rcu: Add WARN_ON_ONCE() consistency checks covering state transitions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59/* Data structures. */
60
61#define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
f41d911f 84extern long rcu_batches_completed_sched(void);
dd5d19ba 85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
f41d911f
PM
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 89#ifdef CONFIG_HOTPLUG_CPU
33f76148 90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
b1f77b05 103/*
d6714c22 104 * Note a quiescent state. Because we do not need to know
b1f77b05 105 * how many quiescent states passed, just if there was at least
d6714c22 106 * one since the start of the grace period, this just sets a flag.
b1f77b05 107 */
d6714c22 108void rcu_sched_qs(int cpu)
b1f77b05 109{
f41d911f
PM
110 struct rcu_data *rdp;
111
f41d911f 112 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05 113 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
114 barrier();
115 rdp->passed_quiesc = 1;
116 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
117}
118
d6714c22 119void rcu_bh_qs(int cpu)
b1f77b05 120{
f41d911f
PM
121 struct rcu_data *rdp;
122
f41d911f 123 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05 124 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
125 barrier();
126 rdp->passed_quiesc = 1;
b1f77b05 127}
64db4cff
PM
128
129#ifdef CONFIG_NO_HZ
90a4d2c0
PM
130DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
131 .dynticks_nesting = 1,
132 .dynticks = 1,
133};
64db4cff
PM
134#endif /* #ifdef CONFIG_NO_HZ */
135
136static int blimit = 10; /* Maximum callbacks per softirq. */
137static int qhimark = 10000; /* If this many pending, ignore blimit. */
138static int qlowmark = 100; /* Once only this many pending, use blimit. */
139
140static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 141static int rcu_pending(int cpu);
64db4cff
PM
142
143/*
d6714c22 144 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 145 */
d6714c22 146long rcu_batches_completed_sched(void)
64db4cff 147{
d6714c22 148 return rcu_sched_state.completed;
64db4cff 149}
d6714c22 150EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
151
152/*
153 * Return the number of RCU BH batches processed thus far for debug & stats.
154 */
155long rcu_batches_completed_bh(void)
156{
157 return rcu_bh_state.completed;
158}
159EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
160
161/*
162 * Does the CPU have callbacks ready to be invoked?
163 */
164static int
165cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
166{
167 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
168}
169
170/*
171 * Does the current CPU require a yet-as-unscheduled grace period?
172 */
173static int
174cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
175{
176 /* ACCESS_ONCE() because we are accessing outside of lock. */
177 return *rdp->nxttail[RCU_DONE_TAIL] &&
178 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
179}
180
181/*
182 * Return the root node of the specified rcu_state structure.
183 */
184static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
185{
186 return &rsp->node[0];
187}
188
189#ifdef CONFIG_SMP
190
191/*
192 * If the specified CPU is offline, tell the caller that it is in
193 * a quiescent state. Otherwise, whack it with a reschedule IPI.
194 * Grace periods can end up waiting on an offline CPU when that
195 * CPU is in the process of coming online -- it will be added to the
196 * rcu_node bitmasks before it actually makes it online. The same thing
197 * can happen while a CPU is in the process of coming online. Because this
198 * race is quite rare, we check for it after detecting that the grace
199 * period has been delayed rather than checking each and every CPU
200 * each and every time we start a new grace period.
201 */
202static int rcu_implicit_offline_qs(struct rcu_data *rdp)
203{
204 /*
205 * If the CPU is offline, it is in a quiescent state. We can
206 * trust its state not to change because interrupts are disabled.
207 */
208 if (cpu_is_offline(rdp->cpu)) {
209 rdp->offline_fqs++;
210 return 1;
211 }
212
f41d911f
PM
213 /* If preemptable RCU, no point in sending reschedule IPI. */
214 if (rdp->preemptable)
215 return 0;
216
64db4cff
PM
217 /* The CPU is online, so send it a reschedule IPI. */
218 if (rdp->cpu != smp_processor_id())
219 smp_send_reschedule(rdp->cpu);
220 else
221 set_need_resched();
222 rdp->resched_ipi++;
223 return 0;
224}
225
226#endif /* #ifdef CONFIG_SMP */
227
228#ifdef CONFIG_NO_HZ
64db4cff
PM
229
230/**
231 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
232 *
233 * Enter nohz mode, in other words, -leave- the mode in which RCU
234 * read-side critical sections can occur. (Though RCU read-side
235 * critical sections can occur in irq handlers in nohz mode, a possibility
236 * handled by rcu_irq_enter() and rcu_irq_exit()).
237 */
238void rcu_enter_nohz(void)
239{
240 unsigned long flags;
241 struct rcu_dynticks *rdtp;
242
243 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
244 local_irq_save(flags);
245 rdtp = &__get_cpu_var(rcu_dynticks);
246 rdtp->dynticks++;
247 rdtp->dynticks_nesting--;
86848966 248 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
249 local_irq_restore(flags);
250}
251
252/*
253 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
254 *
255 * Exit nohz mode, in other words, -enter- the mode in which RCU
256 * read-side critical sections normally occur.
257 */
258void rcu_exit_nohz(void)
259{
260 unsigned long flags;
261 struct rcu_dynticks *rdtp;
262
263 local_irq_save(flags);
264 rdtp = &__get_cpu_var(rcu_dynticks);
265 rdtp->dynticks++;
266 rdtp->dynticks_nesting++;
86848966 267 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
268 local_irq_restore(flags);
269 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
270}
271
272/**
273 * rcu_nmi_enter - inform RCU of entry to NMI context
274 *
275 * If the CPU was idle with dynamic ticks active, and there is no
276 * irq handler running, this updates rdtp->dynticks_nmi to let the
277 * RCU grace-period handling know that the CPU is active.
