Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath5k / eeprom.c
CommitLineData
c6e387a2
NK
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
8e218fb2
NK
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
c6e387a2
NK
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/*************************************\
21* EEPROM access functions and helpers *
22\*************************************/
23
5a0e3ad6
TH
24#include <linux/slab.h>
25
c6e387a2
NK
26#include "ath5k.h"
27#include "reg.h"
28#include "debug.h"
29#include "base.h"
30
9320b5c4
NK
31
32/******************\
33* Helper functions *
34\******************/
35
36/*
37 * Translate binary channel representation in EEPROM to frequency
38 */
39static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40 unsigned int mode)
41{
42 u16 val;
43
44 if (bin == AR5K_EEPROM_CHANNEL_DIS)
45 return bin;
46
47 if (mode == AR5K_EEPROM_MODE_11A) {
48 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49 val = (5 * bin) + 4800;
50 else
51 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52 (bin * 10) + 5100;
53 } else {
54 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55 val = bin + 2300;
56 else
57 val = bin + 2400;
58 }
59
60 return val;
61}
62
63
64/*********\
65* Parsers *
66\*********/
67
1048643e
FF
68/*
69 * Initialize eeprom & capabilities structs
70 */
71static int
72ath5k_eeprom_init_header(struct ath5k_hw *ah)
73{
74 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1048643e 75 u16 val;
359207c6 76 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
1048643e 77
1048643e
FF
78 /*
79 * Read values from EEPROM and store them in the capability structure
80 */
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
86
87 /* Return if we have an old EEPROM */
88 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
89 return 0;
90
1048643e
FF
91 /*
92 * Validate the checksum of the EEPROM date. There are some
93 * devices with invalid EEPROMs.
94 */
359207c6
LR
95 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
96 if (val) {
97 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
98 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
99 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
100 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
101
102 /*
103 * Fail safe check to prevent stupid loops due
104 * to busted EEPROMs. XXX: This value is likely too
105 * big still, waiting on a better value.
106 */
107 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
108 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
109 "%d (0x%04x) max expected: %d (0x%04x)\n",
110 eep_max, eep_max,
111 3 * AR5K_EEPROM_INFO_MAX,
112 3 * AR5K_EEPROM_INFO_MAX);
113 return -EIO;
114 }
115 }
116
117 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
1048643e
FF
118 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
119 cksum ^= val;
120 }
121 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
359207c6
LR
122 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
123 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
124 cksum, eep_max,
125 eep_max == AR5K_EEPROM_INFO_MAX ?
126 "default size" : "custom size");
1048643e
FF
127 return -EIO;
128 }
1048643e
FF
129
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
131 ee_ant_gain);
132
133 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
0ea9c00c
NK
136
137 /* XXX: Don't know which versions include these two */
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
139
140 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
141 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
142
143 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
147 }
1048643e
FF
148 }
149
150 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
151 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
152 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
153 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
154
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
156 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
157 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
158 }
159
1889ba0a
NK
160 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
161
162 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
163 ee->ee_is_hb63 = true;
164 else
165 ee->ee_is_hb63 = false;
166
167 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
168 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
169 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
170
c38e7a93
NK
171 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 * and enable serdes programming if needed.
173 *
174 * XXX: Serdes values seem to be fixed so
175 * no need to read them here, we write them
132b1c3e 176 * during ath5k_hw_init */
c38e7a93
NK
177 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
178 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
179 true : false;
180
1048643e
FF
181 return 0;
182}
183
184
c6e387a2
NK
185/*
186 * Read antenna infos from eeprom
187 */
188static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
189 unsigned int mode)
190{
191 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
192 u32 o = *offset;
193 u16 val;
fda9b7af 194 int i = 0;
c6e387a2
NK
195
196 AR5K_EEPROM_READ(o++, val);
197 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1048643e 198 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
c6e387a2
NK
199 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
200
201 AR5K_EEPROM_READ(o++, val);
202 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
203 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
204 ee->ee_ant_control[mode][i++] = val & 0x3f;
205
206 AR5K_EEPROM_READ(o++, val);
207 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
208 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
209 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
210
211 AR5K_EEPROM_READ(o++, val);
212 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
213 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
214 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
215 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
216
217 AR5K_EEPROM_READ(o++, val);
218 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
219 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
220 ee->ee_ant_control[mode][i++] = val & 0x3f;
221
2bed03eb
NK
222 /* Get antenna switch tables */
223 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
e8f055f0 224 (ee->ee_ant_control[mode][0] << 4);
2bed03eb 225 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
0a5d3813
PR
226 ee->ee_ant_control[mode][1] |
227 (ee->ee_ant_control[mode][2] << 6) |
c6e387a2
NK
228 (ee->ee_ant_control[mode][3] << 12) |
229 (ee->ee_ant_control[mode][4] << 18) |
230 (ee->ee_ant_control[mode][5] << 24);
2bed03eb 231 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
0a5d3813
PR
232 ee->ee_ant_control[mode][6] |
233 (ee->ee_ant_control[mode][7] << 6) |
c6e387a2
NK
234 (ee->ee_ant_control[mode][8] << 12) |
235 (ee->ee_ant_control[mode][9] << 18) |
236 (ee->ee_ant_control[mode][10] << 24);
237
238 /* return new offset */
239 *offset = o;
240
241 return 0;
242}
243
244/*
0ea9c00c
NK
245 * Read supported modes and some mode-specific calibration data
246 * from eeprom
c6e387a2
NK
247 */
248static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
249 unsigned int mode)
250{
251 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
252 u32 o = *offset;
253 u16 val;
c6e387a2 254
1048643e
FF
255 ee->ee_n_piers[mode] = 0;
256 AR5K_EEPROM_READ(o++, val);
257 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
e4bbf2f5 258 switch (mode) {
1048643e 259 case AR5K_EEPROM_MODE_11A:
8e218fb2
NK
