fs: sdfat: Update to version 2.4.5
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
390c6843 42static struct rw_semaphore namespace_sem;
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
3c2a0909
S
138 if (!mnt->mnt_pcp)
139 return;
140
68e8a9fe 141 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
142#else
143 preempt_disable();
68e8a9fe 144 mnt->mnt_count += n;
b3e19d92
NP
145 preempt_enable();
146#endif
147}
148
b3e19d92
NP
149/*
150 * vfsmount lock must be held for write
151 */
83adc753 152unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
153{
154#ifdef CONFIG_SMP
f03c6599 155 unsigned int count = 0;
b3e19d92
NP
156 int cpu;
157
158 for_each_possible_cpu(cpu) {
68e8a9fe 159 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
160 }
161
162 return count;
163#else
68e8a9fe 164 return mnt->mnt_count;
b3e19d92
NP
165#endif
166}
167
b105e270 168static struct mount *alloc_vfsmnt(const char *name)
1da177e4 169{
c63181e6
AV
170 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
171 if (mnt) {
73cd49ec
MS
172 int err;
173
c63181e6 174 err = mnt_alloc_id(mnt);
88b38782
LZ
175 if (err)
176 goto out_free_cache;
177
178 if (name) {
c63181e6
AV
179 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
180 if (!mnt->mnt_devname)
88b38782 181 goto out_free_id;
73cd49ec
MS
182 }
183
b3e19d92 184#ifdef CONFIG_SMP
c63181e6
AV
185 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
186 if (!mnt->mnt_pcp)
b3e19d92
NP
187 goto out_free_devname;
188
c63181e6 189 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 190#else
c63181e6
AV
191 mnt->mnt_count = 1;
192 mnt->mnt_writers = 0;
b3e19d92
NP
193#endif
194
c63181e6
AV
195 INIT_LIST_HEAD(&mnt->mnt_hash);
196 INIT_LIST_HEAD(&mnt->mnt_child);
197 INIT_LIST_HEAD(&mnt->mnt_mounts);
198 INIT_LIST_HEAD(&mnt->mnt_list);
199 INIT_LIST_HEAD(&mnt->mnt_expire);
200 INIT_LIST_HEAD(&mnt->mnt_share);
201 INIT_LIST_HEAD(&mnt->mnt_slave_list);
202 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
203#ifdef CONFIG_FSNOTIFY
204 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 205#endif
1da177e4 206 }
c63181e6 207 return mnt;
88b38782 208
d3ef3d73 209#ifdef CONFIG_SMP
210out_free_devname:
c63181e6 211 kfree(mnt->mnt_devname);
d3ef3d73 212#endif
88b38782 213out_free_id:
c63181e6 214 mnt_free_id(mnt);
88b38782 215out_free_cache:
c63181e6 216 kmem_cache_free(mnt_cache, mnt);
88b38782 217 return NULL;
1da177e4
LT
218}
219
3d733633
DH
220/*
221 * Most r/o checks on a fs are for operations that take
222 * discrete amounts of time, like a write() or unlink().
223 * We must keep track of when those operations start
224 * (for permission checks) and when they end, so that
225 * we can determine when writes are able to occur to
226 * a filesystem.
227 */
228/*
229 * __mnt_is_readonly: check whether a mount is read-only
230 * @mnt: the mount to check for its write status
231 *
232 * This shouldn't be used directly ouside of the VFS.
233 * It does not guarantee that the filesystem will stay
234 * r/w, just that it is right *now*. This can not and
235 * should not be used in place of IS_RDONLY(inode).
236 * mnt_want/drop_write() will _keep_ the filesystem
237 * r/w.
238 */
239int __mnt_is_readonly(struct vfsmount *mnt)
240{
2e4b7fcd
DH
241 if (mnt->mnt_flags & MNT_READONLY)
242 return 1;
243 if (mnt->mnt_sb->s_flags & MS_RDONLY)
244 return 1;
245 return 0;
3d733633
DH
246}
247EXPORT_SYMBOL_GPL(__mnt_is_readonly);
248
83adc753 249static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 250{
251#ifdef CONFIG_SMP
68e8a9fe 252 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 253#else
68e8a9fe 254 mnt->mnt_writers++;
d3ef3d73 255#endif
256}
3d733633 257
83adc753 258static inline void mnt_dec_writers(struct mount *mnt)
3d733633 259{
d3ef3d73 260#ifdef CONFIG_SMP
68e8a9fe 261 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 262#else
68e8a9fe 263 mnt->mnt_writers--;
d3ef3d73 264#endif
3d733633 265}
3d733633 266
83adc753 267static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 268{
d3ef3d73 269#ifdef CONFIG_SMP
270 unsigned int count = 0;
3d733633 271 int cpu;
3d733633
DH
272
273 for_each_possible_cpu(cpu) {
68e8a9fe 274 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 275 }
3d733633 276
d3ef3d73 277 return count;
278#else
279 return mnt->mnt_writers;
280#endif
3d733633
DH
281}
282
4ed5e82f
MS
283static int mnt_is_readonly(struct vfsmount *mnt)
284{
285 if (mnt->mnt_sb->s_readonly_remount)
286 return 1;
287 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
288 smp_rmb();
289 return __mnt_is_readonly(mnt);
290}
291
8366025e 292/*
eb04c282
JK
293 * Most r/o & frozen checks on a fs are for operations that take discrete
294 * amounts of time, like a write() or unlink(). We must keep track of when
295 * those operations start (for permission checks) and when they end, so that we
296 * can determine when writes are able to occur to a filesystem.
8366025e
DH
297 */
298/**
eb04c282 299 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 300 * @m: the mount on which to take a write
8366025e 301 *
eb04c282
JK
302 * This tells the low-level filesystem that a write is about to be performed to
303 * it, and makes sure that writes are allowed (mnt it read-write) before
304 * returning success. This operation does not protect against filesystem being
305 * frozen. When the write operation is finished, __mnt_drop_write() must be
306 * called. This is effectively a refcount.
8366025e 307 */
eb04c282 308int __mnt_want_write(struct vfsmount *m)
8366025e 309{
83adc753 310 struct mount *mnt = real_mount(m);
3d733633 311 int ret = 0;
3d733633 312
d3ef3d73 313 preempt_disable();
c6653a83 314 mnt_inc_writers(mnt);
d3ef3d73 315 /*
c6653a83 316 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 317 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
318 * incremented count after it has set MNT_WRITE_HOLD.
319 */
320 smp_mb();
1e75529e 321 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 322 cpu_relax();
323 /*
324 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
325 * be set to match its requirements. So we must not load that until
326 * MNT_WRITE_HOLD is cleared.
327 */
328 smp_rmb();
4ed5e82f 329 if (mnt_is_readonly(m)) {
c6653a83 330 mnt_dec_writers(mnt);
3d733633 331 ret = -EROFS;
3d733633 332 }
d3ef3d73 333 preempt_enable();
eb04c282
JK
334
335 return ret;
336}
337
338/**
339 * mnt_want_write - get write access to a mount
340 * @m: the mount on which to take a write
341 *
342 * This tells the low-level filesystem that a write is about to be performed to
343 * it, and makes sure that writes are allowed (mount is read-write, filesystem
344 * is not frozen) before returning success. When the write operation is
345 * finished, mnt_drop_write() must be called. This is effectively a refcount.
346 */
347int mnt_want_write(struct vfsmount *m)
348{
349 int ret;
350
351 sb_start_write(m->mnt_sb);
352 ret = __mnt_want_write(m);
353 if (ret)
354 sb_end_write(m->mnt_sb);
3d733633 355 return ret;
8366025e
DH
356}
357EXPORT_SYMBOL_GPL(mnt_want_write);
358
96029c4e 359/**
360 * mnt_clone_write - get write access to a mount
361 * @mnt: the mount on which to take a write
362 *
363 * This is effectively like mnt_want_write, except
364 * it must only be used to take an extra write reference
365 * on a mountpoint that we already know has a write reference
366 * on it. This allows some optimisation.
367 *
368 * After finished, mnt_drop_write must be called as usual to
369 * drop the reference.
370 */
371int mnt_clone_write(struct vfsmount *mnt)
372{
373 /* superblock may be r/o */
374 if (__mnt_is_readonly(mnt))
375 return -EROFS;
376 preempt_disable();
83adc753 377 mnt_inc_writers(real_mount(mnt));
96029c4e 378 preempt_enable();
379 return 0;
380}
381EXPORT_SYMBOL_GPL(mnt_clone_write);
382
383/**
eb04c282 384 * __mnt_want_write_file - get write access to a file's mount
96029c4e 385 * @file: the file who's mount on which to take a write
386 *
eb04c282 387 * This is like __mnt_want_write, but it takes a file and can
96029c4e 388 * do some optimisations if the file is open for write already
389 */
eb04c282 390int __mnt_want_write_file(struct file *file)
96029c4e 391{
496ad9aa 392 struct inode *inode = file_inode(file);
eb04c282 393
2d8dd38a 394 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 395 return __mnt_want_write(file->f_path.mnt);
96029c4e 396 else
397 return mnt_clone_write(file->f_path.mnt);
398}
eb04c282
JK
399
400/**
401 * mnt_want_write_file - get write access to a file's mount
402 * @file: the file who's mount on which to take a write
403 *
404 * This is like mnt_want_write, but it takes a file and can
405 * do some optimisations if the file is open for write already
406 */
407int mnt_want_write_file(struct file *file)
408{
409 int ret;
410
411 sb_start_write(file->f_path.mnt->mnt_sb);
412 ret = __mnt_want_write_file(file);
413 if (ret)
414 sb_end_write(file->f_path.mnt->mnt_sb);
415 return ret;
416}
96029c4e 417EXPORT_SYMBOL_GPL(mnt_want_write_file);
418
8366025e 419/**
eb04c282 420 * __mnt_drop_write - give up write access to a mount
8366025e
DH
421 * @mnt: the mount on which to give up write access
422 *
423 * Tells the low-level filesystem that we are done
424 * performing writes to it. Must be matched with
eb04c282 425 * __mnt_want_write() call above.
8366025e 426 */
eb04c282 427void __mnt_drop_write(struct vfsmount *mnt)
8366025e 428{
d3ef3d73 429 preempt_disable();
83adc753 430 mnt_dec_writers(real_mount(mnt));
d3ef3d73 431 preempt_enable();
8366025e 432}
eb04c282
JK
433
434/**
435 * mnt_drop_write - give up write access to a mount
436 * @mnt: the mount on which to give up write access
437 *
438 * Tells the low-level filesystem that we are done performing writes to it and
439 * also allows filesystem to be frozen again. Must be matched with
440 * mnt_want_write() call above.
441 */
442void mnt_drop_write(struct vfsmount *mnt)
443{
444 __mnt_drop_write(mnt);
445 sb_end_write(mnt->mnt_sb);
446}
8366025e
DH
447EXPORT_SYMBOL_GPL(mnt_drop_write);
448
eb04c282
JK
449void __mnt_drop_write_file(struct file *file)
450{
451 __mnt_drop_write(file->f_path.mnt);
452}
453
2a79f17e
AV
454void mnt_drop_write_file(struct file *file)
455{
456 mnt_drop_write(file->f_path.mnt);
457}
458EXPORT_SYMBOL(mnt_drop_write_file);
459
83adc753 460static int mnt_make_readonly(struct mount *mnt)
8366025e 461{
3d733633
DH
462 int ret = 0;
463
962830df 464 br_write_lock(&vfsmount_lock);
83adc753 465 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 466 /*
d3ef3d73 467 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
468 * should be visible before we do.
3d733633 469 */
d3ef3d73 470 smp_mb();
471
3d733633 472 /*
d3ef3d73 473 * With writers on hold, if this value is zero, then there are
474 * definitely no active writers (although held writers may subsequently
475 * increment the count, they'll have to wait, and decrement it after
476 * seeing MNT_READONLY).
