}
1338
0f962a5e
PM
1339/*
1340 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1341 * held, so no one should be messing with the existence of the boost
1342 * kthread.
1343 */
27f4d280
PM
1344static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1345 cpumask_var_t cm)
1346{
27f4d280
PM
1347 struct task_struct *t;
1348
27f4d280
PM
1349 t = rnp->boost_kthread_task;
1350 if (t != NULL)
1351 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
27f4d280
PM
1352}
1353
1354#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1355
1356/*
1357 * Do priority-boost accounting for the start of a new grace period.
1358 */
1359static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1360{
1361 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1362}
1363
27f4d280
PM
1364/*
1365 * Create an RCU-boost kthread for the specified node if one does not
1366 * already exist. We only create this kthread for preemptible RCU.
1367 * Returns zero if all is well, a negated errno otherwise.
1368 */
1369static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1370 struct rcu_node *rnp,
1371 int rnp_index)
1372{
1373 unsigned long flags;
1374 struct sched_param sp;
1375 struct task_struct *t;
1376
1377 if (&rcu_preempt_state != rsp)
1378 return 0;
a46e0899 1379 rsp->boost = 1;
27f4d280
PM
1380 if (rnp->boost_kthread_task != NULL)
1381 return 0;
1382 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1383 "rcub/%d", rnp_index);
27f4d280
PM
1384 if (IS_ERR(t))
1385 return PTR_ERR(t);
1386 raw_spin_lock_irqsave(&rnp->lock, flags);
1387 rnp->boost_kthread_task = t;
1388 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1389 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1390 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1391 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1392 return 0;
1393}
1394
f8b7fc6b
PM
1395#ifdef CONFIG_HOTPLUG_CPU
1396
1397/*
1398 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1399 */
1400static void rcu_stop_cpu_kthread(int cpu)
1401{
1402 struct task_struct *t;
1403
1404 /* Stop the CPU's kthread. */
1405 t = per_cpu(rcu_cpu_kthread_task, cpu);
1406 if (t != NULL) {
1407 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1408 kthread_stop(t);
1409 }
1410}
1411
1412#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1413
1414static void rcu_kthread_do_work(void)
1415{
1416 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1417 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1418 rcu_preempt_do_callbacks();
1419}
1420
1421/*
1422 * Wake up the specified per-rcu_node-structure kthread.
1423 * Because the per-rcu_node kthreads are immortal, we don't need
1424 * to do anything to keep them alive.
1425 */
1426static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1427{
1428 struct task_struct *t;
1429
1430 t = rnp->node_kthread_task;
1431 if (t != NULL)
1432 wake_up_process(t);
1433}
1434
1435/*
1436 * Set the specified CPU's kthread to run RT or not, as specified by
1437 * the to_rt argument. The CPU-hotplug locks are held, so the task
1438 * is not going away.
1439 */
1440static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1441{
1442 int policy;
1443 struct sched_param sp;
1444 struct task_struct *t;
1445
1446 t = per_cpu(rcu_cpu_kthread_task, cpu);
1447 if (t == NULL)
1448 return;
1449 if (to_rt) {
1450 policy = SCHED_FIFO;
1451 sp.sched_priority = RCU_KTHREAD_PRIO;
1452 } else {
1453 policy = SCHED_NORMAL;
1454 sp.sched_priority = 0;
1455 }
1456 sched_setscheduler_nocheck(t, policy, &sp);
1457}
1458
1459/*
1460 * Timer handler to initiate the waking up of per-CPU kthreads that
1461 * have yielded the CPU due to excess numbers of RCU callbacks.
1462 * We wake up the per-rcu_node kthread, which in turn will wake up
1463 * the booster kthread.
1464 */
1465static void rcu_cpu_kthread_timer(unsigned long arg)
1466{
1467 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1468 struct rcu_node *rnp = rdp->mynode;
1469
1470 atomic_or(rdp->grpmask, &rnp->wakemask);
1471 invoke_rcu_node_kthread(rnp);
1472}
1473
1474/*
1475 * Drop to non-real-time priority and yield, but only after posting a
1476 * timer that will cause us to regain our real-time priority if we
1477 * remain preempted. Either way, we restore our real-time priority
1478 * before returning.
