drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <net/inet_sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .aio_read = sock_aio_read,
140 .aio_write = sock_aio_write,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .open = sock_no_open, /* special open code to disallow open via /proc */
148 .release = sock_close,
149 .fasync = sock_fasync,
150 .sendpage = sock_sendpage,
151 .splice_write = generic_splice_sendpage,
152 .splice_read = sock_splice_read,
153 };
154
155 /*
156 * The protocol list. Each protocol is registered in here.
157 */
158
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
161
162 /*
163 * Statistics counters of the socket lists
164 */
165
166 static DEFINE_PER_CPU(int, sockets_in_use);
167
168 /*
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
215 {
216 int err;
217 int len;
218
219 BUG_ON(klen > sizeof(struct sockaddr_storage));
220 err = get_user(len, ulen);
221 if (err)
222 return err;
223 if (len > klen)
224 len = klen;
225 if (len < 0)
226 return -EINVAL;
227 if (len) {
228 if (audit_sockaddr(klen, kaddr))
229 return -ENOMEM;
230 if (copy_to_user(uaddr, kaddr, len))
231 return -EFAULT;
232 }
233 /*
234 * "fromlen shall refer to the value before truncation.."
235 * 1003.1g
236 */
237 return __put_user(klen, ulen);
238 }
239
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 struct socket_alloc *ei;
245 struct socket_wq *wq;
246
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 if (!ei)
249 return NULL;
250 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 if (!wq) {
252 kmem_cache_free(sock_inode_cachep, ei);
253 return NULL;
254 }
255 init_waitqueue_head(&wq->wait);
256 wq->fasync_list = NULL;
257 RCU_INIT_POINTER(ei->socket.wq, wq);
258
259 ei->socket.state = SS_UNCONNECTED;
260 ei->socket.flags = 0;
261 ei->socket.ops = NULL;
262 ei->socket.sk = NULL;
263 ei->socket.file = NULL;
264
265 return &ei->vfs_inode;
266 }
267
268 static void sock_destroy_inode(struct inode *inode)
269 {
270 struct socket_alloc *ei;
271 struct socket_wq *wq;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 wq = rcu_dereference_protected(ei->socket.wq, 1);
275 kfree_rcu(wq, rcu);
276 kmem_cache_free(sock_inode_cachep, ei);
277 }
278
279 static void init_once(void *foo)
280 {
281 struct socket_alloc *ei = (struct socket_alloc *)foo;
282
283 inode_init_once(&ei->vfs_inode);
284 }
285
286 static int init_inodecache(void)
287 {
288 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
289 sizeof(struct socket_alloc),
290 0,
291 (SLAB_HWCACHE_ALIGN |
292 SLAB_RECLAIM_ACCOUNT |
293 SLAB_MEM_SPREAD),
294 init_once);
295 if (sock_inode_cachep == NULL)
296 return -ENOMEM;
297 return 0;
298 }
299
300 static const struct super_operations sockfs_ops = {
301 .alloc_inode = sock_alloc_inode,
302 .destroy_inode = sock_destroy_inode,
303 .statfs = simple_statfs,
304 };
305
306 /*
307 * sockfs_dname() is called from d_path().
308 */
309 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
310 {
311 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
312 dentry->d_inode->i_ino);
313 }
314
315 static const struct dentry_operations sockfs_dentry_operations = {
316 .d_dname = sockfs_dname,
317 };
318
319 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
320 int flags, const char *dev_name, void *data)
321 {
322 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
323 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 }
325
326 static struct vfsmount *sock_mnt __read_mostly;
327
328 static struct file_system_type sock_fs_type = {
329 .name = "sockfs",
330 .mount = sockfs_mount,
331 .kill_sb = kill_anon_super,
332 };
333
334 /*
335 * Obtains the first available file descriptor and sets it up for use.
336 *
337 * These functions create file structures and maps them to fd space
338 * of the current process. On success it returns file descriptor
339 * and file struct implicitly stored in sock->file.
340 * Note that another thread may close file descriptor before we return
341 * from this function. We use the fact that now we do not refer
342 * to socket after mapping. If one day we will need it, this
343 * function will increment ref. count on file by 1.
344 *
345 * In any case returned fd MAY BE not valid!
346 * This race condition is unavoidable
347 * with shared fd spaces, we cannot solve it inside kernel,
348 * but we take care of internal coherence yet.
349 */
350
351 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
352 {
353 struct qstr name = { .name = "" };
354 struct path path;
355 struct file *file;
356
357 if (dname) {
358 name.name = dname;
359 name.len = strlen(name.name);
360 } else if (sock->sk) {
361 name.name = sock->sk->sk_prot_creator->name;
362 name.len = strlen(name.name);
363 }
364 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
365 if (unlikely(!path.dentry))
366 return ERR_PTR(-ENOMEM);
367 path.mnt = mntget(sock_mnt);
368
369 d_instantiate(path.dentry, SOCK_INODE(sock));
370 SOCK_INODE(sock)->i_fop = &socket_file_ops;
371
372 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
373 &socket_file_ops);
374 if (unlikely(IS_ERR(file))) {
375 /* drop dentry, keep inode */
376 ihold(path.dentry->d_inode);
377 path_put(&path);
378 return file;
379 }
380
381 sock->file = file;
382 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
383 file->private_data = sock;
384 return file;
385 }
386 EXPORT_SYMBOL(sock_alloc_file);
387
388 static int sock_map_fd(struct socket *sock, int flags)
389 {
390 struct file *newfile;
391 int fd = get_unused_fd_flags(flags);
392 if (unlikely(fd < 0))
393 return fd;
394
395 newfile = sock_alloc_file(sock, flags, NULL);
396 if (likely(!IS_ERR(newfile))) {
397 fd_install(fd, newfile);
398 return fd;
399 }
400
401 put_unused_fd(fd);
402 return PTR_ERR(newfile);
403 }
404
405 struct socket *sock_from_file(struct file *file, int *err)
406 {
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
409
410 *err = -ENOTSOCK;
411 return NULL;
412 }
413 EXPORT_SYMBOL(sock_from_file);
414
415 /**
416 * sockfd_lookup - Go from a file number to its socket slot
417 * @fd: file handle
418 * @err: pointer to an error code return
419 *
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
424 *
425 * On a success the socket object pointer is returned.