477 *
478 * It is OK to have counter incremented on one CPU and decremented on
479 * another: the sum will add up correctly. The danger would be when we
480 * sum up each counter, if we read a counter before it is incremented,
481 * but then read another CPU's count which it has been subsequently
482 * decremented from -- we would see more decrements than we should.
483 * MNT_WRITE_HOLD protects against this scenario, because
484 * mnt_want_write first increments count, then smp_mb, then spins on
485 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
486 * we're counting up here.
3d733633 487 */
c6653a83 488 if (mnt_get_writers(mnt) > 0)
d3ef3d73 489 ret = -EBUSY;
490 else
83adc753 491 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 492 /*
493 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
494 * that become unheld will see MNT_READONLY.
495 */
496 smp_wmb();
83adc753 497 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 498 br_write_unlock(&vfsmount_lock);
3d733633 499 return ret;
8366025e 500}
8366025e 501
83adc753 502static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 503{
962830df 504 br_write_lock(&vfsmount_lock);
83adc753 505 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 506 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
507}
508
4ed5e82f
MS
509int sb_prepare_remount_readonly(struct super_block *sb)
510{
511 struct mount *mnt;
512 int err = 0;
513
8e8b8796
MS
514 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
515 if (atomic_long_read(&sb->s_remove_count))
516 return -EBUSY;
517
962830df 518 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
519 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
520 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
521 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
522 smp_mb();
523 if (mnt_get_writers(mnt) > 0) {
524 err = -EBUSY;
525 break;
526 }
527 }
528 }
8e8b8796
MS
529 if (!err && atomic_long_read(&sb->s_remove_count))
530 err = -EBUSY;
531
4ed5e82f
MS
532 if (!err) {
533 sb->s_readonly_remount = 1;
534 smp_wmb();
535 }
536 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
537 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
538 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
539 }
962830df 540 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
541
542 return err;
543}
544
b105e270 545static void free_vfsmnt(struct mount *mnt)
1da177e4 546{
c6a20810 547 kfree(mnt->mnt.data);
52ba1621 548 kfree(mnt->mnt_devname);
73cd49ec 549 mnt_free_id(mnt);
d3ef3d73 550#ifdef CONFIG_SMP
68e8a9fe 551 free_percpu(mnt->mnt_pcp);
d3ef3d73 552#endif
b105e270 553 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
554}
555
556/*
a05964f3
RP
557 * find the first or last mount at @dentry on vfsmount @mnt depending on
558 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 559 * vfsmount_lock must be held for read or write.
1da177e4 560 */
c7105365 561struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 562 int dir)
1da177e4 563{
b58fed8b
RP
564 struct list_head *head = mount_hashtable + hash(mnt, dentry);
565 struct list_head *tmp = head;
c7105365 566 struct mount *p, *found = NULL;
1da177e4 567
1da177e4 568 for (;;) {
a05964f3 569 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
570 p = NULL;
571 if (tmp == head)
572 break;
1b8e5564 573 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 574 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 575 found = p;
1da177e4
LT
576 break;
577 }
578 }
1da177e4
LT
579 return found;
580}
581
a05964f3 582/*
f015f126
DH
583 * lookup_mnt - Return the first child mount mounted at path
584 *
585 * "First" means first mounted chronologically. If you create the
586 * following mounts:
587 *
588 * mount /dev/sda1 /mnt
589 * mount /dev/sda2 /mnt
590 * mount /dev/sda3 /mnt
591 *
592 * Then lookup_mnt() on the base /mnt dentry in the root mount will
593 * return successively the root dentry and vfsmount of /dev/sda1, then
594 * /dev/sda2, then /dev/sda3, then NULL.
595 *
596 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 597 */
1c755af4 598struct vfsmount *lookup_mnt(struct path *path)
a05964f3 599{
c7105365 600 struct mount *child_mnt;
99b7db7b 601
962830df 602 br_read_lock(&vfsmount_lock);
c7105365
AV
603 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
604 if (child_mnt) {
605 mnt_add_count(child_mnt, 1);
962830df 606 br_read_unlock(&vfsmount_lock);
c7105365
AV
607 return &child_mnt->mnt;
608 } else {
962830df 609 br_read_unlock(&vfsmount_lock);
c7105365
AV
610 return NULL;
611 }
a05964f3
RP
612}
613
84d17192
AV
614static struct mountpoint *new_mountpoint(struct dentry *dentry)
615{
616 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
617 struct mountpoint *mp;
618
619 list_for_each_entry(mp, chain, m_hash) {
620 if (mp->m_dentry == dentry) {
621 /* might be worth a WARN_ON() */
622 if (d_unlinked(dentry))
623 return ERR_PTR(-ENOENT);
624 mp->m_count++;
625 return mp;
626 }
627 }
628
629 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
630 if (!mp)
631 return ERR_PTR(-ENOMEM);
632
633 spin_lock(&dentry->d_lock);
634 if (d_unlinked(dentry)) {
635 spin_unlock(&dentry->d_lock);
636 kfree(mp);
637 return ERR_PTR(-ENOENT);
638 }
639 dentry->d_flags |= DCACHE_MOUNTED;
640 spin_unlock(&dentry->d_lock);
641 mp->m_dentry = dentry;
642 mp->m_count = 1;
643 list_add(&mp->m_hash, chain);
644 return mp;
645}
646
647static void put_mountpoint(struct mountpoint *mp)
648{
649 if (!--mp->m_count) {
650 struct dentry *dentry = mp->m_dentry;
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654 list_del(&mp->m_hash);
655 kfree(mp);
656 }
657}
658
143c8c91 659static inline int check_mnt(struct mount *mnt)
1da177e4 660{
6b3286ed 661 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
662}
663
99b7db7b
NP
664/*
665 * vfsmount lock must be held for write
666 */
6b3286ed 667static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
668{
669 if (ns) {
670 ns->event = ++event;
671 wake_up_interruptible(&ns->poll);
672 }
673}
674
99b7db7b
NP
675/*
676 * vfsmount lock must be held for write
677 */
6b3286ed 678static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
679{
680 if (ns && ns->event != event) {
681 ns->event = event;
682 wake_up_interruptible(&ns->poll);
683 }
684}
685
99b7db7b
NP
686/*
687 * vfsmount lock must be held for write
688 */
419148da
AV
689static void detach_mnt(struct mount *mnt, struct path *old_path)
690{
a73324da 691 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
692 old_path->mnt = &mnt->mnt_parent->mnt;
693 mnt->mnt_parent = mnt;
a73324da 694 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 695 list_del_init(&mnt->mnt_child);
1b8e5564 696 list_del_init(&mnt->mnt_hash);
84d17192
AV
697 put_mountpoint(mnt->mnt_mp);
698 mnt->mnt_mp = NULL;
1da177e4
LT
699}
700
99b7db7b
NP
701/*
702 * vfsmount lock must be held for write
703 */
84d17192
AV
704void mnt_set_mountpoint(struct mount *mnt,
705 struct mountpoint *mp,
44d964d6 706 struct mount *child_mnt)
b90fa9ae 707{
84d17192 708 mp->m_count++;
3a2393d7 709 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 710 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 711 child_mnt->mnt_parent = mnt;
84d17192 712 child_mnt->mnt_mp = mp;
b90fa9ae
RP
713}
714
99b7db7b
NP
715/*
716 * vfsmount lock must be held for write
717 */
84d17192
AV
718static void attach_mnt(struct mount *mnt,
719 struct mount *parent,
720 struct mountpoint *mp)
1da177e4 721{
84d17192 722 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 723 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
724 hash(&parent->mnt, mp->m_dentry));
725 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
726}
727
728/*
99b7db7b 729 * vfsmount lock must be held for write
b90fa9ae 730 */
4b2619a5 731static void commit_tree(struct mount *mnt)
b90fa9ae 732{
0714a533 733 struct mount *parent = mnt->mnt_parent;
83adc753 734 struct mount *m;
b90fa9ae 735 LIST_HEAD(head);
143c8c91 736 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 737
0714a533 738 BUG_ON(parent == mnt);
b90fa9ae 739
1a4eeaf2 740 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 741 list_for_each_entry(m, &head, mnt_list)
143c8c91 742 m->mnt_ns = n;
f03c6599 743
b90fa9ae
RP
744 list_splice(&head, n->list.prev);
745
1b8e5564 746 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 747 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 748 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 749 touch_mnt_namespace(n);
1da177e4
LT
750}
751
909b0a88 752static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 753{
6b41d536
AV
754 struct list_head *next = p->mnt_mounts.next;
755 if (next == &p->mnt_mounts) {
1da177e4 756 while (1) {
909b0a88 757 if (p == root)
1da177e4 758 return NULL;
6b41d536
AV
759 next = p->mnt_child.next;
760 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 761 break;
0714a533 762 p = p->mnt_parent;
1da177e4
LT
763 }
764 }
6b41d536 765 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
766}
767
315fc83e 768static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 769{
6b41d536
AV
770 struct list_head *prev = p->mnt_mounts.prev;
771 while (prev != &p->mnt_mounts) {
772 p = list_entry(prev, struct mount, mnt_child);
773 prev = p->mnt_mounts.prev;
9676f0c6
RP
774 }
775 return p;
776}
777
9d412a43
AV
778struct vfsmount *
779vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
780{
b105e270 781 struct mount *mnt;
9d412a43
AV
782 struct dentry *root;
783
784 if (!type)
785 return ERR_PTR(-ENODEV);
786
787 mnt = alloc_vfsmnt(name);
788 if (!mnt)
789 return ERR_PTR(-ENOMEM);
790
c6a20810
DR
791 mnt->mnt.data = NULL;
792 if (type->alloc_mnt_data) {
793 mnt->mnt.data = type->alloc_mnt_data();
794 if (!mnt->mnt.data) {
795 mnt_free_id(mnt);
796 free_vfsmnt(mnt);
797 return ERR_PTR(-ENOMEM);
798 }
799 }
9d412a43 800 if (flags & MS_KERNMOUNT)
b105e270 801 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 802
27d99302 803 root = mount_fs(type, flags, name, &mnt->mnt, data);
9d412a43 804 if (IS_ERR(root)) {
c6a20810 805 kfree(mnt->mnt.data);
9d412a43
AV
806 free_vfsmnt(mnt);
807 return ERR_CAST(root);
808 }
809
b105e270
AV
810 mnt->mnt.mnt_root = root;
811 mnt->mnt.mnt_sb = root->d_sb;
a73324da 812 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 813 mnt->mnt_parent = mnt;
962830df 814 br_write_lock(&vfsmount_lock);
39f7c4db 815 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 816 br_write_unlock(&vfsmount_lock);
b105e270 817 return &mnt->mnt;
9d412a43
AV
818}
819EXPORT_SYMBOL_GPL(vfs_kern_mount);
820
87129cc0 821static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 822 int flag)
1da177e4 823{
87129cc0 824 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
825 struct mount *mnt;
826 int err;
1da177e4 827
be34d1a3
DH
828 mnt = alloc_vfsmnt(old->mnt_devname);
829 if (!mnt)
830 return ERR_PTR(-ENOMEM);
719f5d7f 831
c6a20810
DR
832 if (sb->s_op->clone_mnt_data) {
833 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
834 if (!mnt->mnt.data) {
835 err = -ENOMEM;
836 goto out_free;
837 }
838 }
839
7a472ef4 840 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
841 mnt->mnt_group_id = 0; /* not a peer of original */
842 else
843 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 844
be34d1a3
DH
845 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
846 err = mnt_alloc_group_id(mnt);
847 if (err)
848 goto out_free;
1da177e4 849 }
be34d1a3
DH
850
851 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3 852 /* Don't allow unprivileged users to change mount flags */
187985d9
EB
853 if (flag & CL_UNPRIVILEGED) {
854 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
855
856 if (mnt->mnt.mnt_flags & MNT_READONLY)
857 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
858
859 if (mnt->mnt.mnt_flags & MNT_NODEV)
860 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
861
862 if (mnt->mnt.mnt_flags & MNT_NOSUID)
863 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
864
865 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
866 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
867 }
132c94e3 868
be34d1a3
DH
869 atomic_inc(&sb->s_active);
870 mnt->mnt.mnt_sb = sb;
871 mnt->mnt.mnt_root = dget(root);
872 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
873 mnt->mnt_parent = mnt;
874 br_write_lock(&vfsmount_lock);
875 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
876 br_write_unlock(&vfsmount_lock);
877
7a472ef4
EB
878 if ((flag & CL_SLAVE) ||
879 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
880 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
881 mnt->mnt_master = old;
882 CLEAR_MNT_SHARED(mnt);
883 } else if (!(flag & CL_PRIVATE)) {
884 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
885 list_add(&mnt->mnt_share, &old->mnt_share);
886 if (IS_MNT_SLAVE(old))
887 list_add(&mnt->mnt_slave, &old->mnt_slave);
888 mnt->mnt_master = old->mnt_master;
889 }
890 if (flag & CL_MAKE_SHARED)
891 set_mnt_shared(mnt);
892
893 /* stick the duplicate mount on the same expiry list
894 * as the original if that was on one */
895 if (flag & CL_EXPIRE) {
896 if (!list_empty(&old->mnt_expire))
897 list_add(&mnt->mnt_expire, &old->mnt_expire);
898 }
899
cb338d06 900 return mnt;
719f5d7f
MS
901
902 out_free:
c6a20810 903 kfree(mnt->mnt.data);
719f5d7f 904 free_vfsmnt(mnt);
be34d1a3 905 return ERR_PTR(err);
1da177e4
LT
906}
907
83adc753 908static inline void mntfree(struct mount *mnt)
1da177e4 909{
83adc753
AV
910 struct vfsmount *m = &mnt->mnt;
911 struct super_block *sb = m->mnt_sb;
b3e19d92 912
3d733633
DH
913 /*
914 * This probably indicates that somebody messed
915 * up a mnt_want/drop_write() pair. If this
916 * happens, the filesystem was probably unable
917 * to make r/w->r/o transitions.
