jfs: dont overwrite dentry name in d_revalidate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
fa3536cc 38int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
39EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
74c3cbe3 42__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4
LT
43
44EXPORT_SYMBOL(dcache_lock);
45
e18b890b 46static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
47
48#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50/*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58#define D_HASHBITS d_hash_shift
59#define D_HASHMASK d_hash_mask
60
fa3536cc
ED
61static unsigned int d_hash_mask __read_mostly;
62static unsigned int d_hash_shift __read_mostly;
63static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
64
65/* Statistics gathering. */
66struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68};
69
3e880fb5 70static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
71
72#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
73static int get_nr_dentry(void)
74{
75 int i;
76 int sum = 0;
77 for_each_possible_cpu(i)
78 sum += per_cpu(nr_dentry, i);
79 return sum < 0 ? 0 : sum;
80}
81
312d3ca8
CH
82int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
83 size_t *lenp, loff_t *ppos)
84{
3e880fb5 85 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
86 return proc_dointvec(table, write, buffer, lenp, ppos);
87}
88#endif
89
9c82ab9c 90static void __d_free(struct rcu_head *head)
1da177e4 91{
9c82ab9c
CH
92 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
93
fd217f4d 94 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
95 if (dname_external(dentry))
96 kfree(dentry->d_name.name);
97 kmem_cache_free(dentry_cache, dentry);
98}
99
100/*
312d3ca8 101 * no dcache_lock, please.
1da177e4
LT
102 */
103static void d_free(struct dentry *dentry)
104{
3e880fb5 105 this_cpu_dec(nr_dentry);
1da177e4
LT
106 if (dentry->d_op && dentry->d_op->d_release)
107 dentry->d_op->d_release(dentry);
312d3ca8 108
b3423415 109 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 110 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 111 __d_free(&dentry->d_u.d_rcu);
b3423415 112 else
9c82ab9c 113 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
114}
115
116/*
117 * Release the dentry's inode, using the filesystem
118 * d_iput() operation if defined.
1da177e4 119 */
858119e1 120static void dentry_iput(struct dentry * dentry)
31f3e0b3
MS
121 __releases(dentry->d_lock)
122 __releases(dcache_lock)
1da177e4
LT
123{
124 struct inode *inode = dentry->d_inode;
125 if (inode) {
126 dentry->d_inode = NULL;
127 list_del_init(&dentry->d_alias);
128 spin_unlock(&dentry->d_lock);
129 spin_unlock(&dcache_lock);
f805fbda
LT
130 if (!inode->i_nlink)
131 fsnotify_inoderemove(inode);
1da177e4
LT
132 if (dentry->d_op && dentry->d_op->d_iput)
133 dentry->d_op->d_iput(dentry, inode);
134 else
135 iput(inode);
136 } else {
137 spin_unlock(&dentry->d_lock);
138 spin_unlock(&dcache_lock);
139 }
140}
141
da3bbdd4 142/*
a4633357 143 * dentry_lru_(add|del|move_tail) must be called with dcache_lock held.
da3bbdd4
KM
144 */
145static void dentry_lru_add(struct dentry *dentry)
146{
a4633357
CH
147 if (list_empty(&dentry->d_lru)) {
148 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
149 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 150 dentry_stat.nr_unused++;
a4633357 151 }
da3bbdd4
KM
152}
153
154static void dentry_lru_del(struct dentry *dentry)
155{
156 if (!list_empty(&dentry->d_lru)) {
a4633357 157 list_del_init(&dentry->d_lru);
da3bbdd4 158 dentry->d_sb->s_nr_dentry_unused--;
86c8749e 159 dentry_stat.nr_unused--;
da3bbdd4
KM
160 }
161}
162
a4633357 163static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 164{
a4633357
CH
165 if (list_empty(&dentry->d_lru)) {
166 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
167 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 168 dentry_stat.nr_unused++;
a4633357
CH
169 } else {
170 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4
KM
171 }
172}
173
d52b9086
MS
174/**
175 * d_kill - kill dentry and return parent
176 * @dentry: dentry to kill
177 *
31f3e0b3 178 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
179 *
180 * If this is the root of the dentry tree, return NULL.
181 */
182static struct dentry *d_kill(struct dentry *dentry)
31f3e0b3
MS
183 __releases(dentry->d_lock)
184 __releases(dcache_lock)
d52b9086
MS
185{
186 struct dentry *parent;
187
188 list_del(&dentry->d_u.d_child);
d52b9086
MS
189 /*drops the locks, at that point nobody can reach this dentry */
190 dentry_iput(dentry);
871c0067
OH
191 if (IS_ROOT(dentry))
192 parent = NULL;
193 else
194 parent = dentry->d_parent;
d52b9086 195 d_free(dentry);
871c0067 196 return parent;
d52b9086
MS
197}
198
1da177e4
LT
199/*
200 * This is dput
201 *
202 * This is complicated by the fact that we do not want to put
203 * dentries that are no longer on any hash chain on the unused
204 * list: we'd much rather just get rid of them immediately.
205 *
206 * However, that implies that we have to traverse the dentry
207 * tree upwards to the parents which might _also_ now be
208 * scheduled for deletion (it may have been only waiting for
209 * its last child to go away).
210 *
211 * This tail recursion is done by hand as we don't want to depend
212 * on the compiler to always get this right (gcc generally doesn't).
213 * Real recursion would eat up our stack space.
214 */
215
216/*
217 * dput - release a dentry
218 * @dentry: dentry to release
219 *
220 * Release a dentry. This will drop the usage count and if appropriate
221 * call the dentry unlink method as well as removing it from the queues and
222 * releasing its resources. If the parent dentries were scheduled for release
223 * they too may now get deleted.
224 *
225 * no dcache lock, please.
226 */
227
228void dput(struct dentry *dentry)
229{
230 if (!dentry)
231 return;
232
233repeat:
234 if (atomic_read(&dentry->d_count) == 1)
235 might_sleep();
236 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
237 return;
238
239 spin_lock(&dentry->d_lock);
240 if (atomic_read(&dentry->d_count)) {
241 spin_unlock(&dentry->d_lock);
242 spin_unlock(&dcache_lock);
243 return;
244 }
245
246 /*
247 * AV: ->d_delete() is _NOT_ allowed to block now.
248 */
249 if (dentry->d_op && dentry->d_op->d_delete) {
250 if (dentry->d_op->d_delete(dentry))
251 goto unhash_it;
252 }
265ac902 253
1da177e4
LT
254 /* Unreachable? Get rid of it */
255 if (d_unhashed(dentry))
256 goto kill_it;
265ac902
NP
257
258 /* Otherwise leave it cached and ensure it's on the LRU */
259 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 260 dentry_lru_add(dentry);
265ac902 261
1da177e4
LT
262 spin_unlock(&dentry->d_lock);
263 spin_unlock(&dcache_lock);
264 return;
265
266unhash_it:
267 __d_drop(dentry);
d52b9086 268kill_it:
da3bbdd4
KM
269 /* if dentry was on the d_lru list delete it from there */
270 dentry_lru_del(dentry);
d52b9086
MS
271 dentry = d_kill(dentry);
272 if (dentry)
273 goto repeat;
1da177e4 274}
ec4f8605 275EXPORT_SYMBOL(dput);
1da177e4
LT
276
277/**
278 * d_invalidate - invalidate a dentry
279 * @dentry: dentry to invalidate
280 *
281 * Try to invalidate the dentry if it turns out to be
282 * possible. If there are other dentries that can be
283 * reached through this one we can't delete it and we
284 * return -EBUSY. On success we return 0.
285 *
286 * no dcache lock.
287 */
288
289int d_invalidate(struct dentry * dentry)
290{
291 /*
292 * If it's already been dropped, return OK.
293 */
294 spin_lock(&dcache_lock);
295 if (d_unhashed(dentry)) {
296 spin_unlock(&dcache_lock);
297 return 0;
298 }
299 /*
300 * Check whether to do a partial shrink_dcache
301 * to get rid of unused child entries.
302 */
303 if (!list_empty(&dentry->d_subdirs)) {
304 spin_unlock(&dcache_lock);
305 shrink_dcache_parent(dentry);
306 spin_lock(&dcache_lock);
307 }
308
309 /*
310 * Somebody else still using it?
311 *
312 * If it's a directory, we can't drop it
313 * for fear of somebody re-populating it
314 * with children (even though dropping it
315 * would make it unreachable from the root,
316 * we might still populate it if it was a
317 * working directory or similar).
318 */
319 spin_lock(&dentry->d_lock);
320 if (atomic_read(&dentry->d_count) > 1) {
321 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
322 spin_unlock(&dentry->d_lock);
323 spin_unlock(&dcache_lock);
324 return -EBUSY;
325 }
326 }
327
328 __d_drop(dentry);
329 spin_unlock(&dentry->d_lock);
330 spin_unlock(&dcache_lock);
331 return 0;
332}
ec4f8605 333EXPORT_SYMBOL(d_invalidate);
1da177e4
LT
334
335/* This should be called _only_ with dcache_lock held */
1da177e4
LT
336static inline struct dentry * __dget_locked(struct dentry *dentry)
337{
338 atomic_inc(&dentry->d_count);
a4633357 339 dentry_lru_del(dentry);
1da177e4
LT
340 return dentry;
341}
342
343struct dentry * dget_locked(struct dentry *dentry)
344{
345 return __dget_locked(dentry);
346}
ec4f8605 347EXPORT_SYMBOL(dget_locked);
1da177e4
LT
348
349/**
350 * d_find_alias - grab a hashed alias of inode
351 * @inode: inode in question
352 * @want_discon: flag, used by d_splice_alias, to request
353 * that only a DISCONNECTED alias be returned.
354 *
355 * If inode has a hashed alias, or is a directory and has any alias,
356 * acquire the reference to alias and return it. Otherwise return NULL.
357 * Notice that if inode is a directory there can be only one alias and
358 * it can be unhashed only if it has no children, or if it is the root
359 * of a filesystem.
