Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
41 *
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43 */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 struct snd_pcm_runtime *runtime = substream->runtime;
47 snd_pcm_uframes_t frames, ofs, transfer;
48
49 if (runtime->silence_size < runtime->boundary) {
50 snd_pcm_sframes_t noise_dist, n;
51 if (runtime->silence_start != runtime->control->appl_ptr) {
52 n = runtime->control->appl_ptr - runtime->silence_start;
53 if (n < 0)
54 n += runtime->boundary;
55 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 runtime->silence_filled -= n;
57 else
58 runtime->silence_filled = 0;
59 runtime->silence_start = runtime->control->appl_ptr;
60 }
61 if (runtime->silence_filled >= runtime->buffer_size)
62 return;
63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 return;
66 frames = runtime->silence_threshold - noise_dist;
67 if (frames > runtime->silence_size)
68 frames = runtime->silence_size;
69 } else {
70 if (new_hw_ptr == ULONG_MAX) { /* initialization */
71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 if (avail > runtime->buffer_size)
73 avail = runtime->buffer_size;
74 runtime->silence_filled = avail > 0 ? avail : 0;
75 runtime->silence_start = (runtime->status->hw_ptr +
76 runtime->silence_filled) %
77 runtime->boundary;
78 } else {
79 ofs = runtime->status->hw_ptr;
80 frames = new_hw_ptr - ofs;
81 if ((snd_pcm_sframes_t)frames < 0)
82 frames += runtime->boundary;
83 runtime->silence_filled -= frames;
84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 runtime->silence_filled = 0;
86 runtime->silence_start = new_hw_ptr;
87 } else {
88 runtime->silence_start = ofs;
89 }
90 }
91 frames = runtime->buffer_size - runtime->silence_filled;
92 }
93 if (snd_BUG_ON(frames > runtime->buffer_size))
94 return;
95 if (frames == 0)
96 return;
97 ofs = runtime->silence_start % runtime->buffer_size;
98 while (frames > 0) {
99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 if (substream->ops->silence) {
103 int err;
104 err = substream->ops->silence(substream, -1, ofs, transfer);
105 snd_BUG_ON(err < 0);
106 } else {
107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 }
110 } else {
111 unsigned int c;
112 unsigned int channels = runtime->channels;
113 if (substream->ops->silence) {
114 for (c = 0; c < channels; ++c) {
115 int err;
116 err = substream->ops->silence(substream, c, ofs, transfer);
117 snd_BUG_ON(err < 0);
118 }
119 } else {
120 size_t dma_csize = runtime->dma_bytes / channels;
121 for (c = 0; c < channels; ++c) {
122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 }
125 }
126 }
127 runtime->silence_filled += transfer;
128 frames -= transfer;
129 ofs = 0;
130 }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 char *name, size_t len)
136 {
137 snprintf(name, len, "pcmC%dD%d%c:%d",
138 substream->pcm->card->number,
139 substream->pcm->device,
140 substream->stream ? 'c' : 'p',
141 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask) 0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 struct snd_pcm_runtime *runtime = substream->runtime;
170
171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 char name[16];
176 snd_pcm_debug_name(substream, name, sizeof(name));
177 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
178 dump_stack_on_xrun(substream);
179 }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
184 do { \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 if (printk_ratelimit()) { \
188 snd_printd("PCM: " fmt, ##args); \
189 } \
190 dump_stack_on_xrun(substream); \
191 } \
192 } while (0)
193
194 #define XRUN_LOG_CNT 10
195
196 struct hwptr_log_entry {
197 unsigned int in_interrupt;
198 unsigned long jiffies;
199 snd_pcm_uframes_t pos;
200 snd_pcm_uframes_t period_size;
201 snd_pcm_uframes_t buffer_size;
202 snd_pcm_uframes_t old_hw_ptr;
203 snd_pcm_uframes_t hw_ptr_base;
204 };
205
206 struct snd_pcm_hwptr_log {
207 unsigned int idx;
208 unsigned int hit: 1;
209 struct hwptr_log_entry entries[XRUN_LOG_CNT];
210 };
211
212 static void xrun_log(struct snd_pcm_substream *substream,
213 snd_pcm_uframes_t pos, int in_interrupt)
214 {
215 struct snd_pcm_runtime *runtime = substream->runtime;
216 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
217 struct hwptr_log_entry *entry;
218
219 if (log == NULL) {
220 log = kzalloc(sizeof(*log), GFP_ATOMIC);
221 if (log == NULL)
222 return;
223 runtime->hwptr_log = log;
224 } else {
225 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
226 return;
227 }
228 entry = &log->entries[log->idx];
229 entry->in_interrupt = in_interrupt;
230 entry->jiffies = jiffies;
231 entry->pos = pos;
232 entry->period_size = runtime->period_size;
233 entry->buffer_size = runtime->buffer_size;
234 entry->old_hw_ptr = runtime->status->hw_ptr;
235 entry->hw_ptr_base = runtime->hw_ptr_base;
236 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
237 }
238
239 static void xrun_log_show(struct snd_pcm_substream *substream)
240 {
241 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
242 struct hwptr_log_entry *entry;
243 char name[16];
244 unsigned int idx;
245 int cnt;
246
247 if (log == NULL)
248 return;
249 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
250 return;
251 snd_pcm_debug_name(substream, name, sizeof(name));
252 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
253 entry = &log->entries[idx];
254 if (entry->period_size == 0)
255 break;
256 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
257 "hwptr=%ld/%ld\n",
258 name, entry->in_interrupt ? "[Q] " : "",
259 entry->jiffies,
260 (unsigned long)entry->pos,
261 (unsigned long)entry->period_size,
262 (unsigned long)entry->buffer_size,
263 (unsigned long)entry->old_hw_ptr,
264 (unsigned long)entry->hw_ptr_base);
265 idx++;
266 idx %= XRUN_LOG_CNT;
267 }
268 log->hit = 1;
269 }
270
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
272
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
275 #define xrun_log_show(substream) do { } while (0)
276
277 #endif
278
279 int snd_pcm_update_state(struct snd_pcm_substream *substream,
280 struct snd_pcm_runtime *runtime)
281 {
282 snd_pcm_uframes_t avail;
283
284 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285 avail = snd_pcm_playback_avail(runtime);
286 else
287 avail = snd_pcm_capture_avail(runtime);
288 if (avail > runtime->avail_max)
289 runtime->avail_max = avail;
290 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
291 if (avail >= runtime->buffer_size) {
292 snd_pcm_drain_done(substream);
293 return -EPIPE;
294 }
295 } else {
296 if (avail >= runtime->stop_threshold) {
297 xrun(substream);
298 return -EPIPE;
299 }
300 }
301 if (runtime->twake) {
302 if (avail >= runtime->twake)
303 wake_up(&runtime->tsleep);
304 } else if (avail >= runtime->control->avail_min)
305 wake_up(&runtime->sleep);
306 return 0;
307 }
308
309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
310 unsigned int in_interrupt)
311 {
312 struct snd_pcm_runtime *runtime = substream->runtime;
313 snd_pcm_uframes_t pos;
314 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315 snd_pcm_sframes_t hdelta, delta;
316 unsigned long jdelta;
317 unsigned long curr_jiffies;
318 struct timespec curr_tstamp;
319 struct timespec audio_tstamp;
320 int crossed_boundary = 0;
321
322 old_hw_ptr = runtime->status->hw_ptr;
323
324 /*
325 * group pointer, time and jiffies reads to allow for more
326 * accurate correlations/corrections.
327 * The values are stored at the end of this routine after
328 * corrections for hw_ptr position
329 */
330 pos = substream->ops->pointer(substream);
331 curr_jiffies = jiffies;
332 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
333 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
334
335 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
336 (substream->ops->wall_clock))
337 substream->ops->wall_clock(substream, &audio_tstamp);
338 }
339
340 if (pos == SNDRV_PCM_POS_XRUN) {
341 xrun(substream);
342 return -EPIPE;
343 }
344 if (pos >= runtime->buffer_size) {
345 if (printk_ratelimit()) {
346 char name[16];
347 snd_pcm_debug_name(substream, name, sizeof(name));
348 xrun_log_show(substream);
349 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
350 "buffer size = %ld, period size = %ld\n",
351 name, pos, runtime->buffer_size,
352 runtime->period_size);
353 }
354 pos = 0;
355 }
356 pos -= pos % runtime->min_align;
357 if (xrun_debug(substream, XRUN_DEBUG_LOG))
358 xrun_log(substream, pos, in_interrupt);
359 hw_base = runtime->hw_ptr_base;
360 new_hw_ptr = hw_base + pos;
361 if (in_interrupt) {
362 /* we know that one period was processed */
363 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
364 delta = runtime->hw_ptr_interrupt + runtime->period_size;
365 if (delta > new_hw_ptr) {
366 /* check for double acknowledged interrupts */
367 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
368 //MTK modify+++
369 //if (hdelta > runtime->hw_ptr_buffer_jiffies/2) { //Alsa origin
370 if (hdelta > runtime->hw_ptr_buffer_jiffies*3/4) { //MTK modified
371 //MTK modify---
372 hw_base += runtime->buffer_size;
373 if (hw_base >= runtime->boundary) {
374 hw_base = 0;
375 crossed_boundary++;
376 }
377 new_hw_ptr = hw_base + pos;
378 printk("%s, overflow? new_hw_ptr=%ld, hw_base=%ld\n",__FUNCTION__,new_hw_ptr,hw_base);
379 goto __delta;
380 }
381 }
382 }
383 /* new_hw_ptr might be lower than old_hw_ptr in case when */
384 /* pointer crosses the end of the ring buffer */
385 if (new_hw_ptr < old_hw_ptr) {
386 hw_base += runtime->buffer_size;
387 if (hw_base >= runtime->boundary) {
388 hw_base = 0;
389 crossed_boundary++;
390 }
391 new_hw_ptr = hw_base + pos;
392 }
393 __delta:
394 delta = new_hw_ptr - old_hw_ptr;
395 if (delta < 0)
396 delta += runtime->boundary;
397 if (xrun_debug(substream, in_interrupt ?