918 */
d3ef3d73 919 /*
b3e19d92
NP
920 * The locking used to deal with mnt_count decrement provides barriers,
921 * so mnt_get_writers() below is safe.
d3ef3d73 922 */
c6653a83 923 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
924 fsnotify_vfsmount_delete(m);
925 dput(m->mnt_root);
926 free_vfsmnt(mnt);
1da177e4
LT
927 deactivate_super(sb);
928}
929
900148dc 930static void mntput_no_expire(struct mount *mnt)
b3e19d92 931{
b3e19d92 932put_again:
f03c6599 933#ifdef CONFIG_SMP
962830df 934 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
935 if (likely(mnt->mnt_ns)) {
936 /* shouldn't be the last one */
aa9c0e07 937 mnt_add_count(mnt, -1);
962830df 938 br_read_unlock(&vfsmount_lock);
f03c6599 939 return;
b3e19d92 940 }
962830df 941 br_read_unlock(&vfsmount_lock);
b3e19d92 942
962830df 943 br_write_lock(&vfsmount_lock);
aa9c0e07 944 mnt_add_count(mnt, -1);
b3e19d92 945 if (mnt_get_count(mnt)) {
962830df 946 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
947 return;
948 }
b3e19d92 949#else
aa9c0e07 950 mnt_add_count(mnt, -1);
b3e19d92 951 if (likely(mnt_get_count(mnt)))
99b7db7b 952 return;
962830df 953 br_write_lock(&vfsmount_lock);
f03c6599 954#endif
863d684f
AV
955 if (unlikely(mnt->mnt_pinned)) {
956 mnt_add_count(mnt, mnt->mnt_pinned + 1);
957 mnt->mnt_pinned = 0;
962830df 958 br_write_unlock(&vfsmount_lock);
900148dc 959 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 960 goto put_again;
7b7b1ace 961 }
962830df 962
39f7c4db 963 list_del(&mnt->mnt_instance);
962830df 964 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
965 mntfree(mnt);
966}
b3e19d92
NP
967
968void mntput(struct vfsmount *mnt)
969{
970 if (mnt) {
863d684f 971 struct mount *m = real_mount(mnt);
b3e19d92 972 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
973 if (unlikely(m->mnt_expiry_mark))
974 m->mnt_expiry_mark = 0;
975 mntput_no_expire(m);
b3e19d92
NP
976 }
977}
978EXPORT_SYMBOL(mntput);
979
980struct vfsmount *mntget(struct vfsmount *mnt)
981{
982 if (mnt)
83adc753 983 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
984 return mnt;
985}
986EXPORT_SYMBOL(mntget);
987
7b7b1ace
AV
988void mnt_pin(struct vfsmount *mnt)
989{
962830df 990 br_write_lock(&vfsmount_lock);
863d684f 991 real_mount(mnt)->mnt_pinned++;
962830df 992 br_write_unlock(&vfsmount_lock);
7b7b1ace 993}
7b7b1ace
AV
994EXPORT_SYMBOL(mnt_pin);
995
863d684f 996void mnt_unpin(struct vfsmount *m)
7b7b1ace 997{
863d684f 998 struct mount *mnt = real_mount(m);
962830df 999 br_write_lock(&vfsmount_lock);
7b7b1ace 1000 if (mnt->mnt_pinned) {
863d684f 1001 mnt_add_count(mnt, 1);
7b7b1ace
AV
1002 mnt->mnt_pinned--;
1003 }
962830df 1004 br_write_unlock(&vfsmount_lock);
7b7b1ace 1005}
7b7b1ace 1006EXPORT_SYMBOL(mnt_unpin);
1da177e4 1007
b3b304a2
MS
1008static inline void mangle(struct seq_file *m, const char *s)
1009{
1010 seq_escape(m, s, " \t\n\\");
1011}
1012
1013/*
1014 * Simple .show_options callback for filesystems which don't want to
1015 * implement more complex mount option showing.
1016 *
1017 * See also save_mount_options().
1018 */
34c80b1d 1019int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1020{
2a32cebd
AV
1021 const char *options;
1022
1023 rcu_read_lock();
34c80b1d 1024 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1025
1026 if (options != NULL && options[0]) {
1027 seq_putc(m, ',');
1028 mangle(m, options);
1029 }
2a32cebd 1030 rcu_read_unlock();
b3b304a2
MS
1031
1032 return 0;
1033}
1034EXPORT_SYMBOL(generic_show_options);
1035
1036/*
1037 * If filesystem uses generic_show_options(), this function should be
1038 * called from the fill_super() callback.
1039 *
1040 * The .remount_fs callback usually needs to be handled in a special
1041 * way, to make sure, that previous options are not overwritten if the
1042 * remount fails.
1043 *
1044 * Also note, that if the filesystem's .remount_fs function doesn't
1045 * reset all options to their default value, but changes only newly
1046 * given options, then the displayed options will not reflect reality
1047 * any more.
1048 */
1049void save_mount_options(struct super_block *sb, char *options)
1050{
2a32cebd
AV
1051 BUG_ON(sb->s_options);
1052 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1053}
1054EXPORT_SYMBOL(save_mount_options);
1055
2a32cebd
AV
1056void replace_mount_options(struct super_block *sb, char *options)
1057{
1058 char *old = sb->s_options;
1059 rcu_assign_pointer(sb->s_options, options);
1060 if (old) {
1061 synchronize_rcu();
1062 kfree(old);
1063 }
1064}
1065EXPORT_SYMBOL(replace_mount_options);
1066
a1a2c409 1067#ifdef CONFIG_PROC_FS
0226f492 1068/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1069static void *m_start(struct seq_file *m, loff_t *pos)
1070{
6ce6e24e 1071 struct proc_mounts *p = proc_mounts(m);
1da177e4 1072
390c6843 1073 down_read(&namespace_sem);
a1a2c409 1074 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1075}
1076
1077static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1078{
6ce6e24e 1079 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1080
a1a2c409 1081 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1082}
1083
1084static void m_stop(struct seq_file *m, void *v)
1085{
390c6843 1086 up_read(&namespace_sem);
1da177e4
LT
1087}
1088
0226f492 1089static int m_show(struct seq_file *m, void *v)
2d4d4864 1090{
6ce6e24e 1091 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1092 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1093 return p->show(m, &r->mnt);
1da177e4
LT
1094}
1095
a1a2c409 1096const struct seq_operations mounts_op = {
1da177e4
LT
1097 .start = m_start,
1098 .next = m_next,
1099 .stop = m_stop,
0226f492 1100 .show = m_show,
b4629fe2 1101};
a1a2c409 1102#endif /* CONFIG_PROC_FS */
b4629fe2 1103
1da177e4
LT
1104/**
1105 * may_umount_tree - check if a mount tree is busy
1106 * @mnt: root of mount tree
1107 *
1108 * This is called to check if a tree of mounts has any
1109 * open files, pwds, chroots or sub mounts that are
1110 * busy.
1111 */
909b0a88 1112int may_umount_tree(struct vfsmount *m)
1da177e4 1113{
909b0a88 1114 struct mount *mnt = real_mount(m);
36341f64
RP
1115 int actual_refs = 0;
1116 int minimum_refs = 0;
315fc83e 1117 struct mount *p;
909b0a88 1118 BUG_ON(!m);
1da177e4 1119
b3e19d92 1120 /* write lock needed for mnt_get_count */
962830df 1121 br_write_lock(&vfsmount_lock);
909b0a88 1122 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1123 actual_refs += mnt_get_count(p);
1da177e4 1124 minimum_refs += 2;
1da177e4 1125 }
962830df 1126 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1127
1128 if (actual_refs > minimum_refs)
e3474a8e 1129 return 0;
1da177e4 1130
e3474a8e 1131 return 1;
1da177e4
LT
1132}
1133
1134EXPORT_SYMBOL(may_umount_tree);
1135
1136/**
1137 * may_umount - check if a mount point is busy
1138 * @mnt: root of mount
1139 *
1140 * This is called to check if a mount point has any
1141 * open files, pwds, chroots or sub mounts. If the
1142 * mount has sub mounts this will return busy
1143 * regardless of whether the sub mounts are busy.
1144 *
1145 * Doesn't take quota and stuff into account. IOW, in some cases it will
1146 * give false negatives. The main reason why it's here is that we need
1147 * a non-destructive way to look for easily umountable filesystems.
