fs: use RCU in shrink_dentry_list to reduce lock nesting
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
155/*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
1da177e4 158 */
858119e1 159static void dentry_iput(struct dentry * dentry)
31f3e0b3 160 __releases(dentry->d_lock)
b23fb0a6 161 __releases(dcache_inode_lock)
1da177e4
LT
162{
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
b23fb0a6 168 spin_unlock(&dcache_inode_lock);
f805fbda
LT
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
1da177e4
LT
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
b23fb0a6 177 spin_unlock(&dcache_inode_lock);
1da177e4
LT
178 }
179}
180
da3bbdd4 181/*
23044507 182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
183 */
184static void dentry_lru_add(struct dentry *dentry)
185{
a4633357 186 if (list_empty(&dentry->d_lru)) {
23044507 187 spin_lock(&dcache_lru_lock);
a4633357
CH
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 190 dentry_stat.nr_unused++;
23044507 191 spin_unlock(&dcache_lru_lock);
a4633357 192 }
da3bbdd4
KM
193}
194
23044507
NP
195static void __dentry_lru_del(struct dentry *dentry)
196{
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200}
201
da3bbdd4
KM
202static void dentry_lru_del(struct dentry *dentry)
203{
204 if (!list_empty(&dentry->d_lru)) {
23044507
NP
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
208 }
209}
210
a4633357 211static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 212{
23044507 213 spin_lock(&dcache_lru_lock);
a4633357
CH
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 217 dentry_stat.nr_unused++;
a4633357
CH
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 220 }
23044507 221 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
222}
223
d52b9086
MS
224/**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
31f3e0b3 228 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
229 *
230 * If this is the root of the dentry tree, return NULL.
23044507 231 *
b5c84bf6
NP
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
d52b9086 234 */
2fd6b7f5 235static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 236 __releases(dentry->d_lock)
2fd6b7f5 237 __releases(parent->d_lock)
b23fb0a6 238 __releases(dcache_inode_lock)
d52b9086 239{
949854d0 240 dentry->d_parent = NULL;
d52b9086 241 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
242 if (parent)
243 spin_unlock(&parent->d_lock);
d52b9086 244 dentry_iput(dentry);
b7ab39f6
NP
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
d52b9086 249 d_free(dentry);
871c0067 250 return parent;
d52b9086
MS
251}
252
789680d1
NP
253/**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268void __d_drop(struct dentry *dentry)
269{
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276}
277EXPORT_SYMBOL(__d_drop);
278
279void d_drop(struct dentry *dentry)
280{
789680d1
NP
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
789680d1
NP
284}
285EXPORT_SYMBOL(d_drop);
286
1da177e4
LT
287/*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304/*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316void dput(struct dentry *dentry)
317{
2fd6b7f5 318 struct dentry *parent;
1da177e4
LT
319 if (!dentry)
320 return;
321
322repeat:
b7ab39f6 323 if (dentry->d_count == 1)
1da177e4 324 might_sleep();
1da177e4 325 spin_lock(&dentry->d_lock);
61f3dee4
NP
326 BUG_ON(!dentry->d_count);
327 if (dentry->d_count > 1) {
328 dentry->d_count--;
1da177e4 329 spin_unlock(&dentry->d_lock);
1da177e4
LT
330 return;
331 }
332
1da177e4
LT
333 if (dentry->d_op && dentry->d_op->d_delete) {
334 if (dentry->d_op->d_delete(dentry))
61f3dee4 335 goto kill_it;
1da177e4 336 }
265ac902 337
1da177e4
LT
338 /* Unreachable? Get rid of it */
339 if (d_unhashed(dentry))
340 goto kill_it;
265ac902
NP
341
342 /* Otherwise leave it cached and ensure it's on the LRU */
343 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 344 dentry_lru_add(dentry);
265ac902 345
61f3dee4
NP
346 dentry->d_count--;
347 spin_unlock(&dentry->d_lock);
1da177e4
LT
348 return;
349
d52b9086 350kill_it:
61f3dee4
NP
351 if (!spin_trylock(&dcache_inode_lock)) {
352relock:
353 spin_unlock(&dentry->d_lock);
354 cpu_relax();
355 goto repeat;
356 }
357 if (IS_ROOT(dentry))
358 parent = NULL;
359 else
360 parent = dentry->d_parent;
361 if (parent && !spin_trylock(&parent->d_lock)) {
362 spin_unlock(&dcache_inode_lock);
363 goto relock;
364 }
365 dentry->d_count--;
da3bbdd4
KM
366 /* if dentry was on the d_lru list delete it from there */
367 dentry_lru_del(dentry);
61f3dee4
NP
368 /* if it was on the hash (d_delete case), then remove it */
369 __d_drop(dentry);
2fd6b7f5 370 dentry = d_kill(dentry, parent);
d52b9086
MS
371 if (dentry)
372 goto repeat;
1da177e4 373}
ec4f8605 374EXPORT_SYMBOL(dput);
1da177e4
LT
375
376/**
377 * d_invalidate - invalidate a dentry
378 * @dentry: dentry to invalidate
379 *
380 * Try to invalidate the dentry if it turns out to be
381 * possible. If there are other dentries that can be
382 * reached through this one we can't delete it and we
383 * return -EBUSY. On success we return 0.
384 *
385 * no dcache lock.
386 */
387
388int d_invalidate(struct dentry * dentry)
389{
390 /*
391 * If it's already been dropped, return OK.
392 */
da502956 393 spin_lock(&dentry->d_lock);
1da177e4 394 if (d_unhashed(dentry)) {
da502956 395 spin_unlock(&dentry->d_lock);
1da177e4
LT
396 return 0;
397 }
398 /*
399 * Check whether to do a partial shrink_dcache
400 * to get rid of unused child entries.
401 */
402 if (!list_empty(&dentry->d_subdirs)) {
da502956 403 spin_unlock(&dentry->d_lock);
1da177e4 404 shrink_dcache_parent(dentry);
da502956 405 spin_lock(&dentry->d_lock);
1da177e4
LT
406 }
407
408 /*
409 * Somebody else still using it?
410 *
411 * If it's a directory, we can't drop it
412 * for fear of somebody re-populating it
413 * with children (even though dropping it
414 * would make it unreachable from the root,
415 * we might still populate it if it was a
416 * working directory or similar).
417 */
b7ab39f6 418 if (dentry->d_count > 1) {
1da177e4
LT
419 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
420 spin_unlock(&dentry->d_lock);
1da177e4
LT
421 return -EBUSY;
422 }
423 }
424
425 __d_drop(dentry);
426 spin_unlock(&dentry->d_lock);
1da177e4
LT
427 return 0;
428}
ec4f8605 429EXPORT_SYMBOL(d_invalidate);
1da177e4 430
b5c84bf6 431/* This must be called with d_lock held */
dc0474be 432static inline void __dget_dlock(struct dentry *dentry)
23044507 433{
b7ab39f6 434 dentry->d_count++;
23044507
NP
435}
436
dc0474be 437static inline void __dget(struct dentry *dentry)
1da177e4 438{
23044507 439 spin_lock(&dentry->d_lock);
dc0474be 440 __dget_dlock(dentry);
23044507 441 spin_unlock(&dentry->d_lock);
1da177e4
LT
442}
443
b7ab39f6
NP
444struct dentry *dget_parent(struct dentry *dentry)
445{
446 struct dentry *ret;
447
448repeat:
a734eb45
NP
449 /*
450 * Don't need rcu_dereference because we re-check it was correct under
451 * the lock.
452 */
453 rcu_read_lock();
b7ab39f6 454 ret = dentry->d_parent;
a734eb45
NP
455 if (!ret) {
456 rcu_read_unlock();
b7ab39f6
NP
457 goto out;
458 }
a734eb45
NP
459 spin_lock(&ret->d_lock);
460 if (unlikely(ret != dentry->d_parent)) {
461 spin_unlock(&ret->d_lock);
462 rcu_read_unlock();
b7ab39f6
NP
463 goto repeat;
464 }
a734eb45 465 rcu_read_unlock();
b7ab39f6
NP
466 BUG_ON(!ret->d_count);
467 ret->d_count++;
468 spin_unlock(&ret->d_lock);
469out:
b7ab39f6
NP
470 return ret;
471}
472EXPORT_SYMBOL(dget_parent);
473
1da177e4
LT
474/**
475 * d_find_alias - grab a hashed alias of inode
476 * @inode: inode in question
477 * @want_discon: flag, used by d_splice_alias, to request
478 * that only a DISCONNECTED alias be returned.
479 *
480 * If inode has a hashed alias, or is a directory and has any alias,
481 * acquire the reference to alias and return it. Otherwise return NULL.
482 * Notice that if inode is a directory there can be only one alias and
483 * it can be unhashed only if it has no children, or if it is the root
484 * of a filesystem.
485 *
21c0d8fd 486 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 487 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 488 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 489 */
da502956 490static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 491{
da502956 492 struct dentry *alias, *discon_alias;
1da177e4 493
da502956
NP
494again:
495 discon_alias = NULL;
496 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
497 spin_lock(&alias->d_lock);
1da177e4 498 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 499 if (IS_ROOT(alias) &&
da502956 500 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 501 discon_alias = alias;
da502956 502 } else if (!want_discon) {
dc0474be 503 __dget_dlock(alias);
da502956
NP
504 spin_unlock(&alias->d_lock);
505 return alias;
506 }
507 }
508 spin_unlock(&alias->d_lock);
509 }
510 if (discon_alias) {
511 alias = discon_alias;
512 spin_lock(&alias->d_lock);
513 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
514 if (IS_ROOT(alias) &&
515 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 516 __dget_dlock(alias);
da502956 517 spin_unlock(&alias->d_lock);
1da177e4
LT
518 return alias;
519 }
520 }
da502956
NP
521 spin_unlock(&alias->d_lock);
522 goto again;
1da177e4 523 }
da502956 524 return NULL;
1da177e4
LT
525}
526
da502956 527struct dentry *d_find_alias(struct inode *inode)
1da177e4 528{
214fda1f
DH
529 struct dentry *de = NULL;
530
531 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 532 spin_lock(&dcache_inode_lock);
214fda1f 533 de = __d_find_alias(inode, 0);
b23fb0a6 534 spin_unlock(&dcache_inode_lock);
214fda1f 535 }
1da177e4
LT
536 return de;
537}
ec4f8605 538EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
539
540/*
541 * Try to kill dentries associated with this inode.
542 * WARNING: you must own a reference to inode.
543 */
544void d_prune_aliases(struct inode *inode)
545{
0cdca3f9 546 struct dentry *dentry;
1da177e4 547restart:
b23fb0a6 548 spin_lock(&dcache_inode_lock);
0cdca3f9 549 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 550 spin_lock(&dentry->d_lock);
b7ab39f6 551 if (!dentry->d_count) {
dc0474be 552 __dget_dlock(dentry);
1da177e4
LT
553 __d_drop(dentry);
554 spin_unlock(&dentry->d_lock);
b23fb0a6 555 spin_unlock(&dcache_inode_lock);
1da177e4
LT
556 dput(dentry);
557 goto restart;
558 }
559 spin_unlock(&dentry->d_lock);
560 }
b23fb0a6 561 spin_unlock(&dcache_inode_lock);
1da177e4 562}
ec4f8605 563EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
564
565/*
d702ccb3
AM
566 * Throw away a dentry - free the inode, dput the parent. This requires that
567 * the LRU list has already been removed.
