disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
33
34 #ifdef CONFIG_ANDROID_PARANOID_NETWORK
35 #include <linux/android_aid.h>
36 #endif
37
38 /*
39 * If a non-root user executes a setuid-root binary in
40 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
41 * However if fE is also set, then the intent is for only
42 * the file capabilities to be applied, and the setuid-root
43 * bit is left on either to change the uid (plausible) or
44 * to get full privilege on a kernel without file capabilities
45 * support. So in that case we do not raise capabilities.
46 *
47 * Warn if that happens, once per boot.
48 */
49 static void warn_setuid_and_fcaps_mixed(const char *fname)
50 {
51 static int warned;
52 if (!warned) {
53 printk(KERN_INFO "warning: `%s' has both setuid-root and"
54 " effective capabilities. Therefore not raising all"
55 " capabilities.\n", fname);
56 warned = 1;
57 }
58 }
59
60 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
61 {
62 return 0;
63 }
64
65 /**
66 * cap_capable - Determine whether a task has a particular effective capability
67 * @cred: The credentials to use
68 * @ns: The user namespace in which we need the capability
69 * @cap: The capability to check for
70 * @audit: Whether to write an audit message or not
71 *
72 * Determine whether the nominated task has the specified capability amongst
73 * its effective set, returning 0 if it does, -ve if it does not.
74 *
75 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
76 * and has_capability() functions. That is, it has the reverse semantics:
77 * cap_has_capability() returns 0 when a task has a capability, but the
78 * kernel's capable() and has_capability() returns 1 for this case.
79 */
80 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
81 int cap, int audit)
82 {
83 struct user_namespace *ns = targ_ns;
84
85 #ifdef CONFIG_ANDROID_PARANOID_NETWORK
86 if (cap == CAP_NET_RAW && in_egroup_p(AID_NET_RAW))
87 return 0;
88 if (cap == CAP_NET_ADMIN && in_egroup_p(AID_NET_ADMIN))
89 return 0;
90 #endif
91
92 /* See if cred has the capability in the target user namespace
93 * by examining the target user namespace and all of the target
94 * user namespace's parents.
95 */
96 for (;;) {
97 /* Do we have the necessary capabilities? */
98 if (ns == cred->user_ns)
99 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
100
101 /* Have we tried all of the parent namespaces? */
102 if (ns == &init_user_ns)
103 return -EPERM;
104
105 /*
106 * The owner of the user namespace in the parent of the
107 * user namespace has all caps.
108 */
109 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
110 return 0;
111
112 /*
113 * If you have a capability in a parent user ns, then you have
114 * it over all children user namespaces as well.
115 */
116 ns = ns->parent;
117 }
118
119 /* We never get here */
120 }
121
122 /**
123 * cap_settime - Determine whether the current process may set the system clock
124 * @ts: The time to set
125 * @tz: The timezone to set
126 *
127 * Determine whether the current process may set the system clock and timezone
128 * information, returning 0 if permission granted, -ve if denied.
129 */
130 int cap_settime(const struct timespec *ts, const struct timezone *tz)
131 {
132 if (!capable(CAP_SYS_TIME))
133 return -EPERM;
134 return 0;
135 }
136
137 /**
138 * cap_ptrace_access_check - Determine whether the current process may access
139 * another
140 * @child: The process to be accessed
141 * @mode: The mode of attachment.
142 *
143 * If we are in the same or an ancestor user_ns and have all the target
144 * task's capabilities, then ptrace access is allowed.
145 * If we have the ptrace capability to the target user_ns, then ptrace
146 * access is allowed.
147 * Else denied.
148 *
149 * Determine whether a process may access another, returning 0 if permission
150 * granted, -ve if denied.
151 */
152 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
153 {
154 int ret = 0;
155 const struct cred *cred, *child_cred;
156
157 rcu_read_lock();
158 cred = current_cred();
159 child_cred = __task_cred(child);
160 if (cred->user_ns == child_cred->user_ns &&
161 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
162 goto out;
163 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
164 goto out;
165 ret = -EPERM;
166 out:
167 rcu_read_unlock();
168 return ret;
169 }
170
171 /**
172 * cap_ptrace_traceme - Determine whether another process may trace the current
173 * @parent: The task proposed to be the tracer
174 *
175 * If parent is in the same or an ancestor user_ns and has all current's
176 * capabilities, then ptrace access is allowed.