360 *
21c0d8fd 361 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 362 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 363 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4
LT
364 */
365
366static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
367{
368 struct list_head *head, *next, *tmp;
369 struct dentry *alias, *discon_alias=NULL;
370
371 head = &inode->i_dentry;
372 next = inode->i_dentry.next;
373 while (next != head) {
374 tmp = next;
375 next = tmp->next;
376 prefetch(next);
377 alias = list_entry(tmp, struct dentry, d_alias);
378 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd
N
379 if (IS_ROOT(alias) &&
380 (alias->d_flags & DCACHE_DISCONNECTED))
1da177e4
LT
381 discon_alias = alias;
382 else if (!want_discon) {
383 __dget_locked(alias);
384 return alias;
385 }
386 }
387 }
388 if (discon_alias)
389 __dget_locked(discon_alias);
390 return discon_alias;
391}
392
393struct dentry * d_find_alias(struct inode *inode)
394{
214fda1f
DH
395 struct dentry *de = NULL;
396
397 if (!list_empty(&inode->i_dentry)) {
398 spin_lock(&dcache_lock);
399 de = __d_find_alias(inode, 0);
400 spin_unlock(&dcache_lock);
401 }
1da177e4
LT
402 return de;
403}
ec4f8605 404EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
405
406/*
407 * Try to kill dentries associated with this inode.
408 * WARNING: you must own a reference to inode.
409 */
410void d_prune_aliases(struct inode *inode)
411{
0cdca3f9 412 struct dentry *dentry;
1da177e4
LT
413restart:
414 spin_lock(&dcache_lock);
0cdca3f9 415 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4
LT
416 spin_lock(&dentry->d_lock);
417 if (!atomic_read(&dentry->d_count)) {
418 __dget_locked(dentry);
419 __d_drop(dentry);
420 spin_unlock(&dentry->d_lock);
421 spin_unlock(&dcache_lock);
422 dput(dentry);
423 goto restart;
424 }
425 spin_unlock(&dentry->d_lock);
426 }
427 spin_unlock(&dcache_lock);
428}
ec4f8605 429EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
430
431/*
d702ccb3
AM
432 * Throw away a dentry - free the inode, dput the parent. This requires that
433 * the LRU list has already been removed.
434 *
85864e10
MS
435 * Try to prune ancestors as well. This is necessary to prevent
436 * quadratic behavior of shrink_dcache_parent(), but is also expected
437 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 438 */
85864e10 439static void prune_one_dentry(struct dentry * dentry)
31f3e0b3
MS
440 __releases(dentry->d_lock)
441 __releases(dcache_lock)
442 __acquires(dcache_lock)
1da177e4 443{
1da177e4 444 __d_drop(dentry);
d52b9086 445 dentry = d_kill(dentry);
d52b9086
MS
446
447 /*
448 * Prune ancestors. Locking is simpler than in dput(),
449 * because dcache_lock needs to be taken anyway.
450 */
1da177e4 451 spin_lock(&dcache_lock);
d52b9086
MS
452 while (dentry) {
453 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
454 return;
455
a4633357 456 dentry_lru_del(dentry);
d52b9086
MS
457 __d_drop(dentry);
458 dentry = d_kill(dentry);
459 spin_lock(&dcache_lock);
460 }
1da177e4
LT
461}
462
3049cfe2 463static void shrink_dentry_list(struct list_head *list)
1da177e4 464{
da3bbdd4 465 struct dentry *dentry;
da3bbdd4 466
3049cfe2
CH
467 while (!list_empty(list)) {
468 dentry = list_entry(list->prev, struct dentry, d_lru);
a4633357 469 dentry_lru_del(dentry);
3049cfe2 470
1da177e4
LT
471 /*
472 * We found an inuse dentry which was not removed from
da3bbdd4
KM
473 * the LRU because of laziness during lookup. Do not free
474 * it - just keep it off the LRU list.
1da177e4 475 */
3049cfe2 476 spin_lock(&dentry->d_lock);
da3bbdd4
KM
477 if (atomic_read(&dentry->d_count)) {
478 spin_unlock(&dentry->d_lock);
1da177e4
LT
479 continue;
480 }
da3bbdd4
KM
481 prune_one_dentry(dentry);
482 /* dentry->d_lock was dropped in prune_one_dentry() */
483 cond_resched_lock(&dcache_lock);
484 }
3049cfe2
CH
485}
486
487/**
488 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
489 * @sb: superblock to shrink dentry LRU.
490 * @count: number of entries to prune
491 * @flags: flags to control the dentry processing
492 *
493 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
494 */
495static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
496{
497 /* called from prune_dcache() and shrink_dcache_parent() */
498 struct dentry *dentry;
499 LIST_HEAD(referenced);
500 LIST_HEAD(tmp);
501 int cnt = *count;
502
503 spin_lock(&dcache_lock);
504 while (!list_empty(&sb->s_dentry_lru)) {
505 dentry = list_entry(sb->s_dentry_lru.prev,
506 struct dentry, d_lru);
507 BUG_ON(dentry->d_sb != sb);
508
509 /*
510 * If we are honouring the DCACHE_REFERENCED flag and the
511 * dentry has this flag set, don't free it. Clear the flag
512 * and put it back on the LRU.
513 */
514 if (flags & DCACHE_REFERENCED) {
515 spin_lock(&dentry->d_lock);
516 if (dentry->d_flags & DCACHE_REFERENCED) {
517 dentry->d_flags &= ~DCACHE_REFERENCED;
518 list_move(&dentry->d_lru, &referenced);
519 spin_unlock(&dentry->d_lock);
520 cond_resched_lock(&dcache_lock);
521 continue;
522 }
523 spin_unlock(&dentry->d_lock);
524 }
525
526 list_move_tail(&dentry->d_lru, &tmp);
527 if (!--cnt)
528 break;
529 cond_resched_lock(&dcache_lock);
530 }
531
532 *count = cnt;
533 shrink_dentry_list(&tmp);
534
da3bbdd4
KM
535 if (!list_empty(&referenced))
536 list_splice(&referenced, &sb->s_dentry_lru);
537 spin_unlock(&dcache_lock);
3049cfe2 538
da3bbdd4
KM
539}
540
541/**
542 * prune_dcache - shrink the dcache
543 * @count: number of entries to try to free
544 *
545 * Shrink the dcache. This is done when we need more memory, or simply when we
546 * need to unmount something (at which point we need to unuse all dentries).
547 *
548 * This function may fail to free any resources if all the dentries are in use.
549 */
550static void prune_dcache(int count)
551{
dca33252 552 struct super_block *sb, *p = NULL;
da3bbdd4 553 int w_count;
86c8749e 554 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
555 int prune_ratio;
556 int pruned;
557
558 if (unused == 0 || count == 0)
559 return;
560 spin_lock(&dcache_lock);
da3bbdd4
KM
561 if (count >= unused)
562 prune_ratio = 1;
563 else
564 prune_ratio = unused / count;
565 spin_lock(&sb_lock);
dca33252 566 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
567 if (list_empty(&sb->s_instances))
568 continue;
da3bbdd4 569 if (sb->s_nr_dentry_unused == 0)
1da177e4 570 continue;
da3bbdd4
KM
571 sb->s_count++;
572 /* Now, we reclaim unused dentrins with fairness.
573 * We reclaim them same percentage from each superblock.
574 * We calculate number of dentries to scan on this sb
575 * as follows, but the implementation is arranged to avoid
576 * overflows:
577 * number of dentries to scan on this sb =
578 * count * (number of dentries on this sb /
579 * number of dentries in the machine)
0feae5c4 580 */
da3bbdd4
KM
581 spin_unlock(&sb_lock);
582 if (prune_ratio != 1)
583 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
584 else
585 w_count = sb->s_nr_dentry_unused;
586 pruned = w_count;
0feae5c4 587 /*
da3bbdd4
KM
588 * We need to be sure this filesystem isn't being unmounted,
589 * otherwise we could race with generic_shutdown_super(), and
590 * end up holding a reference to an inode while the filesystem
591 * is unmounted. So we try to get s_umount, and make sure
592 * s_root isn't NULL.
0feae5c4 593 */
da3bbdd4
KM
594 if (down_read_trylock(&sb->s_umount)) {
595 if ((sb->s_root != NULL) &&
596 (!list_empty(&sb->s_dentry_lru))) {
597 spin_unlock(&dcache_lock);
598 __shrink_dcache_sb(sb, &w_count,
599 DCACHE_REFERENCED);
600 pruned -= w_count;
601 spin_lock(&dcache_lock);
0feae5c4 602 }
da3bbdd4 603 up_read(&sb->s_umount);
0feae5c4 604 }
da3bbdd4 605 spin_lock(&sb_lock);
dca33252
AV
606 if (p)
607 __put_super(p);
da3bbdd4 608 count -= pruned;
dca33252 609 p = sb;
79893c17
AV
610 /* more work left to do? */
611 if (count <= 0)
612 break;
1da177e4 613 }
dca33252
AV
614 if (p)
615 __put_super(p);
da3bbdd4 616 spin_unlock(&sb_lock);
1da177e4
LT
617 spin_unlock(&dcache_lock);
618}
619
1da177e4
LT
620/**
621 * shrink_dcache_sb - shrink dcache for a superblock
622 * @sb: superblock
623 *
3049cfe2
CH
624 * Shrink the dcache for the specified super block. This is used to free
625 * the dcache before unmounting a file system.
