rcu: Move rcu_barrier() to rcutree
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52/* Data structures. */
53
54#define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
56 .levelcnt = { \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
58 NUM_RCU_LVL_1, \
59 NUM_RCU_LVL_2, \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
61 }, \
62 .signaled = RCU_SIGNAL_INIT, \
63 .gpnum = -300, \
64 .completed = -300, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
67 .n_force_qs = 0, \
68 .n_force_qs_ngp = 0, \
69}
70
d6714c22
PM
71struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
72DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 73
6258c4fb
IM
74struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
75DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 76
f41d911f 77
fc2219d4
PM
78/*
79 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
80 * permit this function to be invoked without holding the root rcu_node
81 * structure's ->lock, but of course results can be subject to change.
82 */
83static int rcu_gp_in_progress(struct rcu_state *rsp)
84{
85 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
86}
87
b1f77b05 88/*
d6714c22 89 * Note a quiescent state. Because we do not need to know
b1f77b05 90 * how many quiescent states passed, just if there was at least
d6714c22 91 * one since the start of the grace period, this just sets a flag.
b1f77b05 92 */
d6714c22 93void rcu_sched_qs(int cpu)
b1f77b05 94{
f41d911f
PM
95 struct rcu_data *rdp;
96
f41d911f 97 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05 98 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
99 barrier();
100 rdp->passed_quiesc = 1;
101 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
102}
103
d6714c22 104void rcu_bh_qs(int cpu)
b1f77b05 105{
f41d911f
PM
106 struct rcu_data *rdp;
107
f41d911f 108 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05 109 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
110 barrier();
111 rdp->passed_quiesc = 1;
b1f77b05 112}
64db4cff
PM
113
114#ifdef CONFIG_NO_HZ
90a4d2c0
PM
115DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
116 .dynticks_nesting = 1,
117 .dynticks = 1,
118};
64db4cff
PM
119#endif /* #ifdef CONFIG_NO_HZ */
120
121static int blimit = 10; /* Maximum callbacks per softirq. */
122static int qhimark = 10000; /* If this many pending, ignore blimit. */
123static int qlowmark = 100; /* Once only this many pending, use blimit. */
124
3d76c082
PM
125module_param(blimit, int, 0);
126module_param(qhimark, int, 0);
127module_param(qlowmark, int, 0);
128
64db4cff 129static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 130static int rcu_pending(int cpu);
64db4cff
PM
131
132/*
d6714c22 133 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 134 */
d6714c22 135long rcu_batches_completed_sched(void)
64db4cff 136{
d6714c22 137 return rcu_sched_state.completed;
64db4cff 138}
d6714c22 139EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
140
141/*
142 * Return the number of RCU BH batches processed thus far for debug & stats.
143 */
144long rcu_batches_completed_bh(void)
145{
146 return rcu_bh_state.completed;
147}
148EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
149
150/*
151 * Does the CPU have callbacks ready to be invoked?
152 */
153static int
154cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
155{
156 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
157}
158
159/*
160 * Does the current CPU require a yet-as-unscheduled grace period?
161 */
162static int
163cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
164{
fc2219d4 165 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
166}
167
168/*
169 * Return the root node of the specified rcu_state structure.
170 */
171static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
172{
173 return &rsp->node[0];
174}
175
176#ifdef CONFIG_SMP
177
178/*
179 * If the specified CPU is offline, tell the caller that it is in
180 * a quiescent state. Otherwise, whack it with a reschedule IPI.
181 * Grace periods can end up waiting on an offline CPU when that
182 * CPU is in the process of coming online -- it will be added to the
183 * rcu_node bitmasks before it actually makes it online. The same thing
184 * can happen while a CPU is in the process of coming online. Because this
185 * race is quite rare, we check for it after detecting that the grace
186 * period has been delayed rather than checking each and every CPU
187 * each and every time we start a new grace period.
188 */
189static int rcu_implicit_offline_qs(struct rcu_data *rdp)
190{
191 /*
192 * If the CPU is offline, it is in a quiescent state. We can
193 * trust its state not to change because interrupts are disabled.
194 */
195 if (cpu_is_offline(rdp->cpu)) {
196 rdp->offline_fqs++;
197 return 1;
198 }
199
f41d911f
PM
200 /* If preemptable RCU, no point in sending reschedule IPI. */
201 if (rdp->preemptable)
202 return 0;
203
64db4cff
PM
204 /* The CPU is online, so send it a reschedule IPI. */
205 if (rdp->cpu != smp_processor_id())
206 smp_send_reschedule(rdp->cpu);
207 else
208 set_need_resched();
209 rdp->resched_ipi++;
210 return 0;
211}
212
213#endif /* #ifdef CONFIG_SMP */
214
215#ifdef CONFIG_NO_HZ
64db4cff
PM
216
217/**
218 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
219 *
220 * Enter nohz mode, in other words, -leave- the mode in which RCU
221 * read-side critical sections can occur. (Though RCU read-side
222 * critical sections can occur in irq handlers in nohz mode, a possibility
223 * handled by rcu_irq_enter() and rcu_irq_exit()).
224 */
225void rcu_enter_nohz(void)
226{
227 unsigned long flags;
228 struct rcu_dynticks *rdtp;
229
230 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
231 local_irq_save(flags);
232 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++;
234 rdtp->dynticks_nesting--;
86848966 235 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
236 local_irq_restore(flags);
237}
238
239/*
240 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
241 *
242 * Exit nohz mode, in other words, -enter- the mode in which RCU
243 * read-side critical sections normally occur.
244 */
245void rcu_exit_nohz(void)
246{
247 unsigned long flags;
248 struct rcu_dynticks *rdtp;
249
250 local_irq_save(flags);
251 rdtp = &__get_cpu_var(rcu_dynticks);
252 rdtp->dynticks++;
253 rdtp->dynticks_nesting++;
86848966 254 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
255 local_irq_restore(flags);
256 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
257}
258
259/**
260 * rcu_nmi_enter - inform RCU of entry to NMI context
261 *
262 * If the CPU was idle with dynamic ticks active, and there is no
263 * irq handler running, this updates rdtp->dynticks_nmi to let the
264 * RCU grace-period handling know that the CPU is active.