568 *
85864e10
MS
569 * Try to prune ancestors as well. This is necessary to prevent
570 * quadratic behavior of shrink_dcache_parent(), but is also expected
571 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 572 */
2fd6b7f5 573static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 574 __releases(dentry->d_lock)
2fd6b7f5 575 __releases(parent->d_lock)
b23fb0a6 576 __releases(dcache_inode_lock)
1da177e4 577{
1da177e4 578 __d_drop(dentry);
2fd6b7f5 579 dentry = d_kill(dentry, parent);
d52b9086
MS
580
581 /*
b5c84bf6 582 * Prune ancestors.
d52b9086 583 */
d52b9086 584 while (dentry) {
89e60548 585relock:
b7ab39f6 586 spin_lock(&dentry->d_lock);
89e60548
NP
587 if (dentry->d_count > 1) {
588 dentry->d_count--;
589 spin_unlock(&dentry->d_lock);
590 return;
591 }
592 if (!spin_trylock(&dcache_inode_lock)) {
593relock2:
594 spin_unlock(&dentry->d_lock);
595 cpu_relax();
596 goto relock;
597 }
598
2fd6b7f5
NP
599 if (IS_ROOT(dentry))
600 parent = NULL;
601 else
602 parent = dentry->d_parent;
603 if (parent && !spin_trylock(&parent->d_lock)) {
b23fb0a6 604 spin_unlock(&dcache_inode_lock);
89e60548 605 goto relock2;
23044507 606 }
89e60548 607 dentry->d_count--;
a4633357 608 dentry_lru_del(dentry);
d52b9086 609 __d_drop(dentry);
2fd6b7f5 610 dentry = d_kill(dentry, parent);
d52b9086 611 }
1da177e4
LT
612}
613
3049cfe2 614static void shrink_dentry_list(struct list_head *list)
1da177e4 615{
da3bbdd4 616 struct dentry *dentry;
da3bbdd4 617
ec33679d
NP
618 rcu_read_lock();
619 for (;;) {
2fd6b7f5
NP
620 struct dentry *parent;
621
ec33679d
NP
622 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
623 if (&dentry->d_lru == list)
624 break; /* empty */
625 spin_lock(&dentry->d_lock);
626 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
627 spin_unlock(&dentry->d_lock);
23044507
NP
628 continue;
629 }
630
1da177e4
LT
631 /*
632 * We found an inuse dentry which was not removed from
da3bbdd4
KM
633 * the LRU because of laziness during lookup. Do not free
634 * it - just keep it off the LRU list.
1da177e4 635 */
b7ab39f6 636 if (dentry->d_count) {
ec33679d 637 dentry_lru_del(dentry);
da3bbdd4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 continue;
640 }
ec33679d 641
be182bff 642 if (!spin_trylock(&dcache_inode_lock)) {
ec33679d 643relock:
be182bff 644 spin_unlock(&dentry->d_lock);
ec33679d
NP
645 cpu_relax();
646 continue;
be182bff 647 }
2fd6b7f5
NP
648 if (IS_ROOT(dentry))
649 parent = NULL;
650 else
651 parent = dentry->d_parent;
652 if (parent && !spin_trylock(&parent->d_lock)) {
be182bff 653 spin_unlock(&dcache_inode_lock);
ec33679d 654 goto relock;
2fd6b7f5 655 }
ec33679d 656 dentry_lru_del(dentry);
23044507 657
ec33679d 658 rcu_read_unlock();
2fd6b7f5 659 prune_one_dentry(dentry, parent);
ec33679d 660 rcu_read_lock();
da3bbdd4 661 }
ec33679d 662 rcu_read_unlock();
3049cfe2
CH
663}
664
665/**
666 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
667 * @sb: superblock to shrink dentry LRU.
668 * @count: number of entries to prune
669 * @flags: flags to control the dentry processing
670 *
671 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
672 */
673static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
674{
675 /* called from prune_dcache() and shrink_dcache_parent() */
676 struct dentry *dentry;
677 LIST_HEAD(referenced);
678 LIST_HEAD(tmp);
679 int cnt = *count;
680
23044507
NP
681relock:
682 spin_lock(&dcache_lru_lock);
3049cfe2
CH
683 while (!list_empty(&sb->s_dentry_lru)) {
684 dentry = list_entry(sb->s_dentry_lru.prev,
685 struct dentry, d_lru);
686 BUG_ON(dentry->d_sb != sb);
687
23044507
NP
688 if (!spin_trylock(&dentry->d_lock)) {
689 spin_unlock(&dcache_lru_lock);
690 cpu_relax();
691 goto relock;
692 }
693
3049cfe2
CH
694 /*
695 * If we are honouring the DCACHE_REFERENCED flag and the
696 * dentry has this flag set, don't free it. Clear the flag
697 * and put it back on the LRU.
698 */
23044507
NP
699 if (flags & DCACHE_REFERENCED &&
700 dentry->d_flags & DCACHE_REFERENCED) {
701 dentry->d_flags &= ~DCACHE_REFERENCED;
702 list_move(&dentry->d_lru, &referenced);
3049cfe2 703 spin_unlock(&dentry->d_lock);
23044507
NP
704 } else {
705 list_move_tail(&dentry->d_lru, &tmp);
706 spin_unlock(&dentry->d_lock);
707 if (!--cnt)
708 break;
3049cfe2 709 }
ec33679d 710 cond_resched_lock(&dcache_lru_lock);
3049cfe2 711 }
da3bbdd4
KM
712 if (!list_empty(&referenced))
713 list_splice(&referenced, &sb->s_dentry_lru);
23044507 714 spin_unlock(&dcache_lru_lock);
ec33679d
NP
715
716 shrink_dentry_list(&tmp);
717
718 *count = cnt;
da3bbdd4
KM
719}
720
721/**
722 * prune_dcache - shrink the dcache
723 * @count: number of entries to try to free
724 *
725 * Shrink the dcache. This is done when we need more memory, or simply when we
726 * need to unmount something (at which point we need to unuse all dentries).
727 *
728 * This function may fail to free any resources if all the dentries are in use.
729 */
730static void prune_dcache(int count)
731{
dca33252 732 struct super_block *sb, *p = NULL;
da3bbdd4 733 int w_count;
86c8749e 734 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
735 int prune_ratio;
736 int pruned;
737
738 if (unused == 0 || count == 0)
739 return;
da3bbdd4
KM
740 if (count >= unused)
741 prune_ratio = 1;
742 else
743 prune_ratio = unused / count;
744 spin_lock(&sb_lock);
dca33252 745 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
746 if (list_empty(&sb->s_instances))
747 continue;
da3bbdd4 748 if (sb->s_nr_dentry_unused == 0)
1da177e4 749 continue;
da3bbdd4
KM
750 sb->s_count++;
751 /* Now, we reclaim unused dentrins with fairness.
752 * We reclaim them same percentage from each superblock.
753 * We calculate number of dentries to scan on this sb
754 * as follows, but the implementation is arranged to avoid
755 * overflows:
756 * number of dentries to scan on this sb =
757 * count * (number of dentries on this sb /
758 * number of dentries in the machine)
0feae5c4 759 */
da3bbdd4
KM
760 spin_unlock(&sb_lock);
761 if (prune_ratio != 1)
762 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
763 else
764 w_count = sb->s_nr_dentry_unused;
765 pruned = w_count;
0feae5c4 766 /*
da3bbdd4
KM
767 * We need to be sure this filesystem isn't being unmounted,
768 * otherwise we could race with generic_shutdown_super(), and
769 * end up holding a reference to an inode while the filesystem
770 * is unmounted. So we try to get s_umount, and make sure
771 * s_root isn't NULL.
0feae5c4 772 */
da3bbdd4
KM
773 if (down_read_trylock(&sb->s_umount)) {
774 if ((sb->s_root != NULL) &&
775 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
776 __shrink_dcache_sb(sb, &w_count,
777 DCACHE_REFERENCED);
778 pruned -= w_count;
0feae5c4 779 }
da3bbdd4 780 up_read(&sb->s_umount);
0feae5c4 781 }
da3bbdd4 782 spin_lock(&sb_lock);
dca33252
AV
783 if (p)
784 __put_super(p);
da3bbdd4 785 count -= pruned;
dca33252 786 p = sb;
79893c17
AV
787 /* more work left to do? */
788 if (count <= 0)
789 break;
1da177e4 790 }
dca33252
AV
791 if (p)
792 __put_super(p);
da3bbdd4 793 spin_unlock(&sb_lock);
1da177e4
LT
794}
795
1da177e4
LT
796/**
797 * shrink_dcache_sb - shrink dcache for a superblock
798 * @sb: superblock
799 *
3049cfe2
CH
800 * Shrink the dcache for the specified super block. This is used to free
801 * the dcache before unmounting a file system.
1da177e4 802 */
3049cfe2 803void shrink_dcache_sb(struct super_block *sb)
1da177e4 804{
3049cfe2
CH
805 LIST_HEAD(tmp);
806
23044507 807 spin_lock(&dcache_lru_lock);
3049cfe2
CH
808 while (!list_empty(&sb->s_dentry_lru)) {
809 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 810 spin_unlock(&dcache_lru_lock);
3049cfe2 811 shrink_dentry_list(&tmp);
ec33679d 812 spin_lock(&dcache_lru_lock);
3049cfe2 813 }
23044507 814 spin_unlock(&dcache_lru_lock);
1da177e4 815}
ec4f8605 816EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 817
c636ebdb
DH
818/*
819 * destroy a single subtree of dentries for unmount
820 * - see the comments on shrink_dcache_for_umount() for a description of the
821 * locking
822 */
823static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
824{
825 struct dentry *parent;
f8713576 826 unsigned detached = 0;
c636ebdb
DH
827
828 BUG_ON(!IS_ROOT(dentry));
829
830 /* detach this root from the system */
23044507 831 spin_lock(&dentry->d_lock);
a4633357 832 dentry_lru_del(dentry);
c636ebdb 833 __d_drop(dentry);
da502956 834 spin_unlock(&dentry->d_lock);
c636ebdb
DH
835
836 for (;;) {
837 /* descend to the first leaf in the current subtree */
838 while (!list_empty(&dentry->d_subdirs)) {
839 struct dentry *loop;
840
841 /* this is a branch with children - detach all of them
842 * from the system in one go */
2fd6b7f5 843 spin_lock(&dentry->d_lock);
c636ebdb
DH
844 list_for_each_entry(loop, &dentry->d_subdirs,
845 d_u.d_child) {
2fd6b7f5
NP
846 spin_lock_nested(&loop->d_lock,
847 DENTRY_D_LOCK_NESTED);
a4633357 848 dentry_lru_del(loop);
c636ebdb 849 __d_drop(loop);
da502956 850 spin_unlock(&loop->d_lock);
c636ebdb 851 }
2fd6b7f5 852 spin_unlock(&dentry->d_lock);
c636ebdb
DH
853
854 /* move to the first child */
855 dentry = list_entry(dentry->d_subdirs.next,
856 struct dentry, d_u.d_child);
857 }
858
859 /* consume the dentries from this leaf up through its parents
860 * until we find one with children or run out altogether */
861 do {
862 struct inode *inode;
863
b7ab39f6 864 if (dentry->d_count != 0) {
c636ebdb
DH
865 printk(KERN_ERR
866 "BUG: Dentry %p{i=%lx,n=%s}"
867 " still in use (%d)"
868 " [unmount of %s %s]\n",
869 dentry,
870 dentry->d_inode ?