1da177e4 626 */
3049cfe2 627void shrink_dcache_sb(struct super_block *sb)
1da177e4 628{
3049cfe2
CH
629 LIST_HEAD(tmp);
630
631 spin_lock(&dcache_lock);
632 while (!list_empty(&sb->s_dentry_lru)) {
633 list_splice_init(&sb->s_dentry_lru, &tmp);
634 shrink_dentry_list(&tmp);
635 }
636 spin_unlock(&dcache_lock);
1da177e4 637}
ec4f8605 638EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 639
c636ebdb
DH
640/*
641 * destroy a single subtree of dentries for unmount
642 * - see the comments on shrink_dcache_for_umount() for a description of the
643 * locking
644 */
645static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
646{
647 struct dentry *parent;
f8713576 648 unsigned detached = 0;
c636ebdb
DH
649
650 BUG_ON(!IS_ROOT(dentry));
651
652 /* detach this root from the system */
653 spin_lock(&dcache_lock);
a4633357 654 dentry_lru_del(dentry);
c636ebdb
DH
655 __d_drop(dentry);
656 spin_unlock(&dcache_lock);
657
658 for (;;) {
659 /* descend to the first leaf in the current subtree */
660 while (!list_empty(&dentry->d_subdirs)) {
661 struct dentry *loop;
662
663 /* this is a branch with children - detach all of them
664 * from the system in one go */
665 spin_lock(&dcache_lock);
666 list_for_each_entry(loop, &dentry->d_subdirs,
667 d_u.d_child) {
a4633357 668 dentry_lru_del(loop);
c636ebdb
DH
669 __d_drop(loop);
670 cond_resched_lock(&dcache_lock);
671 }
672 spin_unlock(&dcache_lock);
673
674 /* move to the first child */
675 dentry = list_entry(dentry->d_subdirs.next,
676 struct dentry, d_u.d_child);
677 }
678
679 /* consume the dentries from this leaf up through its parents
680 * until we find one with children or run out altogether */
681 do {
682 struct inode *inode;
683
684 if (atomic_read(&dentry->d_count) != 0) {
685 printk(KERN_ERR
686 "BUG: Dentry %p{i=%lx,n=%s}"
687 " still in use (%d)"
688 " [unmount of %s %s]\n",
689 dentry,
690 dentry->d_inode ?
691 dentry->d_inode->i_ino : 0UL,
692 dentry->d_name.name,
693 atomic_read(&dentry->d_count),
694 dentry->d_sb->s_type->name,
695 dentry->d_sb->s_id);
696 BUG();
697 }
698
871c0067 699 if (IS_ROOT(dentry))
c636ebdb 700 parent = NULL;
871c0067
OH
701 else {
702 parent = dentry->d_parent;
c636ebdb 703 atomic_dec(&parent->d_count);
871c0067 704 }
c636ebdb
DH
705
706 list_del(&dentry->d_u.d_child);
f8713576 707 detached++;
c636ebdb
DH
708
709 inode = dentry->d_inode;
710 if (inode) {
711 dentry->d_inode = NULL;
712 list_del_init(&dentry->d_alias);
713 if (dentry->d_op && dentry->d_op->d_iput)
714 dentry->d_op->d_iput(dentry, inode);
715 else
716 iput(inode);
717 }
718
719 d_free(dentry);
720
721 /* finished when we fall off the top of the tree,
722 * otherwise we ascend to the parent and move to the
723 * next sibling if there is one */
724 if (!parent)
312d3ca8 725 return;
c636ebdb 726 dentry = parent;
c636ebdb
DH
727 } while (list_empty(&dentry->d_subdirs));
728
729 dentry = list_entry(dentry->d_subdirs.next,
730 struct dentry, d_u.d_child);
731 }
732}
733
734/*
735 * destroy the dentries attached to a superblock on unmounting
736 * - we don't need to use dentry->d_lock, and only need dcache_lock when
737 * removing the dentry from the system lists and hashes because:
738 * - the superblock is detached from all mountings and open files, so the
739 * dentry trees will not be rearranged by the VFS
740 * - s_umount is write-locked, so the memory pressure shrinker will ignore
741 * any dentries belonging to this superblock that it comes across
742 * - the filesystem itself is no longer permitted to rearrange the dentries
743 * in this superblock
744 */
745void shrink_dcache_for_umount(struct super_block *sb)
746{
747 struct dentry *dentry;
748
749 if (down_read_trylock(&sb->s_umount))
750 BUG();
751
752 dentry = sb->s_root;
753 sb->s_root = NULL;
754 atomic_dec(&dentry->d_count);
755 shrink_dcache_for_umount_subtree(dentry);
756
757 while (!hlist_empty(&sb->s_anon)) {
758 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
759 shrink_dcache_for_umount_subtree(dentry);
760 }
761}
762
1da177e4
LT
763/*
764 * Search for at least 1 mount point in the dentry's subdirs.
765 * We descend to the next level whenever the d_subdirs
766 * list is non-empty and continue searching.
767 */
768
769/**
770 * have_submounts - check for mounts over a dentry
771 * @parent: dentry to check.
772 *
773 * Return true if the parent or its subdirectories contain
774 * a mount point
775 */
776
777int have_submounts(struct dentry *parent)
778{
779 struct dentry *this_parent = parent;
780 struct list_head *next;
781
782 spin_lock(&dcache_lock);
783 if (d_mountpoint(parent))
784 goto positive;
785repeat:
786 next = this_parent->d_subdirs.next;
787resume:
788 while (next != &this_parent->d_subdirs) {
789 struct list_head *tmp = next;
5160ee6f 790 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
791 next = tmp->next;
792 /* Have we found a mount point ? */
793 if (d_mountpoint(dentry))
794 goto positive;
795 if (!list_empty(&dentry->d_subdirs)) {
796 this_parent = dentry;
797 goto repeat;
798 }
799 }
800 /*
801 * All done at this level ... ascend and resume the search.
802 */
803 if (this_parent != parent) {
5160ee6f 804 next = this_parent->d_u.d_child.next;
1da177e4
LT
805 this_parent = this_parent->d_parent;
806 goto resume;
807 }
808 spin_unlock(&dcache_lock);
809 return 0; /* No mount points found in tree */
810positive:
811 spin_unlock(&dcache_lock);
812 return 1;
813}
ec4f8605 814EXPORT_SYMBOL(have_submounts);
1da177e4
LT
815
816/*
817 * Search the dentry child list for the specified parent,
818 * and move any unused dentries to the end of the unused
819 * list for prune_dcache(). We descend to the next level
820 * whenever the d_subdirs list is non-empty and continue
821 * searching.
822 *
823 * It returns zero iff there are no unused children,
824 * otherwise it returns the number of children moved to
825 * the end of the unused list. This may not be the total
826 * number of unused children, because select_parent can
827 * drop the lock and return early due to latency
828 * constraints.
829 */
830static int select_parent(struct dentry * parent)
831{
832 struct dentry *this_parent = parent;
833 struct list_head *next;
834 int found = 0;
835
836 spin_lock(&dcache_lock);
837repeat:
838 next = this_parent->d_subdirs.next;
839resume:
840 while (next != &this_parent->d_subdirs) {
841 struct list_head *tmp = next;
5160ee6f 842 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
843 next = tmp->next;
844
1da177e4
LT
845 /*
846 * move only zero ref count dentries to the end
847 * of the unused list for prune_dcache
848 */
849 if (!atomic_read(&dentry->d_count)) {
a4633357 850 dentry_lru_move_tail(dentry);
1da177e4 851 found++;
a4633357
CH
852 } else {
853 dentry_lru_del(dentry);
1da177e4
LT
854 }
855
856 /*
857 * We can return to the caller if we have found some (this
858 * ensures forward progress). We'll be coming back to find
859 * the rest.
860 */
861 if (found && need_resched())
862 goto out;
863
864 /*
865 * Descend a level if the d_subdirs list is non-empty.
866 */
867 if (!list_empty(&dentry->d_subdirs)) {
868 this_parent = dentry;
1da177e4
LT
869 goto repeat;
870 }
871 }
872 /*
873 * All done at this level ... ascend and resume the search.
874 */
875 if (this_parent != parent) {
5160ee6f 876 next = this_parent->d_u.d_child.next;
1da177e4 877 this_parent = this_parent->d_parent;
1da177e4
LT
878 goto resume;
879 }
880out:
881 spin_unlock(&dcache_lock);
882 return found;
883}
884
885/**
886 * shrink_dcache_parent - prune dcache
887 * @parent: parent of entries to prune
888 *
889 * Prune the dcache to remove unused children of the parent dentry.
890 */
891
892void shrink_dcache_parent(struct dentry * parent)
893{
da3bbdd4 894 struct super_block *sb = parent->d_sb;
1da177e4
LT
895 int found;
896
897 while ((found = select_parent(parent)) != 0)
da3bbdd4 898 __shrink_dcache_sb(sb, &found, 0);
1da177e4 899}
ec4f8605 900EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 901
1da177e4
LT
902/*
903 * Scan `nr' dentries and return the number which remain.
904 *
905 * We need to avoid reentering the filesystem if the caller is performing a
906 * GFP_NOFS allocation attempt. One example deadlock is:
907 *
908 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
909 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
910 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
911 *
912 * In this case we return -1 to tell the caller that we baled.
913 */
7f8275d0 914static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
915{
916 if (nr) {
917 if (!(gfp_mask & __GFP_FS))
918 return -1;
da3bbdd4 919 prune_dcache(nr);
1da177e4 920 }
312d3ca8 921
86c8749e 922 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
923}
924
8e1f936b
RR
925static struct shrinker dcache_shrinker = {
926 .shrink = shrink_dcache_memory,
927 .seeks = DEFAULT_SEEKS,
928};
929
1da177e4
LT
930/**
931 * d_alloc - allocate a dcache entry
932 * @parent: parent of entry to allocate
933 * @name: qstr of the name
934 *
935 * Allocates a dentry. It returns %NULL if there is insufficient memory
936 * available. On a success the dentry is returned. The name passed in is
937 * copied and the copy passed in may be reused after this call.
