ath9k: protect tid->sched check
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
ab1842f1 64#include <linux/hugetlb.h>
b488893a 65
4732efbe 66#include <asm/futex.h>
1da177e4 67
c87e2837
IM
68#include "rtmutex_common.h"
69
f26c70a4 70#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 71int __read_mostly futex_cmpxchg_enabled;
f26c70a4 72#endif
a0c1e907 73
1da177e4
LT
74#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
b41277dc
DH
76/*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80#define FLAGS_SHARED 0x01
81#define FLAGS_CLOCKRT 0x02
82#define FLAGS_HAS_TIMEOUT 0x04
83
c87e2837
IM
84/*
85 * Priority Inheritance state:
86 */
87struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103};
104
d8d88fbb
DH
105/**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 107 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 121 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
126 */
127struct futex_q {
ec92d082 128 struct plist_node list;
1da177e4 129
d8d88fbb 130 struct task_struct *task;
1da177e4 131 spinlock_t *lock_ptr;
1da177e4 132 union futex_key key;
c87e2837 133 struct futex_pi_state *pi_state;
52400ba9 134 struct rt_mutex_waiter *rt_waiter;
84bc4af5 135 union futex_key *requeue_pi_key;
cd689985 136 u32 bitset;
1da177e4
LT
137};
138
5bdb05f9
DH
139static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143};
144
1da177e4 145/*
b2d0994b
DH
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
1da177e4
LT
149 */
150struct futex_hash_bucket {
ec92d082
PP
151 spinlock_t lock;
152 struct plist_head chain;
1da177e4
LT
153};
154
155static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
1da177e4
LT
157/*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160static struct futex_hash_bucket *hash_futex(union futex_key *key)
161{
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166}
167
168/*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171static inline int match_futex(union futex_key *key1, union futex_key *key2)
172{
2bc87203
DH
173 return (key1 && key2
174 && key1->both.word == key2->both.word
1da177e4
LT
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177}
178
38d47c1b
PZ
179/*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184static void get_futex_key_refs(union futex_key *key)
185{
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
7de9c6ee 191 ihold(key->shared.inode);
38d47c1b
PZ
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197}
198
199/*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203static void drop_futex_key_refs(union futex_key *key)
204{
90621c40
DH
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
38d47c1b 208 return;
90621c40 209 }
38d47c1b
PZ
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219}
220
34f01cc1 221/**
d96ee56c
DH
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
9ea71503
SB
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
34f01cc1 228 *
6c23cbbd
RD
229 * Return: a negative error code or 0
230 *
34f01cc1 231 * The key words are stored in *key on success.
1da177e4 232 *
6131ffaa 233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
b2d0994b 237 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 238 */
64d1304a 239static int
9ea71503 240get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 241{
e2970f2f 242 unsigned long address = (unsigned long)uaddr;
1da177e4 243 struct mm_struct *mm = current->mm;
a5b338f2 244 struct page *page, *page_head;
9ea71503 245 int err, ro = 0;
1da177e4
LT
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
e2970f2f 250 key->both.offset = address % PAGE_SIZE;
34f01cc1 251 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 252 return -EINVAL;
e2970f2f 253 address -= key->both.offset;
1da177e4 254
34f01cc1
ED
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
7485d0d3 263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
42569c39 267 get_futex_key_refs(key);
34f01cc1
ED
268 return 0;
269 }
1da177e4 270
38d47c1b 271again:
7485d0d3 272 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
38d47c1b
PZ
281 if (err < 0)
282 return err;
9ea71503
SB
283 else
284 err = 0;
38d47c1b 285
a5b338f2
AA
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
38d47c1b 289 put_page(page);
a5b338f2
AA
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
13bb709c 292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314#else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320#endif
321
322 lock_page(page_head);
e6780f72
HD
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
a5b338f2 339 if (!page_head->mapping) {
e6780f72 340 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
341 unlock_page(page_head);
342 put_page(page_head);
e6780f72
HD
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
38d47c1b 346 }
1da177e4
LT
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 353 * the object not the particular process.
1da177e4 354 */
a5b338f2 355 if (PageAnon(page_head)) {
9ea71503
SB
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
38d47c1b 365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 366 key->private.mm = mm;
e2970f2f 367 key->private.address = address;
38d47c1b
PZ
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 370 key->shared.inode = page_head->mapping->host;
ab1842f1 371 key->shared.pgoff = basepage_index(page);
1da177e4
LT
372 }
373
38d47c1b 374 get_futex_key_refs(key);
1da177e4 375
9ea71503 376out:
a5b338f2
AA
377 unlock_page(page_head);
378 put_page(page_head);
9ea71503 379 return err;
1da177e4
LT
380}
381
ae791a2d 382static inline void put_futex_key(union futex_key *key)
1da177e4 383{
38d47c1b 384 drop_futex_key_refs(key);
1da177e4
LT
385}
386
d96ee56c
DH
387/**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
fb62db2b 394 * We have no generic implementation of a non-destructive write to the
d0725992
TG
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399static int fault_in_user_writeable(u32 __user *uaddr)
400{
722d0172
AK
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
2efaca92
BH
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
722d0172
AK
407 up_read(&mm->mmap_sem);
408
d0725992
TG
409 return ret < 0 ? ret : 0;
410}
411
4b1c486b
DH
412/**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
416 *
417 * Must be called with the hb lock held.
418 */
419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421{
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429}
430
37a9d912
ML
431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
36cf3b5c 433{
37a9d912 434 int ret;
36cf3b5c
TG
435
436 pagefault_disable();
37a9d912 437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
438 pagefault_enable();
439
37a9d912 440 return ret;
36cf3b5c
TG
441}
442
443static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
444{
445 int ret;
446
a866374a 447 pagefault_disable();
e2970f2f 448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 449 pagefault_enable();
1da177e4
LT
450
451 return ret ? -EFAULT : 0;
452}
453
c87e2837
IM
454
455/*
456 * PI code:
457 */
458static int refill_pi_state_cache(void)
459{
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
4668edc3 465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
466
467 if (!pi_state)
468 return -ENOMEM;
469
c87e2837
IM
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
38d47c1b 474 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479}
480
481static struct futex_pi_state * alloc_pi_state(void)
482{
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489}
490
491static void free_pi_state(struct futex_pi_state *pi_state)
492{
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
1d615482 501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 502 list_del_init(&pi_state->list);
1d615482 503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520}
521
522/*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526static struct task_struct * futex_find_get_task(pid_t pid)
527{
528 struct task_struct *p;
529
d359b549 530 rcu_read_lock();
228ebcbe 531 p = find_task_by_vpid(pid);
7a0ea09a
MH
532 if (p)
533 get_task_struct(p);
a06381fe 534
d359b549 535 rcu_read_unlock();
c87e2837
IM
536
537 return p;
538}
539
540/*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545void exit_pi_state_list(struct task_struct *curr)
546{
c87e2837
IM
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
627371d7 549 struct futex_hash_bucket *hb;
38d47c1b 550 union futex_key key = FUTEX_KEY_INIT;
c87e2837 551
a0c1e907
TG
552 if (!futex_cmpxchg_enabled)
553 return;
c87e2837
IM
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
627371d7 557 * versus waiters unqueueing themselves:
c87e2837 558 */
1d615482 559 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
627371d7 565 hb = hash_futex(&key);
1d615482 566 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 567
c87e2837
IM
568 spin_lock(&hb->lock);
569
1d615482 570 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
c87e2837
IM
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
c87e2837 580 WARN_ON(pi_state->owner != curr);
627371d7
IM
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
c87e2837 583 pi_state->owner = NULL;
1d615482 584 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
1d615482 590 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 591 }
1d615482 592 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
593}
594
595static int
d0aa7a70 596lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
cabef9fe
TG
597 union futex_key *key, struct futex_pi_state **ps,
598 struct task_struct *task)
c87e2837
IM
599{
600 struct futex_pi_state *pi_state = NULL;
601 struct futex_q *this, *next;
ec92d082 602 struct plist_head *head;
c87e2837 603 struct task_struct *p;
778e9a9c 604 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
605
606 head = &hb->chain;
607
ec92d082 608 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 609 if (match_futex(&this->key, key)) {
c87e2837
IM
610 /*
611 * Another waiter already exists - bump up
612 * the refcount and return its pi_state:
613 */
614 pi_state = this->pi_state;
06a9ec29 615 /*
fb62db2b 616 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
617 */
618 if (unlikely(!pi_state))
619 return -EINVAL;
620
627371d7 621 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
622
623 /*
624 * When pi_state->owner is NULL then the owner died
625 * and another waiter is on the fly. pi_state->owner
626 * is fixed up by the task which acquires
627 * pi_state->rt_mutex.
628 *
629 * We do not check for pid == 0 which can happen when
630 * the owner died and robust_list_exit() cleared the
631 * TID.
632 */
633 if (pid && pi_state->owner) {
634 /*
635 * Bail out if user space manipulated the
636 * futex value.
637 */
638 if (pid != task_pid_vnr(pi_state->owner))
639 return -EINVAL;
640 }
627371d7 641
cabef9fe
TG
642 /*
643 * Protect against a corrupted uval. If uval
644 * is 0x80000000 then pid is 0 and the waiter
645 * bit is set. So the deadlock check in the
646 * calling code has failed and we did not fall
647 * into the check above due to !pid.
