fs: dcache reduce locking in d_alloc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
155/*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
1da177e4 158 */
858119e1 159static void dentry_iput(struct dentry * dentry)
31f3e0b3 160 __releases(dentry->d_lock)
b23fb0a6 161 __releases(dcache_inode_lock)
1da177e4
LT
162{
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
b23fb0a6 168 spin_unlock(&dcache_inode_lock);
f805fbda
LT
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
1da177e4
LT
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
b23fb0a6 177 spin_unlock(&dcache_inode_lock);
1da177e4
LT
178 }
179}
180
da3bbdd4 181/*
23044507 182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
183 */
184static void dentry_lru_add(struct dentry *dentry)
185{
a4633357 186 if (list_empty(&dentry->d_lru)) {
23044507 187 spin_lock(&dcache_lru_lock);
a4633357
CH
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 190 dentry_stat.nr_unused++;
23044507 191 spin_unlock(&dcache_lru_lock);
a4633357 192 }
da3bbdd4
KM
193}
194
23044507
NP
195static void __dentry_lru_del(struct dentry *dentry)
196{
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200}
201
da3bbdd4
KM
202static void dentry_lru_del(struct dentry *dentry)
203{
204 if (!list_empty(&dentry->d_lru)) {
23044507
NP
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
208 }
209}
210
a4633357 211static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 212{
23044507 213 spin_lock(&dcache_lru_lock);
a4633357
CH
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 217 dentry_stat.nr_unused++;
a4633357
CH
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 220 }
23044507 221 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
222}
223
d52b9086
MS
224/**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
31f3e0b3 228 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
229 *
230 * If this is the root of the dentry tree, return NULL.
23044507 231 *
b5c84bf6
NP
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
d52b9086 234 */
2fd6b7f5 235static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 236 __releases(dentry->d_lock)
2fd6b7f5 237 __releases(parent->d_lock)
b23fb0a6 238 __releases(dcache_inode_lock)
d52b9086 239{
949854d0 240 dentry->d_parent = NULL;
d52b9086 241 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
242 if (parent)
243 spin_unlock(&parent->d_lock);
d52b9086 244 dentry_iput(dentry);
b7ab39f6
NP
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
d52b9086 249 d_free(dentry);
871c0067 250 return parent;
d52b9086
MS
251}
252
789680d1
NP
253/**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268void __d_drop(struct dentry *dentry)
269{
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276}
277EXPORT_SYMBOL(__d_drop);
278
279void d_drop(struct dentry *dentry)
280{
789680d1
NP
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
789680d1
NP
284}
285EXPORT_SYMBOL(d_drop);
286
1da177e4
LT
287/*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304/*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316void dput(struct dentry *dentry)
317{
2fd6b7f5 318 struct dentry *parent;
1da177e4
LT
319 if (!dentry)
320 return;
321
322repeat:
b7ab39f6 323 if (dentry->d_count == 1)
1da177e4 324 might_sleep();
1da177e4 325 spin_lock(&dentry->d_lock);
61f3dee4
NP
326 BUG_ON(!dentry->d_count);
327 if (dentry->d_count > 1) {
328 dentry->d_count--;
1da177e4 329 spin_unlock(&dentry->d_lock);
1da177e4
LT
330 return;
331 }
332
1da177e4
LT
333 if (dentry->d_op && dentry->d_op->d_delete) {
334 if (dentry->d_op->d_delete(dentry))
61f3dee4 335 goto kill_it;
1da177e4 336 }
265ac902 337
1da177e4
LT
338 /* Unreachable? Get rid of it */
339 if (d_unhashed(dentry))
340 goto kill_it;
265ac902
NP
341
342 /* Otherwise leave it cached and ensure it's on the LRU */
343 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 344 dentry_lru_add(dentry);
265ac902 345
61f3dee4
NP
346 dentry->d_count--;
347 spin_unlock(&dentry->d_lock);
1da177e4
LT
348 return;
349
d52b9086 350kill_it:
61f3dee4
NP
351 if (!spin_trylock(&dcache_inode_lock)) {
352relock:
353 spin_unlock(&dentry->d_lock);
354 cpu_relax();
355 goto repeat;
356 }
357 if (IS_ROOT(dentry))
358 parent = NULL;
359 else
360 parent = dentry->d_parent;
361 if (parent && !spin_trylock(&parent->d_lock)) {
362 spin_unlock(&dcache_inode_lock);
363 goto relock;
364 }
365 dentry->d_count--;
da3bbdd4
KM
366 /* if dentry was on the d_lru list delete it from there */
367 dentry_lru_del(dentry);
61f3dee4
NP
368 /* if it was on the hash (d_delete case), then remove it */
369 __d_drop(dentry);
2fd6b7f5 370 dentry = d_kill(dentry, parent);
d52b9086
MS
371 if (dentry)
372 goto repeat;
1da177e4 373}
ec4f8605 374EXPORT_SYMBOL(dput);
1da177e4
LT
375
376/**
377 * d_invalidate - invalidate a dentry
378 * @dentry: dentry to invalidate
379 *
380 * Try to invalidate the dentry if it turns out to be
381 * possible. If there are other dentries that can be
382 * reached through this one we can't delete it and we
383 * return -EBUSY. On success we return 0.
384 *
385 * no dcache lock.
386 */
387
388int d_invalidate(struct dentry * dentry)
389{
390 /*
391 * If it's already been dropped, return OK.
392 */
da502956 393 spin_lock(&dentry->d_lock);
1da177e4 394 if (d_unhashed(dentry)) {
da502956 395 spin_unlock(&dentry->d_lock);
1da177e4
LT
396 return 0;
397 }
398 /*
399 * Check whether to do a partial shrink_dcache
400 * to get rid of unused child entries.
401 */
402 if (!list_empty(&dentry->d_subdirs)) {
da502956 403 spin_unlock(&dentry->d_lock);
1da177e4 404 shrink_dcache_parent(dentry);
da502956 405 spin_lock(&dentry->d_lock);
1da177e4
LT
406 }
407
408 /*
409 * Somebody else still using it?
410 *
411 * If it's a directory, we can't drop it
412 * for fear of somebody re-populating it
413 * with children (even though dropping it
414 * would make it unreachable from the root,
415 * we might still populate it if it was a
416 * working directory or similar).
417 */
b7ab39f6 418 if (dentry->d_count > 1) {
1da177e4
LT
419 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
420 spin_unlock(&dentry->d_lock);
1da177e4
LT
421 return -EBUSY;
422 }
423 }
424
425 __d_drop(dentry);
426 spin_unlock(&dentry->d_lock);
1da177e4
LT
427 return 0;
428}
ec4f8605 429EXPORT_SYMBOL(d_invalidate);
1da177e4 430
b5c84bf6 431/* This must be called with d_lock held */
23044507
NP
432static inline struct dentry * __dget_locked_dlock(struct dentry *dentry)
433{
b7ab39f6 434 dentry->d_count++;
23044507
NP
435 dentry_lru_del(dentry);
436 return dentry;
437}
438
b5c84bf6 439/* This must be called with d_lock held */
1da177e4
LT
440static inline struct dentry * __dget_locked(struct dentry *dentry)
441{
23044507 442 spin_lock(&dentry->d_lock);
b7ab39f6 443 __dget_locked_dlock(dentry);
23044507 444 spin_unlock(&dentry->d_lock);
1da177e4
LT
445 return dentry;
446}
447
b7ab39f6
NP
448struct dentry * dget_locked_dlock(struct dentry *dentry)
449{
450 return __dget_locked_dlock(dentry);
451}
452
1da177e4
LT
453struct dentry * dget_locked(struct dentry *dentry)
454{
455 return __dget_locked(dentry);
456}
ec4f8605 457EXPORT_SYMBOL(dget_locked);
1da177e4 458
b7ab39f6
NP
459struct dentry *dget_parent(struct dentry *dentry)
460{
461 struct dentry *ret;
462
463repeat:
464 spin_lock(&dentry->d_lock);
465 ret = dentry->d_parent;
466 if (!ret)
467 goto out;
468 if (dentry == ret) {
469 ret->d_count++;
470 goto out;
471 }
472 if (!spin_trylock(&ret->d_lock)) {
473 spin_unlock(&dentry->d_lock);
474 cpu_relax();
475 goto repeat;
476 }
477 BUG_ON(!ret->d_count);
478 ret->d_count++;
479 spin_unlock(&ret->d_lock);
480out:
481 spin_unlock(&dentry->d_lock);
482 return ret;
483}
484EXPORT_SYMBOL(dget_parent);
485
1da177e4
LT
486/**
487 * d_find_alias - grab a hashed alias of inode
488 * @inode: inode in question
489 * @want_discon: flag, used by d_splice_alias, to request
490 * that only a DISCONNECTED alias be returned.
491 *
492 * If inode has a hashed alias, or is a directory and has any alias,
493 * acquire the reference to alias and return it. Otherwise return NULL.
494 * Notice that if inode is a directory there can be only one alias and
495 * it can be unhashed only if it has no children, or if it is the root
496 * of a filesystem.
497 *
21c0d8fd 498 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 499 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 500 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 501 */
da502956 502static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 503{
da502956 504 struct dentry *alias, *discon_alias;
1da177e4 505
da502956
NP
506again:
507 discon_alias = NULL;
508 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
509 spin_lock(&alias->d_lock);
1da177e4 510 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 511 if (IS_ROOT(alias) &&
da502956 512 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 513 discon_alias = alias;
da502956
NP
514 } else if (!want_discon) {
515 __dget_locked_dlock(alias);
516 spin_unlock(&alias->d_lock);
517 return alias;
518 }
519 }
520 spin_unlock(&alias->d_lock);
521 }
522 if (discon_alias) {
523 alias = discon_alias;
524 spin_lock(&alias->d_lock);
525 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
526 if (IS_ROOT(alias) &&
527 (alias->d_flags & DCACHE_DISCONNECTED)) {
528 __dget_locked_dlock(alias);
529 spin_unlock(&alias->d_lock);
1da177e4
LT
530 return alias;
531 }
532 }
da502956
NP
533 spin_unlock(&alias->d_lock);
534 goto again;
1da177e4 535 }
da502956 536 return NULL;
1da177e4
LT
537}
538
da502956 539struct dentry *d_find_alias(struct inode *inode)
1da177e4 540{
214fda1f
DH
541 struct dentry *de = NULL;
542
543 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 544 spin_lock(&dcache_inode_lock);
214fda1f 545 de = __d_find_alias(inode, 0);
b23fb0a6 546 spin_unlock(&dcache_inode_lock);
214fda1f 547 }
1da177e4
LT
548 return de;
549}
ec4f8605 550EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
551
552/*
553 * Try to kill dentries associated with this inode.
554 * WARNING: you must own a reference to inode.
555 */
556void d_prune_aliases(struct inode *inode)
557{
0cdca3f9 558 struct dentry *dentry;
1da177e4 559restart:
b23fb0a6 560 spin_lock(&dcache_inode_lock);
0cdca3f9 561 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 562 spin_lock(&dentry->d_lock);
b7ab39f6 563 if (!dentry->d_count) {
23044507 564 __dget_locked_dlock(dentry);
1da177e4
LT
565 __d_drop(dentry);
566 spin_unlock(&dentry->d_lock);
b23fb0a6 567 spin_unlock(&dcache_inode_lock);
1da177e4
LT
568 dput(dentry);
569 goto restart;
570 }
571 spin_unlock(&dentry->d_lock);
572 }
b23fb0a6 573 spin_unlock(&dcache_inode_lock);
1da177e4 574}
ec4f8605 575EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
576
577/*
d702ccb3
AM
578 * Throw away a dentry - free the inode, dput the parent. This requires that
579 * the LRU list has already been removed.