871 dentry->d_inode->i_ino : 0UL,
872 dentry->d_name.name,
b7ab39f6 873 dentry->d_count,
c636ebdb
DH
874 dentry->d_sb->s_type->name,
875 dentry->d_sb->s_id);
876 BUG();
877 }
878
2fd6b7f5 879 if (IS_ROOT(dentry)) {
c636ebdb 880 parent = NULL;
2fd6b7f5
NP
881 list_del(&dentry->d_u.d_child);
882 } else {
871c0067 883 parent = dentry->d_parent;
b7ab39f6
NP
884 spin_lock(&parent->d_lock);
885 parent->d_count--;
2fd6b7f5 886 list_del(&dentry->d_u.d_child);
b7ab39f6 887 spin_unlock(&parent->d_lock);
871c0067 888 }
c636ebdb 889
f8713576 890 detached++;
c636ebdb
DH
891
892 inode = dentry->d_inode;
893 if (inode) {
894 dentry->d_inode = NULL;
895 list_del_init(&dentry->d_alias);
896 if (dentry->d_op && dentry->d_op->d_iput)
897 dentry->d_op->d_iput(dentry, inode);
898 else
899 iput(inode);
900 }
901
902 d_free(dentry);
903
904 /* finished when we fall off the top of the tree,
905 * otherwise we ascend to the parent and move to the
906 * next sibling if there is one */
907 if (!parent)
312d3ca8 908 return;
c636ebdb 909 dentry = parent;
c636ebdb
DH
910 } while (list_empty(&dentry->d_subdirs));
911
912 dentry = list_entry(dentry->d_subdirs.next,
913 struct dentry, d_u.d_child);
914 }
915}
916
917/*
918 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 919 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
920 * - the superblock is detached from all mountings and open files, so the
921 * dentry trees will not be rearranged by the VFS
922 * - s_umount is write-locked, so the memory pressure shrinker will ignore
923 * any dentries belonging to this superblock that it comes across
924 * - the filesystem itself is no longer permitted to rearrange the dentries
925 * in this superblock
926 */
927void shrink_dcache_for_umount(struct super_block *sb)
928{
929 struct dentry *dentry;
930
931 if (down_read_trylock(&sb->s_umount))
932 BUG();
933
934 dentry = sb->s_root;
935 sb->s_root = NULL;
b7ab39f6
NP
936 spin_lock(&dentry->d_lock);
937 dentry->d_count--;
938 spin_unlock(&dentry->d_lock);
c636ebdb
DH
939 shrink_dcache_for_umount_subtree(dentry);
940
941 while (!hlist_empty(&sb->s_anon)) {
942 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
943 shrink_dcache_for_umount_subtree(dentry);
944 }
945}
946
1da177e4
LT
947/*
948 * Search for at least 1 mount point in the dentry's subdirs.
949 * We descend to the next level whenever the d_subdirs
950 * list is non-empty and continue searching.
951 */
952
953/**
954 * have_submounts - check for mounts over a dentry
955 * @parent: dentry to check.
956 *
957 * Return true if the parent or its subdirectories contain
958 * a mount point
959 */
1da177e4
LT
960int have_submounts(struct dentry *parent)
961{
949854d0 962 struct dentry *this_parent;
1da177e4 963 struct list_head *next;
949854d0 964 unsigned seq;
58db63d0 965 int locked = 0;
949854d0 966
949854d0 967 seq = read_seqbegin(&rename_lock);
58db63d0
NP
968again:
969 this_parent = parent;
1da177e4 970
1da177e4
LT
971 if (d_mountpoint(parent))
972 goto positive;
2fd6b7f5 973 spin_lock(&this_parent->d_lock);
1da177e4
LT
974repeat:
975 next = this_parent->d_subdirs.next;
976resume:
977 while (next != &this_parent->d_subdirs) {
978 struct list_head *tmp = next;
5160ee6f 979 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 980 next = tmp->next;
2fd6b7f5
NP
981
982 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 983 /* Have we found a mount point ? */
2fd6b7f5
NP
984 if (d_mountpoint(dentry)) {
985 spin_unlock(&dentry->d_lock);
986 spin_unlock(&this_parent->d_lock);
1da177e4 987 goto positive;
2fd6b7f5 988 }
1da177e4 989 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
990 spin_unlock(&this_parent->d_lock);
991 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 992 this_parent = dentry;
2fd6b7f5 993 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
994 goto repeat;
995 }
2fd6b7f5 996 spin_unlock(&dentry->d_lock);
1da177e4
LT
997 }
998 /*
999 * All done at this level ... ascend and resume the search.
1000 */
1001 if (this_parent != parent) {
949854d0
NP
1002 struct dentry *tmp;
1003 struct dentry *child;
1004
1005 tmp = this_parent->d_parent;
1006 rcu_read_lock();
2fd6b7f5 1007 spin_unlock(&this_parent->d_lock);
949854d0
NP
1008 child = this_parent;
1009 this_parent = tmp;
2fd6b7f5 1010 spin_lock(&this_parent->d_lock);
949854d0
NP
1011 /* might go back up the wrong parent if we have had a rename
1012 * or deletion */
1013 if (this_parent != child->d_parent ||
58db63d0 1014 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1015 spin_unlock(&this_parent->d_lock);
949854d0
NP
1016 rcu_read_unlock();
1017 goto rename_retry;
1018 }
1019 rcu_read_unlock();
1020 next = child->d_u.d_child.next;
1da177e4
LT
1021 goto resume;
1022 }
2fd6b7f5 1023 spin_unlock(&this_parent->d_lock);
58db63d0 1024 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1025 goto rename_retry;
58db63d0
NP
1026 if (locked)
1027 write_sequnlock(&rename_lock);
1da177e4
LT
1028 return 0; /* No mount points found in tree */
1029positive:
58db63d0 1030 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1031 goto rename_retry;
58db63d0
NP
1032 if (locked)
1033 write_sequnlock(&rename_lock);
1da177e4 1034 return 1;
58db63d0
NP
1035
1036rename_retry:
1037 locked = 1;
1038 write_seqlock(&rename_lock);
1039 goto again;
1da177e4 1040}
ec4f8605 1041EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1042
1043/*
1044 * Search the dentry child list for the specified parent,
1045 * and move any unused dentries to the end of the unused
1046 * list for prune_dcache(). We descend to the next level
1047 * whenever the d_subdirs list is non-empty and continue
1048 * searching.
1049 *
1050 * It returns zero iff there are no unused children,
1051 * otherwise it returns the number of children moved to
1052 * the end of the unused list. This may not be the total
1053 * number of unused children, because select_parent can
1054 * drop the lock and return early due to latency
1055 * constraints.
1056 */
1057static int select_parent(struct dentry * parent)
1058{
949854d0 1059 struct dentry *this_parent;
1da177e4 1060 struct list_head *next;
949854d0 1061 unsigned seq;
1da177e4 1062 int found = 0;
58db63d0 1063 int locked = 0;
1da177e4 1064
949854d0 1065 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1066again:
1067 this_parent = parent;
2fd6b7f5 1068 spin_lock(&this_parent->d_lock);
1da177e4
LT
1069repeat:
1070 next = this_parent->d_subdirs.next;
1071resume:
1072 while (next != &this_parent->d_subdirs) {
1073 struct list_head *tmp = next;
5160ee6f 1074 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1075 next = tmp->next;
1076
2fd6b7f5 1077 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1078
1da177e4
LT
1079 /*
1080 * move only zero ref count dentries to the end
1081 * of the unused list for prune_dcache
1082 */
b7ab39f6 1083 if (!dentry->d_count) {
a4633357 1084 dentry_lru_move_tail(dentry);
1da177e4 1085 found++;
a4633357
CH
1086 } else {
1087 dentry_lru_del(dentry);
1da177e4
LT
1088 }
1089
1090 /*
1091 * We can return to the caller if we have found some (this
1092 * ensures forward progress). We'll be coming back to find
1093 * the rest.
1094 */
2fd6b7f5
NP
1095 if (found && need_resched()) {
1096 spin_unlock(&dentry->d_lock);
1da177e4 1097 goto out;
2fd6b7f5 1098 }
1da177e4
LT
1099
1100 /*
1101 * Descend a level if the d_subdirs list is non-empty.
1102 */
1103 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1104 spin_unlock(&this_parent->d_lock);
1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1106 this_parent = dentry;
2fd6b7f5 1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1108 goto repeat;
1109 }
2fd6b7f5
NP
1110
1111 spin_unlock(&dentry->d_lock);
1da177e4
LT
1112 }
1113 /*
1114 * All done at this level ... ascend and resume the search.
1115 */
1116 if (this_parent != parent) {
2fd6b7f5 1117 struct dentry *tmp;
949854d0
NP
1118 struct dentry *child;
1119
2fd6b7f5 1120 tmp = this_parent->d_parent;
949854d0 1121 rcu_read_lock();
2fd6b7f5 1122 spin_unlock(&this_parent->d_lock);
949854d0 1123 child = this_parent;
2fd6b7f5
NP
1124 this_parent = tmp;
1125 spin_lock(&this_parent->d_lock);
949854d0
NP
1126 /* might go back up the wrong parent if we have had a rename
1127 * or deletion */
1128 if (this_parent != child->d_parent ||
58db63d0 1129 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1130 spin_unlock(&this_parent->d_lock);
949854d0
NP
1131 rcu_read_unlock();
1132 goto rename_retry;
1133 }
1134 rcu_read_unlock();
1135 next = child->d_u.d_child.next;
1da177e4
LT
1136 goto resume;
1137 }
1138out:
2fd6b7f5 1139 spin_unlock(&this_parent->d_lock);
58db63d0 1140 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1141 goto rename_retry;
58db63d0
NP
1142 if (locked)
1143 write_sequnlock(&rename_lock);
1da177e4 1144 return found;
58db63d0
NP
1145
1146rename_retry:
1147 if (found)
1148 return found;
1149 locked = 1;
1150 write_seqlock(&rename_lock);
1151 goto again;
1da177e4
LT
1152}
1153
1154/**
1155 * shrink_dcache_parent - prune dcache
1156 * @parent: parent of entries to prune
1157 *
1158 * Prune the dcache to remove unused children of the parent dentry.
1159 */
1160
1161void shrink_dcache_parent(struct dentry * parent)
1162{
da3bbdd4 1163 struct super_block *sb = parent->d_sb;
1da177e4
LT
1164 int found;
1165
1166 while ((found = select_parent(parent)) != 0)
da3bbdd4 1167 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1168}
ec4f8605 1169EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1170
1da177e4
LT
1171/*
1172 * Scan `nr' dentries and return the number which remain.
1173 *
1174 * We need to avoid reentering the filesystem if the caller is performing a
1175 * GFP_NOFS allocation attempt. One example deadlock is:
1176 *
1177 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1178 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1179 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1180 *
1181 * In this case we return -1 to tell the caller that we baled.