648 */
649 if (task && pi_state->owner == task)
650 return -EDEADLK;
651
c87e2837 652 atomic_inc(&pi_state->refcount);
d0aa7a70 653 *ps = pi_state;
c87e2837
IM
654
655 return 0;
656 }
657 }
658
659 /*
e3f2ddea 660 * We are the first waiter - try to look up the real owner and attach
778e9a9c 661 * the new pi_state to it, but bail out when TID = 0
c87e2837 662 */
778e9a9c 663 if (!pid)
e3f2ddea 664 return -ESRCH;
c87e2837 665 p = futex_find_get_task(pid);
7a0ea09a
MH
666 if (!p)
667 return -ESRCH;
778e9a9c 668
452d7fea
TG
669 if (!p->mm) {
670 put_task_struct(p);
671 return -EPERM;
672 }
673
778e9a9c
AK
674 /*
675 * We need to look at the task state flags to figure out,
676 * whether the task is exiting. To protect against the do_exit
677 * change of the task flags, we do this protected by
678 * p->pi_lock:
679 */
1d615482 680 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
681 if (unlikely(p->flags & PF_EXITING)) {
682 /*
683 * The task is on the way out. When PF_EXITPIDONE is
684 * set, we know that the task has finished the
685 * cleanup:
686 */
687 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
688
1d615482 689 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
690 put_task_struct(p);
691 return ret;
692 }
c87e2837
IM
693
694 pi_state = alloc_pi_state();
695
696 /*
697 * Initialize the pi_mutex in locked state and make 'p'
698 * the owner of it:
699 */
700 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
701
702 /* Store the key for possible exit cleanups: */
d0aa7a70 703 pi_state->key = *key;
c87e2837 704
627371d7 705 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
706 list_add(&pi_state->list, &p->pi_state_list);
707 pi_state->owner = p;
1d615482 708 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
709
710 put_task_struct(p);
711
d0aa7a70 712 *ps = pi_state;
c87e2837
IM
713
714 return 0;
715}
716
1a52084d 717/**
d96ee56c 718 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
719 * @uaddr: the pi futex user address
720 * @hb: the pi futex hash bucket
721 * @key: the futex key associated with uaddr and hb
722 * @ps: the pi_state pointer where we store the result of the
723 * lookup
724 * @task: the task to perform the atomic lock work for. This will
725 * be "current" except in the case of requeue pi.
726 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 727 *
6c23cbbd
RD
728 * Return:
729 * 0 - ready to wait;
730 * 1 - acquired the lock;
1a52084d
DH
731 * <0 - error
732 *
733 * The hb->lock and futex_key refs shall be held by the caller.
734 */
735static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
736 union futex_key *key,
737 struct futex_pi_state **ps,
bab5bc9e 738 struct task_struct *task, int set_waiters)
1a52084d 739{
59fa6245 740 int lock_taken, ret, force_take = 0;
c0c9ed15 741 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
742
743retry:
744 ret = lock_taken = 0;
745
746 /*
747 * To avoid races, we attempt to take the lock here again
748 * (by doing a 0 -> TID atomic cmpxchg), while holding all
749 * the locks. It will most likely not succeed.
750 */
c0c9ed15 751 newval = vpid;
bab5bc9e
DH
752 if (set_waiters)
753 newval |= FUTEX_WAITERS;
1a52084d 754
37a9d912 755 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
756 return -EFAULT;
757
758 /*
759 * Detect deadlocks.
760 */
c0c9ed15 761 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
762 return -EDEADLK;
763
764 /*
765 * Surprise - we got the lock. Just return to userspace:
766 */
767 if (unlikely(!curval))
768 return 1;
769
770 uval = curval;
771
772 /*
773 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
774 * to wake at the next unlock.
775 */
776 newval = curval | FUTEX_WAITERS;
777
778 /*
59fa6245 779 * Should we force take the futex? See below.
1a52084d 780 */
59fa6245
TG
781 if (unlikely(force_take)) {
782 /*
783 * Keep the OWNER_DIED and the WAITERS bit and set the
784 * new TID value.
785 */
c0c9ed15 786 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 787 force_take = 0;
1a52084d
DH
788 lock_taken = 1;
789 }
790
37a9d912 791 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
792 return -EFAULT;
793 if (unlikely(curval != uval))
794 goto retry;
795
796 /*
59fa6245 797 * We took the lock due to forced take over.
1a52084d
DH
798 */
799 if (unlikely(lock_taken))
800 return 1;
801
802 /*
803 * We dont have the lock. Look up the PI state (or create it if
804 * we are the first waiter):
805 */
cabef9fe 806 ret = lookup_pi_state(uval, hb, key, ps, task);
1a52084d
DH
807
808 if (unlikely(ret)) {
809 switch (ret) {
810 case -ESRCH:
811 /*
59fa6245
TG
812 * We failed to find an owner for this
813 * futex. So we have no pi_state to block
814 * on. This can happen in two cases:
815 *
816 * 1) The owner died
817 * 2) A stale FUTEX_WAITERS bit
818 *
819 * Re-read the futex value.
1a52084d
DH
820 */
821 if (get_futex_value_locked(&curval, uaddr))
822 return -EFAULT;
823
824 /*
59fa6245
TG
825 * If the owner died or we have a stale
826 * WAITERS bit the owner TID in the user space
827 * futex is 0.
1a52084d 828 */
59fa6245
TG
829 if (!(curval & FUTEX_TID_MASK)) {
830 force_take = 1;
1a52084d
DH
831 goto retry;
832 }
833 default:
834 break;
835 }
836 }
837
838 return ret;
839}
840
2e12978a
LJ
841/**
842 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
843 * @q: The futex_q to unqueue
844 *
845 * The q->lock_ptr must not be NULL and must be held by the caller.
846 */
847static void __unqueue_futex(struct futex_q *q)
848{
849 struct futex_hash_bucket *hb;
850
29096202
SR
851 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
852 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
853 return;
854
855 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
856 plist_del(&q->list, &hb->chain);
857}
858
1da177e4
LT
859/*
860 * The hash bucket lock must be held when this is called.
861 * Afterwards, the futex_q must not be accessed.
862 */
863static void wake_futex(struct futex_q *q)
864{
f1a11e05
TG
865 struct task_struct *p = q->task;
866
aa10990e
DH
867 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
868 return;
869
1da177e4 870 /*
f1a11e05 871 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
872 * a non-futex wake up happens on another CPU then the task
873 * might exit and p would dereference a non-existing task
f1a11e05
TG
874 * struct. Prevent this by holding a reference on p across the
875 * wake up.
1da177e4 876 */
f1a11e05
TG
877 get_task_struct(p);
878
2e12978a 879 __unqueue_futex(q);
1da177e4 880 /*
f1a11e05
TG
881 * The waiting task can free the futex_q as soon as
882 * q->lock_ptr = NULL is written, without taking any locks. A
883 * memory barrier is required here to prevent the following
884 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 885 */
ccdea2f8 886 smp_wmb();
1da177e4 887 q->lock_ptr = NULL;
f1a11e05
TG
888
889 wake_up_state(p, TASK_NORMAL);
890 put_task_struct(p);
1da177e4
LT
891}
892
c87e2837
IM
893static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
894{
895 struct task_struct *new_owner;
896 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 897 u32 uninitialized_var(curval), newval;
c87e2837
IM
898
899 if (!pi_state)
900 return -EINVAL;
901
51246bfd
TG
902 /*
903 * If current does not own the pi_state then the futex is
904 * inconsistent and user space fiddled with the futex value.
905 */
906 if (pi_state->owner != current)
907 return -EINVAL;
908
d209d74d 909 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
910 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
911
912 /*
f123c98e
SR
913 * It is possible that the next waiter (the one that brought
914 * this owner to the kernel) timed out and is no longer
915 * waiting on the lock.
c87e2837
IM
916 */
917 if (!new_owner)
918 new_owner = this->task;
919
920 /*
921 * We pass it to the next owner. (The WAITERS bit is always
922 * kept enabled while there is PI state around. We must also
923 * preserve the owner died bit.)
