slub: return object pointer from get_partial() / new_slab().
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
13
4a92379b 14#include <linux/kmemleak.h>
039ca4e7 15
8ff12cfc
CL
16enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 27 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 35 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 36 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 37 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 38 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
8ff12cfc
CL
39 NR_SLUB_STAT_ITEMS };
40
dfb4f096 41struct kmem_cache_cpu {
8a5ec0ba 42 void **freelist; /* Pointer to next available object */
8a5ec0ba 43 unsigned long tid; /* Globally unique transaction id */
da89b79e
CL
44 struct page *page; /* The slab from which we are allocating */
45 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
46#ifdef CONFIG_SLUB_STATS
47 unsigned stat[NR_SLUB_STAT_ITEMS];
48#endif
4c93c355 49};
dfb4f096 50
81819f0f
CL
51struct kmem_cache_node {
52 spinlock_t list_lock; /* Protect partial list and nr_partial */
53 unsigned long nr_partial;
81819f0f 54 struct list_head partial;
0c710013 55#ifdef CONFIG_SLUB_DEBUG
0f389ec6 56 atomic_long_t nr_slabs;
205ab99d 57 atomic_long_t total_objects;
643b1138 58 struct list_head full;
0c710013 59#endif
81819f0f
CL
60};
61
834f3d11
CL
62/*
63 * Word size structure that can be atomically updated or read and that
64 * contains both the order and the number of objects that a slab of the
65 * given order would contain.
66 */
67struct kmem_cache_order_objects {
68 unsigned long x;
69};
70
81819f0f
CL
71/*
72 * Slab cache management.
73 */
74struct kmem_cache {
1b5ad248 75 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
76 /* Used for retriving partial slabs etc */
77 unsigned long flags;
1a757fe5 78 unsigned long min_partial;
81819f0f
CL
79 int size; /* The size of an object including meta data */
80 int objsize; /* The size of an object without meta data */
81 int offset; /* Free pointer offset. */
834f3d11 82 struct kmem_cache_order_objects oo;
81819f0f 83
81819f0f 84 /* Allocation and freeing of slabs */
205ab99d 85 struct kmem_cache_order_objects max;
65c3376a 86 struct kmem_cache_order_objects min;
b7a49f0d 87 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 88 int refcount; /* Refcount for slab cache destroy */
51cc5068 89 void (*ctor)(void *);
81819f0f
CL
90 int inuse; /* Offset to metadata */
91 int align; /* Alignment */
ab9a0f19 92 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
93 const char *name; /* Name (only for display!) */
94 struct list_head list; /* List of slab caches */
ab4d5ed5 95#ifdef CONFIG_SYSFS
81819f0f 96 struct kobject kobj; /* For sysfs */
0c710013 97#endif
81819f0f
CL
98
99#ifdef CONFIG_NUMA
9824601e
CL
100 /*
101 * Defragmentation by allocating from a remote node.
102 */
103 int remote_node_defrag_ratio;
81819f0f 104#endif
7340cc84 105 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
106};
107
108/*
109 * Kmalloc subsystem.
110 */
a6eb9fe1
FT
111#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
112#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
113#else
114#define KMALLOC_MIN_SIZE 8
115#endif
116
117#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 118
ffadd4d0
CL
119/*
120 * Maximum kmalloc object size handled by SLUB. Larger object allocations
121 * are passed through to the page allocator. The page allocator "fastpath"
122 * is relatively slow so we need this value sufficiently high so that
123 * performance critical objects are allocated through the SLUB fastpath.
124 *
125 * This should be dropped to PAGE_SIZE / 2 once the page allocator
126 * "fastpath" becomes competitive with the slab allocator fastpaths.
127 */
51735a7c 128#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 129
51735a7c 130#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 131
756dee75
CL
132#ifdef CONFIG_ZONE_DMA
133#define SLUB_DMA __GFP_DMA
756dee75
CL
134#else
135/* Disable DMA functionality */
136#define SLUB_DMA (__force gfp_t)0
756dee75
CL
137#endif
138
81819f0f
CL
139/*
140 * We keep the general caches in an array of slab caches that are used for
141 * 2^x bytes of allocations.
142 */
51df1142 143extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
144
145/*
146 * Sorry that the following has to be that ugly but some versions of GCC
147 * have trouble with constant propagation and loops.