938 */
939
940struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
941{
942 struct dentry *dentry;
943 char *dname;
944
e12ba74d 945 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
946 if (!dentry)
947 return NULL;
948
949 if (name->len > DNAME_INLINE_LEN-1) {
950 dname = kmalloc(name->len + 1, GFP_KERNEL);
951 if (!dname) {
952 kmem_cache_free(dentry_cache, dentry);
953 return NULL;
954 }
955 } else {
956 dname = dentry->d_iname;
957 }
958 dentry->d_name.name = dname;
959
960 dentry->d_name.len = name->len;
961 dentry->d_name.hash = name->hash;
962 memcpy(dname, name->name, name->len);
963 dname[name->len] = 0;
964
965 atomic_set(&dentry->d_count, 1);
966 dentry->d_flags = DCACHE_UNHASHED;
967 spin_lock_init(&dentry->d_lock);
968 dentry->d_inode = NULL;
969 dentry->d_parent = NULL;
970 dentry->d_sb = NULL;
971 dentry->d_op = NULL;
972 dentry->d_fsdata = NULL;
973 dentry->d_mounted = 0;
1da177e4
LT
974 INIT_HLIST_NODE(&dentry->d_hash);
975 INIT_LIST_HEAD(&dentry->d_lru);
976 INIT_LIST_HEAD(&dentry->d_subdirs);
977 INIT_LIST_HEAD(&dentry->d_alias);
978
979 if (parent) {
980 dentry->d_parent = dget(parent);
981 dentry->d_sb = parent->d_sb;
982 } else {
5160ee6f 983 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
984 }
985
986 spin_lock(&dcache_lock);
987 if (parent)
5160ee6f 988 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1da177e4
LT
989 spin_unlock(&dcache_lock);
990
3e880fb5 991 this_cpu_inc(nr_dentry);
312d3ca8 992
1da177e4
LT
993 return dentry;
994}
ec4f8605 995EXPORT_SYMBOL(d_alloc);
1da177e4
LT
996
997struct dentry *d_alloc_name(struct dentry *parent, const char *name)
998{
999 struct qstr q;
1000
1001 q.name = name;
1002 q.len = strlen(name);
1003 q.hash = full_name_hash(q.name, q.len);
1004 return d_alloc(parent, &q);
1005}
ef26ca97 1006EXPORT_SYMBOL(d_alloc_name);
1da177e4 1007
360da900
OH
1008/* the caller must hold dcache_lock */
1009static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1010{
1011 if (inode)
1012 list_add(&dentry->d_alias, &inode->i_dentry);
1013 dentry->d_inode = inode;
1014 fsnotify_d_instantiate(dentry, inode);
1015}
1016
1da177e4
LT
1017/**
1018 * d_instantiate - fill in inode information for a dentry
1019 * @entry: dentry to complete
1020 * @inode: inode to attach to this dentry
1021 *
1022 * Fill in inode information in the entry.
1023 *
1024 * This turns negative dentries into productive full members
1025 * of society.
1026 *
1027 * NOTE! This assumes that the inode count has been incremented
1028 * (or otherwise set) by the caller to indicate that it is now
1029 * in use by the dcache.
1030 */
1031
1032void d_instantiate(struct dentry *entry, struct inode * inode)
1033{
28133c7b 1034 BUG_ON(!list_empty(&entry->d_alias));
1da177e4 1035 spin_lock(&dcache_lock);
360da900 1036 __d_instantiate(entry, inode);
1da177e4
LT
1037 spin_unlock(&dcache_lock);
1038 security_d_instantiate(entry, inode);
1039}
ec4f8605 1040EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1041
1042/**
1043 * d_instantiate_unique - instantiate a non-aliased dentry
1044 * @entry: dentry to instantiate
1045 * @inode: inode to attach to this dentry
1046 *
1047 * Fill in inode information in the entry. On success, it returns NULL.
1048 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1049 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1050 *
1051 * Note that in order to avoid conflicts with rename() etc, the caller
1052 * had better be holding the parent directory semaphore.
e866cfa9
OD
1053 *
1054 * This also assumes that the inode count has been incremented
1055 * (or otherwise set) by the caller to indicate that it is now
1056 * in use by the dcache.
1da177e4 1057 */
770bfad8
DH
1058static struct dentry *__d_instantiate_unique(struct dentry *entry,
1059 struct inode *inode)
1da177e4
LT
1060{
1061 struct dentry *alias;
1062 int len = entry->d_name.len;
1063 const char *name = entry->d_name.name;
1064 unsigned int hash = entry->d_name.hash;
1065
770bfad8 1066 if (!inode) {
360da900 1067 __d_instantiate(entry, NULL);
770bfad8
DH
1068 return NULL;
1069 }
1070
1da177e4
LT
1071 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1072 struct qstr *qstr = &alias->d_name;
1073
1074 if (qstr->hash != hash)
1075 continue;
1076 if (alias->d_parent != entry->d_parent)
1077 continue;
1078 if (qstr->len != len)
1079 continue;
1080 if (memcmp(qstr->name, name, len))
1081 continue;
1082 dget_locked(alias);
1da177e4
LT
1083 return alias;
1084 }
770bfad8 1085
360da900 1086 __d_instantiate(entry, inode);
1da177e4
LT
1087 return NULL;
1088}
770bfad8
DH
1089
1090struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1091{
1092 struct dentry *result;
1093
1094 BUG_ON(!list_empty(&entry->d_alias));
1095
1096 spin_lock(&dcache_lock);
1097 result = __d_instantiate_unique(entry, inode);
1098 spin_unlock(&dcache_lock);
1099
1100 if (!result) {
1101 security_d_instantiate(entry, inode);
1102 return NULL;
1103 }
1104
1105 BUG_ON(!d_unhashed(result));
1106 iput(inode);
1107 return result;
1108}
1109
1da177e4
LT
1110EXPORT_SYMBOL(d_instantiate_unique);
1111
1112/**
1113 * d_alloc_root - allocate root dentry
1114 * @root_inode: inode to allocate the root for
1115 *
1116 * Allocate a root ("/") dentry for the inode given. The inode is
1117 * instantiated and returned. %NULL is returned if there is insufficient
1118 * memory or the inode passed is %NULL.
1119 */
1120
1121struct dentry * d_alloc_root(struct inode * root_inode)
1122{
1123 struct dentry *res = NULL;
1124
1125 if (root_inode) {
1126 static const struct qstr name = { .name = "/", .len = 1 };
1127
1128 res = d_alloc(NULL, &name);
1129 if (res) {
1130 res->d_sb = root_inode->i_sb;
1131 res->d_parent = res;
1132 d_instantiate(res, root_inode);
1133 }
1134 }
1135 return res;
1136}
ec4f8605 1137EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1138
1139static inline struct hlist_head *d_hash(struct dentry *parent,
1140 unsigned long hash)
1141{
1142 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1143 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1144 return dentry_hashtable + (hash & D_HASHMASK);
1145}
1146
4ea3ada2
CH
1147/**
1148 * d_obtain_alias - find or allocate a dentry for a given inode
1149 * @inode: inode to allocate the dentry for
1150 *
1151 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1152 * similar open by handle operations. The returned dentry may be anonymous,
1153 * or may have a full name (if the inode was already in the cache).
1154 *
1155 * When called on a directory inode, we must ensure that the inode only ever
1156 * has one dentry. If a dentry is found, that is returned instead of
1157 * allocating a new one.
1158 *
1159 * On successful return, the reference to the inode has been transferred
44003728
CH
1160 * to the dentry. In case of an error the reference on the inode is released.
1161 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1162 * be passed in and will be the error will be propagate to the return value,
1163 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1164 */
1165struct dentry *d_obtain_alias(struct inode *inode)
1166{
9308a612
CH
1167 static const struct qstr anonstring = { .name = "" };
1168 struct dentry *tmp;
1169 struct dentry *res;
4ea3ada2
CH
1170
1171 if (!inode)
44003728 1172 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1173 if (IS_ERR(inode))
1174 return ERR_CAST(inode);
1175
9308a612
CH
1176 res = d_find_alias(inode);
1177 if (res)
1178 goto out_iput;
1179
1180 tmp = d_alloc(NULL, &anonstring);
1181 if (!tmp) {
1182 res = ERR_PTR(-ENOMEM);
1183 goto out_iput;
4ea3ada2 1184 }
9308a612
CH
1185 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1186
1187 spin_lock(&dcache_lock);
1188 res = __d_find_alias(inode, 0);
1189 if (res) {
1190 spin_unlock(&dcache_lock);
1191 dput(tmp);
1192 goto out_iput;
1193 }
1194
1195 /* attach a disconnected dentry */
1196 spin_lock(&tmp->d_lock);
1197 tmp->d_sb = inode->i_sb;
1198 tmp->d_inode = inode;
1199 tmp->d_flags |= DCACHE_DISCONNECTED;
1200 tmp->d_flags &= ~DCACHE_UNHASHED;
1201 list_add(&tmp->d_alias, &inode->i_dentry);
1202 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1203 spin_unlock(&tmp->d_lock);
1204
1205 spin_unlock(&dcache_lock);
1206 return tmp;
1207
1208 out_iput:
1209 iput(inode);
1210 return res;
4ea3ada2 1211}
adc48720 1212EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1213
1214/**
1215 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1216 * @inode: the inode which may have a disconnected dentry
1217 * @dentry: a negative dentry which we want to point to the inode.
1218 *
1219 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1220 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1221 * and return it, else simply d_add the inode to the dentry and return NULL.
1222 *
1223 * This is needed in the lookup routine of any filesystem that is exportable
1224 * (via knfsd) so that we can build dcache paths to directories effectively.
1225 *
1226 * If a dentry was found and moved, then it is returned. Otherwise NULL
1227 * is returned. This matches the expected return value of ->lookup.
1228 *
1229 */
1230struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1231{
1232 struct dentry *new = NULL;
1233
21c0d8fd 1234 if (inode && S_ISDIR(inode->i_mode)) {
1da177e4
LT
1235 spin_lock(&dcache_lock);
1236 new = __d_find_alias(inode, 1);
1237 if (new) {
1238 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1239 spin_unlock(&dcache_lock);
1240 security_d_instantiate(new, inode);
1da177e4
LT
1241 d_move(new, dentry);
1242 iput(inode);
1243 } else {
360da900
OH
1244 /* already taking dcache_lock, so d_add() by hand */
1245 __d_instantiate(dentry, inode);
1da177e4
LT
1246 spin_unlock(&dcache_lock);
1247 security_d_instantiate(dentry, inode);
1248 d_rehash(dentry);
1249 }
1250 } else
1251 d_add(dentry, inode);
1252 return new;
1253}
ec4f8605 1254EXPORT_SYMBOL(d_splice_alias);
1da177e4 1255
9403540c
BN
1256/**
1257 * d_add_ci - lookup or allocate new dentry with case-exact name
1258 * @inode: the inode case-insensitive lookup has found
1259 * @dentry: the negative dentry that was passed to the parent's lookup func
1260 * @name: the case-exact name to be associated with the returned dentry
1261 *
1262 * This is to avoid filling the dcache with case-insensitive names to the
1263 * same inode, only the actual correct case is stored in the dcache for
1264 * case-insensitive filesystems.