1148 */
1149int may_umount(struct vfsmount *mnt)
1150{
e3474a8e 1151 int ret = 1;
8ad08d8a 1152 down_read(&namespace_sem);
962830df 1153 br_write_lock(&vfsmount_lock);
1ab59738 1154 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1155 ret = 0;
962830df 1156 br_write_unlock(&vfsmount_lock);
8ad08d8a 1157 up_read(&namespace_sem);
a05964f3 1158 return ret;
1da177e4
LT
1159}
1160
1161EXPORT_SYMBOL(may_umount);
1162
e3197d83
AV
1163static LIST_HEAD(unmounted); /* protected by namespace_sem */
1164
97216be0 1165static void namespace_unlock(void)
70fbcdf4 1166{
d5e50f74 1167 struct mount *mnt;
97216be0
AV
1168 LIST_HEAD(head);
1169
1170 if (likely(list_empty(&unmounted))) {
1171 up_write(&namespace_sem);
1172 return;
1173 }
1174
1175 list_splice_init(&unmounted, &head);
1176 up_write(&namespace_sem);
1177
1178 while (!list_empty(&head)) {
1179 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1180 list_del_init(&mnt->mnt_hash);
676da58d 1181 if (mnt_has_parent(mnt)) {
70fbcdf4 1182 struct dentry *dentry;
863d684f 1183 struct mount *m;
99b7db7b 1184
962830df 1185 br_write_lock(&vfsmount_lock);
a73324da 1186 dentry = mnt->mnt_mountpoint;
863d684f 1187 m = mnt->mnt_parent;
a73324da 1188 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1189 mnt->mnt_parent = mnt;
7c4b93d8 1190 m->mnt_ghosts--;
962830df 1191 br_write_unlock(&vfsmount_lock);
70fbcdf4 1192 dput(dentry);
863d684f 1193 mntput(&m->mnt);
70fbcdf4 1194 }
d5e50f74 1195 mntput(&mnt->mnt);
70fbcdf4
RP
1196 }
1197}
1198
97216be0 1199static inline void namespace_lock(void)
e3197d83 1200{
97216be0 1201 down_write(&namespace_sem);
e3197d83
AV
1202}
1203
99b7db7b
NP
1204/*
1205 * vfsmount lock must be held for write
1206 * namespace_sem must be held for write
1207 */
328e6d90 1208void umount_tree(struct mount *mnt, int propagate)
1da177e4 1209{
7b8a53fd 1210 LIST_HEAD(tmp_list);
315fc83e 1211 struct mount *p;
1da177e4 1212
909b0a88 1213 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1214 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1215
a05964f3 1216 if (propagate)
7b8a53fd 1217 propagate_umount(&tmp_list);
a05964f3 1218
1b8e5564 1219 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1220 list_del_init(&p->mnt_expire);
1a4eeaf2 1221 list_del_init(&p->mnt_list);
143c8c91
AV
1222 __touch_mnt_namespace(p->mnt_ns);
1223 p->mnt_ns = NULL;
6b41d536 1224 list_del_init(&p->mnt_child);
676da58d 1225 if (mnt_has_parent(p)) {
863d684f 1226 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1227 put_mountpoint(p->mnt_mp);
1228 p->mnt_mp = NULL;
7c4b93d8 1229 }
0f0afb1d 1230 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1231 }
328e6d90 1232 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1233}
1234
b54b9be7 1235static void shrink_submounts(struct mount *mnt);
c35038be 1236
1ab59738 1237static int do_umount(struct mount *mnt, int flags)
1da177e4 1238{
1ab59738 1239 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1240 int retval;
1241
1ab59738 1242 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Allow userspace to request a mountpoint be expired rather than
1248 * unmounting unconditionally. Unmount only happens if:
1249 * (1) the mark is already set (the mark is cleared by mntput())
1250 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1251 */
1252 if (flags & MNT_EXPIRE) {
1ab59738 1253 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1254 flags & (MNT_FORCE | MNT_DETACH))
1255 return -EINVAL;
1256
b3e19d92
NP
1257 /*
1258 * probably don't strictly need the lock here if we examined
1259 * all race cases, but it's a slowpath.
1260 */
962830df 1261 br_write_lock(&vfsmount_lock);
83adc753 1262 if (mnt_get_count(mnt) != 2) {
962830df 1263 br_write_unlock(&vfsmount_lock);
1da177e4 1264 return -EBUSY;
b3e19d92 1265 }
962830df 1266 br_write_unlock(&vfsmount_lock);
1da177e4 1267
863d684f 1268 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1269 return -EAGAIN;
1270 }
1271
1272 /*
1273 * If we may have to abort operations to get out of this
1274 * mount, and they will themselves hold resources we must
1275 * allow the fs to do things. In the Unix tradition of
1276 * 'Gee thats tricky lets do it in userspace' the umount_begin
1277 * might fail to complete on the first run through as other tasks
1278 * must return, and the like. Thats for the mount program to worry
1279 * about for the moment.
1280 */
1281
42faad99 1282 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1283 sb->s_op->umount_begin(sb);
42faad99 1284 }
1da177e4
LT
1285
1286 /*
1287 * No sense to grab the lock for this test, but test itself looks
1288 * somewhat bogus. Suggestions for better replacement?
1289 * Ho-hum... In principle, we might treat that as umount + switch
1290 * to rootfs. GC would eventually take care of the old vfsmount.
1291 * Actually it makes sense, especially if rootfs would contain a
1292 * /reboot - static binary that would close all descriptors and
1293 * call reboot(9). Then init(8) could umount root and exec /reboot.
1294 */
1ab59738 1295 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1296 /*
1297 * Special case for "unmounting" root ...
1298 * we just try to remount it readonly.
1299 */
a7dbb3e3
AL
1300 if (!capable(CAP_SYS_ADMIN))
1301 return -EPERM;
1da177e4 1302 down_write(&sb->s_umount);
4aa98cf7 1303 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1304 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1305 up_write(&sb->s_umount);
1306 return retval;
1307 }
1308
97216be0 1309 namespace_lock();
962830df 1310 br_write_lock(&vfsmount_lock);
5addc5dd 1311 event++;
1da177e4 1312
c35038be 1313 if (!(flags & MNT_DETACH))
b54b9be7 1314 shrink_submounts(mnt);
c35038be 1315
1da177e4 1316 retval = -EBUSY;
a05964f3 1317 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1318 if (!list_empty(&mnt->mnt_list))
328e6d90 1319 umount_tree(mnt, 1);
1da177e4
LT
1320 retval = 0;
1321 }
962830df 1322 br_write_unlock(&vfsmount_lock);
e3197d83 1323 namespace_unlock();
1da177e4
LT
1324 return retval;
1325}
1326
9b40bc90
AV
1327/*
1328 * Is the caller allowed to modify his namespace?
1329 */
1330static inline bool may_mount(void)
1331{
1332 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1333}
1334
1da177e4
LT
1335/*
1336 * Now umount can handle mount points as well as block devices.
1337 * This is important for filesystems which use unnamed block devices.
1338 *
1339 * We now support a flag for forced unmount like the other 'big iron'
1340 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1341 */
1342
bdc480e3 1343SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1344{
2d8f3038 1345 struct path path;
900148dc 1346 struct mount *mnt;
1da177e4 1347 int retval;
db1f05bb 1348 int lookup_flags = 0;
1da177e4 1349
db1f05bb
MS
1350 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1351 return -EINVAL;
1352
9b40bc90
AV
1353 if (!may_mount())
1354 return -EPERM;
1355
db1f05bb
MS
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1360 if (retval)
1361 goto out;
900148dc 1362 mnt = real_mount(path.mnt);
1da177e4 1363 retval = -EINVAL;
2d8f3038 1364 if (path.dentry != path.mnt->mnt_root)
1da177e4 1365 goto dput_and_out;
143c8c91 1366 if (!check_mnt(mnt))
1da177e4 1367 goto dput_and_out;
52b880cc
EB
1368 retval = -EPERM;
1369 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1da177e4 1371
900148dc 1372 retval = do_umount(mnt, flags);
1da177e4 1373dput_and_out:
429731b1 1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1375 dput(path.dentry);
900148dc 1376 mntput_no_expire(mnt);
1da177e4
LT
1377out:
1378 return retval;
1379}
1380
1381#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383/*
b58fed8b 1384 * The 2.0 compatible umount. No flags.
1da177e4 1385 */
bdc480e3 1386SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1387{
b58fed8b 1388 return sys_umount(name, 0);
1da177e4
LT
1389}
1390
1391#endif
1392
8823c079
EB
1393static bool mnt_ns_loop(struct path *path)
1394{
1395 /* Could bind mounting the mount namespace inode cause a
1396 * mount namespace loop?
1397 */
1398 struct inode *inode = path->dentry->d_inode;
0bb80f24 1399 struct proc_ns *ei;
8823c079
EB
1400 struct mnt_namespace *mnt_ns;
1401
1402 if (!proc_ns_inode(inode))
1403 return false;
1404
0bb80f24 1405 ei = get_proc_ns(inode);
8823c079
EB
1406 if (ei->ns_ops != &mntns_operations)
1407 return false;
1408
1409 mnt_ns = ei->ns;
1410 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1411}
1412
87129cc0 1413struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1414 int flag)
1da177e4 1415{
84d17192 1416 struct mount *res, *p, *q, *r, *parent;
1da177e4 1417
fc7be130 1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1419 return ERR_PTR(-EINVAL);
9676f0c6 1420
36341f64 1421 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1422 if (IS_ERR(q))
1423 return q;
1424
a73324da 1425 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1426
1427 p = mnt;
6b41d536 1428 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1429 struct mount *s;
7ec02ef1 1430 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1431 continue;
1432
909b0a88 1433 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1434 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1435 s = skip_mnt_tree(s);
1436 continue;
1437 }
0714a533
AV
1438 while (p != s->mnt_parent) {
1439 p = p->mnt_parent;
1440 q = q->mnt_parent;
1da177e4 1441 }
87129cc0 1442 p = s;
84d17192 1443 parent = q;
87129cc0 1444 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1445 if (IS_ERR(q))
1446 goto out;
962830df 1447 br_write_lock(&vfsmount_lock);
1a4eeaf2 1448 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1449 attach_mnt(q, parent, p->mnt_mp);
962830df 1450 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1451 }
1452 }
1453 return res;
be34d1a3 1454out:
1da177e4 1455 if (res) {
962830df 1456 br_write_lock(&vfsmount_lock);
328e6d90 1457 umount_tree(res, 0);
962830df 1458 br_write_unlock(&vfsmount_lock);
1da177e4 1459 }
be34d1a3 1460 return q;
1da177e4
LT
1461}
1462
be34d1a3
DH
1463/* Caller should check returned pointer for errors */
1464
589ff870 1465struct vfsmount *collect_mounts(struct path *path)
8aec0809 1466{
cb338d06 1467 struct mount *tree;
97216be0 1468 namespace_lock();
3c2a0909
S
1469 if (!check_mnt(real_mount(path->mnt)))
1470 tree = ERR_PTR(-EINVAL);
1471 else
1472 tree = copy_tree(real_mount(path->mnt), path->dentry,
10317cd4 1473 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1474 namespace_unlock();
be34d1a3 1475 if (IS_ERR(tree))
2bee1e0f 1476 return ERR_CAST(tree);
be34d1a3 1477 return &tree->mnt;
8aec0809
AV
1478}
1479
1480void drop_collected_mounts(struct vfsmount *mnt)
1481{
97216be0 1482 namespace_lock();
962830df 1483 br_write_lock(&vfsmount_lock);
328e6d90 1484 umount_tree(real_mount(mnt), 0);
962830df 1485 br_write_unlock(&vfsmount_lock);
3ab6abee 1486 namespace_unlock();
8aec0809
AV
1487}
1488
1f707137
AV
1489int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1490 struct vfsmount *root)
1491{
1a4eeaf2 1492 struct mount *mnt;
1f707137
AV
1493 int res = f(root, arg);
1494 if (res)
1495 return res;
1a4eeaf2
AV
1496 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1497 res = f(&mnt->mnt, arg);
1f707137
AV
1498 if (res)
1499 return res;
1500 }
1501 return 0;
1502}
1503
4b8b21f4 1504static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1505{
315fc83e 1506 struct mount *p;
719f5d7f 1507
909b0a88 1508 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1509 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1510 mnt_release_group_id(p);
719f5d7f
MS
1511 }
1512}
1513
4b8b21f4 1514static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1515{
315fc83e 1516 struct mount *p;
719f5d7f 1517
909b0a88 1518 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1519 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1520 int err = mnt_alloc_group_id(p);
719f5d7f 1521 if (err) {
4b8b21f4 1522 cleanup_group_ids(mnt, p);
719f5d7f
MS
1523 return err;
1524 }
1525 }
1526 }
1527
1528 return 0;
1529}
1530
b90fa9ae
RP
1531/*
1532 * @source_mnt : mount tree to be attached
21444403
RP
1533 * @nd : place the mount tree @source_mnt is attached
1534 * @parent_nd : if non-null, detach the source_mnt from its parent and
1535 * store the parent mount and mountpoint dentry.
1536 * (done when source_mnt is moved)
b90fa9ae
RP
1537 *
1538 * NOTE: in the table below explains the semantics when a source mount
1539 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1540 * ---------------------------------------------------------------------------
1541 * | BIND MOUNT OPERATION |
1542 * |**************************************************************************
1543 * | source-->| shared | private | slave | unbindable |
1544 * | dest | | | | |
1545 * | | | | | | |
1546 * | v | | | | |
1547 * |**************************************************************************
1548 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1549 * | | | | | |
1550 * |non-shared| shared (+) | private | slave (*) | invalid |
1551 * ***************************************************************************
b90fa9ae
RP
1552 * A bind operation clones the source mount and mounts the clone on the
1553 * destination mount.