278 */
279void rcu_nmi_enter(void)
280{
281 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
282
283 if (rdtp->dynticks & 0x1)
284 return;
285 rdtp->dynticks_nmi++;
86848966 286 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
287 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
288}
289
290/**
291 * rcu_nmi_exit - inform RCU of exit from NMI context
292 *
293 * If the CPU was idle with dynamic ticks active, and there is no
294 * irq handler running, this updates rdtp->dynticks_nmi to let the
295 * RCU grace-period handling know that the CPU is no longer active.
296 */
297void rcu_nmi_exit(void)
298{
299 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
300
301 if (rdtp->dynticks & 0x1)
302 return;
303 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
304 rdtp->dynticks_nmi++;
86848966 305 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
306}
307
308/**
309 * rcu_irq_enter - inform RCU of entry to hard irq context
310 *
311 * If the CPU was idle with dynamic ticks active, this updates the
312 * rdtp->dynticks to let the RCU handling know that the CPU is active.
313 */
314void rcu_irq_enter(void)
315{
316 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
317
318 if (rdtp->dynticks_nesting++)
319 return;
320 rdtp->dynticks++;
86848966 321 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
322 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
323}
324
325/**
326 * rcu_irq_exit - inform RCU of exit from hard irq context
327 *
328 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
329 * to put let the RCU handling be aware that the CPU is going back to idle
330 * with no ticks.
331 */
332void rcu_irq_exit(void)
333{
334 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
335
336 if (--rdtp->dynticks_nesting)
337 return;
338 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
339 rdtp->dynticks++;
86848966 340 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
341
342 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 343 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
344 __get_cpu_var(rcu_bh_data).nxtlist)
345 set_need_resched();
346}
347
348/*
349 * Record the specified "completed" value, which is later used to validate
350 * dynticks counter manipulations. Specify "rsp->completed - 1" to
351 * unconditionally invalidate any future dynticks manipulations (which is
352 * useful at the beginning of a grace period).
353 */
354static void dyntick_record_completed(struct rcu_state *rsp, long comp)
355{
356 rsp->dynticks_completed = comp;
357}
358
359#ifdef CONFIG_SMP
360
361/*
362 * Recall the previously recorded value of the completion for dynticks.
363 */
364static long dyntick_recall_completed(struct rcu_state *rsp)
365{
366 return rsp->dynticks_completed;
367}
368
369/*
370 * Snapshot the specified CPU's dynticks counter so that we can later
371 * credit them with an implicit quiescent state. Return 1 if this CPU
372 * is already in a quiescent state courtesy of dynticks idle mode.
373 */
374static int dyntick_save_progress_counter(struct rcu_data *rdp)
375{
376 int ret;
377 int snap;
378 int snap_nmi;
379
380 snap = rdp->dynticks->dynticks;
381 snap_nmi = rdp->dynticks->dynticks_nmi;
382 smp_mb(); /* Order sampling of snap with end of grace period. */
383 rdp->dynticks_snap = snap;
384 rdp->dynticks_nmi_snap = snap_nmi;
385 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
386 if (ret)
387 rdp->dynticks_fqs++;
388 return ret;
389}
390
391/*
392 * Return true if the specified CPU has passed through a quiescent
393 * state by virtue of being in or having passed through an dynticks
394 * idle state since the last call to dyntick_save_progress_counter()
395 * for this same CPU.
396 */
397static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
398{
399 long curr;
400 long curr_nmi;
401 long snap;
402 long snap_nmi;
403
404 curr = rdp->dynticks->dynticks;
405 snap = rdp->dynticks_snap;
406 curr_nmi = rdp->dynticks->dynticks_nmi;
407 snap_nmi = rdp->dynticks_nmi_snap;
408 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
409
410 /*
411 * If the CPU passed through or entered a dynticks idle phase with
412 * no active irq/NMI handlers, then we can safely pretend that the CPU
413 * already acknowledged the request to pass through a quiescent
414 * state. Either way, that CPU cannot possibly be in an RCU
415 * read-side critical section that started before the beginning
416 * of the current RCU grace period.
417 */
418 if ((curr != snap || (curr & 0x1) == 0) &&
419 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
420 rdp->dynticks_fqs++;
421 return 1;
422 }
423
424 /* Go check for the CPU being offline. */
425 return rcu_implicit_offline_qs(rdp);
426}
427
428#endif /* #ifdef CONFIG_SMP */
429
430#else /* #ifdef CONFIG_NO_HZ */
431
432static void dyntick_record_completed(struct rcu_state *rsp, long comp)
433{
434}
435
436#ifdef CONFIG_SMP
437
438/*
439 * If there are no dynticks, then the only way that a CPU can passively
440 * be in a quiescent state is to be offline. Unlike dynticks idle, which
441 * is a point in time during the prior (already finished) grace period,
442 * an offline CPU is always in a quiescent state, and thus can be
443 * unconditionally applied. So just return the current value of completed.