1479 */
1480static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1481{
1482 struct sched_param sp;
1483 struct timer_list yield_timer;
5b61b0ba 1484 int prio = current->rt_priority;
f8b7fc6b
PM
1485
1486 setup_timer_on_stack(&yield_timer, f, arg);
1487 mod_timer(&yield_timer, jiffies + 2);
1488 sp.sched_priority = 0;
1489 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1490 set_user_nice(current, 19);
1491 schedule();
5b61b0ba
MG
1492 set_user_nice(current, 0);
1493 sp.sched_priority = prio;
f8b7fc6b
PM
1494 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1495 del_timer(&yield_timer);
1496}
1497
1498/*
1499 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1500 * This can happen while the corresponding CPU is either coming online
1501 * or going offline. We cannot wait until the CPU is fully online
1502 * before starting the kthread, because the various notifier functions
1503 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1504 * the corresponding CPU is online.
1505 *
1506 * Return 1 if the kthread needs to stop, 0 otherwise.
1507 *
1508 * Caller must disable bh. This function can momentarily enable it.
1509 */
1510static int rcu_cpu_kthread_should_stop(int cpu)
1511{
1512 while (cpu_is_offline(cpu) ||
1513 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1514 smp_processor_id() != cpu) {
1515 if (kthread_should_stop())
1516 return 1;
1517 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1518 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1519 local_bh_enable();
1520 schedule_timeout_uninterruptible(1);
1521 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1522 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1523 local_bh_disable();
1524 }
1525 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1526 return 0;
1527}
1528
1529/*
1530 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1531 * RCU softirq used in flavors and configurations of RCU that do not
1532 * support RCU priority boosting.
f8b7fc6b
PM
1533 */
1534static int rcu_cpu_kthread(void *arg)
1535{
1536 int cpu = (int)(long)arg;
1537 unsigned long flags;
1538 int spincnt = 0;
1539 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1540 char work;
1541 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1542
385680a9 1543 trace_rcu_utilization("Start CPU kthread@init");
f8b7fc6b
PM
1544 for (;;) {
1545 *statusp = RCU_KTHREAD_WAITING;
385680a9 1546 trace_rcu_utilization("End CPU kthread@rcu_wait");
f8b7fc6b 1547 rcu_wait(*workp != 0 || kthread_should_stop());
385680a9 1548 trace_rcu_utilization("Start CPU kthread@rcu_wait");
f8b7fc6b
PM
1549 local_bh_disable();
1550 if (rcu_cpu_kthread_should_stop(cpu)) {
1551 local_bh_enable();
1552 break;
1553 }
1554 *statusp = RCU_KTHREAD_RUNNING;
1555 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1556 local_irq_save(flags);
1557 work = *workp;
1558 *workp = 0;
1559 local_irq_restore(flags);
1560 if (work)
1561 rcu_kthread_do_work();
1562 local_bh_enable();
1563 if (*workp != 0)
1564 spincnt++;
1565 else
1566 spincnt = 0;
1567 if (spincnt > 10) {
1568 *statusp = RCU_KTHREAD_YIELDING;
385680a9 1569 trace_rcu_utilization("End CPU kthread@rcu_yield");
f8b7fc6b 1570 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
385680a9 1571 trace_rcu_utilization("Start CPU kthread@rcu_yield");
f8b7fc6b
PM
1572 spincnt = 0;
1573 }
1574 }
1575 *statusp = RCU_KTHREAD_STOPPED;
385680a9 1576 trace_rcu_utilization("End CPU kthread@term");
f8b7fc6b
PM
1577 return 0;
1578}
1579
1580/*
1581 * Spawn a per-CPU kthread, setting up affinity and priority.
1582 * Because the CPU hotplug lock is held, no other CPU will be attempting
1583 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1584 * attempting to access it during boot, but the locking in kthread_bind()
1585 * will enforce sufficient ordering.
1586 *
1587 * Please note that we cannot simply refuse to wake up the per-CPU
1588 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1589 * which can result in softlockup complaints if the task ends up being
1590 * idle for more than a couple of minutes.
1591 *
1592 * However, please note also that we cannot bind the per-CPU kthread to its
1593 * CPU until that CPU is fully online. We also cannot wait until the
1594 * CPU is fully online before we create its per-CPU kthread, as this would
1595 * deadlock the system when CPU notifiers tried waiting for grace
1596 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1597 * is online. If its CPU is not yet fully online, then the code in
1598 * rcu_cpu_kthread() will wait until it is fully online, and then do
1599 * the binding.