148 */
aa137f9d 149static __always_inline int kmalloc_index(size_t size)
81819f0f 150{
272c1d21
CL
151 if (!size)
152 return 0;
614410d5 153
4b356be0
CL
154 if (size <= KMALLOC_MIN_SIZE)
155 return KMALLOC_SHIFT_LOW;
156
acdfcd04 157 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 158 return 1;
acdfcd04 159 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
160 return 2;
161 if (size <= 8) return 3;
162 if (size <= 16) return 4;
163 if (size <= 32) return 5;
164 if (size <= 64) return 6;
165 if (size <= 128) return 7;
166 if (size <= 256) return 8;
167 if (size <= 512) return 9;
168 if (size <= 1024) return 10;
169 if (size <= 2 * 1024) return 11;
6446faa2 170 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
171/*
172 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
173 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
174 * size we would have to go up to 128k.
aadb4bc4 175 */
81819f0f
CL
176 if (size <= 8 * 1024) return 13;
177 if (size <= 16 * 1024) return 14;
178 if (size <= 32 * 1024) return 15;
179 if (size <= 64 * 1024) return 16;
180 if (size <= 128 * 1024) return 17;
181 if (size <= 256 * 1024) return 18;
aadb4bc4 182 if (size <= 512 * 1024) return 19;
81819f0f 183 if (size <= 1024 * 1024) return 20;
81819f0f 184 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
185 BUG();
186 return -1; /* Will never be reached */
81819f0f
CL
187
188/*
189 * What we really wanted to do and cannot do because of compiler issues is:
190 * int i;
191 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
192 * if (size <= (1 << i))
193 * return i;
194 */
195}
196
197/*
198 * Find the slab cache for a given combination of allocation flags and size.
199 *
200 * This ought to end up with a global pointer to the right cache
201 * in kmalloc_caches.
202 */
aa137f9d 203static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
204{
205 int index = kmalloc_index(size);
206
207 if (index == 0)
208 return NULL;
209
51df1142 210 return kmalloc_caches[index];
81819f0f
CL
211}
212
6193a2ff
PM
213void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
214void *__kmalloc(size_t size, gfp_t flags);
215
4a92379b
RK
216static __always_inline void *
217kmalloc_order(size_t size, gfp_t flags, unsigned int order)
218{
219 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
220 kmemleak_alloc(ret, size, 1, flags);
221 return ret;
222}
223
d18a90dd
BG
224/**
225 * Calling this on allocated memory will check that the memory
226 * is expected to be in use, and print warnings if not.
227 */
228#ifdef CONFIG_SLUB_DEBUG
229extern bool verify_mem_not_deleted(const void *x);
230#else
231static inline bool verify_mem_not_deleted(const void *x)
232{
233 return true;
234}
235#endif
236
0f24f128 237#ifdef CONFIG_TRACING
4a92379b
RK
238extern void *
239kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
240extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
241#else
242static __always_inline void *
4a92379b 243kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
244{
245 return kmem_cache_alloc(s, gfpflags);
246}
4a92379b
RK
247
248static __always_inline void *
249kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
250{
251 return kmalloc_order(size, flags, order);
252}
5b882be4
EGM
253#endif
254
eada35ef
PE
255static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
256{
5b882be4 257 unsigned int order = get_order(size);
4a92379b 258 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
259}
260
aa137f9d 261static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 262{
aadb4bc4 263 if (__builtin_constant_p(size)) {
ffadd4d0 264 if (size > SLUB_MAX_SIZE)
eada35ef 265 return kmalloc_large(size, flags);
81819f0f 266
aadb4bc4
CL
267 if (!(flags & SLUB_DMA)) {
268 struct kmem_cache *s = kmalloc_slab(size);
269
270 if (!s)
271 return ZERO_SIZE_PTR;
81819f0f 272
4a92379b 273 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
274 }
275 }
276 return __kmalloc(size, flags);
81819f0f
CL
277}
278
81819f0f 279#ifdef CONFIG_NUMA
6193a2ff
PM
280void *__kmalloc_node(size_t size, gfp_t flags, int node);
281void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 282
0f24f128 283#ifdef CONFIG_TRACING
4a92379b 284extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 285 gfp_t gfpflags,
4a92379b 286 int node, size_t size);
5b882be4
EGM
287#else
288static __always_inline void *
4a92379b 289kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 290 gfp_t gfpflags,
4a92379b 291 int node, size_t size)
5b882be4
EGM
292{
293 return kmem_cache_alloc_node(s, gfpflags, node);
294}
295#endif
296
aa137f9d 297static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 298{
aadb4bc4 299 if (__builtin_constant_p(size) &&
ffadd4d0 300 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 301 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
302
303 if (!s)
272c1d21 304 return ZERO_SIZE_PTR;
81819f0f 305
4a92379b 306 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
307 }
308 return __kmalloc_node(size, flags, node);
81819f0f
CL
309}
310#endif
311
312#endif /* _LINUX_SLUB_DEF_H */