1182 */
7f8275d0 1183static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1184{
1185 if (nr) {
1186 if (!(gfp_mask & __GFP_FS))
1187 return -1;
da3bbdd4 1188 prune_dcache(nr);
1da177e4 1189 }
312d3ca8 1190
86c8749e 1191 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1192}
1193
8e1f936b
RR
1194static struct shrinker dcache_shrinker = {
1195 .shrink = shrink_dcache_memory,
1196 .seeks = DEFAULT_SEEKS,
1197};
1198
1da177e4
LT
1199/**
1200 * d_alloc - allocate a dcache entry
1201 * @parent: parent of entry to allocate
1202 * @name: qstr of the name
1203 *
1204 * Allocates a dentry. It returns %NULL if there is insufficient memory
1205 * available. On a success the dentry is returned. The name passed in is
1206 * copied and the copy passed in may be reused after this call.
1207 */
1208
1209struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1210{
1211 struct dentry *dentry;
1212 char *dname;
1213
e12ba74d 1214 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1215 if (!dentry)
1216 return NULL;
1217
1218 if (name->len > DNAME_INLINE_LEN-1) {
1219 dname = kmalloc(name->len + 1, GFP_KERNEL);
1220 if (!dname) {
1221 kmem_cache_free(dentry_cache, dentry);
1222 return NULL;
1223 }
1224 } else {
1225 dname = dentry->d_iname;
1226 }
1227 dentry->d_name.name = dname;
1228
1229 dentry->d_name.len = name->len;
1230 dentry->d_name.hash = name->hash;
1231 memcpy(dname, name->name, name->len);
1232 dname[name->len] = 0;
1233
b7ab39f6 1234 dentry->d_count = 1;
1da177e4
LT
1235 dentry->d_flags = DCACHE_UNHASHED;
1236 spin_lock_init(&dentry->d_lock);
1237 dentry->d_inode = NULL;
1238 dentry->d_parent = NULL;
1239 dentry->d_sb = NULL;
1240 dentry->d_op = NULL;
1241 dentry->d_fsdata = NULL;
1242 dentry->d_mounted = 0;
1da177e4
LT
1243 INIT_HLIST_NODE(&dentry->d_hash);
1244 INIT_LIST_HEAD(&dentry->d_lru);
1245 INIT_LIST_HEAD(&dentry->d_subdirs);
1246 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1247 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1248
1249 if (parent) {
2fd6b7f5 1250 spin_lock(&parent->d_lock);
89ad485f
NP
1251 /*
1252 * don't need child lock because it is not subject
1253 * to concurrency here
1254 */
dc0474be
NP
1255 __dget_dlock(parent);
1256 dentry->d_parent = parent;
1da177e4 1257 dentry->d_sb = parent->d_sb;
5160ee6f 1258 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5 1259 spin_unlock(&parent->d_lock);
2fd6b7f5 1260 }
1da177e4 1261
3e880fb5 1262 this_cpu_inc(nr_dentry);
312d3ca8 1263
1da177e4
LT
1264 return dentry;
1265}
ec4f8605 1266EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1267
1268struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1269{
1270 struct qstr q;
1271
1272 q.name = name;
1273 q.len = strlen(name);
1274 q.hash = full_name_hash(q.name, q.len);
1275 return d_alloc(parent, &q);
1276}
ef26ca97 1277EXPORT_SYMBOL(d_alloc_name);
1da177e4 1278
360da900
OH
1279static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1280{
b23fb0a6 1281 spin_lock(&dentry->d_lock);
360da900
OH
1282 if (inode)
1283 list_add(&dentry->d_alias, &inode->i_dentry);
1284 dentry->d_inode = inode;
b23fb0a6 1285 spin_unlock(&dentry->d_lock);
360da900
OH
1286 fsnotify_d_instantiate(dentry, inode);
1287}
1288
1da177e4
LT
1289/**
1290 * d_instantiate - fill in inode information for a dentry
1291 * @entry: dentry to complete
1292 * @inode: inode to attach to this dentry
1293 *
1294 * Fill in inode information in the entry.
1295 *
1296 * This turns negative dentries into productive full members
1297 * of society.
1298 *
1299 * NOTE! This assumes that the inode count has been incremented
1300 * (or otherwise set) by the caller to indicate that it is now
1301 * in use by the dcache.
1302 */
1303
1304void d_instantiate(struct dentry *entry, struct inode * inode)
1305{
28133c7b 1306 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1307 spin_lock(&dcache_inode_lock);
360da900 1308 __d_instantiate(entry, inode);
b23fb0a6 1309 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1310 security_d_instantiate(entry, inode);
1311}
ec4f8605 1312EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1313
1314/**
1315 * d_instantiate_unique - instantiate a non-aliased dentry
1316 * @entry: dentry to instantiate
1317 * @inode: inode to attach to this dentry
1318 *
1319 * Fill in inode information in the entry. On success, it returns NULL.
1320 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1321 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1322 *
1323 * Note that in order to avoid conflicts with rename() etc, the caller
1324 * had better be holding the parent directory semaphore.
e866cfa9
OD
1325 *
1326 * This also assumes that the inode count has been incremented
1327 * (or otherwise set) by the caller to indicate that it is now
1328 * in use by the dcache.
1da177e4 1329 */
770bfad8
DH
1330static struct dentry *__d_instantiate_unique(struct dentry *entry,
1331 struct inode *inode)
1da177e4
LT
1332{
1333 struct dentry *alias;
1334 int len = entry->d_name.len;
1335 const char *name = entry->d_name.name;
1336 unsigned int hash = entry->d_name.hash;
1337
770bfad8 1338 if (!inode) {
360da900 1339 __d_instantiate(entry, NULL);
770bfad8
DH
1340 return NULL;
1341 }
1342
1da177e4
LT
1343 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1344 struct qstr *qstr = &alias->d_name;
1345
9abca360
NP
1346 /*
1347 * Don't need alias->d_lock here, because aliases with
1348 * d_parent == entry->d_parent are not subject to name or
1349 * parent changes, because the parent inode i_mutex is held.
1350 */
1da177e4
LT
1351 if (qstr->hash != hash)
1352 continue;
1353 if (alias->d_parent != entry->d_parent)
1354 continue;
1355 if (qstr->len != len)
1356 continue;
1357 if (memcmp(qstr->name, name, len))
1358 continue;
dc0474be 1359 __dget(alias);
1da177e4
LT
1360 return alias;
1361 }
770bfad8 1362
360da900 1363 __d_instantiate(entry, inode);
1da177e4
LT
1364 return NULL;
1365}
770bfad8
DH
1366
1367struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1368{
1369 struct dentry *result;
1370
1371 BUG_ON(!list_empty(&entry->d_alias));
1372
b23fb0a6 1373 spin_lock(&dcache_inode_lock);
770bfad8 1374 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1375 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1376
1377 if (!result) {
1378 security_d_instantiate(entry, inode);
1379 return NULL;
1380 }
1381
1382 BUG_ON(!d_unhashed(result));
1383 iput(inode);
1384 return result;
1385}
1386
1da177e4
LT
1387EXPORT_SYMBOL(d_instantiate_unique);
1388
1389/**
1390 * d_alloc_root - allocate root dentry
1391 * @root_inode: inode to allocate the root for
1392 *
1393 * Allocate a root ("/") dentry for the inode given. The inode is
1394 * instantiated and returned. %NULL is returned if there is insufficient
1395 * memory or the inode passed is %NULL.
1396 */
1397
1398struct dentry * d_alloc_root(struct inode * root_inode)
1399{
1400 struct dentry *res = NULL;
1401
1402 if (root_inode) {
1403 static const struct qstr name = { .name = "/", .len = 1 };
1404
1405 res = d_alloc(NULL, &name);
1406 if (res) {
1407 res->d_sb = root_inode->i_sb;
1408 res->d_parent = res;
1409 d_instantiate(res, root_inode);
1410 }
1411 }
1412 return res;
1413}
ec4f8605 1414EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1415
1416static inline struct hlist_head *d_hash(struct dentry *parent,
1417 unsigned long hash)
1418{
1419 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1420 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1421 return dentry_hashtable + (hash & D_HASHMASK);
1422}
1423
4ea3ada2
CH
1424/**
1425 * d_obtain_alias - find or allocate a dentry for a given inode
1426 * @inode: inode to allocate the dentry for
1427 *
1428 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1429 * similar open by handle operations. The returned dentry may be anonymous,
1430 * or may have a full name (if the inode was already in the cache).
1431 *
1432 * When called on a directory inode, we must ensure that the inode only ever
1433 * has one dentry. If a dentry is found, that is returned instead of
1434 * allocating a new one.
1435 *
1436 * On successful return, the reference to the inode has been transferred
44003728
CH
1437 * to the dentry. In case of an error the reference on the inode is released.
1438 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1439 * be passed in and will be the error will be propagate to the return value,
1440 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1441 */
1442struct dentry *d_obtain_alias(struct inode *inode)
1443{
9308a612
CH
1444 static const struct qstr anonstring = { .name = "" };
1445 struct dentry *tmp;
1446 struct dentry *res;
4ea3ada2
CH
1447
1448 if (!inode)
44003728 1449 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1450 if (IS_ERR(inode))
1451 return ERR_CAST(inode);
1452
9308a612
CH
1453 res = d_find_alias(inode);
1454 if (res)
1455 goto out_iput;
1456
1457 tmp = d_alloc(NULL, &anonstring);
1458 if (!tmp) {
1459 res = ERR_PTR(-ENOMEM);
1460 goto out_iput;
4ea3ada2 1461 }
9308a612
CH
1462 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1463
b5c84bf6 1464
b23fb0a6 1465 spin_lock(&dcache_inode_lock);
9308a612
CH
1466 res = __d_find_alias(inode, 0);
1467 if (res) {
b23fb0a6 1468 spin_unlock(&dcache_inode_lock);
9308a612
CH
1469 dput(tmp);
1470 goto out_iput;
1471 }
1472
1473 /* attach a disconnected dentry */
1474 spin_lock(&tmp->d_lock);
1475 tmp->d_sb = inode->i_sb;
1476 tmp->d_inode = inode;
1477 tmp->d_flags |= DCACHE_DISCONNECTED;
1478 tmp->d_flags &= ~DCACHE_UNHASHED;
1479 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1480 spin_lock(&dcache_hash_lock);
9308a612 1481 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1482 spin_unlock(&dcache_hash_lock);
9308a612 1483 spin_unlock(&tmp->d_lock);
b23fb0a6 1484 spin_unlock(&dcache_inode_lock);
9308a612 1485
9308a612
CH
1486 return tmp;
1487
1488 out_iput:
1489 iput(inode);
1490 return res;
4ea3ada2 1491}
adc48720 1492EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1493
1494/**
1495 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1496 * @inode: the inode which may have a disconnected dentry
1497 * @dentry: a negative dentry which we want to point to the inode.
1498 *
1499 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1500 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1501 * and return it, else simply d_add the inode to the dentry and return NULL.
1502 *
1503 * This is needed in the lookup routine of any filesystem that is exportable
1504 * (via knfsd) so that we can build dcache paths to directories effectively.
1505 *
1506 * If a dentry was found and moved, then it is returned. Otherwise NULL
1507 * is returned. This matches the expected return value of ->lookup.