1600 */
1601static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1602{
1603 struct sched_param sp;
1604 struct task_struct *t;
1605
b0d30417 1606 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1607 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1608 return 0;
1f288094
ED
1609 t = kthread_create_on_node(rcu_cpu_kthread,
1610 (void *)(long)cpu,
1611 cpu_to_node(cpu),
5b61b0ba 1612 "rcuc/%d", cpu);
f8b7fc6b
PM
1613 if (IS_ERR(t))
1614 return PTR_ERR(t);
1615 if (cpu_online(cpu))
1616 kthread_bind(t, cpu);
1617 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1618 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1619 sp.sched_priority = RCU_KTHREAD_PRIO;
1620 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1621 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1622 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1623 return 0;
1624}
1625
1626/*
1627 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1628 * kthreads when needed. We ignore requests to wake up kthreads
1629 * for offline CPUs, which is OK because force_quiescent_state()
1630 * takes care of this case.
1631 */
1632static int rcu_node_kthread(void *arg)
1633{
1634 int cpu;
1635 unsigned long flags;
1636 unsigned long mask;
1637 struct rcu_node *rnp = (struct rcu_node *)arg;
1638 struct sched_param sp;
1639 struct task_struct *t;
1640
1641 for (;;) {
1642 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1643 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1644 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1645 raw_spin_lock_irqsave(&rnp->lock, flags);
1646 mask = atomic_xchg(&rnp->wakemask, 0);
1647 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1648 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1649 if ((mask & 0x1) == 0)
1650 continue;
1651 preempt_disable();
1652 t = per_cpu(rcu_cpu_kthread_task, cpu);
1653 if (!cpu_online(cpu) || t == NULL) {
1654 preempt_enable();
1655 continue;
1656 }
1657 per_cpu(rcu_cpu_has_work, cpu) = 1;
1658 sp.sched_priority = RCU_KTHREAD_PRIO;
1659 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1660 preempt_enable();
1661 }
1662 }
1663 /* NOTREACHED */
1664 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1665 return 0;
1666}
1667
1668/*
1669 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1670 * served by the rcu_node in question. The CPU hotplug lock is still
1671 * held, so the value of rnp->qsmaskinit will be stable.
1672 *
1673 * We don't include outgoingcpu in the affinity set, use -1 if there is
1674 * no outgoing CPU. If there are no CPUs left in the affinity set,
1675 * this function allows the kthread to execute on any CPU.
1676 */
1677static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1678{
1679 cpumask_var_t cm;
1680 int cpu;
1681 unsigned long mask = rnp->qsmaskinit;
1682
1683 if (rnp->node_kthread_task == NULL)
1684 return;
1685 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1686 return;
1687 cpumask_clear(cm);
1688 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1689 if ((mask & 0x1) && cpu != outgoingcpu)
1690 cpumask_set_cpu(cpu, cm);
1691 if (cpumask_weight(cm) == 0) {
1692 cpumask_setall(cm);
1693 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1694 cpumask_clear_cpu(cpu, cm);
1695 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1696 }
1697 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1698 rcu_boost_kthread_setaffinity(rnp, cm);
1699 free_cpumask_var(cm);
1700}
1701
1702/*
1703 * Spawn a per-rcu_node kthread, setting priority and affinity.
1704 * Called during boot before online/offline can happen, or, if
1705 * during runtime, with the main CPU-hotplug locks held. So only
1706 * one of these can be executing at a time.
1707 */
1708static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1709 struct rcu_node *rnp)
1710{
1711 unsigned long flags;
1712 int rnp_index = rnp - &rsp->node[0];
1713 struct sched_param sp;
1714 struct task_struct *t;
1715
b0d30417 1716 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1717 rnp->qsmaskinit == 0)
1718 return 0;
1719 if (rnp->node_kthread_task == NULL) {
1720 t = kthread_create(rcu_node_kthread, (void *)rnp,
5b61b0ba 1721 "rcun/%d", rnp_index);
f8b7fc6b
PM
1722 if (IS_ERR(t))
1723 return PTR_ERR(t);
1724 raw_spin_lock_irqsave(&rnp->lock, flags);
1725 rnp->node_kthread_task = t;
1726 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1727 sp.sched_priority = 99;
1728 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1729 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1730 }
1731 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1732}
1733
1734/*
1735 * Spawn all kthreads -- called as soon as the scheduler is running.