444 */
445static long dyntick_recall_completed(struct rcu_state *rsp)
446{
447 return rsp->completed;
448}
449
450static int dyntick_save_progress_counter(struct rcu_data *rdp)
451{
452 return 0;
453}
454
455static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
456{
457 return rcu_implicit_offline_qs(rdp);
458}
459
460#endif /* #ifdef CONFIG_SMP */
461
462#endif /* #else #ifdef CONFIG_NO_HZ */
463
464#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
465
466static void record_gp_stall_check_time(struct rcu_state *rsp)
467{
468 rsp->gp_start = jiffies;
469 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
470}
471
472static void print_other_cpu_stall(struct rcu_state *rsp)
473{
474 int cpu;
475 long delta;
476 unsigned long flags;
477 struct rcu_node *rnp = rcu_get_root(rsp);
478 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
479 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
480
481 /* Only let one CPU complain about others per time interval. */
482
483 spin_lock_irqsave(&rnp->lock, flags);
484 delta = jiffies - rsp->jiffies_stall;
485 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
486 spin_unlock_irqrestore(&rnp->lock, flags);
487 return;
488 }
489 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
490 spin_unlock_irqrestore(&rnp->lock, flags);
491
492 /* OK, time to rat on our buddy... */
493
494 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
495 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 496 rcu_print_task_stall(rnp);
64db4cff
PM
497 if (rnp_cur->qsmask == 0)
498 continue;
499 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
500 if (rnp_cur->qsmask & (1UL << cpu))
501 printk(" %d", rnp_cur->grplo + cpu);
502 }
503 printk(" (detected by %d, t=%ld jiffies)\n",
504 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
505 trigger_all_cpu_backtrace();
506
64db4cff
PM
507 force_quiescent_state(rsp, 0); /* Kick them all. */
508}
509
510static void print_cpu_stall(struct rcu_state *rsp)
511{
512 unsigned long flags;
513 struct rcu_node *rnp = rcu_get_root(rsp);
514
515 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
516 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
517 trigger_all_cpu_backtrace();
518
64db4cff
PM
519 spin_lock_irqsave(&rnp->lock, flags);
520 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
521 rsp->jiffies_stall =
522 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
523 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 524
64db4cff
PM
525 set_need_resched(); /* kick ourselves to get things going. */
526}
527
528static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
529{
530 long delta;
531 struct rcu_node *rnp;
532
533 delta = jiffies - rsp->jiffies_stall;
534 rnp = rdp->mynode;
535 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
536
537 /* We haven't checked in, so go dump stack. */
538 print_cpu_stall(rsp);
539
540 } else if (rsp->gpnum != rsp->completed &&
541 delta >= RCU_STALL_RAT_DELAY) {
542
543 /* They had two time units to dump stack, so complain. */
544 print_other_cpu_stall(rsp);
545 }
546}
547
548#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
549
550static void record_gp_stall_check_time(struct rcu_state *rsp)
551{
552}
553
554static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
555{
556}
557
558#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
559
560/*
561 * Update CPU-local rcu_data state to record the newly noticed grace period.
562 * This is used both when we started the grace period and when we notice
563 * that someone else started the grace period.
564 */
565static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
566{
567 rdp->qs_pending = 1;
568 rdp->passed_quiesc = 0;
569 rdp->gpnum = rsp->gpnum;
64db4cff
PM
570}
571
572/*
573 * Did someone else start a new RCU grace period start since we last
574 * checked? Update local state appropriately if so. Must be called
575 * on the CPU corresponding to rdp.
576 */
577static int
578check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
579{
580 unsigned long flags;
581 int ret = 0;
582
583 local_irq_save(flags);
584 if (rdp->gpnum != rsp->gpnum) {
585 note_new_gpnum(rsp, rdp);
586 ret = 1;
587 }
588 local_irq_restore(flags);
589 return ret;
590}
591
592/*
593 * Start a new RCU grace period if warranted, re-initializing the hierarchy
594 * in preparation for detecting the next grace period. The caller must hold
595 * the root node's ->lock, which is released before return. Hard irqs must
596 * be disabled.
597 */
598static void
599rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
600 __releases(rcu_get_root(rsp)->lock)
601{
602 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
603 struct rcu_node *rnp = rcu_get_root(rsp);
604 struct rcu_node *rnp_cur;
605 struct rcu_node *rnp_end;
606
607 if (!cpu_needs_another_gp(rsp, rdp)) {
608 spin_unlock_irqrestore(&rnp->lock, flags);
609 return;
610 }
611
612 /* Advance to a new grace period and initialize state. */
613 rsp->gpnum++;
c3422bea 614 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
615 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
616 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
617 record_gp_stall_check_time(rsp);
618 dyntick_record_completed(rsp, rsp->completed - 1);
619 note_new_gpnum(rsp, rdp);
620
621 /*
622 * Because we are first, we know that all our callbacks will
623 * be covered by this upcoming grace period, even the ones
624 * that were registered arbitrarily recently.
625 */
626 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
627 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
628
629 /* Special-case the common single-level case. */
630 if (NUM_RCU_NODES == 1) {
b0e165c0 631 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 632 rnp->qsmask = rnp->qsmaskinit;
de078d87 633 rnp->gpnum = rsp->gpnum;
c12172c0 634 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
635 spin_unlock_irqrestore(&rnp->lock, flags);
636 return;
637 }
638
639 spin_unlock(&rnp->lock); /* leave irqs disabled. */
640
641
642 /* Exclude any concurrent CPU-hotplug operations. */
643 spin_lock(&rsp->onofflock); /* irqs already disabled. */
644
645 /*
b835db1f
PM
646 * Set the quiescent-state-needed bits in all the rcu_node
647 * structures for all currently online CPUs in breadth-first
648 * order, starting from the root rcu_node structure. This
649 * operation relies on the layout of the hierarchy within the
650 * rsp->node[] array. Note that other CPUs will access only
651 * the leaves of the hierarchy, which still indicate that no
652 * grace period is in progress, at least until the corresponding
653 * leaf node has been initialized. In addition, we have excluded
654 * CPU-hotplug operations.
64db4cff
PM
655 *
656 * Note that the grace period cannot complete until we finish
657 * the initialization process, as there will be at least one
658 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
659 * one corresponding to this CPU, due to the fact that we have
660 * irqs disabled.
64db4cff
PM
661 */
662 rnp_end = &rsp->node[NUM_RCU_NODES];
b835db1f 663 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) {
64db4cff 664 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
b0e165c0 665 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 666 rnp_cur->qsmask = rnp_cur->qsmaskinit;
de078d87 667 rnp->gpnum = rsp->gpnum;
64db4cff
PM
668 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
669 }
670
671 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
672 spin_unlock_irqrestore(&rsp->onofflock, flags);
673}
674
675/*
676 * Advance this CPU's callbacks, but only if the current grace period
677 * has ended. This may be called only from the CPU to whom the rdp
678 * belongs.
