BUG: headers with BUG/BUG_ON etc. need linux/bug.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585
CL
40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
41 CPU_PARTIAL_FREE, /* USed cpu partial on free */
8ff12cfc
CL
42 NR_SLUB_STAT_ITEMS };
43
dfb4f096 44struct kmem_cache_cpu {
8a5ec0ba 45 void **freelist; /* Pointer to next available object */
8a5ec0ba 46 unsigned long tid; /* Globally unique transaction id */
da89b79e 47 struct page *page; /* The slab from which we are allocating */
49e22585 48 struct page *partial; /* Partially allocated frozen slabs */
da89b79e 49 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
50#ifdef CONFIG_SLUB_STATS
51 unsigned stat[NR_SLUB_STAT_ITEMS];
52#endif
4c93c355 53};
dfb4f096 54
81819f0f
CL
55struct kmem_cache_node {
56 spinlock_t list_lock; /* Protect partial list and nr_partial */
57 unsigned long nr_partial;
81819f0f 58 struct list_head partial;
0c710013 59#ifdef CONFIG_SLUB_DEBUG
0f389ec6 60 atomic_long_t nr_slabs;
205ab99d 61 atomic_long_t total_objects;
643b1138 62 struct list_head full;
0c710013 63#endif
81819f0f
CL
64};
65
834f3d11
CL
66/*
67 * Word size structure that can be atomically updated or read and that
68 * contains both the order and the number of objects that a slab of the
69 * given order would contain.
70 */
71struct kmem_cache_order_objects {
72 unsigned long x;
73};
74
81819f0f
CL
75/*
76 * Slab cache management.
77 */
78struct kmem_cache {
1b5ad248 79 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
80 /* Used for retriving partial slabs etc */
81 unsigned long flags;
1a757fe5 82 unsigned long min_partial;
81819f0f
CL
83 int size; /* The size of an object including meta data */
84 int objsize; /* The size of an object without meta data */
85 int offset; /* Free pointer offset. */
9f264904 86 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 87 struct kmem_cache_order_objects oo;
81819f0f 88
81819f0f 89 /* Allocation and freeing of slabs */
205ab99d 90 struct kmem_cache_order_objects max;
65c3376a 91 struct kmem_cache_order_objects min;
b7a49f0d 92 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 93 int refcount; /* Refcount for slab cache destroy */
51cc5068 94 void (*ctor)(void *);
81819f0f
CL
95 int inuse; /* Offset to metadata */
96 int align; /* Alignment */
ab9a0f19 97 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
98 const char *name; /* Name (only for display!) */
99 struct list_head list; /* List of slab caches */
ab4d5ed5 100#ifdef CONFIG_SYSFS
81819f0f 101 struct kobject kobj; /* For sysfs */
0c710013 102#endif
81819f0f
CL
103
104#ifdef CONFIG_NUMA
9824601e
CL
105 /*
106 * Defragmentation by allocating from a remote node.
107 */
108 int remote_node_defrag_ratio;
81819f0f 109#endif
7340cc84 110 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
111};
112
113/*
114 * Kmalloc subsystem.
115 */
a6eb9fe1
FT
116#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
117#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
118#else
119#define KMALLOC_MIN_SIZE 8
120#endif
121
122#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 123
ffadd4d0
CL
124/*
125 * Maximum kmalloc object size handled by SLUB. Larger object allocations
126 * are passed through to the page allocator. The page allocator "fastpath"
127 * is relatively slow so we need this value sufficiently high so that
128 * performance critical objects are allocated through the SLUB fastpath.
129 *
130 * This should be dropped to PAGE_SIZE / 2 once the page allocator
131 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 */
51735a7c 133#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 134
51735a7c 135#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 136
756dee75
CL
137#ifdef CONFIG_ZONE_DMA
138#define SLUB_DMA __GFP_DMA
756dee75
CL
139#else
140/* Disable DMA functionality */
141#define SLUB_DMA (__force gfp_t)0
756dee75
CL
142#endif
143
81819f0f
CL
144/*
145 * We keep the general caches in an array of slab caches that are used for
146 * 2^x bytes of allocations.
147 */
51df1142 148extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
149
150/*
151 * Sorry that the following has to be that ugly but some versions of GCC
152 * have trouble with constant propagation and loops.