398 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
399 char name[16];
400 snd_pcm_debug_name(substream, name, sizeof(name));
401 snd_printd("%s_update: %s: pos=%u/%u/%u, "
402 "hwptr=%ld/%ld/%ld/%ld\n",
403 in_interrupt ? "period" : "hwptr",
404 name,
405 (unsigned int)pos,
406 (unsigned int)runtime->period_size,
407 (unsigned int)runtime->buffer_size,
408 (unsigned long)delta,
409 (unsigned long)old_hw_ptr,
410 (unsigned long)new_hw_ptr,
411 (unsigned long)runtime->hw_ptr_base);
412 }
413
414 if (runtime->no_period_wakeup) {
415 snd_pcm_sframes_t xrun_threshold;
416 /*
417 * Without regular period interrupts, we have to check
418 * the elapsed time to detect xruns.
419 */
420 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
422 goto no_delta_check;
423 hdelta = jdelta - delta * HZ / runtime->rate;
424 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
425 while (hdelta > xrun_threshold) {
426 delta += runtime->buffer_size;
427 hw_base += runtime->buffer_size;
428 if (hw_base >= runtime->boundary) {
429 hw_base = 0;
430 crossed_boundary++;
431 }
432 new_hw_ptr = hw_base + pos;
433 hdelta -= runtime->hw_ptr_buffer_jiffies;
434 }
435 goto no_delta_check;
436 }
437
438 /* something must be really wrong */
439 if (delta >= runtime->buffer_size + runtime->period_size) {
440 hw_ptr_error(substream,
441 "Unexpected hw_pointer value %s"
442 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
443 "old_hw_ptr=%ld)\n",
444 in_interrupt ? "[Q] " : "[P]",
445 substream->stream, (long)pos,
446 (long)new_hw_ptr, (long)old_hw_ptr);
447 return 0;
448 }
449
450 /* Do jiffies check only in xrun_debug mode */
451 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
452 goto no_jiffies_check;
453
454 /* Skip the jiffies check for hardwares with BATCH flag.
455 * Such hardware usually just increases the position at each IRQ,
456 * thus it can't give any strange position.
457 */
458 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
459 goto no_jiffies_check;
460 hdelta = delta;
461 if (hdelta < runtime->delay)
462 goto no_jiffies_check;
463 hdelta -= runtime->delay;
464 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
465 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
466 delta = jdelta /
467 (((runtime->period_size * HZ) / runtime->rate)
468 + HZ/100);
469 /* move new_hw_ptr according jiffies not pos variable */
470 new_hw_ptr = old_hw_ptr;
471 hw_base = delta;
472 /* use loop to avoid checks for delta overflows */
473 /* the delta value is small or zero in most cases */
474 while (delta > 0) {
475 new_hw_ptr += runtime->period_size;
476 if (new_hw_ptr >= runtime->boundary) {
477 new_hw_ptr -= runtime->boundary;
478 crossed_boundary--;
479 }
480 delta--;
481 }
482 /* align hw_base to buffer_size */
483 hw_ptr_error(substream,
484 "hw_ptr skipping! %s"
485 "(pos=%ld, delta=%ld, period=%ld, "
486 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
487 in_interrupt ? "[Q] " : "",
488 (long)pos, (long)hdelta,
489 (long)runtime->period_size, jdelta,
490 ((hdelta * HZ) / runtime->rate), hw_base,
491 (unsigned long)old_hw_ptr,
492 (unsigned long)new_hw_ptr);
493 /* reset values to proper state */
494 delta = 0;
495 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
496 }
497 no_jiffies_check:
498 if (delta > runtime->period_size + runtime->period_size / 2) {
499 hw_ptr_error(substream,
500 "Lost interrupts? %s"
501 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
502 "old_hw_ptr=%ld)\n",
503 in_interrupt ? "[Q] " : "",
504 substream->stream, (long)delta,
505 (long)new_hw_ptr,
506 (long)old_hw_ptr);
507 }
508
509 no_delta_check:
510 if (runtime->status->hw_ptr == new_hw_ptr)
511 return 0;
512
513 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
514 runtime->silence_size > 0)
515 snd_pcm_playback_silence(substream, new_hw_ptr);
516
517 if (in_interrupt) {
518 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
519 if (delta < 0)
520 delta += runtime->boundary;
521 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
522 runtime->hw_ptr_interrupt += delta;
523 if (runtime->hw_ptr_interrupt >= runtime->boundary)
524 runtime->hw_ptr_interrupt -= runtime->boundary;
525 }
526 runtime->hw_ptr_base = hw_base;
527 runtime->status->hw_ptr = new_hw_ptr;
528 runtime->hw_ptr_jiffies = curr_jiffies;
529 if (crossed_boundary) {
530 snd_BUG_ON(crossed_boundary != 1);
531 runtime->hw_ptr_wrap += runtime->boundary;
532 }
533 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
534 runtime->status->tstamp = curr_tstamp;
535
536 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
537 /*
538 * no wall clock available, provide audio timestamp
539 * derived from pointer position+delay
540 */
541 u64 audio_frames, audio_nsecs;
542
543 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
544 audio_frames = runtime->hw_ptr_wrap
545 + runtime->status->hw_ptr
546 - runtime->delay;
547 else
548 audio_frames = runtime->hw_ptr_wrap
549 + runtime->status->hw_ptr
550 + runtime->delay;
551 audio_nsecs = div_u64(audio_frames * 1000000000LL,
552 runtime->rate);
553 audio_tstamp = ns_to_timespec(audio_nsecs);
554 }
555 runtime->status->audio_tstamp = audio_tstamp;
556 }
557
558 return snd_pcm_update_state(substream, runtime);
559 }
560
561 /* CAUTION: call it with irq disabled */
562 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
563 {
564 return snd_pcm_update_hw_ptr0(substream, 0);
565 }
566
567 /**
568 * snd_pcm_set_ops - set the PCM operators
569 * @pcm: the pcm instance
570 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
571 * @ops: the operator table
572 *
573 * Sets the given PCM operators to the pcm instance.
574 */
575 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
576 {
577 struct snd_pcm_str *stream = &pcm->streams[direction];
578 struct snd_pcm_substream *substream;
579
580 for (substream = stream->substream; substream != NULL; substream = substream->next)
581 substream->ops = ops;
582 }
583
584 EXPORT_SYMBOL(snd_pcm_set_ops);
585
586 /**
587 * snd_pcm_sync - set the PCM sync id
588 * @substream: the pcm substream
589 *
590 * Sets the PCM sync identifier for the card.
591 */
592 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
593 {
594 struct snd_pcm_runtime *runtime = substream->runtime;
595
596 runtime->sync.id32[0] = substream->pcm->card->number;
597 runtime->sync.id32[1] = -1;
598 runtime->sync.id32[2] = -1;
599 runtime->sync.id32[3] = -1;
600 }
601
602 EXPORT_SYMBOL(snd_pcm_set_sync);
603
604 /*
605 * Standard ioctl routine
606 */
607
608 static inline unsigned int div32(unsigned int a, unsigned int b,
609 unsigned int *r)
610 {
611 if (b == 0) {
612 *r = 0;
613 return UINT_MAX;
614 }
615 *r = a % b;
616 return a / b;
617 }
618
619 static inline unsigned int div_down(unsigned int a, unsigned int b)
620 {
621 if (b == 0)
622 return UINT_MAX;
623 return a / b;
624 }
625
626 static inline unsigned int div_up(unsigned int a, unsigned int b)
627 {
628 unsigned int r;
629 unsigned int q;
630 if (b == 0)
631 return UINT_MAX;
632 q = div32(a, b, &r);
633 if (r)
634 ++q;
635 return q;
636 }
637
638 static inline unsigned int mul(unsigned int a, unsigned int b)
639 {
640 if (a == 0)
641 return 0;
642 if (div_down(UINT_MAX, a) < b)
643 return UINT_MAX;
644 return a * b;
645 }
646
647 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
648 unsigned int c, unsigned int *r)
649 {
650 u_int64_t n = (u_int64_t) a * b;
651 if (c == 0) {
652 snd_BUG_ON(!n);
653 *r = 0;
654 return UINT_MAX;
655 }
656 n = div_u64_rem(n, c, r);
657 if (n >= UINT_MAX) {
658 *r = 0;
659 return UINT_MAX;
660 }
661 return n;
662 }
663
664 /**
665 * snd_interval_refine - refine the interval value of configurator
666 * @i: the interval value to refine
667 * @v: the interval value to refer to
668 *
669 * Refines the interval value with the reference value.
670 * The interval is changed to the range satisfying both intervals.
671 * The interval status (min, max, integer, etc.) are evaluated.
672 *
673 * Return: Positive if the value is changed, zero if it's not changed, or a
674 * negative error code.