265 */
266void rcu_nmi_enter(void)
267{
268 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
269
270 if (rdtp->dynticks & 0x1)
271 return;
272 rdtp->dynticks_nmi++;
86848966 273 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
274 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
275}
276
277/**
278 * rcu_nmi_exit - inform RCU of exit from NMI context
279 *
280 * If the CPU was idle with dynamic ticks active, and there is no
281 * irq handler running, this updates rdtp->dynticks_nmi to let the
282 * RCU grace-period handling know that the CPU is no longer active.
283 */
284void rcu_nmi_exit(void)
285{
286 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
287
288 if (rdtp->dynticks & 0x1)
289 return;
290 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
291 rdtp->dynticks_nmi++;
86848966 292 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
293}
294
295/**
296 * rcu_irq_enter - inform RCU of entry to hard irq context
297 *
298 * If the CPU was idle with dynamic ticks active, this updates the
299 * rdtp->dynticks to let the RCU handling know that the CPU is active.
300 */
301void rcu_irq_enter(void)
302{
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks_nesting++)
306 return;
307 rdtp->dynticks++;
86848966 308 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
309 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
310}
311
312/**
313 * rcu_irq_exit - inform RCU of exit from hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
316 * to put let the RCU handling be aware that the CPU is going back to idle
317 * with no ticks.
318 */
319void rcu_irq_exit(void)
320{
321 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
322
323 if (--rdtp->dynticks_nesting)
324 return;
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 rdtp->dynticks++;
86848966 327 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
328
329 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 330 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
331 __get_cpu_var(rcu_bh_data).nxtlist)
332 set_need_resched();
333}
334
335/*
336 * Record the specified "completed" value, which is later used to validate
337 * dynticks counter manipulations. Specify "rsp->completed - 1" to
338 * unconditionally invalidate any future dynticks manipulations (which is
339 * useful at the beginning of a grace period).
340 */
341static void dyntick_record_completed(struct rcu_state *rsp, long comp)
342{
343 rsp->dynticks_completed = comp;
344}
345
346#ifdef CONFIG_SMP
347
348/*
349 * Recall the previously recorded value of the completion for dynticks.
350 */
351static long dyntick_recall_completed(struct rcu_state *rsp)
352{
353 return rsp->dynticks_completed;
354}
355
356/*
357 * Snapshot the specified CPU's dynticks counter so that we can later
358 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 359 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
360 */
361static int dyntick_save_progress_counter(struct rcu_data *rdp)
362{
363 int ret;
364 int snap;
365 int snap_nmi;
366
367 snap = rdp->dynticks->dynticks;
368 snap_nmi = rdp->dynticks->dynticks_nmi;
369 smp_mb(); /* Order sampling of snap with end of grace period. */
370 rdp->dynticks_snap = snap;
371 rdp->dynticks_nmi_snap = snap_nmi;
372 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
373 if (ret)
374 rdp->dynticks_fqs++;
375 return ret;
376}
377
378/*
379 * Return true if the specified CPU has passed through a quiescent
380 * state by virtue of being in or having passed through an dynticks
381 * idle state since the last call to dyntick_save_progress_counter()
382 * for this same CPU.
383 */
384static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
385{
386 long curr;
387 long curr_nmi;
388 long snap;
389 long snap_nmi;
390
391 curr = rdp->dynticks->dynticks;
392 snap = rdp->dynticks_snap;
393 curr_nmi = rdp->dynticks->dynticks_nmi;
394 snap_nmi = rdp->dynticks_nmi_snap;
395 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
396
397 /*
398 * If the CPU passed through or entered a dynticks idle phase with
399 * no active irq/NMI handlers, then we can safely pretend that the CPU
400 * already acknowledged the request to pass through a quiescent
401 * state. Either way, that CPU cannot possibly be in an RCU
402 * read-side critical section that started before the beginning
403 * of the current RCU grace period.
404 */
405 if ((curr != snap || (curr & 0x1) == 0) &&
406 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
407 rdp->dynticks_fqs++;
408 return 1;
409 }
410
411 /* Go check for the CPU being offline. */
412 return rcu_implicit_offline_qs(rdp);
413}
414
415#endif /* #ifdef CONFIG_SMP */
416
417#else /* #ifdef CONFIG_NO_HZ */
418
419static void dyntick_record_completed(struct rcu_state *rsp, long comp)
420{
421}
422
423#ifdef CONFIG_SMP
424
425/*
426 * If there are no dynticks, then the only way that a CPU can passively
427 * be in a quiescent state is to be offline. Unlike dynticks idle, which
428 * is a point in time during the prior (already finished) grace period,
429 * an offline CPU is always in a quiescent state, and thus can be
430 * unconditionally applied. So just return the current value of completed.
431 */
432static long dyntick_recall_completed(struct rcu_state *rsp)
433{
434 return rsp->completed;
435}
436
437static int dyntick_save_progress_counter(struct rcu_data *rdp)
438{
439 return 0;
440}
441
442static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
443{
444 return rcu_implicit_offline_qs(rdp);
445}
446
447#endif /* #ifdef CONFIG_SMP */
448
449#endif /* #else #ifdef CONFIG_NO_HZ */
450
451#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
452
453static void record_gp_stall_check_time(struct rcu_state *rsp)
454{
455 rsp->gp_start = jiffies;
456 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
457}
458
459static void print_other_cpu_stall(struct rcu_state *rsp)
460{
461 int cpu;
462 long delta;
463 unsigned long flags;
464 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
465
466 /* Only let one CPU complain about others per time interval. */
467
468 spin_lock_irqsave(&rnp->lock, flags);
469 delta = jiffies - rsp->jiffies_stall;
fc2219d4 470 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
471 spin_unlock_irqrestore(&rnp->lock, flags);
472 return;
473 }
474 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
475
476 /*
477 * Now rat on any tasks that got kicked up to the root rcu_node
478 * due to CPU offlining.