177 * If parent has the ptrace capability to current's user_ns, then ptrace
178 * access is allowed.
179 * Else denied.
180 *
181 * Determine whether the nominated task is permitted to trace the current
182 * process, returning 0 if permission is granted, -ve if denied.
183 */
184 int cap_ptrace_traceme(struct task_struct *parent)
185 {
186 int ret = 0;
187 const struct cred *cred, *child_cred;
188
189 rcu_read_lock();
190 cred = __task_cred(parent);
191 child_cred = current_cred();
192 if (cred->user_ns == child_cred->user_ns &&
193 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
194 goto out;
195 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
196 goto out;
197 ret = -EPERM;
198 out:
199 rcu_read_unlock();
200 return ret;
201 }
202
203 /**
204 * cap_capget - Retrieve a task's capability sets
205 * @target: The task from which to retrieve the capability sets
206 * @effective: The place to record the effective set
207 * @inheritable: The place to record the inheritable set
208 * @permitted: The place to record the permitted set
209 *
210 * This function retrieves the capabilities of the nominated task and returns
211 * them to the caller.
212 */
213 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
214 kernel_cap_t *inheritable, kernel_cap_t *permitted)
215 {
216 const struct cred *cred;
217
218 /* Derived from kernel/capability.c:sys_capget. */
219 rcu_read_lock();
220 cred = __task_cred(target);
221 *effective = cred->cap_effective;
222 *inheritable = cred->cap_inheritable;
223 *permitted = cred->cap_permitted;
224 rcu_read_unlock();
225 return 0;
226 }
227
228 /*
229 * Determine whether the inheritable capabilities are limited to the old
230 * permitted set. Returns 1 if they are limited, 0 if they are not.
231 */
232 static inline int cap_inh_is_capped(void)
233 {
234
235 /* they are so limited unless the current task has the CAP_SETPCAP
236 * capability
237 */
238 if (cap_capable(current_cred(), current_cred()->user_ns,
239 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
240 return 0;
241 return 1;
242 }
243
244 /**
245 * cap_capset - Validate and apply proposed changes to current's capabilities
246 * @new: The proposed new credentials; alterations should be made here
247 * @old: The current task's current credentials
248 * @effective: A pointer to the proposed new effective capabilities set
249 * @inheritable: A pointer to the proposed new inheritable capabilities set
250 * @permitted: A pointer to the proposed new permitted capabilities set
251 *
252 * This function validates and applies a proposed mass change to the current
253 * process's capability sets. The changes are made to the proposed new
254 * credentials, and assuming no error, will be committed by the caller of LSM.
255 */
256 int cap_capset(struct cred *new,
257 const struct cred *old,
258 const kernel_cap_t *effective,
259 const kernel_cap_t *inheritable,
260 const kernel_cap_t *permitted)
261 {
262 if (cap_inh_is_capped() &&
263 !cap_issubset(*inheritable,
264 cap_combine(old->cap_inheritable,
265 old->cap_permitted)))
266 /* incapable of using this inheritable set */
267 return -EPERM;
268
269 if (!cap_issubset(*inheritable,
270 cap_combine(old->cap_inheritable,
271 old->cap_bset)))
272 /* no new pI capabilities outside bounding set */
273 return -EPERM;
274
275 /* verify restrictions on target's new Permitted set */
276 if (!cap_issubset(*permitted, old->cap_permitted))
277 return -EPERM;
278
279 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
280 if (!cap_issubset(*effective, *permitted))
281 return -EPERM;
282
283 new->cap_effective = *effective;
284 new->cap_inheritable = *inheritable;
285 new->cap_permitted = *permitted;
286 return 0;
287 }
288
289 /*
290 * Clear proposed capability sets for execve().
291 */
292 static inline void bprm_clear_caps(struct linux_binprm *bprm)
293 {
294 cap_clear(bprm->cred->cap_permitted);
295 bprm->cap_effective = false;
296 }
297
298 /**
299 * cap_inode_need_killpriv - Determine if inode change affects privileges
300 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
301 *
302 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
303 * affects the security markings on that inode, and if it is, should
304 * inode_killpriv() be invoked or the change rejected?