580 *
85864e10
MS
581 * Try to prune ancestors as well. This is necessary to prevent
582 * quadratic behavior of shrink_dcache_parent(), but is also expected
583 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 584 */
2fd6b7f5 585static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 586 __releases(dentry->d_lock)
2fd6b7f5 587 __releases(parent->d_lock)
b23fb0a6 588 __releases(dcache_inode_lock)
1da177e4 589{
1da177e4 590 __d_drop(dentry);
2fd6b7f5 591 dentry = d_kill(dentry, parent);
d52b9086
MS
592
593 /*
b5c84bf6 594 * Prune ancestors.
d52b9086 595 */
d52b9086 596 while (dentry) {
b23fb0a6 597 spin_lock(&dcache_inode_lock);
2fd6b7f5 598again:
b7ab39f6 599 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
600 if (IS_ROOT(dentry))
601 parent = NULL;
602 else
603 parent = dentry->d_parent;
604 if (parent && !spin_trylock(&parent->d_lock)) {
605 spin_unlock(&dentry->d_lock);
606 goto again;
607 }
b7ab39f6
NP
608 dentry->d_count--;
609 if (dentry->d_count) {
2fd6b7f5
NP
610 if (parent)
611 spin_unlock(&parent->d_lock);
b7ab39f6 612 spin_unlock(&dentry->d_lock);
b23fb0a6 613 spin_unlock(&dcache_inode_lock);
d52b9086 614 return;
23044507 615 }
d52b9086 616
a4633357 617 dentry_lru_del(dentry);
d52b9086 618 __d_drop(dentry);
2fd6b7f5 619 dentry = d_kill(dentry, parent);
d52b9086 620 }
1da177e4
LT
621}
622
3049cfe2 623static void shrink_dentry_list(struct list_head *list)
1da177e4 624{
da3bbdd4 625 struct dentry *dentry;
da3bbdd4 626
3049cfe2 627 while (!list_empty(list)) {
2fd6b7f5
NP
628 struct dentry *parent;
629
3049cfe2 630 dentry = list_entry(list->prev, struct dentry, d_lru);
23044507
NP
631
632 if (!spin_trylock(&dentry->d_lock)) {
2fd6b7f5 633relock:
23044507
NP
634 spin_unlock(&dcache_lru_lock);
635 cpu_relax();
636 spin_lock(&dcache_lru_lock);
637 continue;
638 }
639
1da177e4
LT
640 /*
641 * We found an inuse dentry which was not removed from
da3bbdd4
KM
642 * the LRU because of laziness during lookup. Do not free
643 * it - just keep it off the LRU list.
1da177e4 644 */
b7ab39f6 645 if (dentry->d_count) {
2fd6b7f5 646 __dentry_lru_del(dentry);
da3bbdd4 647 spin_unlock(&dentry->d_lock);
1da177e4
LT
648 continue;
649 }
2fd6b7f5
NP
650 if (IS_ROOT(dentry))
651 parent = NULL;
652 else
653 parent = dentry->d_parent;
654 if (parent && !spin_trylock(&parent->d_lock)) {
655 spin_unlock(&dentry->d_lock);
656 goto relock;
657 }
658 __dentry_lru_del(dentry);
23044507
NP
659 spin_unlock(&dcache_lru_lock);
660
2fd6b7f5 661 prune_one_dentry(dentry, parent);
b5c84bf6 662 /* dcache_inode_lock and dentry->d_lock dropped */
b23fb0a6 663 spin_lock(&dcache_inode_lock);
23044507 664 spin_lock(&dcache_lru_lock);
da3bbdd4 665 }
3049cfe2
CH
666}
667
668/**
669 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
670 * @sb: superblock to shrink dentry LRU.
671 * @count: number of entries to prune
672 * @flags: flags to control the dentry processing
673 *
674 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
675 */
676static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
677{
678 /* called from prune_dcache() and shrink_dcache_parent() */
679 struct dentry *dentry;
680 LIST_HEAD(referenced);
681 LIST_HEAD(tmp);
682 int cnt = *count;
683
b23fb0a6 684 spin_lock(&dcache_inode_lock);
23044507
NP
685relock:
686 spin_lock(&dcache_lru_lock);
3049cfe2
CH
687 while (!list_empty(&sb->s_dentry_lru)) {
688 dentry = list_entry(sb->s_dentry_lru.prev,
689 struct dentry, d_lru);
690 BUG_ON(dentry->d_sb != sb);
691
23044507
NP
692 if (!spin_trylock(&dentry->d_lock)) {
693 spin_unlock(&dcache_lru_lock);
694 cpu_relax();
695 goto relock;
696 }
697
3049cfe2
CH
698 /*
699 * If we are honouring the DCACHE_REFERENCED flag and the
700 * dentry has this flag set, don't free it. Clear the flag
701 * and put it back on the LRU.
702 */
23044507
NP
703 if (flags & DCACHE_REFERENCED &&
704 dentry->d_flags & DCACHE_REFERENCED) {
705 dentry->d_flags &= ~DCACHE_REFERENCED;
706 list_move(&dentry->d_lru, &referenced);
3049cfe2 707 spin_unlock(&dentry->d_lock);
23044507
NP
708 } else {
709 list_move_tail(&dentry->d_lru, &tmp);
710 spin_unlock(&dentry->d_lock);
711 if (!--cnt)
712 break;
3049cfe2 713 }
23044507 714 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
3049cfe2
CH
715 }
716
717 *count = cnt;
718 shrink_dentry_list(&tmp);
719
da3bbdd4
KM
720 if (!list_empty(&referenced))
721 list_splice(&referenced, &sb->s_dentry_lru);
23044507 722 spin_unlock(&dcache_lru_lock);
b23fb0a6 723 spin_unlock(&dcache_inode_lock);
da3bbdd4
KM
724}
725
726/**
727 * prune_dcache - shrink the dcache
728 * @count: number of entries to try to free
729 *
730 * Shrink the dcache. This is done when we need more memory, or simply when we
731 * need to unmount something (at which point we need to unuse all dentries).
732 *
733 * This function may fail to free any resources if all the dentries are in use.
734 */
735static void prune_dcache(int count)
736{
dca33252 737 struct super_block *sb, *p = NULL;
da3bbdd4 738 int w_count;
86c8749e 739 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
740 int prune_ratio;
741 int pruned;
742
743 if (unused == 0 || count == 0)
744 return;
da3bbdd4
KM
745 if (count >= unused)
746 prune_ratio = 1;
747 else
748 prune_ratio = unused / count;
749 spin_lock(&sb_lock);
dca33252 750 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
751 if (list_empty(&sb->s_instances))
752 continue;
da3bbdd4 753 if (sb->s_nr_dentry_unused == 0)
1da177e4 754 continue;
da3bbdd4
KM
755 sb->s_count++;
756 /* Now, we reclaim unused dentrins with fairness.
757 * We reclaim them same percentage from each superblock.
758 * We calculate number of dentries to scan on this sb
759 * as follows, but the implementation is arranged to avoid
760 * overflows:
761 * number of dentries to scan on this sb =
762 * count * (number of dentries on this sb /
763 * number of dentries in the machine)
0feae5c4 764 */
da3bbdd4
KM
765 spin_unlock(&sb_lock);
766 if (prune_ratio != 1)
767 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
768 else
769 w_count = sb->s_nr_dentry_unused;
770 pruned = w_count;
0feae5c4 771 /*
da3bbdd4
KM
772 * We need to be sure this filesystem isn't being unmounted,
773 * otherwise we could race with generic_shutdown_super(), and
774 * end up holding a reference to an inode while the filesystem
775 * is unmounted. So we try to get s_umount, and make sure
776 * s_root isn't NULL.
0feae5c4 777 */
da3bbdd4
KM
778 if (down_read_trylock(&sb->s_umount)) {
779 if ((sb->s_root != NULL) &&
780 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
781 __shrink_dcache_sb(sb, &w_count,
782 DCACHE_REFERENCED);
783 pruned -= w_count;
0feae5c4 784 }
da3bbdd4 785 up_read(&sb->s_umount);
0feae5c4 786 }
da3bbdd4 787 spin_lock(&sb_lock);
dca33252
AV
788 if (p)
789 __put_super(p);
da3bbdd4 790 count -= pruned;
dca33252 791 p = sb;
79893c17
AV
792 /* more work left to do? */
793 if (count <= 0)
794 break;
1da177e4 795 }
dca33252
AV
796 if (p)
797 __put_super(p);
da3bbdd4 798 spin_unlock(&sb_lock);
1da177e4
LT
799}
800
1da177e4
LT
801/**
802 * shrink_dcache_sb - shrink dcache for a superblock
803 * @sb: superblock
804 *
3049cfe2
CH
805 * Shrink the dcache for the specified super block. This is used to free
806 * the dcache before unmounting a file system.
1da177e4 807 */
3049cfe2 808void shrink_dcache_sb(struct super_block *sb)
1da177e4 809{
3049cfe2
CH
810 LIST_HEAD(tmp);
811
b23fb0a6 812 spin_lock(&dcache_inode_lock);
23044507 813 spin_lock(&dcache_lru_lock);
3049cfe2
CH
814 while (!list_empty(&sb->s_dentry_lru)) {
815 list_splice_init(&sb->s_dentry_lru, &tmp);
816 shrink_dentry_list(&tmp);
817 }
23044507 818 spin_unlock(&dcache_lru_lock);
b23fb0a6 819 spin_unlock(&dcache_inode_lock);
1da177e4 820}
ec4f8605 821EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 822
c636ebdb
DH
823/*
824 * destroy a single subtree of dentries for unmount
825 * - see the comments on shrink_dcache_for_umount() for a description of the
826 * locking
827 */
828static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
829{
830 struct dentry *parent;
f8713576 831 unsigned detached = 0;
c636ebdb
DH
832
833 BUG_ON(!IS_ROOT(dentry));
834
835 /* detach this root from the system */
23044507 836 spin_lock(&dentry->d_lock);
a4633357 837 dentry_lru_del(dentry);
c636ebdb 838 __d_drop(dentry);
da502956 839 spin_unlock(&dentry->d_lock);
c636ebdb
DH
840
841 for (;;) {
842 /* descend to the first leaf in the current subtree */
843 while (!list_empty(&dentry->d_subdirs)) {
844 struct dentry *loop;
845
846 /* this is a branch with children - detach all of them
847 * from the system in one go */
2fd6b7f5 848 spin_lock(&dentry->d_lock);
c636ebdb
DH
849 list_for_each_entry(loop, &dentry->d_subdirs,
850 d_u.d_child) {
2fd6b7f5
NP
851 spin_lock_nested(&loop->d_lock,
852 DENTRY_D_LOCK_NESTED);
a4633357 853 dentry_lru_del(loop);
c636ebdb 854 __d_drop(loop);
da502956 855 spin_unlock(&loop->d_lock);
c636ebdb 856 }
2fd6b7f5 857 spin_unlock(&dentry->d_lock);
c636ebdb
DH
858
859 /* move to the first child */
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
862 }
863
864 /* consume the dentries from this leaf up through its parents
865 * until we find one with children or run out altogether */
866 do {
867 struct inode *inode;
868
b7ab39f6 869 if (dentry->d_count != 0) {
c636ebdb
DH
870 printk(KERN_ERR
871 "BUG: Dentry %p{i=%lx,n=%s}"
872 " still in use (%d)"
873 " [unmount of %s %s]\n",
874 dentry,
875 dentry->d_inode ?