426 */
427
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 struct file *file;
431 struct socket *sock;
432
433 file = fget(fd);
434 if (!file) {
435 *err = -EBADF;
436 return NULL;
437 }
438
439 sock = sock_from_file(file, err);
440 if (!sock)
441 fput(file);
442 return sock;
443 }
444 EXPORT_SYMBOL(sockfd_lookup);
445
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 {
448 struct file *file;
449 struct socket *sock;
450
451 *err = -EBADF;
452 file = fget_light(fd, fput_needed);
453 if (file) {
454 sock = sock_from_file(file, err);
455 if (sock)
456 return sock;
457 fput_light(file, *fput_needed);
458 }
459 return NULL;
460 }
461
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t sockfs_getxattr(struct dentry *dentry,
466 const char *name, void *value, size_t size)
467 {
468 const char *proto_name;
469 size_t proto_size;
470 int error;
471
472 error = -ENODATA;
473 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
474 proto_name = dentry->d_name.name;
475 proto_size = strlen(proto_name);
476
477 if (value) {
478 error = -ERANGE;
479 if (proto_size + 1 > size)
480 goto out;
481
482 strncpy(value, proto_name, proto_size + 1);
483 }
484 error = proto_size + 1;
485 }
486
487 out:
488 return error;
489 }
490
491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
492 size_t size)
493 {
494 ssize_t len;
495 ssize_t used = 0;
496
497 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
498 if (len < 0)
499 return len;
500 used += len;
501 if (buffer) {
502 if (size < used)
503 return -ERANGE;
504 buffer += len;
505 }
506
507 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
513 buffer += len;
514 }
515
516 return used;
517 }
518
519 static const struct inode_operations sockfs_inode_ops = {
520 .getxattr = sockfs_getxattr,
521 .listxattr = sockfs_listxattr,
522 };
523
524 /**
525 * sock_alloc - allocate a socket
526 *
527 * Allocate a new inode and socket object. The two are bound together
528 * and initialised. The socket is then returned. If we are out of inodes
529 * NULL is returned.
530 */
531
532 static struct socket *sock_alloc(void)
533 {
534 struct inode *inode;
535 struct socket *sock;
536
537 inode = new_inode_pseudo(sock_mnt->mnt_sb);
538 if (!inode)
539 return NULL;
540
541 sock = SOCKET_I(inode);
542
543 kmemcheck_annotate_bitfield(sock, type);
544 inode->i_ino = get_next_ino();
545 inode->i_mode = S_IFSOCK | S_IRWXUGO;
546 inode->i_uid = current_fsuid();
547 inode->i_gid = current_fsgid();
548 inode->i_op = &sockfs_inode_ops;
549
550 this_cpu_add(sockets_in_use, 1);
551 return sock;
552 }
553
554 /*
555 * In theory you can't get an open on this inode, but /proc provides
556 * a back door. Remember to keep it shut otherwise you'll let the
557 * creepy crawlies in.
558 */
559
560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
561 {
562 return -ENXIO;
563 }
564
565 const struct file_operations bad_sock_fops = {
566 .owner = THIS_MODULE,
567 .open = sock_no_open,
568 .llseek = noop_llseek,
569 };
570
571 /**
572 * sock_release - close a socket
573 * @sock: socket to close
574 *
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
578 */
579
580 void sock_release(struct socket *sock)
581 {
582 if (sock->ops) {
583 struct module *owner = sock->ops->owner;
584
585 sock->ops->release(sock);
586 sock->ops = NULL;
587 module_put(owner);
588 }
589
590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 printk(KERN_ERR "[mtk_net][socket]sock_release: fasync list not empty!\n");
592
593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
594 return;
595
596 this_cpu_sub(sockets_in_use, 1);
597 if (!sock->file) {
598 iput(SOCK_INODE(sock));
599 return;
600 }
601 sock->file = NULL;
602 }
603 EXPORT_SYMBOL(sock_release);
604
605 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
606 {
607 *tx_flags = 0;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
609 *tx_flags |= SKBTX_HW_TSTAMP;
610 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
611 *tx_flags |= SKBTX_SW_TSTAMP;
612 if (sock_flag(sk, SOCK_WIFI_STATUS))
613 *tx_flags |= SKBTX_WIFI_STATUS;
614 }
615 EXPORT_SYMBOL(sock_tx_timestamp);
616
617 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
618 struct msghdr *msg, size_t size)
619 {
620 struct sock_iocb *si = kiocb_to_siocb(iocb);
621
622 si->sock = sock;
623 si->scm = NULL;
624 si->msg = msg;
625 si->size = size;
626
627 return sock->ops->sendmsg(iocb, sock, msg, size);
628 }
629
630 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
631 struct msghdr *msg, size_t size)
632 {
633 int err = security_socket_sendmsg(sock, msg, size);
634
635 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
639 {
640 struct kiocb iocb;
641 struct sock_iocb siocb;
642 int ret;
643
644 init_sync_kiocb(&iocb, NULL);
645 iocb.private = &siocb;
646 ret = __sock_sendmsg(&iocb, sock, msg, size);
647 if (-EIOCBQUEUED == ret)
648 ret = wait_on_sync_kiocb(&iocb);
649 return ret;
650 }
651 EXPORT_SYMBOL(sock_sendmsg);
652
653 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
654 {
655 struct kiocb iocb;
656 struct sock_iocb siocb;
657 int ret;
658
659 init_sync_kiocb(&iocb, NULL);
660 iocb.private = &siocb;
661 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
662 if (-EIOCBQUEUED == ret)
663 ret = wait_on_sync_kiocb(&iocb);
664 return ret;
665 }
666
667 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
668 struct kvec *vec, size_t num, size_t size)
669 {
670 mm_segment_t oldfs = get_fs();
671 int result;
672
673 set_fs(KERNEL_DS);
674 /*
675 * the following is safe, since for compiler definitions of kvec and
676 * iovec are identical, yielding the same in-core layout and alignment
677 */
678 msg->msg_iov = (struct iovec *)vec;
679 msg->msg_iovlen = num;
680 result = sock_sendmsg(sock, msg, size);
681 set_fs(oldfs);
682 return result;
683 }
684 EXPORT_SYMBOL(kernel_sendmsg);
685
686 /*
687 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
688 */
689 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
690 struct sk_buff *skb)
691 {
692 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
693 struct timespec ts[3];
694 int empty = 1;
695 struct skb_shared_hwtstamps *shhwtstamps =
696 skb_hwtstamps(skb);
697
698 /* Race occurred between timestamp enabling and packet
699 receiving. Fill in the current time for now. */
700 if (need_software_tstamp && skb->tstamp.tv64 == 0)
701 __net_timestamp(skb);
702
703 if (need_software_tstamp) {
704 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
705 struct timeval tv;
706 skb_get_timestamp(skb, &tv);
707 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
708 sizeof(tv), &tv);
709 } else {
710 skb_get_timestampns(skb, &ts[0]);
711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
712 sizeof(ts[0]), &ts[0]);
713 }
714 }
715
716
717 memset(ts, 0, sizeof(ts));
718 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
719 ktime_to_timespec_cond(skb->tstamp, ts + 0))
720 empty = 0;