305 *
306 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
307 * -ve to deny the change.
308 */
309 int cap_inode_need_killpriv(struct dentry *dentry)
310 {
311 struct inode *inode = dentry->d_inode;
312 int error;
313
314 if (!inode->i_op->getxattr)
315 return 0;
316
317 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
318 if (error <= 0)
319 return 0;
320 return 1;
321 }
322
323 /**
324 * cap_inode_killpriv - Erase the security markings on an inode
325 * @dentry: The inode/dentry to alter
326 *
327 * Erase the privilege-enhancing security markings on an inode.
328 *
329 * Returns 0 if successful, -ve on error.
330 */
331 int cap_inode_killpriv(struct dentry *dentry)
332 {
333 struct inode *inode = dentry->d_inode;
334
335 if (!inode->i_op->removexattr)
336 return 0;
337
338 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
339 }
340
341 /*
342 * Calculate the new process capability sets from the capability sets attached
343 * to a file.
344 */
345 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
346 struct linux_binprm *bprm,
347 bool *effective,
348 bool *has_cap)
349 {
350 struct cred *new = bprm->cred;
351 unsigned i;
352 int ret = 0;
353
354 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
355 *effective = true;
356
357 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
358 *has_cap = true;
359
360 CAP_FOR_EACH_U32(i) {
361 __u32 permitted = caps->permitted.cap[i];
362 __u32 inheritable = caps->inheritable.cap[i];
363
364 /*
365 * pP' = (X & fP) | (pI & fI)
366 */
367 new->cap_permitted.cap[i] =
368 (new->cap_bset.cap[i] & permitted) |
369 (new->cap_inheritable.cap[i] & inheritable);
370
371 if (permitted & ~new->cap_permitted.cap[i])
372 /* insufficient to execute correctly */
373 ret = -EPERM;
374 }
375
376 /*
377 * For legacy apps, with no internal support for recognizing they
378 * do not have enough capabilities, we return an error if they are
379 * missing some "forced" (aka file-permitted) capabilities.
380 */
381 return *effective ? ret : 0;
382 }
383
384 /*
385 * Extract the on-exec-apply capability sets for an executable file.
386 */
387 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
388 {
389 struct inode *inode = dentry->d_inode;
390 __u32 magic_etc;
391 unsigned tocopy, i;
392 int size;
393 struct vfs_cap_data caps;
394
395 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
396
397 if (!inode || !inode->i_op->getxattr)
398 return -ENODATA;
399
400 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
401 XATTR_CAPS_SZ);
402 if (size == -ENODATA || size == -EOPNOTSUPP)
403 /* no data, that's ok */
404 return -ENODATA;
405 if (size < 0)
406 return size;
407
408 if (size < sizeof(magic_etc))
409 return -EINVAL;
410
411 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
412
413 switch (magic_etc & VFS_CAP_REVISION_MASK) {
414 case VFS_CAP_REVISION_1:
415 if (size != XATTR_CAPS_SZ_1)
416 return -EINVAL;
417 tocopy = VFS_CAP_U32_1;
418 break;
419 case VFS_CAP_REVISION_2:
420 if (size != XATTR_CAPS_SZ_2)
421 return -EINVAL;
422 tocopy = VFS_CAP_U32_2;
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 CAP_FOR_EACH_U32(i) {
429 if (i >= tocopy)
430 break;
431 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
432 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
433 }
434
435 return 0;
436 }
437
438 /*
439 * Attempt to get the on-exec apply capability sets for an executable file from
440 * its xattrs and, if present, apply them to the proposed credentials being
441 * constructed by execve().