679 */
680static void
681rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
682{
683 long completed_snap;
684 unsigned long flags;
685
686 local_irq_save(flags);
687 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
688
689 /* Did another grace period end? */
690 if (rdp->completed != completed_snap) {
691
692 /* Advance callbacks. No harm if list empty. */
693 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
694 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
695 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
696
697 /* Remember that we saw this grace-period completion. */
698 rdp->completed = completed_snap;
699 }
700 local_irq_restore(flags);
701}
702
f41d911f
PM
703/*
704 * Clean up after the prior grace period and let rcu_start_gp() start up
705 * the next grace period if one is needed. Note that the caller must
706 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
707 */
708static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
709 __releases(rnp->lock)
710{
28ecd580 711 WARN_ON_ONCE(rsp->completed == rsp->gpnum);
f41d911f
PM
712 rsp->completed = rsp->gpnum;
713 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
714 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
715}
716
64db4cff
PM
717/*
718 * Similar to cpu_quiet(), for which it is a helper function. Allows
719 * a group of CPUs to be quieted at one go, though all the CPUs in the
720 * group must be represented by the same leaf rcu_node structure.
721 * That structure's lock must be held upon entry, and it is released
722 * before return.
723 */
724static void
725cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
726 unsigned long flags)
727 __releases(rnp->lock)
728{
28ecd580
PM
729 struct rcu_node *rnp_c;
730
64db4cff
PM
731 /* Walk up the rcu_node hierarchy. */
732 for (;;) {
733 if (!(rnp->qsmask & mask)) {
734
735 /* Our bit has already been cleared, so done. */
736 spin_unlock_irqrestore(&rnp->lock, flags);
737 return;
738 }
739 rnp->qsmask &= ~mask;
f41d911f 740 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
741
742 /* Other bits still set at this level, so done. */
743 spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 mask = rnp->grpmask;
747 if (rnp->parent == NULL) {
748
749 /* No more levels. Exit loop holding root lock. */
750
751 break;
752 }
753 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 754 rnp_c = rnp;
64db4cff
PM
755 rnp = rnp->parent;
756 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 757 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
758 }
759
760 /*
761 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
762 * state for this grace period. Invoke cpu_quiet_msk_finish()
763 * to clean up and start the next grace period if one is needed.
64db4cff 764 */
f41d911f 765 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
766}
767
768/*
769 * Record a quiescent state for the specified CPU, which must either be
770 * the current CPU or an offline CPU. The lastcomp argument is used to
771 * make sure we are still in the grace period of interest. We don't want
772 * to end the current grace period based on quiescent states detected in
773 * an earlier grace period!
774 */
775static void
776cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
777{
778 unsigned long flags;
779 unsigned long mask;
780 struct rcu_node *rnp;
781
782 rnp = rdp->mynode;
783 spin_lock_irqsave(&rnp->lock, flags);
784 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
785
786 /*
787 * Someone beat us to it for this grace period, so leave.
788 * The race with GP start is resolved by the fact that we
789 * hold the leaf rcu_node lock, so that the per-CPU bits
790 * cannot yet be initialized -- so we would simply find our
791 * CPU's bit already cleared in cpu_quiet_msk() if this race
792 * occurred.
793 */
794 rdp->passed_quiesc = 0; /* try again later! */
795 spin_unlock_irqrestore(&rnp->lock, flags);
796 return;
797 }
798 mask = rdp->grpmask;
799 if ((rnp->qsmask & mask) == 0) {
800 spin_unlock_irqrestore(&rnp->lock, flags);
801 } else {
802 rdp->qs_pending = 0;
803
804 /*
805 * This GP can't end until cpu checks in, so all of our
806 * callbacks can be processed during the next GP.
807 */
808 rdp = rsp->rda[smp_processor_id()];
809 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
810
811 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
812 }
813}
814
815/*
816 * Check to see if there is a new grace period of which this CPU
817 * is not yet aware, and if so, set up local rcu_data state for it.
818 * Otherwise, see if this CPU has just passed through its first
819 * quiescent state for this grace period, and record that fact if so.
820 */
821static void
822rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
823{
824 /* If there is now a new grace period, record and return. */
825 if (check_for_new_grace_period(rsp, rdp))
826 return;
827
828 /*
829 * Does this CPU still need to do its part for current grace period?
830 * If no, return and let the other CPUs do their part as well.
831 */
832 if (!rdp->qs_pending)
833 return;
834
835 /*
836 * Was there a quiescent state since the beginning of the grace
837 * period? If no, then exit and wait for the next call.
838 */
839 if (!rdp->passed_quiesc)
840 return;
841
842 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
843 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
844}
845
846#ifdef CONFIG_HOTPLUG_CPU
847
848/*
849 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
850 * and move all callbacks from the outgoing CPU to the current one.
851 */
852static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
853{
854 int i;
855 unsigned long flags;
856 long lastcomp;
857 unsigned long mask;
858 struct rcu_data *rdp = rsp->rda[cpu];
859 struct rcu_data *rdp_me;
860 struct rcu_node *rnp;
861
862 /* Exclude any attempts to start a new grace period. */
863 spin_lock_irqsave(&rsp->onofflock, flags);
864
865 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 866 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
867 mask = rdp->grpmask; /* rnp->grplo is constant. */
868 do {
869 spin_lock(&rnp->lock); /* irqs already disabled. */
870 rnp->qsmaskinit &= ~mask;
871 if (rnp->qsmaskinit != 0) {
f41d911f 872 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
873 break;
874 }
28ecd580 875 rcu_preempt_offline_tasks(rsp, rnp, rdp);
64db4cff 876 mask = rnp->grpmask;
f41d911f 877 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
878 rnp = rnp->parent;
879 } while (rnp != NULL);
880 lastcomp = rsp->completed;
881
882 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
883
884 /* Being offline is a quiescent state, so go record it. */
885 cpu_quiet(cpu, rsp, rdp, lastcomp);
886
887 /*
888 * Move callbacks from the outgoing CPU to the running CPU.