924 */
e3f2ddea 925 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
926 int ret = 0;
927
b488893a 928 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 929
37a9d912 930 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 931 ret = -EFAULT;
cde898fa 932 else if (curval != uval)
778e9a9c
AK
933 ret = -EINVAL;
934 if (ret) {
d209d74d 935 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
936 return ret;
937 }
e3f2ddea 938 }
c87e2837 939
1d615482 940 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
941 WARN_ON(list_empty(&pi_state->list));
942 list_del_init(&pi_state->list);
1d615482 943 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 944
1d615482 945 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 946 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
947 list_add(&pi_state->list, &new_owner->pi_state_list);
948 pi_state->owner = new_owner;
1d615482 949 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 950
d209d74d 951 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
952 rt_mutex_unlock(&pi_state->pi_mutex);
953
954 return 0;
955}
956
957static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
958{
7cfdaf38 959 u32 uninitialized_var(oldval);
c87e2837
IM
960
961 /*
962 * There is no waiter, so we unlock the futex. The owner died
963 * bit has not to be preserved here. We are the owner:
964 */
37a9d912
ML
965 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
966 return -EFAULT;
c87e2837
IM
967 if (oldval != uval)
968 return -EAGAIN;
969
970 return 0;
971}
972
8b8f319f
IM
973/*
974 * Express the locking dependencies for lockdep:
975 */
976static inline void
977double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
978{
979 if (hb1 <= hb2) {
980 spin_lock(&hb1->lock);
981 if (hb1 < hb2)
982 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
983 } else { /* hb1 > hb2 */
984 spin_lock(&hb2->lock);
985 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
986 }
987}
988
5eb3dc62
DH
989static inline void
990double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
991{
f061d351 992 spin_unlock(&hb1->lock);
88f502fe
IM
993 if (hb1 != hb2)
994 spin_unlock(&hb2->lock);
5eb3dc62
DH
995}
996
1da177e4 997/*
b2d0994b 998 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 999 */
b41277dc
DH
1000static int
1001futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1002{
e2970f2f 1003 struct futex_hash_bucket *hb;
1da177e4 1004 struct futex_q *this, *next;
ec92d082 1005 struct plist_head *head;
38d47c1b 1006 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1007 int ret;
1008
cd689985
TG
1009 if (!bitset)
1010 return -EINVAL;
1011
9ea71503 1012 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1013 if (unlikely(ret != 0))
1014 goto out;
1015
e2970f2f
IM
1016 hb = hash_futex(&key);
1017 spin_lock(&hb->lock);
1018 head = &hb->chain;
1da177e4 1019
ec92d082 1020 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1021 if (match_futex (&this->key, &key)) {
52400ba9 1022 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1023 ret = -EINVAL;
1024 break;
1025 }
cd689985
TG
1026
1027 /* Check if one of the bits is set in both bitsets */
1028 if (!(this->bitset & bitset))
1029 continue;
1030
1da177e4
LT
1031 wake_futex(this);
1032 if (++ret >= nr_wake)
1033 break;
1034 }
1035 }
1036
e2970f2f 1037 spin_unlock(&hb->lock);
ae791a2d 1038 put_futex_key(&key);
42d35d48 1039out:
1da177e4
LT
1040 return ret;
1041}
1042
4732efbe
JJ
1043/*
1044 * Wake up all waiters hashed on the physical page that is mapped
1045 * to this virtual address:
1046 */
e2970f2f 1047static int
b41277dc 1048futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1049 int nr_wake, int nr_wake2, int op)
4732efbe 1050{
38d47c1b 1051 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1052 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1053 struct plist_head *head;
4732efbe 1054 struct futex_q *this, *next;
e4dc5b7a 1055 int ret, op_ret;
4732efbe 1056
e4dc5b7a 1057retry:
9ea71503 1058 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1059 if (unlikely(ret != 0))
1060 goto out;
9ea71503 1061 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1062 if (unlikely(ret != 0))
42d35d48 1063 goto out_put_key1;
4732efbe 1064
e2970f2f
IM
1065 hb1 = hash_futex(&key1);
1066 hb2 = hash_futex(&key2);
4732efbe 1067
e4dc5b7a 1068retry_private:
eaaea803 1069 double_lock_hb(hb1, hb2);
e2970f2f 1070 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1071 if (unlikely(op_ret < 0)) {
4732efbe 1072
5eb3dc62 1073 double_unlock_hb(hb1, hb2);
4732efbe 1074
7ee1dd3f 1075#ifndef CONFIG_MMU
e2970f2f
IM
1076 /*
1077 * we don't get EFAULT from MMU faults if we don't have an MMU,
1078 * but we might get them from range checking
1079 */
7ee1dd3f 1080 ret = op_ret;
42d35d48 1081 goto out_put_keys;
7ee1dd3f
DH
1082#endif
1083
796f8d9b
DG
1084 if (unlikely(op_ret != -EFAULT)) {
1085 ret = op_ret;
42d35d48 1086 goto out_put_keys;
796f8d9b
DG
1087 }
1088
d0725992 1089 ret = fault_in_user_writeable(uaddr2);
4732efbe 1090 if (ret)
de87fcc1 1091 goto out_put_keys;
4732efbe 1092
b41277dc 1093 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1094 goto retry_private;
1095
ae791a2d
TG
1096 put_futex_key(&key2);
1097 put_futex_key(&key1);
e4dc5b7a 1098 goto retry;
4732efbe
JJ
1099 }
1100
e2970f2f 1101 head = &hb1->chain;
4732efbe 1102
ec92d082 1103 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1104 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1105 if (this->pi_state || this->rt_waiter) {
1106 ret = -EINVAL;
1107 goto out_unlock;
1108 }
4732efbe
JJ
1109 wake_futex(this);
1110 if (++ret >= nr_wake)
1111 break;
1112 }
1113 }
1114
1115 if (op_ret > 0) {
e2970f2f 1116 head = &hb2->chain;
4732efbe
JJ
1117
1118 op_ret = 0;
ec92d082 1119 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1120 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1121 if (this->pi_state || this->rt_waiter) {
1122 ret = -EINVAL;
1123 goto out_unlock;
1124 }
4732efbe
JJ
1125 wake_futex(this);
1126 if (++op_ret >= nr_wake2)
1127 break;
1128 }
1129 }
1130 ret += op_ret;
1131 }
1132
aa10990e 1133out_unlock:
5eb3dc62 1134 double_unlock_hb(hb1, hb2);
42d35d48 1135out_put_keys:
ae791a2d 1136 put_futex_key(&key2);
42d35d48 1137out_put_key1:
ae791a2d 1138 put_futex_key(&key1);
42d35d48 1139out:
4732efbe
JJ
1140 return ret;
1141}
1142
9121e478
DH
1143/**
1144 * requeue_futex() - Requeue a futex_q from one hb to another
1145 * @q: the futex_q to requeue
1146 * @hb1: the source hash_bucket
1147 * @hb2: the target hash_bucket
1148 * @key2: the new key for the requeued futex_q
1149 */
1150static inline
1151void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1152 struct futex_hash_bucket *hb2, union futex_key *key2)
1153{
1154
1155 /*
1156 * If key1 and key2 hash to the same bucket, no need to
1157 * requeue.
1158 */
1159 if (likely(&hb1->chain != &hb2->chain)) {
1160 plist_del(&q->list, &hb1->chain);
1161 plist_add(&q->list, &hb2->chain);
1162 q->lock_ptr = &hb2->lock;
9121e478
DH
1163 }
1164 get_futex_key_refs(key2);
1165 q->key = *key2;
1166}
1167
52400ba9
DH
1168/**
1169 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1170 * @q: the futex_q
1171 * @key: the key of the requeue target futex
1172 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1173 *
1174 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1175 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1176 * to the requeue target futex so the waiter can detect the wakeup on the right
1177 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1178 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1179 * to protect access to the pi_state to fixup the owner later. Must be called
1180 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1181 */
1182static inline
beda2c7e
DH
1183void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1184 struct futex_hash_bucket *hb)
52400ba9 1185{
52400ba9
DH
1186 get_futex_key_refs(key);
1187 q->key = *key;
1188
2e12978a 1189 __unqueue_futex(q);
52400ba9
DH
1190
1191 WARN_ON(!q->rt_waiter);
1192 q->rt_waiter = NULL;
1193
beda2c7e 1194 q->lock_ptr = &hb->lock;
beda2c7e 1195
f1a11e05 1196 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1197}
1198
1199/**
1200 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1201 * @pifutex: the user address of the to futex
1202 * @hb1: the from futex hash bucket, must be locked by the caller
1203 * @hb2: the to futex hash bucket, must be locked by the caller
1204 * @key1: the from futex key
1205 * @key2: the to futex key
1206 * @ps: address to store the pi_state pointer
1207 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1208 *
1209 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1210 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1211 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1212 * hb1 and hb2 must be held by the caller.
52400ba9 1213 *
6c23cbbd
RD
1214 * Return:
1215 * 0 - failed to acquire the lock atomically;
cabef9fe 1216 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1217 * <0 - error
1218 */
1219static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1220 struct futex_hash_bucket *hb1,
1221 struct futex_hash_bucket *hb2,
1222 union futex_key *key1, union futex_key *key2,
bab5bc9e 1223 struct futex_pi_state **ps, int set_waiters)
52400ba9 1224{
bab5bc9e 1225 struct futex_q *top_waiter = NULL;
52400ba9 1226 u32 curval;
cabef9fe 1227 int ret, vpid;
52400ba9
DH
1228
1229 if (get_futex_value_locked(&curval, pifutex))
1230 return -EFAULT;
1231
bab5bc9e
DH
1232 /*
1233 * Find the top_waiter and determine if there are additional waiters.
1234 * If the caller intends to requeue more than 1 waiter to pifutex,
1235 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1236 * as we have means to handle the possible fault. If not, don't set
1237 * the bit unecessarily as it will force the subsequent unlock to enter
1238 * the kernel.
1239 */
52400ba9
DH
1240 top_waiter = futex_top_waiter(hb1, key1);
1241
1242 /* There are no waiters, nothing for us to do. */
1243 if (!top_waiter)
1244 return 0;
1245
84bc4af5
DH
1246 /* Ensure we requeue to the expected futex. */
1247 if (!match_futex(top_waiter->requeue_pi_key, key2))
1248 return -EINVAL;
1249
52400ba9 1250 /*
bab5bc9e
DH
1251 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1252 * the contended case or if set_waiters is 1. The pi_state is returned
1253 * in ps in contended cases.
52400ba9 1254 */
cabef9fe 1255 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1256 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1257 set_waiters);
cabef9fe 1258 if (ret == 1) {
beda2c7e 1259 requeue_pi_wake_futex(top_waiter, key2, hb2);
cabef9fe
TG
1260 return vpid;
1261 }
52400ba9
DH
1262 return ret;
1263}
1264
1265/**
1266 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1267 * @uaddr1: source futex user address
b41277dc 1268 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1269 * @uaddr2: target futex user address
1270 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1271 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1272 * @cmpval: @uaddr1 expected value (or %NULL)
1273 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1274 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1275 *
1276 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1277 * uaddr2 atomically on behalf of the top waiter.
1278 *
6c23cbbd
RD
1279 * Return:
1280 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1281 * <0 - on error
1da177e4 1282 */
b41277dc
DH
1283static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1284 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1285 u32 *cmpval, int requeue_pi)
1da177e4 1286{
38d47c1b 1287 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1288 int drop_count = 0, task_count = 0, ret;
1289 struct futex_pi_state *pi_state = NULL;
e2970f2f 1290 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1291 struct plist_head *head1;
1da177e4 1292 struct futex_q *this, *next;
52400ba9
DH
1293
1294 if (requeue_pi) {
1295 /*
1296 * requeue_pi requires a pi_state, try to allocate it now
1297 * without any locks in case it fails.
1298 */
1299 if (refill_pi_state_cache())
1300 return -ENOMEM;
1301 /*
1302 * requeue_pi must wake as many tasks as it can, up to nr_wake
1303 * + nr_requeue, since it acquires the rt_mutex prior to
1304 * returning to userspace, so as to not leave the rt_mutex with
1305 * waiters and no owner. However, second and third wake-ups
1306 * cannot be predicted as they involve race conditions with the
1307 * first wake and a fault while looking up the pi_state. Both
1308 * pthread_cond_signal() and pthread_cond_broadcast() should
1309 * use nr_wake=1.
