Saner locking around deactivate_super()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
fa3536cc 38int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
39EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
74c3cbe3 42__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4
LT
43
44EXPORT_SYMBOL(dcache_lock);
45
e18b890b 46static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
47
48#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50/*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58#define D_HASHBITS d_hash_shift
59#define D_HASHMASK d_hash_mask
60
fa3536cc
ED
61static unsigned int d_hash_mask __read_mostly;
62static unsigned int d_hash_shift __read_mostly;
63static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
64
65/* Statistics gathering. */
66struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68};
69
b3423415 70static void __d_free(struct dentry *dentry)
1da177e4 71{
fd217f4d 72 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
76}
77
b3423415
ED
78static void d_callback(struct rcu_head *head)
79{
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
82}
83
1da177e4
LT
84/*
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
87 */
88static void d_free(struct dentry *dentry)
89{
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
b3423415 92 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 93 if (hlist_unhashed(&dentry->d_hash))
b3423415
ED
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
1da177e4
LT
97}
98
99/*
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
1da177e4 102 */
858119e1 103static void dentry_iput(struct dentry * dentry)
31f3e0b3
MS
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
1da177e4
LT
106{
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
f805fbda
LT
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
1da177e4
LT
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
122 }
123}
124
da3bbdd4
KM
125/*
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 */
128static void dentry_lru_add(struct dentry *dentry)
129{
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
133}
134
135static void dentry_lru_add_tail(struct dentry *dentry)
136{
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
140}
141
142static void dentry_lru_del(struct dentry *dentry)
143{
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
148 }
149}
150
151static void dentry_lru_del_init(struct dentry *dentry)
152{
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
157 }
158}
159
d52b9086
MS
160/**
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
163 *
31f3e0b3 164 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
165 *
166 * If this is the root of the dentry tree, return NULL.
167 */
168static struct dentry *d_kill(struct dentry *dentry)
31f3e0b3
MS
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
d52b9086
MS
171{
172 struct dentry *parent;
173
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
871c0067
OH
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
d52b9086 182 d_free(dentry);
871c0067 183 return parent;
d52b9086
MS
184}
185
1da177e4
LT
186/*
187 * This is dput
188 *
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
192 *
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
197 *
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
201 */
202
203/*
204 * dput - release a dentry
205 * @dentry: dentry to release
206 *
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
211 *
212 * no dcache lock, please.
213 */
214
215void dput(struct dentry *dentry)
216{
217 if (!dentry)
218 return;
219
220repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
225
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
231 }
232
233 /*
234 * AV: ->d_delete() is _NOT_ allowed to block now.
235 */
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
239 }
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4 245 dentry_lru_add(dentry);
1da177e4
LT
246 }
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
250
251unhash_it:
252 __d_drop(dentry);
d52b9086 253kill_it:
da3bbdd4
KM
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
d52b9086
MS
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
1da177e4 259}
ec4f8605 260EXPORT_SYMBOL(dput);
1da177e4
LT
261
262/**
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
265 *
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
270 *
271 * no dcache lock.
272 */
273
274int d_invalidate(struct dentry * dentry)
275{
276 /*
277 * If it's already been dropped, return OK.
278 */
279 spin_lock(&dcache_lock);
280 if (d_unhashed(dentry)) {
281 spin_unlock(&dcache_lock);
282 return 0;
283 }
284 /*
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
287 */
288 if (!list_empty(&dentry->d_subdirs)) {
289 spin_unlock(&dcache_lock);
290 shrink_dcache_parent(dentry);
291 spin_lock(&dcache_lock);
292 }
293
294 /*
295 * Somebody else still using it?
296 *
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
303 */
304 spin_lock(&dentry->d_lock);
305 if (atomic_read(&dentry->d_count) > 1) {
306 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 spin_unlock(&dentry->d_lock);
308 spin_unlock(&dcache_lock);
309 return -EBUSY;
310 }
311 }
312
313 __d_drop(dentry);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&dcache_lock);
316 return 0;
317}
ec4f8605 318EXPORT_SYMBOL(d_invalidate);
1da177e4
LT
319
320/* This should be called _only_ with dcache_lock held */
321
322static inline struct dentry * __dget_locked(struct dentry *dentry)
323{
324 atomic_inc(&dentry->d_count);
da3bbdd4 325 dentry_lru_del_init(dentry);
1da177e4
LT
326 return dentry;
327}
328
329struct dentry * dget_locked(struct dentry *dentry)
330{
331 return __dget_locked(dentry);
332}
ec4f8605 333EXPORT_SYMBOL(dget_locked);
1da177e4
LT
334
335/**
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
340 *
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
345 * of a filesystem.
346 *
21c0d8fd 347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 348 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4
LT
350 */
351
352static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353{
354 struct list_head *head, *next, *tmp;
355 struct dentry *alias, *discon_alias=NULL;
356
357 head = &inode->i_dentry;
358 next = inode->i_dentry.next;
359 while (next != head) {
360 tmp = next;
361 next = tmp->next;
362 prefetch(next);
363 alias = list_entry(tmp, struct dentry, d_alias);
364 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd
N
365 if (IS_ROOT(alias) &&
366 (alias->d_flags & DCACHE_DISCONNECTED))
1da177e4
LT
367 discon_alias = alias;
368 else if (!want_discon) {
369 __dget_locked(alias);
370 return alias;
371 }
372 }
373 }
374 if (discon_alias)
375 __dget_locked(discon_alias);
376 return discon_alias;
377}
378
379struct dentry * d_find_alias(struct inode *inode)
380{
214fda1f
DH
381 struct dentry *de = NULL;
382
383 if (!list_empty(&inode->i_dentry)) {
384 spin_lock(&dcache_lock);
385 de = __d_find_alias(inode, 0);
386 spin_unlock(&dcache_lock);
387 }
1da177e4
LT
388 return de;
389}
ec4f8605 390EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
391
392/*
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
395 */
396void d_prune_aliases(struct inode *inode)
397{
0cdca3f9 398 struct dentry *dentry;
1da177e4
LT
399restart:
400 spin_lock(&dcache_lock);
0cdca3f9 401 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4
LT
402 spin_lock(&dentry->d_lock);
403 if (!atomic_read(&dentry->d_count)) {
404 __dget_locked(dentry);
405 __d_drop(dentry);
406 spin_unlock(&dentry->d_lock);
407 spin_unlock(&dcache_lock);
408 dput(dentry);
409 goto restart;
410 }
411 spin_unlock(&dentry->d_lock);
412 }
413 spin_unlock(&dcache_lock);
414}
ec4f8605 415EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
416
417/*
d702ccb3
AM
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
420 *
85864e10
MS
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 424 */
85864e10 425static void prune_one_dentry(struct dentry * dentry)
31f3e0b3
MS
426 __releases(dentry->d_lock)
427 __releases(dcache_lock)
428 __acquires(dcache_lock)
1da177e4 429{
1da177e4 430 __d_drop(dentry);
d52b9086 431 dentry = d_kill(dentry);
d52b9086
MS
432
433 /*
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
436 */
1da177e4 437 spin_lock(&dcache_lock);
d52b9086
MS
438 while (dentry) {
439 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 return;
441
442 if (dentry->d_op && dentry->d_op->d_delete)
443 dentry->d_op->d_delete(dentry);
da3bbdd4 444 dentry_lru_del_init(dentry);
d52b9086
MS
445 __d_drop(dentry);
446 dentry = d_kill(dentry);
447 spin_lock(&dcache_lock);
448 }
1da177e4
LT
449}
450
da3bbdd4
KM
451/*
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
1da177e4 458 */
da3bbdd4 459static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
1da177e4 460{
da3bbdd4
KM
461 LIST_HEAD(referenced);
462 LIST_HEAD(tmp);
463 struct dentry *dentry;
464 int cnt = 0;
1da177e4 465
da3bbdd4
KM
466 BUG_ON(!sb);
467 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 spin_lock(&dcache_lock);
469 if (count != NULL)
470 /* called from prune_dcache() and shrink_dcache_parent() */
471 cnt = *count;
472restart:
473 if (count == NULL)
474 list_splice_init(&sb->s_dentry_lru, &tmp);
475 else {
476 while (!list_empty(&sb->s_dentry_lru)) {
477 dentry = list_entry(sb->s_dentry_lru.prev,
478 struct dentry, d_lru);
479 BUG_ON(dentry->d_sb != sb);
480
481 spin_lock(&dentry->d_lock);
482 /*
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
0feae5c4 486 */
da3bbdd4
KM
487 if ((flags & DCACHE_REFERENCED)
488 && (dentry->d_flags & DCACHE_REFERENCED)) {
489 dentry->d_flags &= ~DCACHE_REFERENCED;
c490d79b 490 list_move(&dentry->d_lru, &referenced);
da3bbdd4
KM
491 spin_unlock(&dentry->d_lock);
492 } else {
493 list_move_tail(&dentry->d_lru, &tmp);
494 spin_unlock(&dentry->d_lock);
495 cnt--;
496 if (!cnt)
497 break;
0feae5c4 498 }
f3c6ba98 499 cond_resched_lock(&dcache_lock);
0feae5c4 500 }
da3bbdd4
KM
501 }
502 while (!list_empty(&tmp)) {
503 dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 dentry_lru_del_init(dentry);
505 spin_lock(&dentry->d_lock);
1da177e4
LT
506 /*
507 * We found an inuse dentry which was not removed from
da3bbdd4
KM
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
1da177e4 510 */
da3bbdd4
KM
511 if (atomic_read(&dentry->d_count)) {
512 spin_unlock(&dentry->d_lock);
1da177e4
LT
513 continue;
514 }
da3bbdd4
KM
515 prune_one_dentry(dentry);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock);
518 }
519 if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 goto restart;
521 if (count != NULL)
522 *count = cnt;
523 if (!list_empty(&referenced))
524 list_splice(&referenced, &sb->s_dentry_lru);
525 spin_unlock(&dcache_lock);
526}
527
528/**
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
531 *
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
534 *
535 * This function may fail to free any resources if all the dentries are in use.