675 */
676 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
677 {
678 int changed = 0;
679 if (snd_BUG_ON(snd_interval_empty(i)))
680 return -EINVAL;
681 if (i->min < v->min) {
682 i->min = v->min;
683 i->openmin = v->openmin;
684 changed = 1;
685 } else if (i->min == v->min && !i->openmin && v->openmin) {
686 i->openmin = 1;
687 changed = 1;
688 }
689 if (i->max > v->max) {
690 i->max = v->max;
691 i->openmax = v->openmax;
692 changed = 1;
693 } else if (i->max == v->max && !i->openmax && v->openmax) {
694 i->openmax = 1;
695 changed = 1;
696 }
697 if (!i->integer && v->integer) {
698 i->integer = 1;
699 changed = 1;
700 }
701 if (i->integer) {
702 if (i->openmin) {
703 i->min++;
704 i->openmin = 0;
705 }
706 if (i->openmax) {
707 i->max--;
708 i->openmax = 0;
709 }
710 } else if (!i->openmin && !i->openmax && i->min == i->max)
711 i->integer = 1;
712 if (snd_interval_checkempty(i)) {
713 snd_interval_none(i);
714 return -EINVAL;
715 }
716 return changed;
717 }
718
719 EXPORT_SYMBOL(snd_interval_refine);
720
721 static int snd_interval_refine_first(struct snd_interval *i)
722 {
723 if (snd_BUG_ON(snd_interval_empty(i)))
724 return -EINVAL;
725 if (snd_interval_single(i))
726 return 0;
727 i->max = i->min;
728 i->openmax = i->openmin;
729 if (i->openmax)
730 i->max++;
731 return 1;
732 }
733
734 static int snd_interval_refine_last(struct snd_interval *i)
735 {
736 if (snd_BUG_ON(snd_interval_empty(i)))
737 return -EINVAL;
738 if (snd_interval_single(i))
739 return 0;
740 i->min = i->max;
741 i->openmin = i->openmax;
742 if (i->openmin)
743 i->min--;
744 return 1;
745 }
746
747 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
748 {
749 if (a->empty || b->empty) {
750 snd_interval_none(c);
751 return;
752 }
753 c->empty = 0;
754 c->min = mul(a->min, b->min);
755 c->openmin = (a->openmin || b->openmin);
756 c->max = mul(a->max, b->max);
757 c->openmax = (a->openmax || b->openmax);
758 c->integer = (a->integer && b->integer);
759 }
760
761 /**
762 * snd_interval_div - refine the interval value with division
763 * @a: dividend
764 * @b: divisor
765 * @c: quotient
766 *
767 * c = a / b
768 *
769 * Returns non-zero if the value is changed, zero if not changed.
770 */
771 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
772 {
773 unsigned int r;
774 if (a->empty || b->empty) {
775 snd_interval_none(c);
776 return;
777 }
778 c->empty = 0;
779 c->min = div32(a->min, b->max, &r);
780 c->openmin = (r || a->openmin || b->openmax);
781 if (b->min > 0) {
782 c->max = div32(a->max, b->min, &r);
783 if (r) {
784 c->max++;
785 c->openmax = 1;
786 } else
787 c->openmax = (a->openmax || b->openmin);
788 } else {
789 c->max = UINT_MAX;
790 c->openmax = 0;
791 }
792 c->integer = 0;
793 }
794
795 /**
796 * snd_interval_muldivk - refine the interval value
797 * @a: dividend 1
798 * @b: dividend 2
799 * @k: divisor (as integer)
800 * @c: result
801 *
802 * c = a * b / k
803 *
804 * Returns non-zero if the value is changed, zero if not changed.
805 */
806 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
807 unsigned int k, struct snd_interval *c)
808 {
809 unsigned int r;
810 if (a->empty || b->empty) {
811 snd_interval_none(c);
812 return;
813 }
814 c->empty = 0;
815 c->min = muldiv32(a->min, b->min, k, &r);
816 c->openmin = (r || a->openmin || b->openmin);
817 c->max = muldiv32(a->max, b->max, k, &r);
818 if (r) {
819 c->max++;
820 c->openmax = 1;
821 } else
822 c->openmax = (a->openmax || b->openmax);
823 c->integer = 0;
824 }
825
826 /**
827 * snd_interval_mulkdiv - refine the interval value
828 * @a: dividend 1
829 * @k: dividend 2 (as integer)
830 * @b: divisor
831 * @c: result
832 *
833 * c = a * k / b
834 *
835 * Returns non-zero if the value is changed, zero if not changed.
836 */
837 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
838 const struct snd_interval *b, struct snd_interval *c)
839 {
840 unsigned int r;
841 if (a->empty || b->empty) {
842 snd_interval_none(c);
843 return;
844 }
845 c->empty = 0;
846 c->min = muldiv32(a->min, k, b->max, &r);
847 c->openmin = (r || a->openmin || b->openmax);
848 if (b->min > 0) {
849 c->max = muldiv32(a->max, k, b->min, &r);
850 if (r) {
851 c->max++;
852 c->openmax = 1;
853 } else
854 c->openmax = (a->openmax || b->openmin);
855 } else {
856 c->max = UINT_MAX;
857 c->openmax = 0;
858 }
859 c->integer = 0;
860 }
861
862 /* ---- */
863
864
865 /**
866 * snd_interval_ratnum - refine the interval value
867 * @i: interval to refine
868 * @rats_count: number of ratnum_t
869 * @rats: ratnum_t array
870 * @nump: pointer to store the resultant numerator
871 * @denp: pointer to store the resultant denominator
872 *
873 * Return: Positive if the value is changed, zero if it's not changed, or a
874 * negative error code.
875 */
876 int snd_interval_ratnum(struct snd_interval *i,
877 unsigned int rats_count, struct snd_ratnum *rats,
878 unsigned int *nump, unsigned int *denp)
879 {
880 unsigned int best_num, best_den;
881 int best_diff;
882 unsigned int k;
883 struct snd_interval t;
884 int err;
885 unsigned int result_num, result_den;
886 int result_diff;
887
888 best_num = best_den = best_diff = 0;
889 for (k = 0; k < rats_count; ++k) {
890 unsigned int num = rats[k].num;
891 unsigned int den;
892 unsigned int q = i->min;
893 int diff;
894 if (q == 0)
895 q = 1;
896 den = div_up(num, q);
897 if (den < rats[k].den_min)
898 continue;
899 if (den > rats[k].den_max)
900 den = rats[k].den_max;
901 else {
902 unsigned int r;
903 r = (den - rats[k].den_min) % rats[k].den_step;
904 if (r != 0)
905 den -= r;
906 }
907 diff = num - q * den;
908 if (diff < 0)
909 diff = -diff;
910 if (best_num == 0 ||
911 diff * best_den < best_diff * den) {
912 best_diff = diff;
913 best_den = den;
914 best_num = num;
915 }
916 }
917 if (best_den == 0) {
918 i->empty = 1;
919 return -EINVAL;
920 }
921 t.min = div_down(best_num, best_den);
922 t.openmin = !!(best_num % best_den);
923
924 result_num = best_num;
925 result_diff = best_diff;
926 result_den = best_den;
927 best_num = best_den = best_diff = 0;
928 for (k = 0; k < rats_count; ++k) {
929 unsigned int num = rats[k].num;
930 unsigned int den;
931 unsigned int q = i->max;
932 int diff;
933 if (q == 0) {
934 i->empty = 1;
935 return -EINVAL;
936 }
937 den = div_down(num, q);
938 if (den > rats[k].den_max)
939 continue;
940 if (den < rats[k].den_min)
941 den = rats[k].den_min;
942 else {
943 unsigned int r;
944 r = (den - rats[k].den_min) % rats[k].den_step;
945 if (r != 0)
946 den += rats[k].den_step - r;
947 }
948 diff = q * den - num;
949 if (diff < 0)
950 diff = -diff;
951 if (best_num == 0 ||
952 diff * best_den < best_diff * den) {
953 best_diff = diff;
954 best_den = den;
955 best_num = num;
956 }
957 }
958 if (best_den == 0) {
959 i->empty = 1;
960 return -EINVAL;
961 }
962 t.max = div_up(best_num, best_den);
963 t.openmax = !!(best_num % best_den);
964 t.integer = 0;
965 err = snd_interval_refine(i, &t);
966 if (err < 0)
967 return err;
968
969 if (snd_interval_single(i)) {
970 if (best_diff * result_den < result_diff * best_den) {
971 result_num = best_num;
972 result_den = best_den;
973 }
974 if (nump)
975 *nump = result_num;
976 if (denp)
977 *denp = result_den;
978 }
979 return err;
980 }
981
982 EXPORT_SYMBOL(snd_interval_ratnum);
983
984 /**
985 * snd_interval_ratden - refine the interval value
986 * @i: interval to refine
987 * @rats_count: number of struct ratden
988 * @rats: struct ratden array
989 * @nump: pointer to store the resultant numerator
990 * @denp: pointer to store the resultant denominator
991 *
992 * Return: Positive if the value is changed, zero if it's not changed, or a
993 * negative error code.