260 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
261 ee->ee_db[mode][3] = (val >> 2) & 0x7;
262 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1048643e
FF
263
264 AR5K_EEPROM_READ(o++, val);
8e218fb2
NK
265 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
266 ee->ee_db[mode][2] = (val >> 12) & 0x7;
267 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
268 ee->ee_db[mode][1] = (val >> 6) & 0x7;
269 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
270 ee->ee_db[mode][0] = val & 0x7;
1048643e
FF
271 break;
272 case AR5K_EEPROM_MODE_11G:
273 case AR5K_EEPROM_MODE_11B:
8e218fb2
NK
274 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
275 ee->ee_db[mode][1] = val & 0x7;
1048643e
FF
276 break;
277 }
278
c6e387a2
NK
279 AR5K_EEPROM_READ(o++, val);
280 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281 ee->ee_thr_62[mode] = val & 0xff;
282
283 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285
286 AR5K_EEPROM_READ(o++, val);
287 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
289
290 AR5K_EEPROM_READ(o++, val);
291 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
292
293 if ((val & 0xff) & 0x80)
294 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 else
296 ee->ee_noise_floor_thr[mode] = val & 0xff;
297
298 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 ee->ee_noise_floor_thr[mode] =
300 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301
302 AR5K_EEPROM_READ(o++, val);
303 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
304 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
305 ee->ee_xpd[mode] = val & 0x1;
306
687c8ff1
BR
307 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
308 mode != AR5K_EEPROM_MODE_11B)
c6e387a2
NK
309 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
310
311 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
312 AR5K_EEPROM_READ(o++, val);
313 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
314
315 if (mode == AR5K_EEPROM_MODE_11A)
316 ee->ee_xr_power[mode] = val & 0x3f;
317 else {
687c8ff1 318 /* b_DB_11[bg] and b_OB_11[bg] */
c6e387a2
NK
319 ee->ee_ob[mode][0] = val & 0x7;
320 ee->ee_db[mode][0] = (val >> 3) & 0x7;
321 }
322 }
323
324 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
325 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
326 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
327 } else {
328 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
329
330 AR5K_EEPROM_READ(o++, val);
331 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
332
1048643e 333 if (mode == AR5K_EEPROM_MODE_11G) {
c6e387a2 334 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1048643e
FF
335 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
336 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
337 }
c6e387a2
NK
338 }
339
340 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
341 mode == AR5K_EEPROM_MODE_11A) {
342 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
343 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
344 }
345
1048643e
FF
346 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
347 goto done;
348
0ea9c00c
NK
349 /* Note: >= v5 have bg freq piers on another location
350 * so these freq piers are ignored for >= v5 (should be 0xff
351 * anyway) */
e4bbf2f5 352 switch (mode) {
1048643e
FF
353 case AR5K_EEPROM_MODE_11A:
354 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
355 break;
356
357 AR5K_EEPROM_READ(o++, val);
358 ee->ee_margin_tx_rx[mode] = val & 0x3f;
359 break;
360 case AR5K_EEPROM_MODE_11B:
361 AR5K_EEPROM_READ(o++, val);
362
363 ee->ee_pwr_cal_b[0].freq =
364 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366 ee->ee_n_piers[mode]++;
367
368 ee->ee_pwr_cal_b[1].freq =
369 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371 ee->ee_n_piers[mode]++;
372
373 AR5K_EEPROM_READ(o++, val);
374 ee->ee_pwr_cal_b[2].freq =
375 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
376 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
377 ee->ee_n_piers[mode]++;
378
379 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
380 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
381 break;
382 case AR5K_EEPROM_MODE_11G:
383 AR5K_EEPROM_READ(o++, val);
384
385 ee->ee_pwr_cal_g[0].freq =
386 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
387 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
388 ee->ee_n_piers[mode]++;
389
390 ee->ee_pwr_cal_g[1].freq =
391 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
392 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
393 ee->ee_n_piers[mode]++;
394
395 AR5K_EEPROM_READ(o++, val);
396 ee->ee_turbo_max_power[mode] = val & 0x7f;
397 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
398
399 AR5K_EEPROM_READ(o++, val);
400 ee->ee_pwr_cal_g[2].freq =
401 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403 ee->ee_n_piers[mode]++;
c6e387a2 404
1048643e
FF
405 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
407
408 AR5K_EEPROM_READ(o++, val);
5f13bfac
BR
409 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
410 ee->ee_q_cal[mode] = val & 0x1f;
1048643e
FF
411
412 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
413 AR5K_EEPROM_READ(o++, val);
414 ee->ee_cck_ofdm_gain_delta = val & 0xff;
415 }
416 break;
417 }
418
3b3ee43d
PR
419 /*
420 * Read turbo mode information on newer EEPROM versions
421 */
1048643e 422 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
3b3ee43d 423 goto done;
c6e387a2 424
e4bbf2f5 425 switch (mode) {
1048643e
FF
426 case AR5K_EEPROM_MODE_11A:
427 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
c6e387a2 428
1048643e
FF
429 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
430 AR5K_EEPROM_READ(o++, val);
431 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
432 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
433
434 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
435 AR5K_EEPROM_READ(o++, val);
436 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
437 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
438
e4bbf2f5 439 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
1048643e
FF
440 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
441 break;
442 case AR5K_EEPROM_MODE_11G:
443 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
444
445 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
446 AR5K_EEPROM_READ(o++, val);
447 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
448 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
449
450 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
451 AR5K_EEPROM_READ(o++, val);
452 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
453 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
454 break;
455 }
456
3b3ee43d 457done:
1048643e
FF
458 /* return new offset */
459 *offset = o;
460
461 return 0;
462}
463
0ea9c00c 464/* Read mode-specific data (except power calibration data) */
1048643e
FF
465static int
466ath5k_eeprom_init_modes(struct ath5k_hw *ah)
467{
468 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
469 u32 mode_offset[3];
470 unsigned int mode;
471 u32 offset;
472 int ret;
c6e387a2 473
c6e387a2 474 /*
1048643e 475 * Get values for all modes
c6e387a2 476 */
1048643e
FF
477 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
478 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
479 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
480
481 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
482 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
483
484 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
485 offset = mode_offset[mode];
486
487 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
488 if (ret)