1736 */
1737static int __init rcu_spawn_kthreads(void)
1738{
1739 int cpu;
1740 struct rcu_node *rnp;
1741
b0d30417 1742 rcu_scheduler_fully_active = 1;
f8b7fc6b
PM
1743 for_each_possible_cpu(cpu) {
1744 per_cpu(rcu_cpu_has_work, cpu) = 0;
1745 if (cpu_online(cpu))
1746 (void)rcu_spawn_one_cpu_kthread(cpu);
1747 }
1748 rnp = rcu_get_root(rcu_state);
1749 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1750 if (NUM_RCU_NODES > 1) {
1751 rcu_for_each_leaf_node(rcu_state, rnp)
1752 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1753 }
1754 return 0;
1755}
1756early_initcall(rcu_spawn_kthreads);
1757
1758static void __cpuinit rcu_prepare_kthreads(int cpu)
1759{
1760 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1761 struct rcu_node *rnp = rdp->mynode;
1762
1763 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
b0d30417 1764 if (rcu_scheduler_fully_active) {
f8b7fc6b
PM
1765 (void)rcu_spawn_one_cpu_kthread(cpu);
1766 if (rnp->node_kthread_task == NULL)
1767 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1768 }
1769}
1770
27f4d280
PM
1771#else /* #ifdef CONFIG_RCU_BOOST */
1772
1217ed1b 1773static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1774{
1217ed1b 1775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1776}
1777
a46e0899 1778static void invoke_rcu_callbacks_kthread(void)
27f4d280 1779{
a46e0899 1780 WARN_ON_ONCE(1);
27f4d280
PM
1781}
1782
1783static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1784{
1785}
1786
f8b7fc6b
PM
1787#ifdef CONFIG_HOTPLUG_CPU
1788
1789static void rcu_stop_cpu_kthread(int cpu)
1790{
1791}
1792
1793#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1794
1795static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1796{
1797}
1798
1799static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1800{
1801}
1802
b0d30417
PM
1803static int __init rcu_scheduler_really_started(void)
1804{
1805 rcu_scheduler_fully_active = 1;
1806 return 0;
1807}
1808early_initcall(rcu_scheduler_really_started);
1809
f8b7fc6b
PM
1810static void __cpuinit rcu_prepare_kthreads(int cpu)
1811{
1812}
1813
27f4d280
PM
1814#endif /* #else #ifdef CONFIG_RCU_BOOST */
1815
7b27d547
LJ
1816#ifndef CONFIG_SMP
1817
1818void synchronize_sched_expedited(void)
1819{
1820 cond_resched();
1821}
1822EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1823
1824#else /* #ifndef CONFIG_SMP */
1825
e27fc964
TH
1826static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1827static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
7b27d547
LJ
1828
1829static int synchronize_sched_expedited_cpu_stop(void *data)
1830{
1831 /*
1832 * There must be a full memory barrier on each affected CPU
1833 * between the time that try_stop_cpus() is called and the
1834 * time that it returns.
1835 *
1836 * In the current initial implementation of cpu_stop, the
1837 * above condition is already met when the control reaches
1838 * this point and the following smp_mb() is not strictly
1839 * necessary. Do smp_mb() anyway for documentation and
1840 * robustness against future implementation changes.
1841 */
1842 smp_mb(); /* See above comment block. */
1843 return 0;
1844}
1845
1846/*
1847 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1848 * approach to force grace period to end quickly. This consumes
1849 * significant time on all CPUs, and is thus not recommended for
1850 * any sort of common-case code.
1851 *
1852 * Note that it is illegal to call this function while holding any
1853 * lock that is acquired by a CPU-hotplug notifier. Failing to
1854 * observe this restriction will result in deadlock.
db3a8920 1855 *
e27fc964
TH
1856 * This implementation can be thought of as an application of ticket
1857 * locking to RCU, with sync_sched_expedited_started and
1858 * sync_sched_expedited_done taking on the roles of the halves
1859 * of the ticket-lock word. Each task atomically increments
1860 * sync_sched_expedited_started upon entry, snapshotting the old value,
1861 * then attempts to stop all the CPUs. If this succeeds, then each
1862 * CPU will have executed a context switch, resulting in an RCU-sched
1863 * grace period. We are then done, so we use atomic_cmpxchg() to
1864 * update sync_sched_expedited_done to match our snapshot -- but
1865 * only if someone else has not already advanced past our snapshot.
1866 *
1867 * On the other hand, if try_stop_cpus() fails, we check the value
1868 * of sync_sched_expedited_done. If it has advanced past our
1869 * initial snapshot, then someone else must have forced a grace period
1870 * some time after we took our snapshot. In this case, our work is
1871 * done for us, and we can simply return. Otherwise, we try again,
1872 * but keep our initial snapshot for purposes of checking for someone
1873 * doing our work for us.
1874 *
1875 * If we fail too many times in a row, we fall back to synchronize_sched().