1265 *
1266 * For a case-insensitive lookup match and if the the case-exact dentry
1267 * already exists in in the dcache, use it and return it.
1268 *
1269 * If no entry exists with the exact case name, allocate new dentry with
1270 * the exact case, and return the spliced entry.
1271 */
e45b590b 1272struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1273 struct qstr *name)
1274{
1275 int error;
1276 struct dentry *found;
1277 struct dentry *new;
1278
b6520c81
CH
1279 /*
1280 * First check if a dentry matching the name already exists,
1281 * if not go ahead and create it now.
1282 */
9403540c 1283 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1284 if (!found) {
1285 new = d_alloc(dentry->d_parent, name);
1286 if (!new) {
1287 error = -ENOMEM;
1288 goto err_out;
1289 }
b6520c81 1290
9403540c
BN
1291 found = d_splice_alias(inode, new);
1292 if (found) {
1293 dput(new);
1294 return found;
1295 }
1296 return new;
1297 }
b6520c81
CH
1298
1299 /*
1300 * If a matching dentry exists, and it's not negative use it.
1301 *
1302 * Decrement the reference count to balance the iget() done
1303 * earlier on.
1304 */
9403540c
BN
1305 if (found->d_inode) {
1306 if (unlikely(found->d_inode != inode)) {
1307 /* This can't happen because bad inodes are unhashed. */
1308 BUG_ON(!is_bad_inode(inode));
1309 BUG_ON(!is_bad_inode(found->d_inode));
1310 }
9403540c
BN
1311 iput(inode);
1312 return found;
1313 }
b6520c81 1314
9403540c
BN
1315 /*
1316 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1317 * already has a dentry.
9403540c 1318 */
9403540c 1319 spin_lock(&dcache_lock);
b6520c81 1320 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1321 __d_instantiate(found, inode);
9403540c
BN
1322 spin_unlock(&dcache_lock);
1323 security_d_instantiate(found, inode);
1324 return found;
1325 }
b6520c81 1326
9403540c 1327 /*
b6520c81
CH
1328 * In case a directory already has a (disconnected) entry grab a
1329 * reference to it, move it in place and use it.
9403540c
BN
1330 */
1331 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1332 dget_locked(new);
1333 spin_unlock(&dcache_lock);
9403540c 1334 security_d_instantiate(found, inode);
9403540c 1335 d_move(new, found);
9403540c 1336 iput(inode);
9403540c 1337 dput(found);
9403540c
BN
1338 return new;
1339
1340err_out:
1341 iput(inode);
1342 return ERR_PTR(error);
1343}
ec4f8605 1344EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1345
1346/**
1347 * d_lookup - search for a dentry
1348 * @parent: parent dentry
1349 * @name: qstr of name we wish to find
b04f784e 1350 * Returns: dentry, or NULL
1da177e4 1351 *
b04f784e
NP
1352 * d_lookup searches the children of the parent dentry for the name in
1353 * question. If the dentry is found its reference count is incremented and the
1354 * dentry is returned. The caller must use dput to free the entry when it has
1355 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1356 */
1da177e4
LT
1357struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1358{
1359 struct dentry * dentry = NULL;
1360 unsigned long seq;
1361
1362 do {
1363 seq = read_seqbegin(&rename_lock);
1364 dentry = __d_lookup(parent, name);
1365 if (dentry)
1366 break;
1367 } while (read_seqretry(&rename_lock, seq));
1368 return dentry;
1369}
ec4f8605 1370EXPORT_SYMBOL(d_lookup);
1da177e4 1371
b04f784e
NP
1372/*
1373 * __d_lookup - search for a dentry (racy)
1374 * @parent: parent dentry
1375 * @name: qstr of name we wish to find
1376 * Returns: dentry, or NULL
1377 *
1378 * __d_lookup is like d_lookup, however it may (rarely) return a
1379 * false-negative result due to unrelated rename activity.
1380 *
1381 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1382 * however it must be used carefully, eg. with a following d_lookup in
1383 * the case of failure.
1384 *
1385 * __d_lookup callers must be commented.
1386 */
1da177e4
LT
1387struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1388{
1389 unsigned int len = name->len;
1390 unsigned int hash = name->hash;
1391 const unsigned char *str = name->name;
1392 struct hlist_head *head = d_hash(parent,hash);
1393 struct dentry *found = NULL;
1394 struct hlist_node *node;
665a7583 1395 struct dentry *dentry;
1da177e4 1396
b04f784e
NP
1397 /*
1398 * The hash list is protected using RCU.
1399 *
1400 * Take d_lock when comparing a candidate dentry, to avoid races
1401 * with d_move().
1402 *
1403 * It is possible that concurrent renames can mess up our list
1404 * walk here and result in missing our dentry, resulting in the
1405 * false-negative result. d_lookup() protects against concurrent
1406 * renames using rename_lock seqlock.
1407 *
1408 * See Documentation/vfs/dcache-locking.txt for more details.
1409 */
1da177e4
LT
1410 rcu_read_lock();
1411
665a7583 1412 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1413 struct qstr *qstr;
1414
1da177e4
LT
1415 if (dentry->d_name.hash != hash)
1416 continue;
1417 if (dentry->d_parent != parent)
1418 continue;
1419
1420 spin_lock(&dentry->d_lock);
1421
1422 /*
1423 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1424 * changed things. Don't bother checking the hash because
1425 * we're about to compare the whole name anyway.
1da177e4
LT
1426 */
1427 if (dentry->d_parent != parent)
1428 goto next;
1429
d0185c08
LT
1430 /* non-existing due to RCU? */
1431 if (d_unhashed(dentry))
1432 goto next;
1433
1da177e4
LT
1434 /*
1435 * It is safe to compare names since d_move() cannot
1436 * change the qstr (protected by d_lock).
1437 */
1438 qstr = &dentry->d_name;
1439 if (parent->d_op && parent->d_op->d_compare) {
1440 if (parent->d_op->d_compare(parent, qstr, name))
1441 goto next;
1442 } else {
1443 if (qstr->len != len)
1444 goto next;
1445 if (memcmp(qstr->name, str, len))
1446 goto next;
1447 }
1448
d0185c08
LT
1449 atomic_inc(&dentry->d_count);
1450 found = dentry;
1da177e4
LT
1451 spin_unlock(&dentry->d_lock);
1452 break;
1453next:
1454 spin_unlock(&dentry->d_lock);
1455 }
1456 rcu_read_unlock();
1457
1458 return found;
1459}
1460
3e7e241f
EB
1461/**
1462 * d_hash_and_lookup - hash the qstr then search for a dentry
1463 * @dir: Directory to search in
1464 * @name: qstr of name we wish to find
1465 *
1466 * On hash failure or on lookup failure NULL is returned.
1467 */
1468struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1469{
1470 struct dentry *dentry = NULL;
1471
1472 /*
1473 * Check for a fs-specific hash function. Note that we must
1474 * calculate the standard hash first, as the d_op->d_hash()
1475 * routine may choose to leave the hash value unchanged.
1476 */
1477 name->hash = full_name_hash(name->name, name->len);
1478 if (dir->d_op && dir->d_op->d_hash) {
1479 if (dir->d_op->d_hash(dir, name) < 0)
1480 goto out;
1481 }
1482 dentry = d_lookup(dir, name);
1483out:
1484 return dentry;
1485}
1486
1da177e4 1487/**
786a5e15 1488 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1489 * @dentry: The dentry alleged to be valid child of @dparent
1490 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1491 *
1492 * An insecure source has sent us a dentry, here we verify it and dget() it.
1493 * This is used by ncpfs in its readdir implementation.
1494 * Zero is returned in the dentry is invalid.
786a5e15
NP
1495 *
1496 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1497 */
d3a23e16 1498int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1499{
786a5e15 1500 struct dentry *child;
d3a23e16
NP
1501
1502 spin_lock(&dcache_lock);
786a5e15
NP
1503 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1504 if (dentry == child) {
d3a23e16
NP
1505 __dget_locked(dentry);
1506 spin_unlock(&dcache_lock);
1da177e4
LT
1507 return 1;
1508 }
1509 }
d3a23e16 1510 spin_unlock(&dcache_lock);
786a5e15 1511
1da177e4
LT
1512 return 0;
1513}
ec4f8605 1514EXPORT_SYMBOL(d_validate);
1da177e4
LT
1515
1516/*
1517 * When a file is deleted, we have two options:
1518 * - turn this dentry into a negative dentry
1519 * - unhash this dentry and free it.
1520 *
1521 * Usually, we want to just turn this into
1522 * a negative dentry, but if anybody else is
1523 * currently using the dentry or the inode
1524 * we can't do that and we fall back on removing
1525 * it from the hash queues and waiting for
1526 * it to be deleted later when it has no users
1527 */
1528
1529/**
1530 * d_delete - delete a dentry
1531 * @dentry: The dentry to delete
1532 *
1533 * Turn the dentry into a negative dentry if possible, otherwise
1534 * remove it from the hash queues so it can be deleted later
1535 */
1536
1537void d_delete(struct dentry * dentry)
1538{
7a91bf7f 1539 int isdir = 0;
1da177e4
LT
1540 /*
1541 * Are we the only user?
1542 */
1543 spin_lock(&dcache_lock);
1544 spin_lock(&dentry->d_lock);
7a91bf7f 1545 isdir = S_ISDIR(dentry->d_inode->i_mode);
1da177e4 1546 if (atomic_read(&dentry->d_count) == 1) {
13e3c5e5 1547 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1548 dentry_iput(dentry);
7a91bf7f 1549 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1550 return;
1551 }
1552
1553 if (!d_unhashed(dentry))
1554 __d_drop(dentry);
1555
1556 spin_unlock(&dentry->d_lock);
1557 spin_unlock(&dcache_lock);
7a91bf7f
JM
1558
1559 fsnotify_nameremove(dentry, isdir);
1da177e4 1560}
ec4f8605 1561EXPORT_SYMBOL(d_delete);
1da177e4
LT
1562
1563static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1564{
1565
1566 entry->d_flags &= ~DCACHE_UNHASHED;
1567 hlist_add_head_rcu(&entry->d_hash, list);
1568}
1569
770bfad8
DH
1570static void _d_rehash(struct dentry * entry)
1571{
1572 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1573}
1574
1da177e4
LT
1575/**
1576 * d_rehash - add an entry back to the hash
1577 * @entry: dentry to add to the hash
1578 *
1579 * Adds a dentry to the hash according to its name.