889 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 890 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
891 * Note also that we must carefully retain the order of the
892 * outgoing CPU's callbacks in order for rcu_barrier() to work
893 * correctly. Finally, note that we start all the callbacks
894 * afresh, even those that have passed through a grace period
895 * and are therefore ready to invoke. The theory is that hotplug
896 * events are rare, and that if they are frequent enough to
897 * indefinitely delay callbacks, you have far worse things to
898 * be worrying about.
899 */
900 rdp_me = rsp->rda[smp_processor_id()];
901 if (rdp->nxtlist != NULL) {
902 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
903 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
904 rdp->nxtlist = NULL;
905 for (i = 0; i < RCU_NEXT_SIZE; i++)
906 rdp->nxttail[i] = &rdp->nxtlist;
907 rdp_me->qlen += rdp->qlen;
908 rdp->qlen = 0;
909 }
910 local_irq_restore(flags);
911}
912
913/*
914 * Remove the specified CPU from the RCU hierarchy and move any pending
915 * callbacks that it might have to the current CPU. This code assumes
916 * that at least one CPU in the system will remain running at all times.
917 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
918 */
919static void rcu_offline_cpu(int cpu)
920{
d6714c22 921 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 922 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 923 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
924}
925
926#else /* #ifdef CONFIG_HOTPLUG_CPU */
927
928static void rcu_offline_cpu(int cpu)
929{
930}
931
932#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
933
934/*
935 * Invoke any RCU callbacks that have made it to the end of their grace
936 * period. Thottle as specified by rdp->blimit.
937 */
938static void rcu_do_batch(struct rcu_data *rdp)
939{
940 unsigned long flags;
941 struct rcu_head *next, *list, **tail;
942 int count;
943
944 /* If no callbacks are ready, just return.*/
945 if (!cpu_has_callbacks_ready_to_invoke(rdp))
946 return;
947
948 /*
949 * Extract the list of ready callbacks, disabling to prevent
950 * races with call_rcu() from interrupt handlers.
951 */
952 local_irq_save(flags);
953 list = rdp->nxtlist;
954 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
955 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
956 tail = rdp->nxttail[RCU_DONE_TAIL];
957 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
958 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
959 rdp->nxttail[count] = &rdp->nxtlist;
960 local_irq_restore(flags);
961
962 /* Invoke callbacks. */
963 count = 0;
964 while (list) {
965 next = list->next;
966 prefetch(next);
967 list->func(list);
968 list = next;
969 if (++count >= rdp->blimit)
970 break;
971 }
972
973 local_irq_save(flags);
974
975 /* Update count, and requeue any remaining callbacks. */
976 rdp->qlen -= count;
977 if (list != NULL) {
978 *tail = rdp->nxtlist;
979 rdp->nxtlist = list;
980 for (count = 0; count < RCU_NEXT_SIZE; count++)
981 if (&rdp->nxtlist == rdp->nxttail[count])
982 rdp->nxttail[count] = tail;
983 else
984 break;
985 }
986
987 /* Reinstate batch limit if we have worked down the excess. */
988 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
989 rdp->blimit = blimit;
990
991 local_irq_restore(flags);
992
993 /* Re-raise the RCU softirq if there are callbacks remaining. */
994 if (cpu_has_callbacks_ready_to_invoke(rdp))
995 raise_softirq(RCU_SOFTIRQ);
996}
997
998/*
999 * Check to see if this CPU is in a non-context-switch quiescent state
1000 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1001 * Also schedule the RCU softirq handler.
1002 *
1003 * This function must be called with hardirqs disabled. It is normally
1004 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1005 * false, there is no point in invoking rcu_check_callbacks().
1006 */
1007void rcu_check_callbacks(int cpu, int user)
1008{
a157229c
PM
1009 if (!rcu_pending(cpu))
1010 return; /* if nothing for RCU to do. */
64db4cff 1011 if (user ||
a6826048
PM
1012 (idle_cpu(cpu) && rcu_scheduler_active &&
1013 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1014
1015 /*
1016 * Get here if this CPU took its interrupt from user
1017 * mode or from the idle loop, and if this is not a
1018 * nested interrupt. In this case, the CPU is in
d6714c22 1019 * a quiescent state, so note it.
64db4cff
PM
1020 *
1021 * No memory barrier is required here because both
d6714c22
PM
1022 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1023 * variables that other CPUs neither access nor modify,
1024 * at least not while the corresponding CPU is online.
64db4cff
PM
1025 */
1026
d6714c22
PM
1027 rcu_sched_qs(cpu);
1028 rcu_bh_qs(cpu);
64db4cff
PM
1029
1030 } else if (!in_softirq()) {
1031
1032 /*
1033 * Get here if this CPU did not take its interrupt from
1034 * softirq, in other words, if it is not interrupting
1035 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1036 * critical section, so note it.
64db4cff
PM
1037 */
1038
d6714c22 1039 rcu_bh_qs(cpu);
64db4cff 1040 }
f41d911f 1041 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1042 raise_softirq(RCU_SOFTIRQ);
1043}
1044
1045#ifdef CONFIG_SMP
1046
1047/*
1048 * Scan the leaf rcu_node structures, processing dyntick state for any that
1049 * have not yet encountered a quiescent state, using the function specified.
1050 * Returns 1 if the current grace period ends while scanning (possibly
1051 * because we made it end).