1508 *
1509 */
1510struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1511{
1512 struct dentry *new = NULL;
1513
21c0d8fd 1514 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1515 spin_lock(&dcache_inode_lock);
1da177e4
LT
1516 new = __d_find_alias(inode, 1);
1517 if (new) {
1518 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1519 spin_unlock(&dcache_inode_lock);
1da177e4 1520 security_d_instantiate(new, inode);
1da177e4
LT
1521 d_move(new, dentry);
1522 iput(inode);
1523 } else {
b5c84bf6 1524 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1525 __d_instantiate(dentry, inode);
b23fb0a6 1526 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1527 security_d_instantiate(dentry, inode);
1528 d_rehash(dentry);
1529 }
1530 } else
1531 d_add(dentry, inode);
1532 return new;
1533}
ec4f8605 1534EXPORT_SYMBOL(d_splice_alias);
1da177e4 1535
9403540c
BN
1536/**
1537 * d_add_ci - lookup or allocate new dentry with case-exact name
1538 * @inode: the inode case-insensitive lookup has found
1539 * @dentry: the negative dentry that was passed to the parent's lookup func
1540 * @name: the case-exact name to be associated with the returned dentry
1541 *
1542 * This is to avoid filling the dcache with case-insensitive names to the
1543 * same inode, only the actual correct case is stored in the dcache for
1544 * case-insensitive filesystems.
1545 *
1546 * For a case-insensitive lookup match and if the the case-exact dentry
1547 * already exists in in the dcache, use it and return it.
1548 *
1549 * If no entry exists with the exact case name, allocate new dentry with
1550 * the exact case, and return the spliced entry.
1551 */
e45b590b 1552struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1553 struct qstr *name)
1554{
1555 int error;
1556 struct dentry *found;
1557 struct dentry *new;
1558
b6520c81
CH
1559 /*
1560 * First check if a dentry matching the name already exists,
1561 * if not go ahead and create it now.
1562 */
9403540c 1563 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1564 if (!found) {
1565 new = d_alloc(dentry->d_parent, name);
1566 if (!new) {
1567 error = -ENOMEM;
1568 goto err_out;
1569 }
b6520c81 1570
9403540c
BN
1571 found = d_splice_alias(inode, new);
1572 if (found) {
1573 dput(new);
1574 return found;
1575 }
1576 return new;
1577 }
b6520c81
CH
1578
1579 /*
1580 * If a matching dentry exists, and it's not negative use it.
1581 *
1582 * Decrement the reference count to balance the iget() done
1583 * earlier on.
1584 */
9403540c
BN
1585 if (found->d_inode) {
1586 if (unlikely(found->d_inode != inode)) {
1587 /* This can't happen because bad inodes are unhashed. */
1588 BUG_ON(!is_bad_inode(inode));
1589 BUG_ON(!is_bad_inode(found->d_inode));
1590 }
9403540c
BN
1591 iput(inode);
1592 return found;
1593 }
b6520c81 1594
9403540c
BN
1595 /*
1596 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1597 * already has a dentry.
9403540c 1598 */
b23fb0a6 1599 spin_lock(&dcache_inode_lock);
b6520c81 1600 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1601 __d_instantiate(found, inode);
b23fb0a6 1602 spin_unlock(&dcache_inode_lock);
9403540c
BN
1603 security_d_instantiate(found, inode);
1604 return found;
1605 }
b6520c81 1606
9403540c 1607 /*
b6520c81
CH
1608 * In case a directory already has a (disconnected) entry grab a
1609 * reference to it, move it in place and use it.
9403540c
BN
1610 */
1611 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dc0474be 1612 __dget(new);
b23fb0a6 1613 spin_unlock(&dcache_inode_lock);
9403540c 1614 security_d_instantiate(found, inode);
9403540c 1615 d_move(new, found);
9403540c 1616 iput(inode);
9403540c 1617 dput(found);
9403540c
BN
1618 return new;
1619
1620err_out:
1621 iput(inode);
1622 return ERR_PTR(error);
1623}
ec4f8605 1624EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1625
1626/**
1627 * d_lookup - search for a dentry
1628 * @parent: parent dentry
1629 * @name: qstr of name we wish to find
b04f784e 1630 * Returns: dentry, or NULL
1da177e4 1631 *
b04f784e
NP
1632 * d_lookup searches the children of the parent dentry for the name in
1633 * question. If the dentry is found its reference count is incremented and the
1634 * dentry is returned. The caller must use dput to free the entry when it has
1635 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1636 */
1da177e4
LT
1637struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1638{
1639 struct dentry * dentry = NULL;
949854d0 1640 unsigned seq;
1da177e4
LT
1641
1642 do {
1643 seq = read_seqbegin(&rename_lock);
1644 dentry = __d_lookup(parent, name);
1645 if (dentry)
1646 break;
1647 } while (read_seqretry(&rename_lock, seq));
1648 return dentry;
1649}
ec4f8605 1650EXPORT_SYMBOL(d_lookup);
1da177e4 1651
b04f784e
NP
1652/*
1653 * __d_lookup - search for a dentry (racy)
1654 * @parent: parent dentry
1655 * @name: qstr of name we wish to find
1656 * Returns: dentry, or NULL
1657 *
1658 * __d_lookup is like d_lookup, however it may (rarely) return a
1659 * false-negative result due to unrelated rename activity.
1660 *
1661 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1662 * however it must be used carefully, eg. with a following d_lookup in
1663 * the case of failure.
1664 *
1665 * __d_lookup callers must be commented.
1666 */
1da177e4
LT
1667struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1668{
1669 unsigned int len = name->len;
1670 unsigned int hash = name->hash;
1671 const unsigned char *str = name->name;
1672 struct hlist_head *head = d_hash(parent,hash);
1673 struct dentry *found = NULL;
1674 struct hlist_node *node;
665a7583 1675 struct dentry *dentry;
1da177e4 1676
b04f784e
NP
1677 /*
1678 * The hash list is protected using RCU.
1679 *
1680 * Take d_lock when comparing a candidate dentry, to avoid races
1681 * with d_move().
1682 *
1683 * It is possible that concurrent renames can mess up our list
1684 * walk here and result in missing our dentry, resulting in the
1685 * false-negative result. d_lookup() protects against concurrent
1686 * renames using rename_lock seqlock.
1687 *
1688 * See Documentation/vfs/dcache-locking.txt for more details.
1689 */
1da177e4
LT
1690 rcu_read_lock();
1691
665a7583 1692 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1693 struct qstr *qstr;
1694
1da177e4
LT
1695 if (dentry->d_name.hash != hash)
1696 continue;
1697 if (dentry->d_parent != parent)
1698 continue;
1699
1700 spin_lock(&dentry->d_lock);
1701
1702 /*
1703 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1704 * changed things. Don't bother checking the hash because
1705 * we're about to compare the whole name anyway.
1da177e4
LT
1706 */
1707 if (dentry->d_parent != parent)
1708 goto next;
1709
d0185c08
LT
1710 /* non-existing due to RCU? */
1711 if (d_unhashed(dentry))
1712 goto next;
1713
1da177e4
LT
1714 /*
1715 * It is safe to compare names since d_move() cannot
1716 * change the qstr (protected by d_lock).
1717 */
1718 qstr = &dentry->d_name;
1719 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1720 if (parent->d_op->d_compare(parent, parent->d_inode,
1721 dentry, dentry->d_inode,
1722 qstr->len, qstr->name, name))
1da177e4
LT
1723 goto next;
1724 } else {
1725 if (qstr->len != len)
1726 goto next;
1727 if (memcmp(qstr->name, str, len))
1728 goto next;
1729 }
1730
b7ab39f6 1731 dentry->d_count++;
d0185c08 1732 found = dentry;
1da177e4
LT
1733 spin_unlock(&dentry->d_lock);
1734 break;
1735next:
1736 spin_unlock(&dentry->d_lock);
1737 }
1738 rcu_read_unlock();
1739
1740 return found;
1741}
1742
3e7e241f
EB
1743/**
1744 * d_hash_and_lookup - hash the qstr then search for a dentry
1745 * @dir: Directory to search in
1746 * @name: qstr of name we wish to find
1747 *
1748 * On hash failure or on lookup failure NULL is returned.
1749 */
1750struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1751{
1752 struct dentry *dentry = NULL;
1753
1754 /*
1755 * Check for a fs-specific hash function. Note that we must
1756 * calculate the standard hash first, as the d_op->d_hash()
1757 * routine may choose to leave the hash value unchanged.
1758 */
1759 name->hash = full_name_hash(name->name, name->len);
1760 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1761 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1762 goto out;
1763 }
1764 dentry = d_lookup(dir, name);
1765out:
1766 return dentry;
1767}
1768
1da177e4 1769/**
786a5e15 1770 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1771 * @dentry: The dentry alleged to be valid child of @dparent
1772 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1773 *
1774 * An insecure source has sent us a dentry, here we verify it and dget() it.
1775 * This is used by ncpfs in its readdir implementation.
1776 * Zero is returned in the dentry is invalid.
786a5e15
NP
1777 *
1778 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1779 */
d3a23e16 1780int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1781{
786a5e15 1782 struct dentry *child;
d3a23e16 1783
2fd6b7f5 1784 spin_lock(&dparent->d_lock);
786a5e15
NP
1785 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1786 if (dentry == child) {
2fd6b7f5 1787 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1788 __dget_dlock(dentry);
2fd6b7f5
NP
1789 spin_unlock(&dentry->d_lock);
1790 spin_unlock(&dparent->d_lock);
1da177e4
LT
1791 return 1;
1792 }
1793 }
2fd6b7f5 1794 spin_unlock(&dparent->d_lock);
786a5e15 1795
1da177e4
LT
1796 return 0;
1797}
ec4f8605 1798EXPORT_SYMBOL(d_validate);
1da177e4
LT
1799
1800/*
1801 * When a file is deleted, we have two options:
1802 * - turn this dentry into a negative dentry
1803 * - unhash this dentry and free it.
1804 *
1805 * Usually, we want to just turn this into
1806 * a negative dentry, but if anybody else is
1807 * currently using the dentry or the inode
1808 * we can't do that and we fall back on removing
1809 * it from the hash queues and waiting for
1810 * it to be deleted later when it has no users
1811 */
1812
1813/**
1814 * d_delete - delete a dentry
1815 * @dentry: The dentry to delete
1816 *
1817 * Turn the dentry into a negative dentry if possible, otherwise
1818 * remove it from the hash queues so it can be deleted later
1819 */
1820
1821void d_delete(struct dentry * dentry)
1822{
7a91bf7f 1823 int isdir = 0;
1da177e4
LT
1824 /*
1825 * Are we the only user?
1826 */
357f8e65 1827again:
1da177e4 1828 spin_lock(&dentry->d_lock);
7a91bf7f 1829 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1830 if (dentry->d_count == 1) {
357f8e65
NP
1831 if (!spin_trylock(&dcache_inode_lock)) {
1832 spin_unlock(&dentry->d_lock);
1833 cpu_relax();
1834 goto again;
1835 }
13e3c5e5 1836 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1837 dentry_iput(dentry);
7a91bf7f 1838 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1839 return;
1840 }
1841
1842 if (!d_unhashed(dentry))
1843 __d_drop(dentry);
1844
1845 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
1846
1847 fsnotify_nameremove(dentry, isdir);
1da177e4 1848}
ec4f8605 1849EXPORT_SYMBOL(d_delete);
1da177e4
LT
1850
1851static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1852{
1853
1854 entry->d_flags &= ~DCACHE_UNHASHED;
1855 hlist_add_head_rcu(&entry->d_hash, list);
1856}
1857
770bfad8
DH
1858static void _d_rehash(struct dentry * entry)
1859{
1860 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1861}
1862
1da177e4
LT
1863/**
1864 * d_rehash - add an entry back to the hash
1865 * @entry: dentry to add to the hash
1866 *
1867 * Adds a dentry to the hash according to its name.
