Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
8028dcea 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
8ff12cfc
CL
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
8028dcea
AS
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
8ff12cfc
CL
44 NR_SLUB_STAT_ITEMS };
45
dfb4f096 46struct kmem_cache_cpu {
8a5ec0ba 47 void **freelist; /* Pointer to next available object */
8a5ec0ba 48 unsigned long tid; /* Globally unique transaction id */
da89b79e 49 struct page *page; /* The slab from which we are allocating */
49e22585 50 struct page *partial; /* Partially allocated frozen slabs */
8ff12cfc
CL
51#ifdef CONFIG_SLUB_STATS
52 unsigned stat[NR_SLUB_STAT_ITEMS];
53#endif
4c93c355 54};
dfb4f096 55
81819f0f
CL
56struct kmem_cache_node {
57 spinlock_t list_lock; /* Protect partial list and nr_partial */
58 unsigned long nr_partial;
81819f0f 59 struct list_head partial;
0c710013 60#ifdef CONFIG_SLUB_DEBUG
0f389ec6 61 atomic_long_t nr_slabs;
205ab99d 62 atomic_long_t total_objects;
643b1138 63 struct list_head full;
0c710013 64#endif
81819f0f
CL
65};
66
834f3d11
CL
67/*
68 * Word size structure that can be atomically updated or read and that
69 * contains both the order and the number of objects that a slab of the
70 * given order would contain.
71 */
72struct kmem_cache_order_objects {
73 unsigned long x;
74};
75
81819f0f
CL
76/*
77 * Slab cache management.
78 */
79struct kmem_cache {
1b5ad248 80 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
81 /* Used for retriving partial slabs etc */
82 unsigned long flags;
1a757fe5 83 unsigned long min_partial;
81819f0f 84 int size; /* The size of an object including meta data */
3b0efdfa 85 int object_size; /* The size of an object without meta data */
81819f0f 86 int offset; /* Free pointer offset. */
9f264904 87 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 88 struct kmem_cache_order_objects oo;
81819f0f 89
81819f0f 90 /* Allocation and freeing of slabs */
205ab99d 91 struct kmem_cache_order_objects max;
65c3376a 92 struct kmem_cache_order_objects min;
b7a49f0d 93 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 94 int refcount; /* Refcount for slab cache destroy */
51cc5068 95 void (*ctor)(void *);
81819f0f
CL
96 int inuse; /* Offset to metadata */
97 int align; /* Alignment */
ab9a0f19 98 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
99 const char *name; /* Name (only for display!) */
100 struct list_head list; /* List of slab caches */
ab4d5ed5 101#ifdef CONFIG_SYSFS
81819f0f 102 struct kobject kobj; /* For sysfs */
0c710013 103#endif
ba6c496e
GC
104#ifdef CONFIG_MEMCG_KMEM
105 struct memcg_cache_params *memcg_params;
107dab5c 106 int max_attr_size; /* for propagation, maximum size of a stored attr */
ba6c496e 107#endif
81819f0f
CL
108
109#ifdef CONFIG_NUMA
9824601e
CL
110 /*
111 * Defragmentation by allocating from a remote node.
112 */
113 int remote_node_defrag_ratio;
81819f0f 114#endif
7340cc84 115 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
116};
117
118/*
119 * Kmalloc subsystem.
120 */
a6eb9fe1
FT
121#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
122#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
123#else
124#define KMALLOC_MIN_SIZE 8
125#endif
126
127#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 128
ffadd4d0
CL
129/*
130 * Maximum kmalloc object size handled by SLUB. Larger object allocations
131 * are passed through to the page allocator. The page allocator "fastpath"
132 * is relatively slow so we need this value sufficiently high so that
133 * performance critical objects are allocated through the SLUB fastpath.
134 *
135 * This should be dropped to PAGE_SIZE / 2 once the page allocator
136 * "fastpath" becomes competitive with the slab allocator fastpaths.
137 */
51735a7c 138#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 139
51735a7c 140#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 141
756dee75
CL
142#ifdef CONFIG_ZONE_DMA
143#define SLUB_DMA __GFP_DMA
756dee75
CL
144#else
145/* Disable DMA functionality */
146#define SLUB_DMA (__force gfp_t)0
756dee75
CL
147#endif
148
81819f0f
CL
149/*
150 * We keep the general caches in an array of slab caches that are used for
151 * 2^x bytes of allocations.
152 */
51df1142 153extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
154
155/*
156 * Sorry that the following has to be that ugly but some versions of GCC
157 * have trouble with constant propagation and loops.