489 return ret;
490
491 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
492 if (ret)
493 return ret;
c6e387a2 494 }
1048643e
FF
495
496 /* override for older eeprom versions for better performance */
497 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
498 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
c6e387a2 501 }
c6e387a2 502
1048643e
FF
503 return 0;
504}
c6e387a2 505
0ea9c00c
NK
506/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
507 * frequency mask) */
1048643e
FF
508static inline int
509ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
0ea9c00c 510 struct ath5k_chan_pcal_info *pc, unsigned int mode)
1048643e 511{
0ea9c00c 512 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1048643e
FF
513 int o = *offset;
514 int i = 0;
0ea9c00c 515 u8 freq1, freq2;
1048643e
FF
516 u16 val;
517
8e218fb2 518 ee->ee_n_piers[mode] = 0;
e4bbf2f5 519 while (i < max) {
1048643e
FF
520 AR5K_EEPROM_READ(o++, val);
521
8e218fb2
NK
522 freq1 = val & 0xff;
523 if (!freq1)
524 break;
1048643e 525
8e218fb2
NK
526 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
527 freq1, mode);
528 ee->ee_n_piers[mode]++;
1048643e 529
8e218fb2
NK
530 freq2 = (val >> 8) & 0xff;
531 if (!freq2)
1048643e 532 break;
8e218fb2
NK
533
534 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535 freq2, mode);
536 ee->ee_n_piers[mode]++;
c6e387a2 537 }
0ea9c00c
NK
538
539 /* return new offset */
1048643e 540 *offset = o;
c6e387a2 541
1048643e
FF
542 return 0;
543}
544
0ea9c00c 545/* Read frequency piers for 802.11a */
1048643e
FF
546static int
547ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
548{
549 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
550 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
fda9b7af 551 int i;
1048643e
FF
552 u16 val;
553 u8 mask;
554
555 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
556 ath5k_eeprom_read_freq_list(ah, &offset,
557 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
0ea9c00c 558 AR5K_EEPROM_MODE_11A);
1048643e
FF
559 } else {
560 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
c6e387a2 561
c6e387a2 562 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
563 pcal[0].freq = (val >> 9) & mask;
564 pcal[1].freq = (val >> 2) & mask;
565 pcal[2].freq = (val << 5) & mask;
566
567 AR5K_EEPROM_READ(offset++, val);
568 pcal[2].freq |= (val >> 11) & 0x1f;
569 pcal[3].freq = (val >> 4) & mask;
570 pcal[4].freq = (val << 3) & mask;
571
572 AR5K_EEPROM_READ(offset++, val);
573 pcal[4].freq |= (val >> 13) & 0x7;
574 pcal[5].freq = (val >> 6) & mask;
575 pcal[6].freq = (val << 1) & mask;
576
577 AR5K_EEPROM_READ(offset++, val);
578 pcal[6].freq |= (val >> 15) & 0x1;
579 pcal[7].freq = (val >> 8) & mask;
580 pcal[8].freq = (val >> 1) & mask;
581 pcal[9].freq = (val << 6) & mask;
582
583 AR5K_EEPROM_READ(offset++, val);
584 pcal[9].freq |= (val >> 10) & 0x3f;
0ea9c00c
NK
585
586 /* Fixed number of piers */
1048643e 587 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
c6e387a2 588
0ea9c00c
NK
589 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
590 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
1048643e 591 pcal[i].freq, AR5K_EEPROM_MODE_11A);
0ea9c00c 592 }
1048643e 593 }
c6e387a2 594
1048643e
FF
595 return 0;
596}
c6e387a2 597
0ea9c00c 598/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
1048643e
FF
599static inline int
600ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
601{
602 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
603 struct ath5k_chan_pcal_info *pcal;
1048643e 604
e4bbf2f5 605 switch (mode) {
1048643e
FF
606 case AR5K_EEPROM_MODE_11B:
607 pcal = ee->ee_pwr_cal_b;
608 break;
609 case AR5K_EEPROM_MODE_11G:
610 pcal = ee->ee_pwr_cal_g;
611 break;
612 default:
613 return -EINVAL;
614 }
c6e387a2 615
1048643e
FF
616 ath5k_eeprom_read_freq_list(ah, &offset,
617 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
0ea9c00c 618 mode);
c6e387a2 619
1048643e
FF
620 return 0;
621}
c6e387a2 622
9320b5c4 623
8e218fb2
NK
624/*
625 * Read power calibration for RF5111 chips
626 *
0ea9c00c 627 * For RF5111 we have an XPD -eXternal Power Detector- curve
8e218fb2
NK
628 * for each calibrated channel. Each curve has 0,5dB Power steps
629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
630 * exponential function. To recreate the curve we read 11 points
631 * here and interpolate later.
0ea9c00c 632 */
8e218fb2
NK
633
634/* Used to match PCDAC steps with power values on RF5111 chips
635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636 * steps that match with the power values we read from eeprom. On
637 * older eeprom versions (< 3.2) these steps are equaly spaced at
a180a130 638 * 10% of the pcdac curve -until the curve reaches its maximum-
8e218fb2
NK
639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640 * these 11 steps are spaced in a different way. This function returns
641 * the pcdac steps based on eeprom version and curve min/max so that we
642 * can have pcdac/pwr points.
643 */
644static inline void
645ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
646{
d2c7f773
PR
647 static const u16 intercepts3[] = {
648 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
649 };
650 static const u16 intercepts3_2[] = {
651 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
652 };
8e218fb2
NK
653 const u16 *ip;
654 int i;
655
656 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
657 ip = intercepts3_2;
658 else
659 ip = intercepts3;
660
661 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
662 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
663}
664
a0657846
JL
665static int
666ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
667{
668 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669 struct ath5k_chan_pcal_info *chinfo;
670 u8 pier, pdg;
671
672 switch (mode) {
673 case AR5K_EEPROM_MODE_11A:
674 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
675 return 0;
676 chinfo = ee->ee_pwr_cal_a;
677 break;
678 case AR5K_EEPROM_MODE_11B:
679 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
680 return 0;
681 chinfo = ee->ee_pwr_cal_b;
682 break;
683 case AR5K_EEPROM_MODE_11G:
684 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
685 return 0;
686 chinfo = ee->ee_pwr_cal_g;
687 break;
688 default:
689 return -EINVAL;
690 }
691
692 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
693 if (!chinfo[pier].pd_curves)
694 continue;
695
a0b8de35 696 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
a0657846
JL
697 struct ath5k_pdgain_info *pd =
698 &chinfo[pier].pd_curves[pdg];
699
a0b8de35
ES
700 kfree(pd->pd_step);
701 kfree(pd->pd_pwr);
a0657846
JL
702 }
703
704 kfree(chinfo[pier].pd_curves);
705 }
706
707 return 0;
708}
709
8e218fb2
NK
710/* Convert RF5111 specific data to generic raw data
711 * used by interpolation code */
712static int
713ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
714 struct ath5k_chan_pcal_info *chinfo)
715{
716 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
717 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
718 struct ath5k_pdgain_info *pd;
719 u8 pier, point, idx;
720 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
721
722 /* Fill raw data for each calibration pier */
723 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
724
725 pcinfo = &chinfo[pier].rf5111_info;
726
727 /* Allocate pd_curves for this cal pier */
728 chinfo[pier].pd_curves =
729 kcalloc(AR5K_EEPROM_N_PD_CURVES,
730 sizeof(struct ath5k_pdgain_info),
731 GFP_KERNEL);
732
733 if (!chinfo[pier].pd_curves)
a0657846 734 goto err_out;
8e218fb2
NK
735
736 /* Only one curve for RF5111
737 * find out which one and place
77c2061d 738 * in pd_curves.