536 */
537static void prune_dcache(int count)
538{
539 struct super_block *sb;
540 int w_count;
541 int unused = dentry_stat.nr_unused;
542 int prune_ratio;
543 int pruned;
544
545 if (unused == 0 || count == 0)
546 return;
547 spin_lock(&dcache_lock);
548restart:
549 if (count >= unused)
550 prune_ratio = 1;
551 else
552 prune_ratio = unused / count;
553 spin_lock(&sb_lock);
554 list_for_each_entry(sb, &super_blocks, s_list) {
555 if (sb->s_nr_dentry_unused == 0)
1da177e4 556 continue;
da3bbdd4
KM
557 sb->s_count++;
558 /* Now, we reclaim unused dentrins with fairness.
559 * We reclaim them same percentage from each superblock.
560 * We calculate number of dentries to scan on this sb
561 * as follows, but the implementation is arranged to avoid
562 * overflows:
563 * number of dentries to scan on this sb =
564 * count * (number of dentries on this sb /
565 * number of dentries in the machine)
0feae5c4 566 */
da3bbdd4
KM
567 spin_unlock(&sb_lock);
568 if (prune_ratio != 1)
569 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
570 else
571 w_count = sb->s_nr_dentry_unused;
572 pruned = w_count;
0feae5c4 573 /*
da3bbdd4
KM
574 * We need to be sure this filesystem isn't being unmounted,
575 * otherwise we could race with generic_shutdown_super(), and
576 * end up holding a reference to an inode while the filesystem
577 * is unmounted. So we try to get s_umount, and make sure
578 * s_root isn't NULL.
0feae5c4 579 */
da3bbdd4
KM
580 if (down_read_trylock(&sb->s_umount)) {
581 if ((sb->s_root != NULL) &&
582 (!list_empty(&sb->s_dentry_lru))) {
583 spin_unlock(&dcache_lock);
584 __shrink_dcache_sb(sb, &w_count,
585 DCACHE_REFERENCED);
586 pruned -= w_count;
587 spin_lock(&dcache_lock);
0feae5c4 588 }
da3bbdd4 589 up_read(&sb->s_umount);
0feae5c4 590 }
da3bbdd4
KM
591 spin_lock(&sb_lock);
592 count -= pruned;
6eac3f93 593 /*
da3bbdd4
KM
594 * restart only when sb is no longer on the list and
595 * we have more work to do.
0feae5c4 596 */
da3bbdd4
KM
597 if (__put_super_and_need_restart(sb) && count > 0) {
598 spin_unlock(&sb_lock);
599 goto restart;
600 }
1da177e4 601 }
da3bbdd4 602 spin_unlock(&sb_lock);
1da177e4
LT
603 spin_unlock(&dcache_lock);
604}
605
1da177e4
LT
606/**
607 * shrink_dcache_sb - shrink dcache for a superblock
608 * @sb: superblock
609 *
610 * Shrink the dcache for the specified super block. This
611 * is used to free the dcache before unmounting a file
612 * system
613 */
1da177e4
LT
614void shrink_dcache_sb(struct super_block * sb)
615{
da3bbdd4 616 __shrink_dcache_sb(sb, NULL, 0);
1da177e4 617}
ec4f8605 618EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 619
c636ebdb
DH
620/*
621 * destroy a single subtree of dentries for unmount
622 * - see the comments on shrink_dcache_for_umount() for a description of the
623 * locking
624 */
625static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
626{
627 struct dentry *parent;
f8713576 628 unsigned detached = 0;
c636ebdb
DH
629
630 BUG_ON(!IS_ROOT(dentry));
631
632 /* detach this root from the system */
633 spin_lock(&dcache_lock);
da3bbdd4 634 dentry_lru_del_init(dentry);
c636ebdb
DH
635 __d_drop(dentry);
636 spin_unlock(&dcache_lock);
637
638 for (;;) {
639 /* descend to the first leaf in the current subtree */
640 while (!list_empty(&dentry->d_subdirs)) {
641 struct dentry *loop;
642
643 /* this is a branch with children - detach all of them
644 * from the system in one go */
645 spin_lock(&dcache_lock);
646 list_for_each_entry(loop, &dentry->d_subdirs,
647 d_u.d_child) {
da3bbdd4 648 dentry_lru_del_init(loop);
c636ebdb
DH
649 __d_drop(loop);
650 cond_resched_lock(&dcache_lock);
651 }
652 spin_unlock(&dcache_lock);
653
654 /* move to the first child */
655 dentry = list_entry(dentry->d_subdirs.next,
656 struct dentry, d_u.d_child);
657 }
658
659 /* consume the dentries from this leaf up through its parents
660 * until we find one with children or run out altogether */
661 do {
662 struct inode *inode;
663
664 if (atomic_read(&dentry->d_count) != 0) {
665 printk(KERN_ERR
666 "BUG: Dentry %p{i=%lx,n=%s}"
667 " still in use (%d)"
668 " [unmount of %s %s]\n",
669 dentry,
670 dentry->d_inode ?
671 dentry->d_inode->i_ino : 0UL,
672 dentry->d_name.name,
673 atomic_read(&dentry->d_count),
674 dentry->d_sb->s_type->name,
675 dentry->d_sb->s_id);
676 BUG();
677 }
678
871c0067 679 if (IS_ROOT(dentry))
c636ebdb 680 parent = NULL;
871c0067
OH
681 else {
682 parent = dentry->d_parent;
c636ebdb 683 atomic_dec(&parent->d_count);
871c0067 684 }
c636ebdb
DH
685
686 list_del(&dentry->d_u.d_child);
f8713576 687 detached++;
c636ebdb
DH
688
689 inode = dentry->d_inode;
690 if (inode) {
691 dentry->d_inode = NULL;
692 list_del_init(&dentry->d_alias);
693 if (dentry->d_op && dentry->d_op->d_iput)
694 dentry->d_op->d_iput(dentry, inode);
695 else
696 iput(inode);
697 }
698
699 d_free(dentry);
700
701 /* finished when we fall off the top of the tree,
702 * otherwise we ascend to the parent and move to the
703 * next sibling if there is one */
704 if (!parent)
f8713576 705 goto out;
c636ebdb
DH
706
707 dentry = parent;
708
709 } while (list_empty(&dentry->d_subdirs));
710
711 dentry = list_entry(dentry->d_subdirs.next,
712 struct dentry, d_u.d_child);
713 }
f8713576
DH
714out:
715 /* several dentries were freed, need to correct nr_dentry */
716 spin_lock(&dcache_lock);
717 dentry_stat.nr_dentry -= detached;
718 spin_unlock(&dcache_lock);
c636ebdb
DH
719}
720
721/*
722 * destroy the dentries attached to a superblock on unmounting
723 * - we don't need to use dentry->d_lock, and only need dcache_lock when
724 * removing the dentry from the system lists and hashes because:
725 * - the superblock is detached from all mountings and open files, so the
726 * dentry trees will not be rearranged by the VFS
727 * - s_umount is write-locked, so the memory pressure shrinker will ignore
728 * any dentries belonging to this superblock that it comes across
729 * - the filesystem itself is no longer permitted to rearrange the dentries
730 * in this superblock
731 */
732void shrink_dcache_for_umount(struct super_block *sb)
733{
734 struct dentry *dentry;
735
736 if (down_read_trylock(&sb->s_umount))
737 BUG();
738
739 dentry = sb->s_root;
740 sb->s_root = NULL;
741 atomic_dec(&dentry->d_count);
742 shrink_dcache_for_umount_subtree(dentry);
743
744 while (!hlist_empty(&sb->s_anon)) {
745 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
746 shrink_dcache_for_umount_subtree(dentry);
747 }
748}
749
1da177e4
LT
750/*
751 * Search for at least 1 mount point in the dentry's subdirs.
752 * We descend to the next level whenever the d_subdirs
753 * list is non-empty and continue searching.
754 */
755
756/**
757 * have_submounts - check for mounts over a dentry
758 * @parent: dentry to check.