721 if (shhwtstamps) {
722 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
723 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
724 empty = 0;
725 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
726 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
727 empty = 0;
728 }
729 if (!empty)
730 put_cmsg(msg, SOL_SOCKET,
731 SCM_TIMESTAMPING, sizeof(ts), &ts);
732 }
733 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
734
735 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
736 struct sk_buff *skb)
737 {
738 int ack;
739
740 if (!sock_flag(sk, SOCK_WIFI_STATUS))
741 return;
742 if (!skb->wifi_acked_valid)
743 return;
744
745 ack = skb->wifi_acked;
746
747 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
748 }
749 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
750
751 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
752 struct sk_buff *skb)
753 {
754 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
755 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
756 sizeof(__u32), &skb->dropcount);
757 }
758
759 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
760 struct sk_buff *skb)
761 {
762 sock_recv_timestamp(msg, sk, skb);
763 sock_recv_drops(msg, sk, skb);
764 }
765 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
766
767 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
768 struct msghdr *msg, size_t size, int flags)
769 {
770 struct sock_iocb *si = kiocb_to_siocb(iocb);
771
772 si->sock = sock;
773 si->scm = NULL;
774 si->msg = msg;
775 si->size = size;
776 si->flags = flags;
777
778 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
779 }
780
781 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
782 struct msghdr *msg, size_t size, int flags)
783 {
784 int err = security_socket_recvmsg(sock, msg, size, flags);
785
786 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
787 }
788
789 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
790 size_t size, int flags)
791 {
792 struct kiocb iocb;
793 struct sock_iocb siocb;
794 int ret;
795
796 init_sync_kiocb(&iocb, NULL);
797 iocb.private = &siocb;
798 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
799 if (-EIOCBQUEUED == ret)
800 ret = wait_on_sync_kiocb(&iocb);
801 return ret;
802 }
803 EXPORT_SYMBOL(sock_recvmsg);
804
805 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
806 size_t size, int flags)
807 {
808 struct kiocb iocb;
809 struct sock_iocb siocb;
810 int ret;
811
812 init_sync_kiocb(&iocb, NULL);
813 iocb.private = &siocb;
814 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
815 if (-EIOCBQUEUED == ret)
816 ret = wait_on_sync_kiocb(&iocb);
817 return ret;
818 }
819
820 /**
821 * kernel_recvmsg - Receive a message from a socket (kernel space)
822 * @sock: The socket to receive the message from
823 * @msg: Received message
824 * @vec: Input s/g array for message data
825 * @num: Size of input s/g array
826 * @size: Number of bytes to read
827 * @flags: Message flags (MSG_DONTWAIT, etc...)
828 *
829 * On return the msg structure contains the scatter/gather array passed in the
830 * vec argument. The array is modified so that it consists of the unfilled
831 * portion of the original array.
832 *
833 * The returned value is the total number of bytes received, or an error.
834 */
835 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
836 struct kvec *vec, size_t num, size_t size, int flags)
837 {
838 mm_segment_t oldfs = get_fs();
839 int result;
840
841 set_fs(KERNEL_DS);
842 /*
843 * the following is safe, since for compiler definitions of kvec and
844 * iovec are identical, yielding the same in-core layout and alignment
845 */
846 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
847 result = sock_recvmsg(sock, msg, size, flags);
848 set_fs(oldfs);
849 return result;
850 }
851 EXPORT_SYMBOL(kernel_recvmsg);
852
853 static void sock_aio_dtor(struct kiocb *iocb)
854 {
855 kfree(iocb->private);
856 }
857
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 int offset, size_t size, loff_t *ppos, int more)
860 {
861 struct socket *sock;
862 int flags;
863
864 sock = file->private_data;
865
866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 flags |= more;
869
870 return kernel_sendpage(sock, page, offset, size, flags);
871 }
872
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
876 {
877 struct socket *sock = file->private_data;
878
879 if (unlikely(!sock->ops->splice_read))
880 return -EINVAL;
881
882 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883 }
884
885 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
886 struct sock_iocb *siocb)
887 {
888 if (!is_sync_kiocb(iocb)) {
889 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
890 if (!siocb)
891 return NULL;
892 iocb->ki_dtor = sock_aio_dtor;
893 }
894
895 siocb->kiocb = iocb;
896 iocb->private = siocb;
897 return siocb;
898 }
899
900 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
901 struct file *file, const struct iovec *iov,
902 unsigned long nr_segs)
903 {
904 struct socket *sock = file->private_data;
905 size_t size = 0;
906 int i;
907
908 for (i = 0; i < nr_segs; i++)
909 size += iov[i].iov_len;
910
911 msg->msg_name = NULL;
912 msg->msg_namelen = 0;
913 msg->msg_control = NULL;
914 msg->msg_controllen = 0;
915 msg->msg_iov = (struct iovec *)iov;
916 msg->msg_iovlen = nr_segs;
917 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
918
919 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
920 }
921
922 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
923 unsigned long nr_segs, loff_t pos)
924 {
925 struct sock_iocb siocb, *x;
926
927 if (pos != 0)
928 return -ESPIPE;
929
930 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
931 return 0;
932
933
934 x = alloc_sock_iocb(iocb, &siocb);
935 if (!x)
936 return -ENOMEM;
937 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
938 }
939
940 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
941 struct file *file, const struct iovec *iov,
942 unsigned long nr_segs)
943 {
944 struct socket *sock = file->private_data;
945 size_t size = 0;
946 int i;
947
948 for (i = 0; i < nr_segs; i++)
949 size += iov[i].iov_len;
950
951 msg->msg_name = NULL;
952 msg->msg_namelen = 0;
953 msg->msg_control = NULL;
954 msg->msg_controllen = 0;
955 msg->msg_iov = (struct iovec *)iov;
956 msg->msg_iovlen = nr_segs;
957 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
958 if (sock->type == SOCK_SEQPACKET)
959 msg->msg_flags |= MSG_EOR;
960
961 return __sock_sendmsg(iocb, sock, msg, size);
962 }
963
964 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
965 unsigned long nr_segs, loff_t pos)
966 {
967 struct sock_iocb siocb, *x;
968
969 if (pos != 0)
970 return -ESPIPE;
971
972 x = alloc_sock_iocb(iocb, &siocb);
973 if (!x)
974 return -ENOMEM;
975
976 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
977 }
978
979 /*
980 * Atomic setting of ioctl hooks to avoid race
981 * with module unload.