442 */
443 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
444 {
445 struct dentry *dentry;
446 int rc = 0;
447 struct cpu_vfs_cap_data vcaps;
448
449 bprm_clear_caps(bprm);
450
451 if (!file_caps_enabled)
452 return 0;
453
454 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
455 return 0;
456
457 dentry = dget(bprm->file->f_dentry);
458
459 rc = get_vfs_caps_from_disk(dentry, &vcaps);
460 if (rc < 0) {
461 if (rc == -EINVAL)
462 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
463 __func__, rc, bprm->filename);
464 else if (rc == -ENODATA)
465 rc = 0;
466 goto out;
467 }
468
469 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
470 if (rc == -EINVAL)
471 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
472 __func__, rc, bprm->filename);
473
474 out:
475 dput(dentry);
476 if (rc)
477 bprm_clear_caps(bprm);
478
479 return rc;
480 }
481
482 /**
483 * cap_bprm_set_creds - Set up the proposed credentials for execve().
484 * @bprm: The execution parameters, including the proposed creds
485 *
486 * Set up the proposed credentials for a new execution context being
487 * constructed by execve(). The proposed creds in @bprm->cred is altered,
488 * which won't take effect immediately. Returns 0 if successful, -ve on error.
489 */
490 int cap_bprm_set_creds(struct linux_binprm *bprm)
491 {
492 const struct cred *old = current_cred();
493 struct cred *new = bprm->cred;
494 bool effective, has_cap = false;
495 int ret;
496 kuid_t root_uid;
497
498 effective = false;
499 ret = get_file_caps(bprm, &effective, &has_cap);
500 if (ret < 0)
501 return ret;
502
503 root_uid = make_kuid(new->user_ns, 0);
504
505 if (!issecure(SECURE_NOROOT)) {
506 /*
507 * If the legacy file capability is set, then don't set privs
508 * for a setuid root binary run by a non-root user. Do set it
509 * for a root user just to cause least surprise to an admin.
510 */
511 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
512 warn_setuid_and_fcaps_mixed(bprm->filename);
513 goto skip;
514 }
515 /*
516 * To support inheritance of root-permissions and suid-root
517 * executables under compatibility mode, we override the
518 * capability sets for the file.
519 *
520 * If only the real uid is 0, we do not set the effective bit.
521 */
522 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
523 /* pP' = (cap_bset & ~0) | (pI & ~0) */
524 new->cap_permitted = cap_combine(old->cap_bset,
525 old->cap_inheritable);
526 }
527 if (uid_eq(new->euid, root_uid))
528 effective = true;
529 }
530 skip:
531
532 /* if we have fs caps, clear dangerous personality flags */
533 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
534 bprm->per_clear |= PER_CLEAR_ON_SETID;
535
536
537 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
538 * credentials unless they have the appropriate permit.
539 *
540 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
541 */
542 if ((!uid_eq(new->euid, old->uid) ||
543 !gid_eq(new->egid, old->gid) ||
544 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
545 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
546 /* downgrade; they get no more than they had, and maybe less */
547 if (!capable(CAP_SETUID) ||
548 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
549 new->euid = new->uid;
550 new->egid = new->gid;
551 }
552 new->cap_permitted = cap_intersect(new->cap_permitted,
553 old->cap_permitted);
554 }
555
556 new->suid = new->fsuid = new->euid;
557 new->sgid = new->fsgid = new->egid;
558
559 if (effective)
560 new->cap_effective = new->cap_permitted;
561 else
562 cap_clear(new->cap_effective);
563 bprm->cap_effective = effective;
564
565 /*
566 * Audit candidate if current->cap_effective is set
567 *
568 * We do not bother to audit if 3 things are true:
569 * 1) cap_effective has all caps
570 * 2) we are root
571 * 3) root is supposed to have all caps (SECURE_NOROOT)
572 * Since this is just a normal root execing a process.
573 *
574 * Number 1 above might fail if you don't have a full bset, but I think
575 * that is interesting information to audit.
576 */
577 if (!cap_isclear(new->cap_effective)) {
578 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
579 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
580 issecure(SECURE_NOROOT)) {
581 ret = audit_log_bprm_fcaps(bprm, new, old);
582 if (ret < 0)
583 return ret;
584 }
585 }
586
587 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
588 return 0;
589 }
590
591 /**
592 * cap_bprm_secureexec - Determine whether a secure execution is required
593 * @bprm: The execution parameters
594 *
595 * Determine whether a secure execution is required, return 1 if it is, and 0
596 * if it is not.