8e218fb2
NK
739 * Note: ee_x_gain is reversed here */
740 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
741
742 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
743 pdgain_idx[0] = idx;
744 break;
745 }
746 }
747
748 ee->ee_pd_gains[mode] = 1;
749
750 pd = &chinfo[pier].pd_curves[idx];
751
752 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
753
754 /* Allocate pd points for this curve */
755 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
756 sizeof(u8), GFP_KERNEL);
757 if (!pd->pd_step)
a0657846 758 goto err_out;
8e218fb2
NK
759
760 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
761 sizeof(s16), GFP_KERNEL);
762 if (!pd->pd_pwr)
a0657846 763 goto err_out;
8e218fb2
NK
764
765 /* Fill raw dataset
766 * (convert power to 0.25dB units
767 * for RF5112 combatibility) */
768 for (point = 0; point < pd->pd_points; point++) {
769
770 /* Absolute values */
771 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
772
773 /* Already sorted */
774 pd->pd_step[point] = pcinfo->pcdac[point];
775 }
776
777 /* Set min/max pwr */
778 chinfo[pier].min_pwr = pd->pd_pwr[0];
779 chinfo[pier].max_pwr = pd->pd_pwr[10];
780
781 }
782
783 return 0;
a0657846
JL
784
785err_out:
786 ath5k_eeprom_free_pcal_info(ah, mode);
787 return -ENOMEM;
8e218fb2
NK
788}
789
790/* Parse EEPROM data */
1048643e
FF
791static int
792ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
793{
794 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
795 struct ath5k_chan_pcal_info *pcal;
796 int offset, ret;
eaee7cc2 797 int i;
1048643e
FF
798 u16 val;
799
800 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
e4bbf2f5 801 switch (mode) {
1048643e
FF
802 case AR5K_EEPROM_MODE_11A:
803 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
804 return 0;
805
806 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
807 offset + AR5K_EEPROM_GROUP1_OFFSET);
808 if (ret < 0)
809 return ret;
810
811 offset += AR5K_EEPROM_GROUP2_OFFSET;
812 pcal = ee->ee_pwr_cal_a;
813 break;
814 case AR5K_EEPROM_MODE_11B:
815 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
816 !AR5K_EEPROM_HDR_11G(ee->ee_header))
817 return 0;
818
819 pcal = ee->ee_pwr_cal_b;
820 offset += AR5K_EEPROM_GROUP3_OFFSET;
821
822 /* fixed piers */
823 pcal[0].freq = 2412;
824 pcal[1].freq = 2447;
825 pcal[2].freq = 2484;
826 ee->ee_n_piers[mode] = 3;
827 break;
828 case AR5K_EEPROM_MODE_11G:
829 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
830 return 0;
831
832 pcal = ee->ee_pwr_cal_g;
833 offset += AR5K_EEPROM_GROUP4_OFFSET;
834
835 /* fixed piers */
836 pcal[0].freq = 2312;
837 pcal[1].freq = 2412;
838 pcal[2].freq = 2484;
839 ee->ee_n_piers[mode] = 3;
840 break;
841 default:
842 return -EINVAL;
c6e387a2
NK
843 }
844
1048643e
FF
845 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
846 struct ath5k_chan_pcal_info_rf5111 *cdata =
847 &pcal[i].rf5111_info;
c6e387a2 848
1048643e
FF
849 AR5K_EEPROM_READ(offset++, val);
850 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
851 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
852 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2 853
1048643e
FF
854 AR5K_EEPROM_READ(offset++, val);
855 cdata->pwr[0] |= ((val >> 14) & 0x3);
856 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
857 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
858 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
c6e387a2 859
1048643e
FF
860 AR5K_EEPROM_READ(offset++, val);
861 cdata->pwr[3] |= ((val >> 12) & 0xf);
862 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
863 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
c6e387a2 864
c6e387a2 865 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
866 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
867 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
868 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2
NK
869
870 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
871 cdata->pwr[8] |= ((val >> 14) & 0x3);
872 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
873 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
874
875 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
876 cdata->pcdac_max, cdata->pcdac);
c6e387a2
NK
877 }
878
8e218fb2 879 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
1048643e 880}
c6e387a2 881
8e218fb2
NK
882
883/*
884 * Read power calibration for RF5112 chips
885 *
0ea9c00c
NK
886 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
887 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
8e218fb2
NK
888 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
889 * power steps on x axis and PCDAC steps on y axis and looks like a
890 * linear function. To recreate the curve and pass the power values
891 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
892 * and 3 points for xpd 3 (higher gain -> lower power) here and
893 * interpolate later.