1554 *
1555 * (++) the cloned mount is propagated to all the mounts in the propagation
1556 * tree of the destination mount and the cloned mount is added to
1557 * the peer group of the source mount.
1558 * (+) the cloned mount is created under the destination mount and is marked
1559 * as shared. The cloned mount is added to the peer group of the source
1560 * mount.
5afe0022
RP
1561 * (+++) the mount is propagated to all the mounts in the propagation tree
1562 * of the destination mount and the cloned mount is made slave
1563 * of the same master as that of the source mount. The cloned mount
1564 * is marked as 'shared and slave'.
1565 * (*) the cloned mount is made a slave of the same master as that of the
1566 * source mount.
1567 *
9676f0c6
RP
1568 * ---------------------------------------------------------------------------
1569 * | MOVE MOUNT OPERATION |
1570 * |**************************************************************************
1571 * | source-->| shared | private | slave | unbindable |
1572 * | dest | | | | |
1573 * | | | | | | |
1574 * | v | | | | |
1575 * |**************************************************************************
1576 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1577 * | | | | | |
1578 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1579 * ***************************************************************************
5afe0022
RP
1580 *
1581 * (+) the mount is moved to the destination. And is then propagated to
1582 * all the mounts in the propagation tree of the destination mount.
21444403 1583 * (+*) the mount is moved to the destination.
5afe0022
RP
1584 * (+++) the mount is moved to the destination and is then propagated to
1585 * all the mounts belonging to the destination mount's propagation tree.
1586 * the mount is marked as 'shared and slave'.
1587 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1588 *
1589 * if the source mount is a tree, the operations explained above is
1590 * applied to each mount in the tree.
1591 * Must be called without spinlocks held, since this function can sleep
1592 * in allocations.
1593 */
0fb54e50 1594static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1595 struct mount *dest_mnt,
1596 struct mountpoint *dest_mp,
1597 struct path *parent_path)
b90fa9ae
RP
1598{
1599 LIST_HEAD(tree_list);
315fc83e 1600 struct mount *child, *p;
719f5d7f 1601 int err;
b90fa9ae 1602
fc7be130 1603 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1604 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1605 if (err)
1606 goto out;
1607 }
84d17192 1608 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1609 if (err)
1610 goto out_cleanup_ids;
b90fa9ae 1611
962830df 1612 br_write_lock(&vfsmount_lock);
df1a1ad2 1613
fc7be130 1614 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1615 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1616 set_mnt_shared(p);
b90fa9ae 1617 }
1a390689 1618 if (parent_path) {
0fb54e50 1619 detach_mnt(source_mnt, parent_path);
84d17192 1620 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1621 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1622 } else {
84d17192 1623 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1624 commit_tree(source_mnt);
21444403 1625 }
b90fa9ae 1626
1b8e5564
AV
1627 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1628 list_del_init(&child->mnt_hash);
4b2619a5 1629 commit_tree(child);
b90fa9ae 1630 }
962830df 1631 br_write_unlock(&vfsmount_lock);
99b7db7b 1632
b90fa9ae 1633 return 0;
719f5d7f
MS
1634
1635 out_cleanup_ids:
fc7be130 1636 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1637 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1638 out:
1639 return err;
b90fa9ae
RP
1640}
1641
84d17192 1642static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1643{
1644 struct vfsmount *mnt;
84d17192 1645 struct dentry *dentry = path->dentry;
b12cea91 1646retry:
84d17192
AV
1647 mutex_lock(&dentry->d_inode->i_mutex);
1648 if (unlikely(cant_mount(dentry))) {
1649 mutex_unlock(&dentry->d_inode->i_mutex);
1650 return ERR_PTR(-ENOENT);
b12cea91 1651 }
97216be0 1652 namespace_lock();
b12cea91 1653 mnt = lookup_mnt(path);
84d17192
AV
1654 if (likely(!mnt)) {
1655 struct mountpoint *mp = new_mountpoint(dentry);
1656 if (IS_ERR(mp)) {
97216be0 1657 namespace_unlock();
84d17192
AV
1658 mutex_unlock(&dentry->d_inode->i_mutex);
1659 return mp;
1660 }
1661 return mp;
1662 }
97216be0 1663 namespace_unlock();
b12cea91
AV
1664 mutex_unlock(&path->dentry->d_inode->i_mutex);
1665 path_put(path);
1666 path->mnt = mnt;
84d17192 1667 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1668 goto retry;
1669}
1670
84d17192 1671static void unlock_mount(struct mountpoint *where)
b12cea91 1672{
84d17192
AV
1673 struct dentry *dentry = where->m_dentry;
1674 put_mountpoint(where);
328e6d90 1675 namespace_unlock();
84d17192 1676 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1677}
1678
84d17192 1679static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1680{
95bc5f25 1681 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1682 return -EINVAL;
1683
84d17192 1684 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1685 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1686 return -ENOTDIR;
1687
84d17192 1688 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1689}
1690
7a2e8a8f
VA
1691/*
1692 * Sanity check the flags to change_mnt_propagation.
1693 */
1694
1695static int flags_to_propagation_type(int flags)
1696{
7c6e984d 1697 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1698
1699 /* Fail if any non-propagation flags are set */
1700 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1701 return 0;
1702 /* Only one propagation flag should be set */
1703 if (!is_power_of_2(type))
1704 return 0;
1705 return type;
1706}
1707
07b20889
RP
1708/*
1709 * recursively change the type of the mountpoint.
1710 */
0a0d8a46 1711static int do_change_type(struct path *path, int flag)
07b20889 1712{
315fc83e 1713 struct mount *m;
4b8b21f4 1714 struct mount *mnt = real_mount(path->mnt);
07b20889 1715 int recurse = flag & MS_REC;
7a2e8a8f 1716 int type;
719f5d7f 1717 int err = 0;
07b20889 1718
2d92ab3c 1719 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1720 return -EINVAL;
1721
7a2e8a8f
VA
1722 type = flags_to_propagation_type(flag);
1723 if (!type)
1724 return -EINVAL;
1725
97216be0 1726 namespace_lock();
719f5d7f
MS
1727 if (type == MS_SHARED) {
1728 err = invent_group_ids(mnt, recurse);
1729 if (err)
1730 goto out_unlock;
1731 }
1732
962830df 1733 br_write_lock(&vfsmount_lock);
909b0a88 1734 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1735 change_mnt_propagation(m, type);
962830df 1736 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1737
1738 out_unlock:
97216be0 1739 namespace_unlock();
719f5d7f 1740 return err;
07b20889
RP
1741}
1742
1da177e4
LT
1743/*
1744 * do loopback mount.
1745 */
808d4e3c 1746static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1747 int recurse)
1da177e4 1748{
2d92ab3c 1749 struct path old_path;
84d17192
AV
1750 struct mount *mnt = NULL, *old, *parent;
1751 struct mountpoint *mp;
57eccb83 1752 int err;
1da177e4
LT
1753 if (!old_name || !*old_name)
1754 return -EINVAL;
815d405c 1755 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1756 if (err)
1757 return err;
1758
8823c079
EB
1759 err = -EINVAL;
1760 if (mnt_ns_loop(&old_path))
1761 goto out;
1762
84d17192
AV
1763 mp = lock_mount(path);
1764 err = PTR_ERR(mp);
1765 if (IS_ERR(mp))
b12cea91
AV
1766 goto out;
1767
87129cc0 1768 old = real_mount(old_path.mnt);
84d17192 1769 parent = real_mount(path->mnt);
87129cc0 1770
1da177e4 1771 err = -EINVAL;
fc7be130 1772 if (IS_MNT_UNBINDABLE(old))
b12cea91 1773 goto out2;
9676f0c6 1774
84d17192 1775 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1776 goto out2;
1da177e4 1777
ccd48bc7 1778 if (recurse)
87129cc0 1779 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1780 else
87129cc0 1781 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1782
be34d1a3
DH
1783 if (IS_ERR(mnt)) {
1784 err = PTR_ERR(mnt);
e9c5d8a5 1785 goto out2;
be34d1a3 1786 }
ccd48bc7 1787
84d17192 1788 err = graft_tree(mnt, parent, mp);
ccd48bc7 1789 if (err) {
962830df 1790 br_write_lock(&vfsmount_lock);
328e6d90 1791 umount_tree(mnt, 0);
962830df 1792 br_write_unlock(&vfsmount_lock);
5b83d2c5 1793 }
b12cea91 1794out2:
84d17192 1795 unlock_mount(mp);
ccd48bc7 1796out:
2d92ab3c 1797 path_put(&old_path);
1da177e4
LT
1798 return err;
1799}
1800
2e4b7fcd
DH
1801static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1802{
1803 int error = 0;
1804 int readonly_request = 0;
1805
1806 if (ms_flags & MS_RDONLY)
1807 readonly_request = 1;
1808 if (readonly_request == __mnt_is_readonly(mnt))
1809 return 0;
1810
1811 if (readonly_request)
83adc753 1812 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1813 else
83adc753 1814 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1815 return error;
1816}
1817
1da177e4
LT
1818/*
1819 * change filesystem flags. dir should be a physical root of filesystem.
1820 * If you've mounted a non-root directory somewhere and want to do remount
1821 * on it - tough luck.
1822 */
0a0d8a46 1823static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1824 void *data)
1825{
1826 int err;
2d92ab3c 1827 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1828 struct mount *mnt = real_mount(path->mnt);
1da177e4 1829
143c8c91 1830 if (!check_mnt(mnt))
1da177e4
LT
1831 return -EINVAL;
1832
2d92ab3c 1833 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1834 return -EINVAL;
1835
81d4c13e
EB
1836 /* Don't allow changing of locked mnt flags.
1837 *
1838 * No locks need to be held here while testing the various
1839 * MNT_LOCK flags because those flags can never be cleared
1840 * once they are set.
1841 */
1842 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1843 !(mnt_flags & MNT_READONLY)) {
1844 return -EPERM;
1845 }
187985d9
EB
1846 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1847 !(mnt_flags & MNT_NODEV)) {
2e51590b
EB
1848 /* Was the nodev implicitly added in mount? */
1849 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
1850 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1851 mnt_flags |= MNT_NODEV;
1852 } else {
1853 return -EPERM;
1854 }
187985d9
EB
1855 }
1856 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1857 !(mnt_flags & MNT_NOSUID)) {
1858 return -EPERM;
1859 }
1860 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1861 !(mnt_flags & MNT_NOEXEC)) {
1862 return -EPERM;
1863 }
1864 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1865 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1866 return -EPERM;
1867 }
1868
ff36fe2c
EP
1869 err = security_sb_remount(sb, data);
1870 if (err)
1871 return err;
1872
1da177e4 1873 down_write(&sb->s_umount);
2e4b7fcd 1874 if (flags & MS_BIND)
2d92ab3c 1875 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1876 else if (!capable(CAP_SYS_ADMIN))
1877 err = -EPERM;
c6a20810 1878 else {
27d99302 1879 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
c6a20810
DR
1880 namespace_lock();
1881 br_write_lock(&vfsmount_lock);
1882 propagate_remount(mnt);
1883 br_write_unlock(&vfsmount_lock);
1884 namespace_unlock();
1885 }
7b43a79f 1886 if (!err) {
962830df 1887 br_write_lock(&vfsmount_lock);
8c30f227 1888 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 1889 mnt->mnt.mnt_flags = mnt_flags;
962830df 1890 br_write_unlock(&vfsmount_lock);
7b43a79f 1891 }
1da177e4 1892 up_write(&sb->s_umount);
0e55a7cc 1893 if (!err) {
962830df 1894 br_write_lock(&vfsmount_lock);
143c8c91 1895 touch_mnt_namespace(mnt->mnt_ns);
962830df 1896 br_write_unlock(&vfsmount_lock);
0e55a7cc 1897 }
1da177e4
LT
1898 return err;
1899}
1900
cbbe362c 1901static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1902{
315fc83e 1903 struct mount *p;
909b0a88 1904 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1905 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1906 return 1;
1907 }
1908 return 0;
1909}
1910
808d4e3c 1911static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1912{
2d92ab3c 1913 struct path old_path, parent_path;
676da58d 1914 struct mount *p;
0fb54e50 1915 struct mount *old;
84d17192 1916 struct mountpoint *mp;
57eccb83 1917 int err;
1da177e4
LT
1918 if (!old_name || !*old_name)
1919 return -EINVAL;
2d92ab3c 1920 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1921 if (err)
1922 return err;
1923
84d17192
AV
1924 mp = lock_mount(path);
1925 err = PTR_ERR(mp);
1926 if (IS_ERR(mp))
cc53ce53
DH
1927 goto out;
1928
143c8c91 1929 old = real_mount(old_path.mnt);
fc7be130 1930 p = real_mount(path->mnt);
143c8c91 1931
1da177e4 1932 err = -EINVAL;
fc7be130 1933 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1934 goto out1;
1935
1da177e4 1936 err = -EINVAL;
2d92ab3c 1937 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1938 goto out1;
1da177e4 1939
676da58d 1940 if (!mnt_has_parent(old))
21444403 1941 goto out1;
1da177e4 1942
2d92ab3c
AV
1943 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1944 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1945 goto out1;
1946 /*
1947 * Don't move a mount residing in a shared parent.