479 */
480 rcu_print_task_stall(rnp);
64db4cff
PM
481 spin_unlock_irqrestore(&rnp->lock, flags);
482
483 /* OK, time to rat on our buddy... */
484
485 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 486 rcu_for_each_leaf_node(rsp, rnp) {
f41d911f 487 rcu_print_task_stall(rnp);
a0b6c9a7 488 if (rnp->qsmask == 0)
64db4cff 489 continue;
a0b6c9a7
PM
490 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
491 if (rnp->qsmask & (1UL << cpu))
492 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
493 }
494 printk(" (detected by %d, t=%ld jiffies)\n",
495 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
496 trigger_all_cpu_backtrace();
497
64db4cff
PM
498 force_quiescent_state(rsp, 0); /* Kick them all. */
499}
500
501static void print_cpu_stall(struct rcu_state *rsp)
502{
503 unsigned long flags;
504 struct rcu_node *rnp = rcu_get_root(rsp);
505
506 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
507 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
508 trigger_all_cpu_backtrace();
509
64db4cff
PM
510 spin_lock_irqsave(&rnp->lock, flags);
511 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
512 rsp->jiffies_stall =
513 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
514 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 515
64db4cff
PM
516 set_need_resched(); /* kick ourselves to get things going. */
517}
518
519static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
520{
521 long delta;
522 struct rcu_node *rnp;
523
524 delta = jiffies - rsp->jiffies_stall;
525 rnp = rdp->mynode;
526 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
527
528 /* We haven't checked in, so go dump stack. */
529 print_cpu_stall(rsp);
530
fc2219d4 531 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
532
533 /* They had two time units to dump stack, so complain. */
534 print_other_cpu_stall(rsp);
535 }
536}
537
538#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
539
540static void record_gp_stall_check_time(struct rcu_state *rsp)
541{
542}
543
544static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
545{
546}
547
548#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
549
550/*
551 * Update CPU-local rcu_data state to record the newly noticed grace period.
552 * This is used both when we started the grace period and when we notice
553 * that someone else started the grace period.
554 */
555static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
556{
557 rdp->qs_pending = 1;
558 rdp->passed_quiesc = 0;
559 rdp->gpnum = rsp->gpnum;
64db4cff
PM
560}
561
562/*
563 * Did someone else start a new RCU grace period start since we last
564 * checked? Update local state appropriately if so. Must be called
565 * on the CPU corresponding to rdp.
566 */
567static int
568check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
569{
570 unsigned long flags;
571 int ret = 0;
572
573 local_irq_save(flags);
574 if (rdp->gpnum != rsp->gpnum) {
575 note_new_gpnum(rsp, rdp);
576 ret = 1;
577 }
578 local_irq_restore(flags);
579 return ret;
580}
581
582/*
583 * Start a new RCU grace period if warranted, re-initializing the hierarchy
584 * in preparation for detecting the next grace period. The caller must hold
585 * the root node's ->lock, which is released before return. Hard irqs must
586 * be disabled.
587 */
588static void
589rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
590 __releases(rcu_get_root(rsp)->lock)
591{
592 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
593 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
594
595 if (!cpu_needs_another_gp(rsp, rdp)) {
596 spin_unlock_irqrestore(&rnp->lock, flags);
597 return;
598 }
599
600 /* Advance to a new grace period and initialize state. */
601 rsp->gpnum++;
c3422bea 602 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
603 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
604 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
605 record_gp_stall_check_time(rsp);
606 dyntick_record_completed(rsp, rsp->completed - 1);
607 note_new_gpnum(rsp, rdp);
608
609 /*
1eba8f84
PM
610 * Because this CPU just now started the new grace period, we know
611 * that all of its callbacks will be covered by this upcoming grace
612 * period, even the ones that were registered arbitrarily recently.
613 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
614 *
615 * Other CPUs cannot be sure exactly when the grace period started.
616 * Therefore, their recently registered callbacks must pass through
617 * an additional RCU_NEXT_READY stage, so that they will be handled
618 * by the next RCU grace period.
64db4cff
PM
619 */
620 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
621 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
622
623 /* Special-case the common single-level case. */
624 if (NUM_RCU_NODES == 1) {
b0e165c0 625 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 626 rnp->qsmask = rnp->qsmaskinit;
de078d87 627 rnp->gpnum = rsp->gpnum;
c12172c0 628 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
629 spin_unlock_irqrestore(&rnp->lock, flags);
630 return;
631 }
632
633 spin_unlock(&rnp->lock); /* leave irqs disabled. */
634
635
636 /* Exclude any concurrent CPU-hotplug operations. */
637 spin_lock(&rsp->onofflock); /* irqs already disabled. */
638
639 /*
b835db1f
PM
640 * Set the quiescent-state-needed bits in all the rcu_node
641 * structures for all currently online CPUs in breadth-first
642 * order, starting from the root rcu_node structure. This
643 * operation relies on the layout of the hierarchy within the
644 * rsp->node[] array. Note that other CPUs will access only
645 * the leaves of the hierarchy, which still indicate that no
646 * grace period is in progress, at least until the corresponding
647 * leaf node has been initialized. In addition, we have excluded
648 * CPU-hotplug operations.
64db4cff
PM
649 *
650 * Note that the grace period cannot complete until we finish
651 * the initialization process, as there will be at least one
652 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
653 * one corresponding to this CPU, due to the fact that we have
654 * irqs disabled.
64db4cff 655 */
a0b6c9a7 656 rcu_for_each_node_breadth_first(rsp, rnp) {
49e29126 657 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 658 rcu_preempt_check_blocked_tasks(rnp);
49e29126 659 rnp->qsmask = rnp->qsmaskinit;
de078d87 660 rnp->gpnum = rsp->gpnum;
49e29126 661 spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
662 }
663
664 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
665 spin_unlock_irqrestore(&rsp->onofflock, flags);
666}
667
668/*
669 * Advance this CPU's callbacks, but only if the current grace period
670 * has ended. This may be called only from the CPU to whom the rdp
671 * belongs.
672 */
673static void
674rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
675{
676 long completed_snap;
677 unsigned long flags;
678
679 local_irq_save(flags);
680 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
681
682 /* Did another grace period end? */
683 if (rdp->completed != completed_snap) {
684
685 /* Advance callbacks. No harm if list empty. */
686 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
687 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
688 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
689
690 /* Remember that we saw this grace-period completion. */
691 rdp->completed = completed_snap;
692 }
693 local_irq_restore(flags);
694}
695
f41d911f
PM
696/*
697 * Clean up after the prior grace period and let rcu_start_gp() start up
698 * the next grace period if one is needed. Note that the caller must
699 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
700 */
701static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
fc2219d4 702 __releases(rcu_get_root(rsp)->lock)
f41d911f 703{
fc2219d4 704 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f
PM
705 rsp->completed = rsp->gpnum;
706 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
707 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
708}
709
64db4cff
PM
710/*
711 * Similar to cpu_quiet(), for which it is a helper function. Allows
712 * a group of CPUs to be quieted at one go, though all the CPUs in the
713 * group must be represented by the same leaf rcu_node structure.