876 dentry->d_inode->i_ino : 0UL,
877 dentry->d_name.name,
b7ab39f6 878 dentry->d_count,
c636ebdb
DH
879 dentry->d_sb->s_type->name,
880 dentry->d_sb->s_id);
881 BUG();
882 }
883
2fd6b7f5 884 if (IS_ROOT(dentry)) {
c636ebdb 885 parent = NULL;
2fd6b7f5
NP
886 list_del(&dentry->d_u.d_child);
887 } else {
871c0067 888 parent = dentry->d_parent;
b7ab39f6
NP
889 spin_lock(&parent->d_lock);
890 parent->d_count--;
2fd6b7f5 891 list_del(&dentry->d_u.d_child);
b7ab39f6 892 spin_unlock(&parent->d_lock);
871c0067 893 }
c636ebdb 894
f8713576 895 detached++;
c636ebdb
DH
896
897 inode = dentry->d_inode;
898 if (inode) {
899 dentry->d_inode = NULL;
900 list_del_init(&dentry->d_alias);
901 if (dentry->d_op && dentry->d_op->d_iput)
902 dentry->d_op->d_iput(dentry, inode);
903 else
904 iput(inode);
905 }
906
907 d_free(dentry);
908
909 /* finished when we fall off the top of the tree,
910 * otherwise we ascend to the parent and move to the
911 * next sibling if there is one */
912 if (!parent)
312d3ca8 913 return;
c636ebdb 914 dentry = parent;
c636ebdb
DH
915 } while (list_empty(&dentry->d_subdirs));
916
917 dentry = list_entry(dentry->d_subdirs.next,
918 struct dentry, d_u.d_child);
919 }
920}
921
922/*
923 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 924 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
925 * - the superblock is detached from all mountings and open files, so the
926 * dentry trees will not be rearranged by the VFS
927 * - s_umount is write-locked, so the memory pressure shrinker will ignore
928 * any dentries belonging to this superblock that it comes across
929 * - the filesystem itself is no longer permitted to rearrange the dentries
930 * in this superblock
931 */
932void shrink_dcache_for_umount(struct super_block *sb)
933{
934 struct dentry *dentry;
935
936 if (down_read_trylock(&sb->s_umount))
937 BUG();
938
939 dentry = sb->s_root;
940 sb->s_root = NULL;
b7ab39f6
NP
941 spin_lock(&dentry->d_lock);
942 dentry->d_count--;
943 spin_unlock(&dentry->d_lock);
c636ebdb
DH
944 shrink_dcache_for_umount_subtree(dentry);
945
946 while (!hlist_empty(&sb->s_anon)) {
947 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
948 shrink_dcache_for_umount_subtree(dentry);
949 }
950}
951
1da177e4
LT
952/*
953 * Search for at least 1 mount point in the dentry's subdirs.
954 * We descend to the next level whenever the d_subdirs
955 * list is non-empty and continue searching.
956 */
957
958/**
959 * have_submounts - check for mounts over a dentry
960 * @parent: dentry to check.
961 *
962 * Return true if the parent or its subdirectories contain
963 * a mount point
964 */
1da177e4
LT
965int have_submounts(struct dentry *parent)
966{
949854d0 967 struct dentry *this_parent;
1da177e4 968 struct list_head *next;
949854d0 969 unsigned seq;
58db63d0 970 int locked = 0;
949854d0 971
949854d0 972 seq = read_seqbegin(&rename_lock);
58db63d0
NP
973again:
974 this_parent = parent;
1da177e4 975
1da177e4
LT
976 if (d_mountpoint(parent))
977 goto positive;
2fd6b7f5 978 spin_lock(&this_parent->d_lock);
1da177e4
LT
979repeat:
980 next = this_parent->d_subdirs.next;
981resume:
982 while (next != &this_parent->d_subdirs) {
983 struct list_head *tmp = next;
5160ee6f 984 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 985 next = tmp->next;
2fd6b7f5
NP
986
987 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 988 /* Have we found a mount point ? */
2fd6b7f5
NP
989 if (d_mountpoint(dentry)) {
990 spin_unlock(&dentry->d_lock);
991 spin_unlock(&this_parent->d_lock);
1da177e4 992 goto positive;
2fd6b7f5 993 }
1da177e4 994 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
995 spin_unlock(&this_parent->d_lock);
996 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 997 this_parent = dentry;
2fd6b7f5 998 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
999 goto repeat;
1000 }
2fd6b7f5 1001 spin_unlock(&dentry->d_lock);
1da177e4
LT
1002 }
1003 /*
1004 * All done at this level ... ascend and resume the search.
1005 */
1006 if (this_parent != parent) {
949854d0
NP
1007 struct dentry *tmp;
1008 struct dentry *child;
1009
1010 tmp = this_parent->d_parent;
1011 rcu_read_lock();
2fd6b7f5 1012 spin_unlock(&this_parent->d_lock);
949854d0
NP
1013 child = this_parent;
1014 this_parent = tmp;
2fd6b7f5 1015 spin_lock(&this_parent->d_lock);
949854d0
NP
1016 /* might go back up the wrong parent if we have had a rename
1017 * or deletion */
1018 if (this_parent != child->d_parent ||
58db63d0 1019 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1020 spin_unlock(&this_parent->d_lock);
949854d0
NP
1021 rcu_read_unlock();
1022 goto rename_retry;
1023 }
1024 rcu_read_unlock();
1025 next = child->d_u.d_child.next;
1da177e4
LT
1026 goto resume;
1027 }
2fd6b7f5 1028 spin_unlock(&this_parent->d_lock);
58db63d0 1029 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1030 goto rename_retry;
58db63d0
NP
1031 if (locked)
1032 write_sequnlock(&rename_lock);
1da177e4
LT
1033 return 0; /* No mount points found in tree */
1034positive:
58db63d0 1035 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1036 goto rename_retry;
58db63d0
NP
1037 if (locked)
1038 write_sequnlock(&rename_lock);
1da177e4 1039 return 1;
58db63d0
NP
1040
1041rename_retry:
1042 locked = 1;
1043 write_seqlock(&rename_lock);
1044 goto again;
1da177e4 1045}
ec4f8605 1046EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1047
1048/*
1049 * Search the dentry child list for the specified parent,
1050 * and move any unused dentries to the end of the unused
1051 * list for prune_dcache(). We descend to the next level
1052 * whenever the d_subdirs list is non-empty and continue
1053 * searching.
1054 *
1055 * It returns zero iff there are no unused children,
1056 * otherwise it returns the number of children moved to
1057 * the end of the unused list. This may not be the total
1058 * number of unused children, because select_parent can
1059 * drop the lock and return early due to latency
1060 * constraints.
1061 */
1062static int select_parent(struct dentry * parent)
1063{
949854d0 1064 struct dentry *this_parent;
1da177e4 1065 struct list_head *next;
949854d0 1066 unsigned seq;
1da177e4 1067 int found = 0;
58db63d0 1068 int locked = 0;
1da177e4 1069
949854d0 1070 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1071again:
1072 this_parent = parent;
2fd6b7f5 1073 spin_lock(&this_parent->d_lock);
1da177e4
LT
1074repeat:
1075 next = this_parent->d_subdirs.next;
1076resume:
1077 while (next != &this_parent->d_subdirs) {
1078 struct list_head *tmp = next;
5160ee6f 1079 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1080 next = tmp->next;
1081
2fd6b7f5 1082 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1083
1da177e4
LT
1084 /*
1085 * move only zero ref count dentries to the end
1086 * of the unused list for prune_dcache
1087 */
b7ab39f6 1088 if (!dentry->d_count) {
a4633357 1089 dentry_lru_move_tail(dentry);
1da177e4 1090 found++;
a4633357
CH
1091 } else {
1092 dentry_lru_del(dentry);
1da177e4
LT
1093 }
1094
1095 /*
1096 * We can return to the caller if we have found some (this
1097 * ensures forward progress). We'll be coming back to find
1098 * the rest.
1099 */
2fd6b7f5
NP
1100 if (found && need_resched()) {
1101 spin_unlock(&dentry->d_lock);
1da177e4 1102 goto out;
2fd6b7f5 1103 }
1da177e4
LT
1104
1105 /*
1106 * Descend a level if the d_subdirs list is non-empty.
1107 */
1108 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1109 spin_unlock(&this_parent->d_lock);
1110 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1111 this_parent = dentry;
2fd6b7f5 1112 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1113 goto repeat;
1114 }
2fd6b7f5
NP
1115
1116 spin_unlock(&dentry->d_lock);
1da177e4
LT
1117 }
1118 /*
1119 * All done at this level ... ascend and resume the search.
1120 */
1121 if (this_parent != parent) {
2fd6b7f5 1122 struct dentry *tmp;
949854d0
NP
1123 struct dentry *child;
1124
2fd6b7f5 1125 tmp = this_parent->d_parent;
949854d0 1126 rcu_read_lock();
2fd6b7f5 1127 spin_unlock(&this_parent->d_lock);
949854d0 1128 child = this_parent;
2fd6b7f5
NP
1129 this_parent = tmp;
1130 spin_lock(&this_parent->d_lock);
949854d0
NP
1131 /* might go back up the wrong parent if we have had a rename
1132 * or deletion */
1133 if (this_parent != child->d_parent ||
58db63d0 1134 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1135 spin_unlock(&this_parent->d_lock);
949854d0
NP
1136 rcu_read_unlock();
1137 goto rename_retry;
1138 }
1139 rcu_read_unlock();
1140 next = child->d_u.d_child.next;
1da177e4
LT
1141 goto resume;
1142 }
1143out:
2fd6b7f5 1144 spin_unlock(&this_parent->d_lock);
58db63d0 1145 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1146 goto rename_retry;
58db63d0
NP
1147 if (locked)
1148 write_sequnlock(&rename_lock);
1da177e4 1149 return found;
58db63d0
NP
1150
1151rename_retry:
1152 if (found)
1153 return found;
1154 locked = 1;
1155 write_seqlock(&rename_lock);
1156 goto again;
1da177e4
LT
1157}
1158
1159/**
1160 * shrink_dcache_parent - prune dcache
1161 * @parent: parent of entries to prune
1162 *
1163 * Prune the dcache to remove unused children of the parent dentry.
1164 */
1165
1166void shrink_dcache_parent(struct dentry * parent)
1167{
da3bbdd4 1168 struct super_block *sb = parent->d_sb;
1da177e4
LT
1169 int found;
1170
1171 while ((found = select_parent(parent)) != 0)
da3bbdd4 1172 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1173}
ec4f8605 1174EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1175
1da177e4
LT
1176/*
1177 * Scan `nr' dentries and return the number which remain.
1178 *
1179 * We need to avoid reentering the filesystem if the caller is performing a
1180 * GFP_NOFS allocation attempt. One example deadlock is:
1181 *
1182 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1183 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1184 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1185 *
1186 * In this case we return -1 to tell the caller that we baled.