1948 */
fc7be130 1949 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1950 goto out1;
9676f0c6
RP
1951 /*
1952 * Don't move a mount tree containing unbindable mounts to a destination
1953 * mount which is shared.
1954 */
fc7be130 1955 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1956 goto out1;
1da177e4 1957 err = -ELOOP;
fc7be130 1958 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1959 if (p == old)
21444403 1960 goto out1;
1da177e4 1961
84d17192 1962 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1963 if (err)
21444403 1964 goto out1;
1da177e4
LT
1965
1966 /* if the mount is moved, it should no longer be expire
1967 * automatically */
6776db3d 1968 list_del_init(&old->mnt_expire);
1da177e4 1969out1:
84d17192 1970 unlock_mount(mp);
1da177e4 1971out:
1da177e4 1972 if (!err)
1a390689 1973 path_put(&parent_path);
2d92ab3c 1974 path_put(&old_path);
1da177e4
LT
1975 return err;
1976}
1977
9d412a43
AV
1978static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1979{
1980 int err;
1981 const char *subtype = strchr(fstype, '.');
1982 if (subtype) {
1983 subtype++;
1984 err = -EINVAL;
1985 if (!subtype[0])
1986 goto err;
1987 } else
1988 subtype = "";
1989
1990 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1991 err = -ENOMEM;
1992 if (!mnt->mnt_sb->s_subtype)
1993 goto err;
1994 return mnt;
1995
1996 err:
1997 mntput(mnt);
1998 return ERR_PTR(err);
1999}
2000
9d412a43
AV
2001/*
2002 * add a mount into a namespace's mount tree
2003 */
95bc5f25 2004static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2005{
84d17192
AV
2006 struct mountpoint *mp;
2007 struct mount *parent;
9d412a43
AV
2008 int err;
2009
2010 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
2011
84d17192
AV
2012 mp = lock_mount(path);
2013 if (IS_ERR(mp))
2014 return PTR_ERR(mp);
9d412a43 2015
84d17192 2016 parent = real_mount(path->mnt);
9d412a43 2017 err = -EINVAL;
84d17192 2018 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2019 /* that's acceptable only for automounts done in private ns */
2020 if (!(mnt_flags & MNT_SHRINKABLE))
2021 goto unlock;
2022 /* ... and for those we'd better have mountpoint still alive */
84d17192 2023 if (!parent->mnt_ns)
156cacb1
AV
2024 goto unlock;
2025 }
9d412a43
AV
2026
2027 /* Refuse the same filesystem on the same mount point */
2028 err = -EBUSY;
95bc5f25 2029 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2030 path->mnt->mnt_root == path->dentry)
2031 goto unlock;
2032
2033 err = -EINVAL;
95bc5f25 2034 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2035 goto unlock;
2036
95bc5f25 2037 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2038 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2039
2040unlock:
84d17192 2041 unlock_mount(mp);
9d412a43
AV
2042 return err;
2043}
b1e75df4 2044
1da177e4
LT
2045/*
2046 * create a new mount for userspace and request it to be added into the
2047 * namespace's tree
2048 */
0c55cfc4 2049static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2050 int mnt_flags, const char *name, void *data)
1da177e4 2051{
0c55cfc4 2052 struct file_system_type *type;
9b40bc90 2053 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2054 struct vfsmount *mnt;
15f9a3f3 2055 int err;
1da177e4 2056
0c55cfc4 2057 if (!fstype)
1da177e4
LT
2058 return -EINVAL;
2059
0c55cfc4
EB
2060 type = get_fs_type(fstype);
2061 if (!type)
2062 return -ENODEV;
2063
2064 if (user_ns != &init_user_ns) {
2065 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2066 put_filesystem(type);
2067 return -EPERM;
2068 }
2069 /* Only in special cases allow devices from mounts
2070 * created outside the initial user namespace.
2071 */
2072 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2073 flags |= MS_NODEV;
187985d9 2074 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2075 }
2076 }
2077
2078 mnt = vfs_kern_mount(type, flags, name, data);
2079 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2080 !mnt->mnt_sb->s_subtype)
2081 mnt = fs_set_subtype(mnt, fstype);
2082
2083 put_filesystem(type);
1da177e4
LT
2084 if (IS_ERR(mnt))
2085 return PTR_ERR(mnt);
2086
95bc5f25 2087 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2088 if (err)
2089 mntput(mnt);
2090 return err;
1da177e4
LT
2091}
2092
19a167af
AV
2093int finish_automount(struct vfsmount *m, struct path *path)
2094{
6776db3d 2095 struct mount *mnt = real_mount(m);
19a167af
AV
2096 int err;
2097 /* The new mount record should have at least 2 refs to prevent it being
2098 * expired before we get a chance to add it
2099 */
6776db3d 2100 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2101
2102 if (m->mnt_sb == path->mnt->mnt_sb &&
2103 m->mnt_root == path->dentry) {
b1e75df4
AV
2104 err = -ELOOP;
2105 goto fail;
19a167af
AV
2106 }
2107
95bc5f25 2108 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2109 if (!err)
2110 return 0;
2111fail:
2112 /* remove m from any expiration list it may be on */
6776db3d 2113 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2114 namespace_lock();
962830df 2115 br_write_lock(&vfsmount_lock);
6776db3d 2116 list_del_init(&mnt->mnt_expire);
962830df 2117 br_write_unlock(&vfsmount_lock);
97216be0 2118 namespace_unlock();
19a167af 2119 }
b1e75df4
AV
2120 mntput(m);
2121 mntput(m);
19a167af
AV
2122 return err;
2123}
2124
ea5b778a
DH
2125/**
2126 * mnt_set_expiry - Put a mount on an expiration list
2127 * @mnt: The mount to list.
2128 * @expiry_list: The list to add the mount to.
2129 */
2130void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2131{
97216be0 2132 namespace_lock();
962830df 2133 br_write_lock(&vfsmount_lock);
ea5b778a 2134
6776db3d 2135 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2136
962830df 2137 br_write_unlock(&vfsmount_lock);
97216be0 2138 namespace_unlock();
ea5b778a
DH
2139}
2140EXPORT_SYMBOL(mnt_set_expiry);
2141
1da177e4
LT
2142/*
2143 * process a list of expirable mountpoints with the intent of discarding any
2144 * mountpoints that aren't in use and haven't been touched since last we came
2145 * here
2146 */
2147void mark_mounts_for_expiry(struct list_head *mounts)
2148{
761d5c38 2149 struct mount *mnt, *next;
1da177e4
LT
2150 LIST_HEAD(graveyard);
2151
2152 if (list_empty(mounts))
2153 return;
2154
97216be0 2155 namespace_lock();
962830df 2156 br_write_lock(&vfsmount_lock);
1da177e4
LT
2157
2158 /* extract from the expiration list every vfsmount that matches the
2159 * following criteria:
2160 * - only referenced by its parent vfsmount
2161 * - still marked for expiry (marked on the last call here; marks are
2162 * cleared by mntput())
2163 */
6776db3d 2164 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2165 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2166 propagate_mount_busy(mnt, 1))
1da177e4 2167 continue;
6776db3d 2168 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2169 }
bcc5c7d2 2170 while (!list_empty(&graveyard)) {
6776db3d 2171 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2172 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2173 umount_tree(mnt, 1);
bcc5c7d2 2174 }
962830df 2175 br_write_unlock(&vfsmount_lock);
3ab6abee 2176 namespace_unlock();
5528f911
TM
2177}
2178
2179EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2180
2181/*
2182 * Ripoff of 'select_parent()'
2183 *
2184 * search the list of submounts for a given mountpoint, and move any
2185 * shrinkable submounts to the 'graveyard' list.
2186 */
692afc31 2187static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2188{
692afc31 2189 struct mount *this_parent = parent;
5528f911
TM
2190 struct list_head *next;
2191 int found = 0;
2192
2193repeat:
6b41d536 2194 next = this_parent->mnt_mounts.next;
5528f911 2195resume:
6b41d536 2196 while (next != &this_parent->mnt_mounts) {
5528f911 2197 struct list_head *tmp = next;
6b41d536 2198 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2199
2200 next = tmp->next;
692afc31 2201 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2202 continue;
5528f911
TM
2203 /*
2204 * Descend a level if the d_mounts list is non-empty.
2205 */
6b41d536 2206 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2207 this_parent = mnt;
2208 goto repeat;
2209 }
1da177e4 2210
1ab59738 2211 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2212 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2213 found++;
2214 }
1da177e4 2215 }
5528f911
TM
2216 /*
2217 * All done at this level ... ascend and resume the search
2218 */
2219 if (this_parent != parent) {
6b41d536 2220 next = this_parent->mnt_child.next;
0714a533 2221 this_parent = this_parent->mnt_parent;
5528f911
TM
2222 goto resume;
2223 }
2224 return found;
2225}
2226
2227/*
2228 * process a list of expirable mountpoints with the intent of discarding any
2229 * submounts of a specific parent mountpoint
99b7db7b
NP
2230 *
2231 * vfsmount_lock must be held for write
5528f911 2232 */
b54b9be7 2233static void shrink_submounts(struct mount *mnt)
5528f911
TM
2234{
2235 LIST_HEAD(graveyard);
761d5c38 2236 struct mount *m;
5528f911 2237
5528f911 2238 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2239 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2240 while (!list_empty(&graveyard)) {
761d5c38 2241 m = list_first_entry(&graveyard, struct mount,
6776db3d 2242 mnt_expire);
143c8c91 2243 touch_mnt_namespace(m->mnt_ns);
328e6d90 2244 umount_tree(m, 1);
bcc5c7d2
AV
2245 }
2246 }
1da177e4
LT
2247}
2248
1da177e4
LT
2249/*
2250 * Some copy_from_user() implementations do not return the exact number of
2251 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2252 * Note that this function differs from copy_from_user() in that it will oops
2253 * on bad values of `to', rather than returning a short copy.
2254 */
b58fed8b
RP
2255static long exact_copy_from_user(void *to, const void __user * from,
2256 unsigned long n)
1da177e4
LT
2257{
2258 char *t = to;
2259 const char __user *f = from;
2260 char c;
2261
2262 if (!access_ok(VERIFY_READ, from, n))
2263 return n;
2264
2265 while (n) {
2266 if (__get_user(c, f)) {
2267 memset(t, 0, n);
2268 break;
2269 }
2270 *t++ = c;
2271 f++;
2272 n--;
2273 }
2274 return n;
2275}
2276
b58fed8b 2277int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2278{
2279 int i;
2280 unsigned long page;
2281 unsigned long size;
b58fed8b 2282
1da177e4
LT
2283 *where = 0;
2284 if (!data)
2285 return 0;
2286
2287 if (!(page = __get_free_page(GFP_KERNEL)))
2288 return -ENOMEM;
2289
2290 /* We only care that *some* data at the address the user
2291 * gave us is valid. Just in case, we'll zero
2292 * the remainder of the page.