714 * That structure's lock must be held upon entry, and it is released
715 * before return.
716 */
717static void
718cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
719 unsigned long flags)
720 __releases(rnp->lock)
721{
28ecd580
PM
722 struct rcu_node *rnp_c;
723
64db4cff
PM
724 /* Walk up the rcu_node hierarchy. */
725 for (;;) {
726 if (!(rnp->qsmask & mask)) {
727
728 /* Our bit has already been cleared, so done. */
729 spin_unlock_irqrestore(&rnp->lock, flags);
730 return;
731 }
732 rnp->qsmask &= ~mask;
f41d911f 733 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
734
735 /* Other bits still set at this level, so done. */
736 spin_unlock_irqrestore(&rnp->lock, flags);
737 return;
738 }
739 mask = rnp->grpmask;
740 if (rnp->parent == NULL) {
741
742 /* No more levels. Exit loop holding root lock. */
743
744 break;
745 }
746 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 747 rnp_c = rnp;
64db4cff
PM
748 rnp = rnp->parent;
749 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 750 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
751 }
752
753 /*
754 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
755 * state for this grace period. Invoke cpu_quiet_msk_finish()
756 * to clean up and start the next grace period if one is needed.
64db4cff 757 */
f41d911f 758 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
759}
760
761/*
762 * Record a quiescent state for the specified CPU, which must either be
e7d8842e
PM
763 * the current CPU. The lastcomp argument is used to make sure we are
764 * still in the grace period of interest. We don't want to end the current
765 * grace period based on quiescent states detected in an earlier grace
766 * period!
64db4cff
PM
767 */
768static void
769cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
770{
771 unsigned long flags;
772 unsigned long mask;
773 struct rcu_node *rnp;
774
775 rnp = rdp->mynode;
776 spin_lock_irqsave(&rnp->lock, flags);
777 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
778
779 /*
780 * Someone beat us to it for this grace period, so leave.
781 * The race with GP start is resolved by the fact that we
782 * hold the leaf rcu_node lock, so that the per-CPU bits
783 * cannot yet be initialized -- so we would simply find our
784 * CPU's bit already cleared in cpu_quiet_msk() if this race
785 * occurred.
786 */
787 rdp->passed_quiesc = 0; /* try again later! */
788 spin_unlock_irqrestore(&rnp->lock, flags);
789 return;
790 }
791 mask = rdp->grpmask;
792 if ((rnp->qsmask & mask) == 0) {
793 spin_unlock_irqrestore(&rnp->lock, flags);
794 } else {
795 rdp->qs_pending = 0;
796
797 /*
798 * This GP can't end until cpu checks in, so all of our
799 * callbacks can be processed during the next GP.
800 */
64db4cff
PM
801 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
802
803 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
804 }
805}
806
807/*
808 * Check to see if there is a new grace period of which this CPU
809 * is not yet aware, and if so, set up local rcu_data state for it.
810 * Otherwise, see if this CPU has just passed through its first
811 * quiescent state for this grace period, and record that fact if so.
812 */
813static void
814rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
815{
816 /* If there is now a new grace period, record and return. */
817 if (check_for_new_grace_period(rsp, rdp))
818 return;
819
820 /*
821 * Does this CPU still need to do its part for current grace period?
822 * If no, return and let the other CPUs do their part as well.
823 */
824 if (!rdp->qs_pending)
825 return;
826
827 /*
828 * Was there a quiescent state since the beginning of the grace
829 * period? If no, then exit and wait for the next call.
830 */
831 if (!rdp->passed_quiesc)
832 return;
833
834 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
835 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
836}
837
838#ifdef CONFIG_HOTPLUG_CPU
839
840/*
841 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
842 * and move all callbacks from the outgoing CPU to the current one.
843 */
844static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
845{
846 int i;
847 unsigned long flags;
848 long lastcomp;
849 unsigned long mask;
850 struct rcu_data *rdp = rsp->rda[cpu];
851 struct rcu_data *rdp_me;
852 struct rcu_node *rnp;
853
854 /* Exclude any attempts to start a new grace period. */
855 spin_lock_irqsave(&rsp->onofflock, flags);
856
857 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 858 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
859 mask = rdp->grpmask; /* rnp->grplo is constant. */
860 do {
861 spin_lock(&rnp->lock); /* irqs already disabled. */
862 rnp->qsmaskinit &= ~mask;
863 if (rnp->qsmaskinit != 0) {
f41d911f 864 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
865 break;
866 }
28ecd580 867 rcu_preempt_offline_tasks(rsp, rnp, rdp);
64db4cff 868 mask = rnp->grpmask;
f41d911f 869 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
870 rnp = rnp->parent;
871 } while (rnp != NULL);
872 lastcomp = rsp->completed;
873
874 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
875
64db4cff
PM
876 /*
877 * Move callbacks from the outgoing CPU to the running CPU.
1eba8f84 878 * Note that the outgoing CPU is now quiescent, so it is now
d6714c22 879 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
880 * Note also that we must carefully retain the order of the
881 * outgoing CPU's callbacks in order for rcu_barrier() to work
882 * correctly. Finally, note that we start all the callbacks
883 * afresh, even those that have passed through a grace period
884 * and are therefore ready to invoke. The theory is that hotplug
885 * events are rare, and that if they are frequent enough to
886 * indefinitely delay callbacks, you have far worse things to
887 * be worrying about.
888 */
64db4cff 889 if (rdp->nxtlist != NULL) {
3d76c082 890 rdp_me = rsp->rda[smp_processor_id()];
64db4cff
PM
891 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
892 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
893 rdp->nxtlist = NULL;
894 for (i = 0; i < RCU_NEXT_SIZE; i++)
895 rdp->nxttail[i] = &rdp->nxtlist;
896 rdp_me->qlen += rdp->qlen;
897 rdp->qlen = 0;
898 }
899 local_irq_restore(flags);
900}
901
902/*
903 * Remove the specified CPU from the RCU hierarchy and move any pending
904 * callbacks that it might have to the current CPU. This code assumes
905 * that at least one CPU in the system will remain running at all times.
906 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
907 */
908static void rcu_offline_cpu(int cpu)
909{
d6714c22 910 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 911 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 912 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
913}
914
915#else /* #ifdef CONFIG_HOTPLUG_CPU */
916
917static void rcu_offline_cpu(int cpu)
918{
919}
920
921#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
922
923/*
924 * Invoke any RCU callbacks that have made it to the end of their grace
925 * period. Thottle as specified by rdp->blimit.