1868 */
1869
1870void d_rehash(struct dentry * entry)
1871{
1da177e4 1872 spin_lock(&entry->d_lock);
789680d1 1873 spin_lock(&dcache_hash_lock);
770bfad8 1874 _d_rehash(entry);
789680d1 1875 spin_unlock(&dcache_hash_lock);
1da177e4 1876 spin_unlock(&entry->d_lock);
1da177e4 1877}
ec4f8605 1878EXPORT_SYMBOL(d_rehash);
1da177e4 1879
fb2d5b86
NP
1880/**
1881 * dentry_update_name_case - update case insensitive dentry with a new name
1882 * @dentry: dentry to be updated
1883 * @name: new name
1884 *
1885 * Update a case insensitive dentry with new case of name.
1886 *
1887 * dentry must have been returned by d_lookup with name @name. Old and new
1888 * name lengths must match (ie. no d_compare which allows mismatched name
1889 * lengths).
1890 *
1891 * Parent inode i_mutex must be held over d_lookup and into this call (to
1892 * keep renames and concurrent inserts, and readdir(2) away).
1893 */
1894void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1895{
1896 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1897 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1898
fb2d5b86
NP
1899 spin_lock(&dentry->d_lock);
1900 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1901 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
1902}
1903EXPORT_SYMBOL(dentry_update_name_case);
1904
1da177e4
LT
1905static void switch_names(struct dentry *dentry, struct dentry *target)
1906{
1907 if (dname_external(target)) {
1908 if (dname_external(dentry)) {
1909 /*
1910 * Both external: swap the pointers
1911 */
9a8d5bb4 1912 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1913 } else {
1914 /*
1915 * dentry:internal, target:external. Steal target's
1916 * storage and make target internal.
1917 */
321bcf92
BF
1918 memcpy(target->d_iname, dentry->d_name.name,
1919 dentry->d_name.len + 1);
1da177e4
LT
1920 dentry->d_name.name = target->d_name.name;
1921 target->d_name.name = target->d_iname;
1922 }
1923 } else {
1924 if (dname_external(dentry)) {
1925 /*
1926 * dentry:external, target:internal. Give dentry's
1927 * storage to target and make dentry internal
1928 */
1929 memcpy(dentry->d_iname, target->d_name.name,
1930 target->d_name.len + 1);
1931 target->d_name.name = dentry->d_name.name;
1932 dentry->d_name.name = dentry->d_iname;
1933 } else {
1934 /*
1935 * Both are internal. Just copy target to dentry
1936 */
1937 memcpy(dentry->d_iname, target->d_name.name,
1938 target->d_name.len + 1);
dc711ca3
AV
1939 dentry->d_name.len = target->d_name.len;
1940 return;
1da177e4
LT
1941 }
1942 }
9a8d5bb4 1943 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1944}
1945
2fd6b7f5
NP
1946static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1947{
1948 /*
1949 * XXXX: do we really need to take target->d_lock?
1950 */
1951 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1952 spin_lock(&target->d_parent->d_lock);
1953 else {
1954 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1955 spin_lock(&dentry->d_parent->d_lock);
1956 spin_lock_nested(&target->d_parent->d_lock,
1957 DENTRY_D_LOCK_NESTED);
1958 } else {
1959 spin_lock(&target->d_parent->d_lock);
1960 spin_lock_nested(&dentry->d_parent->d_lock,
1961 DENTRY_D_LOCK_NESTED);
1962 }
1963 }
1964 if (target < dentry) {
1965 spin_lock_nested(&target->d_lock, 2);
1966 spin_lock_nested(&dentry->d_lock, 3);
1967 } else {
1968 spin_lock_nested(&dentry->d_lock, 2);
1969 spin_lock_nested(&target->d_lock, 3);
1970 }
1971}
1972
1973static void dentry_unlock_parents_for_move(struct dentry *dentry,
1974 struct dentry *target)
1975{
1976 if (target->d_parent != dentry->d_parent)
1977 spin_unlock(&dentry->d_parent->d_lock);
1978 if (target->d_parent != target)
1979 spin_unlock(&target->d_parent->d_lock);
1980}
1981
1da177e4 1982/*
2fd6b7f5
NP
1983 * When switching names, the actual string doesn't strictly have to
1984 * be preserved in the target - because we're dropping the target
1985 * anyway. As such, we can just do a simple memcpy() to copy over
1986 * the new name before we switch.
1987 *
1988 * Note that we have to be a lot more careful about getting the hash
1989 * switched - we have to switch the hash value properly even if it
1990 * then no longer matches the actual (corrupted) string of the target.
1991 * The hash value has to match the hash queue that the dentry is on..
1da177e4 1992 */
9eaef27b 1993/*
b5c84bf6 1994 * d_move - move a dentry
1da177e4
LT
1995 * @dentry: entry to move
1996 * @target: new dentry
1997 *
1998 * Update the dcache to reflect the move of a file name. Negative
1999 * dcache entries should not be moved in this way.
2000 */
b5c84bf6 2001void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2002{
1da177e4
LT
2003 if (!dentry->d_inode)
2004 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2005
2fd6b7f5
NP
2006 BUG_ON(d_ancestor(dentry, target));
2007 BUG_ON(d_ancestor(target, dentry));
2008
1da177e4 2009 write_seqlock(&rename_lock);
2fd6b7f5
NP
2010
2011 dentry_lock_for_move(dentry, target);
1da177e4
LT
2012
2013 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2014 spin_lock(&dcache_hash_lock);
2015 if (!d_unhashed(dentry))
2016 hlist_del_rcu(&dentry->d_hash);
2017 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2018 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2019
2020 /* Unhash the target: dput() will then get rid of it */
2021 __d_drop(target);
2022
5160ee6f
ED
2023 list_del(&dentry->d_u.d_child);
2024 list_del(&target->d_u.d_child);
1da177e4
LT
2025
2026 /* Switch the names.. */
2027 switch_names(dentry, target);
9a8d5bb4 2028 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2029
2030 /* ... and switch the parents */
2031 if (IS_ROOT(dentry)) {
2032 dentry->d_parent = target->d_parent;
2033 target->d_parent = target;
5160ee6f 2034 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2035 } else {
9a8d5bb4 2036 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2037
2038 /* And add them back to the (new) parent lists */
5160ee6f 2039 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2040 }
2041
5160ee6f 2042 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2043
2044 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2045 spin_unlock(&target->d_lock);
c32ccd87 2046 fsnotify_d_move(dentry);
1da177e4
LT
2047 spin_unlock(&dentry->d_lock);
2048 write_sequnlock(&rename_lock);
9eaef27b 2049}
ec4f8605 2050EXPORT_SYMBOL(d_move);
1da177e4 2051
e2761a11
OH
2052/**
2053 * d_ancestor - search for an ancestor
2054 * @p1: ancestor dentry
2055 * @p2: child dentry
2056 *
2057 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2058 * an ancestor of p2, else NULL.
9eaef27b 2059 */
e2761a11 2060struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2061{
2062 struct dentry *p;
2063
871c0067 2064 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2065 if (p->d_parent == p1)
e2761a11 2066 return p;
9eaef27b 2067 }
e2761a11 2068 return NULL;
9eaef27b
TM
2069}
2070
2071/*
2072 * This helper attempts to cope with remotely renamed directories
2073 *
2074 * It assumes that the caller is already holding
b5c84bf6 2075 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2076 *
2077 * Note: If ever the locking in lock_rename() changes, then please
2078 * remember to update this too...
9eaef27b
TM
2079 */
2080static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2081 __releases(dcache_inode_lock)
9eaef27b
TM
2082{
2083 struct mutex *m1 = NULL, *m2 = NULL;
2084 struct dentry *ret;
2085
2086 /* If alias and dentry share a parent, then no extra locks required */
2087 if (alias->d_parent == dentry->d_parent)
2088 goto out_unalias;
2089
2090 /* Check for loops */
2091 ret = ERR_PTR(-ELOOP);
e2761a11 2092 if (d_ancestor(alias, dentry))
9eaef27b
TM
2093 goto out_err;
2094
2095 /* See lock_rename() */
2096 ret = ERR_PTR(-EBUSY);
2097 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2098 goto out_err;
2099 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2100 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2101 goto out_err;
2102 m2 = &alias->d_parent->d_inode->i_mutex;
2103out_unalias:
b5c84bf6 2104 d_move(alias, dentry);
9eaef27b
TM
2105 ret = alias;
2106out_err:
b23fb0a6 2107 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2108 if (m2)
2109 mutex_unlock(m2);
2110 if (m1)
2111 mutex_unlock(m1);
2112 return ret;
2113}
2114
770bfad8
DH
2115/*
2116 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2117 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2118 * returns with anon->d_lock held!