759 *
760 * Return true if the parent or its subdirectories contain
761 * a mount point
762 */
763
764int have_submounts(struct dentry *parent)
765{
766 struct dentry *this_parent = parent;
767 struct list_head *next;
768
769 spin_lock(&dcache_lock);
770 if (d_mountpoint(parent))
771 goto positive;
772repeat:
773 next = this_parent->d_subdirs.next;
774resume:
775 while (next != &this_parent->d_subdirs) {
776 struct list_head *tmp = next;
5160ee6f 777 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
778 next = tmp->next;
779 /* Have we found a mount point ? */
780 if (d_mountpoint(dentry))
781 goto positive;
782 if (!list_empty(&dentry->d_subdirs)) {
783 this_parent = dentry;
784 goto repeat;
785 }
786 }
787 /*
788 * All done at this level ... ascend and resume the search.
789 */
790 if (this_parent != parent) {
5160ee6f 791 next = this_parent->d_u.d_child.next;
1da177e4
LT
792 this_parent = this_parent->d_parent;
793 goto resume;
794 }
795 spin_unlock(&dcache_lock);
796 return 0; /* No mount points found in tree */
797positive:
798 spin_unlock(&dcache_lock);
799 return 1;
800}
ec4f8605 801EXPORT_SYMBOL(have_submounts);
1da177e4
LT
802
803/*
804 * Search the dentry child list for the specified parent,
805 * and move any unused dentries to the end of the unused
806 * list for prune_dcache(). We descend to the next level
807 * whenever the d_subdirs list is non-empty and continue
808 * searching.
809 *
810 * It returns zero iff there are no unused children,
811 * otherwise it returns the number of children moved to
812 * the end of the unused list. This may not be the total
813 * number of unused children, because select_parent can
814 * drop the lock and return early due to latency
815 * constraints.
816 */
817static int select_parent(struct dentry * parent)
818{
819 struct dentry *this_parent = parent;
820 struct list_head *next;
821 int found = 0;
822
823 spin_lock(&dcache_lock);
824repeat:
825 next = this_parent->d_subdirs.next;
826resume:
827 while (next != &this_parent->d_subdirs) {
828 struct list_head *tmp = next;
5160ee6f 829 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
830 next = tmp->next;
831
da3bbdd4 832 dentry_lru_del_init(dentry);
1da177e4
LT
833 /*
834 * move only zero ref count dentries to the end
835 * of the unused list for prune_dcache
836 */
837 if (!atomic_read(&dentry->d_count)) {
da3bbdd4 838 dentry_lru_add_tail(dentry);
1da177e4
LT
839 found++;
840 }
841
842 /*
843 * We can return to the caller if we have found some (this
844 * ensures forward progress). We'll be coming back to find
845 * the rest.
846 */
847 if (found && need_resched())
848 goto out;
849
850 /*
851 * Descend a level if the d_subdirs list is non-empty.
852 */
853 if (!list_empty(&dentry->d_subdirs)) {
854 this_parent = dentry;
1da177e4
LT
855 goto repeat;
856 }
857 }
858 /*
859 * All done at this level ... ascend and resume the search.
860 */
861 if (this_parent != parent) {
5160ee6f 862 next = this_parent->d_u.d_child.next;
1da177e4 863 this_parent = this_parent->d_parent;
1da177e4
LT
864 goto resume;
865 }
866out:
867 spin_unlock(&dcache_lock);
868 return found;
869}
870
871/**
872 * shrink_dcache_parent - prune dcache
873 * @parent: parent of entries to prune
874 *
875 * Prune the dcache to remove unused children of the parent dentry.
876 */
877
878void shrink_dcache_parent(struct dentry * parent)
879{
da3bbdd4 880 struct super_block *sb = parent->d_sb;
1da177e4
LT
881 int found;
882
883 while ((found = select_parent(parent)) != 0)
da3bbdd4 884 __shrink_dcache_sb(sb, &found, 0);
1da177e4 885}
ec4f8605 886EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 887
1da177e4
LT
888/*
889 * Scan `nr' dentries and return the number which remain.
890 *
891 * We need to avoid reentering the filesystem if the caller is performing a
892 * GFP_NOFS allocation attempt. One example deadlock is:
893 *
894 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
895 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
896 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
897 *
898 * In this case we return -1 to tell the caller that we baled.
899 */
27496a8c 900static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
1da177e4
LT
901{
902 if (nr) {
903 if (!(gfp_mask & __GFP_FS))
904 return -1;
da3bbdd4 905 prune_dcache(nr);
1da177e4
LT
906 }
907 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
908}
909
8e1f936b
RR
910static struct shrinker dcache_shrinker = {
911 .shrink = shrink_dcache_memory,
912 .seeks = DEFAULT_SEEKS,
913};
914
1da177e4
LT
915/**
916 * d_alloc - allocate a dcache entry
917 * @parent: parent of entry to allocate
918 * @name: qstr of the name
919 *
920 * Allocates a dentry. It returns %NULL if there is insufficient memory
921 * available. On a success the dentry is returned. The name passed in is
922 * copied and the copy passed in may be reused after this call.
923 */
924
925struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
926{
927 struct dentry *dentry;
928 char *dname;
929
e12ba74d 930 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
931 if (!dentry)
932 return NULL;
933
934 if (name->len > DNAME_INLINE_LEN-1) {
935 dname = kmalloc(name->len + 1, GFP_KERNEL);
936 if (!dname) {
937 kmem_cache_free(dentry_cache, dentry);
938 return NULL;
939 }
940 } else {
941 dname = dentry->d_iname;
942 }
943 dentry->d_name.name = dname;
944
945 dentry->d_name.len = name->len;
946 dentry->d_name.hash = name->hash;
947 memcpy(dname, name->name, name->len);
948 dname[name->len] = 0;
949
950 atomic_set(&dentry->d_count, 1);
951 dentry->d_flags = DCACHE_UNHASHED;
952 spin_lock_init(&dentry->d_lock);
953 dentry->d_inode = NULL;
954 dentry->d_parent = NULL;
955 dentry->d_sb = NULL;
956 dentry->d_op = NULL;
957 dentry->d_fsdata = NULL;
958 dentry->d_mounted = 0;
1da177e4
LT
959 INIT_HLIST_NODE(&dentry->d_hash);
960 INIT_LIST_HEAD(&dentry->d_lru);
961 INIT_LIST_HEAD(&dentry->d_subdirs);
962 INIT_LIST_HEAD(&dentry->d_alias);
963
964 if (parent) {
965 dentry->d_parent = dget(parent);
966 dentry->d_sb = parent->d_sb;
967 } else {
5160ee6f 968 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
969 }
970
971 spin_lock(&dcache_lock);
972 if (parent)
5160ee6f 973 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1da177e4
LT
974 dentry_stat.nr_dentry++;
975 spin_unlock(&dcache_lock);
976
977 return dentry;
978}
ec4f8605 979EXPORT_SYMBOL(d_alloc);
1da177e4
LT
980
981struct dentry *d_alloc_name(struct dentry *parent, const char *name)
982{
983 struct qstr q;
984
985 q.name = name;
986 q.len = strlen(name);
987 q.hash = full_name_hash(q.name, q.len);
988 return d_alloc(parent, &q);
989}
ef26ca97 990EXPORT_SYMBOL(d_alloc_name);
1da177e4 991
360da900
OH
992/* the caller must hold dcache_lock */
993static void __d_instantiate(struct dentry *dentry, struct inode *inode)
994{
995 if (inode)
996 list_add(&dentry->d_alias, &inode->i_dentry);
997 dentry->d_inode = inode;
998 fsnotify_d_instantiate(dentry, inode);
999}
1000
1da177e4
LT
1001/**
1002 * d_instantiate - fill in inode information for a dentry
1003 * @entry: dentry to complete
1004 * @inode: inode to attach to this dentry
1005 *
1006 * Fill in inode information in the entry.
1007 *
1008 * This turns negative dentries into productive full members
1009 * of society.
1010 *
1011 * NOTE! This assumes that the inode count has been incremented
1012 * (or otherwise set) by the caller to indicate that it is now
1013 * in use by the dcache.
1014 */
1015
1016void d_instantiate(struct dentry *entry, struct inode * inode)
1017{
28133c7b 1018 BUG_ON(!list_empty(&entry->d_alias));
1da177e4 1019 spin_lock(&dcache_lock);
360da900 1020 __d_instantiate(entry, inode);
1da177e4
LT
1021 spin_unlock(&dcache_lock);
1022 security_d_instantiate(entry, inode);
1023}
ec4f8605 1024EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1025
1026/**
1027 * d_instantiate_unique - instantiate a non-aliased dentry
1028 * @entry: dentry to instantiate
1029 * @inode: inode to attach to this dentry
1030 *
1031 * Fill in inode information in the entry. On success, it returns NULL.
1032 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1033 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1034 *
1035 * Note that in order to avoid conflicts with rename() etc, the caller
1036 * had better be holding the parent directory semaphore.
e866cfa9
OD
1037 *
1038 * This also assumes that the inode count has been incremented
1039 * (or otherwise set) by the caller to indicate that it is now
1040 * in use by the dcache.