597 *
598 * The credentials have been committed by this point, and so are no longer
599 * available through @bprm->cred.
600 */
601 int cap_bprm_secureexec(struct linux_binprm *bprm)
602 {
603 const struct cred *cred = current_cred();
604 kuid_t root_uid = make_kuid(cred->user_ns, 0);
605
606 if (!uid_eq(cred->uid, root_uid)) {
607 if (bprm->cap_effective)
608 return 1;
609 if (!cap_isclear(cred->cap_permitted))
610 return 1;
611 }
612
613 return (!uid_eq(cred->euid, cred->uid) ||
614 !gid_eq(cred->egid, cred->gid));
615 }
616
617 /**
618 * cap_inode_setxattr - Determine whether an xattr may be altered
619 * @dentry: The inode/dentry being altered
620 * @name: The name of the xattr to be changed
621 * @value: The value that the xattr will be changed to
622 * @size: The size of value
623 * @flags: The replacement flag
624 *
625 * Determine whether an xattr may be altered or set on an inode, returning 0 if
626 * permission is granted, -ve if denied.
627 *
628 * This is used to make sure security xattrs don't get updated or set by those
629 * who aren't privileged to do so.
630 */
631 int cap_inode_setxattr(struct dentry *dentry, const char *name,
632 const void *value, size_t size, int flags)
633 {
634 if (!strcmp(name, XATTR_NAME_CAPS)) {
635 if (!capable(CAP_SETFCAP))
636 return -EPERM;
637 return 0;
638 }
639
640 if (!strncmp(name, XATTR_SECURITY_PREFIX,
641 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
642 !capable(CAP_SYS_ADMIN))
643 return -EPERM;
644 return 0;
645 }
646
647 /**
648 * cap_inode_removexattr - Determine whether an xattr may be removed
649 * @dentry: The inode/dentry being altered
650 * @name: The name of the xattr to be changed
651 *
652 * Determine whether an xattr may be removed from an inode, returning 0 if
653 * permission is granted, -ve if denied.
654 *
655 * This is used to make sure security xattrs don't get removed by those who
656 * aren't privileged to remove them.
657 */
658 int cap_inode_removexattr(struct dentry *dentry, const char *name)
659 {
660 if (!strcmp(name, XATTR_NAME_CAPS)) {
661 if (!capable(CAP_SETFCAP))
662 return -EPERM;
663 return 0;
664 }
665
666 if (!strncmp(name, XATTR_SECURITY_PREFIX,
667 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
668 !capable(CAP_SYS_ADMIN))
669 return -EPERM;
670 return 0;
671 }
672
673 /*
674 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
675 * a process after a call to setuid, setreuid, or setresuid.
676 *
677 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
678 * {r,e,s}uid != 0, the permitted and effective capabilities are
679 * cleared.
680 *
681 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
682 * capabilities of the process are cleared.
683 *
684 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
685 * capabilities are set to the permitted capabilities.
686 *
687 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
688 * never happen.
689 *
690 * -astor
691 *
692 * cevans - New behaviour, Oct '99
693 * A process may, via prctl(), elect to keep its capabilities when it
694 * calls setuid() and switches away from uid==0. Both permitted and
695 * effective sets will be retained.
696 * Without this change, it was impossible for a daemon to drop only some
697 * of its privilege. The call to setuid(!=0) would drop all privileges!
698 * Keeping uid 0 is not an option because uid 0 owns too many vital
699 * files..
700 * Thanks to Olaf Kirch and Peter Benie for spotting this.
701 */
702 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
703 {
704 kuid_t root_uid = make_kuid(old->user_ns, 0);
705
706 if ((uid_eq(old->uid, root_uid) ||
707 uid_eq(old->euid, root_uid) ||
708 uid_eq(old->suid, root_uid)) &&
709 (!uid_eq(new->uid, root_uid) &&
710 !uid_eq(new->euid, root_uid) &&
711 !uid_eq(new->suid, root_uid)) &&
712 !issecure(SECURE_KEEP_CAPS)) {
713 cap_clear(new->cap_permitted);
714 cap_clear(new->cap_effective);
715 }
716 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
717 cap_clear(new->cap_effective);
718 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
719 new->cap_effective = new->cap_permitted;
720 }
721
722 /**
723 * cap_task_fix_setuid - Fix up the results of setuid() call
724 * @new: The proposed credentials
725 * @old: The current task's current credentials
726 * @flags: Indications of what has changed
727 *
728 * Fix up the results of setuid() call before the credential changes are
729 * actually applied, returning 0 to grant the changes, -ve to deny them.