153 */
aa137f9d 154static __always_inline int kmalloc_index(size_t size)
81819f0f 155{
272c1d21
CL
156 if (!size)
157 return 0;
614410d5 158
4b356be0
CL
159 if (size <= KMALLOC_MIN_SIZE)
160 return KMALLOC_SHIFT_LOW;
161
acdfcd04 162 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 163 return 1;
acdfcd04 164 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
165 return 2;
166 if (size <= 8) return 3;
167 if (size <= 16) return 4;
168 if (size <= 32) return 5;
169 if (size <= 64) return 6;
170 if (size <= 128) return 7;
171 if (size <= 256) return 8;
172 if (size <= 512) return 9;
173 if (size <= 1024) return 10;
174 if (size <= 2 * 1024) return 11;
6446faa2 175 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
176/*
177 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
178 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
179 * size we would have to go up to 128k.
aadb4bc4 180 */
81819f0f
CL
181 if (size <= 8 * 1024) return 13;
182 if (size <= 16 * 1024) return 14;
183 if (size <= 32 * 1024) return 15;
184 if (size <= 64 * 1024) return 16;
185 if (size <= 128 * 1024) return 17;
186 if (size <= 256 * 1024) return 18;
aadb4bc4 187 if (size <= 512 * 1024) return 19;
81819f0f 188 if (size <= 1024 * 1024) return 20;
81819f0f 189 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
190 BUG();
191 return -1; /* Will never be reached */
81819f0f
CL
192
193/*
194 * What we really wanted to do and cannot do because of compiler issues is:
195 * int i;
196 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
197 * if (size <= (1 << i))
198 * return i;
199 */
200}
201
202/*
203 * Find the slab cache for a given combination of allocation flags and size.
204 *
205 * This ought to end up with a global pointer to the right cache
206 * in kmalloc_caches.
207 */
aa137f9d 208static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
209{
210 int index = kmalloc_index(size);
211
212 if (index == 0)
213 return NULL;
214
51df1142 215 return kmalloc_caches[index];
81819f0f
CL
216}
217
6193a2ff
PM
218void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
219void *__kmalloc(size_t size, gfp_t flags);
220
4a92379b
RK
221static __always_inline void *
222kmalloc_order(size_t size, gfp_t flags, unsigned int order)
223{
224 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
225 kmemleak_alloc(ret, size, 1, flags);
226 return ret;
227}
228
d18a90dd
BG
229/**
230 * Calling this on allocated memory will check that the memory
231 * is expected to be in use, and print warnings if not.
232 */
233#ifdef CONFIG_SLUB_DEBUG
234extern bool verify_mem_not_deleted(const void *x);
235#else
236static inline bool verify_mem_not_deleted(const void *x)
237{
238 return true;
239}
240#endif
241
0f24f128 242#ifdef CONFIG_TRACING
4a92379b
RK
243extern void *
244kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
245extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
246#else
247static __always_inline void *
4a92379b 248kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
249{
250 return kmem_cache_alloc(s, gfpflags);
251}
4a92379b
RK
252
253static __always_inline void *
254kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
255{
256 return kmalloc_order(size, flags, order);
257}
5b882be4
EGM
258#endif
259
eada35ef
PE
260static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
261{
5b882be4 262 unsigned int order = get_order(size);
4a92379b 263 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
264}
265
aa137f9d 266static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 267{
aadb4bc4 268 if (__builtin_constant_p(size)) {
ffadd4d0 269 if (size > SLUB_MAX_SIZE)
eada35ef 270 return kmalloc_large(size, flags);
81819f0f 271
aadb4bc4
CL
272 if (!(flags & SLUB_DMA)) {
273 struct kmem_cache *s = kmalloc_slab(size);
274
275 if (!s)
276 return ZERO_SIZE_PTR;
81819f0f 277
4a92379b 278 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
279 }
280 }
281 return __kmalloc(size, flags);
81819f0f
CL
282}
283
81819f0f 284#ifdef CONFIG_NUMA
6193a2ff
PM
285void *__kmalloc_node(size_t size, gfp_t flags, int node);
286void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 287
0f24f128 288#ifdef CONFIG_TRACING
4a92379b 289extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 290 gfp_t gfpflags,
4a92379b 291 int node, size_t size);
5b882be4
EGM
292#else
293static __always_inline void *
4a92379b 294kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 295 gfp_t gfpflags,
4a92379b 296 int node, size_t size)
5b882be4
EGM
297{
298 return kmem_cache_alloc_node(s, gfpflags, node);
299}
300#endif
301
aa137f9d 302static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 303{
aadb4bc4 304 if (__builtin_constant_p(size) &&
ffadd4d0 305 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 306 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
307
308 if (!s)
272c1d21 309 return ZERO_SIZE_PTR;
81819f0f 310
4a92379b 311 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
312 }
313 return __kmalloc_node(size, flags, node);
81819f0f
CL
314}
315#endif
316
317#endif /* _LINUX_SLUB_DEF_H */