994 */
995 static int snd_interval_ratden(struct snd_interval *i,
996 unsigned int rats_count, struct snd_ratden *rats,
997 unsigned int *nump, unsigned int *denp)
998 {
999 unsigned int best_num, best_diff, best_den;
1000 unsigned int k;
1001 struct snd_interval t;
1002 int err;
1003
1004 best_num = best_den = best_diff = 0;
1005 for (k = 0; k < rats_count; ++k) {
1006 unsigned int num;
1007 unsigned int den = rats[k].den;
1008 unsigned int q = i->min;
1009 int diff;
1010 num = mul(q, den);
1011 if (num > rats[k].num_max)
1012 continue;
1013 if (num < rats[k].num_min)
1014 num = rats[k].num_max;
1015 else {
1016 unsigned int r;
1017 r = (num - rats[k].num_min) % rats[k].num_step;
1018 if (r != 0)
1019 num += rats[k].num_step - r;
1020 }
1021 diff = num - q * den;
1022 if (best_num == 0 ||
1023 diff * best_den < best_diff * den) {
1024 best_diff = diff;
1025 best_den = den;
1026 best_num = num;
1027 }
1028 }
1029 if (best_den == 0) {
1030 i->empty = 1;
1031 return -EINVAL;
1032 }
1033 t.min = div_down(best_num, best_den);
1034 t.openmin = !!(best_num % best_den);
1035
1036 best_num = best_den = best_diff = 0;
1037 for (k = 0; k < rats_count; ++k) {
1038 unsigned int num;
1039 unsigned int den = rats[k].den;
1040 unsigned int q = i->max;
1041 int diff;
1042 num = mul(q, den);
1043 if (num < rats[k].num_min)
1044 continue;
1045 if (num > rats[k].num_max)
1046 num = rats[k].num_max;
1047 else {
1048 unsigned int r;
1049 r = (num - rats[k].num_min) % rats[k].num_step;
1050 if (r != 0)
1051 num -= r;
1052 }
1053 diff = q * den - num;
1054 if (best_num == 0 ||
1055 diff * best_den < best_diff * den) {
1056 best_diff = diff;
1057 best_den = den;
1058 best_num = num;
1059 }
1060 }
1061 if (best_den == 0) {
1062 i->empty = 1;
1063 return -EINVAL;
1064 }
1065 t.max = div_up(best_num, best_den);
1066 t.openmax = !!(best_num % best_den);
1067 t.integer = 0;
1068 err = snd_interval_refine(i, &t);
1069 if (err < 0)
1070 return err;
1071
1072 if (snd_interval_single(i)) {
1073 if (nump)
1074 *nump = best_num;
1075 if (denp)
1076 *denp = best_den;
1077 }
1078 return err;
1079 }
1080
1081 /**
1082 * snd_interval_list - refine the interval value from the list
1083 * @i: the interval value to refine
1084 * @count: the number of elements in the list
1085 * @list: the value list
1086 * @mask: the bit-mask to evaluate
1087 *
1088 * Refines the interval value from the list.
1089 * When mask is non-zero, only the elements corresponding to bit 1 are
1090 * evaluated.
1091 *
1092 * Return: Positive if the value is changed, zero if it's not changed, or a
1093 * negative error code.
1094 */
1095 int snd_interval_list(struct snd_interval *i, unsigned int count,
1096 const unsigned int *list, unsigned int mask)
1097 {
1098 unsigned int k;
1099 struct snd_interval list_range;
1100
1101 if (!count) {
1102 i->empty = 1;
1103 return -EINVAL;
1104 }
1105 snd_interval_any(&list_range);
1106 list_range.min = UINT_MAX;
1107 list_range.max = 0;
1108 for (k = 0; k < count; k++) {
1109 if (mask && !(mask & (1 << k)))
1110 continue;
1111 if (!snd_interval_test(i, list[k]))
1112 continue;
1113 list_range.min = min(list_range.min, list[k]);
1114 list_range.max = max(list_range.max, list[k]);
1115 }
1116 return snd_interval_refine(i, &list_range);
1117 }
1118
1119 EXPORT_SYMBOL(snd_interval_list);
1120
1121 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1122 {
1123 unsigned int n;
1124 int changed = 0;
1125 n = (i->min - min) % step;
1126 if (n != 0 || i->openmin) {
1127 i->min += step - n;
1128 changed = 1;
1129 }
1130 n = (i->max - min) % step;
1131 if (n != 0 || i->openmax) {
1132 i->max -= n;
1133 changed = 1;
1134 }
1135 if (snd_interval_checkempty(i)) {
1136 i->empty = 1;
1137 return -EINVAL;
1138 }
1139 return changed;
1140 }
1141
1142 /* Info constraints helpers */
1143
1144 /**
1145 * snd_pcm_hw_rule_add - add the hw-constraint rule
1146 * @runtime: the pcm runtime instance
1147 * @cond: condition bits
1148 * @var: the variable to evaluate
1149 * @func: the evaluation function
1150 * @private: the private data pointer passed to function
1151 * @dep: the dependent variables
1152 *
1153 * Return: Zero if successful, or a negative error code on failure.
1154 */
1155 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1156 int var,
1157 snd_pcm_hw_rule_func_t func, void *private,
1158 int dep, ...)
1159 {
1160 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1161 struct snd_pcm_hw_rule *c;
1162 unsigned int k;
1163 va_list args;
1164 va_start(args, dep);
1165 if (constrs->rules_num >= constrs->rules_all) {
1166 struct snd_pcm_hw_rule *new;
1167 unsigned int new_rules = constrs->rules_all + 16;
1168 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1169 if (!new) {
1170 va_end(args);
1171 return -ENOMEM;
1172 }
1173 if (constrs->rules) {
1174 memcpy(new, constrs->rules,
1175 constrs->rules_num * sizeof(*c));
1176 kfree(constrs->rules);
1177 }
1178 constrs->rules = new;
1179 constrs->rules_all = new_rules;
1180 }
1181 c = &constrs->rules[constrs->rules_num];
1182 c->cond = cond;
1183 c->func = func;
1184 c->var = var;
1185 c->private = private;
1186 k = 0;
1187 while (1) {
1188 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1189 va_end(args);
1190 return -EINVAL;
1191 }
1192 c->deps[k++] = dep;
1193 if (dep < 0)
1194 break;
1195 dep = va_arg(args, int);
1196 }
1197 constrs->rules_num++;
1198 va_end(args);
1199 return 0;
1200 }
1201
1202 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1203
1204 /**
1205 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1206 * @runtime: PCM runtime instance
1207 * @var: hw_params variable to apply the mask
1208 * @mask: the bitmap mask
1209 *
1210 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1211 *
1212 * Return: Zero if successful, or a negative error code on failure.
1213 */
1214 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1215 u_int32_t mask)
1216 {
1217 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1218 struct snd_mask *maskp = constrs_mask(constrs, var);
1219 *maskp->bits &= mask;
1220 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1221 if (*maskp->bits == 0)
1222 return -EINVAL;
1223 return 0;
1224 }
1225
1226 /**
1227 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1228 * @runtime: PCM runtime instance
1229 * @var: hw_params variable to apply the mask
1230 * @mask: the 64bit bitmap mask
1231 *
1232 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1233 *
1234 * Return: Zero if successful, or a negative error code on failure.
1235 */
1236 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1237 u_int64_t mask)
1238 {
1239 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1240 struct snd_mask *maskp = constrs_mask(constrs, var);
1241 maskp->bits[0] &= (u_int32_t)mask;
1242 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1243 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1244 if (! maskp->bits[0] && ! maskp->bits[1])
1245 return -EINVAL;
1246 return 0;
1247 }
1248
1249 /**
1250 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1251 * @runtime: PCM runtime instance
1252 * @var: hw_params variable to apply the integer constraint
1253 *
1254 * Apply the constraint of integer to an interval parameter.
1255 *
1256 * Return: Positive if the value is changed, zero if it's not changed, or a
1257 * negative error code.
1258 */
1259 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1260 {
1261 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1262 return snd_interval_setinteger(constrs_interval(constrs, var));
1263 }
1264
1265 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1266
1267 /**
1268 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1269 * @runtime: PCM runtime instance
1270 * @var: hw_params variable to apply the range
1271 * @min: the minimal value
1272 * @max: the maximal value
1273 *
1274 * Apply the min/max range constraint to an interval parameter.
1275 *
1276 * Return: Positive if the value is changed, zero if it's not changed, or a
1277 * negative error code.
1278 */
1279 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1280 unsigned int min, unsigned int max)
1281 {
1282 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1283 struct snd_interval t;
1284 t.min = min;
1285 t.max = max;
1286 t.openmin = t.openmax = 0;
1287 t.integer = 0;
1288 return snd_interval_refine(constrs_interval(constrs, var), &t);
1289 }
1290
1291 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1292
1293 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1294 struct snd_pcm_hw_rule *rule)
1295 {
1296 struct snd_pcm_hw_constraint_list *list = rule->private;
1297 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1298 }
1299
1300
1301 /**
1302 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1303 * @runtime: PCM runtime instance
1304 * @cond: condition bits
1305 * @var: hw_params variable to apply the list constraint
1306 * @l: list
1307 *
1308 * Apply the list of constraints to an interval parameter.
1309 *
1310 * Return: Zero if successful, or a negative error code on failure.
1311 */
1312 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1313 unsigned int cond,
1314 snd_pcm_hw_param_t var,
1315 const struct snd_pcm_hw_constraint_list *l)
1316 {
1317 return snd_pcm_hw_rule_add(runtime, cond, var,
1318 snd_pcm_hw_rule_list, (void *)l,
1319 var, -1);
1320 }
1321
1322 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1323
1324 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1325 struct snd_pcm_hw_rule *rule)
1326 {
1327 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1328 unsigned int num = 0, den = 0;
1329 int err;
1330 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1331 r->nrats, r->rats, &num, &den);
1332 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1333 params->rate_num = num;
1334 params->rate_den = den;
1335 }
1336 return err;
1337 }
1338
1339 /**
1340 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1341 * @runtime: PCM runtime instance
1342 * @cond: condition bits
1343 * @var: hw_params variable to apply the ratnums constraint
1344 * @r: struct snd_ratnums constriants
1345 *
1346 * Return: Zero if successful, or a negative error code on failure.