1310 */
1311 if (nr_wake != 1)
1312 return -EINVAL;
1313 }
1da177e4 1314
42d35d48 1315retry:
52400ba9
DH
1316 if (pi_state != NULL) {
1317 /*
1318 * We will have to lookup the pi_state again, so free this one
1319 * to keep the accounting correct.
1320 */
1321 free_pi_state(pi_state);
1322 pi_state = NULL;
1323 }
1324
9ea71503 1325 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1326 if (unlikely(ret != 0))
1327 goto out;
9ea71503
SB
1328 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1329 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1330 if (unlikely(ret != 0))
42d35d48 1331 goto out_put_key1;
1da177e4 1332
e2970f2f
IM
1333 hb1 = hash_futex(&key1);
1334 hb2 = hash_futex(&key2);
1da177e4 1335
e4dc5b7a 1336retry_private:
8b8f319f 1337 double_lock_hb(hb1, hb2);
1da177e4 1338
e2970f2f
IM
1339 if (likely(cmpval != NULL)) {
1340 u32 curval;
1da177e4 1341
e2970f2f 1342 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1343
1344 if (unlikely(ret)) {
5eb3dc62 1345 double_unlock_hb(hb1, hb2);
1da177e4 1346
e2970f2f 1347 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1348 if (ret)
1349 goto out_put_keys;
1da177e4 1350
b41277dc 1351 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1352 goto retry_private;
1da177e4 1353
ae791a2d
TG
1354 put_futex_key(&key2);
1355 put_futex_key(&key1);
e4dc5b7a 1356 goto retry;
1da177e4 1357 }
e2970f2f 1358 if (curval != *cmpval) {
1da177e4
LT
1359 ret = -EAGAIN;
1360 goto out_unlock;
1361 }
1362 }
1363
52400ba9 1364 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1365 /*
1366 * Attempt to acquire uaddr2 and wake the top waiter. If we
1367 * intend to requeue waiters, force setting the FUTEX_WAITERS
1368 * bit. We force this here where we are able to easily handle
1369 * faults rather in the requeue loop below.
1370 */
52400ba9 1371 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1372 &key2, &pi_state, nr_requeue);
52400ba9
DH
1373
1374 /*
1375 * At this point the top_waiter has either taken uaddr2 or is
1376 * waiting on it. If the former, then the pi_state will not
1377 * exist yet, look it up one more time to ensure we have a
cabef9fe
TG
1378 * reference to it. If the lock was taken, ret contains the
1379 * vpid of the top waiter task.
52400ba9 1380 */
cabef9fe 1381 if (ret > 0) {
52400ba9 1382 WARN_ON(pi_state);
89061d3d 1383 drop_count++;
52400ba9 1384 task_count++;
cabef9fe
TG
1385 /*
1386 * If we acquired the lock, then the user
1387 * space value of uaddr2 should be vpid. It
1388 * cannot be changed by the top waiter as it
1389 * is blocked on hb2 lock if it tries to do
1390 * so. If something fiddled with it behind our
1391 * back the pi state lookup might unearth
1392 * it. So we rather use the known value than
1393 * rereading and handing potential crap to
1394 * lookup_pi_state.
1395 */
1396 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
52400ba9
DH
1397 }
1398
1399 switch (ret) {
1400 case 0:
1401 break;
1402 case -EFAULT:
1403 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1404 put_futex_key(&key2);
1405 put_futex_key(&key1);
d0725992 1406 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1407 if (!ret)
1408 goto retry;
1409 goto out;
1410 case -EAGAIN:
1411 /* The owner was exiting, try again. */
1412 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1413 put_futex_key(&key2);
1414 put_futex_key(&key1);
52400ba9
DH
1415 cond_resched();
1416 goto retry;
1417 default:
1418 goto out_unlock;
1419 }
1420 }
1421
e2970f2f 1422 head1 = &hb1->chain;
ec92d082 1423 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1424 if (task_count - nr_wake >= nr_requeue)
1425 break;
1426
1427 if (!match_futex(&this->key, &key1))
1da177e4 1428 continue;
52400ba9 1429
392741e0
DH
1430 /*
1431 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1432 * be paired with each other and no other futex ops.
aa10990e
DH
1433 *
1434 * We should never be requeueing a futex_q with a pi_state,
1435 * which is awaiting a futex_unlock_pi().
392741e0
DH
1436 */
1437 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1438 (!requeue_pi && this->rt_waiter) ||
1439 this->pi_state) {
392741e0
DH
1440 ret = -EINVAL;
1441 break;
1442 }
52400ba9
DH
1443
1444 /*
1445 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1446 * lock, we already woke the top_waiter. If not, it will be
1447 * woken by futex_unlock_pi().
1448 */
1449 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1450 wake_futex(this);
52400ba9
DH
1451 continue;
1452 }
1da177e4 1453
84bc4af5
DH
1454 /* Ensure we requeue to the expected futex for requeue_pi. */
1455 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1456 ret = -EINVAL;
1457 break;
1458 }
1459
52400ba9
DH
1460 /*
1461 * Requeue nr_requeue waiters and possibly one more in the case
1462 * of requeue_pi if we couldn't acquire the lock atomically.
1463 */
1464 if (requeue_pi) {
1465 /* Prepare the waiter to take the rt_mutex. */
1466 atomic_inc(&pi_state->refcount);
1467 this->pi_state = pi_state;
1468 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1469 this->rt_waiter,
1470 this->task, 1);
1471 if (ret == 1) {
1472 /* We got the lock. */
beda2c7e 1473 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1474 drop_count++;
52400ba9
DH
1475 continue;
1476 } else if (ret) {
1477 /* -EDEADLK */
1478 this->pi_state = NULL;
1479 free_pi_state(pi_state);
1480 goto out_unlock;
1481 }
1da177e4 1482 }
52400ba9
DH
1483 requeue_futex(this, hb1, hb2, &key2);
1484 drop_count++;
1da177e4
LT
1485 }
1486
1487out_unlock:
5eb3dc62 1488 double_unlock_hb(hb1, hb2);
1da177e4 1489
cd84a42f
DH
1490 /*
1491 * drop_futex_key_refs() must be called outside the spinlocks. During
1492 * the requeue we moved futex_q's from the hash bucket at key1 to the
1493 * one at key2 and updated their key pointer. We no longer need to
1494 * hold the references to key1.
1495 */
1da177e4 1496 while (--drop_count >= 0)
9adef58b 1497 drop_futex_key_refs(&key1);
1da177e4 1498
42d35d48 1499out_put_keys:
ae791a2d 1500 put_futex_key(&key2);
42d35d48 1501out_put_key1:
ae791a2d 1502 put_futex_key(&key1);
42d35d48 1503out:
52400ba9
DH
1504 if (pi_state != NULL)
1505 free_pi_state(pi_state);
1506 return ret ? ret : task_count;
1da177e4
LT
1507}
1508
1509/* The key must be already stored in q->key. */
82af7aca 1510static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1511 __acquires(&hb->lock)
1da177e4 1512{
e2970f2f 1513 struct futex_hash_bucket *hb;
1da177e4 1514
e2970f2f
IM
1515 hb = hash_futex(&q->key);
1516 q->lock_ptr = &hb->lock;
1da177e4 1517
e2970f2f
IM
1518 spin_lock(&hb->lock);
1519 return hb;
1da177e4
LT
1520}
1521
d40d65c8
DH
1522static inline void
1523queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1524 __releases(&hb->lock)
d40d65c8
DH
1525{
1526 spin_unlock(&hb->lock);
d40d65c8
DH
1527}
1528
1529/**
1530 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1531 * @q: The futex_q to enqueue
1532 * @hb: The destination hash bucket
1533 *
1534 * The hb->lock must be held by the caller, and is released here. A call to
1535 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1536 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1537 * or nothing if the unqueue is done as part of the wake process and the unqueue
1538 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1539 * an example).
1540 */
82af7aca 1541static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1542 __releases(&hb->lock)
1da177e4 1543{
ec92d082
PP
1544 int prio;
1545
1546 /*
1547 * The priority used to register this element is
1548 * - either the real thread-priority for the real-time threads
1549 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1550 * - or MAX_RT_PRIO for non-RT threads.
1551 * Thus, all RT-threads are woken first in priority order, and
1552 * the others are woken last, in FIFO order.
1553 */
1554 prio = min(current->normal_prio, MAX_RT_PRIO);
1555
1556 plist_node_init(&q->list, prio);
ec92d082 1557 plist_add(&q->list, &hb->chain);
c87e2837 1558 q->task = current;
e2970f2f 1559 spin_unlock(&hb->lock);
1da177e4
LT
1560}
1561
d40d65c8
DH
1562/**
1563 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1564 * @q: The futex_q to unqueue
1565 *
1566 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1567 * be paired with exactly one earlier call to queue_me().
1568 *
6c23cbbd
RD
1569 * Return:
1570 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1571 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1572 */
1da177e4
LT
1573static int unqueue_me(struct futex_q *q)
1574{
1da177e4 1575 spinlock_t *lock_ptr;
e2970f2f 1576 int ret = 0;
1da177e4
LT
1577
1578 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1579retry:
1da177e4 1580 lock_ptr = q->lock_ptr;
e91467ec 1581 barrier();
c80544dc 1582 if (lock_ptr != NULL) {
1da177e4
LT
1583 spin_lock(lock_ptr);
1584 /*
1585 * q->lock_ptr can change between reading it and
1586 * spin_lock(), causing us to take the wrong lock. This
1587 * corrects the race condition.
1588 *
1589 * Reasoning goes like this: if we have the wrong lock,
1590 * q->lock_ptr must have changed (maybe several times)
1591 * between reading it and the spin_lock(). It can
1592 * change again after the spin_lock() but only if it was
1593 * already changed before the spin_lock(). It cannot,
1594 * however, change back to the original value. Therefore
1595 * we can detect whether we acquired the correct lock.