1580 */
1581
1582void d_rehash(struct dentry * entry)
1583{
1da177e4
LT
1584 spin_lock(&dcache_lock);
1585 spin_lock(&entry->d_lock);
770bfad8 1586 _d_rehash(entry);
1da177e4
LT
1587 spin_unlock(&entry->d_lock);
1588 spin_unlock(&dcache_lock);
1589}
ec4f8605 1590EXPORT_SYMBOL(d_rehash);
1da177e4 1591
1da177e4
LT
1592/*
1593 * When switching names, the actual string doesn't strictly have to
1594 * be preserved in the target - because we're dropping the target
1595 * anyway. As such, we can just do a simple memcpy() to copy over
1596 * the new name before we switch.
1597 *
1598 * Note that we have to be a lot more careful about getting the hash
1599 * switched - we have to switch the hash value properly even if it
1600 * then no longer matches the actual (corrupted) string of the target.
1601 * The hash value has to match the hash queue that the dentry is on..
1602 */
1603static void switch_names(struct dentry *dentry, struct dentry *target)
1604{
1605 if (dname_external(target)) {
1606 if (dname_external(dentry)) {
1607 /*
1608 * Both external: swap the pointers
1609 */
9a8d5bb4 1610 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1611 } else {
1612 /*
1613 * dentry:internal, target:external. Steal target's
1614 * storage and make target internal.
1615 */
321bcf92
BF
1616 memcpy(target->d_iname, dentry->d_name.name,
1617 dentry->d_name.len + 1);
1da177e4
LT
1618 dentry->d_name.name = target->d_name.name;
1619 target->d_name.name = target->d_iname;
1620 }
1621 } else {
1622 if (dname_external(dentry)) {
1623 /*
1624 * dentry:external, target:internal. Give dentry's
1625 * storage to target and make dentry internal
1626 */
1627 memcpy(dentry->d_iname, target->d_name.name,
1628 target->d_name.len + 1);
1629 target->d_name.name = dentry->d_name.name;
1630 dentry->d_name.name = dentry->d_iname;
1631 } else {
1632 /*
1633 * Both are internal. Just copy target to dentry
1634 */
1635 memcpy(dentry->d_iname, target->d_name.name,
1636 target->d_name.len + 1);
dc711ca3
AV
1637 dentry->d_name.len = target->d_name.len;
1638 return;
1da177e4
LT
1639 }
1640 }
9a8d5bb4 1641 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1642}
1643
1644/*
1645 * We cannibalize "target" when moving dentry on top of it,
1646 * because it's going to be thrown away anyway. We could be more
1647 * polite about it, though.
1648 *
1649 * This forceful removal will result in ugly /proc output if
1650 * somebody holds a file open that got deleted due to a rename.
1651 * We could be nicer about the deleted file, and let it show
bc154b1e
BF
1652 * up under the name it had before it was deleted rather than
1653 * under the original name of the file that was moved on top of it.
1da177e4
LT
1654 */
1655
9eaef27b
TM
1656/*
1657 * d_move_locked - move a dentry
1da177e4
LT
1658 * @dentry: entry to move
1659 * @target: new dentry
1660 *
1661 * Update the dcache to reflect the move of a file name. Negative
1662 * dcache entries should not be moved in this way.
1663 */
9eaef27b 1664static void d_move_locked(struct dentry * dentry, struct dentry * target)
1da177e4
LT
1665{
1666 struct hlist_head *list;
1667
1668 if (!dentry->d_inode)
1669 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1670
1da177e4
LT
1671 write_seqlock(&rename_lock);
1672 /*
1673 * XXXX: do we really need to take target->d_lock?
1674 */
1675 if (target < dentry) {
1676 spin_lock(&target->d_lock);
a90b9c05 1677 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4
LT
1678 } else {
1679 spin_lock(&dentry->d_lock);
a90b9c05 1680 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4
LT
1681 }
1682
1683 /* Move the dentry to the target hash queue, if on different bucket */
f77e3498 1684 if (d_unhashed(dentry))
1da177e4
LT
1685 goto already_unhashed;
1686
1687 hlist_del_rcu(&dentry->d_hash);
1688
1689already_unhashed:
1690 list = d_hash(target->d_parent, target->d_name.hash);
1691 __d_rehash(dentry, list);
1692
1693 /* Unhash the target: dput() will then get rid of it */
1694 __d_drop(target);
1695
5160ee6f
ED
1696 list_del(&dentry->d_u.d_child);
1697 list_del(&target->d_u.d_child);
1da177e4
LT
1698
1699 /* Switch the names.. */
1700 switch_names(dentry, target);
9a8d5bb4 1701 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
1702
1703 /* ... and switch the parents */
1704 if (IS_ROOT(dentry)) {
1705 dentry->d_parent = target->d_parent;
1706 target->d_parent = target;
5160ee6f 1707 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 1708 } else {
9a8d5bb4 1709 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
1710
1711 /* And add them back to the (new) parent lists */
5160ee6f 1712 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
1713 }
1714
5160ee6f 1715 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 1716 spin_unlock(&target->d_lock);
c32ccd87 1717 fsnotify_d_move(dentry);
1da177e4
LT
1718 spin_unlock(&dentry->d_lock);
1719 write_sequnlock(&rename_lock);
9eaef27b
TM
1720}
1721
1722/**
1723 * d_move - move a dentry
1724 * @dentry: entry to move
1725 * @target: new dentry
1726 *
1727 * Update the dcache to reflect the move of a file name. Negative
1728 * dcache entries should not be moved in this way.
1729 */
1730
1731void d_move(struct dentry * dentry, struct dentry * target)
1732{
1733 spin_lock(&dcache_lock);
1734 d_move_locked(dentry, target);
1da177e4
LT
1735 spin_unlock(&dcache_lock);
1736}
ec4f8605 1737EXPORT_SYMBOL(d_move);
1da177e4 1738
e2761a11
OH
1739/**
1740 * d_ancestor - search for an ancestor
1741 * @p1: ancestor dentry
1742 * @p2: child dentry
1743 *
1744 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1745 * an ancestor of p2, else NULL.
9eaef27b 1746 */
e2761a11 1747struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
1748{
1749 struct dentry *p;
1750
871c0067 1751 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 1752 if (p->d_parent == p1)
e2761a11 1753 return p;
9eaef27b 1754 }
e2761a11 1755 return NULL;
9eaef27b
TM
1756}
1757
1758/*
1759 * This helper attempts to cope with remotely renamed directories
1760 *
1761 * It assumes that the caller is already holding
1762 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1763 *
1764 * Note: If ever the locking in lock_rename() changes, then please
1765 * remember to update this too...
9eaef27b
TM
1766 */
1767static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
31f3e0b3 1768 __releases(dcache_lock)
9eaef27b
TM
1769{
1770 struct mutex *m1 = NULL, *m2 = NULL;
1771 struct dentry *ret;
1772
1773 /* If alias and dentry share a parent, then no extra locks required */
1774 if (alias->d_parent == dentry->d_parent)
1775 goto out_unalias;
1776
1777 /* Check for loops */
1778 ret = ERR_PTR(-ELOOP);
e2761a11 1779 if (d_ancestor(alias, dentry))
9eaef27b
TM
1780 goto out_err;
1781
1782 /* See lock_rename() */
1783 ret = ERR_PTR(-EBUSY);
1784 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1785 goto out_err;
1786 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1787 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1788 goto out_err;
1789 m2 = &alias->d_parent->d_inode->i_mutex;
1790out_unalias:
1791 d_move_locked(alias, dentry);
1792 ret = alias;
1793out_err:
1794 spin_unlock(&dcache_lock);
1795 if (m2)
1796 mutex_unlock(m2);
1797 if (m1)
1798 mutex_unlock(m1);
1799 return ret;
1800}
1801
770bfad8
DH
1802/*
1803 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1804 * named dentry in place of the dentry to be replaced.