1187 */
7f8275d0 1188static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1189{
1190 if (nr) {
1191 if (!(gfp_mask & __GFP_FS))
1192 return -1;
da3bbdd4 1193 prune_dcache(nr);
1da177e4 1194 }
312d3ca8 1195
86c8749e 1196 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1197}
1198
8e1f936b
RR
1199static struct shrinker dcache_shrinker = {
1200 .shrink = shrink_dcache_memory,
1201 .seeks = DEFAULT_SEEKS,
1202};
1203
1da177e4
LT
1204/**
1205 * d_alloc - allocate a dcache entry
1206 * @parent: parent of entry to allocate
1207 * @name: qstr of the name
1208 *
1209 * Allocates a dentry. It returns %NULL if there is insufficient memory
1210 * available. On a success the dentry is returned. The name passed in is
1211 * copied and the copy passed in may be reused after this call.
1212 */
1213
1214struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1215{
1216 struct dentry *dentry;
1217 char *dname;
1218
e12ba74d 1219 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1220 if (!dentry)
1221 return NULL;
1222
1223 if (name->len > DNAME_INLINE_LEN-1) {
1224 dname = kmalloc(name->len + 1, GFP_KERNEL);
1225 if (!dname) {
1226 kmem_cache_free(dentry_cache, dentry);
1227 return NULL;
1228 }
1229 } else {
1230 dname = dentry->d_iname;
1231 }
1232 dentry->d_name.name = dname;
1233
1234 dentry->d_name.len = name->len;
1235 dentry->d_name.hash = name->hash;
1236 memcpy(dname, name->name, name->len);
1237 dname[name->len] = 0;
1238
b7ab39f6 1239 dentry->d_count = 1;
1da177e4
LT
1240 dentry->d_flags = DCACHE_UNHASHED;
1241 spin_lock_init(&dentry->d_lock);
1242 dentry->d_inode = NULL;
1243 dentry->d_parent = NULL;
1244 dentry->d_sb = NULL;
1245 dentry->d_op = NULL;
1246 dentry->d_fsdata = NULL;
1247 dentry->d_mounted = 0;
1da177e4
LT
1248 INIT_HLIST_NODE(&dentry->d_hash);
1249 INIT_LIST_HEAD(&dentry->d_lru);
1250 INIT_LIST_HEAD(&dentry->d_subdirs);
1251 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1252 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1253
1254 if (parent) {
2fd6b7f5 1255 spin_lock(&parent->d_lock);
89ad485f
NP
1256 /*
1257 * don't need child lock because it is not subject
1258 * to concurrency here
1259 */
2fd6b7f5 1260 dentry->d_parent = dget_dlock(parent);
1da177e4 1261 dentry->d_sb = parent->d_sb;
5160ee6f 1262 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5 1263 spin_unlock(&parent->d_lock);
2fd6b7f5 1264 }
1da177e4 1265
3e880fb5 1266 this_cpu_inc(nr_dentry);
312d3ca8 1267
1da177e4
LT
1268 return dentry;
1269}
ec4f8605 1270EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1271
1272struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1273{
1274 struct qstr q;
1275
1276 q.name = name;
1277 q.len = strlen(name);
1278 q.hash = full_name_hash(q.name, q.len);
1279 return d_alloc(parent, &q);
1280}
ef26ca97 1281EXPORT_SYMBOL(d_alloc_name);
1da177e4 1282
360da900
OH
1283static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1284{
b23fb0a6 1285 spin_lock(&dentry->d_lock);
360da900
OH
1286 if (inode)
1287 list_add(&dentry->d_alias, &inode->i_dentry);
1288 dentry->d_inode = inode;
b23fb0a6 1289 spin_unlock(&dentry->d_lock);
360da900
OH
1290 fsnotify_d_instantiate(dentry, inode);
1291}
1292
1da177e4
LT
1293/**
1294 * d_instantiate - fill in inode information for a dentry
1295 * @entry: dentry to complete
1296 * @inode: inode to attach to this dentry
1297 *
1298 * Fill in inode information in the entry.
1299 *
1300 * This turns negative dentries into productive full members
1301 * of society.
1302 *
1303 * NOTE! This assumes that the inode count has been incremented
1304 * (or otherwise set) by the caller to indicate that it is now
1305 * in use by the dcache.
1306 */
1307
1308void d_instantiate(struct dentry *entry, struct inode * inode)
1309{
28133c7b 1310 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1311 spin_lock(&dcache_inode_lock);
360da900 1312 __d_instantiate(entry, inode);
b23fb0a6 1313 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1314 security_d_instantiate(entry, inode);
1315}
ec4f8605 1316EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1317
1318/**
1319 * d_instantiate_unique - instantiate a non-aliased dentry
1320 * @entry: dentry to instantiate
1321 * @inode: inode to attach to this dentry
1322 *
1323 * Fill in inode information in the entry. On success, it returns NULL.
1324 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1325 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1326 *
1327 * Note that in order to avoid conflicts with rename() etc, the caller
1328 * had better be holding the parent directory semaphore.
e866cfa9
OD
1329 *
1330 * This also assumes that the inode count has been incremented
1331 * (or otherwise set) by the caller to indicate that it is now
1332 * in use by the dcache.
1da177e4 1333 */
770bfad8
DH
1334static struct dentry *__d_instantiate_unique(struct dentry *entry,
1335 struct inode *inode)
1da177e4
LT
1336{
1337 struct dentry *alias;
1338 int len = entry->d_name.len;
1339 const char *name = entry->d_name.name;
1340 unsigned int hash = entry->d_name.hash;
1341
770bfad8 1342 if (!inode) {
360da900 1343 __d_instantiate(entry, NULL);
770bfad8
DH
1344 return NULL;
1345 }
1346
1da177e4
LT
1347 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1348 struct qstr *qstr = &alias->d_name;
1349
9abca360
NP
1350 /*
1351 * Don't need alias->d_lock here, because aliases with
1352 * d_parent == entry->d_parent are not subject to name or
1353 * parent changes, because the parent inode i_mutex is held.
1354 */
1da177e4
LT
1355 if (qstr->hash != hash)
1356 continue;
1357 if (alias->d_parent != entry->d_parent)
1358 continue;
1359 if (qstr->len != len)
1360 continue;
1361 if (memcmp(qstr->name, name, len))
1362 continue;
1363 dget_locked(alias);
1da177e4
LT
1364 return alias;
1365 }
770bfad8 1366
360da900 1367 __d_instantiate(entry, inode);
1da177e4
LT
1368 return NULL;
1369}
770bfad8
DH
1370
1371struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1372{
1373 struct dentry *result;
1374
1375 BUG_ON(!list_empty(&entry->d_alias));
1376
b23fb0a6 1377 spin_lock(&dcache_inode_lock);
770bfad8 1378 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1379 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1380
1381 if (!result) {
1382 security_d_instantiate(entry, inode);
1383 return NULL;
1384 }
1385
1386 BUG_ON(!d_unhashed(result));
1387 iput(inode);
1388 return result;
1389}
1390
1da177e4
LT
1391EXPORT_SYMBOL(d_instantiate_unique);
1392
1393/**
1394 * d_alloc_root - allocate root dentry
1395 * @root_inode: inode to allocate the root for
1396 *
1397 * Allocate a root ("/") dentry for the inode given. The inode is
1398 * instantiated and returned. %NULL is returned if there is insufficient
1399 * memory or the inode passed is %NULL.
1400 */
1401
1402struct dentry * d_alloc_root(struct inode * root_inode)
1403{
1404 struct dentry *res = NULL;
1405
1406 if (root_inode) {
1407 static const struct qstr name = { .name = "/", .len = 1 };
1408
1409 res = d_alloc(NULL, &name);
1410 if (res) {
1411 res->d_sb = root_inode->i_sb;
1412 res->d_parent = res;
1413 d_instantiate(res, root_inode);
1414 }
1415 }
1416 return res;
1417}
ec4f8605 1418EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1419
1420static inline struct hlist_head *d_hash(struct dentry *parent,
1421 unsigned long hash)
1422{
1423 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1424 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1425 return dentry_hashtable + (hash & D_HASHMASK);
1426}
1427
4ea3ada2
CH
1428/**
1429 * d_obtain_alias - find or allocate a dentry for a given inode
1430 * @inode: inode to allocate the dentry for
1431 *
1432 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1433 * similar open by handle operations. The returned dentry may be anonymous,
1434 * or may have a full name (if the inode was already in the cache).
1435 *
1436 * When called on a directory inode, we must ensure that the inode only ever
1437 * has one dentry. If a dentry is found, that is returned instead of
1438 * allocating a new one.
1439 *
1440 * On successful return, the reference to the inode has been transferred
44003728
CH
1441 * to the dentry. In case of an error the reference on the inode is released.
1442 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1443 * be passed in and will be the error will be propagate to the return value,
1444 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1445 */
1446struct dentry *d_obtain_alias(struct inode *inode)
1447{
9308a612
CH
1448 static const struct qstr anonstring = { .name = "" };
1449 struct dentry *tmp;
1450 struct dentry *res;
4ea3ada2
CH
1451
1452 if (!inode)
44003728 1453 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1454 if (IS_ERR(inode))
1455 return ERR_CAST(inode);
1456
9308a612
CH
1457 res = d_find_alias(inode);
1458 if (res)
1459 goto out_iput;
1460
1461 tmp = d_alloc(NULL, &anonstring);
1462 if (!tmp) {
1463 res = ERR_PTR(-ENOMEM);
1464 goto out_iput;
4ea3ada2 1465 }
9308a612
CH
1466 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1467
b5c84bf6 1468
b23fb0a6 1469 spin_lock(&dcache_inode_lock);
9308a612
CH
1470 res = __d_find_alias(inode, 0);
1471 if (res) {
b23fb0a6 1472 spin_unlock(&dcache_inode_lock);
9308a612
CH
1473 dput(tmp);
1474 goto out_iput;
1475 }
1476
1477 /* attach a disconnected dentry */
1478 spin_lock(&tmp->d_lock);
1479 tmp->d_sb = inode->i_sb;
1480 tmp->d_inode = inode;
1481 tmp->d_flags |= DCACHE_DISCONNECTED;
1482 tmp->d_flags &= ~DCACHE_UNHASHED;
1483 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1484 spin_lock(&dcache_hash_lock);
9308a612 1485 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1486 spin_unlock(&dcache_hash_lock);
9308a612 1487 spin_unlock(&tmp->d_lock);
b23fb0a6 1488 spin_unlock(&dcache_inode_lock);
9308a612 1489
9308a612
CH
1490 return tmp;
1491
1492 out_iput:
1493 iput(inode);
1494 return res;
4ea3ada2 1495}
adc48720 1496EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1497
1498/**
1499 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1500 * @inode: the inode which may have a disconnected dentry
1501 * @dentry: a negative dentry which we want to point to the inode.
1502 *
1503 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1504 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1505 * and return it, else simply d_add the inode to the dentry and return NULL.
1506 *
1507 * This is needed in the lookup routine of any filesystem that is exportable
1508 * (via knfsd) so that we can build dcache paths to directories effectively.
1509 *
1510 * If a dentry was found and moved, then it is returned. Otherwise NULL
1511 * is returned. This matches the expected return value of ->lookup.