1347 */
1348 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1349 unsigned int cond,
1350 snd_pcm_hw_param_t var,
1351 struct snd_pcm_hw_constraint_ratnums *r)
1352 {
1353 return snd_pcm_hw_rule_add(runtime, cond, var,
1354 snd_pcm_hw_rule_ratnums, r,
1355 var, -1);
1356 }
1357
1358 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1359
1360 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1361 struct snd_pcm_hw_rule *rule)
1362 {
1363 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1364 unsigned int num = 0, den = 0;
1365 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1366 r->nrats, r->rats, &num, &den);
1367 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1368 params->rate_num = num;
1369 params->rate_den = den;
1370 }
1371 return err;
1372 }
1373
1374 /**
1375 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1376 * @runtime: PCM runtime instance
1377 * @cond: condition bits
1378 * @var: hw_params variable to apply the ratdens constraint
1379 * @r: struct snd_ratdens constriants
1380 *
1381 * Return: Zero if successful, or a negative error code on failure.
1382 */
1383 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1384 unsigned int cond,
1385 snd_pcm_hw_param_t var,
1386 struct snd_pcm_hw_constraint_ratdens *r)
1387 {
1388 return snd_pcm_hw_rule_add(runtime, cond, var,
1389 snd_pcm_hw_rule_ratdens, r,
1390 var, -1);
1391 }
1392
1393 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1394
1395 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1396 struct snd_pcm_hw_rule *rule)
1397 {
1398 unsigned int l = (unsigned long) rule->private;
1399 int width = l & 0xffff;
1400 unsigned int msbits = l >> 16;
1401 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1402 if (snd_interval_single(i) && snd_interval_value(i) == width)
1403 params->msbits = msbits;
1404 return 0;
1405 }
1406
1407 /**
1408 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1409 * @runtime: PCM runtime instance
1410 * @cond: condition bits
1411 * @width: sample bits width
1412 * @msbits: msbits width
1413 *
1414 * Return: Zero if successful, or a negative error code on failure.
1415 */
1416 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1417 unsigned int cond,
1418 unsigned int width,
1419 unsigned int msbits)
1420 {
1421 unsigned long l = (msbits << 16) | width;
1422 return snd_pcm_hw_rule_add(runtime, cond, -1,
1423 snd_pcm_hw_rule_msbits,
1424 (void*) l,
1425 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1426 }
1427
1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1429
1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1431 struct snd_pcm_hw_rule *rule)
1432 {
1433 unsigned long step = (unsigned long) rule->private;
1434 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1435 }
1436
1437 /**
1438 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1439 * @runtime: PCM runtime instance
1440 * @cond: condition bits
1441 * @var: hw_params variable to apply the step constraint
1442 * @step: step size
1443 *
1444 * Return: Zero if successful, or a negative error code on failure.
1445 */
1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1447 unsigned int cond,
1448 snd_pcm_hw_param_t var,
1449 unsigned long step)
1450 {
1451 return snd_pcm_hw_rule_add(runtime, cond, var,
1452 snd_pcm_hw_rule_step, (void *) step,
1453 var, -1);
1454 }
1455
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1457
1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1459 {
1460 static unsigned int pow2_sizes[] = {
1461 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1462 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1463 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1464 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1465 };
1466 return snd_interval_list(hw_param_interval(params, rule->var),
1467 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1468 }
1469
1470 /**
1471 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1472 * @runtime: PCM runtime instance
1473 * @cond: condition bits
1474 * @var: hw_params variable to apply the power-of-2 constraint
1475 *
1476 * Return: Zero if successful, or a negative error code on failure.
1477 */
1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1479 unsigned int cond,
1480 snd_pcm_hw_param_t var)
1481 {
1482 return snd_pcm_hw_rule_add(runtime, cond, var,
1483 snd_pcm_hw_rule_pow2, NULL,
1484 var, -1);
1485 }
1486
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490 struct snd_pcm_hw_rule *rule)
1491 {
1492 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493 struct snd_interval *rate;
1494
1495 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496 return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498
1499 /**
1500 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501 * @runtime: PCM runtime instance
1502 * @base_rate: the rate at which the hardware does not resample
1503 *
1504 * Return: Zero if successful, or a negative error code on failure.
1505 */
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507 unsigned int base_rate)
1508 {
1509 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510 SNDRV_PCM_HW_PARAM_RATE,
1511 snd_pcm_hw_rule_noresample_func,
1512 (void *)(uintptr_t)base_rate,
1513 SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518 snd_pcm_hw_param_t var)
1519 {
1520 if (hw_is_mask(var)) {
1521 snd_mask_any(hw_param_mask(params, var));
1522 params->cmask |= 1 << var;
1523 params->rmask |= 1 << var;
1524 return;
1525 }
1526 if (hw_is_interval(var)) {
1527 snd_interval_any(hw_param_interval(params, var));
1528 params->cmask |= 1 << var;
1529 params->rmask |= 1 << var;
1530 return;
1531 }
1532 snd_BUG();
1533 }
1534
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537 unsigned int k;
1538 memset(params, 0, sizeof(*params));
1539 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540 _snd_pcm_hw_param_any(params, k);
1541 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542 _snd_pcm_hw_param_any(params, k);
1543 params->info = ~0U;
1544 }
1545
1546 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1547
1548 /**
1549 * snd_pcm_hw_param_value - return @params field @var value
1550 * @params: the hw_params instance
1551 * @var: parameter to retrieve
1552 * @dir: pointer to the direction (-1,0,1) or %NULL
1553 *
1554 * Return: The value for field @var if it's fixed in configuration space
1555 * defined by @params. -%EINVAL otherwise.
1556 */
1557 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1558 snd_pcm_hw_param_t var, int *dir)
1559 {
1560 if (hw_is_mask(var)) {
1561 const struct snd_mask *mask = hw_param_mask_c(params, var);
1562 if (!snd_mask_single(mask))
1563 return -EINVAL;
1564 if (dir)
1565 *dir = 0;
1566 return snd_mask_value(mask);
1567 }
1568 if (hw_is_interval(var)) {
1569 const struct snd_interval *i = hw_param_interval_c(params, var);
1570 if (!snd_interval_single(i))
1571 return -EINVAL;
1572 if (dir)
1573 *dir = i->openmin;
1574 return snd_interval_value(i);
1575 }
1576 return -EINVAL;
1577 }
1578
1579 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1580
1581 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1582 snd_pcm_hw_param_t var)
1583 {
1584 if (hw_is_mask(var)) {
1585 snd_mask_none(hw_param_mask(params, var));
1586 params->cmask |= 1 << var;
1587 params->rmask |= 1 << var;
1588 } else if (hw_is_interval(var)) {
1589 snd_interval_none(hw_param_interval(params, var));
1590 params->cmask |= 1 << var;
1591 params->rmask |= 1 << var;
1592 } else {
1593 snd_BUG();
1594 }
1595 }
1596
1597 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1598
1599 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1600 snd_pcm_hw_param_t var)
1601 {
1602 int changed;
1603 if (hw_is_mask(var))
1604 changed = snd_mask_refine_first(hw_param_mask(params, var));
1605 else if (hw_is_interval(var))
1606 changed = snd_interval_refine_first(hw_param_interval(params, var));
1607 else
1608 return -EINVAL;
1609 if (changed) {
1610 params->cmask |= 1 << var;
1611 params->rmask |= 1 << var;
1612 }
1613 return changed;
1614 }
1615
1616
1617 /**
1618 * snd_pcm_hw_param_first - refine config space and return minimum value
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 * @var: parameter to retrieve
1622 * @dir: pointer to the direction (-1,0,1) or %NULL
1623 *
1624 * Inside configuration space defined by @params remove from @var all
1625 * values > minimum. Reduce configuration space accordingly.
1626 *
1627 * Return: The minimum, or a negative error code on failure.
1628 */
1629 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1630 struct snd_pcm_hw_params *params,
1631 snd_pcm_hw_param_t var, int *dir)
1632 {
1633 int changed = _snd_pcm_hw_param_first(params, var);
1634 if (changed < 0)
1635 return changed;
1636 if (params->rmask) {
1637 int err = snd_pcm_hw_refine(pcm, params);
1638 if (snd_BUG_ON(err < 0))
1639 return err;
1640 }
1641 return snd_pcm_hw_param_value(params, var, dir);
1642 }
1643
1644 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1645
1646 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1647 snd_pcm_hw_param_t var)
1648 {
1649 int changed;
1650 if (hw_is_mask(var))
1651 changed = snd_mask_refine_last(hw_param_mask(params, var));
1652 else if (hw_is_interval(var))
1653 changed = snd_interval_refine_last(hw_param_interval(params, var));
1654 else
1655 return -EINVAL;
1656 if (changed) {
1657 params->cmask |= 1 << var;
1658 params->rmask |= 1 << var;
1659 }
1660 return changed;
1661 }
1662
1663
1664 /**
1665 * snd_pcm_hw_param_last - refine config space and return maximum value
1666 * @pcm: PCM instance
1667 * @params: the hw_params instance
1668 * @var: parameter to retrieve
1669 * @dir: pointer to the direction (-1,0,1) or %NULL
1670 *
1671 * Inside configuration space defined by @params remove from @var all
1672 * values < maximum. Reduce configuration space accordingly.