2293 */
2294 /* copy_from_user cannot cross TASK_SIZE ! */
2295 size = TASK_SIZE - (unsigned long)data;
2296 if (size > PAGE_SIZE)
2297 size = PAGE_SIZE;
2298
2299 i = size - exact_copy_from_user((void *)page, data, size);
2300 if (!i) {
b58fed8b 2301 free_page(page);
1da177e4
LT
2302 return -EFAULT;
2303 }
2304 if (i != PAGE_SIZE)
2305 memset((char *)page + i, 0, PAGE_SIZE - i);
2306 *where = page;
2307 return 0;
2308}
2309
eca6f534
VN
2310int copy_mount_string(const void __user *data, char **where)
2311{
2312 char *tmp;
2313
2314 if (!data) {
2315 *where = NULL;
2316 return 0;
2317 }
2318
2319 tmp = strndup_user(data, PAGE_SIZE);
2320 if (IS_ERR(tmp))
2321 return PTR_ERR(tmp);
2322
2323 *where = tmp;
2324 return 0;
2325}
2326
1da177e4
LT
2327/*
2328 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2329 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2330 *
2331 * data is a (void *) that can point to any structure up to
2332 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2333 * information (or be NULL).
2334 *
2335 * Pre-0.97 versions of mount() didn't have a flags word.
2336 * When the flags word was introduced its top half was required
2337 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2338 * Therefore, if this magic number is present, it carries no information
2339 * and must be discarded.
2340 */
808d4e3c
AV
2341long do_mount(const char *dev_name, const char *dir_name,
2342 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2343{
2d92ab3c 2344 struct path path;
1da177e4
LT
2345 int retval = 0;
2346 int mnt_flags = 0;
2347
2348 /* Discard magic */
2349 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2350 flags &= ~MS_MGC_MSK;
2351
2352 /* Basic sanity checks */
2353
2354 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2355 return -EINVAL;
1da177e4
LT
2356
2357 if (data_page)
2358 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2359
a27ab9f2
TH
2360 /* ... and get the mountpoint */
2361 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2362 if (retval)
2363 return retval;
2364
2365 retval = security_sb_mount(dev_name, &path,
2366 type_page, flags, data_page);
0d5cadb8
AV
2367 if (!retval && !may_mount())
2368 retval = -EPERM;
a27ab9f2
TH
2369 if (retval)
2370 goto dput_out;
2371
613cbe3d
AK
2372 /* Default to relatime unless overriden */
2373 if (!(flags & MS_NOATIME))
2374 mnt_flags |= MNT_RELATIME;
0a1c01c9 2375
1da177e4
LT
2376 /* Separate the per-mountpoint flags */
2377 if (flags & MS_NOSUID)
2378 mnt_flags |= MNT_NOSUID;
2379 if (flags & MS_NODEV)
2380 mnt_flags |= MNT_NODEV;
2381 if (flags & MS_NOEXEC)
2382 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2383 if (flags & MS_NOATIME)
2384 mnt_flags |= MNT_NOATIME;
2385 if (flags & MS_NODIRATIME)
2386 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2387 if (flags & MS_STRICTATIME)
2388 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2389 if (flags & MS_RDONLY)
2390 mnt_flags |= MNT_READONLY;
fc33a7bb 2391
99dd97b8
EB
2392 /* The default atime for remount is preservation */
2393 if ((flags & MS_REMOUNT) &&
2394 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2395 MS_STRICTATIME)) == 0)) {
2396 mnt_flags &= ~MNT_ATIME_MASK;
2397 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2398 }
2399
7a4dec53 2400 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2401 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2402 MS_STRICTATIME);
1da177e4 2403
1da177e4 2404 if (flags & MS_REMOUNT)
2d92ab3c 2405 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2406 data_page);
2407 else if (flags & MS_BIND)
2d92ab3c 2408 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2409 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2410 retval = do_change_type(&path, flags);
1da177e4 2411 else if (flags & MS_MOVE)
2d92ab3c 2412 retval = do_move_mount(&path, dev_name);
1da177e4 2413 else
2d92ab3c 2414 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2415 dev_name, data_page);
2416dput_out:
2d92ab3c 2417 path_put(&path);
1da177e4
LT
2418 return retval;
2419}
2420
771b1371
EB
2421static void free_mnt_ns(struct mnt_namespace *ns)
2422{
98f842e6 2423 proc_free_inum(ns->proc_inum);
771b1371
EB
2424 put_user_ns(ns->user_ns);
2425 kfree(ns);
2426}
2427
8823c079
EB
2428/*
2429 * Assign a sequence number so we can detect when we attempt to bind
2430 * mount a reference to an older mount namespace into the current
2431 * mount namespace, preventing reference counting loops. A 64bit
2432 * number incrementing at 10Ghz will take 12,427 years to wrap which
2433 * is effectively never, so we can ignore the possibility.
2434 */
2435static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2436
771b1371 2437static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2438{
2439 struct mnt_namespace *new_ns;
98f842e6 2440 int ret;
cf8d2c11
TM
2441
2442 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2443 if (!new_ns)
2444 return ERR_PTR(-ENOMEM);
98f842e6
EB
2445 ret = proc_alloc_inum(&new_ns->proc_inum);
2446 if (ret) {
2447 kfree(new_ns);
2448 return ERR_PTR(ret);
2449 }
8823c079 2450 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2451 atomic_set(&new_ns->count, 1);
2452 new_ns->root = NULL;
2453 INIT_LIST_HEAD(&new_ns->list);
2454 init_waitqueue_head(&new_ns->poll);
2455 new_ns->event = 0;
771b1371 2456 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2457 return new_ns;
2458}
2459
741a2951
JD
2460/*
2461 * Allocate a new namespace structure and populate it with contents
2462 * copied from the namespace of the passed in task structure.
2463 */
e3222c4e 2464static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2465 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2466{
6b3286ed 2467 struct mnt_namespace *new_ns;
7f2da1e7 2468 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2469 struct mount *p, *q;
be08d6d2 2470 struct mount *old = mnt_ns->root;
cb338d06 2471 struct mount *new;
7a472ef4 2472 int copy_flags;
1da177e4 2473
771b1371 2474 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2475 if (IS_ERR(new_ns))
2476 return new_ns;
1da177e4 2477
97216be0 2478 namespace_lock();
1da177e4 2479 /* First pass: copy the tree topology */
7a472ef4
EB
2480 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2481 if (user_ns != mnt_ns->user_ns)
132c94e3 2482 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2483 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2484 if (IS_ERR(new)) {
328e6d90 2485 namespace_unlock();
771b1371 2486 free_mnt_ns(new_ns);
be34d1a3 2487 return ERR_CAST(new);
1da177e4 2488 }
be08d6d2 2489 new_ns->root = new;
962830df 2490 br_write_lock(&vfsmount_lock);
1a4eeaf2 2491 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2492 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2493
2494 /*
2495 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2496 * as belonging to new namespace. We have already acquired a private
2497 * fs_struct, so tsk->fs->lock is not needed.
2498 */
909b0a88 2499 p = old;
cb338d06 2500 q = new;
1da177e4 2501 while (p) {
143c8c91 2502 q->mnt_ns = new_ns;
1da177e4 2503 if (fs) {
315fc83e
AV
2504 if (&p->mnt == fs->root.mnt) {
2505 fs->root.mnt = mntget(&q->mnt);
315fc83e 2506 rootmnt = &p->mnt;
1da177e4 2507 }
315fc83e
AV
2508 if (&p->mnt == fs->pwd.mnt) {
2509 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2510 pwdmnt = &p->mnt;
1da177e4 2511 }
1da177e4 2512 }
909b0a88
AV
2513 p = next_mnt(p, old);
2514 q = next_mnt(q, new);
1da177e4 2515 }
328e6d90 2516 namespace_unlock();
1da177e4 2517
1da177e4 2518 if (rootmnt)
f03c6599 2519 mntput(rootmnt);
1da177e4 2520 if (pwdmnt)
f03c6599 2521 mntput(pwdmnt);
1da177e4 2522
741a2951
JD
2523 return new_ns;
2524}
2525
213dd266 2526struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2527 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2528{
6b3286ed 2529 struct mnt_namespace *new_ns;
741a2951 2530
e3222c4e 2531 BUG_ON(!ns);
6b3286ed 2532 get_mnt_ns(ns);
741a2951
JD
2533
2534 if (!(flags & CLONE_NEWNS))
e3222c4e 2535 return ns;
741a2951 2536
771b1371 2537 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2538
6b3286ed 2539 put_mnt_ns(ns);
e3222c4e 2540 return new_ns;
1da177e4
LT
2541}
2542
cf8d2c11
TM
2543/**
2544 * create_mnt_ns - creates a private namespace and adds a root filesystem
2545 * @mnt: pointer to the new root filesystem mountpoint
2546 */
1a4eeaf2 2547static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2548{
771b1371 2549 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2550 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2551 struct mount *mnt = real_mount(m);
2552 mnt->mnt_ns = new_ns;
be08d6d2 2553 new_ns->root = mnt;
b1983cd8 2554 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2555 } else {
1a4eeaf2 2556 mntput(m);
cf8d2c11
TM
2557 }
2558 return new_ns;
2559}
cf8d2c11 2560
ea441d11
AV
2561struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2562{
2563 struct mnt_namespace *ns;
d31da0f0 2564 struct super_block *s;
ea441d11
AV
2565 struct path path;
2566 int err;
2567
2568 ns = create_mnt_ns(mnt);
2569 if (IS_ERR(ns))
2570 return ERR_CAST(ns);
2571
2572 err = vfs_path_lookup(mnt->mnt_root, mnt,
2573 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2574
2575 put_mnt_ns(ns);
2576
2577 if (err)
2578 return ERR_PTR(err);
2579
2580 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2581 s = path.mnt->mnt_sb;
2582 atomic_inc(&s->s_active);
ea441d11
AV
2583 mntput(path.mnt);
2584 /* lock the sucker */
d31da0f0 2585 down_write(&s->s_umount);
ea441d11
AV
2586 /* ... and return the root of (sub)tree on it */
2587 return path.dentry;
2588}
2589EXPORT_SYMBOL(mount_subtree);
2590
bdc480e3
HC
2591SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2592 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2593{
eca6f534
VN
2594 int ret;
2595 char *kernel_type;
91a27b2a 2596 struct filename *kernel_dir;
eca6f534 2597 char *kernel_dev;
1da177e4 2598 unsigned long data_page;
1da177e4 2599
eca6f534
VN
2600 ret = copy_mount_string(type, &kernel_type);
2601 if (ret < 0)
2602 goto out_type;
1da177e4 2603
eca6f534
VN
2604 kernel_dir = getname(dir_name);
2605 if (IS_ERR(kernel_dir)) {
2606 ret = PTR_ERR(kernel_dir);
2607 goto out_dir;
2608 }
1da177e4 2609
eca6f534
VN
2610 ret = copy_mount_string(dev_name, &kernel_dev);
2611 if (ret < 0)
2612 goto out_dev;
1da177e4 2613
eca6f534
VN
2614 ret = copy_mount_options(data, &data_page);
2615 if (ret < 0)
2616 goto out_data;
1da177e4 2617
91a27b2a 2618 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2619 (void *) data_page);
1da177e4 2620
eca6f534
VN
2621 free_page(data_page);
2622out_data:
2623 kfree(kernel_dev);
2624out_dev:
2625 putname(kernel_dir);
2626out_dir:
2627 kfree(kernel_type);
2628out_type:
2629 return ret;
1da177e4
LT
2630}
2631
afac7cba
AV
2632/*
2633 * Return true if path is reachable from root
2634 *
2635 * namespace_sem or vfsmount_lock is held
2636 */
643822b4 2637bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2638 const struct path *root)
2639{
643822b4 2640 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2641 dentry = mnt->mnt_mountpoint;
0714a533 2642 mnt = mnt->mnt_parent;
afac7cba 2643 }
643822b4 2644 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2645}
2646
2647int path_is_under(struct path *path1, struct path *path2)
2648{
2649 int res;
962830df 2650 br_read_lock(&vfsmount_lock);
643822b4 2651 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2652 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2653 return res;
2654}
2655EXPORT_SYMBOL(path_is_under);
2656
1da177e4
LT
2657/*
2658 * pivot_root Semantics:
2659 * Moves the root file system of the current process to the directory put_old,
2660 * makes new_root as the new root file system of the current process, and sets
2661 * root/cwd of all processes which had them on the current root to new_root.