982 */
983
984 static DEFINE_MUTEX(br_ioctl_mutex);
985 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
986
987 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
988 {
989 mutex_lock(&br_ioctl_mutex);
990 br_ioctl_hook = hook;
991 mutex_unlock(&br_ioctl_mutex);
992 }
993 EXPORT_SYMBOL(brioctl_set);
994
995 static DEFINE_MUTEX(vlan_ioctl_mutex);
996 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
997
998 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
999 {
1000 mutex_lock(&vlan_ioctl_mutex);
1001 vlan_ioctl_hook = hook;
1002 mutex_unlock(&vlan_ioctl_mutex);
1003 }
1004 EXPORT_SYMBOL(vlan_ioctl_set);
1005
1006 static DEFINE_MUTEX(dlci_ioctl_mutex);
1007 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1008
1009 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1010 {
1011 mutex_lock(&dlci_ioctl_mutex);
1012 dlci_ioctl_hook = hook;
1013 mutex_unlock(&dlci_ioctl_mutex);
1014 }
1015 EXPORT_SYMBOL(dlci_ioctl_set);
1016
1017 static long sock_do_ioctl(struct net *net, struct socket *sock,
1018 unsigned int cmd, unsigned long arg)
1019 {
1020 int err;
1021 void __user *argp = (void __user *)arg;
1022
1023 err = sock->ops->ioctl(sock, cmd, arg);
1024
1025 /*
1026 * If this ioctl is unknown try to hand it down
1027 * to the NIC driver.
1028 */
1029 if (err == -ENOIOCTLCMD)
1030 err = dev_ioctl(net, cmd, argp);
1031
1032 return err;
1033 }
1034
1035 /*
1036 * With an ioctl, arg may well be a user mode pointer, but we don't know
1037 * what to do with it - that's up to the protocol still.
1038 */
1039
1040 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1041 {
1042 struct socket *sock;
1043 struct sock *sk;
1044 void __user *argp = (void __user *)arg;
1045 int pid, err;
1046 struct net *net;
1047
1048 sock = file->private_data;
1049 sk = sock->sk;
1050 net = sock_net(sk);
1051 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1052 err = dev_ioctl(net, cmd, argp);
1053 } else
1054 #ifdef CONFIG_WEXT_CORE
1055 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1056 err = dev_ioctl(net, cmd, argp);
1057 } else
1058 #endif
1059 switch (cmd) {
1060 case FIOSETOWN:
1061 case SIOCSPGRP:
1062 err = -EFAULT;
1063 if (get_user(pid, (int __user *)argp))
1064 break;
1065 err = f_setown(sock->file, pid, 1);
1066 break;
1067 case FIOGETOWN:
1068 case SIOCGPGRP:
1069 err = put_user(f_getown(sock->file),
1070 (int __user *)argp);
1071 break;
1072 case SIOCGIFBR:
1073 case SIOCSIFBR:
1074 case SIOCBRADDBR:
1075 case SIOCBRDELBR:
1076 err = -ENOPKG;
1077 if (!br_ioctl_hook)
1078 request_module("bridge");
1079
1080 mutex_lock(&br_ioctl_mutex);
1081 if (br_ioctl_hook)
1082 err = br_ioctl_hook(net, cmd, argp);
1083 mutex_unlock(&br_ioctl_mutex);
1084 break;
1085 case SIOCGIFVLAN:
1086 case SIOCSIFVLAN:
1087 err = -ENOPKG;
1088 if (!vlan_ioctl_hook)
1089 request_module("8021q");
1090
1091 mutex_lock(&vlan_ioctl_mutex);
1092 if (vlan_ioctl_hook)
1093 err = vlan_ioctl_hook(net, argp);
1094 mutex_unlock(&vlan_ioctl_mutex);
1095 break;
1096 case SIOCADDDLCI:
1097 case SIOCDELDLCI:
1098 err = -ENOPKG;
1099 if (!dlci_ioctl_hook)
1100 request_module("dlci");
1101
1102 mutex_lock(&dlci_ioctl_mutex);
1103 if (dlci_ioctl_hook)
1104 err = dlci_ioctl_hook(cmd, argp);
1105 mutex_unlock(&dlci_ioctl_mutex);
1106 break;
1107 default:
1108 err = sock_do_ioctl(net, sock, cmd, arg);
1109 break;
1110 }
1111 return err;
1112 }
1113
1114 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1115 {
1116 int err;
1117 struct socket *sock = NULL;
1118
1119 err = security_socket_create(family, type, protocol, 1);
1120 if (err)
1121 goto out;
1122
1123 sock = sock_alloc();
1124 if (!sock) {
1125 err = -ENOMEM;
1126 goto out;
1127 }
1128
1129 sock->type = type;
1130 err = security_socket_post_create(sock, family, type, protocol, 1);
1131 if (err)
1132 goto out_release;
1133
1134 out:
1135 *res = sock;
1136 return err;
1137 out_release:
1138 sock_release(sock);
1139 sock = NULL;
1140 goto out;
1141 }
1142 EXPORT_SYMBOL(sock_create_lite);
1143
1144 /* No kernel lock held - perfect */
1145 static unsigned int sock_poll(struct file *file, poll_table *wait)
1146 {
1147 struct socket *sock;
1148
1149 /*
1150 * We can't return errors to poll, so it's either yes or no.
1151 */
1152 sock = file->private_data;
1153 return sock->ops->poll(file, sock, wait);
1154 }
1155
1156 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1157 {
1158 struct socket *sock = file->private_data;
1159
1160 return sock->ops->mmap(file, sock, vma);
1161 }
1162
1163 static int sock_close(struct inode *inode, struct file *filp)
1164 {
1165 /*
1166 * It was possible the inode is NULL we were
1167 * closing an unfinished socket.