1596 */
1597 if (unlikely(lock_ptr != q->lock_ptr)) {
1598 spin_unlock(lock_ptr);
1599 goto retry;
1600 }
2e12978a 1601 __unqueue_futex(q);
c87e2837
IM
1602
1603 BUG_ON(q->pi_state);
1604
1da177e4
LT
1605 spin_unlock(lock_ptr);
1606 ret = 1;
1607 }
1608
9adef58b 1609 drop_futex_key_refs(&q->key);
1da177e4
LT
1610 return ret;
1611}
1612
c87e2837
IM
1613/*
1614 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1615 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1616 * and dropped here.
c87e2837 1617 */
d0aa7a70 1618static void unqueue_me_pi(struct futex_q *q)
15e408cd 1619 __releases(q->lock_ptr)
c87e2837 1620{
2e12978a 1621 __unqueue_futex(q);
c87e2837
IM
1622
1623 BUG_ON(!q->pi_state);
1624 free_pi_state(q->pi_state);
1625 q->pi_state = NULL;
1626
d0aa7a70 1627 spin_unlock(q->lock_ptr);
c87e2837
IM
1628}
1629
d0aa7a70 1630/*
cdf71a10 1631 * Fixup the pi_state owner with the new owner.
d0aa7a70 1632 *
778e9a9c
AK
1633 * Must be called with hash bucket lock held and mm->sem held for non
1634 * private futexes.
d0aa7a70 1635 */
778e9a9c 1636static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1637 struct task_struct *newowner)
d0aa7a70 1638{
cdf71a10 1639 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1640 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1641 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1642 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1643 int ret;
d0aa7a70
PP
1644
1645 /* Owner died? */
1b7558e4
TG
1646 if (!pi_state->owner)
1647 newtid |= FUTEX_OWNER_DIED;
1648
1649 /*
1650 * We are here either because we stole the rtmutex from the
8161239a
LJ
1651 * previous highest priority waiter or we are the highest priority
1652 * waiter but failed to get the rtmutex the first time.
1653 * We have to replace the newowner TID in the user space variable.
1654 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1655 *
b2d0994b
DH
1656 * Note: We write the user space value _before_ changing the pi_state
1657 * because we can fault here. Imagine swapped out pages or a fork
1658 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1659 *
1660 * Modifying pi_state _before_ the user space value would
1661 * leave the pi_state in an inconsistent state when we fault
1662 * here, because we need to drop the hash bucket lock to
1663 * handle the fault. This might be observed in the PID check
1664 * in lookup_pi_state.
1665 */
1666retry:
1667 if (get_futex_value_locked(&uval, uaddr))
1668 goto handle_fault;
1669
1670 while (1) {
1671 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1672
37a9d912 1673 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1674 goto handle_fault;
1675 if (curval == uval)
1676 break;
1677 uval = curval;
1678 }
1679
1680 /*
1681 * We fixed up user space. Now we need to fix the pi_state
1682 * itself.
1683 */
d0aa7a70 1684 if (pi_state->owner != NULL) {
1d615482 1685 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1686 WARN_ON(list_empty(&pi_state->list));
1687 list_del_init(&pi_state->list);
1d615482 1688 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1689 }
d0aa7a70 1690
cdf71a10 1691 pi_state->owner = newowner;
d0aa7a70 1692
1d615482 1693 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1694 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1695 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1696 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1697 return 0;
d0aa7a70 1698
d0aa7a70 1699 /*
1b7558e4 1700 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1701 * lock here. That gives the other task (either the highest priority
1702 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1703 * chance to try the fixup of the pi_state. So once we are
1704 * back from handling the fault we need to check the pi_state
1705 * after reacquiring the hash bucket lock and before trying to
1706 * do another fixup. When the fixup has been done already we
1707 * simply return.
d0aa7a70 1708 */
1b7558e4
TG
1709handle_fault:
1710 spin_unlock(q->lock_ptr);
778e9a9c 1711
d0725992 1712 ret = fault_in_user_writeable(uaddr);
778e9a9c 1713
1b7558e4 1714 spin_lock(q->lock_ptr);
778e9a9c 1715
1b7558e4
TG
1716 /*
1717 * Check if someone else fixed it for us:
1718 */
1719 if (pi_state->owner != oldowner)
1720 return 0;
1721
1722 if (ret)
1723 return ret;
1724
1725 goto retry;
d0aa7a70
PP
1726}
1727
72c1bbf3 1728static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1729
dd973998
DH
1730/**
1731 * fixup_owner() - Post lock pi_state and corner case management
1732 * @uaddr: user address of the futex
dd973998
DH
1733 * @q: futex_q (contains pi_state and access to the rt_mutex)
1734 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1735 *
1736 * After attempting to lock an rt_mutex, this function is called to cleanup
1737 * the pi_state owner as well as handle race conditions that may allow us to
1738 * acquire the lock. Must be called with the hb lock held.
1739 *
6c23cbbd
RD
1740 * Return:
1741 * 1 - success, lock taken;
1742 * 0 - success, lock not taken;
dd973998
DH
1743 * <0 - on error (-EFAULT)
1744 */
ae791a2d 1745static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1746{
1747 struct task_struct *owner;
1748 int ret = 0;
1749
1750 if (locked) {
1751 /*
1752 * Got the lock. We might not be the anticipated owner if we
1753 * did a lock-steal - fix up the PI-state in that case:
1754 */
1755 if (q->pi_state->owner != current)
ae791a2d 1756 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1757 goto out;
1758 }
1759
1760 /*
1761 * Catch the rare case, where the lock was released when we were on the
1762 * way back before we locked the hash bucket.
1763 */
1764 if (q->pi_state->owner == current) {
1765 /*
1766 * Try to get the rt_mutex now. This might fail as some other
1767 * task acquired the rt_mutex after we removed ourself from the
1768 * rt_mutex waiters list.
1769 */
1770 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1771 locked = 1;
1772 goto out;
1773 }
1774
1775 /*
1776 * pi_state is incorrect, some other task did a lock steal and
1777 * we returned due to timeout or signal without taking the
8161239a 1778 * rt_mutex. Too late.
dd973998 1779 */
8161239a 1780 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1781 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1782 if (!owner)
1783 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1784 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1785 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1786 goto out;
1787 }
1788
1789 /*
1790 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1791 * the owner of the rt_mutex.
dd973998
DH
1792 */
1793 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1794 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1795 "pi-state %p\n", ret,
1796 q->pi_state->pi_mutex.owner,
1797 q->pi_state->owner);
1798
1799out:
1800 return ret ? ret : locked;
1801}
1802
ca5f9524
DH
1803/**
1804 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1805 * @hb: the futex hash bucket, must be locked by the caller
1806 * @q: the futex_q to queue up on
1807 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1808 */
1809static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1810 struct hrtimer_sleeper *timeout)
ca5f9524 1811{
9beba3c5
DH
1812 /*
1813 * The task state is guaranteed to be set before another task can
1814 * wake it. set_current_state() is implemented using set_mb() and
1815 * queue_me() calls spin_unlock() upon completion, both serializing
1816 * access to the hash list and forcing another memory barrier.
1817 */
f1a11e05 1818 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1819 queue_me(q, hb);
ca5f9524
DH
1820
1821 /* Arm the timer */
1822 if (timeout) {
1823 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1824 if (!hrtimer_active(&timeout->timer))
1825 timeout->task = NULL;
1826 }
1827
1828 /*
0729e196
DH
1829 * If we have been removed from the hash list, then another task
1830 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1831 */
1832 if (likely(!plist_node_empty(&q->list))) {
1833 /*
1834 * If the timer has already expired, current will already be
1835 * flagged for rescheduling. Only call schedule if there
1836 * is no timeout, or if it has yet to expire.
1837 */
1838 if (!timeout || timeout->task)
1839 schedule();
1840 }
1841 __set_current_state(TASK_RUNNING);
1842}
1843
f801073f
DH
1844/**
1845 * futex_wait_setup() - Prepare to wait on a futex
1846 * @uaddr: the futex userspace address
1847 * @val: the expected value
b41277dc 1848 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1849 * @q: the associated futex_q
1850 * @hb: storage for hash_bucket pointer to be returned to caller
1851 *
1852 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1853 * compare it with the expected value. Handle atomic faults internally.
1854 * Return with the hb lock held and a q.key reference on success, and unlocked
1855 * with no q.key reference on failure.
1856 *
6c23cbbd
RD
1857 * Return:
1858 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1859 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1860 */
b41277dc 1861static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1862 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1863{
e2970f2f
IM
1864 u32 uval;
1865 int ret;
1da177e4 1866
1da177e4 1867 /*
b2d0994b 1868 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1869 * Order is important:
1870 *
1871 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1872 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1873 *
1874 * The basic logical guarantee of a futex is that it blocks ONLY
1875 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1876 * any cond. If we locked the hash-bucket after testing *uaddr, that
1877 * would open a race condition where we could block indefinitely with
1da177e4
LT
1878 * cond(var) false, which would violate the guarantee.
1879 *
8fe8f545
ML
1880 * On the other hand, we insert q and release the hash-bucket only
1881 * after testing *uaddr. This guarantees that futex_wait() will NOT
1882 * absorb a wakeup if *uaddr does not match the desired values
1883 * while the syscall executes.