1512 *
1513 */
1514struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1515{
1516 struct dentry *new = NULL;
1517
21c0d8fd 1518 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1519 spin_lock(&dcache_inode_lock);
1da177e4
LT
1520 new = __d_find_alias(inode, 1);
1521 if (new) {
1522 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1523 spin_unlock(&dcache_inode_lock);
1da177e4 1524 security_d_instantiate(new, inode);
1da177e4
LT
1525 d_move(new, dentry);
1526 iput(inode);
1527 } else {
b5c84bf6 1528 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1529 __d_instantiate(dentry, inode);
b23fb0a6 1530 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1531 security_d_instantiate(dentry, inode);
1532 d_rehash(dentry);
1533 }
1534 } else
1535 d_add(dentry, inode);
1536 return new;
1537}
ec4f8605 1538EXPORT_SYMBOL(d_splice_alias);
1da177e4 1539
9403540c
BN
1540/**
1541 * d_add_ci - lookup or allocate new dentry with case-exact name
1542 * @inode: the inode case-insensitive lookup has found
1543 * @dentry: the negative dentry that was passed to the parent's lookup func
1544 * @name: the case-exact name to be associated with the returned dentry
1545 *
1546 * This is to avoid filling the dcache with case-insensitive names to the
1547 * same inode, only the actual correct case is stored in the dcache for
1548 * case-insensitive filesystems.
1549 *
1550 * For a case-insensitive lookup match and if the the case-exact dentry
1551 * already exists in in the dcache, use it and return it.
1552 *
1553 * If no entry exists with the exact case name, allocate new dentry with
1554 * the exact case, and return the spliced entry.
1555 */
e45b590b 1556struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1557 struct qstr *name)
1558{
1559 int error;
1560 struct dentry *found;
1561 struct dentry *new;
1562
b6520c81
CH
1563 /*
1564 * First check if a dentry matching the name already exists,
1565 * if not go ahead and create it now.
1566 */
9403540c 1567 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1568 if (!found) {
1569 new = d_alloc(dentry->d_parent, name);
1570 if (!new) {
1571 error = -ENOMEM;
1572 goto err_out;
1573 }
b6520c81 1574
9403540c
BN
1575 found = d_splice_alias(inode, new);
1576 if (found) {
1577 dput(new);
1578 return found;
1579 }
1580 return new;
1581 }
b6520c81
CH
1582
1583 /*
1584 * If a matching dentry exists, and it's not negative use it.
1585 *
1586 * Decrement the reference count to balance the iget() done
1587 * earlier on.
1588 */
9403540c
BN
1589 if (found->d_inode) {
1590 if (unlikely(found->d_inode != inode)) {
1591 /* This can't happen because bad inodes are unhashed. */
1592 BUG_ON(!is_bad_inode(inode));
1593 BUG_ON(!is_bad_inode(found->d_inode));
1594 }
9403540c
BN
1595 iput(inode);
1596 return found;
1597 }
b6520c81 1598
9403540c
BN
1599 /*
1600 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1601 * already has a dentry.
9403540c 1602 */
b23fb0a6 1603 spin_lock(&dcache_inode_lock);
b6520c81 1604 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1605 __d_instantiate(found, inode);
b23fb0a6 1606 spin_unlock(&dcache_inode_lock);
9403540c
BN
1607 security_d_instantiate(found, inode);
1608 return found;
1609 }
b6520c81 1610
9403540c 1611 /*
b6520c81
CH
1612 * In case a directory already has a (disconnected) entry grab a
1613 * reference to it, move it in place and use it.
9403540c
BN
1614 */
1615 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1616 dget_locked(new);
b23fb0a6 1617 spin_unlock(&dcache_inode_lock);
9403540c 1618 security_d_instantiate(found, inode);
9403540c 1619 d_move(new, found);
9403540c 1620 iput(inode);
9403540c 1621 dput(found);
9403540c
BN
1622 return new;
1623
1624err_out:
1625 iput(inode);
1626 return ERR_PTR(error);
1627}
ec4f8605 1628EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1629
1630/**
1631 * d_lookup - search for a dentry
1632 * @parent: parent dentry
1633 * @name: qstr of name we wish to find
b04f784e 1634 * Returns: dentry, or NULL
1da177e4 1635 *
b04f784e
NP
1636 * d_lookup searches the children of the parent dentry for the name in
1637 * question. If the dentry is found its reference count is incremented and the
1638 * dentry is returned. The caller must use dput to free the entry when it has
1639 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1640 */
1da177e4
LT
1641struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1642{
1643 struct dentry * dentry = NULL;
949854d0 1644 unsigned seq;
1da177e4
LT
1645
1646 do {
1647 seq = read_seqbegin(&rename_lock);
1648 dentry = __d_lookup(parent, name);
1649 if (dentry)
1650 break;
1651 } while (read_seqretry(&rename_lock, seq));
1652 return dentry;
1653}
ec4f8605 1654EXPORT_SYMBOL(d_lookup);
1da177e4 1655
b04f784e
NP
1656/*
1657 * __d_lookup - search for a dentry (racy)
1658 * @parent: parent dentry
1659 * @name: qstr of name we wish to find
1660 * Returns: dentry, or NULL
1661 *
1662 * __d_lookup is like d_lookup, however it may (rarely) return a
1663 * false-negative result due to unrelated rename activity.
1664 *
1665 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1666 * however it must be used carefully, eg. with a following d_lookup in
1667 * the case of failure.
1668 *
1669 * __d_lookup callers must be commented.
1670 */
1da177e4
LT
1671struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1672{
1673 unsigned int len = name->len;
1674 unsigned int hash = name->hash;
1675 const unsigned char *str = name->name;
1676 struct hlist_head *head = d_hash(parent,hash);
1677 struct dentry *found = NULL;
1678 struct hlist_node *node;
665a7583 1679 struct dentry *dentry;
1da177e4 1680
b04f784e
NP
1681 /*
1682 * The hash list is protected using RCU.
1683 *
1684 * Take d_lock when comparing a candidate dentry, to avoid races
1685 * with d_move().
1686 *
1687 * It is possible that concurrent renames can mess up our list
1688 * walk here and result in missing our dentry, resulting in the
1689 * false-negative result. d_lookup() protects against concurrent
1690 * renames using rename_lock seqlock.
1691 *
1692 * See Documentation/vfs/dcache-locking.txt for more details.
1693 */
1da177e4
LT
1694 rcu_read_lock();
1695
665a7583 1696 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1697 struct qstr *qstr;
1698
1da177e4
LT
1699 if (dentry->d_name.hash != hash)
1700 continue;
1701 if (dentry->d_parent != parent)
1702 continue;
1703
1704 spin_lock(&dentry->d_lock);
1705
1706 /*
1707 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1708 * changed things. Don't bother checking the hash because
1709 * we're about to compare the whole name anyway.
1da177e4
LT
1710 */
1711 if (dentry->d_parent != parent)
1712 goto next;
1713
d0185c08
LT
1714 /* non-existing due to RCU? */
1715 if (d_unhashed(dentry))
1716 goto next;
1717
1da177e4
LT
1718 /*
1719 * It is safe to compare names since d_move() cannot
1720 * change the qstr (protected by d_lock).
1721 */
1722 qstr = &dentry->d_name;
1723 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1724 if (parent->d_op->d_compare(parent, parent->d_inode,
1725 dentry, dentry->d_inode,
1726 qstr->len, qstr->name, name))
1da177e4
LT
1727 goto next;
1728 } else {
1729 if (qstr->len != len)
1730 goto next;
1731 if (memcmp(qstr->name, str, len))
1732 goto next;
1733 }
1734
b7ab39f6 1735 dentry->d_count++;
d0185c08 1736 found = dentry;
1da177e4
LT
1737 spin_unlock(&dentry->d_lock);
1738 break;
1739next:
1740 spin_unlock(&dentry->d_lock);
1741 }
1742 rcu_read_unlock();
1743
1744 return found;
1745}
1746
3e7e241f
EB
1747/**
1748 * d_hash_and_lookup - hash the qstr then search for a dentry
1749 * @dir: Directory to search in
1750 * @name: qstr of name we wish to find
1751 *
1752 * On hash failure or on lookup failure NULL is returned.
1753 */
1754struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1755{
1756 struct dentry *dentry = NULL;
1757
1758 /*
1759 * Check for a fs-specific hash function. Note that we must
1760 * calculate the standard hash first, as the d_op->d_hash()
1761 * routine may choose to leave the hash value unchanged.
1762 */
1763 name->hash = full_name_hash(name->name, name->len);
1764 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1765 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1766 goto out;
1767 }
1768 dentry = d_lookup(dir, name);
1769out:
1770 return dentry;
1771}
1772
1da177e4 1773/**
786a5e15 1774 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1775 * @dentry: The dentry alleged to be valid child of @dparent
1776 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1777 *
1778 * An insecure source has sent us a dentry, here we verify it and dget() it.
1779 * This is used by ncpfs in its readdir implementation.
1780 * Zero is returned in the dentry is invalid.
786a5e15
NP
1781 *
1782 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1783 */
d3a23e16 1784int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1785{
786a5e15 1786 struct dentry *child;
d3a23e16 1787
2fd6b7f5 1788 spin_lock(&dparent->d_lock);
786a5e15
NP
1789 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1790 if (dentry == child) {
2fd6b7f5
NP
1791 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1792 __dget_locked_dlock(dentry);
1793 spin_unlock(&dentry->d_lock);
1794 spin_unlock(&dparent->d_lock);
1da177e4
LT
1795 return 1;
1796 }
1797 }
2fd6b7f5 1798 spin_unlock(&dparent->d_lock);
786a5e15 1799
1da177e4
LT
1800 return 0;
1801}
ec4f8605 1802EXPORT_SYMBOL(d_validate);
1da177e4
LT
1803
1804/*
1805 * When a file is deleted, we have two options:
1806 * - turn this dentry into a negative dentry
1807 * - unhash this dentry and free it.
1808 *
1809 * Usually, we want to just turn this into
1810 * a negative dentry, but if anybody else is
1811 * currently using the dentry or the inode
1812 * we can't do that and we fall back on removing
1813 * it from the hash queues and waiting for
1814 * it to be deleted later when it has no users
1815 */
1816
1817/**
1818 * d_delete - delete a dentry
1819 * @dentry: The dentry to delete
1820 *
1821 * Turn the dentry into a negative dentry if possible, otherwise
1822 * remove it from the hash queues so it can be deleted later
1823 */
1824
1825void d_delete(struct dentry * dentry)
1826{
7a91bf7f 1827 int isdir = 0;
1da177e4
LT
1828 /*
1829 * Are we the only user?
1830 */
b23fb0a6 1831 spin_lock(&dcache_inode_lock);
1da177e4 1832 spin_lock(&dentry->d_lock);
7a91bf7f 1833 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1834 if (dentry->d_count == 1) {
13e3c5e5 1835 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1836 dentry_iput(dentry);
7a91bf7f 1837 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1838 return;
1839 }
1840
1841 if (!d_unhashed(dentry))
1842 __d_drop(dentry);
1843
1844 spin_unlock(&dentry->d_lock);
b23fb0a6 1845 spin_unlock(&dcache_inode_lock);
7a91bf7f
JM
1846
1847 fsnotify_nameremove(dentry, isdir);
1da177e4 1848}
ec4f8605 1849EXPORT_SYMBOL(d_delete);
1da177e4
LT
1850
1851static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1852{
1853
1854 entry->d_flags &= ~DCACHE_UNHASHED;
1855 hlist_add_head_rcu(&entry->d_hash, list);
1856}
1857
770bfad8
DH
1858static void _d_rehash(struct dentry * entry)
1859{
1860 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1861}
1862
1da177e4
LT
1863/**
1864 * d_rehash - add an entry back to the hash
1865 * @entry: dentry to add to the hash
1866 *
1867 * Adds a dentry to the hash according to its name.