1168 */
1169
1170 if (!inode) {
1171 #ifdef CONFIG_MTK_NET_LOGGING
1172 printk(KERN_DEBUG "[mtk_net][socket]sock_close: NULL inode\n");
1173 #endif
1174 return 0;
1175 }
1176 #ifdef CONFIG_MTK_NET_LOGGING
1177 printk(KERN_INFO "[mtk_net][socekt]socket_close[%lu] \n",inode->i_ino);
1178 #endif
1179 sock_release(SOCKET_I(inode));
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * Update the socket async list
1186 *
1187 * Fasync_list locking strategy.
1188 *
1189 * 1. fasync_list is modified only under process context socket lock
1190 * i.e. under semaphore.
1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 * or under socket lock
1193 */
1194
1195 static int sock_fasync(int fd, struct file *filp, int on)
1196 {
1197 struct socket *sock = filp->private_data;
1198 struct sock *sk = sock->sk;
1199 struct socket_wq *wq;
1200
1201 if (sk == NULL)
1202 return -EINVAL;
1203
1204 lock_sock(sk);
1205 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206 fasync_helper(fd, filp, on, &wq->fasync_list);
1207
1208 if (!wq->fasync_list)
1209 sock_reset_flag(sk, SOCK_FASYNC);
1210 else
1211 sock_set_flag(sk, SOCK_FASYNC);
1212
1213 release_sock(sk);
1214 return 0;
1215 }
1216
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1218
1219 int sock_wake_async(struct socket *sock, int how, int band)
1220 {
1221 struct socket_wq *wq;
1222
1223 if (!sock)
1224 return -1;
1225 rcu_read_lock();
1226 wq = rcu_dereference(sock->wq);
1227 if (!wq || !wq->fasync_list) {
1228 rcu_read_unlock();
1229 return -1;
1230 }
1231 switch (how) {
1232 case SOCK_WAKE_WAITD:
1233 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234 break;
1235 goto call_kill;
1236 case SOCK_WAKE_SPACE:
1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238 break;
1239 /* fall through */
1240 case SOCK_WAKE_IO:
1241 call_kill:
1242 kill_fasync(&wq->fasync_list, SIGIO, band);
1243 break;
1244 case SOCK_WAKE_URG:
1245 kill_fasync(&wq->fasync_list, SIGURG, band);
1246 }
1247 rcu_read_unlock();
1248 return 0;
1249 }
1250 EXPORT_SYMBOL(sock_wake_async);
1251
1252 int __sock_create(struct net *net, int family, int type, int protocol,
1253 struct socket **res, int kern)
1254 {
1255 int err;
1256 struct socket *sock;
1257 const struct net_proto_family *pf;
1258
1259 /*
1260 * Check protocol is in range
1261 */
1262 if (family < 0 || family >= NPROTO)
1263 return -EAFNOSUPPORT;
1264 if (type < 0 || type >= SOCK_MAX)
1265 return -EINVAL;
1266
1267 /* Compatibility.
1268
1269 This uglymoron is moved from INET layer to here to avoid
1270 deadlock in module load.
1271 */
1272 if (family == PF_INET && type == SOCK_PACKET) {
1273 static int warned;
1274 if (!warned) {
1275 warned = 1;
1276 #ifdef CONFIG_MTK_NET_LOGGING
1277 printk(KERN_INFO "[mtk_net][socket]%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1278 current->comm);
1279 #endif
1280 }
1281 family = PF_PACKET;
1282 }
1283
1284 err = security_socket_create(family, type, protocol, kern);
1285 if (err)
1286 return err;
1287
1288 /*
1289 * Allocate the socket and allow the family to set things up. if
1290 * the protocol is 0, the family is instructed to select an appropriate
1291 * default.
1292 */
1293 sock = sock_alloc();
1294 if (!sock) {
1295 net_warn_ratelimited("socket: no more sockets\n");
1296 return -ENFILE; /* Not exactly a match, but its the
1297 closest posix thing */
1298 }
1299
1300 sock->type = type;
1301
1302 #ifdef CONFIG_MODULES
1303 /* Attempt to load a protocol module if the find failed.
1304 *
1305 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1306 * requested real, full-featured networking support upon configuration.
1307 * Otherwise module support will break!
1308 */
1309 if (rcu_access_pointer(net_families[family]) == NULL)
1310 request_module("net-pf-%d", family);
1311 #endif
1312
1313 rcu_read_lock();
1314 pf = rcu_dereference(net_families[family]);
1315 err = -EAFNOSUPPORT;
1316 if (!pf)
1317 goto out_release;
1318
1319 /*
1320 * We will call the ->create function, that possibly is in a loadable
1321 * module, so we have to bump that loadable module refcnt first.
1322 */
1323 if (!try_module_get(pf->owner))
1324 goto out_release;
1325
1326 /* Now protected by module ref count */
1327 rcu_read_unlock();
1328
1329 err = pf->create(net, sock, protocol, kern);
1330 if (err < 0)
1331 goto out_module_put;
1332
1333 /*
1334 * Now to bump the refcnt of the [loadable] module that owns this
1335 * socket at sock_release time we decrement its refcnt.