158 */
aa137f9d 159static __always_inline int kmalloc_index(size_t size)
81819f0f 160{
272c1d21
CL
161 if (!size)
162 return 0;
614410d5 163
4b356be0
CL
164 if (size <= KMALLOC_MIN_SIZE)
165 return KMALLOC_SHIFT_LOW;
166
acdfcd04 167 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 168 return 1;
acdfcd04 169 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
170 return 2;
171 if (size <= 8) return 3;
172 if (size <= 16) return 4;
173 if (size <= 32) return 5;
174 if (size <= 64) return 6;
175 if (size <= 128) return 7;
176 if (size <= 256) return 8;
177 if (size <= 512) return 9;
178 if (size <= 1024) return 10;
179 if (size <= 2 * 1024) return 11;
6446faa2 180 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
181/*
182 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
183 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
184 * size we would have to go up to 128k.
aadb4bc4 185 */
81819f0f
CL
186 if (size <= 8 * 1024) return 13;
187 if (size <= 16 * 1024) return 14;
188 if (size <= 32 * 1024) return 15;
189 if (size <= 64 * 1024) return 16;
190 if (size <= 128 * 1024) return 17;
191 if (size <= 256 * 1024) return 18;
aadb4bc4 192 if (size <= 512 * 1024) return 19;
81819f0f 193 if (size <= 1024 * 1024) return 20;
81819f0f 194 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
195 BUG();
196 return -1; /* Will never be reached */
81819f0f
CL
197
198/*
199 * What we really wanted to do and cannot do because of compiler issues is:
200 * int i;
201 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
202 * if (size <= (1 << i))
203 * return i;
204 */
205}
206
207/*
208 * Find the slab cache for a given combination of allocation flags and size.
209 *
210 * This ought to end up with a global pointer to the right cache
211 * in kmalloc_caches.
212 */
aa137f9d 213static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
214{
215 int index = kmalloc_index(size);
216
217 if (index == 0)
218 return NULL;
219
51df1142 220 return kmalloc_caches[index];
81819f0f
CL
221}
222
6193a2ff
PM
223void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
224void *__kmalloc(size_t size, gfp_t flags);
225
4a92379b
RK
226static __always_inline void *
227kmalloc_order(size_t size, gfp_t flags, unsigned int order)
228{
d79923fa
GC
229 void *ret;
230
231 flags |= (__GFP_COMP | __GFP_KMEMCG);
232 ret = (void *) __get_free_pages(flags, order);
4a92379b
RK
233 kmemleak_alloc(ret, size, 1, flags);
234 return ret;
235}
236
d18a90dd
BG
237/**
238 * Calling this on allocated memory will check that the memory
239 * is expected to be in use, and print warnings if not.
240 */
241#ifdef CONFIG_SLUB_DEBUG
242extern bool verify_mem_not_deleted(const void *x);
243#else
244static inline bool verify_mem_not_deleted(const void *x)
245{
246 return true;
247}
248#endif
249
0f24f128 250#ifdef CONFIG_TRACING
4a92379b
RK
251extern void *
252kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
253extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
254#else
255static __always_inline void *
4a92379b 256kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
257{
258 return kmem_cache_alloc(s, gfpflags);
259}
4a92379b
RK
260
261static __always_inline void *
262kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
263{
264 return kmalloc_order(size, flags, order);
265}
5b882be4
EGM
266#endif
267
eada35ef
PE
268static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
269{
5b882be4 270 unsigned int order = get_order(size);
4a92379b 271 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
272}
273
aa137f9d 274static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 275{
aadb4bc4 276 if (__builtin_constant_p(size)) {
ffadd4d0 277 if (size > SLUB_MAX_SIZE)
eada35ef 278 return kmalloc_large(size, flags);
81819f0f 279
aadb4bc4
CL
280 if (!(flags & SLUB_DMA)) {
281 struct kmem_cache *s = kmalloc_slab(size);
282
283 if (!s)
284 return ZERO_SIZE_PTR;
81819f0f 285
4a92379b 286 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
287 }
288 }
289 return __kmalloc(size, flags);
81819f0f
CL
290}
291
81819f0f 292#ifdef CONFIG_NUMA
6193a2ff
PM
293void *__kmalloc_node(size_t size, gfp_t flags, int node);
294void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 295
0f24f128 296#ifdef CONFIG_TRACING
4a92379b 297extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 298 gfp_t gfpflags,
4a92379b 299 int node, size_t size);
5b882be4
EGM
300#else
301static __always_inline void *
4a92379b 302kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 303 gfp_t gfpflags,
4a92379b 304 int node, size_t size)
5b882be4
EGM
305{
306 return kmem_cache_alloc_node(s, gfpflags, node);
307}
308#endif
309
aa137f9d 310static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 311{
aadb4bc4 312 if (__builtin_constant_p(size) &&
ffadd4d0 313 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 314 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
315
316 if (!s)
272c1d21 317 return ZERO_SIZE_PTR;
81819f0f 318
4a92379b 319 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
320 }
321 return __kmalloc_node(size, flags, node);
81819f0f
CL
322}
323#endif
324
325#endif /* _LINUX_SLUB_DEF_H */