1868 */
1869
1870void d_rehash(struct dentry * entry)
1871{
1da177e4 1872 spin_lock(&entry->d_lock);
789680d1 1873 spin_lock(&dcache_hash_lock);
770bfad8 1874 _d_rehash(entry);
789680d1 1875 spin_unlock(&dcache_hash_lock);
1da177e4 1876 spin_unlock(&entry->d_lock);
1da177e4 1877}
ec4f8605 1878EXPORT_SYMBOL(d_rehash);
1da177e4 1879
fb2d5b86
NP
1880/**
1881 * dentry_update_name_case - update case insensitive dentry with a new name
1882 * @dentry: dentry to be updated
1883 * @name: new name
1884 *
1885 * Update a case insensitive dentry with new case of name.
1886 *
1887 * dentry must have been returned by d_lookup with name @name. Old and new
1888 * name lengths must match (ie. no d_compare which allows mismatched name
1889 * lengths).
1890 *
1891 * Parent inode i_mutex must be held over d_lookup and into this call (to
1892 * keep renames and concurrent inserts, and readdir(2) away).
1893 */
1894void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1895{
1896 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1897 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1898
fb2d5b86
NP
1899 spin_lock(&dentry->d_lock);
1900 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1901 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
1902}
1903EXPORT_SYMBOL(dentry_update_name_case);
1904
1da177e4
LT
1905static void switch_names(struct dentry *dentry, struct dentry *target)
1906{
1907 if (dname_external(target)) {
1908 if (dname_external(dentry)) {
1909 /*
1910 * Both external: swap the pointers
1911 */
9a8d5bb4 1912 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1913 } else {
1914 /*
1915 * dentry:internal, target:external. Steal target's
1916 * storage and make target internal.
1917 */
321bcf92
BF
1918 memcpy(target->d_iname, dentry->d_name.name,
1919 dentry->d_name.len + 1);
1da177e4
LT
1920 dentry->d_name.name = target->d_name.name;
1921 target->d_name.name = target->d_iname;
1922 }
1923 } else {
1924 if (dname_external(dentry)) {
1925 /*
1926 * dentry:external, target:internal. Give dentry's
1927 * storage to target and make dentry internal
1928 */
1929 memcpy(dentry->d_iname, target->d_name.name,
1930 target->d_name.len + 1);
1931 target->d_name.name = dentry->d_name.name;
1932 dentry->d_name.name = dentry->d_iname;
1933 } else {
1934 /*
1935 * Both are internal. Just copy target to dentry
1936 */
1937 memcpy(dentry->d_iname, target->d_name.name,
1938 target->d_name.len + 1);
dc711ca3
AV
1939 dentry->d_name.len = target->d_name.len;
1940 return;
1da177e4
LT
1941 }
1942 }
9a8d5bb4 1943 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1944}
1945
2fd6b7f5
NP
1946static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1947{
1948 /*
1949 * XXXX: do we really need to take target->d_lock?
1950 */
1951 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1952 spin_lock(&target->d_parent->d_lock);
1953 else {
1954 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1955 spin_lock(&dentry->d_parent->d_lock);
1956 spin_lock_nested(&target->d_parent->d_lock,
1957 DENTRY_D_LOCK_NESTED);
1958 } else {
1959 spin_lock(&target->d_parent->d_lock);
1960 spin_lock_nested(&dentry->d_parent->d_lock,
1961 DENTRY_D_LOCK_NESTED);
1962 }
1963 }
1964 if (target < dentry) {
1965 spin_lock_nested(&target->d_lock, 2);
1966 spin_lock_nested(&dentry->d_lock, 3);
1967 } else {
1968 spin_lock_nested(&dentry->d_lock, 2);
1969 spin_lock_nested(&target->d_lock, 3);
1970 }
1971}
1972
1973static void dentry_unlock_parents_for_move(struct dentry *dentry,
1974 struct dentry *target)
1975{
1976 if (target->d_parent != dentry->d_parent)
1977 spin_unlock(&dentry->d_parent->d_lock);
1978 if (target->d_parent != target)
1979 spin_unlock(&target->d_parent->d_lock);
1980}
1981
1da177e4 1982/*
2fd6b7f5
NP
1983 * When switching names, the actual string doesn't strictly have to
1984 * be preserved in the target - because we're dropping the target
1985 * anyway. As such, we can just do a simple memcpy() to copy over
1986 * the new name before we switch.
1987 *
1988 * Note that we have to be a lot more careful about getting the hash
1989 * switched - we have to switch the hash value properly even if it
1990 * then no longer matches the actual (corrupted) string of the target.
1991 * The hash value has to match the hash queue that the dentry is on..
1da177e4 1992 */
9eaef27b 1993/*
b5c84bf6 1994 * d_move - move a dentry
1da177e4
LT
1995 * @dentry: entry to move
1996 * @target: new dentry
1997 *
1998 * Update the dcache to reflect the move of a file name. Negative
1999 * dcache entries should not be moved in this way.
2000 */
b5c84bf6 2001void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2002{
1da177e4
LT
2003 if (!dentry->d_inode)
2004 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2005
2fd6b7f5
NP
2006 BUG_ON(d_ancestor(dentry, target));
2007 BUG_ON(d_ancestor(target, dentry));
2008
1da177e4 2009 write_seqlock(&rename_lock);
2fd6b7f5
NP
2010
2011 dentry_lock_for_move(dentry, target);
1da177e4
LT
2012
2013 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2014 spin_lock(&dcache_hash_lock);
2015 if (!d_unhashed(dentry))
2016 hlist_del_rcu(&dentry->d_hash);
2017 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2018 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2019
2020 /* Unhash the target: dput() will then get rid of it */
2021 __d_drop(target);
2022
5160ee6f
ED
2023 list_del(&dentry->d_u.d_child);
2024 list_del(&target->d_u.d_child);
1da177e4
LT
2025
2026 /* Switch the names.. */
2027 switch_names(dentry, target);
9a8d5bb4 2028 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2029
2030 /* ... and switch the parents */
2031 if (IS_ROOT(dentry)) {
2032 dentry->d_parent = target->d_parent;
2033 target->d_parent = target;
5160ee6f 2034 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2035 } else {
9a8d5bb4 2036 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2037
2038 /* And add them back to the (new) parent lists */
5160ee6f 2039 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2040 }
2041
5160ee6f 2042 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2043
2044 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2045 spin_unlock(&target->d_lock);
c32ccd87 2046 fsnotify_d_move(dentry);
1da177e4
LT
2047 spin_unlock(&dentry->d_lock);
2048 write_sequnlock(&rename_lock);
9eaef27b 2049}
ec4f8605 2050EXPORT_SYMBOL(d_move);
1da177e4 2051
e2761a11
OH
2052/**
2053 * d_ancestor - search for an ancestor
2054 * @p1: ancestor dentry
2055 * @p2: child dentry
2056 *
2057 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2058 * an ancestor of p2, else NULL.
9eaef27b 2059 */
e2761a11 2060struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2061{
2062 struct dentry *p;
2063
871c0067 2064 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2065 if (p->d_parent == p1)
e2761a11 2066 return p;
9eaef27b 2067 }
e2761a11 2068 return NULL;
9eaef27b
TM
2069}
2070
2071/*
2072 * This helper attempts to cope with remotely renamed directories
2073 *
2074 * It assumes that the caller is already holding
b5c84bf6 2075 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2076 *
2077 * Note: If ever the locking in lock_rename() changes, then please
2078 * remember to update this too...
9eaef27b
TM
2079 */
2080static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2081 __releases(dcache_inode_lock)
9eaef27b
TM
2082{
2083 struct mutex *m1 = NULL, *m2 = NULL;
2084 struct dentry *ret;
2085
2086 /* If alias and dentry share a parent, then no extra locks required */
2087 if (alias->d_parent == dentry->d_parent)
2088 goto out_unalias;
2089
2090 /* Check for loops */
2091 ret = ERR_PTR(-ELOOP);
e2761a11 2092 if (d_ancestor(alias, dentry))
9eaef27b
TM
2093 goto out_err;
2094
2095 /* See lock_rename() */
2096 ret = ERR_PTR(-EBUSY);
2097 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2098 goto out_err;
2099 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2100 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2101 goto out_err;
2102 m2 = &alias->d_parent->d_inode->i_mutex;
2103out_unalias:
b5c84bf6 2104 d_move(alias, dentry);
9eaef27b
TM
2105 ret = alias;
2106out_err:
b23fb0a6 2107 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2108 if (m2)
2109 mutex_unlock(m2);
2110 if (m1)
2111 mutex_unlock(m1);
2112 return ret;
2113}
2114
770bfad8
DH
2115/*
2116 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2117 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2118 * returns with anon->d_lock held!