1336 */
1337 if (!try_module_get(sock->ops->owner))
1338 goto out_module_busy;
1339
1340 /*
1341 * Now that we're done with the ->create function, the [loadable]
1342 * module can have its refcnt decremented
1343 */
1344 module_put(pf->owner);
1345 err = security_socket_post_create(sock, family, type, protocol, kern);
1346 if (err)
1347 goto out_sock_release;
1348 *res = sock;
1349
1350 return 0;
1351
1352 out_module_busy:
1353 err = -EAFNOSUPPORT;
1354 out_module_put:
1355 sock->ops = NULL;
1356 module_put(pf->owner);
1357 out_sock_release:
1358 sock_release(sock);
1359 return err;
1360
1361 out_release:
1362 rcu_read_unlock();
1363 goto out_sock_release;
1364 }
1365 EXPORT_SYMBOL(__sock_create);
1366
1367 int sock_create(int family, int type, int protocol, struct socket **res)
1368 {
1369 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1370 }
1371 EXPORT_SYMBOL(sock_create);
1372
1373 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1374 {
1375 return __sock_create(&init_net, family, type, protocol, res, 1);
1376 }
1377 EXPORT_SYMBOL(sock_create_kern);
1378
1379 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1380 {
1381 int retval;
1382 struct socket *sock;
1383 int flags;
1384
1385 /* Check the SOCK_* constants for consistency. */
1386 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1387 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1388 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1389 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1390
1391 flags = type & ~SOCK_TYPE_MASK;
1392 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393 return -EINVAL;
1394 type &= SOCK_TYPE_MASK;
1395
1396 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1398
1399 retval = sock_create(family, type, protocol, &sock);
1400 if (retval < 0)
1401 goto out;
1402
1403 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1404 if (retval < 0)
1405 goto out_release;
1406
1407 out:
1408 /* It may be already another descriptor 8) Not kernel problem. */
1409
1410 if((retval >= 0)&& sock && SOCK_INODE(sock) )
1411 {
1412 #ifdef CONFIG_MTK_NET_LOGGING
1413 printk(KERN_INFO "[mtk_net][socket]socket_create[%lu]:fd=%d \n",SOCK_INODE(sock)->i_ino,retval);
1414 #endif
1415 }
1416 else
1417 {
1418 #ifdef CONFIG_MTK_NET_LOGGING
1419 printk(KERN_INFO "[mtk_net][socket]socket_create:fd=%d \n",retval);
1420 #endif
1421 }
1422 return retval;
1423
1424 out_release:
1425 sock_release(sock);
1426 return retval;
1427 }
1428
1429 /*
1430 * Create a pair of connected sockets.
1431 */
1432 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1433 int __user *, usockvec)
1434 {
1435 struct socket *sock1, *sock2;
1436 int fd1, fd2, err;
1437 struct file *newfile1, *newfile2;
1438 int flags;
1439
1440 flags = type & ~SOCK_TYPE_MASK;
1441 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1442 return -EINVAL;
1443 type &= SOCK_TYPE_MASK;
1444
1445 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1447
1448 /*
1449 * Obtain the first socket and check if the underlying protocol
1450 * supports the socketpair call.
1451 */
1452
1453 err = sock_create(family, type, protocol, &sock1);
1454 if (err < 0)
1455 goto out;
1456
1457 err = sock_create(family, type, protocol, &sock2);
1458 if (err < 0)
1459 goto out_release_1;
1460
1461 err = sock1->ops->socketpair(sock1, sock2);
1462 if (err < 0)
1463 goto out_release_both;
1464
1465 fd1 = get_unused_fd_flags(flags);
1466 if (unlikely(fd1 < 0)) {
1467 err = fd1;
1468 goto out_release_both;
1469 }
1470 fd2 = get_unused_fd_flags(flags);
1471 if (unlikely(fd2 < 0)) {
1472 err = fd2;
1473 put_unused_fd(fd1);
1474 goto out_release_both;
1475 }
1476
1477 newfile1 = sock_alloc_file(sock1, flags, NULL);
1478 if (unlikely(IS_ERR(newfile1))) {
1479 err = PTR_ERR(newfile1);
1480 put_unused_fd(fd1);
1481 put_unused_fd(fd2);
1482 goto out_release_both;
1483 }
1484
1485 newfile2 = sock_alloc_file(sock2, flags, NULL);
1486 if (IS_ERR(newfile2)) {
1487 err = PTR_ERR(newfile2);
1488 fput(newfile1);
1489 put_unused_fd(fd1);
1490 put_unused_fd(fd2);
1491 sock_release(sock2);
1492 goto out;
1493 }
1494
1495 audit_fd_pair(fd1, fd2);
1496 fd_install(fd1, newfile1);
1497 fd_install(fd2, newfile2);
1498 /* fd1 and fd2 may be already another descriptors.
1499 * Not kernel problem.
1500 */
1501
1502 err = put_user(fd1, &usockvec[0]);
1503 if (!err)
1504 err = put_user(fd2, &usockvec[1]);
1505 if (!err)
1506 {
1507 if(sock1 && SOCK_INODE(sock1) && sock2&& SOCK_INODE(sock2) )
1508 {
1509 #ifdef CONFIG_MTK_NET_LOGGING
1510 printk(KERN_INFO "[mtk_net][socket]socketpair:fd1[%lu]=%d, fd2[%lu]=%d \n", SOCK_INODE(sock1)->i_ino,fd1,SOCK_INODE(sock2)->i_ino,fd2);
1511 #endif
1512 }
1513
1514 return 0;
1515 }
1516
1517 sys_close(fd2);
1518 sys_close(fd1);
1519 #ifdef CONFIG_MTK_NET_LOGGING
1520 printk(KERN_INFO "[mtk_net][socket]socketpair fail1: %d \n", err);
1521 #endif
1522 return err;
1523
1524 out_release_both:
1525 sock_release(sock2);
1526 out_release_1:
1527 sock_release(sock1);
1528 out:
1529 #ifdef CONFIG_MTK_NET_LOGGING
1530 printk(KERN_INFO "[mtk_net][socket]socketpair fail2: %d \n", err);
1531 #endif
1532 return err;
1533 }
1534
1535 /*
1536 * Bind a name to a socket. Nothing much to do here since it's
1537 * the protocol's responsibility to handle the local address.
1538 *
1539 * We move the socket address to kernel space before we call
1540 * the protocol layer (having also checked the address is ok).
1541 */
1542
1543 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1544 {
1545 struct socket *sock;
1546 struct sockaddr_storage address;
1547 int err, fput_needed;
1548
1549 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 if (sock) {
1551 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1552
1553 if (err >= 0) {
1554 err = security_socket_bind(sock,
1555 (struct sockaddr *)&address,
1556 addrlen);
1557 if (!err)
1558 err = sock->ops->bind(sock,
1559 (struct sockaddr *)
1560 &address, addrlen);
1561
1562 #ifdef CONFIG_MTK_NET_LOGGING
1563 if((((struct sockaddr_in *)&address)->sin_family) != AF_UNIX)
1564 {
1565 printk(KERN_WARNING "[mtk_net][socket] bind addr->sin_port:%d,err:%d \n",htons(((struct sockaddr_in *)&address)->sin_port),err);
1566 }
1567 #endif
1568 }
1569 fput_light(sock->file, fput_needed);
1570 }
1571 return err;
1572 }
1573
1574 /*
1575 * Perform a listen. Basically, we allow the protocol to do anything
1576 * necessary for a listen, and if that works, we mark the socket as
1577 * ready for listening.