1da177e4 1884 */
f801073f 1885retry:
9ea71503 1886 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1887 if (unlikely(ret != 0))
a5a2a0c7 1888 return ret;
f801073f
DH
1889
1890retry_private:
1891 *hb = queue_lock(q);
1892
e2970f2f 1893 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1894
f801073f
DH
1895 if (ret) {
1896 queue_unlock(q, *hb);
1da177e4 1897
e2970f2f 1898 ret = get_user(uval, uaddr);
e4dc5b7a 1899 if (ret)
f801073f 1900 goto out;
1da177e4 1901
b41277dc 1902 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1903 goto retry_private;
1904
ae791a2d 1905 put_futex_key(&q->key);
e4dc5b7a 1906 goto retry;
1da177e4 1907 }
ca5f9524 1908
f801073f
DH
1909 if (uval != val) {
1910 queue_unlock(q, *hb);
1911 ret = -EWOULDBLOCK;
2fff78c7 1912 }
1da177e4 1913
f801073f
DH
1914out:
1915 if (ret)
ae791a2d 1916 put_futex_key(&q->key);
f801073f
DH
1917 return ret;
1918}
1919
b41277dc
DH
1920static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1921 ktime_t *abs_time, u32 bitset)
f801073f
DH
1922{
1923 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1924 struct restart_block *restart;
1925 struct futex_hash_bucket *hb;
5bdb05f9 1926 struct futex_q q = futex_q_init;
f801073f
DH
1927 int ret;
1928
1929 if (!bitset)
1930 return -EINVAL;
f801073f
DH
1931 q.bitset = bitset;
1932
1933 if (abs_time) {
1934 to = &timeout;
1935
b41277dc
DH
1936 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1937 CLOCK_REALTIME : CLOCK_MONOTONIC,
1938 HRTIMER_MODE_ABS);
f801073f
DH
1939 hrtimer_init_sleeper(to, current);
1940 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1941 current->timer_slack_ns);
1942 }
1943
d58e6576 1944retry:
7ada876a
DH
1945 /*
1946 * Prepare to wait on uaddr. On success, holds hb lock and increments
1947 * q.key refs.
1948 */
b41277dc 1949 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1950 if (ret)
1951 goto out;
1952
ca5f9524 1953 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1954 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1955
1956 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1957 ret = 0;
7ada876a 1958 /* unqueue_me() drops q.key ref */
1da177e4 1959 if (!unqueue_me(&q))
7ada876a 1960 goto out;
2fff78c7 1961 ret = -ETIMEDOUT;
ca5f9524 1962 if (to && !to->task)
7ada876a 1963 goto out;
72c1bbf3 1964
e2970f2f 1965 /*
d58e6576
TG
1966 * We expect signal_pending(current), but we might be the
1967 * victim of a spurious wakeup as well.
e2970f2f 1968 */
7ada876a 1969 if (!signal_pending(current))
d58e6576 1970 goto retry;
d58e6576 1971
2fff78c7 1972 ret = -ERESTARTSYS;
c19384b5 1973 if (!abs_time)
7ada876a 1974 goto out;
1da177e4 1975
2fff78c7
PZ
1976 restart = &current_thread_info()->restart_block;
1977 restart->fn = futex_wait_restart;
a3c74c52 1978 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1979 restart->futex.val = val;
1980 restart->futex.time = abs_time->tv64;
1981 restart->futex.bitset = bitset;
0cd9c649 1982 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1983
2fff78c7
PZ
1984 ret = -ERESTART_RESTARTBLOCK;
1985
42d35d48 1986out:
ca5f9524
DH
1987 if (to) {
1988 hrtimer_cancel(&to->timer);
1989 destroy_hrtimer_on_stack(&to->timer);
1990 }
c87e2837
IM
1991 return ret;
1992}
1993
72c1bbf3
NP
1994
1995static long futex_wait_restart(struct restart_block *restart)
1996{
a3c74c52 1997 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1998 ktime_t t, *tp = NULL;
72c1bbf3 1999
a72188d8
DH
2000 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2001 t.tv64 = restart->futex.time;
2002 tp = &t;
2003 }
72c1bbf3 2004 restart->fn = do_no_restart_syscall;
b41277dc
DH
2005
2006 return (long)futex_wait(uaddr, restart->futex.flags,
2007 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2008}
2009
2010
c87e2837
IM
2011/*
2012 * Userspace tried a 0 -> TID atomic transition of the futex value
2013 * and failed. The kernel side here does the whole locking operation:
2014 * if there are waiters then it will block, it does PI, etc. (Due to
2015 * races the kernel might see a 0 value of the futex too.)
2016 */
b41277dc
DH
2017static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2018 ktime_t *time, int trylock)
c87e2837 2019{
c5780e97 2020 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2021 struct futex_hash_bucket *hb;
5bdb05f9 2022 struct futex_q q = futex_q_init;
dd973998 2023 int res, ret;
c87e2837
IM
2024
2025 if (refill_pi_state_cache())
2026 return -ENOMEM;
2027
c19384b5 2028 if (time) {
c5780e97 2029 to = &timeout;
237fc6e7
TG
2030 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2031 HRTIMER_MODE_ABS);
c5780e97 2032 hrtimer_init_sleeper(to, current);
cc584b21 2033 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2034 }
2035
42d35d48 2036retry:
9ea71503 2037 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2038 if (unlikely(ret != 0))
42d35d48 2039 goto out;
c87e2837 2040
e4dc5b7a 2041retry_private:
82af7aca 2042 hb = queue_lock(&q);
c87e2837 2043
bab5bc9e 2044 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2045 if (unlikely(ret)) {
778e9a9c 2046 switch (ret) {
1a52084d
DH
2047 case 1:
2048 /* We got the lock. */
2049 ret = 0;
2050 goto out_unlock_put_key;
2051 case -EFAULT:
2052 goto uaddr_faulted;
778e9a9c
AK
2053 case -EAGAIN:
2054 /*
2055 * Task is exiting and we just wait for the
2056 * exit to complete.
2057 */
2058 queue_unlock(&q, hb);
ae791a2d 2059 put_futex_key(&q.key);
778e9a9c
AK
2060 cond_resched();
2061 goto retry;
778e9a9c 2062 default:
42d35d48 2063 goto out_unlock_put_key;
c87e2837 2064 }
c87e2837
IM
2065 }
2066
2067 /*
2068 * Only actually queue now that the atomic ops are done:
2069 */
82af7aca 2070 queue_me(&q, hb);
c87e2837 2071
c87e2837
IM
2072 WARN_ON(!q.pi_state);
2073 /*
2074 * Block on the PI mutex:
2075 */
2076 if (!trylock)
2077 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2078 else {
2079 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2080 /* Fixup the trylock return value: */
2081 ret = ret ? 0 : -EWOULDBLOCK;
2082 }
2083
a99e4e41 2084 spin_lock(q.lock_ptr);
dd973998
DH
2085 /*
2086 * Fixup the pi_state owner and possibly acquire the lock if we
2087 * haven't already.
2088 */
ae791a2d 2089 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2090 /*
2091 * If fixup_owner() returned an error, proprogate that. If it acquired
2092 * the lock, clear our -ETIMEDOUT or -EINTR.
2093 */
2094 if (res)
2095 ret = (res < 0) ? res : 0;
c87e2837 2096
e8f6386c 2097 /*
dd973998
DH
2098 * If fixup_owner() faulted and was unable to handle the fault, unlock
2099 * it and return the fault to userspace.
e8f6386c
DH
2100 */
2101 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2102 rt_mutex_unlock(&q.pi_state->pi_mutex);
2103
778e9a9c
AK
2104 /* Unqueue and drop the lock */
2105 unqueue_me_pi(&q);
c87e2837 2106
5ecb01cf 2107 goto out_put_key;
c87e2837 2108
42d35d48 2109out_unlock_put_key:
c87e2837
IM
2110 queue_unlock(&q, hb);
2111
42d35d48 2112out_put_key:
ae791a2d 2113 put_futex_key(&q.key);
42d35d48 2114out:
237fc6e7
TG
2115 if (to)
2116 destroy_hrtimer_on_stack(&to->timer);
dd973998 2117 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2118
42d35d48 2119uaddr_faulted:
778e9a9c
AK
2120 queue_unlock(&q, hb);
2121
d0725992 2122 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2123 if (ret)
2124 goto out_put_key;
c87e2837 2125
b41277dc 2126 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2127 goto retry_private;
2128
ae791a2d 2129 put_futex_key(&q.key);
e4dc5b7a 2130 goto retry;
c87e2837
IM
2131}
2132
c87e2837
IM
2133/*
2134 * Userspace attempted a TID -> 0 atomic transition, and failed.
2135 * This is the in-kernel slowpath: we look up the PI state (if any),
2136 * and do the rt-mutex unlock.
2137 */
b41277dc 2138static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2139{
2140 struct futex_hash_bucket *hb;
2141 struct futex_q *this, *next;
ec92d082 2142 struct plist_head *head;
38d47c1b 2143 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2144 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2145 int ret;
c87e2837
IM
2146
2147retry:
2148 if (get_user(uval, uaddr))
2149 return -EFAULT;
2150 /*
2151 * We release only a lock we actually own:
2152 */
c0c9ed15 2153 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2154 return -EPERM;
c87e2837 2155
9ea71503 2156 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2157 if (unlikely(ret != 0))
2158 goto out;
2159
2160 hb = hash_futex(&key);
2161 spin_lock(&hb->lock);
2162
c87e2837
IM
2163 /*
2164 * To avoid races, try to do the TID -> 0 atomic transition
2165 * again. If it succeeds then we can return without waking
2166 * anyone else up:
2167 */
37a9d912
ML
2168 if (!(uval & FUTEX_OWNER_DIED) &&
2169 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2170 goto pi_faulted;
2171 /*
2172 * Rare case: we managed to release the lock atomically,
2173 * no need to wake anyone else up:
2174 */
c0c9ed15 2175 if (unlikely(uval == vpid))
c87e2837
IM
2176 goto out_unlock;
2177
2178 /*
2179 * Ok, other tasks may need to be woken up - check waiters
2180 * and do the wakeup if necessary:
2181 */
2182 head = &hb->chain;
2183
ec92d082 2184 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2185 if (!match_futex (&this->key, &key))
2186 continue;
2187 ret = wake_futex_pi(uaddr, uval, this);
2188 /*
2189 * The atomic access to the futex value
2190 * generated a pagefault, so retry the
2191 * user-access and the wakeup:
2192 */
2193 if (ret == -EFAULT)
2194 goto pi_faulted;
2195 goto out_unlock;
2196 }
2197 /*
2198 * No waiters - kernel unlocks the futex:
2199 */
e3f2ddea
IM
2200 if (!(uval & FUTEX_OWNER_DIED)) {
2201 ret = unlock_futex_pi(uaddr, uval);
2202 if (ret == -EFAULT)
2203 goto pi_faulted;
2204 }
c87e2837
IM
2205
2206out_unlock:
2207 spin_unlock(&hb->lock);
ae791a2d 2208 put_futex_key(&key);
c87e2837 2209
42d35d48 2210out:
c87e2837
IM
2211 return ret;
2212
2213pi_faulted:
778e9a9c 2214 spin_unlock(&hb->lock);
ae791a2d 2215 put_futex_key(&key);
c87e2837 2216
d0725992 2217 ret = fault_in_user_writeable(uaddr);
b5686363 2218 if (!ret)
c87e2837
IM
2219 goto retry;
2220
1da177e4
LT
2221 return ret;
2222}
2223
52400ba9
DH
2224/**
2225 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2226 * @hb: the hash_bucket futex_q was original enqueued on
2227 * @q: the futex_q woken while waiting to be requeued
2228 * @key2: the futex_key of the requeue target futex
2229 * @timeout: the timeout associated with the wait (NULL if none)
2230 *
2231 * Detect if the task was woken on the initial futex as opposed to the requeue
2232 * target futex. If so, determine if it was a timeout or a signal that caused
2233 * the wakeup and return the appropriate error code to the caller. Must be
2234 * called with the hb lock held.