770bfad8
DH
2119 */
2120static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2121{
2122 struct dentry *dparent, *aparent;
2123
2fd6b7f5 2124 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2125
2126 dparent = dentry->d_parent;
2127 aparent = anon->d_parent;
2128
2fd6b7f5
NP
2129 switch_names(dentry, anon);
2130 swap(dentry->d_name.hash, anon->d_name.hash);
2131
770bfad8
DH
2132 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2133 list_del(&dentry->d_u.d_child);
2134 if (!IS_ROOT(dentry))
2135 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2136 else
2137 INIT_LIST_HEAD(&dentry->d_u.d_child);
2138
2139 anon->d_parent = (dparent == dentry) ? anon : dparent;
2140 list_del(&anon->d_u.d_child);
2141 if (!IS_ROOT(anon))
2142 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2143 else
2144 INIT_LIST_HEAD(&anon->d_u.d_child);
2145
2fd6b7f5
NP
2146 dentry_unlock_parents_for_move(anon, dentry);
2147 spin_unlock(&dentry->d_lock);
2148
2149 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2150 anon->d_flags &= ~DCACHE_DISCONNECTED;
2151}
2152
2153/**
2154 * d_materialise_unique - introduce an inode into the tree
2155 * @dentry: candidate dentry
2156 * @inode: inode to bind to the dentry, to which aliases may be attached
2157 *
2158 * Introduces an dentry into the tree, substituting an extant disconnected
2159 * root directory alias in its place if there is one
2160 */
2161struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2162{
9eaef27b 2163 struct dentry *actual;
770bfad8
DH
2164
2165 BUG_ON(!d_unhashed(dentry));
2166
770bfad8
DH
2167 if (!inode) {
2168 actual = dentry;
360da900 2169 __d_instantiate(dentry, NULL);
357f8e65
NP
2170 d_rehash(actual);
2171 goto out_nolock;
770bfad8
DH
2172 }
2173
357f8e65
NP
2174 spin_lock(&dcache_inode_lock);
2175
9eaef27b
TM
2176 if (S_ISDIR(inode->i_mode)) {
2177 struct dentry *alias;
2178
2179 /* Does an aliased dentry already exist? */
2180 alias = __d_find_alias(inode, 0);
2181 if (alias) {
2182 actual = alias;
2183 /* Is this an anonymous mountpoint that we could splice
2184 * into our tree? */
2185 if (IS_ROOT(alias)) {
9eaef27b
TM
2186 __d_materialise_dentry(dentry, alias);
2187 __d_drop(alias);
2188 goto found;
2189 }
2190 /* Nope, but we must(!) avoid directory aliasing */
2191 actual = __d_unalias(dentry, alias);
2192 if (IS_ERR(actual))
2193 dput(alias);
2194 goto out_nolock;
2195 }
770bfad8
DH
2196 }
2197
2198 /* Add a unique reference */
2199 actual = __d_instantiate_unique(dentry, inode);
2200 if (!actual)
2201 actual = dentry;
357f8e65
NP
2202 else
2203 BUG_ON(!d_unhashed(actual));
770bfad8 2204
770bfad8
DH
2205 spin_lock(&actual->d_lock);
2206found:
789680d1 2207 spin_lock(&dcache_hash_lock);
770bfad8 2208 _d_rehash(actual);
789680d1 2209 spin_unlock(&dcache_hash_lock);
770bfad8 2210 spin_unlock(&actual->d_lock);
b23fb0a6 2211 spin_unlock(&dcache_inode_lock);
9eaef27b 2212out_nolock:
770bfad8
DH
2213 if (actual == dentry) {
2214 security_d_instantiate(dentry, inode);
2215 return NULL;
2216 }
2217
2218 iput(inode);
2219 return actual;
770bfad8 2220}
ec4f8605 2221EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2222
cdd16d02 2223static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2224{
2225 *buflen -= namelen;
2226 if (*buflen < 0)
2227 return -ENAMETOOLONG;
2228 *buffer -= namelen;
2229 memcpy(*buffer, str, namelen);
2230 return 0;
2231}
2232
cdd16d02
MS
2233static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2234{
2235 return prepend(buffer, buflen, name->name, name->len);
2236}
2237
1da177e4 2238/**
f2eb6575
MS
2239 * Prepend path string to a buffer
2240 *
9d1bc601
MS
2241 * @path: the dentry/vfsmount to report
2242 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2243 * @buffer: pointer to the end of the buffer
2244 * @buflen: pointer to buffer length
552ce544 2245 *
949854d0 2246 * Caller holds the rename_lock.
9d1bc601
MS
2247 *
2248 * If path is not reachable from the supplied root, then the value of
2249 * root is changed (without modifying refcounts).
1da177e4 2250 */
f2eb6575
MS
2251static int prepend_path(const struct path *path, struct path *root,
2252 char **buffer, int *buflen)
1da177e4 2253{
9d1bc601
MS
2254 struct dentry *dentry = path->dentry;
2255 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2256 bool slash = false;
2257 int error = 0;
6092d048 2258
99b7db7b 2259 br_read_lock(vfsmount_lock);
f2eb6575 2260 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2261 struct dentry * parent;
2262
1da177e4 2263 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2264 /* Global root? */
1da177e4 2265 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2266 goto global_root;
2267 }
2268 dentry = vfsmnt->mnt_mountpoint;
2269 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2270 continue;
2271 }
2272 parent = dentry->d_parent;
2273 prefetch(parent);
9abca360 2274 spin_lock(&dentry->d_lock);
f2eb6575 2275 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2276 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2277 if (!error)
2278 error = prepend(buffer, buflen, "/", 1);
2279 if (error)
2280 break;
2281
2282 slash = true;
1da177e4
LT
2283 dentry = parent;
2284 }
2285
be285c71 2286out:
f2eb6575
MS
2287 if (!error && !slash)
2288 error = prepend(buffer, buflen, "/", 1);
2289
99b7db7b 2290 br_read_unlock(vfsmount_lock);
f2eb6575 2291 return error;
1da177e4
LT
2292
2293global_root:
98dc568b
MS
2294 /*
2295 * Filesystems needing to implement special "root names"
2296 * should do so with ->d_dname()
2297 */
2298 if (IS_ROOT(dentry) &&
2299 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2300 WARN(1, "Root dentry has weird name <%.*s>\n",
2301 (int) dentry->d_name.len, dentry->d_name.name);
2302 }
9d1bc601
MS
2303 root->mnt = vfsmnt;
2304 root->dentry = dentry;
be285c71 2305 goto out;
f2eb6575 2306}
be285c71 2307
f2eb6575
MS
2308/**
2309 * __d_path - return the path of a dentry
2310 * @path: the dentry/vfsmount to report
2311 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2312 * @buf: buffer to return value in
f2eb6575
MS
2313 * @buflen: buffer length
2314 *
ffd1f4ed 2315 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2316 *
2317 * Returns a pointer into the buffer or an error code if the
2318 * path was too long.
2319 *
be148247 2320 * "buflen" should be positive.
f2eb6575
MS
2321 *
2322 * If path is not reachable from the supplied root, then the value of
2323 * root is changed (without modifying refcounts).
2324 */
2325char *__d_path(const struct path *path, struct path *root,
2326 char *buf, int buflen)
2327{
2328 char *res = buf + buflen;
2329 int error;
2330
2331 prepend(&res, &buflen, "\0", 1);
949854d0 2332 write_seqlock(&rename_lock);
f2eb6575 2333 error = prepend_path(path, root, &res, &buflen);
949854d0 2334 write_sequnlock(&rename_lock);
be148247 2335
f2eb6575
MS
2336 if (error)
2337 return ERR_PTR(error);
f2eb6575 2338 return res;
1da177e4
LT
2339}
2340
ffd1f4ed
MS
2341/*
2342 * same as __d_path but appends "(deleted)" for unlinked files.
2343 */
2344static int path_with_deleted(const struct path *path, struct path *root,
2345 char **buf, int *buflen)
2346{
2347 prepend(buf, buflen, "\0", 1);
2348 if (d_unlinked(path->dentry)) {
2349 int error = prepend(buf, buflen, " (deleted)", 10);
2350 if (error)
2351 return error;
2352 }
2353
2354 return prepend_path(path, root, buf, buflen);
2355}
2356
8df9d1a4
MS
2357static int prepend_unreachable(char **buffer, int *buflen)
2358{
2359 return prepend(buffer, buflen, "(unreachable)", 13);
2360}
2361
a03a8a70
JB
2362/**
2363 * d_path - return the path of a dentry
cf28b486 2364 * @path: path to report
a03a8a70
JB
2365 * @buf: buffer to return value in
2366 * @buflen: buffer length
2367 *
2368 * Convert a dentry into an ASCII path name. If the entry has been deleted
2369 * the string " (deleted)" is appended. Note that this is ambiguous.
2370 *
52afeefb
AV
2371 * Returns a pointer into the buffer or an error code if the path was
2372 * too long. Note: Callers should use the returned pointer, not the passed
2373 * in buffer, to use the name! The implementation often starts at an offset
2374 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2375 *
31f3e0b3 2376 * "buflen" should be positive.
a03a8a70 2377 */
20d4fdc1 2378char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2379{
ffd1f4ed 2380 char *res = buf + buflen;
6ac08c39 2381 struct path root;
9d1bc601 2382 struct path tmp;
ffd1f4ed 2383 int error;
1da177e4 2384
c23fbb6b
ED
2385 /*
2386 * We have various synthetic filesystems that never get mounted. On
2387 * these filesystems dentries are never used for lookup purposes, and
2388 * thus don't need to be hashed. They also don't need a name until a
2389 * user wants to identify the object in /proc/pid/fd/. The little hack
2390 * below allows us to generate a name for these objects on demand:
2391 */
cf28b486
JB
2392 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2393 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2394
f7ad3c6b 2395 get_fs_root(current->fs, &root);
949854d0 2396 write_seqlock(&rename_lock);
9d1bc601 2397 tmp = root;
ffd1f4ed
MS
2398 error = path_with_deleted(path, &tmp, &res, &buflen);
2399 if (error)
2400 res = ERR_PTR(error);
949854d0 2401 write_sequnlock(&rename_lock);
6ac08c39 2402 path_put(&root);
1da177e4
LT
2403 return res;
2404}
ec4f8605 2405EXPORT_SYMBOL(d_path);
1da177e4 2406
8df9d1a4
MS
2407/**
2408 * d_path_with_unreachable - return the path of a dentry
2409 * @path: path to report
2410 * @buf: buffer to return value in
2411 * @buflen: buffer length
2412 *
2413 * The difference from d_path() is that this prepends "(unreachable)"
2414 * to paths which are unreachable from the current process' root.
2415 */
2416char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2417{
2418 char *res = buf + buflen;
2419 struct path root;
2420 struct path tmp;
2421 int error;
2422
2423 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2424 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2425
2426 get_fs_root(current->fs, &root);
949854d0 2427 write_seqlock(&rename_lock);
8df9d1a4
MS
2428 tmp = root;
2429 error = path_with_deleted(path, &tmp, &res, &buflen);
2430 if (!error && !path_equal(&tmp, &root))
2431 error = prepend_unreachable(&res, &buflen);
949854d0 2432 write_sequnlock(&rename_lock);
8df9d1a4
MS
2433 path_put(&root);
2434 if (error)
2435 res = ERR_PTR(error);
2436
2437 return res;
2438}
2439
c23fbb6b
ED
2440/*
2441 * Helper function for dentry_operations.d_dname() members
2442 */
2443char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2444 const char *fmt, ...)
2445{
2446 va_list args;
2447 char temp[64];
2448 int sz;
2449
2450 va_start(args, fmt);
2451 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2452 va_end(args);
2453
2454 if (sz > sizeof(temp) || sz > buflen)
2455 return ERR_PTR(-ENAMETOOLONG);
2456
2457 buffer += buflen - sz;
2458 return memcpy(buffer, temp, sz);
2459}
2460
6092d048
RP
2461/*
2462 * Write full pathname from the root of the filesystem into the buffer.