1578 */
1579
1580 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1581 {
1582 struct socket *sock;
1583 int err, fput_needed;
1584 int somaxconn;
1585
1586 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 if (sock) {
1588 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1589 if ((unsigned int)backlog > somaxconn)
1590 backlog = somaxconn;
1591
1592 err = security_socket_listen(sock, backlog);
1593 if (!err)
1594 err = sock->ops->listen(sock, backlog);
1595
1596 fput_light(sock->file, fput_needed);
1597 }
1598 return err;
1599 }
1600
1601 /*
1602 * For accept, we attempt to create a new socket, set up the link
1603 * with the client, wake up the client, then return the new
1604 * connected fd. We collect the address of the connector in kernel
1605 * space and move it to user at the very end. This is unclean because
1606 * we open the socket then return an error.
1607 *
1608 * 1003.1g adds the ability to recvmsg() to query connection pending
1609 * status to recvmsg. We need to add that support in a way thats
1610 * clean when we restucture accept also.
1611 */
1612 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1613 int __user *, upeer_addrlen, int, flags)
1614 {
1615 struct socket *sock, *newsock;
1616 struct file *newfile;
1617 int err, len, newfd, fput_needed;
1618 struct sockaddr_storage address;
1619
1620 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1621 return -EINVAL;
1622
1623 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1624 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1625
1626 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 if (!sock)
1628 goto out;
1629
1630 err = -ENFILE;
1631 newsock = sock_alloc();
1632 if (!newsock)
1633 goto out_put;
1634
1635 newsock->type = sock->type;
1636 newsock->ops = sock->ops;
1637
1638 /*
1639 * We don't need try_module_get here, as the listening socket (sock)
1640 * has the protocol module (sock->ops->owner) held.
1641 */
1642 __module_get(newsock->ops->owner);
1643
1644 newfd = get_unused_fd_flags(flags);
1645 if (unlikely(newfd < 0)) {
1646 err = newfd;
1647 sock_release(newsock);
1648 goto out_put;
1649 }
1650 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1651 if (unlikely(IS_ERR(newfile))) {
1652 err = PTR_ERR(newfile);
1653 put_unused_fd(newfd);
1654 sock_release(newsock);
1655 goto out_put;
1656 }
1657
1658 err = security_socket_accept(sock, newsock);
1659 if (err)
1660 goto out_fd;
1661
1662 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1663 if (err < 0)
1664 goto out_fd;
1665
1666 if (upeer_sockaddr) {
1667 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1668 &len, 2) < 0) {
1669 err = -ECONNABORTED;
1670 goto out_fd;
1671 }
1672 err = move_addr_to_user(&address,
1673 len, upeer_sockaddr, upeer_addrlen);
1674 if (err < 0)
1675 goto out_fd;
1676 }
1677
1678 /* File flags are not inherited via accept() unlike another OSes. */
1679
1680 fd_install(newfd, newfile);
1681 err = newfd;
1682
1683 out_put:
1684 fput_light(sock->file, fput_needed);
1685 out:
1686 if( (err>=0)&& newsock && SOCK_INODE(newsock) )
1687 {
1688 #ifdef CONFIG_MTK_NET_LOGGING
1689 printk(KERN_INFO "[mtk_net][socket]socket_accept:fd=%d \n",err);
1690 #endif
1691 }
1692
1693 return err;
1694 out_fd:
1695 fput(newfile);
1696 put_unused_fd(newfd);
1697 goto out_put;
1698 }
1699
1700 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1701 int __user *, upeer_addrlen)
1702 {
1703 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1704 }
1705
1706 /*
1707 * Attempt to connect to a socket with the server address. The address
1708 * is in user space so we verify it is OK and move it to kernel space.
1709 *
1710 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1711 * break bindings
1712 *
1713 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1714 * other SEQPACKET protocols that take time to connect() as it doesn't
1715 * include the -EINPROGRESS status for such sockets.
1716 */
1717
1718 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1719 int, addrlen)
1720 {
1721 struct socket *sock;
1722 struct sockaddr_storage address;
1723 int err, fput_needed;
1724
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1729 if (err < 0)
1730 goto out_put;
1731
1732 err =
1733 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1734 if (err)
1735 goto out_put;
1736
1737 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1738 sock->file->f_flags);
1739 out_put:
1740 fput_light(sock->file, fput_needed);
1741 out:
1742 return err;
1743 }
1744
1745 /*
1746 * Get the local address ('name') of a socket object. Move the obtained
1747 * name to user space.
1748 */
1749
1750 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1751 int __user *, usockaddr_len)
1752 {
1753 struct socket *sock;
1754 struct sockaddr_storage address;
1755 int len, err, fput_needed;
1756
1757 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 if (!sock)
1759 goto out;
1760
1761 err = security_socket_getsockname(sock);
1762 if (err)
1763 goto out_put;
1764
1765 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1766 if (err)
1767 goto out_put;
1768 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1769
1770 out_put:
1771 fput_light(sock->file, fput_needed);
1772 out:
1773 return err;
1774 }
1775
1776 /*
1777 * Get the remote address ('name') of a socket object. Move the obtained
1778 * name to user space.
1779 */
1780
1781 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1782 int __user *, usockaddr_len)
1783 {
1784 struct socket *sock;
1785 struct sockaddr_storage address;
1786 int len, err, fput_needed;
1787
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (sock != NULL) {
1790 err = security_socket_getpeername(sock);
1791 if (err) {
1792 fput_light(sock->file, fput_needed);
1793 return err;
1794 }
1795
1796 err =
1797 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1798 1);
1799 if (!err)
1800 err = move_addr_to_user(&address, len, usockaddr,
1801 usockaddr_len);
1802 fput_light(sock->file, fput_needed);
1803 }
1804 return err;
1805 }
1806
1807 /*
1808 * Send a datagram to a given address. We move the address into kernel
1809 * space and check the user space data area is readable before invoking
1810 * the protocol.