7b27d547
LJ
1876 */
1877void synchronize_sched_expedited(void)
1878{
e27fc964 1879 int firstsnap, s, snap, trycount = 0;
7b27d547 1880
e27fc964
TH
1881 /* Note that atomic_inc_return() implies full memory barrier. */
1882 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
7b27d547 1883 get_online_cpus();
e27fc964
TH
1884
1885 /*
1886 * Each pass through the following loop attempts to force a
1887 * context switch on each CPU.
1888 */
7b27d547
LJ
1889 while (try_stop_cpus(cpu_online_mask,
1890 synchronize_sched_expedited_cpu_stop,
1891 NULL) == -EAGAIN) {
1892 put_online_cpus();
e27fc964
TH
1893
1894 /* No joy, try again later. Or just synchronize_sched(). */
7b27d547
LJ
1895 if (trycount++ < 10)
1896 udelay(trycount * num_online_cpus());
1897 else {
1898 synchronize_sched();
1899 return;
1900 }
e27fc964
TH
1901
1902 /* Check to see if someone else did our work for us. */
1903 s = atomic_read(&sync_sched_expedited_done);
1904 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
7b27d547
LJ
1905 smp_mb(); /* ensure test happens before caller kfree */
1906 return;
1907 }
e27fc964
TH
1908
1909 /*
1910 * Refetching sync_sched_expedited_started allows later
1911 * callers to piggyback on our grace period. We subtract
1912 * 1 to get the same token that the last incrementer got.
1913 * We retry after they started, so our grace period works
1914 * for them, and they started after our first try, so their
1915 * grace period works for us.
1916 */
7b27d547 1917 get_online_cpus();
7077714e 1918 snap = atomic_read(&sync_sched_expedited_started);
e27fc964 1919 smp_mb(); /* ensure read is before try_stop_cpus(). */
7b27d547 1920 }
e27fc964
TH
1921
1922 /*
1923 * Everyone up to our most recent fetch is covered by our grace
1924 * period. Update the counter, but only if our work is still
1925 * relevant -- which it won't be if someone who started later
1926 * than we did beat us to the punch.
1927 */
1928 do {
1929 s = atomic_read(&sync_sched_expedited_done);
1930 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1931 smp_mb(); /* ensure test happens before caller kfree */
1932 break;
1933 }
1934 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1935
7b27d547
LJ
1936 put_online_cpus();
1937}
1938EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1939
1940#endif /* #else #ifndef CONFIG_SMP */
1941
8bd93a2c
PM
1942#if !defined(CONFIG_RCU_FAST_NO_HZ)
1943
1944/*
1945 * Check to see if any future RCU-related work will need to be done
1946 * by the current CPU, even if none need be done immediately, returning
1947 * 1 if so. This function is part of the RCU implementation; it is -not-
1948 * an exported member of the RCU API.
1949 *
1950 * Because we have preemptible RCU, just check whether this CPU needs
1951 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1952 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1953 */
1954int rcu_needs_cpu(int cpu)
1955{
aea1b35e
PM
1956 return rcu_cpu_has_callbacks(cpu);
1957}
1958
1959/*
1960 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=y,
1961 * is nothing.
1962 */
1963static void rcu_prepare_for_idle(int cpu)
1964{
1965}
1966
1967/*
1968 * CPUs are never putting themselves to sleep with callbacks pending,
1969 * so there is no need to awaken them.
1970 */
1971static void rcu_wake_cpus_for_gp_end(void)
1972{
1973}
1974
1975/*
1976 * CPUs are never putting themselves to sleep with callbacks pending,
1977 * so there is no need to schedule the act of awakening them.
1978 */
1979static void rcu_schedule_wake_gp_end(void)
1980{
8bd93a2c
PM
1981}
1982
1983#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1984
1985#define RCU_NEEDS_CPU_FLUSHES 5
a47cd880 1986static DEFINE_PER_CPU(int, rcu_dyntick_drain);
71da8132 1987static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
aea1b35e 1988static DEFINE_PER_CPU(bool, rcu_awake_at_gp_end);
8bd93a2c
PM
1989
1990/*
aea1b35e
PM
1991 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1992 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1993 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1994 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1995 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1996 * it is better to incur scheduling-clock interrupts than to spin
1997 * continuously for the same time duration!