2235 *
6c23cbbd
RD
2236 * Return:
2237 * 0 = no early wakeup detected;
2238 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2239 */
2240static inline
2241int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2242 struct futex_q *q, union futex_key *key2,
2243 struct hrtimer_sleeper *timeout)
2244{
2245 int ret = 0;
2246
2247 /*
2248 * With the hb lock held, we avoid races while we process the wakeup.
2249 * We only need to hold hb (and not hb2) to ensure atomicity as the
2250 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2251 * It can't be requeued from uaddr2 to something else since we don't
2252 * support a PI aware source futex for requeue.
2253 */
2254 if (!match_futex(&q->key, key2)) {
2255 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2256 /*
2257 * We were woken prior to requeue by a timeout or a signal.
2258 * Unqueue the futex_q and determine which it was.
2259 */
2e12978a 2260 plist_del(&q->list, &hb->chain);
52400ba9 2261
d58e6576 2262 /* Handle spurious wakeups gracefully */
11df6ddd 2263 ret = -EWOULDBLOCK;
52400ba9
DH
2264 if (timeout && !timeout->task)
2265 ret = -ETIMEDOUT;
d58e6576 2266 else if (signal_pending(current))
1c840c14 2267 ret = -ERESTARTNOINTR;
52400ba9
DH
2268 }
2269 return ret;
2270}
2271
2272/**
2273 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2274 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2275 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2276 * the same type, no requeueing from private to shared, etc.
2277 * @val: the expected value of uaddr
2278 * @abs_time: absolute timeout
56ec1607 2279 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2280 * @uaddr2: the pi futex we will take prior to returning to user-space
2281 *
2282 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2283 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2284 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2285 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2286 * without one, the pi logic would not know which task to boost/deboost, if
2287 * there was a need to.
52400ba9
DH
2288 *
2289 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2290 * via the following--
52400ba9 2291 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2292 * 2) wakeup on uaddr2 after a requeue
2293 * 3) signal
2294 * 4) timeout
52400ba9 2295 *
cc6db4e6 2296 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2297 *
2298 * If 2, we may then block on trying to take the rt_mutex and return via:
2299 * 5) successful lock
2300 * 6) signal
2301 * 7) timeout
2302 * 8) other lock acquisition failure
2303 *
cc6db4e6 2304 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2305 *
2306 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2307 *
6c23cbbd
RD
2308 * Return:
2309 * 0 - On success;
52400ba9
DH
2310 * <0 - On error
2311 */
b41277dc 2312static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2313 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2314 u32 __user *uaddr2)
52400ba9
DH
2315{
2316 struct hrtimer_sleeper timeout, *to = NULL;
2317 struct rt_mutex_waiter rt_waiter;
2318 struct rt_mutex *pi_mutex = NULL;
52400ba9 2319 struct futex_hash_bucket *hb;
5bdb05f9
DH
2320 union futex_key key2 = FUTEX_KEY_INIT;
2321 struct futex_q q = futex_q_init;
52400ba9 2322 int res, ret;
52400ba9 2323
6f7b0a2a
DH
2324 if (uaddr == uaddr2)
2325 return -EINVAL;
2326
52400ba9
DH
2327 if (!bitset)
2328 return -EINVAL;
2329
2330 if (abs_time) {
2331 to = &timeout;
b41277dc
DH
2332 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2333 CLOCK_REALTIME : CLOCK_MONOTONIC,
2334 HRTIMER_MODE_ABS);
52400ba9
DH
2335 hrtimer_init_sleeper(to, current);
2336 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2337 current->timer_slack_ns);
2338 }
2339
2340 /*
2341 * The waiter is allocated on our stack, manipulated by the requeue
2342 * code while we sleep on uaddr.
2343 */
2344 debug_rt_mutex_init_waiter(&rt_waiter);
2345 rt_waiter.task = NULL;
2346
9ea71503 2347 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2348 if (unlikely(ret != 0))
2349 goto out;
2350
84bc4af5
DH
2351 q.bitset = bitset;
2352 q.rt_waiter = &rt_waiter;
2353 q.requeue_pi_key = &key2;
2354
7ada876a
DH
2355 /*
2356 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2357 * count.
2358 */
b41277dc 2359 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2360 if (ret)
2361 goto out_key2;
52400ba9
DH
2362
2363 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2364 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2365
2366 spin_lock(&hb->lock);
2367 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2368 spin_unlock(&hb->lock);
2369 if (ret)
2370 goto out_put_keys;
2371
2372 /*
2373 * In order for us to be here, we know our q.key == key2, and since
2374 * we took the hb->lock above, we also know that futex_requeue() has
2375 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2376 * race with the atomic proxy lock acquisition by the requeue code. The
2377 * futex_requeue dropped our key1 reference and incremented our key2
2378 * reference count.
52400ba9
DH
2379 */
2380
2381 /* Check if the requeue code acquired the second futex for us. */
2382 if (!q.rt_waiter) {
2383 /*
2384 * Got the lock. We might not be the anticipated owner if we
2385 * did a lock-steal - fix up the PI-state in that case.
2386 */
2387 if (q.pi_state && (q.pi_state->owner != current)) {
2388 spin_lock(q.lock_ptr);
ae791a2d 2389 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2390 spin_unlock(q.lock_ptr);
2391 }
2392 } else {
2393 /*
2394 * We have been woken up by futex_unlock_pi(), a timeout, or a
2395 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2396 * the pi_state.
2397 */
f27071cb 2398 WARN_ON(!q.pi_state);
52400ba9
DH
2399 pi_mutex = &q.pi_state->pi_mutex;
2400 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2401 debug_rt_mutex_free_waiter(&rt_waiter);
2402
2403 spin_lock(q.lock_ptr);
2404 /*
2405 * Fixup the pi_state owner and possibly acquire the lock if we
2406 * haven't already.
2407 */
ae791a2d 2408 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2409 /*
2410 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2411 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2412 */
2413 if (res)
2414 ret = (res < 0) ? res : 0;
2415
2416 /* Unqueue and drop the lock. */
2417 unqueue_me_pi(&q);
2418 }
2419
2420 /*
2421 * If fixup_pi_state_owner() faulted and was unable to handle the
2422 * fault, unlock the rt_mutex and return the fault to userspace.
2423 */
2424 if (ret == -EFAULT) {
b6070a8d 2425 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2426 rt_mutex_unlock(pi_mutex);
2427 } else if (ret == -EINTR) {
52400ba9 2428 /*
cc6db4e6
DH
2429 * We've already been requeued, but cannot restart by calling
2430 * futex_lock_pi() directly. We could restart this syscall, but
2431 * it would detect that the user space "val" changed and return
2432 * -EWOULDBLOCK. Save the overhead of the restart and return
2433 * -EWOULDBLOCK directly.
52400ba9 2434 */
2070887f 2435 ret = -EWOULDBLOCK;
52400ba9
DH
2436 }
2437
2438out_put_keys:
ae791a2d 2439 put_futex_key(&q.key);
c8b15a70 2440out_key2:
ae791a2d 2441 put_futex_key(&key2);
52400ba9
DH
2442
2443out:
2444 if (to) {
2445 hrtimer_cancel(&to->timer);
2446 destroy_hrtimer_on_stack(&to->timer);
2447 }
2448 return ret;
2449}
2450
0771dfef
IM
2451/*
2452 * Support for robust futexes: the kernel cleans up held futexes at
2453 * thread exit time.
2454 *
2455 * Implementation: user-space maintains a per-thread list of locks it
2456 * is holding. Upon do_exit(), the kernel carefully walks this list,
2457 * and marks all locks that are owned by this thread with the
c87e2837 2458 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2459 * always manipulated with the lock held, so the list is private and
2460 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2461 * field, to allow the kernel to clean up if the thread dies after
2462 * acquiring the lock, but just before it could have added itself to
2463 * the list. There can only be one such pending lock.