926 */
927static void rcu_do_batch(struct rcu_data *rdp)
928{
929 unsigned long flags;
930 struct rcu_head *next, *list, **tail;
931 int count;
932
933 /* If no callbacks are ready, just return.*/
934 if (!cpu_has_callbacks_ready_to_invoke(rdp))
935 return;
936
937 /*
938 * Extract the list of ready callbacks, disabling to prevent
939 * races with call_rcu() from interrupt handlers.
940 */
941 local_irq_save(flags);
942 list = rdp->nxtlist;
943 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
944 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
945 tail = rdp->nxttail[RCU_DONE_TAIL];
946 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
947 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
948 rdp->nxttail[count] = &rdp->nxtlist;
949 local_irq_restore(flags);
950
951 /* Invoke callbacks. */
952 count = 0;
953 while (list) {
954 next = list->next;
955 prefetch(next);
956 list->func(list);
957 list = next;
958 if (++count >= rdp->blimit)
959 break;
960 }
961
962 local_irq_save(flags);
963
964 /* Update count, and requeue any remaining callbacks. */
965 rdp->qlen -= count;
966 if (list != NULL) {
967 *tail = rdp->nxtlist;
968 rdp->nxtlist = list;
969 for (count = 0; count < RCU_NEXT_SIZE; count++)
970 if (&rdp->nxtlist == rdp->nxttail[count])
971 rdp->nxttail[count] = tail;
972 else
973 break;
974 }
975
976 /* Reinstate batch limit if we have worked down the excess. */
977 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
978 rdp->blimit = blimit;
979
980 local_irq_restore(flags);
981
982 /* Re-raise the RCU softirq if there are callbacks remaining. */
983 if (cpu_has_callbacks_ready_to_invoke(rdp))
984 raise_softirq(RCU_SOFTIRQ);
985}
986
987/*
988 * Check to see if this CPU is in a non-context-switch quiescent state
989 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
990 * Also schedule the RCU softirq handler.
991 *
992 * This function must be called with hardirqs disabled. It is normally
993 * invoked from the scheduling-clock interrupt. If rcu_pending returns
994 * false, there is no point in invoking rcu_check_callbacks().
995 */
996void rcu_check_callbacks(int cpu, int user)
997{
a157229c
PM
998 if (!rcu_pending(cpu))
999 return; /* if nothing for RCU to do. */
64db4cff 1000 if (user ||
a6826048
PM
1001 (idle_cpu(cpu) && rcu_scheduler_active &&
1002 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1003
1004 /*
1005 * Get here if this CPU took its interrupt from user
1006 * mode or from the idle loop, and if this is not a
1007 * nested interrupt. In this case, the CPU is in
d6714c22 1008 * a quiescent state, so note it.
64db4cff
PM
1009 *
1010 * No memory barrier is required here because both
d6714c22
PM
1011 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1012 * variables that other CPUs neither access nor modify,
1013 * at least not while the corresponding CPU is online.
64db4cff
PM
1014 */
1015
d6714c22
PM
1016 rcu_sched_qs(cpu);
1017 rcu_bh_qs(cpu);
64db4cff
PM
1018
1019 } else if (!in_softirq()) {
1020
1021 /*
1022 * Get here if this CPU did not take its interrupt from
1023 * softirq, in other words, if it is not interrupting
1024 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1025 * critical section, so note it.
64db4cff
PM
1026 */
1027
d6714c22 1028 rcu_bh_qs(cpu);
64db4cff 1029 }
f41d911f 1030 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1031 raise_softirq(RCU_SOFTIRQ);
1032}
1033
1034#ifdef CONFIG_SMP
1035
1036/*
1037 * Scan the leaf rcu_node structures, processing dyntick state for any that
1038 * have not yet encountered a quiescent state, using the function specified.
1039 * Returns 1 if the current grace period ends while scanning (possibly
1040 * because we made it end).
1041 */
1042static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1043 int (*f)(struct rcu_data *))
1044{
1045 unsigned long bit;
1046 int cpu;
1047 unsigned long flags;
1048 unsigned long mask;
a0b6c9a7 1049 struct rcu_node *rnp;
64db4cff 1050
a0b6c9a7 1051 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1052 mask = 0;
a0b6c9a7 1053 spin_lock_irqsave(&rnp->lock, flags);
64db4cff 1054 if (rsp->completed != lastcomp) {
a0b6c9a7 1055 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1056 return 1;
1057 }
a0b6c9a7
PM
1058 if (rnp->qsmask == 0) {
1059 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1060 continue;
1061 }
a0b6c9a7 1062 cpu = rnp->grplo;
64db4cff 1063 bit = 1;
a0b6c9a7
PM
1064 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1065 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1066 mask |= bit;
1067 }
1068 if (mask != 0 && rsp->completed == lastcomp) {
1069
a0b6c9a7
PM
1070 /* cpu_quiet_msk() releases rnp->lock. */
1071 cpu_quiet_msk(mask, rsp, rnp, flags);
64db4cff
PM
1072 continue;
1073 }
a0b6c9a7 1074 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1075 }
1076 return 0;
1077}
1078
1079/*
1080 * Force quiescent states on reluctant CPUs, and also detect which
1081 * CPUs are in dyntick-idle mode.