1673 *
1674 * Return: The maximum, or a negative error code on failure.
1675 */
1676 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1677 struct snd_pcm_hw_params *params,
1678 snd_pcm_hw_param_t var, int *dir)
1679 {
1680 int changed = _snd_pcm_hw_param_last(params, var);
1681 if (changed < 0)
1682 return changed;
1683 if (params->rmask) {
1684 int err = snd_pcm_hw_refine(pcm, params);
1685 if (snd_BUG_ON(err < 0))
1686 return err;
1687 }
1688 return snd_pcm_hw_param_value(params, var, dir);
1689 }
1690
1691 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1692
1693 /**
1694 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1695 * @pcm: PCM instance
1696 * @params: the hw_params instance
1697 *
1698 * Choose one configuration from configuration space defined by @params.
1699 * The configuration chosen is that obtained fixing in this order:
1700 * first access, first format, first subformat, min channels,
1701 * min rate, min period time, max buffer size, min tick time
1702 *
1703 * Return: Zero if successful, or a negative error code on failure.
1704 */
1705 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1706 struct snd_pcm_hw_params *params)
1707 {
1708 static int vars[] = {
1709 SNDRV_PCM_HW_PARAM_ACCESS,
1710 SNDRV_PCM_HW_PARAM_FORMAT,
1711 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1712 SNDRV_PCM_HW_PARAM_CHANNELS,
1713 SNDRV_PCM_HW_PARAM_RATE,
1714 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1715 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1716 SNDRV_PCM_HW_PARAM_TICK_TIME,
1717 -1
1718 };
1719 int err, *v;
1720
1721 for (v = vars; *v != -1; v++) {
1722 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1723 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1724 else
1725 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1726 if (snd_BUG_ON(err < 0))
1727 return err;
1728 }
1729 return 0;
1730 }
1731
1732 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1733 void *arg)
1734 {
1735 struct snd_pcm_runtime *runtime = substream->runtime;
1736 unsigned long flags;
1737 snd_pcm_stream_lock_irqsave(substream, flags);
1738 if (snd_pcm_running(substream) &&
1739 snd_pcm_update_hw_ptr(substream) >= 0)
1740 runtime->status->hw_ptr %= runtime->buffer_size;
1741 else {
1742 runtime->status->hw_ptr = 0;
1743 runtime->hw_ptr_wrap = 0;
1744 }
1745 snd_pcm_stream_unlock_irqrestore(substream, flags);
1746 return 0;
1747 }
1748
1749 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1750 void *arg)
1751 {
1752 struct snd_pcm_channel_info *info = arg;
1753 struct snd_pcm_runtime *runtime = substream->runtime;
1754 int width;
1755 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1756 info->offset = -1;
1757 return 0;
1758 }
1759 width = snd_pcm_format_physical_width(runtime->format);
1760 if (width < 0)
1761 return width;
1762 info->offset = 0;
1763 switch (runtime->access) {
1764 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1765 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1766 info->first = info->channel * width;
1767 info->step = runtime->channels * width;
1768 break;
1769 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1770 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1771 {
1772 size_t size = runtime->dma_bytes / runtime->channels;
1773 info->first = info->channel * size * 8;
1774 info->step = width;
1775 break;
1776 }
1777 default:
1778 snd_BUG();
1779 break;
1780 }
1781 return 0;
1782 }
1783
1784 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1785 void *arg)
1786 {
1787 struct snd_pcm_hw_params *params = arg;
1788 snd_pcm_format_t format;
1789 int channels;
1790 ssize_t frame_size;
1791
1792 params->fifo_size = substream->runtime->hw.fifo_size;
1793 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1794 format = params_format(params);
1795 channels = params_channels(params);
1796 frame_size = snd_pcm_format_size(format, channels);
1797 if (frame_size > 0)
1798 params->fifo_size /= (unsigned)frame_size;
1799 }
1800 return 0;
1801 }
1802
1803 /**
1804 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1805 * @substream: the pcm substream instance
1806 * @cmd: ioctl command
1807 * @arg: ioctl argument
1808 *
1809 * Processes the generic ioctl commands for PCM.
1810 * Can be passed as the ioctl callback for PCM ops.
1811 *
1812 * Return: Zero if successful, or a negative error code on failure.
1813 */
1814 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1815 unsigned int cmd, void *arg)
1816 {
1817 switch (cmd) {
1818 case SNDRV_PCM_IOCTL1_INFO:
1819 return 0;
1820 case SNDRV_PCM_IOCTL1_RESET:
1821 return snd_pcm_lib_ioctl_reset(substream, arg);
1822 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1823 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1824 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1825 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1826 }
1827 return -ENXIO;
1828 }
1829
1830 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1831
1832 /**
1833 * snd_pcm_period_elapsed - update the pcm status for the next period
1834 * @substream: the pcm substream instance
1835 *
1836 * This function is called from the interrupt handler when the
1837 * PCM has processed the period size. It will update the current
1838 * pointer, wake up sleepers, etc.
1839 *
1840 * Even if more than one periods have elapsed since the last call, you
1841 * have to call this only once.
1842 */
1843 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1844 {
1845 struct snd_pcm_runtime *runtime;
1846 unsigned long flags;
1847
1848 if (PCM_RUNTIME_CHECK(substream))
1849 return;
1850 runtime = substream->runtime;
1851
1852 if (runtime->transfer_ack_begin)
1853 runtime->transfer_ack_begin(substream);
1854
1855 snd_pcm_stream_lock_irqsave(substream, flags);
1856 if (!snd_pcm_running(substream) ||
1857 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1858 goto _end;
1859
1860 if (substream->timer_running)
1861 snd_timer_interrupt(substream->timer, 1);
1862 _end:
1863 snd_pcm_stream_unlock_irqrestore(substream, flags);
1864 if (runtime->transfer_ack_end)
1865 runtime->transfer_ack_end(substream);
1866 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1867 }
1868
1869 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1870
1871 /*
1872 * Wait until avail_min data becomes available
1873 * Returns a negative error code if any error occurs during operation.
1874 * The available space is stored on availp. When err = 0 and avail = 0
1875 * on the capture stream, it indicates the stream is in DRAINING state.
1876 */
1877 static int wait_for_avail(struct snd_pcm_substream *substream,
1878 snd_pcm_uframes_t *availp)
1879 {
1880 struct snd_pcm_runtime *runtime = substream->runtime;
1881 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1882 wait_queue_t wait;
1883 int err = 0;
1884 snd_pcm_uframes_t avail = 0;
1885 long wait_time, tout;
1886
1887 init_waitqueue_entry(&wait, current);
1888 set_current_state(TASK_INTERRUPTIBLE);
1889 add_wait_queue(&runtime->tsleep, &wait);
1890
1891 if (runtime->no_period_wakeup)
1892 wait_time = MAX_SCHEDULE_TIMEOUT;
1893 else {
1894 wait_time = 3/*10*/;//Modified by MTK
1895 if (runtime->rate) {
1896 long t = runtime->period_size * 2 / runtime->rate;
1897 wait_time = max(t, wait_time);
1898 }
1899 wait_time = msecs_to_jiffies(wait_time * 1000);
1900 }
1901
1902 for (;;) {
1903 if (signal_pending(current)) {
1904 err = -ERESTARTSYS;
1905 break;
1906 }
1907
1908 /*
1909 * We need to check if space became available already
1910 * (and thus the wakeup happened already) first to close
1911 * the race of space already having become available.
1912 * This check must happen after been added to the waitqueue
1913 * and having current state be INTERRUPTIBLE.