770bfad8
DH
2119 */
2120static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2121{
2122 struct dentry *dparent, *aparent;
2123
2fd6b7f5 2124 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2125
2126 dparent = dentry->d_parent;
2127 aparent = anon->d_parent;
2128
2fd6b7f5
NP
2129 switch_names(dentry, anon);
2130 swap(dentry->d_name.hash, anon->d_name.hash);
2131
770bfad8
DH
2132 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2133 list_del(&dentry->d_u.d_child);
2134 if (!IS_ROOT(dentry))
2135 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2136 else
2137 INIT_LIST_HEAD(&dentry->d_u.d_child);
2138
2139 anon->d_parent = (dparent == dentry) ? anon : dparent;
2140 list_del(&anon->d_u.d_child);
2141 if (!IS_ROOT(anon))
2142 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2143 else
2144 INIT_LIST_HEAD(&anon->d_u.d_child);
2145
2fd6b7f5
NP
2146 dentry_unlock_parents_for_move(anon, dentry);
2147 spin_unlock(&dentry->d_lock);
2148
2149 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2150 anon->d_flags &= ~DCACHE_DISCONNECTED;
2151}
2152
2153/**
2154 * d_materialise_unique - introduce an inode into the tree
2155 * @dentry: candidate dentry
2156 * @inode: inode to bind to the dentry, to which aliases may be attached
2157 *
2158 * Introduces an dentry into the tree, substituting an extant disconnected
2159 * root directory alias in its place if there is one
2160 */
2161struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2162{
9eaef27b 2163 struct dentry *actual;
770bfad8
DH
2164
2165 BUG_ON(!d_unhashed(dentry));
2166
b23fb0a6 2167 spin_lock(&dcache_inode_lock);
770bfad8
DH
2168
2169 if (!inode) {
2170 actual = dentry;
360da900 2171 __d_instantiate(dentry, NULL);
770bfad8
DH
2172 goto found_lock;
2173 }
2174
9eaef27b
TM
2175 if (S_ISDIR(inode->i_mode)) {
2176 struct dentry *alias;
2177
2178 /* Does an aliased dentry already exist? */
2179 alias = __d_find_alias(inode, 0);
2180 if (alias) {
2181 actual = alias;
2182 /* Is this an anonymous mountpoint that we could splice
2183 * into our tree? */
2184 if (IS_ROOT(alias)) {
9eaef27b
TM
2185 __d_materialise_dentry(dentry, alias);
2186 __d_drop(alias);
2187 goto found;
2188 }
2189 /* Nope, but we must(!) avoid directory aliasing */
2190 actual = __d_unalias(dentry, alias);
2191 if (IS_ERR(actual))
2192 dput(alias);
2193 goto out_nolock;
2194 }
770bfad8
DH
2195 }
2196
2197 /* Add a unique reference */
2198 actual = __d_instantiate_unique(dentry, inode);
2199 if (!actual)
2200 actual = dentry;
2201 else if (unlikely(!d_unhashed(actual)))
2202 goto shouldnt_be_hashed;
2203
2204found_lock:
2205 spin_lock(&actual->d_lock);
2206found:
789680d1 2207 spin_lock(&dcache_hash_lock);
770bfad8 2208 _d_rehash(actual);
789680d1 2209 spin_unlock(&dcache_hash_lock);
770bfad8 2210 spin_unlock(&actual->d_lock);
b23fb0a6 2211 spin_unlock(&dcache_inode_lock);
9eaef27b 2212out_nolock:
770bfad8
DH
2213 if (actual == dentry) {
2214 security_d_instantiate(dentry, inode);
2215 return NULL;
2216 }
2217
2218 iput(inode);
2219 return actual;
2220
770bfad8 2221shouldnt_be_hashed:
b23fb0a6 2222 spin_unlock(&dcache_inode_lock);
770bfad8 2223 BUG();
770bfad8 2224}
ec4f8605 2225EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2226
cdd16d02 2227static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2228{
2229 *buflen -= namelen;
2230 if (*buflen < 0)
2231 return -ENAMETOOLONG;
2232 *buffer -= namelen;
2233 memcpy(*buffer, str, namelen);
2234 return 0;
2235}
2236
cdd16d02
MS
2237static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2238{
2239 return prepend(buffer, buflen, name->name, name->len);
2240}
2241
1da177e4 2242/**
f2eb6575
MS
2243 * Prepend path string to a buffer
2244 *
9d1bc601
MS
2245 * @path: the dentry/vfsmount to report
2246 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2247 * @buffer: pointer to the end of the buffer
2248 * @buflen: pointer to buffer length
552ce544 2249 *
949854d0 2250 * Caller holds the rename_lock.
9d1bc601
MS
2251 *
2252 * If path is not reachable from the supplied root, then the value of
2253 * root is changed (without modifying refcounts).
1da177e4 2254 */
f2eb6575
MS
2255static int prepend_path(const struct path *path, struct path *root,
2256 char **buffer, int *buflen)
1da177e4 2257{
9d1bc601
MS
2258 struct dentry *dentry = path->dentry;
2259 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2260 bool slash = false;
2261 int error = 0;
6092d048 2262
99b7db7b 2263 br_read_lock(vfsmount_lock);
f2eb6575 2264 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2265 struct dentry * parent;
2266
1da177e4 2267 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2268 /* Global root? */
1da177e4 2269 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2270 goto global_root;
2271 }
2272 dentry = vfsmnt->mnt_mountpoint;
2273 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2274 continue;
2275 }
2276 parent = dentry->d_parent;
2277 prefetch(parent);
9abca360 2278 spin_lock(&dentry->d_lock);
f2eb6575 2279 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2280 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2281 if (!error)
2282 error = prepend(buffer, buflen, "/", 1);
2283 if (error)
2284 break;
2285
2286 slash = true;
1da177e4
LT
2287 dentry = parent;
2288 }
2289
be285c71 2290out:
f2eb6575
MS
2291 if (!error && !slash)
2292 error = prepend(buffer, buflen, "/", 1);
2293
99b7db7b 2294 br_read_unlock(vfsmount_lock);
f2eb6575 2295 return error;
1da177e4
LT
2296
2297global_root:
98dc568b
MS
2298 /*
2299 * Filesystems needing to implement special "root names"
2300 * should do so with ->d_dname()
2301 */
2302 if (IS_ROOT(dentry) &&
2303 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2304 WARN(1, "Root dentry has weird name <%.*s>\n",
2305 (int) dentry->d_name.len, dentry->d_name.name);
2306 }
9d1bc601
MS
2307 root->mnt = vfsmnt;
2308 root->dentry = dentry;
be285c71 2309 goto out;
f2eb6575 2310}
be285c71 2311
f2eb6575
MS
2312/**
2313 * __d_path - return the path of a dentry
2314 * @path: the dentry/vfsmount to report
2315 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2316 * @buf: buffer to return value in
f2eb6575
MS
2317 * @buflen: buffer length
2318 *
ffd1f4ed 2319 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2320 *
2321 * Returns a pointer into the buffer or an error code if the
2322 * path was too long.
2323 *
be148247 2324 * "buflen" should be positive.
f2eb6575
MS
2325 *
2326 * If path is not reachable from the supplied root, then the value of
2327 * root is changed (without modifying refcounts).
2328 */
2329char *__d_path(const struct path *path, struct path *root,
2330 char *buf, int buflen)
2331{
2332 char *res = buf + buflen;
2333 int error;
2334
2335 prepend(&res, &buflen, "\0", 1);
949854d0 2336 write_seqlock(&rename_lock);
f2eb6575 2337 error = prepend_path(path, root, &res, &buflen);
949854d0 2338 write_sequnlock(&rename_lock);
be148247 2339
f2eb6575
MS
2340 if (error)
2341 return ERR_PTR(error);
f2eb6575 2342 return res;
1da177e4
LT
2343}
2344
ffd1f4ed
MS
2345/*
2346 * same as __d_path but appends "(deleted)" for unlinked files.
2347 */
2348static int path_with_deleted(const struct path *path, struct path *root,
2349 char **buf, int *buflen)
2350{
2351 prepend(buf, buflen, "\0", 1);
2352 if (d_unlinked(path->dentry)) {
2353 int error = prepend(buf, buflen, " (deleted)", 10);
2354 if (error)
2355 return error;
2356 }
2357
2358 return prepend_path(path, root, buf, buflen);
2359}
2360
8df9d1a4
MS
2361static int prepend_unreachable(char **buffer, int *buflen)
2362{
2363 return prepend(buffer, buflen, "(unreachable)", 13);
2364}
2365
a03a8a70
JB
2366/**
2367 * d_path - return the path of a dentry
cf28b486 2368 * @path: path to report
a03a8a70
JB
2369 * @buf: buffer to return value in
2370 * @buflen: buffer length
2371 *
2372 * Convert a dentry into an ASCII path name. If the entry has been deleted
2373 * the string " (deleted)" is appended. Note that this is ambiguous.
2374 *
52afeefb
AV
2375 * Returns a pointer into the buffer or an error code if the path was
2376 * too long. Note: Callers should use the returned pointer, not the passed
2377 * in buffer, to use the name! The implementation often starts at an offset
2378 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2379 *
31f3e0b3 2380 * "buflen" should be positive.
a03a8a70 2381 */
20d4fdc1 2382char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2383{
ffd1f4ed 2384 char *res = buf + buflen;
6ac08c39 2385 struct path root;
9d1bc601 2386 struct path tmp;
ffd1f4ed 2387 int error;
1da177e4 2388
c23fbb6b
ED
2389 /*
2390 * We have various synthetic filesystems that never get mounted. On
2391 * these filesystems dentries are never used for lookup purposes, and
2392 * thus don't need to be hashed. They also don't need a name until a
2393 * user wants to identify the object in /proc/pid/fd/. The little hack
2394 * below allows us to generate a name for these objects on demand:
2395 */
cf28b486
JB
2396 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2397 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2398
f7ad3c6b 2399 get_fs_root(current->fs, &root);
949854d0 2400 write_seqlock(&rename_lock);
9d1bc601 2401 tmp = root;
ffd1f4ed
MS
2402 error = path_with_deleted(path, &tmp, &res, &buflen);
2403 if (error)
2404 res = ERR_PTR(error);
949854d0 2405 write_sequnlock(&rename_lock);
6ac08c39 2406 path_put(&root);
1da177e4
LT
2407 return res;
2408}
ec4f8605 2409EXPORT_SYMBOL(d_path);
1da177e4 2410
8df9d1a4
MS
2411/**
2412 * d_path_with_unreachable - return the path of a dentry
2413 * @path: path to report
2414 * @buf: buffer to return value in
2415 * @buflen: buffer length
2416 *
2417 * The difference from d_path() is that this prepends "(unreachable)"
2418 * to paths which are unreachable from the current process' root.
2419 */
2420char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2421{
2422 char *res = buf + buflen;
2423 struct path root;
2424 struct path tmp;
2425 int error;
2426
2427 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2428 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2429
2430 get_fs_root(current->fs, &root);
949854d0 2431 write_seqlock(&rename_lock);
8df9d1a4
MS
2432 tmp = root;
2433 error = path_with_deleted(path, &tmp, &res, &buflen);
2434 if (!error && !path_equal(&tmp, &root))
2435 error = prepend_unreachable(&res, &buflen);
949854d0 2436 write_sequnlock(&rename_lock);
8df9d1a4
MS
2437 path_put(&root);
2438 if (error)
2439 res = ERR_PTR(error);
2440
2441 return res;
2442}
2443
c23fbb6b
ED
2444/*
2445 * Helper function for dentry_operations.d_dname() members
2446 */
2447char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2448 const char *fmt, ...)
2449{
2450 va_list args;
2451 char temp[64];
2452 int sz;
2453
2454 va_start(args, fmt);
2455 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2456 va_end(args);
2457
2458 if (sz > sizeof(temp) || sz > buflen)
2459 return ERR_PTR(-ENAMETOOLONG);
2460
2461 buffer += buflen - sz;
2462 return memcpy(buffer, temp, sz);
2463}
2464
6092d048
RP
2465/*
2466 * Write full pathname from the root of the filesystem into the buffer.