1da177e4 1041 */
770bfad8
DH
1042static struct dentry *__d_instantiate_unique(struct dentry *entry,
1043 struct inode *inode)
1da177e4
LT
1044{
1045 struct dentry *alias;
1046 int len = entry->d_name.len;
1047 const char *name = entry->d_name.name;
1048 unsigned int hash = entry->d_name.hash;
1049
770bfad8 1050 if (!inode) {
360da900 1051 __d_instantiate(entry, NULL);
770bfad8
DH
1052 return NULL;
1053 }
1054
1da177e4
LT
1055 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1056 struct qstr *qstr = &alias->d_name;
1057
1058 if (qstr->hash != hash)
1059 continue;
1060 if (alias->d_parent != entry->d_parent)
1061 continue;
1062 if (qstr->len != len)
1063 continue;
1064 if (memcmp(qstr->name, name, len))
1065 continue;
1066 dget_locked(alias);
1da177e4
LT
1067 return alias;
1068 }
770bfad8 1069
360da900 1070 __d_instantiate(entry, inode);
1da177e4
LT
1071 return NULL;
1072}
770bfad8
DH
1073
1074struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1075{
1076 struct dentry *result;
1077
1078 BUG_ON(!list_empty(&entry->d_alias));
1079
1080 spin_lock(&dcache_lock);
1081 result = __d_instantiate_unique(entry, inode);
1082 spin_unlock(&dcache_lock);
1083
1084 if (!result) {
1085 security_d_instantiate(entry, inode);
1086 return NULL;
1087 }
1088
1089 BUG_ON(!d_unhashed(result));
1090 iput(inode);
1091 return result;
1092}
1093
1da177e4
LT
1094EXPORT_SYMBOL(d_instantiate_unique);
1095
1096/**
1097 * d_alloc_root - allocate root dentry
1098 * @root_inode: inode to allocate the root for
1099 *
1100 * Allocate a root ("/") dentry for the inode given. The inode is
1101 * instantiated and returned. %NULL is returned if there is insufficient
1102 * memory or the inode passed is %NULL.
1103 */
1104
1105struct dentry * d_alloc_root(struct inode * root_inode)
1106{
1107 struct dentry *res = NULL;
1108
1109 if (root_inode) {
1110 static const struct qstr name = { .name = "/", .len = 1 };
1111
1112 res = d_alloc(NULL, &name);
1113 if (res) {
1114 res->d_sb = root_inode->i_sb;
1115 res->d_parent = res;
1116 d_instantiate(res, root_inode);
1117 }
1118 }
1119 return res;
1120}
ec4f8605 1121EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1122
1123static inline struct hlist_head *d_hash(struct dentry *parent,
1124 unsigned long hash)
1125{
1126 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1127 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1128 return dentry_hashtable + (hash & D_HASHMASK);
1129}
1130
4ea3ada2
CH
1131/**
1132 * d_obtain_alias - find or allocate a dentry for a given inode
1133 * @inode: inode to allocate the dentry for
1134 *
1135 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1136 * similar open by handle operations. The returned dentry may be anonymous,
1137 * or may have a full name (if the inode was already in the cache).
1138 *
1139 * When called on a directory inode, we must ensure that the inode only ever
1140 * has one dentry. If a dentry is found, that is returned instead of
1141 * allocating a new one.
1142 *
1143 * On successful return, the reference to the inode has been transferred
44003728
CH
1144 * to the dentry. In case of an error the reference on the inode is released.
1145 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1146 * be passed in and will be the error will be propagate to the return value,
1147 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1148 */
1149struct dentry *d_obtain_alias(struct inode *inode)
1150{
9308a612
CH
1151 static const struct qstr anonstring = { .name = "" };
1152 struct dentry *tmp;
1153 struct dentry *res;
4ea3ada2
CH
1154
1155 if (!inode)
44003728 1156 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1157 if (IS_ERR(inode))
1158 return ERR_CAST(inode);
1159
9308a612
CH
1160 res = d_find_alias(inode);
1161 if (res)
1162 goto out_iput;
1163
1164 tmp = d_alloc(NULL, &anonstring);
1165 if (!tmp) {
1166 res = ERR_PTR(-ENOMEM);
1167 goto out_iput;
4ea3ada2 1168 }
9308a612
CH
1169 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1170
1171 spin_lock(&dcache_lock);
1172 res = __d_find_alias(inode, 0);
1173 if (res) {
1174 spin_unlock(&dcache_lock);
1175 dput(tmp);
1176 goto out_iput;
1177 }
1178
1179 /* attach a disconnected dentry */
1180 spin_lock(&tmp->d_lock);
1181 tmp->d_sb = inode->i_sb;
1182 tmp->d_inode = inode;
1183 tmp->d_flags |= DCACHE_DISCONNECTED;
1184 tmp->d_flags &= ~DCACHE_UNHASHED;
1185 list_add(&tmp->d_alias, &inode->i_dentry);
1186 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1187 spin_unlock(&tmp->d_lock);
1188
1189 spin_unlock(&dcache_lock);
1190 return tmp;
1191
1192 out_iput:
1193 iput(inode);
1194 return res;
4ea3ada2 1195}
adc48720 1196EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1197
1198/**
1199 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1200 * @inode: the inode which may have a disconnected dentry
1201 * @dentry: a negative dentry which we want to point to the inode.
1202 *
1203 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1204 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1205 * and return it, else simply d_add the inode to the dentry and return NULL.
1206 *
1207 * This is needed in the lookup routine of any filesystem that is exportable
1208 * (via knfsd) so that we can build dcache paths to directories effectively.
1209 *
1210 * If a dentry was found and moved, then it is returned. Otherwise NULL
1211 * is returned. This matches the expected return value of ->lookup.
1212 *
1213 */
1214struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1215{
1216 struct dentry *new = NULL;
1217
21c0d8fd 1218 if (inode && S_ISDIR(inode->i_mode)) {
1da177e4
LT
1219 spin_lock(&dcache_lock);
1220 new = __d_find_alias(inode, 1);
1221 if (new) {
1222 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1223 spin_unlock(&dcache_lock);
1224 security_d_instantiate(new, inode);
1da177e4
LT
1225 d_move(new, dentry);
1226 iput(inode);
1227 } else {
360da900
OH
1228 /* already taking dcache_lock, so d_add() by hand */
1229 __d_instantiate(dentry, inode);
1da177e4
LT
1230 spin_unlock(&dcache_lock);
1231 security_d_instantiate(dentry, inode);
1232 d_rehash(dentry);
1233 }
1234 } else
1235 d_add(dentry, inode);
1236 return new;
1237}
ec4f8605 1238EXPORT_SYMBOL(d_splice_alias);
1da177e4 1239
9403540c
BN
1240/**
1241 * d_add_ci - lookup or allocate new dentry with case-exact name
1242 * @inode: the inode case-insensitive lookup has found
1243 * @dentry: the negative dentry that was passed to the parent's lookup func
1244 * @name: the case-exact name to be associated with the returned dentry
1245 *
1246 * This is to avoid filling the dcache with case-insensitive names to the
1247 * same inode, only the actual correct case is stored in the dcache for
1248 * case-insensitive filesystems.
1249 *
1250 * For a case-insensitive lookup match and if the the case-exact dentry
1251 * already exists in in the dcache, use it and return it.
1252 *
1253 * If no entry exists with the exact case name, allocate new dentry with
1254 * the exact case, and return the spliced entry.
1255 */
e45b590b 1256struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1257 struct qstr *name)
1258{
1259 int error;
1260 struct dentry *found;
1261 struct dentry *new;
1262
b6520c81
CH
1263 /*
1264 * First check if a dentry matching the name already exists,
1265 * if not go ahead and create it now.
1266 */
9403540c 1267 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1268 if (!found) {
1269 new = d_alloc(dentry->d_parent, name);
1270 if (!new) {
1271 error = -ENOMEM;
1272 goto err_out;
1273 }
b6520c81 1274
9403540c
BN
1275 found = d_splice_alias(inode, new);
1276 if (found) {
1277 dput(new);
1278 return found;
1279 }
1280 return new;
1281 }
b6520c81
CH
1282
1283 /*
1284 * If a matching dentry exists, and it's not negative use it.
1285 *
1286 * Decrement the reference count to balance the iget() done
1287 * earlier on.
1288 */
9403540c
BN
1289 if (found->d_inode) {
1290 if (unlikely(found->d_inode != inode)) {
1291 /* This can't happen because bad inodes are unhashed. */
1292 BUG_ON(!is_bad_inode(inode));
1293 BUG_ON(!is_bad_inode(found->d_inode));
1294 }
9403540c
BN
1295 iput(inode);
1296 return found;
1297 }
b6520c81 1298
9403540c
BN
1299 /*
1300 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1301 * already has a dentry.