1914 */
1915 if (is_playback)
1916 avail = snd_pcm_playback_avail(runtime);
1917 else
1918 avail = snd_pcm_capture_avail(runtime);
1919 if (avail >= runtime->twake)
1920 break;
1921 snd_pcm_stream_unlock_irq(substream);
1922
1923 tout = schedule_timeout(wait_time);
1924
1925 snd_pcm_stream_lock_irq(substream);
1926 set_current_state(TASK_INTERRUPTIBLE);
1927 switch (runtime->status->state) {
1928 case SNDRV_PCM_STATE_SUSPENDED:
1929 err = -ESTRPIPE;
1930 goto _endloop;
1931 case SNDRV_PCM_STATE_XRUN:
1932 err = -EPIPE;
1933 goto _endloop;
1934 case SNDRV_PCM_STATE_DRAINING:
1935 if (is_playback)
1936 err = -EPIPE;
1937 else
1938 avail = 0; /* indicate draining */
1939 goto _endloop;
1940 case SNDRV_PCM_STATE_OPEN:
1941 case SNDRV_PCM_STATE_SETUP:
1942 case SNDRV_PCM_STATE_DISCONNECTED:
1943 err = -EBADFD;
1944 goto _endloop;
1945 case SNDRV_PCM_STATE_PAUSED:
1946 continue;
1947 }
1948 if (!tout) {
1949 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1950 is_playback ? "playback" : "capture");
1951 err = -EIO;
1952 break;
1953 }
1954 }
1955 _endloop:
1956 set_current_state(TASK_RUNNING);
1957 remove_wait_queue(&runtime->tsleep, &wait);
1958 *availp = avail;
1959 return err;
1960 }
1961
1962 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1963 unsigned int hwoff,
1964 unsigned long data, unsigned int off,
1965 snd_pcm_uframes_t frames)
1966 {
1967 struct snd_pcm_runtime *runtime = substream->runtime;
1968 int err;
1969 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1970 if (substream->ops->copy) {
1971 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1972 return err;
1973 } else {
1974 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1975 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1976 return -EFAULT;
1977 }
1978 return 0;
1979 }
1980
1981 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1982 unsigned long data, unsigned int off,
1983 snd_pcm_uframes_t size);
1984
1985 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1986 unsigned long data,
1987 snd_pcm_uframes_t size,
1988 int nonblock,
1989 transfer_f transfer)
1990 {
1991 struct snd_pcm_runtime *runtime = substream->runtime;
1992 snd_pcm_uframes_t xfer = 0;
1993 snd_pcm_uframes_t offset = 0;
1994 snd_pcm_uframes_t avail;
1995 int err = 0;
1996
1997 if (size == 0)
1998 return 0;
1999
2000 snd_pcm_stream_lock_irq(substream);
2001 switch (runtime->status->state) {
2002 case SNDRV_PCM_STATE_PREPARED:
2003 case SNDRV_PCM_STATE_RUNNING:
2004 case SNDRV_PCM_STATE_PAUSED:
2005 break;
2006 case SNDRV_PCM_STATE_XRUN:
2007 err = -EPIPE;
2008 goto _end_unlock;
2009 case SNDRV_PCM_STATE_SUSPENDED:
2010 err = -ESTRPIPE;
2011 goto _end_unlock;
2012 default:
2013 err = -EBADFD;
2014 goto _end_unlock;
2015 }
2016
2017 runtime->twake = runtime->control->avail_min ? : 1;
2018 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2019 snd_pcm_update_hw_ptr(substream);
2020 avail = snd_pcm_playback_avail(runtime);
2021 while (size > 0) {
2022 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2023 snd_pcm_uframes_t cont;
2024 if (!avail) {
2025 if (nonblock) {
2026 err = -EAGAIN;
2027 goto _end_unlock;
2028 }
2029 runtime->twake = min_t(snd_pcm_uframes_t, size,
2030 runtime->control->avail_min ? : 1);
2031 err = wait_for_avail(substream, &avail);
2032 if (err < 0)
2033 goto _end_unlock;
2034 }
2035 frames = size > avail ? avail : size;
2036 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2037 if (frames > cont)
2038 frames = cont;
2039 if (snd_BUG_ON(!frames)) {
2040 runtime->twake = 0;
2041 snd_pcm_stream_unlock_irq(substream);
2042 return -EINVAL;
2043 }
2044 appl_ptr = runtime->control->appl_ptr;
2045 appl_ofs = appl_ptr % runtime->buffer_size;
2046 snd_pcm_stream_unlock_irq(substream);
2047 err = transfer(substream, appl_ofs, data, offset, frames);
2048 snd_pcm_stream_lock_irq(substream);
2049 if (err < 0)
2050 goto _end_unlock;
2051 switch (runtime->status->state) {
2052 case SNDRV_PCM_STATE_XRUN:
2053 err = -EPIPE;
2054 goto _end_unlock;
2055 case SNDRV_PCM_STATE_SUSPENDED:
2056 err = -ESTRPIPE;
2057 goto _end_unlock;
2058 default:
2059 break;
2060 }
2061 appl_ptr += frames;
2062 if (appl_ptr >= runtime->boundary)
2063 appl_ptr -= runtime->boundary;
2064 runtime->control->appl_ptr = appl_ptr;
2065 if (substream->ops->ack)
2066 substream->ops->ack(substream);
2067
2068 offset += frames;
2069 size -= frames;
2070 xfer += frames;
2071 avail -= frames;
2072 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2073 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2074 err = snd_pcm_start(substream);
2075 if (err < 0)
2076 goto _end_unlock;
2077 }
2078 }
2079 _end_unlock:
2080 runtime->twake = 0;
2081 if (xfer > 0 && err >= 0)
2082 snd_pcm_update_state(substream, runtime);
2083 snd_pcm_stream_unlock_irq(substream);
2084 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2085 }
2086
2087 /* sanity-check for read/write methods */
2088 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2089 {
2090 struct snd_pcm_runtime *runtime;
2091 if (PCM_RUNTIME_CHECK(substream))
2092 return -ENXIO;
2093 runtime = substream->runtime;
2094 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2095 return -EINVAL;
2096 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2097 return -EBADFD;
2098 return 0;
2099 }
2100
2101 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2102 {
2103 struct snd_pcm_runtime *runtime;
2104 int nonblock;
2105 int err;
2106
2107 err = pcm_sanity_check(substream);
2108 if (err < 0)
2109 return err;
2110 runtime = substream->runtime;
2111 nonblock = !!(substream->f_flags & O_NONBLOCK);
2112
2113 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2114 runtime->channels > 1)
2115 return -EINVAL;
2116 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2117 snd_pcm_lib_write_transfer);
2118 }
2119
2120 EXPORT_SYMBOL(snd_pcm_lib_write);
2121
2122 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2123 unsigned int hwoff,
2124 unsigned long data, unsigned int off,
2125 snd_pcm_uframes_t frames)
2126 {
2127 struct snd_pcm_runtime *runtime = substream->runtime;
2128 int err;
2129 void __user **bufs = (void __user **)data;
2130 int channels = runtime->channels;
2131 int c;
2132 if (substream->ops->copy) {
2133 if (snd_BUG_ON(!substream->ops->silence))
2134 return -EINVAL;
2135 for (c = 0; c < channels; ++c, ++bufs) {
2136 if (*bufs == NULL) {
2137 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2138 return err;
2139 } else {
2140 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2141 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2142 return err;
2143 }
2144 }
2145 } else {
2146 /* default transfer behaviour */
2147 size_t dma_csize = runtime->dma_bytes / channels;
2148 for (c = 0; c < channels; ++c, ++bufs) {
2149 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2150 if (*bufs == NULL) {
2151 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2152 } else {
2153 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2154 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2155 return -EFAULT;
2156 }
2157 }
2158 }
2159 return 0;
2160 }
2161
2162 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2163 void __user **bufs,
2164 snd_pcm_uframes_t frames)
2165 {
2166 struct snd_pcm_runtime *runtime;
2167 int nonblock;
2168 int err;
2169
2170 err = pcm_sanity_check(substream);
2171 if (err < 0)
2172 return err;
2173 runtime = substream->runtime;
2174 nonblock = !!(substream->f_flags & O_NONBLOCK);
2175
2176 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2177 return -EINVAL;
2178 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2179 nonblock, snd_pcm_lib_writev_transfer);
2180 }
2181
2182 EXPORT_SYMBOL(snd_pcm_lib_writev);
2183
2184 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2185 unsigned int hwoff,
2186 unsigned long data, unsigned int off,
2187 snd_pcm_uframes_t frames)
2188 {
2189 struct snd_pcm_runtime *runtime = substream->runtime;
2190 int err;
2191 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2192 if (substream->ops->copy) {
2193 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2194 return err;
2195 } else {
2196 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2197 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2198 return -EFAULT;
2199 }
2200 return 0;
2201 }
2202
2203 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2204 unsigned long data,
2205 snd_pcm_uframes_t size,
2206 int nonblock,
2207 transfer_f transfer)
2208 {
2209 struct snd_pcm_runtime *runtime = substream->runtime;
2210 snd_pcm_uframes_t xfer = 0;
2211 snd_pcm_uframes_t offset = 0;
2212 snd_pcm_uframes_t avail;
2213 int err = 0;
2214
2215 if (size == 0)
2216 return 0;
2217
2218 snd_pcm_stream_lock_irq(substream);
2219 switch (runtime->status->state) {
2220 case SNDRV_PCM_STATE_PREPARED:
2221 if (size >= runtime->start_threshold) {
2222 err = snd_pcm_start(substream);
2223 if (err < 0)
2224 goto _end_unlock;
2225 }
2226 break;
2227 case SNDRV_PCM_STATE_DRAINING:
2228 case SNDRV_PCM_STATE_RUNNING:
2229 case SNDRV_PCM_STATE_PAUSED:
2230 break;
2231 case SNDRV_PCM_STATE_XRUN:
2232 err = -EPIPE;
2233 goto _end_unlock;
2234 case SNDRV_PCM_STATE_SUSPENDED:
2235 err = -ESTRPIPE;
2236 goto _end_unlock;
2237 default:
2238 err = -EBADFD;
2239 goto _end_unlock;
2240 }
2241
2242 runtime->twake = runtime->control->avail_min ? : 1;
2243 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2244 snd_pcm_update_hw_ptr(substream);
2245 avail = snd_pcm_capture_avail(runtime);
2246 while (size > 0) {
2247 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2248 snd_pcm_uframes_t cont;
2249 if (!avail) {
2250 if (runtime->status->state ==
2251 SNDRV_PCM_STATE_DRAINING) {
2252 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2253 goto _end_unlock;
2254 }
2255 if (nonblock) {
2256 err = -EAGAIN;
2257 goto _end_unlock;
2258 }
2259 runtime->twake = min_t(snd_pcm_uframes_t, size,
2260 runtime->control->avail_min ? : 1);
2261 err = wait_for_avail(substream, &avail);
2262 if (err < 0)
2263 goto _end_unlock;
2264 if (!avail)
2265 continue; /* draining */
2266 }
2267 frames = size > avail ? avail : size;
2268 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2269 if (frames > cont)
2270 frames = cont;
2271 if (snd_BUG_ON(!frames)) {
2272 runtime->twake = 0;
2273 snd_pcm_stream_unlock_irq(substream);
2274 return -EINVAL;