730 */
731 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
732 {
733 switch (flags) {
734 case LSM_SETID_RE:
735 case LSM_SETID_ID:
736 case LSM_SETID_RES:
737 /* juggle the capabilities to follow [RES]UID changes unless
738 * otherwise suppressed */
739 if (!issecure(SECURE_NO_SETUID_FIXUP))
740 cap_emulate_setxuid(new, old);
741 break;
742
743 case LSM_SETID_FS:
744 /* juggle the capabilties to follow FSUID changes, unless
745 * otherwise suppressed
746 *
747 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
748 * if not, we might be a bit too harsh here.
749 */
750 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
751 kuid_t root_uid = make_kuid(old->user_ns, 0);
752 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
753 new->cap_effective =
754 cap_drop_fs_set(new->cap_effective);
755
756 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
757 new->cap_effective =
758 cap_raise_fs_set(new->cap_effective,
759 new->cap_permitted);
760 }
761 break;
762
763 default:
764 return -EINVAL;
765 }
766
767 return 0;
768 }
769
770 /*
771 * Rationale: code calling task_setscheduler, task_setioprio, and
772 * task_setnice, assumes that
773 * . if capable(cap_sys_nice), then those actions should be allowed
774 * . if not capable(cap_sys_nice), but acting on your own processes,
775 * then those actions should be allowed
776 * This is insufficient now since you can call code without suid, but
777 * yet with increased caps.
778 * So we check for increased caps on the target process.
779 */
780 static int cap_safe_nice(struct task_struct *p)
781 {
782 int is_subset;
783
784 rcu_read_lock();
785 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
786 current_cred()->cap_permitted);
787 rcu_read_unlock();
788
789 if (!is_subset && !capable(CAP_SYS_NICE))
790 return -EPERM;
791 return 0;
792 }
793
794 /**
795 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
796 * @p: The task to affect
797 *
798 * Detemine if the requested scheduler policy change is permitted for the
799 * specified task, returning 0 if permission is granted, -ve if denied.
800 */
801 int cap_task_setscheduler(struct task_struct *p)
802 {
803 return cap_safe_nice(p);
804 }
805
806 /**
807 * cap_task_ioprio - Detemine if I/O priority change is permitted
808 * @p: The task to affect
809 * @ioprio: The I/O priority to set
810 *
811 * Detemine if the requested I/O priority change is permitted for the specified
812 * task, returning 0 if permission is granted, -ve if denied.
813 */
814 int cap_task_setioprio(struct task_struct *p, int ioprio)
815 {
816 return cap_safe_nice(p);
817 }
818
819 /**
820 * cap_task_ioprio - Detemine if task priority change is permitted
821 * @p: The task to affect
822 * @nice: The nice value to set
823 *
824 * Detemine if the requested task priority change is permitted for the
825 * specified task, returning 0 if permission is granted, -ve if denied.
826 */
827 int cap_task_setnice(struct task_struct *p, int nice)
828 {
829 return cap_safe_nice(p);
830 }
831
832 /*
833 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
834 * the current task's bounding set. Returns 0 on success, -ve on error.
835 */
836 static long cap_prctl_drop(struct cred *new, unsigned long cap)
837 {
838 if (!capable(CAP_SETPCAP))
839 return -EPERM;
840 if (!cap_valid(cap))
841 return -EINVAL;
842
843 cap_lower(new->cap_bset, cap);
844 return 0;
845 }
846
847 /**
848 * cap_task_prctl - Implement process control functions for this security module
849 * @option: The process control function requested
850 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
851 *
852 * Allow process control functions (sys_prctl()) to alter capabilities; may
853 * also deny access to other functions not otherwise implemented here.
854 *
855 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
856 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
857 * modules will consider performing the function.