9403540c 1302 */
9403540c 1303 spin_lock(&dcache_lock);
b6520c81 1304 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1305 __d_instantiate(found, inode);
9403540c
BN
1306 spin_unlock(&dcache_lock);
1307 security_d_instantiate(found, inode);
1308 return found;
1309 }
b6520c81 1310
9403540c 1311 /*
b6520c81
CH
1312 * In case a directory already has a (disconnected) entry grab a
1313 * reference to it, move it in place and use it.
9403540c
BN
1314 */
1315 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1316 dget_locked(new);
1317 spin_unlock(&dcache_lock);
9403540c 1318 security_d_instantiate(found, inode);
9403540c 1319 d_move(new, found);
9403540c 1320 iput(inode);
9403540c 1321 dput(found);
9403540c
BN
1322 return new;
1323
1324err_out:
1325 iput(inode);
1326 return ERR_PTR(error);
1327}
ec4f8605 1328EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1329
1330/**
1331 * d_lookup - search for a dentry
1332 * @parent: parent dentry
1333 * @name: qstr of name we wish to find
1334 *
1335 * Searches the children of the parent dentry for the name in question. If
1336 * the dentry is found its reference count is incremented and the dentry
be42c4c4 1337 * is returned. The caller must use dput to free the entry when it has
1da177e4
LT
1338 * finished using it. %NULL is returned on failure.
1339 *
1340 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1341 * Memory barriers are used while updating and doing lockless traversal.
1342 * To avoid races with d_move while rename is happening, d_lock is used.
1343 *
1344 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1345 * and name pointer in one structure pointed by d_qstr.
1346 *
1347 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1348 * lookup is going on.
1349 *
da3bbdd4 1350 * The dentry unused LRU is not updated even if lookup finds the required dentry
1da177e4
LT
1351 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1352 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1353 * acquisition.
1354 *
1355 * d_lookup() is protected against the concurrent renames in some unrelated
1356 * directory using the seqlockt_t rename_lock.
1357 */
1358
1359struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1360{
1361 struct dentry * dentry = NULL;
1362 unsigned long seq;
1363
1364 do {
1365 seq = read_seqbegin(&rename_lock);
1366 dentry = __d_lookup(parent, name);
1367 if (dentry)
1368 break;
1369 } while (read_seqretry(&rename_lock, seq));
1370 return dentry;
1371}
ec4f8605 1372EXPORT_SYMBOL(d_lookup);
1da177e4
LT
1373
1374struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1375{
1376 unsigned int len = name->len;
1377 unsigned int hash = name->hash;
1378 const unsigned char *str = name->name;
1379 struct hlist_head *head = d_hash(parent,hash);
1380 struct dentry *found = NULL;
1381 struct hlist_node *node;
665a7583 1382 struct dentry *dentry;
1da177e4
LT
1383
1384 rcu_read_lock();
1385
665a7583 1386 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1387 struct qstr *qstr;
1388
1da177e4
LT
1389 if (dentry->d_name.hash != hash)
1390 continue;
1391 if (dentry->d_parent != parent)
1392 continue;
1393
1394 spin_lock(&dentry->d_lock);
1395
1396 /*
1397 * Recheck the dentry after taking the lock - d_move may have
1398 * changed things. Don't bother checking the hash because we're
1399 * about to compare the whole name anyway.
1400 */
1401 if (dentry->d_parent != parent)
1402 goto next;
1403
d0185c08
LT
1404 /* non-existing due to RCU? */
1405 if (d_unhashed(dentry))
1406 goto next;
1407
1da177e4
LT
1408 /*
1409 * It is safe to compare names since d_move() cannot
1410 * change the qstr (protected by d_lock).
1411 */
1412 qstr = &dentry->d_name;
1413 if (parent->d_op && parent->d_op->d_compare) {
1414 if (parent->d_op->d_compare(parent, qstr, name))
1415 goto next;
1416 } else {
1417 if (qstr->len != len)
1418 goto next;
1419 if (memcmp(qstr->name, str, len))
1420 goto next;
1421 }
1422
d0185c08
LT
1423 atomic_inc(&dentry->d_count);
1424 found = dentry;
1da177e4
LT
1425 spin_unlock(&dentry->d_lock);
1426 break;
1427next:
1428 spin_unlock(&dentry->d_lock);
1429 }
1430 rcu_read_unlock();
1431
1432 return found;
1433}
1434
3e7e241f
EB
1435/**
1436 * d_hash_and_lookup - hash the qstr then search for a dentry
1437 * @dir: Directory to search in
1438 * @name: qstr of name we wish to find
1439 *
1440 * On hash failure or on lookup failure NULL is returned.
1441 */
1442struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1443{
1444 struct dentry *dentry = NULL;
1445
1446 /*
1447 * Check for a fs-specific hash function. Note that we must
1448 * calculate the standard hash first, as the d_op->d_hash()
1449 * routine may choose to leave the hash value unchanged.
1450 */
1451 name->hash = full_name_hash(name->name, name->len);
1452 if (dir->d_op && dir->d_op->d_hash) {
1453 if (dir->d_op->d_hash(dir, name) < 0)
1454 goto out;
1455 }
1456 dentry = d_lookup(dir, name);
1457out:
1458 return dentry;
1459}
1460
1da177e4
LT
1461/**
1462 * d_validate - verify dentry provided from insecure source
1463 * @dentry: The dentry alleged to be valid child of @dparent
1464 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1465 *
1466 * An insecure source has sent us a dentry, here we verify it and dget() it.
1467 * This is used by ncpfs in its readdir implementation.
1468 * Zero is returned in the dentry is invalid.
1469 */
1470
1471int d_validate(struct dentry *dentry, struct dentry *dparent)
1472{
1473 struct hlist_head *base;
1474 struct hlist_node *lhp;
1475
1476 /* Check whether the ptr might be valid at all.. */
1477 if (!kmem_ptr_validate(dentry_cache, dentry))
1478 goto out;
1479
1480 if (dentry->d_parent != dparent)
1481 goto out;
1482
1483 spin_lock(&dcache_lock);
1484 base = d_hash(dparent, dentry->d_name.hash);
1485 hlist_for_each(lhp,base) {
665a7583 1486 /* hlist_for_each_entry_rcu() not required for d_hash list
1da177e4
LT
1487 * as it is parsed under dcache_lock
1488 */
1489 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1490 __dget_locked(dentry);
1491 spin_unlock(&dcache_lock);
1492 return 1;
1493 }
1494 }
1495 spin_unlock(&dcache_lock);
1496out:
1497 return 0;
1498}
ec4f8605 1499EXPORT_SYMBOL(d_validate);
1da177e4
LT
1500
1501/*
1502 * When a file is deleted, we have two options:
1503 * - turn this dentry into a negative dentry
1504 * - unhash this dentry and free it.
1505 *
1506 * Usually, we want to just turn this into
1507 * a negative dentry, but if anybody else is
1508 * currently using the dentry or the inode
1509 * we can't do that and we fall back on removing
1510 * it from the hash queues and waiting for
1511 * it to be deleted later when it has no users
1512 */
1513
1514/**
1515 * d_delete - delete a dentry
1516 * @dentry: The dentry to delete
1517 *
1518 * Turn the dentry into a negative dentry if possible, otherwise
1519 * remove it from the hash queues so it can be deleted later
1520 */
1521
1522void d_delete(struct dentry * dentry)
1523{
7a91bf7f 1524 int isdir = 0;
1da177e4
LT
1525 /*
1526 * Are we the only user?
1527 */
1528 spin_lock(&dcache_lock);
1529 spin_lock(&dentry->d_lock);
7a91bf7f 1530 isdir = S_ISDIR(dentry->d_inode->i_mode);
1da177e4 1531 if (atomic_read(&dentry->d_count) == 1) {
13e3c5e5 1532 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1533 dentry_iput(dentry);
7a91bf7f 1534 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1535 return;
1536 }
1537
1538 if (!d_unhashed(dentry))
1539 __d_drop(dentry);
1540
1541 spin_unlock(&dentry->d_lock);
1542 spin_unlock(&dcache_lock);
7a91bf7f
JM
1543
1544 fsnotify_nameremove(dentry, isdir);
1da177e4 1545}
ec4f8605 1546EXPORT_SYMBOL(d_delete);
1da177e4
LT
1547
1548static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1549{
1550
1551 entry->d_flags &= ~DCACHE_UNHASHED;
1552 hlist_add_head_rcu(&entry->d_hash, list);
1553}
1554
770bfad8
DH
1555static void _d_rehash(struct dentry * entry)
1556{
1557 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1558}
1559
1da177e4
LT
1560/**
1561 * d_rehash - add an entry back to the hash
1562 * @entry: dentry to add to the hash
1563 *
1564 * Adds a dentry to the hash according to its name.
1565 */
1566
1567void d_rehash(struct dentry * entry)
1568{
1da177e4
LT
1569 spin_lock(&dcache_lock);
1570 spin_lock(&entry->d_lock);
770bfad8 1571 _d_rehash(entry);
1da177e4
LT
1572 spin_unlock(&entry->d_lock);
1573 spin_unlock(&dcache_lock);
1574}
ec4f8605 1575EXPORT_SYMBOL(d_rehash);
1da177e4 1576
1da177e4
LT
1577/*
1578 * When switching names, the actual string doesn't strictly have to
1579 * be preserved in the target - because we're dropping the target
1580 * anyway. As such, we can just do a simple memcpy() to copy over
1581 * the new name before we switch.