2275 }
2276 appl_ptr = runtime->control->appl_ptr;
2277 appl_ofs = appl_ptr % runtime->buffer_size;
2278 snd_pcm_stream_unlock_irq(substream);
2279 err = transfer(substream, appl_ofs, data, offset, frames);
2280 snd_pcm_stream_lock_irq(substream);
2281 if (err < 0)
2282 goto _end_unlock;
2283 switch (runtime->status->state) {
2284 case SNDRV_PCM_STATE_XRUN:
2285 err = -EPIPE;
2286 goto _end_unlock;
2287 case SNDRV_PCM_STATE_SUSPENDED:
2288 err = -ESTRPIPE;
2289 goto _end_unlock;
2290 default:
2291 break;
2292 }
2293 appl_ptr += frames;
2294 if (appl_ptr >= runtime->boundary)
2295 appl_ptr -= runtime->boundary;
2296 runtime->control->appl_ptr = appl_ptr;
2297 if (substream->ops->ack)
2298 substream->ops->ack(substream);
2299
2300 offset += frames;
2301 size -= frames;
2302 xfer += frames;
2303 avail -= frames;
2304 }
2305 _end_unlock:
2306 runtime->twake = 0;
2307 if (xfer > 0 && err >= 0)
2308 snd_pcm_update_state(substream, runtime);
2309 snd_pcm_stream_unlock_irq(substream);
2310 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2311 }
2312
2313 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2314 {
2315 struct snd_pcm_runtime *runtime;
2316 int nonblock;
2317 int err;
2318
2319 err = pcm_sanity_check(substream);
2320 if (err < 0)
2321 return err;
2322 runtime = substream->runtime;
2323 nonblock = !!(substream->f_flags & O_NONBLOCK);
2324 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2325 return -EINVAL;
2326 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2327 }
2328
2329 EXPORT_SYMBOL(snd_pcm_lib_read);
2330
2331 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2332 unsigned int hwoff,
2333 unsigned long data, unsigned int off,
2334 snd_pcm_uframes_t frames)
2335 {
2336 struct snd_pcm_runtime *runtime = substream->runtime;
2337 int err;
2338 void __user **bufs = (void __user **)data;
2339 int channels = runtime->channels;
2340 int c;
2341 if (substream->ops->copy) {
2342 for (c = 0; c < channels; ++c, ++bufs) {
2343 char __user *buf;
2344 if (*bufs == NULL)
2345 continue;
2346 buf = *bufs + samples_to_bytes(runtime, off);
2347 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2348 return err;
2349 }
2350 } else {
2351 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2352 for (c = 0; c < channels; ++c, ++bufs) {
2353 char *hwbuf;
2354 char __user *buf;
2355 if (*bufs == NULL)
2356 continue;
2357
2358 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2359 buf = *bufs + samples_to_bytes(runtime, off);
2360 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2361 return -EFAULT;
2362 }
2363 }
2364 return 0;
2365 }
2366
2367 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2368 void __user **bufs,
2369 snd_pcm_uframes_t frames)
2370 {
2371 struct snd_pcm_runtime *runtime;
2372 int nonblock;
2373 int err;
2374
2375 err = pcm_sanity_check(substream);
2376 if (err < 0)
2377 return err;
2378 runtime = substream->runtime;
2379 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2380 return -EBADFD;
2381
2382 nonblock = !!(substream->f_flags & O_NONBLOCK);
2383 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2384 return -EINVAL;
2385 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2386 }
2387
2388 EXPORT_SYMBOL(snd_pcm_lib_readv);
2389
2390 /*
2391 * standard channel mapping helpers
2392 */
2393
2394 /* default channel maps for multi-channel playbacks, up to 8 channels */
2395 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2396 { .channels = 1,
2397 .map = { SNDRV_CHMAP_MONO } },
2398 { .channels = 2,
2399 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2400 { .channels = 4,
2401 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2402 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2403 { .channels = 6,
2404 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2405 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2406 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2407 { .channels = 8,
2408 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2409 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2410 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2411 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2412 { }
2413 };
2414 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2415
2416 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2417 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2418 { .channels = 1,
2419 .map = { SNDRV_CHMAP_MONO } },
2420 { .channels = 2,
2421 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2422 { .channels = 4,
2423 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2424 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2425 { .channels = 6,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2428 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2429 { .channels = 8,
2430 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2432 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2433 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2434 { }
2435 };
2436 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2437
2438 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2439 {
2440 if (ch > info->max_channels)
2441 return false;
2442 return !info->channel_mask || (info->channel_mask & (1U << ch));
2443 }
2444
2445 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2446 struct snd_ctl_elem_info *uinfo)
2447 {
2448 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2449
2450 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2451 uinfo->count = 0;
2452 uinfo->count = info->max_channels;
2453 uinfo->value.integer.min = 0;
2454 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2455 return 0;
2456 }
2457
2458 /* get callback for channel map ctl element
2459 * stores the channel position firstly matching with the current channels
2460 */
2461 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2462 struct snd_ctl_elem_value *ucontrol)
2463 {
2464 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2465 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2466 struct snd_pcm_substream *substream;
2467 const struct snd_pcm_chmap_elem *map;
2468
2469 if (snd_BUG_ON(!info->chmap))
2470 return -EINVAL;
2471 substream = snd_pcm_chmap_substream(info, idx);
2472 if (!substream)
2473 return -ENODEV;
2474 memset(ucontrol->value.integer.value, 0,
2475 sizeof(ucontrol->value.integer.value));
2476 if (!substream->runtime)
2477 return 0; /* no channels set */
2478 for (map = info->chmap; map->channels; map++) {
2479 int i;
2480 if (map->channels == substream->runtime->channels &&
2481 valid_chmap_channels(info, map->channels)) {
2482 for (i = 0; i < map->channels; i++)
2483 ucontrol->value.integer.value[i] = map->map[i];
2484 return 0;
2485 }
2486 }
2487 return -EINVAL;
2488 }
2489
2490 /* tlv callback for channel map ctl element
2491 * expands the pre-defined channel maps in a form of TLV
2492 */
2493 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2494 unsigned int size, unsigned int __user *tlv)
2495 {
2496 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2497 const struct snd_pcm_chmap_elem *map;
2498 unsigned int __user *dst;
2499 int c, count = 0;
2500
2501 if (snd_BUG_ON(!info->chmap))
2502 return -EINVAL;
2503 if (size < 8)
2504 return -ENOMEM;
2505 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2506 return -EFAULT;
2507 size -= 8;
2508 dst = tlv + 2;
2509 for (map = info->chmap; map->channels; map++) {
2510 int chs_bytes = map->channels * 4;
2511 if (!valid_chmap_channels(info, map->channels))
2512 continue;
2513 if (size < 8)
2514 return -ENOMEM;
2515 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2516 put_user(chs_bytes, dst + 1))
2517 return -EFAULT;
2518 dst += 2;
2519 size -= 8;
2520 count += 8;
2521 if (size < chs_bytes)
2522 return -ENOMEM;
2523 size -= chs_bytes;
2524 count += chs_bytes;
2525 for (c = 0; c < map->channels; c++) {
2526 if (put_user(map->map[c], dst))
2527 return -EFAULT;
2528 dst++;
2529 }
2530 }
2531 if (put_user(count, tlv + 1))
2532 return -EFAULT;
2533 return 0;
2534 }
2535
2536 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2537 {
2538 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2539 info->pcm->streams[info->stream].chmap_kctl = NULL;
2540 kfree(info);
2541 }
2542
2543 /**
2544 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2545 * @pcm: the assigned PCM instance
2546 * @stream: stream direction
2547 * @chmap: channel map elements (for query)
2548 * @max_channels: the max number of channels for the stream
2549 * @private_value: the value passed to each kcontrol's private_value field
2550 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2551 *
2552 * Create channel-mapping control elements assigned to the given PCM stream(s).
2553 * Return: Zero if successful, or a negative error value.
2554 */
2555 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2556 const struct snd_pcm_chmap_elem *chmap,
2557 int max_channels,
2558 unsigned long private_value,
2559 struct snd_pcm_chmap **info_ret)
2560 {
2561 struct snd_pcm_chmap *info;
2562 struct snd_kcontrol_new knew = {
2563 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2564 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2565 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2566 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2567 .info = pcm_chmap_ctl_info,
2568 .get = pcm_chmap_ctl_get,
2569 .tlv.c = pcm_chmap_ctl_tlv,
2570 };
2571 int err;
2572
2573 info = kzalloc(sizeof(*info), GFP_KERNEL);
2574 if (!info)
2575 return -ENOMEM;
2576 info->pcm = pcm;
2577 info->stream = stream;
2578 info->chmap = chmap;
2579 info->max_channels = max_channels;
2580 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2581 knew.name = "Playback Channel Map";
2582 else
2583 knew.name = "Capture Channel Map";
2584 knew.device = pcm->device;
2585 knew.count = pcm->streams[stream].substream_count;
2586 knew.private_value = private_value;
2587 info->kctl = snd_ctl_new1(&knew, info);
2588 if (!info->kctl) {
2589 kfree(info);
2590 return -ENOMEM;
2591 }
2592 info->kctl->private_free = pcm_chmap_ctl_private_free;
2593 err = snd_ctl_add(pcm->card, info->kctl);
2594 if (err < 0)
2595 return err;
2596 pcm->streams[stream].chmap_kctl = info->kctl;
2597 if (info_ret)
2598 *info_ret = info;
2599 return 0;
2600 }
2601 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);