0ea9c00c
NK
894 *
895 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
896 */
8e218fb2
NK
897
898/* Convert RF5112 specific data to generic raw data
899 * used by interpolation code */
900static int
901ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
902 struct ath5k_chan_pcal_info *chinfo)
903{
904 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
905 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
906 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
907 unsigned int pier, pdg, point;
908
909 /* Fill raw data for each calibration pier */
910 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
911
912 pcinfo = &chinfo[pier].rf5112_info;
913
914 /* Allocate pd_curves for this cal pier */
915 chinfo[pier].pd_curves =
916 kcalloc(AR5K_EEPROM_N_PD_CURVES,
917 sizeof(struct ath5k_pdgain_info),
918 GFP_KERNEL);
919
920 if (!chinfo[pier].pd_curves)
a0657846 921 goto err_out;
8e218fb2
NK
922
923 /* Fill pd_curves */
924 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
925
926 u8 idx = pdgain_idx[pdg];
927 struct ath5k_pdgain_info *pd =
928 &chinfo[pier].pd_curves[idx];
929
930 /* Lowest gain curve (max power) */
931 if (pdg == 0) {
932 /* One more point for better accuracy */
933 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
934
935 /* Allocate pd points for this curve */
936 pd->pd_step = kcalloc(pd->pd_points,
937 sizeof(u8), GFP_KERNEL);
938
939 if (!pd->pd_step)
a0657846 940 goto err_out;
8e218fb2
NK
941
942 pd->pd_pwr = kcalloc(pd->pd_points,
943 sizeof(s16), GFP_KERNEL);
944
945 if (!pd->pd_pwr)
a0657846 946 goto err_out;
8e218fb2
NK
947
948 /* Fill raw dataset
949 * (all power levels are in 0.25dB units) */
950 pd->pd_step[0] = pcinfo->pcdac_x0[0];
951 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
952
953 for (point = 1; point < pd->pd_points;
954 point++) {
955 /* Absolute values */
956 pd->pd_pwr[point] =
957 pcinfo->pwr_x0[point];
958
959 /* Deltas */
960 pd->pd_step[point] =
961 pd->pd_step[point - 1] +
962 pcinfo->pcdac_x0[point];
963 }
964
965 /* Set min power for this frequency */
966 chinfo[pier].min_pwr = pd->pd_pwr[0];
967
968 /* Highest gain curve (min power) */
969 } else if (pdg == 1) {
970
971 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
972
973 /* Allocate pd points for this curve */
974 pd->pd_step = kcalloc(pd->pd_points,
975 sizeof(u8), GFP_KERNEL);
976
977 if (!pd->pd_step)
a0657846 978 goto err_out;
8e218fb2
NK
979
980 pd->pd_pwr = kcalloc(pd->pd_points,
981 sizeof(s16), GFP_KERNEL);
982
983 if (!pd->pd_pwr)
a0657846 984 goto err_out;
8e218fb2
NK
985
986 /* Fill raw dataset
987 * (all power levels are in 0.25dB units) */
988 for (point = 0; point < pd->pd_points;
989 point++) {
990 /* Absolute values */
991 pd->pd_pwr[point] =
992 pcinfo->pwr_x3[point];
993
994 /* Fixed points */
995 pd->pd_step[point] =
996 pcinfo->pcdac_x3[point];
997 }
998
999 /* Since we have a higher gain curve
1000 * override min power */
1001 chinfo[pier].min_pwr = pd->pd_pwr[0];
1002 }
1003 }
1004 }
1005
1006 return 0;
a0657846
JL
1007
1008err_out:
1009 ath5k_eeprom_free_pcal_info(ah, mode);
1010 return -ENOMEM;
8e218fb2
NK
1011}
1012
1013/* Parse EEPROM data */
1048643e
FF
1014static int
1015ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1016{
1017 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1018 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1019 struct ath5k_chan_pcal_info *gen_chan_info;
8e218fb2 1020 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 1021 u32 offset;
8e218fb2 1022 u8 i, c;
1048643e 1023 u16 val;
8e218fb2
NK
1024 u8 pd_gains = 0;
1025
1026 /* Count how many curves we have and
1027 * identify them (which one of the 4
1028 * available curves we have on each count).
1029 * Curves are stored from lower (x0) to
1030 * higher (x3) gain */
1031 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1032 /* ee_x_gain[mode] is x gain mask */
1033 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1034 pdgain_idx[pd_gains++] = i;
1035 }
1036 ee->ee_pd_gains[mode] = pd_gains;
1037
1038 if (pd_gains == 0 || pd_gains > 2)
1039 return -EINVAL;
c6e387a2 1040
1048643e
FF
1041 switch (mode) {
1042 case AR5K_EEPROM_MODE_11A:
1043 /*
1044 * Read 5GHz EEPROM channels
1045 */
1046 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1047 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1048
1049 offset += AR5K_EEPROM_GROUP2_OFFSET;
1050 gen_chan_info = ee->ee_pwr_cal_a;
1051 break;
1052 case AR5K_EEPROM_MODE_11B:
1053 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1054 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1055 offset += AR5K_EEPROM_GROUP3_OFFSET;
1056
1057 /* NB: frequency piers parsed during mode init */
1058 gen_chan_info = ee->ee_pwr_cal_b;
1059 break;
1060 case AR5K_EEPROM_MODE_11G:
1061 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1062 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1063 offset += AR5K_EEPROM_GROUP4_OFFSET;
1064 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1065 offset += AR5K_EEPROM_GROUP2_OFFSET;
1066
1067 /* NB: frequency piers parsed during mode init */
1068 gen_chan_info = ee->ee_pwr_cal_g;
1069 break;
1070 default:
1071 return -EINVAL;
1072 }
c6e387a2 1073
1048643e
FF
1074 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1075 chan_pcal_info = &gen_chan_info[i].rf5112_info;
c6e387a2 1076
8e218fb2 1077 /* Power values in quarter dB
1048643e
FF
1078 * for the lower xpd gain curve
1079 * (0 dBm -> higher output power) */
1080 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1081 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1082 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1083 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1048643e 1084 }
c6e387a2 1085
1048643e
FF
1086 /* PCDAC steps
1087 * corresponding to the above power
1088 * measurements */
c6e387a2 1089 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1090 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1091 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1092 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
c6e387a2 1093
8e218fb2 1094 /* Power values in quarter dB
1048643e
FF
1095 * for the higher xpd gain curve
1096 * (18 dBm -> lower output power) */
c6e387a2 1097 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1098 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1099 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
c6e387a2
NK
1100
1101 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1102 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1103
1104 /* PCDAC steps
1105 * corresponding to the above power
0ea9c00c 1106 * measurements (fixed) */
1048643e
FF
1107 chan_pcal_info->pcdac_x3[0] = 20;
1108 chan_pcal_info->pcdac_x3[1] = 35;
1109 chan_pcal_info->pcdac_x3[2] = 63;
1110
1111 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
8e218fb2 1112 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1048643e
FF
1113
1114 /* Last xpd0 power level is also channel maximum */
1115 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1116 } else {
1117 chan_pcal_info->pcdac_x0[0] = 1;
8e218fb2 1118 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1048643e 1119 }
c6e387a2 1120
1048643e
FF
1121 }
1122
8e218fb2 1123 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1048643e
FF
1124}
1125
8e218fb2
NK
1126
1127/*
1128 * Read power calibration for RF2413 chips
1129 *
1130 * For RF2413 we have a Power to PDDAC table (Power Detector)
1131 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1132 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1133 * axis and looks like an exponential function like the RF5111 curve.
1134 *
1135 * To recreate the curves we read here the points and interpolate
1136 * later. Note that in most cases only 2 (higher and lower) curves are
25985edc 1137 * used (like RF5112) but vendors have the opportunity to include all
8e218fb2
NK
1138 * 4 curves on eeprom. The final curve (higher power) has an extra
1139 * point for better accuracy like RF5112.
1140 */
1141
0ea9c00c 1142/* For RF2413 power calibration data doesn't start on a fixed location and
a180a130 1143 * if a mode is not supported, its section is missing -not zeroed-.