1052 */
1053static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1054 int (*f)(struct rcu_data *))
1055{
1056 unsigned long bit;
1057 int cpu;
1058 unsigned long flags;
1059 unsigned long mask;
1060 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1061 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1062
1063 for (; rnp_cur < rnp_end; rnp_cur++) {
1064 mask = 0;
1065 spin_lock_irqsave(&rnp_cur->lock, flags);
1066 if (rsp->completed != lastcomp) {
1067 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1068 return 1;
1069 }
1070 if (rnp_cur->qsmask == 0) {
1071 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1072 continue;
1073 }
1074 cpu = rnp_cur->grplo;
1075 bit = 1;
1076 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1077 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1078 mask |= bit;
1079 }
1080 if (mask != 0 && rsp->completed == lastcomp) {
1081
1082 /* cpu_quiet_msk() releases rnp_cur->lock. */
1083 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1084 continue;
1085 }
1086 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1087 }
1088 return 0;
1089}
1090
1091/*
1092 * Force quiescent states on reluctant CPUs, and also detect which
1093 * CPUs are in dyntick-idle mode.
1094 */
1095static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1096{
1097 unsigned long flags;
1098 long lastcomp;
64db4cff
PM
1099 struct rcu_node *rnp = rcu_get_root(rsp);
1100 u8 signaled;
1101
1102 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1103 return; /* No grace period in progress, nothing to force. */
1104 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1105 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1106 return; /* Someone else is already on the job. */
1107 }
1108 if (relaxed &&
ef631b0c 1109 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1110 goto unlock_ret; /* no emergency and done recently. */
1111 rsp->n_force_qs++;
1112 spin_lock(&rnp->lock);
1113 lastcomp = rsp->completed;
1114 signaled = rsp->signaled;
1115 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1116 if (lastcomp == rsp->gpnum) {
1117 rsp->n_force_qs_ngp++;
1118 spin_unlock(&rnp->lock);
1119 goto unlock_ret; /* no GP in progress, time updated. */
1120 }
1121 spin_unlock(&rnp->lock);
1122 switch (signaled) {
1123 case RCU_GP_INIT:
1124
1125 break; /* grace period still initializing, ignore. */
1126
1127 case RCU_SAVE_DYNTICK:
1128
1129 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1130 break; /* So gcc recognizes the dead code. */
1131
1132 /* Record dyntick-idle state. */
1133 if (rcu_process_dyntick(rsp, lastcomp,
1134 dyntick_save_progress_counter))
1135 goto unlock_ret;
1136
1137 /* Update state, record completion counter. */
1138 spin_lock(&rnp->lock);
1139 if (lastcomp == rsp->completed) {
1140 rsp->signaled = RCU_FORCE_QS;
1141 dyntick_record_completed(rsp, lastcomp);
1142 }
1143 spin_unlock(&rnp->lock);
1144 break;
1145
1146 case RCU_FORCE_QS:
1147
1148 /* Check dyntick-idle state, send IPI to laggarts. */
1149 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1150 rcu_implicit_dynticks_qs))
1151 goto unlock_ret;
1152
1153 /* Leave state in case more forcing is required. */
1154
1155 break;
1156 }
1157unlock_ret:
1158 spin_unlock_irqrestore(&rsp->fqslock, flags);
1159}
1160
1161#else /* #ifdef CONFIG_SMP */
1162
1163static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1164{
1165 set_need_resched();
1166}
1167
1168#endif /* #else #ifdef CONFIG_SMP */
1169
1170/*
1171 * This does the RCU processing work from softirq context for the
1172 * specified rcu_state and rcu_data structures. This may be called
1173 * only from the CPU to whom the rdp belongs.
1174 */
1175static void
1176__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1177{
1178 unsigned long flags;
1179
2e597558
PM
1180 WARN_ON_ONCE(rdp->beenonline == 0);
1181
64db4cff
PM
1182 /*
1183 * If an RCU GP has gone long enough, go check for dyntick
1184 * idle CPUs and, if needed, send resched IPIs.
1185 */
ef631b0c 1186 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1187 force_quiescent_state(rsp, 1);
1188
1189 /*
1190 * Advance callbacks in response to end of earlier grace
1191 * period that some other CPU ended.
1192 */
1193 rcu_process_gp_end(rsp, rdp);
1194
1195 /* Update RCU state based on any recent quiescent states. */
1196 rcu_check_quiescent_state(rsp, rdp);
1197
1198 /* Does this CPU require a not-yet-started grace period? */
1199 if (cpu_needs_another_gp(rsp, rdp)) {
1200 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1201 rcu_start_gp(rsp, flags); /* releases above lock */
1202 }
1203
1204 /* If there are callbacks ready, invoke them. */
1205 rcu_do_batch(rdp);
1206}
1207
1208/*
1209 * Do softirq processing for the current CPU.
1210 */
1211static void rcu_process_callbacks(struct softirq_action *unused)
1212{
1213 /*
1214 * Memory references from any prior RCU read-side critical sections
1215 * executed by the interrupted code must be seen before any RCU
1216 * grace-period manipulations below.
1217 */
1218 smp_mb(); /* See above block comment. */
1219
d6714c22
PM
1220 __rcu_process_callbacks(&rcu_sched_state,
1221 &__get_cpu_var(rcu_sched_data));
64db4cff 1222 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1223 rcu_preempt_process_callbacks();
64db4cff
PM
1224
1225 /*
1226 * Memory references from any later RCU read-side critical sections
1227 * executed by the interrupted code must be seen after any RCU
1228 * grace-period manipulations above.
1229 */
1230 smp_mb(); /* See above block comment. */
1231}
1232
1233static void
1234__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1235 struct rcu_state *rsp)
1236{
1237 unsigned long flags;
1238 struct rcu_data *rdp;
1239
1240 head->func = func;
1241 head->next = NULL;
1242
1243 smp_mb(); /* Ensure RCU update seen before callback registry. */
1244
1245 /*
1246 * Opportunistically note grace-period endings and beginnings.
1247 * Note that we might see a beginning right after we see an
1248 * end, but never vice versa, since this CPU has to pass through
1249 * a quiescent state betweentimes.