858 */
859 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
860 unsigned long arg4, unsigned long arg5)
861 {
862 struct cred *new;
863 long error = 0;
864
865 new = prepare_creds();
866 if (!new)
867 return -ENOMEM;
868
869 switch (option) {
870 case PR_CAPBSET_READ:
871 error = -EINVAL;
872 if (!cap_valid(arg2))
873 goto error;
874 error = !!cap_raised(new->cap_bset, arg2);
875 goto no_change;
876
877 case PR_CAPBSET_DROP:
878 error = cap_prctl_drop(new, arg2);
879 if (error < 0)
880 goto error;
881 goto changed;
882
883 /*
884 * The next four prctl's remain to assist with transitioning a
885 * system from legacy UID=0 based privilege (when filesystem
886 * capabilities are not in use) to a system using filesystem
887 * capabilities only - as the POSIX.1e draft intended.
888 *
889 * Note:
890 *
891 * PR_SET_SECUREBITS =
892 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
893 * | issecure_mask(SECURE_NOROOT)
894 * | issecure_mask(SECURE_NOROOT_LOCKED)
895 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
896 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
897 *
898 * will ensure that the current process and all of its
899 * children will be locked into a pure
900 * capability-based-privilege environment.
901 */
902 case PR_SET_SECUREBITS:
903 error = -EPERM;
904 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
905 & (new->securebits ^ arg2)) /*[1]*/
906 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
907 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
908 || (cap_capable(current_cred(),
909 current_cred()->user_ns, CAP_SETPCAP,
910 SECURITY_CAP_AUDIT) != 0) /*[4]*/
911 /*
912 * [1] no changing of bits that are locked
913 * [2] no unlocking of locks
914 * [3] no setting of unsupported bits
915 * [4] doing anything requires privilege (go read about
916 * the "sendmail capabilities bug")
917 */
918 )
919 /* cannot change a locked bit */
920 goto error;
921 new->securebits = arg2;
922 goto changed;
923
924 case PR_GET_SECUREBITS:
925 error = new->securebits;
926 goto no_change;
927
928 case PR_GET_KEEPCAPS:
929 if (issecure(SECURE_KEEP_CAPS))
930 error = 1;
931 goto no_change;
932
933 case PR_SET_KEEPCAPS:
934 error = -EINVAL;
935 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
936 goto error;
937 error = -EPERM;
938 if (issecure(SECURE_KEEP_CAPS_LOCKED))
939 goto error;
940 if (arg2)
941 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
942 else
943 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
944 goto changed;
945
946 default:
947 /* No functionality available - continue with default */
948 error = -ENOSYS;
949 goto error;
950 }
951
952 /* Functionality provided */
953 changed:
954 return commit_creds(new);
955
956 no_change:
957 error:
958 abort_creds(new);
959 return error;
960 }
961
962 /**
963 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
964 * @mm: The VM space in which the new mapping is to be made
965 * @pages: The size of the mapping
966 *
967 * Determine whether the allocation of a new virtual mapping by the current
968 * task is permitted, returning 0 if permission is granted, -ve if not.
969 */
970 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
971 {
972 int cap_sys_admin = 0;
973
974 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
975 SECURITY_CAP_NOAUDIT) == 0)
976 cap_sys_admin = 1;
977 return __vm_enough_memory(mm, pages, cap_sys_admin);
978 }
979
980 /*
981 * cap_mmap_addr - check if able to map given addr
982 * @addr: address attempting to be mapped
983 *
984 * If the process is attempting to map memory below dac_mmap_min_addr they need
985 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
986 * capability security module. Returns 0 if this mapping should be allowed
987 * -EPERM if not.
988 */
989 int cap_mmap_addr(unsigned long addr)
990 {
991 int ret = 0;
992
993 if (addr < dac_mmap_min_addr) {
994 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
995 SECURITY_CAP_AUDIT);
996 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
997 if (ret == 0)
998 current->flags |= PF_SUPERPRIV;
999 }
1000 return ret;
1001 }
1002
1003 int cap_mmap_file(struct file *file, unsigned long reqprot,
1004 unsigned long prot, unsigned long flags)
1005 {
1006 return 0;
1007 }