0ea9c00c
NK
1144 * So we need to calculate the starting offset for each section by using
1145 * these two functions */
1146
1147/* Return the size of each section based on the mode and the number of pd
1148 * gains available (maximum 4). */
1048643e
FF
1149static inline unsigned int
1150ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1151{
1152 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1153 unsigned int sz;
1154
1155 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1156 sz *= ee->ee_n_piers[mode];
1157
1158 return sz;
1159}
1160
0ea9c00c
NK
1161/* Return the starting offset for a section based on the modes supported
1162 * and each section's size. */
1048643e
FF
1163static unsigned int
1164ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1165{
1166 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1167
e4bbf2f5 1168 switch (mode) {
1048643e
FF
1169 case AR5K_EEPROM_MODE_11G:
1170 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
8e218fb2
NK
1171 offset += ath5k_pdgains_size_2413(ee,
1172 AR5K_EEPROM_MODE_11B) +
1173 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1048643e
FF
1174 /* fall through */
1175 case AR5K_EEPROM_MODE_11B:
1176 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
8e218fb2
NK
1177 offset += ath5k_pdgains_size_2413(ee,
1178 AR5K_EEPROM_MODE_11A) +
1179 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1048643e
FF
1180 /* fall through */
1181 case AR5K_EEPROM_MODE_11A:
1182 break;
1183 default:
1184 break;
1185 }
1186
1187 return offset;
1188}
1189
8e218fb2
NK
1190/* Convert RF2413 specific data to generic raw data
1191 * used by interpolation code */
1192static int
1193ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1194 struct ath5k_chan_pcal_info *chinfo)
1195{
1196 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1198 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1199 unsigned int pier, pdg, point;
1200
1201 /* Fill raw data for each calibration pier */
1202 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1203
1204 pcinfo = &chinfo[pier].rf2413_info;
1205
1206 /* Allocate pd_curves for this cal pier */
1207 chinfo[pier].pd_curves =
1208 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1209 sizeof(struct ath5k_pdgain_info),
1210 GFP_KERNEL);
1211
1212 if (!chinfo[pier].pd_curves)
a0657846 1213 goto err_out;
8e218fb2
NK
1214
1215 /* Fill pd_curves */
1216 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1217
1218 u8 idx = pdgain_idx[pdg];
1219 struct ath5k_pdgain_info *pd =
1220 &chinfo[pier].pd_curves[idx];
1221
1222 /* One more point for the highest power
1223 * curve (lowest gain) */
1224 if (pdg == ee->ee_pd_gains[mode] - 1)
1225 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1226 else
1227 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1228
1229 /* Allocate pd points for this curve */
1230 pd->pd_step = kcalloc(pd->pd_points,
1231 sizeof(u8), GFP_KERNEL);
1232
1233 if (!pd->pd_step)
a0657846 1234 goto err_out;
8e218fb2
NK
1235
1236 pd->pd_pwr = kcalloc(pd->pd_points,
1237 sizeof(s16), GFP_KERNEL);
1238
1239 if (!pd->pd_pwr)
a0657846 1240 goto err_out;
8e218fb2
NK
1241
1242 /* Fill raw dataset
1243 * convert all pwr levels to
1244 * quarter dB for RF5112 combatibility */
1245 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1246 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1247
1248 for (point = 1; point < pd->pd_points; point++) {
1249
1250 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1251 2 * pcinfo->pwr[pdg][point - 1];
1252
1253 pd->pd_step[point] = pd->pd_step[point - 1] +
1254 pcinfo->pddac[pdg][point - 1];
1255
1256 }
1257
1258 /* Highest gain curve -> min power */
1259 if (pdg == 0)
1260 chinfo[pier].min_pwr = pd->pd_pwr[0];
1261
1262 /* Lowest gain curve -> max power */
1263 if (pdg == ee->ee_pd_gains[mode] - 1)
1264 chinfo[pier].max_pwr =
1265 pd->pd_pwr[pd->pd_points - 1];
1266 }
1267 }
1268
1269 return 0;
a0657846
JL
1270
1271err_out:
1272 ath5k_eeprom_free_pcal_info(ah, mode);
1273 return -ENOMEM;
8e218fb2
NK
1274}
1275
1276/* Parse EEPROM data */
1048643e
FF
1277static int
1278ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1279{
1280 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
8e218fb2
NK
1281 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1282 struct ath5k_chan_pcal_info *chinfo;
1283 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 1284 u32 offset;
fda9b7af 1285 int idx, i;
1048643e
FF
1286 u16 val;
1287 u8 pd_gains = 0;
1288
8e218fb2
NK
1289 /* Count how many curves we have and
1290 * identify them (which one of the 4
1291 * available curves we have on each count).
1292 * Curves are stored from higher to
1293 * lower gain so we go backwards */
1294 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1295 /* ee_x_gain[mode] is x gain mask */
1296 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1297 pdgain_idx[pd_gains++] = idx;
1298
1299 }
1048643e
FF
1300 ee->ee_pd_gains[mode] = pd_gains;
1301
8e218fb2
NK
1302 if (pd_gains == 0)
1303 return -EINVAL;
1304
1048643e
FF
1305 offset = ath5k_cal_data_offset_2413(ee, mode);
1306 switch (mode) {
1307 case AR5K_EEPROM_MODE_11A:
1308 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1309 return 0;
1310
1311 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1312 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
8e218fb2 1313 chinfo = ee->ee_pwr_cal_a;
1048643e
FF
1314 break;
1315 case AR5K_EEPROM_MODE_11B:
1316 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1317 return 0;
c6e387a2 1318
1048643e
FF
1319 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1320 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1321 chinfo = ee->ee_pwr_cal_b;
1048643e
FF
1322 break;
1323 case AR5K_EEPROM_MODE_11G:
1324 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1325 return 0;
1326
1327 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1328 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1329 chinfo = ee->ee_pwr_cal_g;
1048643e
FF
1330 break;
1331 default:
1332 return -EINVAL;
1333 }
1334
1048643e 1335 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
8e218fb2 1336 pcinfo = &chinfo[i].rf2413_info;
1048643e
FF
1337
1338 /*
1339 * Read pwr_i, pddac_i and the first
1340 * 2 pd points (pwr, pddac)
1341 */
c6e387a2 1342 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1343 pcinfo->pwr_i[0] = val & 0x1f;
1344 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1345 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
c6e387a2 1346
1048643e 1347 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1348 pcinfo->pddac[0][0] = val & 0x3f;
1349 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1350 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1048643e
FF
1351
1352 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1353 pcinfo->pwr[0][2] = val & 0xf;
1354 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1048643e 1355
8e218fb2
NK
1356 pcinfo->pwr[0][3] = 0;
1357 pcinfo->pddac[0][3] = 0;
1048643e
FF
1358
1359 if (pd_gains > 1) {
1360 /*
1361 * Pd gain 0 is not the last pd gain
1362 * so it only has 2 pd points.
25985edc 1363 * Continue with pd gain 1.
1048643e 1364 */
8e218fb2 1365 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1048643e 1366
8e218fb2 1367 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
c6e387a2 1368 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1369 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1048643e 1370
8e218fb2
NK
1371 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1372 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1048643e
FF
1373
1374 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1375 pcinfo->pwr[1][1] = val & 0xf;
1376 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1377 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1378
1379 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1048643e 1380 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1381 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1048643e 1382
8e218fb2
NK
1383 pcinfo->pwr[1][3] = 0;
1384 pcinfo->pddac[1][3] = 0;
1048643e
FF
1385 } else if (pd_gains == 1) {
1386 /*
1387 * Pd gain 0 is the last one so
1388 * read the extra point.
1389 */
8e218fb2 1390 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1048643e 1391
8e218fb2 1392 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1048643e 1393 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1394 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1048643e
FF
1395 }
1396
1397 /*
1398 * Proceed with the other pd_gains
1399 * as above.
1400 */
1401 if (pd_gains > 2) {
8e218fb2
NK
1402 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1403 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1048643e
FF
1404
1405 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1406 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1407 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1408 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1409
1410 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1048643e 1411 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1412 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1048643e 1413
8e218fb2
NK
1414 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1415 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1048643e 1416
8e218fb2
NK
1417 pcinfo->pwr[2][3] = 0;
1418 pcinfo->pddac[2][3] = 0;
1048643e 1419 } else if (pd_gains == 2) {
8e218fb2
NK
1420 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1421 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1048643e
FF
1422 }
1423
1424 if (pd_gains > 3) {
8e218fb2 1425 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1048643e 1426 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1427 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1048643e 1428
8e218fb2
NK
1429 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1430 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1431 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1048643e
FF
1432
1433 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1434 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1435 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1436 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1437
1438 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1048643e 1439 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1440 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1048643e 1441
8e218fb2
NK
1442 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1443 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1048643e 1444
8e218fb2 1445 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1048643e 1446 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1447 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1048643e 1448 } else if (pd_gains == 3) {
8e218fb2 1449 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1048643e 1450 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1451 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1048643e 1452
8e218fb2 1453 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
c6e387a2
NK
1454 }
1455 }
1456
8e218fb2 1457 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1048643e
FF
1458}
1459
8e218fb2 1460
1048643e
FF
1461/*
1462 * Read per rate target power (this is the maximum tx power
1463 * supported by the card). This info is used when setting
1464 * tx power, no matter the channel.
1465 *
1466 * This also works for v5 EEPROMs.
1467 */
8e218fb2
NK
1468static int
1469ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1048643e
FF
1470{
1471 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472 struct ath5k_rate_pcal_info *rate_pcal_info;
8e218fb2 1473 u8 *rate_target_pwr_num;
1048643e
FF
1474 u32 offset;
1475 u16 val;
fda9b7af 1476 int i;
1048643e
FF
1477
1478 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1479 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1480 switch (mode) {
1481 case AR5K_EEPROM_MODE_11A:
1482 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1483 rate_pcal_info = ee->ee_rate_tpwr_a;
1484 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1485 break;
1486 case AR5K_EEPROM_MODE_11B:
1487 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1488 rate_pcal_info = ee->ee_rate_tpwr_b;
1489 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1490 break;
1491 case AR5K_EEPROM_MODE_11G:
1492 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1493 rate_pcal_info = ee->ee_rate_tpwr_g;
1494 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1495 break;
1496 default:
1497 return -EINVAL;
1498 }
1499
1500 /* Different freq mask for older eeproms (<= v3.2) */
1501 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1502 for (i = 0; i < (*rate_target_pwr_num); i++) {
1503 AR5K_EEPROM_READ(offset++, val);
1504 rate_pcal_info[i].freq =
1505 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1506
1507 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1508 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1509
1510 AR5K_EEPROM_READ(offset++, val);
1511
1512 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1513 val == 0) {
1514 (*rate_target_pwr_num) = i;
1515 break;
1516 }
1517
1518 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1519 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1520 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1521 }
1522 } else {
1523 for (i = 0; i < (*rate_target_pwr_num); i++) {
1524 AR5K_EEPROM_READ(offset++, val);
1525 rate_pcal_info[i].freq =
1526 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1527
1528 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1529 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1530
1531 AR5K_EEPROM_READ(offset++, val);
1532
1533 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1534 val == 0) {
1535 (*rate_target_pwr_num) = i;
1536 break;
1537 }
1538
1539 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1540 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1541 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1542 }
1543 }
1544
1545 return 0;
1546}
1547
9320b5c4 1548
0ea9c00c
NK
1549/*
1550 * Read per channel calibration info from EEPROM
1551 *
1552 * This info is used to calibrate the baseband power table. Imagine
1553 * that for each channel there is a power curve that's hw specific
1554 * (depends on amplifier etc) and we try to "correct" this curve using
bf48aabb 1555 * offsets we pass on to phy chip (baseband -> before amplifier) so that
0ea9c00c
NK
1556 * it can use accurate power values when setting tx power (takes amplifier's
1557 * performance on each channel into account).
1558 *
1559 * EEPROM provides us with the offsets for some pre-calibrated channels
1560 * and we have to interpolate to create the full table for these channels and
1561 * also the table for any channel.
1562 */
1048643e
FF
1563static int
1564ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1565{
1566 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1567 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1568 int mode;
1569 int err;
1570
1571 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1572 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1573 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1574 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1575 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1576 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1577 else
1578 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1579
8e218fb2
NK
1580
1581 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1582 mode++) {
1048643e
FF
1583 err = read_pcal(ah, mode);
1584 if (err)
1585 return err;
1586
1587 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1588 if (err < 0)
1589 return err;
1590 }
1591
1592 return 0;
1593}
1594
0ea9c00c 1595/* Read conformance test limits used for regulatory control */
1048643e
FF
1596static int
1597ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1598{
1599 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1600 struct ath5k_edge_power *rep;
1601 unsigned int fmask, pmask;
1602 unsigned int ctl_mode;
fda9b7af 1603 int i, j;
1048643e
FF
1604 u32 offset;
1605 u16 val;
1606
1607 pmask = AR5K_EEPROM_POWER_M;
1608 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1609 offset = AR5K_EEPROM_CTL(ee->ee_version);
1610 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1611 for (i = 0; i < ee->ee_ctls; i += 2) {
1612 AR5K_EEPROM_READ(offset++, val);
1613 ee->ee_ctl[i] = (val >> 8) & 0xff;
1614 ee->ee_ctl[i + 1] = val & 0xff;
1615 }
1616
1617 offset = AR5K_EEPROM_GROUP8_OFFSET;
1618 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1619 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1620 AR5K_EEPROM_GROUP5_OFFSET;
1621 else
1622 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1623
1624 rep = ee->ee_ctl_pwr;
e4bbf2f5
PR
1625 for (i = 0; i < ee->ee_ctls; i++) {
1626 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1048643e
FF
1627 case AR5K_CTL_11A:
1628 case AR5K_CTL_TURBO:
1629 ctl_mode = AR5K_EEPROM_MODE_11A;
1630 break;
1631 default:
1632 ctl_mode = AR5K_EEPROM_MODE_11G;
1633 break;
1634 }
1635 if (ee->ee_ctl[i] == 0) {
1636 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1637 offset += 8;
1638 else
1639 offset += 7;
1640 rep += AR5K_EEPROM_N_EDGES;
1641 continue;
1642 }
1643 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1644 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1645 AR5K_EEPROM_READ(offset++, val);
1646 rep[j].freq = (val >> 8) & fmask;
1647 rep[j + 1].freq = val & fmask;
1648 }
1649 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1650 AR5K_EEPROM_READ(offset++, val);
1651 rep[j].edge = (val >> 8) & pmask;
1652 rep[j].flag = (val >> 14) & 1;
1653 rep[j + 1].edge = val & pmask;
1654 rep[j + 1].flag = (val >> 6) & 1;
1655 }
1656 } else {
1657 AR5K_EEPROM_READ(offset++, val);
1658 rep[0].freq = (val >> 9) & fmask;
1659 rep[1].freq = (val >> 2) & fmask;
1660 rep[2].freq = (val << 5) & fmask;
1661
1662 AR5K_EEPROM_READ(offset++, val);
1663 rep[2].freq |= (val >> 11) & 0x1f;
1664 rep[3].freq = (val >> 4) & fmask;
1665 rep[4].freq = (val << 3) & fmask;
1666
1667 AR5K_EEPROM_READ(offset++, val);
1668 rep[4].freq |= (val >> 13) & 0x7;
1669 rep[5].freq = (val >> 6) & fmask;
1670 rep[6].freq = (val << 1) & fmask;
1671
1672 AR5K_EEPROM_READ(offset++, val);
1673 rep[6].freq |= (val >> 15) & 0x1;
1674 rep[7].freq = (val >> 8) & fmask;
1675
1676 rep[0].edge = (val >> 2) & pmask;
1677 rep[1].edge = (val << 4) & pmask;
1678
1679 AR5K_EEPROM_READ(offset++, val);
1680 rep[1].edge |= (val >> 12) & 0xf;
1681 rep[2].edge = (val >> 6) & pmask;
1682 rep[3].edge = val & pmask;
1683
1684 AR5K_EEPROM_READ(offset++, val);
1685 rep[4].edge = (val >> 10) & pmask;
1686 rep[5].edge = (val >> 4) & pmask;
1687 rep[6].edge = (val << 2) & pmask;
1688
1689 AR5K_EEPROM_READ(offset++, val);
1690 rep[6].edge |= (val >> 14) & 0x3;
1691 rep[7].edge = (val >> 8) & pmask;
1692 }
1693 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1694 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1695 rep[j].freq, ctl_mode);
1696 }
1697 rep += AR5K_EEPROM_N_EDGES;
1698 }
c6e387a2
NK
1699
1700 return 0;
1701}
1702
cd417519
NK
1703static int
1704ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1705{
1706 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1707 u32 offset;
1708 u16 val;
1709 int ret = 0, i;
1710
1711 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1712 AR5K_EEPROM_N_CTLS(ee->ee_version);
1713
1714 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1715 /* No spur info for 5GHz */
1716 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1717 /* 2 channels for 2GHz (2464/2420) */
1718 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1719 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1720 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1721 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1722 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1723 AR5K_EEPROM_READ(offset, val);
1724 ee->ee_spur_chans[i][0] = val;
1725 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1726 val);
1727 ee->ee_spur_chans[i][1] = val;
1728 offset++;
1729 }
1730 }
1731
1732 return ret;
1733}
1048643e 1734
9320b5c4
NK
1735
1736/***********************\
1737* Init/Detach functions *
1738\***********************/
1739
1048643e 1740/*
cd417519 1741 * Initialize eeprom data structure
1048643e
FF
1742 */
1743int
1744ath5k_eeprom_init(struct ath5k_hw *ah)
1745{
1746 int err;
1747
1748 err = ath5k_eeprom_init_header(ah);
1749 if (err < 0)
1750 return err;
1751
1752 err = ath5k_eeprom_init_modes(ah);
1753 if (err < 0)
1754 return err;
1755
1756 err = ath5k_eeprom_read_pcal_info(ah);
1757 if (err < 0)
1758 return err;
1759
1760 err = ath5k_eeprom_read_ctl_info(ah);
1761 if (err < 0)
1762 return err;
1763
cd417519
NK
1764 err = ath5k_eeprom_read_spur_chans(ah);
1765 if (err < 0)
1766 return err;
1767
1048643e
FF
1768 return 0;
1769}
e8f055f0 1770
9320b5c4
NK
1771void
1772ath5k_eeprom_detach(struct ath5k_hw *ah)
c6e387a2 1773{
9320b5c4 1774 u8 mode;
8d6c39ef 1775
9320b5c4
NK
1776 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1777 ath5k_eeprom_free_pcal_info(ah, mode);
c6e387a2 1778}
0207c0c5
BR
1779
1780int
1781ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1782{
1783 switch (channel->hw_value & CHANNEL_MODES) {
1784 case CHANNEL_A:
1785 case CHANNEL_XR:
1786 return AR5K_EEPROM_MODE_11A;
1787 case CHANNEL_G:
1788 return AR5K_EEPROM_MODE_11G;
1789 case CHANNEL_B:
1790 return AR5K_EEPROM_MODE_11B;
1791 default:
1792 return -1;
1793 }
1794}