1082 */
1083static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1084{
1085 unsigned long flags;
1086 long lastcomp;
64db4cff
PM
1087 struct rcu_node *rnp = rcu_get_root(rsp);
1088 u8 signaled;
1089
fc2219d4 1090 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1091 return; /* No grace period in progress, nothing to force. */
1092 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1093 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1094 return; /* Someone else is already on the job. */
1095 }
1096 if (relaxed &&
ef631b0c 1097 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1098 goto unlock_ret; /* no emergency and done recently. */
1099 rsp->n_force_qs++;
1100 spin_lock(&rnp->lock);
1101 lastcomp = rsp->completed;
1102 signaled = rsp->signaled;
1103 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1104 if (lastcomp == rsp->gpnum) {
1105 rsp->n_force_qs_ngp++;
1106 spin_unlock(&rnp->lock);
1107 goto unlock_ret; /* no GP in progress, time updated. */
1108 }
1109 spin_unlock(&rnp->lock);
1110 switch (signaled) {
1111 case RCU_GP_INIT:
1112
1113 break; /* grace period still initializing, ignore. */
1114
1115 case RCU_SAVE_DYNTICK:
1116
1117 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1118 break; /* So gcc recognizes the dead code. */
1119
1120 /* Record dyntick-idle state. */
1121 if (rcu_process_dyntick(rsp, lastcomp,
1122 dyntick_save_progress_counter))
1123 goto unlock_ret;
1124
1125 /* Update state, record completion counter. */
1126 spin_lock(&rnp->lock);
1127 if (lastcomp == rsp->completed) {
1128 rsp->signaled = RCU_FORCE_QS;
1129 dyntick_record_completed(rsp, lastcomp);
1130 }
1131 spin_unlock(&rnp->lock);
1132 break;
1133
1134 case RCU_FORCE_QS:
1135
1136 /* Check dyntick-idle state, send IPI to laggarts. */
1137 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1138 rcu_implicit_dynticks_qs))
1139 goto unlock_ret;
1140
1141 /* Leave state in case more forcing is required. */
1142
1143 break;
1144 }
1145unlock_ret:
1146 spin_unlock_irqrestore(&rsp->fqslock, flags);
1147}
1148
1149#else /* #ifdef CONFIG_SMP */
1150
1151static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1152{
1153 set_need_resched();
1154}
1155
1156#endif /* #else #ifdef CONFIG_SMP */
1157
1158/*
1159 * This does the RCU processing work from softirq context for the
1160 * specified rcu_state and rcu_data structures. This may be called
1161 * only from the CPU to whom the rdp belongs.
1162 */
1163static void
1164__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1165{
1166 unsigned long flags;
1167
2e597558
PM
1168 WARN_ON_ONCE(rdp->beenonline == 0);
1169
64db4cff
PM
1170 /*
1171 * If an RCU GP has gone long enough, go check for dyntick
1172 * idle CPUs and, if needed, send resched IPIs.
1173 */
ef631b0c 1174 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1175 force_quiescent_state(rsp, 1);
1176
1177 /*
1178 * Advance callbacks in response to end of earlier grace
1179 * period that some other CPU ended.
1180 */
1181 rcu_process_gp_end(rsp, rdp);
1182
1183 /* Update RCU state based on any recent quiescent states. */
1184 rcu_check_quiescent_state(rsp, rdp);
1185
1186 /* Does this CPU require a not-yet-started grace period? */
1187 if (cpu_needs_another_gp(rsp, rdp)) {
1188 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1189 rcu_start_gp(rsp, flags); /* releases above lock */
1190 }
1191
1192 /* If there are callbacks ready, invoke them. */
1193 rcu_do_batch(rdp);
1194}
1195
1196/*
1197 * Do softirq processing for the current CPU.
1198 */
1199static void rcu_process_callbacks(struct softirq_action *unused)
1200{
1201 /*
1202 * Memory references from any prior RCU read-side critical sections
1203 * executed by the interrupted code must be seen before any RCU
1204 * grace-period manipulations below.
1205 */
1206 smp_mb(); /* See above block comment. */
1207
d6714c22
PM
1208 __rcu_process_callbacks(&rcu_sched_state,
1209 &__get_cpu_var(rcu_sched_data));
64db4cff 1210 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1211 rcu_preempt_process_callbacks();
64db4cff
PM
1212
1213 /*
1214 * Memory references from any later RCU read-side critical sections
1215 * executed by the interrupted code must be seen after any RCU
1216 * grace-period manipulations above.
1217 */
1218 smp_mb(); /* See above block comment. */
1219}
1220
1221static void
1222__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1223 struct rcu_state *rsp)
1224{
1225 unsigned long flags;
1226 struct rcu_data *rdp;
1227
1228 head->func = func;
1229 head->next = NULL;
1230
1231 smp_mb(); /* Ensure RCU update seen before callback registry. */
1232
1233 /*
1234 * Opportunistically note grace-period endings and beginnings.
1235 * Note that we might see a beginning right after we see an
1236 * end, but never vice versa, since this CPU has to pass through
1237 * a quiescent state betweentimes.
1238 */
1239 local_irq_save(flags);
1240 rdp = rsp->rda[smp_processor_id()];
1241 rcu_process_gp_end(rsp, rdp);
1242 check_for_new_grace_period(rsp, rdp);
1243
1244 /* Add the callback to our list. */
1245 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1246 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1247
1248 /* Start a new grace period if one not already started. */
fc2219d4 1249 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1250 unsigned long nestflag;
1251 struct rcu_node *rnp_root = rcu_get_root(rsp);
1252
1253 spin_lock_irqsave(&rnp_root->lock, nestflag);
1254 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1255 }
1256
1257 /* Force the grace period if too many callbacks or too long waiting. */
1258 if (unlikely(++rdp->qlen > qhimark)) {
1259 rdp->blimit = LONG_MAX;
1260 force_quiescent_state(rsp, 0);
ef631b0c 1261 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1262 force_quiescent_state(rsp, 1);
1263 local_irq_restore(flags);
1264}
1265
1266/*
d6714c22 1267 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1268 */
d6714c22 1269void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1270{
d6714c22 1271 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1272}
d6714c22 1273EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1274
1275/*
1276 * Queue an RCU for invocation after a quicker grace period.
1277 */
1278void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1279{
1280 __call_rcu(head, func, &rcu_bh_state);
1281}
1282EXPORT_SYMBOL_GPL(call_rcu_bh);
1283
1284/*
1285 * Check to see if there is any immediate RCU-related work to be done
1286 * by the current CPU, for the specified type of RCU, returning 1 if so.
1287 * The checks are in order of increasing expense: checks that can be
1288 * carried out against CPU-local state are performed first. However,
1289 * we must check for CPU stalls first, else we might not get a chance.