1250 */
1251 local_irq_save(flags);
1252 rdp = rsp->rda[smp_processor_id()];
1253 rcu_process_gp_end(rsp, rdp);
1254 check_for_new_grace_period(rsp, rdp);
1255
1256 /* Add the callback to our list. */
1257 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1258 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1259
1260 /* Start a new grace period if one not already started. */
1261 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1262 unsigned long nestflag;
1263 struct rcu_node *rnp_root = rcu_get_root(rsp);
1264
1265 spin_lock_irqsave(&rnp_root->lock, nestflag);
1266 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1267 }
1268
1269 /* Force the grace period if too many callbacks or too long waiting. */
1270 if (unlikely(++rdp->qlen > qhimark)) {
1271 rdp->blimit = LONG_MAX;
1272 force_quiescent_state(rsp, 0);
ef631b0c 1273 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1274 force_quiescent_state(rsp, 1);
1275 local_irq_restore(flags);
1276}
1277
1278/*
d6714c22 1279 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1280 */
d6714c22 1281void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1282{
d6714c22 1283 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1284}
d6714c22 1285EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1286
1287/*
1288 * Queue an RCU for invocation after a quicker grace period.
1289 */
1290void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1291{
1292 __call_rcu(head, func, &rcu_bh_state);
1293}
1294EXPORT_SYMBOL_GPL(call_rcu_bh);
1295
1296/*
1297 * Check to see if there is any immediate RCU-related work to be done
1298 * by the current CPU, for the specified type of RCU, returning 1 if so.
1299 * The checks are in order of increasing expense: checks that can be
1300 * carried out against CPU-local state are performed first. However,
1301 * we must check for CPU stalls first, else we might not get a chance.
1302 */
1303static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1304{
1305 rdp->n_rcu_pending++;
1306
1307 /* Check for CPU stalls, if enabled. */
1308 check_cpu_stall(rsp, rdp);
1309
1310 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1311 if (rdp->qs_pending) {
1312 rdp->n_rp_qs_pending++;
64db4cff 1313 return 1;
7ba5c840 1314 }
64db4cff
PM
1315
1316 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1317 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1318 rdp->n_rp_cb_ready++;
64db4cff 1319 return 1;
7ba5c840 1320 }
64db4cff
PM
1321
1322 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1323 if (cpu_needs_another_gp(rsp, rdp)) {
1324 rdp->n_rp_cpu_needs_gp++;
64db4cff 1325 return 1;
7ba5c840 1326 }
64db4cff
PM
1327
1328 /* Has another RCU grace period completed? */
7ba5c840
PM
1329 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1330 rdp->n_rp_gp_completed++;
64db4cff 1331 return 1;
7ba5c840 1332 }
64db4cff
PM
1333
1334 /* Has a new RCU grace period started? */
7ba5c840
PM
1335 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1336 rdp->n_rp_gp_started++;
64db4cff 1337 return 1;
7ba5c840 1338 }
64db4cff
PM
1339
1340 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1341 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1342 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1343 rdp->n_rp_need_fqs++;
64db4cff 1344 return 1;
7ba5c840 1345 }
64db4cff
PM
1346
1347 /* nothing to do */
7ba5c840 1348 rdp->n_rp_need_nothing++;
64db4cff
PM
1349 return 0;
1350}
1351
1352/*
1353 * Check to see if there is any immediate RCU-related work to be done
1354 * by the current CPU, returning 1 if so. This function is part of the
1355 * RCU implementation; it is -not- an exported member of the RCU API.
1356 */
a157229c 1357static int rcu_pending(int cpu)
64db4cff 1358{
d6714c22 1359 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1360 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1361 rcu_preempt_pending(cpu);
64db4cff
PM
1362}
1363
1364/*
1365 * Check to see if any future RCU-related work will need to be done
1366 * by the current CPU, even if none need be done immediately, returning
1367 * 1 if so. This function is part of the RCU implementation; it is -not-
1368 * an exported member of the RCU API.
1369 */
1370int rcu_needs_cpu(int cpu)
1371{
1372 /* RCU callbacks either ready or pending? */
d6714c22 1373 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1374 per_cpu(rcu_bh_data, cpu).nxtlist ||
1375 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1376}
1377
1378/*
27569620 1379 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1380 */
27569620
PM
1381static void __init
1382rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1383{
1384 unsigned long flags;
1385 int i;
27569620
PM
1386 struct rcu_data *rdp = rsp->rda[cpu];
1387 struct rcu_node *rnp = rcu_get_root(rsp);
1388
1389 /* Set up local state, ensuring consistent view of global state. */
1390 spin_lock_irqsave(&rnp->lock, flags);
1391 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1392 rdp->nxtlist = NULL;
1393 for (i = 0; i < RCU_NEXT_SIZE; i++)
1394 rdp->nxttail[i] = &rdp->nxtlist;
1395 rdp->qlen = 0;
1396#ifdef CONFIG_NO_HZ
1397 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1398#endif /* #ifdef CONFIG_NO_HZ */
1399 rdp->cpu = cpu;
1400 spin_unlock_irqrestore(&rnp->lock, flags);
1401}
1402
1403/*
1404 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1405 * offline event can be happening at a given time. Note also that we
1406 * can accept some slop in the rsp->completed access due to the fact
1407 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1408 */
e4fa4c97 1409static void __cpuinit
f41d911f 1410rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1411{
1412 unsigned long flags;
64db4cff
PM
1413 long lastcomp;
1414 unsigned long mask;
1415 struct rcu_data *rdp = rsp->rda[cpu];
1416 struct rcu_node *rnp = rcu_get_root(rsp);
1417
1418 /* Set up local state, ensuring consistent view of global state. */
1419 spin_lock_irqsave(&rnp->lock, flags);
1420 lastcomp = rsp->completed;
1421 rdp->completed = lastcomp;
1422 rdp->gpnum = lastcomp;
1423 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1424 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1425 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1426 rdp->preemptable = preemptable;
64db4cff 1427 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1428 rdp->blimit = blimit;
64db4cff
PM
1429 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1430
1431 /*
1432 * A new grace period might start here. If so, we won't be part
1433 * of it, but that is OK, as we are currently in a quiescent state.