2662 *
2663 * Restrictions:
2664 * The new_root and put_old must be directories, and must not be on the
2665 * same file system as the current process root. The put_old must be
2666 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2667 * pointed to by put_old must yield the same directory as new_root. No other
2668 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2669 *
4a0d11fa
NB
2670 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2671 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2672 * in this situation.
2673 *
1da177e4
LT
2674 * Notes:
2675 * - we don't move root/cwd if they are not at the root (reason: if something
2676 * cared enough to change them, it's probably wrong to force them elsewhere)
2677 * - it's okay to pick a root that isn't the root of a file system, e.g.
2678 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2679 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2680 * first.
2681 */
3480b257
HC
2682SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2683 const char __user *, put_old)
1da177e4 2684{
2d8f3038 2685 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2686 struct mount *new_mnt, *root_mnt, *old_mnt;
2687 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2688 int error;
2689
9b40bc90 2690 if (!may_mount())
1da177e4
LT
2691 return -EPERM;
2692
2d8f3038 2693 error = user_path_dir(new_root, &new);
1da177e4
LT
2694 if (error)
2695 goto out0;
1da177e4 2696
2d8f3038 2697 error = user_path_dir(put_old, &old);
1da177e4
LT
2698 if (error)
2699 goto out1;
2700
2d8f3038 2701 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2702 if (error)
2703 goto out2;
1da177e4 2704
f7ad3c6b 2705 get_fs_root(current->fs, &root);
84d17192
AV
2706 old_mp = lock_mount(&old);
2707 error = PTR_ERR(old_mp);
2708 if (IS_ERR(old_mp))
b12cea91
AV
2709 goto out3;
2710
1da177e4 2711 error = -EINVAL;
419148da
AV
2712 new_mnt = real_mount(new.mnt);
2713 root_mnt = real_mount(root.mnt);
84d17192
AV
2714 old_mnt = real_mount(old.mnt);
2715 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2716 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2717 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2718 goto out4;
143c8c91 2719 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2720 goto out4;
1da177e4 2721 error = -ENOENT;
f3da392e 2722 if (d_unlinked(new.dentry))
b12cea91 2723 goto out4;
1da177e4 2724 error = -EBUSY;
84d17192 2725 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2726 goto out4; /* loop, on the same file system */
1da177e4 2727 error = -EINVAL;
8c3ee42e 2728 if (root.mnt->mnt_root != root.dentry)
b12cea91 2729 goto out4; /* not a mountpoint */
676da58d 2730 if (!mnt_has_parent(root_mnt))
b12cea91 2731 goto out4; /* not attached */
84d17192 2732 root_mp = root_mnt->mnt_mp;
2d8f3038 2733 if (new.mnt->mnt_root != new.dentry)
b12cea91 2734 goto out4; /* not a mountpoint */
676da58d 2735 if (!mnt_has_parent(new_mnt))
b12cea91 2736 goto out4; /* not attached */
4ac91378 2737 /* make sure we can reach put_old from new_root */
84d17192 2738 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2739 goto out4;
315a75ea
EB
2740 /* make certain new is below the root */
2741 if (!is_path_reachable(new_mnt, new.dentry, &root))
2742 goto out4;
84d17192 2743 root_mp->m_count++; /* pin it so it won't go away */
962830df 2744 br_write_lock(&vfsmount_lock);
419148da
AV
2745 detach_mnt(new_mnt, &parent_path);
2746 detach_mnt(root_mnt, &root_parent);
4ac91378 2747 /* mount old root on put_old */
84d17192 2748 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2749 /* mount new_root on / */
84d17192 2750 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2751 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2752 br_write_unlock(&vfsmount_lock);
2d8f3038 2753 chroot_fs_refs(&root, &new);
84d17192 2754 put_mountpoint(root_mp);
1da177e4 2755 error = 0;
b12cea91 2756out4:
84d17192 2757 unlock_mount(old_mp);
b12cea91
AV
2758 if (!error) {
2759 path_put(&root_parent);
2760 path_put(&parent_path);
2761 }
2762out3:
8c3ee42e 2763 path_put(&root);
b12cea91 2764out2:
2d8f3038 2765 path_put(&old);
1da177e4 2766out1:
2d8f3038 2767 path_put(&new);
1da177e4 2768out0:
1da177e4 2769 return error;
1da177e4
LT
2770}
2771
2772static void __init init_mount_tree(void)
2773{
2774 struct vfsmount *mnt;
6b3286ed 2775 struct mnt_namespace *ns;
ac748a09 2776 struct path root;
0c55cfc4 2777 struct file_system_type *type;
1da177e4 2778
0c55cfc4
EB
2779 type = get_fs_type("rootfs");
2780 if (!type)
2781 panic("Can't find rootfs type");
2782 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2783 put_filesystem(type);
1da177e4
LT
2784 if (IS_ERR(mnt))
2785 panic("Can't create rootfs");
b3e19d92 2786
3b22edc5
TM
2787 ns = create_mnt_ns(mnt);
2788 if (IS_ERR(ns))
1da177e4 2789 panic("Can't allocate initial namespace");
6b3286ed
KK
2790
2791 init_task.nsproxy->mnt_ns = ns;
2792 get_mnt_ns(ns);
2793
be08d6d2
AV
2794 root.mnt = mnt;
2795 root.dentry = mnt->mnt_root;
ac748a09
JB
2796
2797 set_fs_pwd(current->fs, &root);
2798 set_fs_root(current->fs, &root);
1da177e4
LT
2799}
2800
74bf17cf 2801void __init mnt_init(void)
1da177e4 2802{
13f14b4d 2803 unsigned u;
15a67dd8 2804 int err;
1da177e4 2805
390c6843
RP
2806 init_rwsem(&namespace_sem);
2807
7d6fec45 2808 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2809 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2810
b58fed8b 2811 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2812 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2813
84d17192 2814 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2815 panic("Failed to allocate mount hash table\n");
2816
80cdc6da 2817 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2818
2819 for (u = 0; u < HASH_SIZE; u++)
2820 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2821 for (u = 0; u < HASH_SIZE; u++)
2822 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2823
962830df 2824 br_lock_init(&vfsmount_lock);
99b7db7b 2825
15a67dd8
RD
2826 err = sysfs_init();
2827 if (err)
2828 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2829 __func__, err);
00d26666
GKH
2830 fs_kobj = kobject_create_and_add("fs", NULL);
2831 if (!fs_kobj)
8e24eea7 2832 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2833 init_rootfs();
2834 init_mount_tree();
2835}
2836
616511d0 2837void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2838{
d498b25a 2839 if (!atomic_dec_and_test(&ns->count))
616511d0 2840 return;
97216be0 2841 namespace_lock();
962830df 2842 br_write_lock(&vfsmount_lock);
328e6d90 2843 umount_tree(ns->root, 0);
962830df 2844 br_write_unlock(&vfsmount_lock);
3ab6abee 2845 namespace_unlock();
771b1371 2846 free_mnt_ns(ns);
1da177e4 2847}
9d412a43
AV
2848
2849struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2850{
423e0ab0
TC
2851 struct vfsmount *mnt;
2852 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2853 if (!IS_ERR(mnt)) {
2854 /*
2855 * it is a longterm mount, don't release mnt until
2856 * we unmount before file sys is unregistered
2857 */
f7a99c5b 2858 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2859 }
2860 return mnt;
9d412a43
AV
2861}
2862EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2863
2864void kern_unmount(struct vfsmount *mnt)
2865{
2866 /* release long term mount so mount point can be released */
2867 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2868 br_write_lock(&vfsmount_lock);
2869 real_mount(mnt)->mnt_ns = NULL;
2870 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2871 mntput(mnt);
2872 }
2873}
2874EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2875
2876bool our_mnt(struct vfsmount *mnt)
2877{
143c8c91 2878 return check_mnt(real_mount(mnt));
02125a82 2879}
8823c079 2880
3151527e
EB
2881bool current_chrooted(void)
2882{
2883 /* Does the current process have a non-standard root */
2884 struct path ns_root;
2885 struct path fs_root;
2886 bool chrooted;
2887
2888 /* Find the namespace root */
2889 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2890 ns_root.dentry = ns_root.mnt->mnt_root;
2891 path_get(&ns_root);
2892 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2893 ;
2894
2895 get_fs_root(current->fs, &fs_root);
2896
2897 chrooted = !path_equal(&fs_root, &ns_root);
2898
2899 path_put(&fs_root);
2900 path_put(&ns_root);
2901
2902 return chrooted;
2903}
2904
87a8ebd6
EB
2905void update_mnt_policy(struct user_namespace *userns)
2906{
2907 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2908 struct mount *mnt;
2909
2910 down_read(&namespace_sem);
2911 list_for_each_entry(mnt, &ns->list, mnt_list) {
2912 switch (mnt->mnt.mnt_sb->s_magic) {
2913 case SYSFS_MAGIC:
2914 userns->may_mount_sysfs = true;
2915 break;
2916 case PROC_SUPER_MAGIC:
2917 userns->may_mount_proc = true;
2918 break;
2919 }
2920 if (userns->may_mount_sysfs && userns->may_mount_proc)
2921 break;
2922 }
2923 up_read(&namespace_sem);
2924}
2925
8823c079
EB
2926static void *mntns_get(struct task_struct *task)
2927{
2928 struct mnt_namespace *ns = NULL;
2929 struct nsproxy *nsproxy;
2930
2931 rcu_read_lock();
2932 nsproxy = task_nsproxy(task);
2933 if (nsproxy) {
2934 ns = nsproxy->mnt_ns;
2935 get_mnt_ns(ns);
2936 }
2937 rcu_read_unlock();
2938
2939 return ns;
2940}
2941
2942static void mntns_put(void *ns)
2943{
2944 put_mnt_ns(ns);
2945}
2946
2947static int mntns_install(struct nsproxy *nsproxy, void *ns)
2948{
2949 struct fs_struct *fs = current->fs;
2950 struct mnt_namespace *mnt_ns = ns;
2951 struct path root;
2952
0c55cfc4 2953 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2954 !nsown_capable(CAP_SYS_CHROOT) ||
2955 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2956 return -EPERM;
8823c079
EB
2957
2958 if (fs->users != 1)
2959 return -EINVAL;
2960
2961 get_mnt_ns(mnt_ns);
2962 put_mnt_ns(nsproxy->mnt_ns);
2963 nsproxy->mnt_ns = mnt_ns;
2964
2965 /* Find the root */
2966 root.mnt = &mnt_ns->root->mnt;
2967 root.dentry = mnt_ns->root->mnt.mnt_root;
2968 path_get(&root);
2969 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2970 ;
2971
2972 /* Update the pwd and root */
2973 set_fs_pwd(fs, &root);
2974 set_fs_root(fs, &root);
2975
2976 path_put(&root);
2977 return 0;
2978}
2979
98f842e6
EB
2980static unsigned int mntns_inum(void *ns)
2981{
2982 struct mnt_namespace *mnt_ns = ns;
2983 return mnt_ns->proc_inum;
2984}
2985
8823c079
EB
2986const struct proc_ns_operations mntns_operations = {
2987 .name = "mnt",
2988 .type = CLONE_NEWNS,
2989 .get = mntns_get,
2990 .put = mntns_put,
2991 .install = mntns_install,
98f842e6 2992 .inum = mntns_inum,
8823c079 2993};