1290 */
1291static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1292{
1293 rdp->n_rcu_pending++;
1294
1295 /* Check for CPU stalls, if enabled. */
1296 check_cpu_stall(rsp, rdp);
1297
1298 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1299 if (rdp->qs_pending) {
1300 rdp->n_rp_qs_pending++;
64db4cff 1301 return 1;
7ba5c840 1302 }
64db4cff
PM
1303
1304 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1305 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1306 rdp->n_rp_cb_ready++;
64db4cff 1307 return 1;
7ba5c840 1308 }
64db4cff
PM
1309
1310 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1311 if (cpu_needs_another_gp(rsp, rdp)) {
1312 rdp->n_rp_cpu_needs_gp++;
64db4cff 1313 return 1;
7ba5c840 1314 }
64db4cff
PM
1315
1316 /* Has another RCU grace period completed? */
7ba5c840
PM
1317 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1318 rdp->n_rp_gp_completed++;
64db4cff 1319 return 1;
7ba5c840 1320 }
64db4cff
PM
1321
1322 /* Has a new RCU grace period started? */
7ba5c840
PM
1323 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1324 rdp->n_rp_gp_started++;
64db4cff 1325 return 1;
7ba5c840 1326 }
64db4cff
PM
1327
1328 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1329 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1330 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1331 rdp->n_rp_need_fqs++;
64db4cff 1332 return 1;
7ba5c840 1333 }
64db4cff
PM
1334
1335 /* nothing to do */
7ba5c840 1336 rdp->n_rp_need_nothing++;
64db4cff
PM
1337 return 0;
1338}
1339
1340/*
1341 * Check to see if there is any immediate RCU-related work to be done
1342 * by the current CPU, returning 1 if so. This function is part of the
1343 * RCU implementation; it is -not- an exported member of the RCU API.
1344 */
a157229c 1345static int rcu_pending(int cpu)
64db4cff 1346{
d6714c22 1347 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1348 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1349 rcu_preempt_pending(cpu);
64db4cff
PM
1350}
1351
1352/*
1353 * Check to see if any future RCU-related work will need to be done
1354 * by the current CPU, even if none need be done immediately, returning
1355 * 1 if so. This function is part of the RCU implementation; it is -not-
1356 * an exported member of the RCU API.
1357 */
1358int rcu_needs_cpu(int cpu)
1359{
1360 /* RCU callbacks either ready or pending? */
d6714c22 1361 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1362 per_cpu(rcu_bh_data, cpu).nxtlist ||
1363 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1364}
1365
d0ec774c
PM
1366static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1367static atomic_t rcu_barrier_cpu_count;
1368static DEFINE_MUTEX(rcu_barrier_mutex);
1369static struct completion rcu_barrier_completion;
1370static atomic_t rcu_migrate_type_count = ATOMIC_INIT(0);
1371static struct rcu_head rcu_migrate_head[3];
1372static DECLARE_WAIT_QUEUE_HEAD(rcu_migrate_wq);
1373
1374static void rcu_barrier_callback(struct rcu_head *notused)
1375{
1376 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1377 complete(&rcu_barrier_completion);
1378}
1379
1380/*
1381 * Called with preemption disabled, and from cross-cpu IRQ context.
1382 */
1383static void rcu_barrier_func(void *type)
1384{
1385 int cpu = smp_processor_id();
1386 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1387 void (*call_rcu_func)(struct rcu_head *head,
1388 void (*func)(struct rcu_head *head));
1389
1390 atomic_inc(&rcu_barrier_cpu_count);
1391 call_rcu_func = type;
1392 call_rcu_func(head, rcu_barrier_callback);
1393}
1394
1395static inline void wait_migrated_callbacks(void)
1396{
1397 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count));
1398 smp_mb(); /* In case we didn't sleep. */
1399}
1400
1401/*
1402 * Orchestrate the specified type of RCU barrier, waiting for all
1403 * RCU callbacks of the specified type to complete.
1404 */
1405static void _rcu_barrier(void (*call_rcu_func)(struct rcu_head *head,
1406 void (*func)(struct rcu_head *head)))
1407{
1408 BUG_ON(in_interrupt());
1409 /* Take cpucontrol mutex to protect against CPU hotplug */
1410 mutex_lock(&rcu_barrier_mutex);
1411 init_completion(&rcu_barrier_completion);
1412 /*
1413 * Initialize rcu_barrier_cpu_count to 1, then invoke
1414 * rcu_barrier_func() on each CPU, so that each CPU also has
1415 * incremented rcu_barrier_cpu_count. Only then is it safe to
1416 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1417 * might complete its grace period before all of the other CPUs
1418 * did their increment, causing this function to return too
1419 * early.
1420 */
1421 atomic_set(&rcu_barrier_cpu_count, 1);
1422 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1423 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1424 complete(&rcu_barrier_completion);
1425 wait_for_completion(&rcu_barrier_completion);
1426 mutex_unlock(&rcu_barrier_mutex);
1427 wait_migrated_callbacks();
1428}
1429
1430/**
1431 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
1432 */
1433void rcu_barrier(void)
1434{
1435 _rcu_barrier(call_rcu);
1436}
1437EXPORT_SYMBOL_GPL(rcu_barrier);
1438
1439/**
1440 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1441 */
1442void rcu_barrier_bh(void)
1443{
1444 _rcu_barrier(call_rcu_bh);
1445}
1446EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1447
1448/**
1449 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1450 */
1451void rcu_barrier_sched(void)
1452{
1453 _rcu_barrier(call_rcu_sched);
1454}
1455EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1456
1457static void rcu_migrate_callback(struct rcu_head *notused)
1458{
1459 if (atomic_dec_and_test(&rcu_migrate_type_count))
1460 wake_up(&rcu_migrate_wq);
1461}
1462
64db4cff 1463/*
27569620 1464 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1465 */
27569620
PM
1466static void __init
1467rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1468{
1469 unsigned long flags;
1470 int i;
27569620
PM
1471 struct rcu_data *rdp = rsp->rda[cpu];
1472 struct rcu_node *rnp = rcu_get_root(rsp);
1473
1474 /* Set up local state, ensuring consistent view of global state. */
1475 spin_lock_irqsave(&rnp->lock, flags);
1476 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1477 rdp->nxtlist = NULL;
1478 for (i = 0; i < RCU_NEXT_SIZE; i++)
1479 rdp->nxttail[i] = &rdp->nxtlist;
1480 rdp->qlen = 0;
1481#ifdef CONFIG_NO_HZ
1482 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1483#endif /* #ifdef CONFIG_NO_HZ */
1484 rdp->cpu = cpu;
1485 spin_unlock_irqrestore(&rnp->lock, flags);
1486}
1487
1488/*
1489 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1490 * offline event can be happening at a given time. Note also that we
1491 * can accept some slop in the rsp->completed access due to the fact
1492 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1493 */
e4fa4c97 1494static void __cpuinit
f41d911f 1495rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1496{
1497 unsigned long flags;
64db4cff
PM
1498 long lastcomp;
1499 unsigned long mask;
1500 struct rcu_data *rdp = rsp->rda[cpu];
1501 struct rcu_node *rnp = rcu_get_root(rsp);
1502
1503 /* Set up local state, ensuring consistent view of global state. */
1504 spin_lock_irqsave(&rnp->lock, flags);
1505 lastcomp = rsp->completed;
1506 rdp->completed = lastcomp;
1507 rdp->gpnum = lastcomp;
1508 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1509 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1510 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1511 rdp->preemptable = preemptable;
64db4cff 1512 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1513 rdp->blimit = blimit;
64db4cff
PM
1514 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1515
1516 /*
1517 * A new grace period might start here. If so, we won't be part
1518 * of it, but that is OK, as we are currently in a quiescent state.