1998 */
1999int rcu_needs_cpu(int cpu)
2000{
2001 /* If no callbacks, RCU doesn't need the CPU. */
2002 if (!rcu_cpu_has_callbacks(cpu))
2003 return 0;
2004 /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
2005 return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
2006}
2007
2008/*
2009 * Check to see if any RCU-related work can be done by the current CPU,
2010 * and if so, schedule a softirq to get it done. This function is part
2011 * of the RCU implementation; it is -not- an exported member of the RCU API.
8bd93a2c 2012 *
aea1b35e
PM
2013 * The idea is for the current CPU to clear out all work required by the
2014 * RCU core for the current grace period, so that this CPU can be permitted
2015 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2016 * at the end of the grace period by whatever CPU ends the grace period.
2017 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2018 * number of wakeups by a modest integer factor.
a47cd880
PM
2019 *
2020 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2021 * disabled, we do one pass of force_quiescent_state(), then do a
a46e0899 2022 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
27f4d280 2023 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
aea1b35e
PM
2024 *
2025 * The caller must have disabled interrupts.
8bd93a2c 2026 */
aea1b35e 2027static void rcu_prepare_for_idle(int cpu)
8bd93a2c 2028{
a47cd880 2029 int c = 0;
8bd93a2c 2030
aea1b35e
PM
2031 /* If no callbacks or in the holdoff period, enter dyntick-idle. */
2032 if (!rcu_cpu_has_callbacks(cpu)) {
2033 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2034 return;
77e38ed3 2035 }
aea1b35e
PM
2036 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
2037 return;
a47cd880
PM
2038
2039 /* Check and update the rcu_dyntick_drain sequencing. */
2040 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2041 /* First time through, initialize the counter. */
2042 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
2043 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2044 /* We have hit the limit, so time to give up. */
71da8132 2045 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
aea1b35e
PM
2046 if (!rcu_pending(cpu)) {
2047 per_cpu(rcu_awake_at_gp_end, cpu) = 1;
2048 return; /* Nothing to do immediately. */
2049 }
2050 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2051 return;
a47cd880
PM
2052 }
2053
aea1b35e
PM
2054 /*
2055 * Do one step of pushing the remaining RCU callbacks through
2056 * the RCU core state machine.
2057 */
2058#ifdef CONFIG_TREE_PREEMPT_RCU
2059 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2060 rcu_preempt_qs(cpu);
2061 force_quiescent_state(&rcu_preempt_state, 0);
2062 c = c || per_cpu(rcu_preempt_data, cpu).nxtlist;
2063 }
2064#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
a47cd880
PM
2065 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2066 rcu_sched_qs(cpu);
2067 force_quiescent_state(&rcu_sched_state, 0);
2068 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
2069 }
2070 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2071 rcu_bh_qs(cpu);
2072 force_quiescent_state(&rcu_bh_state, 0);
2073 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
8bd93a2c
PM
2074 }
2075
2076 /* If RCU callbacks are still pending, RCU still needs this CPU. */
622ea685 2077 if (c)
a46e0899 2078 invoke_rcu_core();
8bd93a2c
PM
2079}
2080
aea1b35e
PM
2081/*
2082 * Wake up a CPU by invoking the RCU core. Intended for use by
2083 * rcu_wake_cpus_for_gp_end(), which passes this function to
2084 * smp_call_function_single().
2085 */
2086static void rcu_wake_cpu(void *unused)
2087{
2088 invoke_rcu_core();
2089}
2090
2091/*
2092 * If an RCU grace period ended recently, scan the rcu_awake_at_gp_end
2093 * per-CPU variables, and wake up any CPUs that requested a wakeup.
2094 */
2095static void rcu_wake_cpus_for_gp_end(void)
2096{
2097 int cpu;
2098 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
2099
2100 if (!rdtp->wake_gp_end)
2101 return;
2102 rdtp->wake_gp_end = 0;
2103 for_each_online_cpu(cpu) {
2104 if (per_cpu(rcu_awake_at_gp_end, cpu)) {
2105 per_cpu(rcu_awake_at_gp_end, cpu) = 0;
2106 smp_call_function_single(cpu, rcu_wake_cpu, NULL, 0);
2107 }
2108 }
2109}
2110
2111/*
2112 * A grace period has just ended, and so we will need to awaken CPUs
2113 * that now have work to do. But we cannot send IPIs with interrupts
2114 * disabled, so just set a flag so that this will happen upon exit
2115 * from RCU core processing.
2116 */
2117static void rcu_schedule_wake_gp_end(void)
2118{
2119 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
2120
2121 rdtp->wake_gp_end = 1;
2122}
2123
2124/* @@@ need tracing as well. */
2125
8bd93a2c 2126#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */