lguest: don't share Switcher PTE pages between guests.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe
RR
17#include <asm/pgtable.h>
18#include <asm/uaccess.h>
19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
f1f394b1 24struct page **lg_switcher_pages;
d7e28ffe 25static struct vm_struct *switcher_vma;
d7e28ffe 26
d7e28ffe
RR
27/* This One Big lock protects all inter-guest data structures. */
28DEFINE_MUTEX(lguest_lock);
d7e28ffe 29
2e04ef76
RR
30/*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
40 * it's not a simple one-liner.
41 */
d7e28ffe
RR
42static __init int map_switcher(void)
43{
44 int i, err;
45 struct page **pagep;
46
bff672e6
RR
47 /*
48 * Map the Switcher in to high memory.
49 *
50 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 * top virtual address), it makes setting up the page tables really
52 * easy.
53 */
54
93a2cdff
RR
55 /* We assume Switcher text fits into a single page. */
56 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
57 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
58 end_switcher_text - start_switcher_text);
59 return -EINVAL;
60 }
61
2e04ef76
RR
62 /*
63 * We allocate an array of struct page pointers. map_vm_area() wants
64 * this, rather than just an array of pages.
65 */
f1f394b1
RR
66 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
67 * TOTAL_SWITCHER_PAGES,
68 GFP_KERNEL);
69 if (!lg_switcher_pages) {
d7e28ffe
RR
70 err = -ENOMEM;
71 goto out;
72 }
73
2e04ef76
RR
74 /*
75 * Now we actually allocate the pages. The Guest will see these pages,
76 * so we make sure they're zeroed.
77 */
d7e28ffe 78 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
f1f394b1
RR
79 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
80 if (!lg_switcher_pages[i]) {
d7e28ffe
RR
81 err = -ENOMEM;
82 goto free_some_pages;
83 }
d7e28ffe
RR
84 }
85
406a590b
RR
86 switcher_addr = SWITCHER_ADDR;
87
2e04ef76
RR
88 /*
89 * First we check that the Switcher won't overlap the fixmap area at
f14ae652 90 * the top of memory. It's currently nowhere near, but it could have
2e04ef76
RR
91 * very strange effects if it ever happened.
92 */
406a590b 93 if (switcher_addr + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
f14ae652
RR
94 err = -ENOMEM;
95 printk("lguest: mapping switcher would thwack fixmap\n");
96 goto free_pages;
97 }
98
2e04ef76 99 /*
406a590b
RR
100 * Now we reserve the "virtual memory area" we want. We might
101 * not get it in theory, but in practice it's worked so far.
102 * The end address needs +1 because __get_vm_area allocates an
103 * extra guard page, so we need space for that.
2e04ef76 104 */
d7e28ffe 105 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
406a590b 106 VM_ALLOC, switcher_addr, switcher_addr
f14ae652 107 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
108 if (!switcher_vma) {
109 err = -ENOMEM;
110 printk("lguest: could not map switcher pages high\n");
111 goto free_pages;
112 }
113
2e04ef76
RR
114 /*
115 * This code actually sets up the pages we've allocated to appear at
406a590b 116 * switcher_addr. map_vm_area() takes the vma we allocated above, the
bff672e6
RR
117 * kind of pages we're mapping (kernel pages), and a pointer to our
118 * array of struct pages. It increments that pointer, but we don't
2e04ef76
RR
119 * care.
120 */
f1f394b1 121 pagep = lg_switcher_pages;
ed1dc778 122 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
123 if (err) {
124 printk("lguest: map_vm_area failed: %i\n", err);
125 goto free_vma;
126 }
bff672e6 127
2e04ef76
RR
128 /*
129 * Now the Switcher is mapped at the right address, we can't fail!
9f54288d 130 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
2e04ef76 131 */
d7e28ffe
RR
132 memcpy(switcher_vma->addr, start_switcher_text,
133 end_switcher_text - start_switcher_text);
134
d7e28ffe
RR
135 printk(KERN_INFO "lguest: mapped switcher at %p\n",
136 switcher_vma->addr);
bff672e6 137 /* And we succeeded... */
d7e28ffe
RR
138 return 0;
139
140free_vma:
141 vunmap(switcher_vma->addr);
142free_pages:
143 i = TOTAL_SWITCHER_PAGES;
144free_some_pages:
145 for (--i; i >= 0; i--)
f1f394b1
RR
146 __free_pages(lg_switcher_pages[i], 0);
147 kfree(lg_switcher_pages);
d7e28ffe
RR
148out:
149 return err;
150}
bff672e6 151/*:*/
d7e28ffe 152
2e04ef76 153/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
154static void unmap_switcher(void)
155{
156 unsigned int i;
157
bff672e6 158 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 159 vunmap(switcher_vma->addr);
bff672e6 160 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 161 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
f1f394b1
RR
162 __free_pages(lg_switcher_pages[i], 0);
163 kfree(lg_switcher_pages);
d7e28ffe
RR
164}
165
e1e72965 166/*H:032
dde79789
RR
167 * Dealing With Guest Memory.
168 *
e1e72965
RR
169 * Before we go too much further into the Host, we need to grok the routines
170 * we use to deal with Guest memory.
171 *
dde79789 172 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
173 * the normal copy_from_user() & copy_to_user() on the corresponding place in
174 * the memory region allocated by the Launcher.
dde79789
RR
175 *
176 * But we can't trust the Guest: it might be trying to access the Launcher
177 * code. We have to check that the range is below the pfn_limit the Launcher
178 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
179 * positive by overflowing, too.
180 */
df1693ab
MZ
181bool lguest_address_ok(const struct lguest *lg,
182 unsigned long addr, unsigned long len)
d7e28ffe
RR
183{
184 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
185}
186
2e04ef76
RR
187/*
188 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 189 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
190 * value (all zeroes) instead of needing to return an error.
191 */
382ac6b3 192void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 193{
382ac6b3
GOC
194 if (!lguest_address_ok(cpu->lg, addr, bytes)
195 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
196 /* copy_from_user should do this, but as we rely on it... */
197 memset(b, 0, bytes);
382ac6b3 198 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
199 }
200}
201
a6bd8e13 202/* This is the write (copy into Guest) version. */
382ac6b3 203void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 204 unsigned bytes)
d7e28ffe 205{
382ac6b3
GOC
206 if (!lguest_address_ok(cpu->lg, addr, bytes)
207 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
208 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 209}
2d37f94a 210/*:*/
d7e28ffe 211
2e04ef76
RR
212/*H:030
213 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 214 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
215 * going around and around until something interesting happens.
216 */
d0953d42 217int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 218{
bff672e6 219 /* We stop running once the Guest is dead. */
382ac6b3 220 while (!cpu->lg->dead) {
abd41f03 221 unsigned int irq;
a32a8813 222 bool more;
abd41f03 223
cc6d4fbc 224 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
225 if (cpu->hcall)
226 do_hypercalls(cpu);
cc6d4fbc 227
2e04ef76
RR
228 /*
229 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 230 * Launcher.
2e04ef76 231 */
5e232f4f 232 if (cpu->pending_notify) {
a91d74a3
RR
233 /*
234 * Does it just needs to write to a registered
235 * eventfd (ie. the appropriate virtqueue thread)?
236 */
df60aeef 237 if (!send_notify_to_eventfd(cpu)) {
681f2066 238 /* OK, we tell the main Launcher. */
df60aeef
RR
239 if (put_user(cpu->pending_notify, user))
240 return -EFAULT;
241 return sizeof(cpu->pending_notify);
242 }
d7e28ffe
RR
243 }
244
0acf0001
MH
245 /*
246 * All long-lived kernel loops need to check with this horrible
247 * thing called the freezer. If the Host is trying to suspend,
248 * it stops us.