1519 */
1520
1521 /* Exclude any attempts to start a new GP on large systems. */
1522 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1523
1524 /* Add CPU to rcu_node bitmasks. */
1525 rnp = rdp->mynode;
1526 mask = rdp->grpmask;
1527 do {
1528 /* Exclude any attempts to start a new GP on small systems. */
1529 spin_lock(&rnp->lock); /* irqs already disabled. */
1530 rnp->qsmaskinit |= mask;
1531 mask = rnp->grpmask;
1532 spin_unlock(&rnp->lock); /* irqs already disabled. */
1533 rnp = rnp->parent;
1534 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1535
e7d8842e 1536 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1537}
1538
1539static void __cpuinit rcu_online_cpu(int cpu)
1540{
f41d911f
PM
1541 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1542 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1543 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1544}
1545
1546/*
f41d911f 1547 * Handle CPU online/offline notification events.
64db4cff 1548 */
2e597558
PM
1549int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1550 unsigned long action, void *hcpu)
64db4cff
PM
1551{
1552 long cpu = (long)hcpu;
1553
1554 switch (action) {
1555 case CPU_UP_PREPARE:
1556 case CPU_UP_PREPARE_FROZEN:
1557 rcu_online_cpu(cpu);
1558 break;
d0ec774c
PM
1559 case CPU_DOWN_PREPARE:
1560 case CPU_DOWN_PREPARE_FROZEN:
1561 /* Don't need to wait until next removal operation. */
1562 /* rcu_migrate_head is protected by cpu_add_remove_lock */
1563 wait_migrated_callbacks();
1564 break;
1565 case CPU_DYING:
1566 case CPU_DYING_FROZEN:
1567 /*
1568 * preempt_disable() in on_each_cpu() prevents stop_machine(),
1569 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1570 * returns, all online cpus have queued rcu_barrier_func(),
1571 * and the dead cpu(if it exist) queues rcu_migrate_callback()s.
1572 *
1573 * These callbacks ensure _rcu_barrier() waits for all
1574 * RCU callbacks of the specified type to complete.
1575 */
1576 atomic_set(&rcu_migrate_type_count, 3);
1577 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback);
1578 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback);
1579 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback);
1580 break;
64db4cff
PM
1581 case CPU_DEAD:
1582 case CPU_DEAD_FROZEN:
1583 case CPU_UP_CANCELED:
1584 case CPU_UP_CANCELED_FROZEN:
1585 rcu_offline_cpu(cpu);
1586 break;
1587 default:
1588 break;
1589 }
1590 return NOTIFY_OK;
1591}
1592
1593/*
1594 * Compute the per-level fanout, either using the exact fanout specified
1595 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1596 */
1597#ifdef CONFIG_RCU_FANOUT_EXACT
1598static void __init rcu_init_levelspread(struct rcu_state *rsp)
1599{
1600 int i;
1601
1602 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1603 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1604}
1605#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1606static void __init rcu_init_levelspread(struct rcu_state *rsp)
1607{
1608 int ccur;
1609 int cprv;
1610 int i;
1611
1612 cprv = NR_CPUS;
1613 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1614 ccur = rsp->levelcnt[i];
1615 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1616 cprv = ccur;
1617 }
1618}
1619#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1620
1621/*
1622 * Helper function for rcu_init() that initializes one rcu_state structure.
1623 */
1624static void __init rcu_init_one(struct rcu_state *rsp)
1625{
1626 int cpustride = 1;
1627 int i;
1628 int j;
1629 struct rcu_node *rnp;
1630
1631 /* Initialize the level-tracking arrays. */
1632
1633 for (i = 1; i < NUM_RCU_LVLS; i++)
1634 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1635 rcu_init_levelspread(rsp);
1636
1637 /* Initialize the elements themselves, starting from the leaves. */
1638
1639 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1640 cpustride *= rsp->levelspread[i];
1641 rnp = rsp->level[i];
1642 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1643 spin_lock_init(&rnp->lock);
f41d911f 1644 rnp->gpnum = 0;
64db4cff
PM
1645 rnp->qsmask = 0;
1646 rnp->qsmaskinit = 0;
1647 rnp->grplo = j * cpustride;
1648 rnp->grphi = (j + 1) * cpustride - 1;
1649 if (rnp->grphi >= NR_CPUS)
1650 rnp->grphi = NR_CPUS - 1;
1651 if (i == 0) {
1652 rnp->grpnum = 0;
1653 rnp->grpmask = 0;
1654 rnp->parent = NULL;
1655 } else {
1656 rnp->grpnum = j % rsp->levelspread[i - 1];
1657 rnp->grpmask = 1UL << rnp->grpnum;
1658 rnp->parent = rsp->level[i - 1] +
1659 j / rsp->levelspread[i - 1];
1660 }
1661 rnp->level = i;
f41d911f
PM
1662 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1663 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1664 }
1665 }
1666}
1667
1668/*
f41d911f
PM
1669 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1670 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1671 * structure.
64db4cff 1672 */
65cf8f86 1673#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1674do { \
a0b6c9a7
PM
1675 int i; \
1676 int j; \
1677 struct rcu_node *rnp; \
1678 \
65cf8f86 1679 rcu_init_one(rsp); \
64db4cff
PM
1680 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1681 j = 0; \
1682 for_each_possible_cpu(i) { \
1683 if (i > rnp[j].grphi) \
1684 j++; \
1685 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1686 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1687 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1688 } \
1689} while (0)
1690
64db4cff
PM
1691void __init __rcu_init(void)
1692{
f41d911f 1693 rcu_bootup_announce();
64db4cff
PM
1694#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1695 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1696#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1697 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1698 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1699 __rcu_init_preempt();
2e597558 1700 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1701}
1702
1eba8f84 1703#include "rcutree_plugin.h"