1805 */
1806static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1807{
1808 struct dentry *dparent, *aparent;
1809
1810 switch_names(dentry, anon);
9a8d5bb4 1811 swap(dentry->d_name.hash, anon->d_name.hash);
770bfad8
DH
1812
1813 dparent = dentry->d_parent;
1814 aparent = anon->d_parent;
1815
1816 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1817 list_del(&dentry->d_u.d_child);
1818 if (!IS_ROOT(dentry))
1819 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1820 else
1821 INIT_LIST_HEAD(&dentry->d_u.d_child);
1822
1823 anon->d_parent = (dparent == dentry) ? anon : dparent;
1824 list_del(&anon->d_u.d_child);
1825 if (!IS_ROOT(anon))
1826 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1827 else
1828 INIT_LIST_HEAD(&anon->d_u.d_child);
1829
1830 anon->d_flags &= ~DCACHE_DISCONNECTED;
1831}
1832
1833/**
1834 * d_materialise_unique - introduce an inode into the tree
1835 * @dentry: candidate dentry
1836 * @inode: inode to bind to the dentry, to which aliases may be attached
1837 *
1838 * Introduces an dentry into the tree, substituting an extant disconnected
1839 * root directory alias in its place if there is one
1840 */
1841struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1842{
9eaef27b 1843 struct dentry *actual;
770bfad8
DH
1844
1845 BUG_ON(!d_unhashed(dentry));
1846
1847 spin_lock(&dcache_lock);
1848
1849 if (!inode) {
1850 actual = dentry;
360da900 1851 __d_instantiate(dentry, NULL);
770bfad8
DH
1852 goto found_lock;
1853 }
1854
9eaef27b
TM
1855 if (S_ISDIR(inode->i_mode)) {
1856 struct dentry *alias;
1857
1858 /* Does an aliased dentry already exist? */
1859 alias = __d_find_alias(inode, 0);
1860 if (alias) {
1861 actual = alias;
1862 /* Is this an anonymous mountpoint that we could splice
1863 * into our tree? */
1864 if (IS_ROOT(alias)) {
1865 spin_lock(&alias->d_lock);
1866 __d_materialise_dentry(dentry, alias);
1867 __d_drop(alias);
1868 goto found;
1869 }
1870 /* Nope, but we must(!) avoid directory aliasing */
1871 actual = __d_unalias(dentry, alias);
1872 if (IS_ERR(actual))
1873 dput(alias);
1874 goto out_nolock;
1875 }
770bfad8
DH
1876 }
1877
1878 /* Add a unique reference */
1879 actual = __d_instantiate_unique(dentry, inode);
1880 if (!actual)
1881 actual = dentry;
1882 else if (unlikely(!d_unhashed(actual)))
1883 goto shouldnt_be_hashed;
1884
1885found_lock:
1886 spin_lock(&actual->d_lock);
1887found:
1888 _d_rehash(actual);
1889 spin_unlock(&actual->d_lock);
1890 spin_unlock(&dcache_lock);
9eaef27b 1891out_nolock:
770bfad8
DH
1892 if (actual == dentry) {
1893 security_d_instantiate(dentry, inode);
1894 return NULL;
1895 }
1896
1897 iput(inode);
1898 return actual;
1899
770bfad8
DH
1900shouldnt_be_hashed:
1901 spin_unlock(&dcache_lock);
1902 BUG();
770bfad8 1903}
ec4f8605 1904EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 1905
cdd16d02 1906static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
1907{
1908 *buflen -= namelen;
1909 if (*buflen < 0)
1910 return -ENAMETOOLONG;
1911 *buffer -= namelen;
1912 memcpy(*buffer, str, namelen);
1913 return 0;
1914}
1915
cdd16d02
MS
1916static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1917{
1918 return prepend(buffer, buflen, name->name, name->len);
1919}
1920
1da177e4 1921/**
f2eb6575
MS
1922 * Prepend path string to a buffer
1923 *
9d1bc601
MS
1924 * @path: the dentry/vfsmount to report
1925 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
1926 * @buffer: pointer to the end of the buffer
1927 * @buflen: pointer to buffer length
552ce544 1928 *
f2eb6575 1929 * Caller holds the dcache_lock.
9d1bc601
MS
1930 *
1931 * If path is not reachable from the supplied root, then the value of
1932 * root is changed (without modifying refcounts).
1da177e4 1933 */
f2eb6575
MS
1934static int prepend_path(const struct path *path, struct path *root,
1935 char **buffer, int *buflen)
1da177e4 1936{
9d1bc601
MS
1937 struct dentry *dentry = path->dentry;
1938 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
1939 bool slash = false;
1940 int error = 0;
6092d048 1941
99b7db7b 1942 br_read_lock(vfsmount_lock);
f2eb6575 1943 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
1944 struct dentry * parent;
1945
1da177e4 1946 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 1947 /* Global root? */
1da177e4 1948 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
1949 goto global_root;
1950 }
1951 dentry = vfsmnt->mnt_mountpoint;
1952 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
1953 continue;
1954 }
1955 parent = dentry->d_parent;
1956 prefetch(parent);
f2eb6575
MS
1957 error = prepend_name(buffer, buflen, &dentry->d_name);
1958 if (!error)
1959 error = prepend(buffer, buflen, "/", 1);
1960 if (error)
1961 break;
1962
1963 slash = true;
1da177e4
LT
1964 dentry = parent;
1965 }
1966
be285c71 1967out:
f2eb6575
MS
1968 if (!error && !slash)
1969 error = prepend(buffer, buflen, "/", 1);
1970
99b7db7b 1971 br_read_unlock(vfsmount_lock);
f2eb6575 1972 return error;
1da177e4
LT
1973
1974global_root:
98dc568b
MS
1975 /*
1976 * Filesystems needing to implement special "root names"
1977 * should do so with ->d_dname()
1978 */
1979 if (IS_ROOT(dentry) &&
1980 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
1981 WARN(1, "Root dentry has weird name <%.*s>\n",
1982 (int) dentry->d_name.len, dentry->d_name.name);
1983 }
9d1bc601
MS
1984 root->mnt = vfsmnt;
1985 root->dentry = dentry;
be285c71 1986 goto out;
f2eb6575 1987}
be285c71 1988
f2eb6575
MS
1989/**
1990 * __d_path - return the path of a dentry
1991 * @path: the dentry/vfsmount to report
1992 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 1993 * @buf: buffer to return value in
f2eb6575
MS
1994 * @buflen: buffer length
1995 *
ffd1f4ed 1996 * Convert a dentry into an ASCII path name.
f2eb6575
MS
1997 *
1998 * Returns a pointer into the buffer or an error code if the
1999 * path was too long.
2000 *
be148247 2001 * "buflen" should be positive.
f2eb6575
MS
2002 *
2003 * If path is not reachable from the supplied root, then the value of
2004 * root is changed (without modifying refcounts).
2005 */
2006char *__d_path(const struct path *path, struct path *root,
2007 char *buf, int buflen)
2008{
2009 char *res = buf + buflen;
2010 int error;
2011
2012 prepend(&res, &buflen, "\0", 1);
be148247 2013 spin_lock(&dcache_lock);
f2eb6575 2014 error = prepend_path(path, root, &res, &buflen);
be148247
CH
2015 spin_unlock(&dcache_lock);
2016
f2eb6575
MS
2017 if (error)
2018 return ERR_PTR(error);
f2eb6575 2019 return res;
1da177e4
LT
2020}
2021
ffd1f4ed
MS
2022/*
2023 * same as __d_path but appends "(deleted)" for unlinked files.
2024 */
2025static int path_with_deleted(const struct path *path, struct path *root,
2026 char **buf, int *buflen)
2027{
2028 prepend(buf, buflen, "\0", 1);
2029 if (d_unlinked(path->dentry)) {
2030 int error = prepend(buf, buflen, " (deleted)", 10);
2031 if (error)
2032 return error;
2033 }
2034
2035 return prepend_path(path, root, buf, buflen);
2036}
2037
8df9d1a4
MS
2038static int prepend_unreachable(char **buffer, int *buflen)
2039{
2040 return prepend(buffer, buflen, "(unreachable)", 13);
2041}
2042
a03a8a70
JB
2043/**
2044 * d_path - return the path of a dentry
cf28b486 2045 * @path: path to report
a03a8a70
JB
2046 * @buf: buffer to return value in
2047 * @buflen: buffer length
2048 *
2049 * Convert a dentry into an ASCII path name. If the entry has been deleted
2050 * the string " (deleted)" is appended. Note that this is ambiguous.
2051 *
52afeefb
AV
2052 * Returns a pointer into the buffer or an error code if the path was
2053 * too long. Note: Callers should use the returned pointer, not the passed
2054 * in buffer, to use the name! The implementation often starts at an offset
2055 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2056 *
31f3e0b3 2057 * "buflen" should be positive.
a03a8a70 2058 */
20d4fdc1 2059char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2060{
ffd1f4ed 2061 char *res = buf + buflen;
6ac08c39 2062 struct path root;
9d1bc601 2063 struct path tmp;
ffd1f4ed 2064 int error;
1da177e4 2065
c23fbb6b
ED
2066 /*
2067 * We have various synthetic filesystems that never get mounted. On
2068 * these filesystems dentries are never used for lookup purposes, and
2069 * thus don't need to be hashed. They also don't need a name until a
2070 * user wants to identify the object in /proc/pid/fd/. The little hack
2071 * below allows us to generate a name for these objects on demand:
2072 */
cf28b486
JB
2073 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2074 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2075
f7ad3c6b 2076 get_fs_root(current->fs, &root);
552ce544 2077 spin_lock(&dcache_lock);
9d1bc601 2078 tmp = root;
ffd1f4ed
MS
2079 error = path_with_deleted(path, &tmp, &res, &buflen);
2080 if (error)
2081 res = ERR_PTR(error);
552ce544 2082 spin_unlock(&dcache_lock);
6ac08c39 2083 path_put(&root);
1da177e4
LT
2084 return res;
2085}
ec4f8605 2086EXPORT_SYMBOL(d_path);
1da177e4 2087
8df9d1a4
MS
2088/**
2089 * d_path_with_unreachable - return the path of a dentry
2090 * @path: path to report
2091 * @buf: buffer to return value in
2092 * @buflen: buffer length
2093 *
2094 * The difference from d_path() is that this prepends "(unreachable)"
2095 * to paths which are unreachable from the current process' root.
2096 */
2097char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2098{
2099 char *res = buf + buflen;
2100 struct path root;
2101 struct path tmp;
2102 int error;
2103
2104 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2105 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2106
2107 get_fs_root(current->fs, &root);
2108 spin_lock(&dcache_lock);
2109 tmp = root;
2110 error = path_with_deleted(path, &tmp, &res, &buflen);
2111 if (!error && !path_equal(&tmp, &root))
2112 error = prepend_unreachable(&res, &buflen);
2113 spin_unlock(&dcache_lock);
2114 path_put(&root);
2115 if (error)
2116 res = ERR_PTR(error);
2117
2118 return res;
2119}
2120
c23fbb6b
ED
2121/*
2122 * Helper function for dentry_operations.d_dname() members
2123 */
2124char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2125 const char *fmt, ...)
2126{
2127 va_list args;
2128 char temp[64];
2129 int sz;
2130
2131 va_start(args, fmt);
2132 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2133 va_end(args);
2134
2135 if (sz > sizeof(temp) || sz > buflen)
2136 return ERR_PTR(-ENAMETOOLONG);
2137
2138 buffer += buflen - sz;
2139 return memcpy(buffer, temp, sz);
2140}
2141
6092d048
RP
2142/*
2143 * Write full pathname from the root of the filesystem into the buffer.