1582 *
1583 * Note that we have to be a lot more careful about getting the hash
1584 * switched - we have to switch the hash value properly even if it
1585 * then no longer matches the actual (corrupted) string of the target.
1586 * The hash value has to match the hash queue that the dentry is on..
1587 */
1588static void switch_names(struct dentry *dentry, struct dentry *target)
1589{
1590 if (dname_external(target)) {
1591 if (dname_external(dentry)) {
1592 /*
1593 * Both external: swap the pointers
1594 */
9a8d5bb4 1595 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1596 } else {
1597 /*
1598 * dentry:internal, target:external. Steal target's
1599 * storage and make target internal.
1600 */
321bcf92
BF
1601 memcpy(target->d_iname, dentry->d_name.name,
1602 dentry->d_name.len + 1);
1da177e4
LT
1603 dentry->d_name.name = target->d_name.name;
1604 target->d_name.name = target->d_iname;
1605 }
1606 } else {
1607 if (dname_external(dentry)) {
1608 /*
1609 * dentry:external, target:internal. Give dentry's
1610 * storage to target and make dentry internal
1611 */
1612 memcpy(dentry->d_iname, target->d_name.name,
1613 target->d_name.len + 1);
1614 target->d_name.name = dentry->d_name.name;
1615 dentry->d_name.name = dentry->d_iname;
1616 } else {
1617 /*
1618 * Both are internal. Just copy target to dentry
1619 */
1620 memcpy(dentry->d_iname, target->d_name.name,
1621 target->d_name.len + 1);
dc711ca3
AV
1622 dentry->d_name.len = target->d_name.len;
1623 return;
1da177e4
LT
1624 }
1625 }
9a8d5bb4 1626 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1627}
1628
1629/*
1630 * We cannibalize "target" when moving dentry on top of it,
1631 * because it's going to be thrown away anyway. We could be more
1632 * polite about it, though.
1633 *
1634 * This forceful removal will result in ugly /proc output if
1635 * somebody holds a file open that got deleted due to a rename.
1636 * We could be nicer about the deleted file, and let it show
bc154b1e
BF
1637 * up under the name it had before it was deleted rather than
1638 * under the original name of the file that was moved on top of it.
1da177e4
LT
1639 */
1640
9eaef27b
TM
1641/*
1642 * d_move_locked - move a dentry
1da177e4
LT
1643 * @dentry: entry to move
1644 * @target: new dentry
1645 *
1646 * Update the dcache to reflect the move of a file name. Negative
1647 * dcache entries should not be moved in this way.
1648 */
9eaef27b 1649static void d_move_locked(struct dentry * dentry, struct dentry * target)
1da177e4
LT
1650{
1651 struct hlist_head *list;
1652
1653 if (!dentry->d_inode)
1654 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1655
1da177e4
LT
1656 write_seqlock(&rename_lock);
1657 /*
1658 * XXXX: do we really need to take target->d_lock?
1659 */
1660 if (target < dentry) {
1661 spin_lock(&target->d_lock);
a90b9c05 1662 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4
LT
1663 } else {
1664 spin_lock(&dentry->d_lock);
a90b9c05 1665 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4
LT
1666 }
1667
1668 /* Move the dentry to the target hash queue, if on different bucket */
f77e3498 1669 if (d_unhashed(dentry))
1da177e4
LT
1670 goto already_unhashed;
1671
1672 hlist_del_rcu(&dentry->d_hash);
1673
1674already_unhashed:
1675 list = d_hash(target->d_parent, target->d_name.hash);
1676 __d_rehash(dentry, list);
1677
1678 /* Unhash the target: dput() will then get rid of it */
1679 __d_drop(target);
1680
5160ee6f
ED
1681 list_del(&dentry->d_u.d_child);
1682 list_del(&target->d_u.d_child);
1da177e4
LT
1683
1684 /* Switch the names.. */
1685 switch_names(dentry, target);
9a8d5bb4 1686 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
1687
1688 /* ... and switch the parents */
1689 if (IS_ROOT(dentry)) {
1690 dentry->d_parent = target->d_parent;
1691 target->d_parent = target;
5160ee6f 1692 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 1693 } else {
9a8d5bb4 1694 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
1695
1696 /* And add them back to the (new) parent lists */
5160ee6f 1697 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
1698 }
1699
5160ee6f 1700 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 1701 spin_unlock(&target->d_lock);
c32ccd87 1702 fsnotify_d_move(dentry);
1da177e4
LT
1703 spin_unlock(&dentry->d_lock);
1704 write_sequnlock(&rename_lock);
9eaef27b
TM
1705}
1706
1707/**
1708 * d_move - move a dentry
1709 * @dentry: entry to move
1710 * @target: new dentry
1711 *
1712 * Update the dcache to reflect the move of a file name. Negative
1713 * dcache entries should not be moved in this way.
1714 */
1715
1716void d_move(struct dentry * dentry, struct dentry * target)
1717{
1718 spin_lock(&dcache_lock);
1719 d_move_locked(dentry, target);
1da177e4
LT
1720 spin_unlock(&dcache_lock);
1721}
ec4f8605 1722EXPORT_SYMBOL(d_move);
1da177e4 1723
e2761a11
OH
1724/**
1725 * d_ancestor - search for an ancestor
1726 * @p1: ancestor dentry
1727 * @p2: child dentry
1728 *
1729 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1730 * an ancestor of p2, else NULL.
9eaef27b 1731 */
e2761a11 1732struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
1733{
1734 struct dentry *p;
1735
871c0067 1736 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 1737 if (p->d_parent == p1)
e2761a11 1738 return p;
9eaef27b 1739 }
e2761a11 1740 return NULL;
9eaef27b
TM
1741}
1742
1743/*
1744 * This helper attempts to cope with remotely renamed directories
1745 *
1746 * It assumes that the caller is already holding
1747 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1748 *
1749 * Note: If ever the locking in lock_rename() changes, then please
1750 * remember to update this too...
9eaef27b
TM
1751 */
1752static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
31f3e0b3 1753 __releases(dcache_lock)
9eaef27b
TM
1754{
1755 struct mutex *m1 = NULL, *m2 = NULL;
1756 struct dentry *ret;
1757
1758 /* If alias and dentry share a parent, then no extra locks required */
1759 if (alias->d_parent == dentry->d_parent)
1760 goto out_unalias;
1761
1762 /* Check for loops */
1763 ret = ERR_PTR(-ELOOP);
e2761a11 1764 if (d_ancestor(alias, dentry))
9eaef27b
TM
1765 goto out_err;
1766
1767 /* See lock_rename() */
1768 ret = ERR_PTR(-EBUSY);
1769 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1770 goto out_err;
1771 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1772 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1773 goto out_err;
1774 m2 = &alias->d_parent->d_inode->i_mutex;
1775out_unalias:
1776 d_move_locked(alias, dentry);
1777 ret = alias;
1778out_err:
1779 spin_unlock(&dcache_lock);
1780 if (m2)
1781 mutex_unlock(m2);
1782 if (m1)
1783 mutex_unlock(m1);
1784 return ret;
1785}
1786
770bfad8
DH
1787/*
1788 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1789 * named dentry in place of the dentry to be replaced.