2467 */
ec2447c2 2468static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2469{
2470 char *end = buf + buflen;
2471 char *retval;
2472
6092d048 2473 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2474 if (buflen < 1)
2475 goto Elong;
2476 /* Get '/' right */
2477 retval = end-1;
2478 *retval = '/';
2479
cdd16d02
MS
2480 while (!IS_ROOT(dentry)) {
2481 struct dentry *parent = dentry->d_parent;
9abca360 2482 int error;
6092d048 2483
6092d048 2484 prefetch(parent);
9abca360
NP
2485 spin_lock(&dentry->d_lock);
2486 error = prepend_name(&end, &buflen, &dentry->d_name);
2487 spin_unlock(&dentry->d_lock);
2488 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2489 goto Elong;
2490
2491 retval = end;
2492 dentry = parent;
2493 }
c103135c
AV
2494 return retval;
2495Elong:
2496 return ERR_PTR(-ENAMETOOLONG);
2497}
ec2447c2
NP
2498
2499char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2500{
2501 char *retval;
2502
949854d0 2503 write_seqlock(&rename_lock);
ec2447c2 2504 retval = __dentry_path(dentry, buf, buflen);
949854d0 2505 write_sequnlock(&rename_lock);
ec2447c2
NP
2506
2507 return retval;
2508}
2509EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2510
2511char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2512{
2513 char *p = NULL;
2514 char *retval;
2515
949854d0 2516 write_seqlock(&rename_lock);
c103135c
AV
2517 if (d_unlinked(dentry)) {
2518 p = buf + buflen;
2519 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2520 goto Elong;
2521 buflen++;
2522 }
2523 retval = __dentry_path(dentry, buf, buflen);
949854d0 2524 write_sequnlock(&rename_lock);
c103135c
AV
2525 if (!IS_ERR(retval) && p)
2526 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2527 return retval;
2528Elong:
6092d048
RP
2529 return ERR_PTR(-ENAMETOOLONG);
2530}
2531
1da177e4
LT
2532/*
2533 * NOTE! The user-level library version returns a
2534 * character pointer. The kernel system call just
2535 * returns the length of the buffer filled (which
2536 * includes the ending '\0' character), or a negative
2537 * error value. So libc would do something like
2538 *
2539 * char *getcwd(char * buf, size_t size)
2540 * {
2541 * int retval;
2542 *
2543 * retval = sys_getcwd(buf, size);
2544 * if (retval >= 0)
2545 * return buf;
2546 * errno = -retval;
2547 * return NULL;
2548 * }
2549 */
3cdad428 2550SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2551{
552ce544 2552 int error;
6ac08c39 2553 struct path pwd, root;
552ce544 2554 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2555
2556 if (!page)
2557 return -ENOMEM;
2558
f7ad3c6b 2559 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2560
552ce544 2561 error = -ENOENT;
949854d0 2562 write_seqlock(&rename_lock);
f3da392e 2563 if (!d_unlinked(pwd.dentry)) {
552ce544 2564 unsigned long len;
9d1bc601 2565 struct path tmp = root;
8df9d1a4
MS
2566 char *cwd = page + PAGE_SIZE;
2567 int buflen = PAGE_SIZE;
1da177e4 2568
8df9d1a4
MS
2569 prepend(&cwd, &buflen, "\0", 1);
2570 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2571 write_sequnlock(&rename_lock);
552ce544 2572
8df9d1a4 2573 if (error)
552ce544
LT
2574 goto out;
2575
8df9d1a4
MS
2576 /* Unreachable from current root */
2577 if (!path_equal(&tmp, &root)) {
2578 error = prepend_unreachable(&cwd, &buflen);
2579 if (error)
2580 goto out;
2581 }
2582
552ce544
LT
2583 error = -ERANGE;
2584 len = PAGE_SIZE + page - cwd;
2585 if (len <= size) {
2586 error = len;
2587 if (copy_to_user(buf, cwd, len))
2588 error = -EFAULT;
2589 }
949854d0
NP
2590 } else {
2591 write_sequnlock(&rename_lock);
949854d0 2592 }
1da177e4
LT
2593
2594out:
6ac08c39
JB
2595 path_put(&pwd);
2596 path_put(&root);
1da177e4
LT
2597 free_page((unsigned long) page);
2598 return error;
2599}
2600
2601/*
2602 * Test whether new_dentry is a subdirectory of old_dentry.
2603 *
2604 * Trivially implemented using the dcache structure
2605 */
2606
2607/**
2608 * is_subdir - is new dentry a subdirectory of old_dentry
2609 * @new_dentry: new dentry
2610 * @old_dentry: old dentry
2611 *
2612 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2613 * Returns 0 otherwise.
2614 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2615 */
2616
e2761a11 2617int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2618{
2619 int result;
949854d0 2620 unsigned seq;
1da177e4 2621
e2761a11
OH
2622 if (new_dentry == old_dentry)
2623 return 1;
2624
e2761a11 2625 do {
1da177e4 2626 /* for restarting inner loop in case of seq retry */
1da177e4 2627 seq = read_seqbegin(&rename_lock);
949854d0
NP
2628 /*
2629 * Need rcu_readlock to protect against the d_parent trashing
2630 * due to d_move
2631 */
2632 rcu_read_lock();
e2761a11 2633 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2634 result = 1;
e2761a11
OH
2635 else
2636 result = 0;
949854d0 2637 rcu_read_unlock();
1da177e4 2638 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2639
2640 return result;
2641}
2642
2096f759
AV
2643int path_is_under(struct path *path1, struct path *path2)
2644{
2645 struct vfsmount *mnt = path1->mnt;
2646 struct dentry *dentry = path1->dentry;
2647 int res;
99b7db7b
NP
2648
2649 br_read_lock(vfsmount_lock);
2096f759
AV
2650 if (mnt != path2->mnt) {
2651 for (;;) {
2652 if (mnt->mnt_parent == mnt) {
99b7db7b 2653 br_read_unlock(vfsmount_lock);
2096f759
AV
2654 return 0;
2655 }
2656 if (mnt->mnt_parent == path2->mnt)
2657 break;
2658 mnt = mnt->mnt_parent;
2659 }
2660 dentry = mnt->mnt_mountpoint;
2661 }
2662 res = is_subdir(dentry, path2->dentry);
99b7db7b 2663 br_read_unlock(vfsmount_lock);
2096f759
AV
2664 return res;
2665}
2666EXPORT_SYMBOL(path_is_under);
2667
1da177e4
LT
2668void d_genocide(struct dentry *root)
2669{
949854d0 2670 struct dentry *this_parent;
1da177e4 2671 struct list_head *next;
949854d0 2672 unsigned seq;
58db63d0 2673 int locked = 0;
1da177e4 2674
949854d0 2675 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2676again:
2677 this_parent = root;
2fd6b7f5 2678 spin_lock(&this_parent->d_lock);
1da177e4
LT
2679repeat:
2680 next = this_parent->d_subdirs.next;
2681resume:
2682 while (next != &this_parent->d_subdirs) {
2683 struct list_head *tmp = next;
5160ee6f 2684 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2685 next = tmp->next;
949854d0 2686
da502956
NP
2687 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2688 if (d_unhashed(dentry) || !dentry->d_inode) {
2689 spin_unlock(&dentry->d_lock);
1da177e4 2690 continue;
da502956 2691 }
1da177e4 2692 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2693 spin_unlock(&this_parent->d_lock);
2694 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2695 this_parent = dentry;
2fd6b7f5 2696 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2697 goto repeat;
2698 }
949854d0
NP
2699 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2700 dentry->d_flags |= DCACHE_GENOCIDE;
2701 dentry->d_count--;
2702 }
b7ab39f6 2703 spin_unlock(&dentry->d_lock);
1da177e4
LT
2704 }
2705 if (this_parent != root) {
949854d0
NP
2706 struct dentry *tmp;
2707 struct dentry *child;
2708
2709 tmp = this_parent->d_parent;
2710 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2711 this_parent->d_flags |= DCACHE_GENOCIDE;
2712 this_parent->d_count--;
2713 }
2714 rcu_read_lock();
b7ab39f6 2715 spin_unlock(&this_parent->d_lock);
949854d0
NP
2716 child = this_parent;
2717 this_parent = tmp;
2fd6b7f5 2718 spin_lock(&this_parent->d_lock);
949854d0
NP
2719 /* might go back up the wrong parent if we have had a rename
2720 * or deletion */
2721 if (this_parent != child->d_parent ||
58db63d0 2722 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2723 spin_unlock(&this_parent->d_lock);
949854d0
NP
2724 rcu_read_unlock();
2725 goto rename_retry;
2726 }
2727 rcu_read_unlock();
2728 next = child->d_u.d_child.next;
1da177e4
LT
2729 goto resume;
2730 }
2fd6b7f5 2731 spin_unlock(&this_parent->d_lock);
58db63d0 2732 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2733 goto rename_retry;
58db63d0
NP
2734 if (locked)
2735 write_sequnlock(&rename_lock);
2736 return;
2737
2738rename_retry:
2739 locked = 1;
2740 write_seqlock(&rename_lock);
2741 goto again;
1da177e4
LT
2742}
2743
2744/**
2745 * find_inode_number - check for dentry with name
2746 * @dir: directory to check
2747 * @name: Name to find.
2748 *
2749 * Check whether a dentry already exists for the given name,
2750 * and return the inode number if it has an inode. Otherwise
2751 * 0 is returned.
2752 *
2753 * This routine is used to post-process directory listings for
2754 * filesystems using synthetic inode numbers, and is necessary
2755 * to keep getcwd() working.
2756 */
2757
2758ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2759{
2760 struct dentry * dentry;
2761 ino_t ino = 0;
2762
3e7e241f
EB
2763 dentry = d_hash_and_lookup(dir, name);
2764 if (dentry) {
1da177e4
LT
2765 if (dentry->d_inode)
2766 ino = dentry->d_inode->i_ino;
2767 dput(dentry);
2768 }
1da177e4
LT
2769 return ino;
2770}
ec4f8605 2771EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2772
2773static __initdata unsigned long dhash_entries;
2774static int __init set_dhash_entries(char *str)
2775{
2776 if (!str)
2777 return 0;
2778 dhash_entries = simple_strtoul(str, &str, 0);
2779 return 1;
2780}
2781__setup("dhash_entries=", set_dhash_entries);
2782
2783static void __init dcache_init_early(void)
2784{
2785 int loop;
2786
2787 /* If hashes are distributed across NUMA nodes, defer
2788 * hash allocation until vmalloc space is available.
2789 */
2790 if (hashdist)
2791 return;
2792
2793 dentry_hashtable =
2794 alloc_large_system_hash("Dentry cache",
2795 sizeof(struct hlist_head),
2796 dhash_entries,
2797 13,
2798 HASH_EARLY,
2799 &d_hash_shift,
2800 &d_hash_mask,
2801 0);
2802
2803 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2804 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2805}
2806
74bf17cf 2807static void __init dcache_init(void)
1da177e4
LT
2808{
2809 int loop;
2810
2811 /*
2812 * A constructor could be added for stable state like the lists,
2813 * but it is probably not worth it because of the cache nature
2814 * of the dcache.
2815 */
0a31bd5f
CL
2816 dentry_cache = KMEM_CACHE(dentry,
2817 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2818
8e1f936b 2819 register_shrinker(&dcache_shrinker);
1da177e4
LT
2820
2821 /* Hash may have been set up in dcache_init_early */
2822 if (!hashdist)
2823 return;
2824
2825 dentry_hashtable =
2826 alloc_large_system_hash("Dentry cache",
2827 sizeof(struct hlist_head),
2828 dhash_entries,
2829 13,
2830 0,
2831 &d_hash_shift,
2832 &d_hash_mask,
2833 0);
2834
2835 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2836 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2837}
2838
2839/* SLAB cache for __getname() consumers */
e18b890b 2840struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2841EXPORT_SYMBOL(names_cachep);
1da177e4 2842
1da177e4
LT
2843EXPORT_SYMBOL(d_genocide);
2844
1da177e4
LT
2845void __init vfs_caches_init_early(void)
2846{
2847 dcache_init_early();
2848 inode_init_early();
2849}
2850
2851void __init vfs_caches_init(unsigned long mempages)
2852{
2853 unsigned long reserve;
2854
2855 /* Base hash sizes on available memory, with a reserve equal to
2856 150% of current kernel size */
2857
2858 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2859 mempages -= reserve;
2860
2861 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2862 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2863
74bf17cf
DC
2864 dcache_init();
2865 inode_init();
1da177e4 2866 files_init(mempages);
74bf17cf 2867 mnt_init();
1da177e4
LT
2868 bdev_cache_init();
2869 chrdev_init();
2870}