1434 */
1435
1436 /* Exclude any attempts to start a new GP on large systems. */
1437 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1438
1439 /* Add CPU to rcu_node bitmasks. */
1440 rnp = rdp->mynode;
1441 mask = rdp->grpmask;
1442 do {
1443 /* Exclude any attempts to start a new GP on small systems. */
1444 spin_lock(&rnp->lock); /* irqs already disabled. */
1445 rnp->qsmaskinit |= mask;
1446 mask = rnp->grpmask;
1447 spin_unlock(&rnp->lock); /* irqs already disabled. */
1448 rnp = rnp->parent;
1449 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1450
1451 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1452
1453 /*
1454 * A new grace period might start here. If so, we will be part of
1455 * it, and its gpnum will be greater than ours, so we will
1456 * participate. It is also possible for the gpnum to have been
1457 * incremented before this function was called, and the bitmasks
1458 * to not be filled out until now, in which case we will also
1459 * participate due to our gpnum being behind.
1460 */
1461
1462 /* Since it is coming online, the CPU is in a quiescent state. */
1463 cpu_quiet(cpu, rsp, rdp, lastcomp);
1464 local_irq_restore(flags);
1465}
1466
1467static void __cpuinit rcu_online_cpu(int cpu)
1468{
f41d911f
PM
1469 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1470 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1471 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1472}
1473
1474/*
f41d911f 1475 * Handle CPU online/offline notification events.
64db4cff 1476 */
2e597558
PM
1477int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1478 unsigned long action, void *hcpu)
64db4cff
PM
1479{
1480 long cpu = (long)hcpu;
1481
1482 switch (action) {
1483 case CPU_UP_PREPARE:
1484 case CPU_UP_PREPARE_FROZEN:
1485 rcu_online_cpu(cpu);
1486 break;
1487 case CPU_DEAD:
1488 case CPU_DEAD_FROZEN:
1489 case CPU_UP_CANCELED:
1490 case CPU_UP_CANCELED_FROZEN:
1491 rcu_offline_cpu(cpu);
1492 break;
1493 default:
1494 break;
1495 }
1496 return NOTIFY_OK;
1497}
1498
1499/*
1500 * Compute the per-level fanout, either using the exact fanout specified
1501 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1502 */
1503#ifdef CONFIG_RCU_FANOUT_EXACT
1504static void __init rcu_init_levelspread(struct rcu_state *rsp)
1505{
1506 int i;
1507
1508 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1509 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1510}
1511#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1512static void __init rcu_init_levelspread(struct rcu_state *rsp)
1513{
1514 int ccur;
1515 int cprv;
1516 int i;
1517
1518 cprv = NR_CPUS;
1519 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1520 ccur = rsp->levelcnt[i];
1521 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1522 cprv = ccur;
1523 }
1524}
1525#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1526
1527/*
1528 * Helper function for rcu_init() that initializes one rcu_state structure.
1529 */
1530static void __init rcu_init_one(struct rcu_state *rsp)
1531{
1532 int cpustride = 1;
1533 int i;
1534 int j;
1535 struct rcu_node *rnp;
1536
1537 /* Initialize the level-tracking arrays. */
1538
1539 for (i = 1; i < NUM_RCU_LVLS; i++)
1540 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1541 rcu_init_levelspread(rsp);
1542
1543 /* Initialize the elements themselves, starting from the leaves. */
1544
1545 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1546 cpustride *= rsp->levelspread[i];
1547 rnp = rsp->level[i];
1548 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1549 spin_lock_init(&rnp->lock);
f41d911f 1550 rnp->gpnum = 0;
64db4cff
PM
1551 rnp->qsmask = 0;
1552 rnp->qsmaskinit = 0;
1553 rnp->grplo = j * cpustride;
1554 rnp->grphi = (j + 1) * cpustride - 1;
1555 if (rnp->grphi >= NR_CPUS)
1556 rnp->grphi = NR_CPUS - 1;
1557 if (i == 0) {
1558 rnp->grpnum = 0;
1559 rnp->grpmask = 0;
1560 rnp->parent = NULL;
1561 } else {
1562 rnp->grpnum = j % rsp->levelspread[i - 1];
1563 rnp->grpmask = 1UL << rnp->grpnum;
1564 rnp->parent = rsp->level[i - 1] +
1565 j / rsp->levelspread[i - 1];
1566 }
1567 rnp->level = i;
f41d911f
PM
1568 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1569 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1570 }
1571 }
1572}
1573
1574/*
f41d911f
PM
1575 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1576 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1577 * structure.
64db4cff 1578 */
65cf8f86 1579#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1580do { \
65cf8f86 1581 rcu_init_one(rsp); \
64db4cff
PM
1582 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1583 j = 0; \
1584 for_each_possible_cpu(i) { \
1585 if (i > rnp[j].grphi) \
1586 j++; \
1587 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1588 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1589 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1590 } \
1591} while (0)
1592
f41d911f
PM
1593#ifdef CONFIG_TREE_PREEMPT_RCU
1594
1595void __init __rcu_init_preempt(void)
1596{
1597 int i; /* All used by RCU_INIT_FLAVOR(). */
1598 int j;
1599 struct rcu_node *rnp;
1600
1601 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1602}
1603
1604#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1605
1606void __init __rcu_init_preempt(void)
1607{
1608}
1609
1610#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
64db4cff
PM
1611
1612void __init __rcu_init(void)
1613{
f41d911f 1614 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1615 int j;
1616 struct rcu_node *rnp;
1617
f41d911f 1618 rcu_bootup_announce();
64db4cff
PM
1619#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1620 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1621#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1622 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1623 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1624 __rcu_init_preempt();
2e597558 1625 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1626}
1627
1628module_param(blimit, int, 0);
1629module_param(qhimark, int, 0);
1630module_param(qlowmark, int, 0);