1790 */
1791static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1792{
1793 struct dentry *dparent, *aparent;
1794
1795 switch_names(dentry, anon);
9a8d5bb4 1796 swap(dentry->d_name.hash, anon->d_name.hash);
770bfad8
DH
1797
1798 dparent = dentry->d_parent;
1799 aparent = anon->d_parent;
1800
1801 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1802 list_del(&dentry->d_u.d_child);
1803 if (!IS_ROOT(dentry))
1804 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1805 else
1806 INIT_LIST_HEAD(&dentry->d_u.d_child);
1807
1808 anon->d_parent = (dparent == dentry) ? anon : dparent;
1809 list_del(&anon->d_u.d_child);
1810 if (!IS_ROOT(anon))
1811 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1812 else
1813 INIT_LIST_HEAD(&anon->d_u.d_child);
1814
1815 anon->d_flags &= ~DCACHE_DISCONNECTED;
1816}
1817
1818/**
1819 * d_materialise_unique - introduce an inode into the tree
1820 * @dentry: candidate dentry
1821 * @inode: inode to bind to the dentry, to which aliases may be attached
1822 *
1823 * Introduces an dentry into the tree, substituting an extant disconnected
1824 * root directory alias in its place if there is one
1825 */
1826struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1827{
9eaef27b 1828 struct dentry *actual;
770bfad8
DH
1829
1830 BUG_ON(!d_unhashed(dentry));
1831
1832 spin_lock(&dcache_lock);
1833
1834 if (!inode) {
1835 actual = dentry;
360da900 1836 __d_instantiate(dentry, NULL);
770bfad8
DH
1837 goto found_lock;
1838 }
1839
9eaef27b
TM
1840 if (S_ISDIR(inode->i_mode)) {
1841 struct dentry *alias;
1842
1843 /* Does an aliased dentry already exist? */
1844 alias = __d_find_alias(inode, 0);
1845 if (alias) {
1846 actual = alias;
1847 /* Is this an anonymous mountpoint that we could splice
1848 * into our tree? */
1849 if (IS_ROOT(alias)) {
1850 spin_lock(&alias->d_lock);
1851 __d_materialise_dentry(dentry, alias);
1852 __d_drop(alias);
1853 goto found;
1854 }
1855 /* Nope, but we must(!) avoid directory aliasing */
1856 actual = __d_unalias(dentry, alias);
1857 if (IS_ERR(actual))
1858 dput(alias);
1859 goto out_nolock;
1860 }
770bfad8
DH
1861 }
1862
1863 /* Add a unique reference */
1864 actual = __d_instantiate_unique(dentry, inode);
1865 if (!actual)
1866 actual = dentry;
1867 else if (unlikely(!d_unhashed(actual)))
1868 goto shouldnt_be_hashed;
1869
1870found_lock:
1871 spin_lock(&actual->d_lock);
1872found:
1873 _d_rehash(actual);
1874 spin_unlock(&actual->d_lock);
1875 spin_unlock(&dcache_lock);
9eaef27b 1876out_nolock:
770bfad8
DH
1877 if (actual == dentry) {
1878 security_d_instantiate(dentry, inode);
1879 return NULL;
1880 }
1881
1882 iput(inode);
1883 return actual;
1884
770bfad8
DH
1885shouldnt_be_hashed:
1886 spin_unlock(&dcache_lock);
1887 BUG();
770bfad8 1888}
ec4f8605 1889EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 1890
cdd16d02 1891static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
1892{
1893 *buflen -= namelen;
1894 if (*buflen < 0)
1895 return -ENAMETOOLONG;
1896 *buffer -= namelen;
1897 memcpy(*buffer, str, namelen);
1898 return 0;
1899}
1900
cdd16d02
MS
1901static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1902{
1903 return prepend(buffer, buflen, name->name, name->len);
1904}
1905
1da177e4 1906/**
31f3e0b3 1907 * __d_path - return the path of a dentry
9d1bc601
MS
1908 * @path: the dentry/vfsmount to report
1909 * @root: root vfsmnt/dentry (may be modified by this function)
1da177e4
LT
1910 * @buffer: buffer to return value in
1911 * @buflen: buffer length
1912 *
552ce544
LT
1913 * Convert a dentry into an ASCII path name. If the entry has been deleted
1914 * the string " (deleted)" is appended. Note that this is ambiguous.
1da177e4 1915 *
52afeefb
AV
1916 * Returns a pointer into the buffer or an error code if the
1917 * path was too long.
552ce544
LT
1918 *
1919 * "buflen" should be positive. Caller holds the dcache_lock.
9d1bc601
MS
1920 *
1921 * If path is not reachable from the supplied root, then the value of
1922 * root is changed (without modifying refcounts).
1da177e4 1923 */
9d1bc601
MS
1924char *__d_path(const struct path *path, struct path *root,
1925 char *buffer, int buflen)
1da177e4 1926{
9d1bc601
MS
1927 struct dentry *dentry = path->dentry;
1928 struct vfsmount *vfsmnt = path->mnt;
cdd16d02
MS
1929 char *end = buffer + buflen;
1930 char *retval;
6092d048 1931
be285c71 1932 spin_lock(&vfsmount_lock);
6092d048 1933 prepend(&end, &buflen, "\0", 1);
f3da392e 1934 if (d_unlinked(dentry) &&
6092d048 1935 (prepend(&end, &buflen, " (deleted)", 10) != 0))
552ce544 1936 goto Elong;
552ce544
LT
1937
1938 if (buflen < 1)
1939 goto Elong;
1940 /* Get '/' right */
1941 retval = end-1;
1942 *retval = '/';
1943
1944 for (;;) {
1da177e4
LT
1945 struct dentry * parent;
1946
329c97f0 1947 if (dentry == root->dentry && vfsmnt == root->mnt)
552ce544 1948 break;
1da177e4 1949 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 1950 /* Global root? */
1da177e4 1951 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
1952 goto global_root;
1953 }
1954 dentry = vfsmnt->mnt_mountpoint;
1955 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
1956 continue;
1957 }
1958 parent = dentry->d_parent;
1959 prefetch(parent);
cdd16d02 1960 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
6092d048 1961 (prepend(&end, &buflen, "/", 1) != 0))
552ce544 1962 goto Elong;
552ce544 1963 retval = end;
1da177e4
LT
1964 dentry = parent;
1965 }
1966
be285c71
AG
1967out:
1968 spin_unlock(&vfsmount_lock);
552ce544 1969 return retval;
1da177e4
LT
1970
1971global_root:
6092d048 1972 retval += 1; /* hit the slash */
cdd16d02 1973 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1da177e4 1974 goto Elong;
9d1bc601
MS
1975 root->mnt = vfsmnt;
1976 root->dentry = dentry;
be285c71
AG
1977 goto out;
1978
1da177e4 1979Elong:
be285c71
AG
1980 retval = ERR_PTR(-ENAMETOOLONG);
1981 goto out;
1da177e4
LT
1982}
1983
a03a8a70
JB
1984/**
1985 * d_path - return the path of a dentry
cf28b486 1986 * @path: path to report
a03a8a70
JB
1987 * @buf: buffer to return value in
1988 * @buflen: buffer length
1989 *
1990 * Convert a dentry into an ASCII path name. If the entry has been deleted
1991 * the string " (deleted)" is appended. Note that this is ambiguous.
1992 *
52afeefb
AV
1993 * Returns a pointer into the buffer or an error code if the path was
1994 * too long. Note: Callers should use the returned pointer, not the passed
1995 * in buffer, to use the name! The implementation often starts at an offset
1996 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 1997 *
31f3e0b3 1998 * "buflen" should be positive.
a03a8a70 1999 */
20d4fdc1 2000char *d_path(const struct path *path, char *buf, int buflen)
1da177e4
LT
2001{
2002 char *res;
6ac08c39 2003 struct path root;
9d1bc601 2004 struct path tmp;
1da177e4 2005
c23fbb6b
ED
2006 /*
2007 * We have various synthetic filesystems that never get mounted. On
2008 * these filesystems dentries are never used for lookup purposes, and
2009 * thus don't need to be hashed. They also don't need a name until a
2010 * user wants to identify the object in /proc/pid/fd/. The little hack
2011 * below allows us to generate a name for these objects on demand:
2012 */
cf28b486
JB
2013 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2014 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2015
1da177e4 2016 read_lock(&current->fs->lock);
6ac08c39 2017 root = current->fs->root;
6092d048 2018 path_get(&root);
1da177e4 2019 read_unlock(&current->fs->lock);
552ce544 2020 spin_lock(&dcache_lock);
9d1bc601
MS
2021 tmp = root;
2022 res = __d_path(path, &tmp, buf, buflen);
552ce544 2023 spin_unlock(&dcache_lock);
6ac08c39 2024 path_put(&root);
1da177e4
LT
2025 return res;
2026}
ec4f8605 2027EXPORT_SYMBOL(d_path);
1da177e4 2028
c23fbb6b
ED
2029/*
2030 * Helper function for dentry_operations.d_dname() members
2031 */
2032char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2033 const char *fmt, ...)
2034{
2035 va_list args;
2036 char temp[64];
2037 int sz;
2038
2039 va_start(args, fmt);
2040 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2041 va_end(args);
2042
2043 if (sz > sizeof(temp) || sz > buflen)
2044 return ERR_PTR(-ENAMETOOLONG);
2045
2046 buffer += buflen - sz;
2047 return memcpy(buffer, temp, sz);
2048}
2049
6092d048
RP
2050/*
2051 * Write full pathname from the root of the filesystem into the buffer.