2463 */
ec2447c2 2464static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2465{
2466 char *end = buf + buflen;
2467 char *retval;
2468
6092d048 2469 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2470 if (buflen < 1)
2471 goto Elong;
2472 /* Get '/' right */
2473 retval = end-1;
2474 *retval = '/';
2475
cdd16d02
MS
2476 while (!IS_ROOT(dentry)) {
2477 struct dentry *parent = dentry->d_parent;
9abca360 2478 int error;
6092d048 2479
6092d048 2480 prefetch(parent);
9abca360
NP
2481 spin_lock(&dentry->d_lock);
2482 error = prepend_name(&end, &buflen, &dentry->d_name);
2483 spin_unlock(&dentry->d_lock);
2484 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2485 goto Elong;
2486
2487 retval = end;
2488 dentry = parent;
2489 }
c103135c
AV
2490 return retval;
2491Elong:
2492 return ERR_PTR(-ENAMETOOLONG);
2493}
ec2447c2
NP
2494
2495char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2496{
2497 char *retval;
2498
949854d0 2499 write_seqlock(&rename_lock);
ec2447c2 2500 retval = __dentry_path(dentry, buf, buflen);
949854d0 2501 write_sequnlock(&rename_lock);
ec2447c2
NP
2502
2503 return retval;
2504}
2505EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2506
2507char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2508{
2509 char *p = NULL;
2510 char *retval;
2511
949854d0 2512 write_seqlock(&rename_lock);
c103135c
AV
2513 if (d_unlinked(dentry)) {
2514 p = buf + buflen;
2515 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2516 goto Elong;
2517 buflen++;
2518 }
2519 retval = __dentry_path(dentry, buf, buflen);
949854d0 2520 write_sequnlock(&rename_lock);
c103135c
AV
2521 if (!IS_ERR(retval) && p)
2522 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2523 return retval;
2524Elong:
6092d048
RP
2525 return ERR_PTR(-ENAMETOOLONG);
2526}
2527
1da177e4
LT
2528/*
2529 * NOTE! The user-level library version returns a
2530 * character pointer. The kernel system call just
2531 * returns the length of the buffer filled (which
2532 * includes the ending '\0' character), or a negative
2533 * error value. So libc would do something like
2534 *
2535 * char *getcwd(char * buf, size_t size)
2536 * {
2537 * int retval;
2538 *
2539 * retval = sys_getcwd(buf, size);
2540 * if (retval >= 0)
2541 * return buf;
2542 * errno = -retval;
2543 * return NULL;
2544 * }
2545 */
3cdad428 2546SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2547{
552ce544 2548 int error;
6ac08c39 2549 struct path pwd, root;
552ce544 2550 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2551
2552 if (!page)
2553 return -ENOMEM;
2554
f7ad3c6b 2555 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2556
552ce544 2557 error = -ENOENT;
949854d0 2558 write_seqlock(&rename_lock);
f3da392e 2559 if (!d_unlinked(pwd.dentry)) {
552ce544 2560 unsigned long len;
9d1bc601 2561 struct path tmp = root;
8df9d1a4
MS
2562 char *cwd = page + PAGE_SIZE;
2563 int buflen = PAGE_SIZE;
1da177e4 2564
8df9d1a4
MS
2565 prepend(&cwd, &buflen, "\0", 1);
2566 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2567 write_sequnlock(&rename_lock);
552ce544 2568
8df9d1a4 2569 if (error)
552ce544
LT
2570 goto out;
2571
8df9d1a4
MS
2572 /* Unreachable from current root */
2573 if (!path_equal(&tmp, &root)) {
2574 error = prepend_unreachable(&cwd, &buflen);
2575 if (error)
2576 goto out;
2577 }
2578
552ce544
LT
2579 error = -ERANGE;
2580 len = PAGE_SIZE + page - cwd;
2581 if (len <= size) {
2582 error = len;
2583 if (copy_to_user(buf, cwd, len))
2584 error = -EFAULT;
2585 }
949854d0
NP
2586 } else {
2587 write_sequnlock(&rename_lock);
949854d0 2588 }
1da177e4
LT
2589
2590out:
6ac08c39
JB
2591 path_put(&pwd);
2592 path_put(&root);
1da177e4
LT
2593 free_page((unsigned long) page);
2594 return error;
2595}
2596
2597/*
2598 * Test whether new_dentry is a subdirectory of old_dentry.
2599 *
2600 * Trivially implemented using the dcache structure
2601 */
2602
2603/**
2604 * is_subdir - is new dentry a subdirectory of old_dentry
2605 * @new_dentry: new dentry
2606 * @old_dentry: old dentry
2607 *
2608 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2609 * Returns 0 otherwise.
2610 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2611 */
2612
e2761a11 2613int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2614{
2615 int result;
949854d0 2616 unsigned seq;
1da177e4 2617
e2761a11
OH
2618 if (new_dentry == old_dentry)
2619 return 1;
2620
e2761a11 2621 do {
1da177e4 2622 /* for restarting inner loop in case of seq retry */
1da177e4 2623 seq = read_seqbegin(&rename_lock);
949854d0
NP
2624 /*
2625 * Need rcu_readlock to protect against the d_parent trashing
2626 * due to d_move
2627 */
2628 rcu_read_lock();
e2761a11 2629 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2630 result = 1;
e2761a11
OH
2631 else
2632 result = 0;
949854d0 2633 rcu_read_unlock();
1da177e4 2634 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2635
2636 return result;
2637}
2638
2096f759
AV
2639int path_is_under(struct path *path1, struct path *path2)
2640{
2641 struct vfsmount *mnt = path1->mnt;
2642 struct dentry *dentry = path1->dentry;
2643 int res;
99b7db7b
NP
2644
2645 br_read_lock(vfsmount_lock);
2096f759
AV
2646 if (mnt != path2->mnt) {
2647 for (;;) {
2648 if (mnt->mnt_parent == mnt) {
99b7db7b 2649 br_read_unlock(vfsmount_lock);
2096f759
AV
2650 return 0;
2651 }
2652 if (mnt->mnt_parent == path2->mnt)
2653 break;
2654 mnt = mnt->mnt_parent;
2655 }
2656 dentry = mnt->mnt_mountpoint;
2657 }
2658 res = is_subdir(dentry, path2->dentry);
99b7db7b 2659 br_read_unlock(vfsmount_lock);
2096f759
AV
2660 return res;
2661}
2662EXPORT_SYMBOL(path_is_under);
2663
1da177e4
LT
2664void d_genocide(struct dentry *root)
2665{
949854d0 2666 struct dentry *this_parent;
1da177e4 2667 struct list_head *next;
949854d0 2668 unsigned seq;
58db63d0 2669 int locked = 0;
1da177e4 2670
949854d0 2671 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2672again:
2673 this_parent = root;
2fd6b7f5 2674 spin_lock(&this_parent->d_lock);
1da177e4
LT
2675repeat:
2676 next = this_parent->d_subdirs.next;
2677resume:
2678 while (next != &this_parent->d_subdirs) {
2679 struct list_head *tmp = next;
5160ee6f 2680 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2681 next = tmp->next;
949854d0 2682
da502956
NP
2683 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2684 if (d_unhashed(dentry) || !dentry->d_inode) {
2685 spin_unlock(&dentry->d_lock);
1da177e4 2686 continue;
da502956 2687 }
1da177e4 2688 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2689 spin_unlock(&this_parent->d_lock);
2690 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2691 this_parent = dentry;
2fd6b7f5 2692 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2693 goto repeat;
2694 }
949854d0
NP
2695 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2696 dentry->d_flags |= DCACHE_GENOCIDE;
2697 dentry->d_count--;
2698 }
b7ab39f6 2699 spin_unlock(&dentry->d_lock);
1da177e4
LT
2700 }
2701 if (this_parent != root) {
949854d0
NP
2702 struct dentry *tmp;
2703 struct dentry *child;
2704
2705 tmp = this_parent->d_parent;
2706 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2707 this_parent->d_flags |= DCACHE_GENOCIDE;
2708 this_parent->d_count--;
2709 }
2710 rcu_read_lock();
b7ab39f6 2711 spin_unlock(&this_parent->d_lock);
949854d0
NP
2712 child = this_parent;
2713 this_parent = tmp;
2fd6b7f5 2714 spin_lock(&this_parent->d_lock);
949854d0
NP
2715 /* might go back up the wrong parent if we have had a rename
2716 * or deletion */
2717 if (this_parent != child->d_parent ||
58db63d0 2718 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2719 spin_unlock(&this_parent->d_lock);
949854d0
NP
2720 rcu_read_unlock();
2721 goto rename_retry;
2722 }
2723 rcu_read_unlock();
2724 next = child->d_u.d_child.next;
1da177e4
LT
2725 goto resume;
2726 }
2fd6b7f5 2727 spin_unlock(&this_parent->d_lock);
58db63d0 2728 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2729 goto rename_retry;
58db63d0
NP
2730 if (locked)
2731 write_sequnlock(&rename_lock);
2732 return;
2733
2734rename_retry:
2735 locked = 1;
2736 write_seqlock(&rename_lock);
2737 goto again;
1da177e4
LT
2738}
2739
2740/**
2741 * find_inode_number - check for dentry with name
2742 * @dir: directory to check
2743 * @name: Name to find.
2744 *
2745 * Check whether a dentry already exists for the given name,
2746 * and return the inode number if it has an inode. Otherwise
2747 * 0 is returned.
2748 *
2749 * This routine is used to post-process directory listings for
2750 * filesystems using synthetic inode numbers, and is necessary
2751 * to keep getcwd() working.
2752 */
2753
2754ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2755{
2756 struct dentry * dentry;
2757 ino_t ino = 0;
2758
3e7e241f
EB
2759 dentry = d_hash_and_lookup(dir, name);
2760 if (dentry) {
1da177e4
LT
2761 if (dentry->d_inode)
2762 ino = dentry->d_inode->i_ino;
2763 dput(dentry);
2764 }
1da177e4
LT
2765 return ino;
2766}
ec4f8605 2767EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2768
2769static __initdata unsigned long dhash_entries;
2770static int __init set_dhash_entries(char *str)
2771{
2772 if (!str)
2773 return 0;
2774 dhash_entries = simple_strtoul(str, &str, 0);
2775 return 1;
2776}
2777__setup("dhash_entries=", set_dhash_entries);
2778
2779static void __init dcache_init_early(void)
2780{
2781 int loop;
2782
2783 /* If hashes are distributed across NUMA nodes, defer
2784 * hash allocation until vmalloc space is available.
2785 */
2786 if (hashdist)
2787 return;
2788
2789 dentry_hashtable =
2790 alloc_large_system_hash("Dentry cache",
2791 sizeof(struct hlist_head),
2792 dhash_entries,
2793 13,
2794 HASH_EARLY,
2795 &d_hash_shift,
2796 &d_hash_mask,
2797 0);
2798
2799 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2800 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2801}
2802
74bf17cf 2803static void __init dcache_init(void)
1da177e4
LT
2804{
2805 int loop;
2806
2807 /*
2808 * A constructor could be added for stable state like the lists,
2809 * but it is probably not worth it because of the cache nature
2810 * of the dcache.
2811 */
0a31bd5f
CL
2812 dentry_cache = KMEM_CACHE(dentry,
2813 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2814
8e1f936b 2815 register_shrinker(&dcache_shrinker);
1da177e4
LT
2816
2817 /* Hash may have been set up in dcache_init_early */
2818 if (!hashdist)
2819 return;
2820
2821 dentry_hashtable =
2822 alloc_large_system_hash("Dentry cache",
2823 sizeof(struct hlist_head),
2824 dhash_entries,
2825 13,
2826 0,
2827 &d_hash_shift,
2828 &d_hash_mask,
2829 0);
2830
2831 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2832 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2833}
2834
2835/* SLAB cache for __getname() consumers */
e18b890b 2836struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2837EXPORT_SYMBOL(names_cachep);
1da177e4 2838
1da177e4
LT
2839EXPORT_SYMBOL(d_genocide);
2840
1da177e4
LT
2841void __init vfs_caches_init_early(void)
2842{
2843 dcache_init_early();
2844 inode_init_early();
2845}
2846
2847void __init vfs_caches_init(unsigned long mempages)
2848{
2849 unsigned long reserve;
2850
2851 /* Base hash sizes on available memory, with a reserve equal to
2852 150% of current kernel size */
2853
2854 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2855 mempages -= reserve;
2856
2857 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2858 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2859
74bf17cf
DC
2860 dcache_init();
2861 inode_init();
1da177e4 2862 files_init(mempages);
74bf17cf 2863 mnt_init();
1da177e4
LT
2864 bdev_cache_init();
2865 chrdev_init();
2866}