2464 */
2465
2466/**
d96ee56c
DH
2467 * sys_set_robust_list() - Set the robust-futex list head of a task
2468 * @head: pointer to the list-head
2469 * @len: length of the list-head, as userspace expects
0771dfef 2470 */
836f92ad
HC
2471SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2472 size_t, len)
0771dfef 2473{
a0c1e907
TG
2474 if (!futex_cmpxchg_enabled)
2475 return -ENOSYS;
0771dfef
IM
2476 /*
2477 * The kernel knows only one size for now:
2478 */
2479 if (unlikely(len != sizeof(*head)))
2480 return -EINVAL;
2481
2482 current->robust_list = head;
2483
2484 return 0;
2485}
2486
2487/**
d96ee56c
DH
2488 * sys_get_robust_list() - Get the robust-futex list head of a task
2489 * @pid: pid of the process [zero for current task]
2490 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2491 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2492 */
836f92ad
HC
2493SYSCALL_DEFINE3(get_robust_list, int, pid,
2494 struct robust_list_head __user * __user *, head_ptr,
2495 size_t __user *, len_ptr)
0771dfef 2496{
ba46df98 2497 struct robust_list_head __user *head;
0771dfef 2498 unsigned long ret;
bdbb776f 2499 struct task_struct *p;
0771dfef 2500
a0c1e907
TG
2501 if (!futex_cmpxchg_enabled)
2502 return -ENOSYS;
2503
bdbb776f
KC
2504 rcu_read_lock();
2505
2506 ret = -ESRCH;
0771dfef 2507 if (!pid)
bdbb776f 2508 p = current;
0771dfef 2509 else {
228ebcbe 2510 p = find_task_by_vpid(pid);
0771dfef
IM
2511 if (!p)
2512 goto err_unlock;
0771dfef
IM
2513 }
2514
bdbb776f
KC
2515 ret = -EPERM;
2516 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2517 goto err_unlock;
2518
2519 head = p->robust_list;
2520 rcu_read_unlock();
2521
0771dfef
IM
2522 if (put_user(sizeof(*head), len_ptr))
2523 return -EFAULT;
2524 return put_user(head, head_ptr);
2525
2526err_unlock:
aaa2a97e 2527 rcu_read_unlock();
0771dfef
IM
2528
2529 return ret;
2530}
2531
2532/*
2533 * Process a futex-list entry, check whether it's owned by the
2534 * dying task, and do notification if so:
2535 */
e3f2ddea 2536int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2537{
7cfdaf38 2538 u32 uval, uninitialized_var(nval), mval;
0771dfef 2539
8f17d3a5
IM
2540retry:
2541 if (get_user(uval, uaddr))
0771dfef
IM
2542 return -1;
2543
b488893a 2544 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2545 /*
2546 * Ok, this dying thread is truly holding a futex
2547 * of interest. Set the OWNER_DIED bit atomically
2548 * via cmpxchg, and if the value had FUTEX_WAITERS
2549 * set, wake up a waiter (if any). (We have to do a
2550 * futex_wake() even if OWNER_DIED is already set -
2551 * to handle the rare but possible case of recursive
2552 * thread-death.) The rest of the cleanup is done in
2553 * userspace.
2554 */
e3f2ddea 2555 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2556 /*
2557 * We are not holding a lock here, but we want to have
2558 * the pagefault_disable/enable() protection because
2559 * we want to handle the fault gracefully. If the
2560 * access fails we try to fault in the futex with R/W
2561 * verification via get_user_pages. get_user() above
2562 * does not guarantee R/W access. If that fails we
2563 * give up and leave the futex locked.
2564 */
2565 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2566 if (fault_in_user_writeable(uaddr))
2567 return -1;
2568 goto retry;
2569 }
c87e2837 2570 if (nval != uval)
8f17d3a5 2571 goto retry;
0771dfef 2572
e3f2ddea
IM
2573 /*
2574 * Wake robust non-PI futexes here. The wakeup of
2575 * PI futexes happens in exit_pi_state():
2576 */
36cf3b5c 2577 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2578 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2579 }
2580 return 0;
2581}
2582
e3f2ddea
IM
2583/*
2584 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2585 */
2586static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2587 struct robust_list __user * __user *head,
1dcc41bb 2588 unsigned int *pi)
e3f2ddea
IM
2589{
2590 unsigned long uentry;
2591
ba46df98 2592 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2593 return -EFAULT;
2594
ba46df98 2595 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2596 *pi = uentry & 1;
2597
2598 return 0;
2599}
2600
0771dfef
IM
2601/*
2602 * Walk curr->robust_list (very carefully, it's a userspace list!)
2603 * and mark any locks found there dead, and notify any waiters.
2604 *
2605 * We silently return on any sign of list-walking problem.
2606 */
2607void exit_robust_list(struct task_struct *curr)
2608{
2609 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2610 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2611 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2612 unsigned int uninitialized_var(next_pi);
0771dfef 2613 unsigned long futex_offset;
9f96cb1e 2614 int rc;
0771dfef 2615
a0c1e907
TG
2616 if (!futex_cmpxchg_enabled)
2617 return;
2618
0771dfef
IM
2619 /*
2620 * Fetch the list head (which was registered earlier, via
2621 * sys_set_robust_list()):
2622 */
e3f2ddea 2623 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2624 return;
2625 /*
2626 * Fetch the relative futex offset:
2627 */
2628 if (get_user(futex_offset, &head->futex_offset))
2629 return;
2630 /*
2631 * Fetch any possibly pending lock-add first, and handle it
2632 * if it exists:
2633 */
e3f2ddea 2634 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2635 return;
e3f2ddea 2636
9f96cb1e 2637 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2638 while (entry != &head->list) {
9f96cb1e
MS
2639 /*
2640 * Fetch the next entry in the list before calling
2641 * handle_futex_death:
2642 */
2643 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2644 /*
2645 * A pending lock might already be on the list, so
c87e2837 2646 * don't process it twice:
0771dfef
IM
2647 */
2648 if (entry != pending)
ba46df98 2649 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2650 curr, pi))
0771dfef 2651 return;
9f96cb1e 2652 if (rc)
0771dfef 2653 return;
9f96cb1e
MS
2654 entry = next_entry;
2655 pi = next_pi;
0771dfef
IM
2656 /*
2657 * Avoid excessively long or circular lists:
2658 */
2659 if (!--limit)
2660 break;
2661
2662 cond_resched();
2663 }
9f96cb1e
MS
2664
2665 if (pending)
2666 handle_futex_death((void __user *)pending + futex_offset,
2667 curr, pip);
0771dfef
IM
2668}
2669
c19384b5 2670long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2671 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2672{
81b40539 2673 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2674 unsigned int flags = 0;
34f01cc1
ED
2675
2676 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2677 flags |= FLAGS_SHARED;
1da177e4 2678
b41277dc
DH
2679 if (op & FUTEX_CLOCK_REALTIME) {
2680 flags |= FLAGS_CLOCKRT;
2681 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2682 return -ENOSYS;
2683 }
1da177e4 2684
59263b51
TG
2685 switch (cmd) {
2686 case FUTEX_LOCK_PI:
2687 case FUTEX_UNLOCK_PI:
2688 case FUTEX_TRYLOCK_PI:
2689 case FUTEX_WAIT_REQUEUE_PI:
2690 case FUTEX_CMP_REQUEUE_PI:
2691 if (!futex_cmpxchg_enabled)
2692 return -ENOSYS;
2693 }
2694
34f01cc1 2695 switch (cmd) {
1da177e4 2696 case FUTEX_WAIT:
cd689985
TG
2697 val3 = FUTEX_BITSET_MATCH_ANY;
2698 case FUTEX_WAIT_BITSET:
81b40539 2699 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2700 case FUTEX_WAKE:
cd689985
TG
2701 val3 = FUTEX_BITSET_MATCH_ANY;
2702 case FUTEX_WAKE_BITSET:
81b40539 2703 return futex_wake(uaddr, flags, val, val3);
1da177e4 2704 case FUTEX_REQUEUE:
81b40539 2705 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2706 case FUTEX_CMP_REQUEUE:
81b40539 2707 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2708 case FUTEX_WAKE_OP:
81b40539 2709 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2710 case FUTEX_LOCK_PI:
81b40539 2711 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2712 case FUTEX_UNLOCK_PI:
81b40539 2713 return futex_unlock_pi(uaddr, flags);
c87e2837 2714 case FUTEX_TRYLOCK_PI:
81b40539 2715 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2716 case FUTEX_WAIT_REQUEUE_PI:
2717 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2718 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2719 uaddr2);
52400ba9 2720 case FUTEX_CMP_REQUEUE_PI:
81b40539 2721 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2722 }
81b40539 2723 return -ENOSYS;
1da177e4
LT
2724}
2725
2726
17da2bd9
HC
2727SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2728 struct timespec __user *, utime, u32 __user *, uaddr2,
2729 u32, val3)
1da177e4 2730{
c19384b5
PP
2731 struct timespec ts;
2732 ktime_t t, *tp = NULL;
e2970f2f 2733 u32 val2 = 0;
34f01cc1 2734 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2735
cd689985 2736 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2737 cmd == FUTEX_WAIT_BITSET ||
2738 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2739 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2740 return -EFAULT;
c19384b5 2741 if (!timespec_valid(&ts))
9741ef96 2742 return -EINVAL;
c19384b5
PP
2743
2744 t = timespec_to_ktime(ts);
34f01cc1 2745 if (cmd == FUTEX_WAIT)
5a7780e7 2746 t = ktime_add_safe(ktime_get(), t);
c19384b5 2747 tp = &t;
1da177e4
LT
2748 }
2749 /*
52400ba9 2750 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2751 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2752 */
f54f0986 2753 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2754 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2755 val2 = (u32) (unsigned long) utime;
1da177e4 2756
c19384b5 2757 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2758}
2759
f26c70a4 2760static void __init futex_detect_cmpxchg(void)
1da177e4 2761{
f26c70a4 2762#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2763 u32 curval;
95362fa9 2764
a0c1e907
TG
2765 /*
2766 * This will fail and we want it. Some arch implementations do
2767 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2768 * functionality. We want to know that before we call in any
2769 * of the complex code paths. Also we want to prevent
2770 * registration of robust lists in that case. NULL is
2771 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2772 * implementation, the non-functional ones will return
a0c1e907
TG
2773 * -ENOSYS.
2774 */
37a9d912 2775 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907 2776 futex_cmpxchg_enabled = 1;
f26c70a4
HC
2777#endif
2778}
2779
2780static int __init futex_init(void)
2781{
2782 int i;
2783
2784 futex_detect_cmpxchg();
a0c1e907 2785
3e4ab747 2786 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2787 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2788 spin_lock_init(&futex_queues[i].lock);
2789 }
2790
1da177e4
LT
2791 return 0;
2792}
f6d107fb 2793__initcall(futex_init);