2144 */
c103135c 2145char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2146{
2147 char *end = buf + buflen;
2148 char *retval;
2149
6092d048 2150 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2151 if (buflen < 1)
2152 goto Elong;
2153 /* Get '/' right */
2154 retval = end-1;
2155 *retval = '/';
2156
cdd16d02
MS
2157 while (!IS_ROOT(dentry)) {
2158 struct dentry *parent = dentry->d_parent;
6092d048 2159
6092d048 2160 prefetch(parent);
cdd16d02 2161 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
6092d048
RP
2162 (prepend(&end, &buflen, "/", 1) != 0))
2163 goto Elong;
2164
2165 retval = end;
2166 dentry = parent;
2167 }
c103135c
AV
2168 return retval;
2169Elong:
2170 return ERR_PTR(-ENAMETOOLONG);
2171}
2172EXPORT_SYMBOL(__dentry_path);
2173
2174char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2175{
2176 char *p = NULL;
2177 char *retval;
2178
2179 spin_lock(&dcache_lock);
2180 if (d_unlinked(dentry)) {
2181 p = buf + buflen;
2182 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2183 goto Elong;
2184 buflen++;
2185 }
2186 retval = __dentry_path(dentry, buf, buflen);
6092d048 2187 spin_unlock(&dcache_lock);
c103135c
AV
2188 if (!IS_ERR(retval) && p)
2189 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2190 return retval;
2191Elong:
2192 spin_unlock(&dcache_lock);
2193 return ERR_PTR(-ENAMETOOLONG);
2194}
2195
1da177e4
LT
2196/*
2197 * NOTE! The user-level library version returns a
2198 * character pointer. The kernel system call just
2199 * returns the length of the buffer filled (which
2200 * includes the ending '\0' character), or a negative
2201 * error value. So libc would do something like
2202 *
2203 * char *getcwd(char * buf, size_t size)
2204 * {
2205 * int retval;
2206 *
2207 * retval = sys_getcwd(buf, size);
2208 * if (retval >= 0)
2209 * return buf;
2210 * errno = -retval;
2211 * return NULL;
2212 * }
2213 */
3cdad428 2214SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2215{
552ce544 2216 int error;
6ac08c39 2217 struct path pwd, root;
552ce544 2218 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2219
2220 if (!page)
2221 return -ENOMEM;
2222
f7ad3c6b 2223 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2224
552ce544 2225 error = -ENOENT;
552ce544 2226 spin_lock(&dcache_lock);
f3da392e 2227 if (!d_unlinked(pwd.dentry)) {
552ce544 2228 unsigned long len;
9d1bc601 2229 struct path tmp = root;
8df9d1a4
MS
2230 char *cwd = page + PAGE_SIZE;
2231 int buflen = PAGE_SIZE;
1da177e4 2232
8df9d1a4
MS
2233 prepend(&cwd, &buflen, "\0", 1);
2234 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
552ce544
LT
2235 spin_unlock(&dcache_lock);
2236
8df9d1a4 2237 if (error)
552ce544
LT
2238 goto out;
2239
8df9d1a4
MS
2240 /* Unreachable from current root */
2241 if (!path_equal(&tmp, &root)) {
2242 error = prepend_unreachable(&cwd, &buflen);
2243 if (error)
2244 goto out;
2245 }
2246
552ce544
LT
2247 error = -ERANGE;
2248 len = PAGE_SIZE + page - cwd;
2249 if (len <= size) {
2250 error = len;
2251 if (copy_to_user(buf, cwd, len))
2252 error = -EFAULT;
2253 }
2254 } else
2255 spin_unlock(&dcache_lock);
1da177e4
LT
2256
2257out:
6ac08c39
JB
2258 path_put(&pwd);
2259 path_put(&root);
1da177e4
LT
2260 free_page((unsigned long) page);
2261 return error;
2262}
2263
2264/*
2265 * Test whether new_dentry is a subdirectory of old_dentry.
2266 *
2267 * Trivially implemented using the dcache structure
2268 */
2269
2270/**
2271 * is_subdir - is new dentry a subdirectory of old_dentry
2272 * @new_dentry: new dentry
2273 * @old_dentry: old dentry
2274 *
2275 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2276 * Returns 0 otherwise.
2277 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2278 */
2279
e2761a11 2280int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2281{
2282 int result;
1da177e4
LT
2283 unsigned long seq;
2284
e2761a11
OH
2285 if (new_dentry == old_dentry)
2286 return 1;
2287
2288 /*
2289 * Need rcu_readlock to protect against the d_parent trashing
2290 * due to d_move
1da177e4
LT
2291 */
2292 rcu_read_lock();
e2761a11 2293 do {
1da177e4 2294 /* for restarting inner loop in case of seq retry */
1da177e4 2295 seq = read_seqbegin(&rename_lock);
e2761a11 2296 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2297 result = 1;
e2761a11
OH
2298 else
2299 result = 0;
1da177e4
LT
2300 } while (read_seqretry(&rename_lock, seq));
2301 rcu_read_unlock();
2302
2303 return result;
2304}
2305
2096f759
AV
2306int path_is_under(struct path *path1, struct path *path2)
2307{
2308 struct vfsmount *mnt = path1->mnt;
2309 struct dentry *dentry = path1->dentry;
2310 int res;
99b7db7b
NP
2311
2312 br_read_lock(vfsmount_lock);
2096f759
AV
2313 if (mnt != path2->mnt) {
2314 for (;;) {
2315 if (mnt->mnt_parent == mnt) {
99b7db7b 2316 br_read_unlock(vfsmount_lock);
2096f759
AV
2317 return 0;
2318 }
2319 if (mnt->mnt_parent == path2->mnt)
2320 break;
2321 mnt = mnt->mnt_parent;
2322 }
2323 dentry = mnt->mnt_mountpoint;
2324 }
2325 res = is_subdir(dentry, path2->dentry);
99b7db7b 2326 br_read_unlock(vfsmount_lock);
2096f759
AV
2327 return res;
2328}
2329EXPORT_SYMBOL(path_is_under);
2330
1da177e4
LT
2331void d_genocide(struct dentry *root)
2332{
2333 struct dentry *this_parent = root;
2334 struct list_head *next;
2335
2336 spin_lock(&dcache_lock);
2337repeat:
2338 next = this_parent->d_subdirs.next;
2339resume:
2340 while (next != &this_parent->d_subdirs) {
2341 struct list_head *tmp = next;
5160ee6f 2342 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
2343 next = tmp->next;
2344 if (d_unhashed(dentry)||!dentry->d_inode)
2345 continue;
2346 if (!list_empty(&dentry->d_subdirs)) {
2347 this_parent = dentry;
2348 goto repeat;
2349 }
2350 atomic_dec(&dentry->d_count);
2351 }
2352 if (this_parent != root) {
5160ee6f 2353 next = this_parent->d_u.d_child.next;
1da177e4
LT
2354 atomic_dec(&this_parent->d_count);
2355 this_parent = this_parent->d_parent;
2356 goto resume;
2357 }
2358 spin_unlock(&dcache_lock);
2359}
2360
2361/**
2362 * find_inode_number - check for dentry with name
2363 * @dir: directory to check
2364 * @name: Name to find.
2365 *
2366 * Check whether a dentry already exists for the given name,
2367 * and return the inode number if it has an inode. Otherwise
2368 * 0 is returned.
2369 *
2370 * This routine is used to post-process directory listings for
2371 * filesystems using synthetic inode numbers, and is necessary
2372 * to keep getcwd() working.
2373 */
2374
2375ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2376{
2377 struct dentry * dentry;
2378 ino_t ino = 0;
2379
3e7e241f
EB
2380 dentry = d_hash_and_lookup(dir, name);
2381 if (dentry) {
1da177e4
LT
2382 if (dentry->d_inode)
2383 ino = dentry->d_inode->i_ino;
2384 dput(dentry);
2385 }
1da177e4
LT
2386 return ino;
2387}
ec4f8605 2388EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2389
2390static __initdata unsigned long dhash_entries;
2391static int __init set_dhash_entries(char *str)
2392{
2393 if (!str)
2394 return 0;
2395 dhash_entries = simple_strtoul(str, &str, 0);
2396 return 1;
2397}
2398__setup("dhash_entries=", set_dhash_entries);
2399
2400static void __init dcache_init_early(void)
2401{
2402 int loop;
2403
2404 /* If hashes are distributed across NUMA nodes, defer
2405 * hash allocation until vmalloc space is available.
2406 */
2407 if (hashdist)
2408 return;
2409
2410 dentry_hashtable =
2411 alloc_large_system_hash("Dentry cache",
2412 sizeof(struct hlist_head),
2413 dhash_entries,
2414 13,
2415 HASH_EARLY,
2416 &d_hash_shift,
2417 &d_hash_mask,
2418 0);
2419
2420 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2421 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2422}
2423
74bf17cf 2424static void __init dcache_init(void)
1da177e4
LT
2425{
2426 int loop;
2427
2428 /*
2429 * A constructor could be added for stable state like the lists,
2430 * but it is probably not worth it because of the cache nature
2431 * of the dcache.
2432 */
0a31bd5f
CL
2433 dentry_cache = KMEM_CACHE(dentry,
2434 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2435
8e1f936b 2436 register_shrinker(&dcache_shrinker);
1da177e4
LT
2437
2438 /* Hash may have been set up in dcache_init_early */
2439 if (!hashdist)
2440 return;
2441
2442 dentry_hashtable =
2443 alloc_large_system_hash("Dentry cache",
2444 sizeof(struct hlist_head),
2445 dhash_entries,
2446 13,
2447 0,
2448 &d_hash_shift,
2449 &d_hash_mask,
2450 0);
2451
2452 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2453 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2454}
2455
2456/* SLAB cache for __getname() consumers */
e18b890b 2457struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2458EXPORT_SYMBOL(names_cachep);
1da177e4 2459
1da177e4
LT
2460EXPORT_SYMBOL(d_genocide);
2461
1da177e4
LT
2462void __init vfs_caches_init_early(void)
2463{
2464 dcache_init_early();
2465 inode_init_early();
2466}
2467
2468void __init vfs_caches_init(unsigned long mempages)
2469{
2470 unsigned long reserve;
2471
2472 /* Base hash sizes on available memory, with a reserve equal to
2473 150% of current kernel size */
2474
2475 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2476 mempages -= reserve;
2477
2478 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2479 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2480
74bf17cf
DC
2481 dcache_init();
2482 inode_init();
1da177e4 2483 files_init(mempages);
74bf17cf 2484 mnt_init();
1da177e4
LT
2485 bdev_cache_init();
2486 chrdev_init();
2487}