2052 */
2053char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2054{
2055 char *end = buf + buflen;
2056 char *retval;
2057
2058 spin_lock(&dcache_lock);
2059 prepend(&end, &buflen, "\0", 1);
f3da392e 2060 if (d_unlinked(dentry) &&
6092d048
RP
2061 (prepend(&end, &buflen, "//deleted", 9) != 0))
2062 goto Elong;
2063 if (buflen < 1)
2064 goto Elong;
2065 /* Get '/' right */
2066 retval = end-1;
2067 *retval = '/';
2068
cdd16d02
MS
2069 while (!IS_ROOT(dentry)) {
2070 struct dentry *parent = dentry->d_parent;
6092d048 2071
6092d048 2072 prefetch(parent);
cdd16d02 2073 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
6092d048
RP
2074 (prepend(&end, &buflen, "/", 1) != 0))
2075 goto Elong;
2076
2077 retval = end;
2078 dentry = parent;
2079 }
2080 spin_unlock(&dcache_lock);
2081 return retval;
2082Elong:
2083 spin_unlock(&dcache_lock);
2084 return ERR_PTR(-ENAMETOOLONG);
2085}
2086
1da177e4
LT
2087/*
2088 * NOTE! The user-level library version returns a
2089 * character pointer. The kernel system call just
2090 * returns the length of the buffer filled (which
2091 * includes the ending '\0' character), or a negative
2092 * error value. So libc would do something like
2093 *
2094 * char *getcwd(char * buf, size_t size)
2095 * {
2096 * int retval;
2097 *
2098 * retval = sys_getcwd(buf, size);
2099 * if (retval >= 0)
2100 * return buf;
2101 * errno = -retval;
2102 * return NULL;
2103 * }
2104 */
3cdad428 2105SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2106{
552ce544 2107 int error;
6ac08c39 2108 struct path pwd, root;
552ce544 2109 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2110
2111 if (!page)
2112 return -ENOMEM;
2113
2114 read_lock(&current->fs->lock);
6ac08c39 2115 pwd = current->fs->pwd;
6092d048 2116 path_get(&pwd);
6ac08c39 2117 root = current->fs->root;
6092d048 2118 path_get(&root);
1da177e4
LT
2119 read_unlock(&current->fs->lock);
2120
552ce544 2121 error = -ENOENT;
552ce544 2122 spin_lock(&dcache_lock);
f3da392e 2123 if (!d_unlinked(pwd.dentry)) {
552ce544 2124 unsigned long len;
9d1bc601 2125 struct path tmp = root;
552ce544 2126 char * cwd;
1da177e4 2127
9d1bc601 2128 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
552ce544
LT
2129 spin_unlock(&dcache_lock);
2130
2131 error = PTR_ERR(cwd);
2132 if (IS_ERR(cwd))
2133 goto out;
2134
2135 error = -ERANGE;
2136 len = PAGE_SIZE + page - cwd;
2137 if (len <= size) {
2138 error = len;
2139 if (copy_to_user(buf, cwd, len))
2140 error = -EFAULT;
2141 }
2142 } else
2143 spin_unlock(&dcache_lock);
1da177e4
LT
2144
2145out:
6ac08c39
JB
2146 path_put(&pwd);
2147 path_put(&root);
1da177e4
LT
2148 free_page((unsigned long) page);
2149 return error;
2150}
2151
2152/*
2153 * Test whether new_dentry is a subdirectory of old_dentry.
2154 *
2155 * Trivially implemented using the dcache structure
2156 */
2157
2158/**
2159 * is_subdir - is new dentry a subdirectory of old_dentry
2160 * @new_dentry: new dentry
2161 * @old_dentry: old dentry
2162 *
2163 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2164 * Returns 0 otherwise.
2165 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2166 */
2167
e2761a11 2168int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2169{
2170 int result;
1da177e4
LT
2171 unsigned long seq;
2172
e2761a11
OH
2173 if (new_dentry == old_dentry)
2174 return 1;
2175
2176 /*
2177 * Need rcu_readlock to protect against the d_parent trashing
2178 * due to d_move
1da177e4
LT
2179 */
2180 rcu_read_lock();
e2761a11 2181 do {
1da177e4 2182 /* for restarting inner loop in case of seq retry */
1da177e4 2183 seq = read_seqbegin(&rename_lock);
e2761a11 2184 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2185 result = 1;
e2761a11
OH
2186 else
2187 result = 0;
1da177e4
LT
2188 } while (read_seqretry(&rename_lock, seq));
2189 rcu_read_unlock();
2190
2191 return result;
2192}
2193
2096f759
AV
2194int path_is_under(struct path *path1, struct path *path2)
2195{
2196 struct vfsmount *mnt = path1->mnt;
2197 struct dentry *dentry = path1->dentry;
2198 int res;
2199 spin_lock(&vfsmount_lock);
2200 if (mnt != path2->mnt) {
2201 for (;;) {
2202 if (mnt->mnt_parent == mnt) {
2203 spin_unlock(&vfsmount_lock);
2204 return 0;
2205 }
2206 if (mnt->mnt_parent == path2->mnt)
2207 break;
2208 mnt = mnt->mnt_parent;
2209 }
2210 dentry = mnt->mnt_mountpoint;
2211 }
2212 res = is_subdir(dentry, path2->dentry);
2213 spin_unlock(&vfsmount_lock);
2214 return res;
2215}
2216EXPORT_SYMBOL(path_is_under);
2217
1da177e4
LT
2218void d_genocide(struct dentry *root)
2219{
2220 struct dentry *this_parent = root;
2221 struct list_head *next;
2222
2223 spin_lock(&dcache_lock);
2224repeat:
2225 next = this_parent->d_subdirs.next;
2226resume:
2227 while (next != &this_parent->d_subdirs) {
2228 struct list_head *tmp = next;
5160ee6f 2229 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
2230 next = tmp->next;
2231 if (d_unhashed(dentry)||!dentry->d_inode)
2232 continue;
2233 if (!list_empty(&dentry->d_subdirs)) {
2234 this_parent = dentry;
2235 goto repeat;
2236 }
2237 atomic_dec(&dentry->d_count);
2238 }
2239 if (this_parent != root) {
5160ee6f 2240 next = this_parent->d_u.d_child.next;
1da177e4
LT
2241 atomic_dec(&this_parent->d_count);
2242 this_parent = this_parent->d_parent;
2243 goto resume;
2244 }
2245 spin_unlock(&dcache_lock);
2246}
2247
2248/**
2249 * find_inode_number - check for dentry with name
2250 * @dir: directory to check
2251 * @name: Name to find.
2252 *
2253 * Check whether a dentry already exists for the given name,
2254 * and return the inode number if it has an inode. Otherwise
2255 * 0 is returned.
2256 *
2257 * This routine is used to post-process directory listings for
2258 * filesystems using synthetic inode numbers, and is necessary
2259 * to keep getcwd() working.
2260 */
2261
2262ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2263{
2264 struct dentry * dentry;
2265 ino_t ino = 0;
2266
3e7e241f
EB
2267 dentry = d_hash_and_lookup(dir, name);
2268 if (dentry) {
1da177e4
LT
2269 if (dentry->d_inode)
2270 ino = dentry->d_inode->i_ino;
2271 dput(dentry);
2272 }
1da177e4
LT
2273 return ino;
2274}
ec4f8605 2275EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2276
2277static __initdata unsigned long dhash_entries;
2278static int __init set_dhash_entries(char *str)
2279{
2280 if (!str)
2281 return 0;
2282 dhash_entries = simple_strtoul(str, &str, 0);
2283 return 1;
2284}
2285__setup("dhash_entries=", set_dhash_entries);
2286
2287static void __init dcache_init_early(void)
2288{
2289 int loop;
2290
2291 /* If hashes are distributed across NUMA nodes, defer
2292 * hash allocation until vmalloc space is available.
2293 */
2294 if (hashdist)
2295 return;
2296
2297 dentry_hashtable =
2298 alloc_large_system_hash("Dentry cache",
2299 sizeof(struct hlist_head),
2300 dhash_entries,
2301 13,
2302 HASH_EARLY,
2303 &d_hash_shift,
2304 &d_hash_mask,
2305 0);
2306
2307 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2308 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2309}
2310
74bf17cf 2311static void __init dcache_init(void)
1da177e4
LT
2312{
2313 int loop;
2314
2315 /*
2316 * A constructor could be added for stable state like the lists,
2317 * but it is probably not worth it because of the cache nature
2318 * of the dcache.
2319 */
0a31bd5f
CL
2320 dentry_cache = KMEM_CACHE(dentry,
2321 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2322
8e1f936b 2323 register_shrinker(&dcache_shrinker);
1da177e4
LT
2324
2325 /* Hash may have been set up in dcache_init_early */
2326 if (!hashdist)
2327 return;
2328
2329 dentry_hashtable =
2330 alloc_large_system_hash("Dentry cache",
2331 sizeof(struct hlist_head),
2332 dhash_entries,
2333 13,
2334 0,
2335 &d_hash_shift,
2336 &d_hash_mask,
2337 0);
2338
2339 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2340 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2341}
2342
2343/* SLAB cache for __getname() consumers */
e18b890b 2344struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2345EXPORT_SYMBOL(names_cachep);
1da177e4 2346
1da177e4
LT
2347EXPORT_SYMBOL(d_genocide);
2348
1da177e4
LT
2349void __init vfs_caches_init_early(void)
2350{
2351 dcache_init_early();
2352 inode_init_early();
2353}
2354
2355void __init vfs_caches_init(unsigned long mempages)
2356{
2357 unsigned long reserve;
2358
2359 /* Base hash sizes on available memory, with a reserve equal to
2360 150% of current kernel size */
2361
2362 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2363 mempages -= reserve;
2364
2365 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2366 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2367
74bf17cf
DC
2368 dcache_init();
2369 inode_init();
1da177e4 2370 files_init(mempages);
74bf17cf 2371 mnt_init();
1da177e4
LT
2372 bdev_cache_init();
2373 chrdev_init();
2374}