249 */
250 try_to_freeze();
251
bff672e6 252 /* Check for signals */
d7e28ffe
RR
253 if (signal_pending(current))
254 return -ERESTARTSYS;
255
2e04ef76
RR
256 /*
257 * Check if there are any interrupts which can be delivered now:
a6bd8e13 258 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
259 * run the Guest.
260 */
a32a8813 261 irq = interrupt_pending(cpu, &more);
abd41f03 262 if (irq < LGUEST_IRQS)
a32a8813 263 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 264
2e04ef76
RR
265 /*
266 * Just make absolutely sure the Guest is still alive. One of
267 * those hypercalls could have been fatal, for example.
268 */
382ac6b3 269 if (cpu->lg->dead)
d7e28ffe
RR
270 break;
271
2e04ef76
RR
272 /*
273 * If the Guest asked to be stopped, we sleep. The Guest's
274 * clock timer will wake us.
275 */
66686c2a 276 if (cpu->halted) {
d7e28ffe 277 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
278 /*
279 * Just before we sleep, make sure no interrupt snuck in
280 * which we should be doing.
281 */
5dac051b 282 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
283 set_current_state(TASK_RUNNING);
284 else
285 schedule();
d7e28ffe
RR
286 continue;
287 }
288
2e04ef76
RR
289 /*
290 * OK, now we're ready to jump into the Guest. First we put up
291 * the "Do Not Disturb" sign:
292 */
d7e28ffe
RR
293 local_irq_disable();
294
625efab1 295 /* Actually run the Guest until something happens. */
d0953d42 296 lguest_arch_run_guest(cpu);
bff672e6
RR
297
298 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
299 local_irq_enable();
300
625efab1 301 /* Now we deal with whatever happened to the Guest. */
73044f05 302 lguest_arch_handle_trap(cpu);
d7e28ffe 303 }
625efab1 304
a6bd8e13 305 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 306 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 307 return -ERESTART;
a6bd8e13 308
bff672e6 309 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
310 return -ENOENT;
311}
312
bff672e6
RR
313/*H:000
314 * Welcome to the Host!
315 *
316 * By this point your brain has been tickled by the Guest code and numbed by
317 * the Launcher code; prepare for it to be stretched by the Host code. This is
318 * the heart. Let's begin at the initialization routine for the Host's lg
319 * module.
320 */
d7e28ffe
RR
321static int __init init(void)
322{
323 int err;
324
bff672e6 325 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 326 if (get_kernel_rpl() != 0) {
5c55841d 327 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
328 return -EPERM;
329 }
330
bff672e6 331 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
332 err = map_switcher();
333 if (err)
c18acd73 334 goto out;
d7e28ffe 335
c18acd73
RR
336 /* We might need to reserve an interrupt vector. */
337 err = init_interrupts();
338 if (err)
3412b6ae 339 goto unmap;
c18acd73 340
bff672e6 341 /* /dev/lguest needs to be registered. */
d7e28ffe 342 err = lguest_device_init();
c18acd73
RR
343 if (err)
344 goto free_interrupts;
bff672e6 345
625efab1
JS
346 /* Finally we do some architecture-specific setup. */
347 lguest_arch_host_init();
bff672e6
RR
348
349 /* All good! */
d7e28ffe 350 return 0;
c18acd73
RR
351
352free_interrupts:
353 free_interrupts();
c18acd73
RR
354unmap:
355 unmap_switcher();
356out:
357 return err;
d7e28ffe
RR
358}
359
bff672e6 360/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
361static void __exit fini(void)
362{
363 lguest_device_remove();
c18acd73 364 free_interrupts();
d7e28ffe 365 unmap_switcher();
bff672e6 366
625efab1 367 lguest_arch_host_fini();
d7e28ffe 368}
625efab1 369/*:*/
d7e28ffe 370
2e04ef76
RR
371/*
372 * The Host side of lguest can be a module. This is a nice way for people to
373 * play with it.
374 */
d7e28ffe
RR
375module_init(init);
376module_exit(fini);
377MODULE_LICENSE("GPL");
378MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");