1811 */
1812
1813 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1814 unsigned int, flags, struct sockaddr __user *, addr,
1815 int, addr_len)
1816 {
1817 struct socket *sock;
1818 struct sockaddr_storage address;
1819 int err;
1820 struct msghdr msg;
1821 struct iovec iov;
1822 int fput_needed;
1823
1824 if (len > INT_MAX)
1825 len = INT_MAX;
1826 if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1827 return -EFAULT;
1828 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 if (!sock)
1830 goto out;
1831
1832 iov.iov_base = buff;
1833 iov.iov_len = len;
1834 msg.msg_name = NULL;
1835 msg.msg_iov = &iov;
1836 msg.msg_iovlen = 1;
1837 msg.msg_control = NULL;
1838 msg.msg_controllen = 0;
1839 msg.msg_namelen = 0;
1840 if (addr) {
1841 err = move_addr_to_kernel(addr, addr_len, &address);
1842 if (err < 0)
1843 goto out_put;
1844 msg.msg_name = (struct sockaddr *)&address;
1845 msg.msg_namelen = addr_len;
1846 }
1847 if (sock->file->f_flags & O_NONBLOCK)
1848 flags |= MSG_DONTWAIT;
1849 msg.msg_flags = flags;
1850 err = sock_sendmsg(sock, &msg, len);
1851
1852 out_put:
1853 fput_light(sock->file, fput_needed);
1854 out:
1855 return err;
1856 }
1857
1858 /*
1859 * Send a datagram down a socket.
1860 */
1861
1862 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1863 unsigned int, flags)
1864 {
1865 return sys_sendto(fd, buff, len, flags, NULL, 0);
1866 }
1867
1868 /*
1869 * Receive a frame from the socket and optionally record the address of the
1870 * sender. We verify the buffers are writable and if needed move the
1871 * sender address from kernel to user space.
1872 */
1873
1874 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1875 unsigned int, flags, struct sockaddr __user *, addr,
1876 int __user *, addr_len)
1877 {
1878 struct socket *sock;
1879 struct iovec iov;
1880 struct msghdr msg;
1881 struct sockaddr_storage address;
1882 int err, err2;
1883 int fput_needed;
1884
1885 if (size > INT_MAX)
1886 size = INT_MAX;
1887 if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1888 return -EFAULT;
1889 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 if (!sock)
1891 goto out;
1892
1893 msg.msg_control = NULL;
1894 msg.msg_controllen = 0;
1895 msg.msg_iovlen = 1;
1896 msg.msg_iov = &iov;
1897 iov.iov_len = size;
1898 iov.iov_base = ubuf;
1899 /* Save some cycles and don't copy the address if not needed */
1900 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1901 /* We assume all kernel code knows the size of sockaddr_storage */
1902 msg.msg_namelen = 0;
1903 if (sock->file->f_flags & O_NONBLOCK)
1904 flags |= MSG_DONTWAIT;
1905 err = sock_recvmsg(sock, &msg, size, flags);
1906
1907 if (err >= 0 && addr != NULL) {
1908 err2 = move_addr_to_user(&address,
1909 msg.msg_namelen, addr, addr_len);
1910 if (err2 < 0)
1911 err = err2;
1912 }
1913
1914 fput_light(sock->file, fput_needed);
1915 out:
1916 return err;
1917 }
1918
1919 /*
1920 * Receive a datagram from a socket.
1921 */
1922
1923 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1924 unsigned int flags)
1925 {
1926 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1927 }
1928
1929 /*
1930 * Set a socket option. Because we don't know the option lengths we have
1931 * to pass the user mode parameter for the protocols to sort out.
1932 */
1933
1934 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1935 char __user *, optval, int, optlen)
1936 {
1937 int err, fput_needed;
1938 struct socket *sock;
1939
1940 if (optlen < 0)
1941 return -EINVAL;
1942
1943 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1944 if (sock != NULL) {
1945 err = security_socket_setsockopt(sock, level, optname);
1946 if (err)
1947 goto out_put;
1948
1949 if (level == SOL_SOCKET)
1950 err =
1951 sock_setsockopt(sock, level, optname, optval,
1952 optlen);
1953 else
1954 err =
1955 sock->ops->setsockopt(sock, level, optname, optval,
1956 optlen);
1957 out_put:
1958 fput_light(sock->file, fput_needed);
1959 }
1960 return err;
1961 }
1962
1963 /*
1964 * Get a socket option. Because we don't know the option lengths we have
1965 * to pass a user mode parameter for the protocols to sort out.
1966 */
1967
1968 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1969 char __user *, optval, int __user *, optlen)
1970 {
1971 int err, fput_needed;
1972 struct socket *sock;
1973
1974 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1975 if (sock != NULL) {
1976 err = security_socket_getsockopt(sock, level, optname);
1977 if (err)
1978 goto out_put;
1979
1980 if (level == SOL_SOCKET)
1981 err =
1982 sock_getsockopt(sock, level, optname, optval,
1983 optlen);
1984 else
1985 err =
1986 sock->ops->getsockopt(sock, level, optname, optval,
1987 optlen);
1988 out_put:
1989 fput_light(sock->file, fput_needed);
1990 }
1991 return err;
1992 }
1993
1994 /*
1995 * Shutdown a socket.
1996 */
1997
1998 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1999 {
2000 int err, fput_needed;
2001 struct socket *sock;
2002
2003 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004 if (sock != NULL) {
2005 err = security_socket_shutdown(sock, how);
2006 if (!err)
2007 err = sock->ops->shutdown(sock, how);
2008 fput_light(sock->file, fput_needed);
2009 }
2010 return err;
2011 }
2012
2013 /* A couple of helpful macros for getting the address of the 32/64 bit
2014 * fields which are the same type (int / unsigned) on our platforms.
2015 */
2016 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2017 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2018 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2019
2020 struct used_address {
2021 struct sockaddr_storage name;
2022 unsigned int name_len;
2023 };
2024
2025 static int copy_msghdr_from_user(struct msghdr *kmsg,
2026 struct msghdr __user *umsg)
2027 {
2028 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
2029 return -EFAULT;
2030
2031 if (kmsg->msg_namelen < 0)
2032 return -EINVAL;
2033
2034 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2035 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2036 return 0;
2037 }
2038
2039 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2040 struct msghdr *msg_sys, unsigned int flags,
2041 struct used_address *used_address)
2042 {
2043 struct compat_msghdr __user *msg_compat =
2044 (struct compat_msghdr __user *)msg;
2045 struct sockaddr_storage address;
2046 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2047 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2048 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2049 /* 20 is size of ipv6_pktinfo */
2050 unsigned char *ctl_buf = ctl;
2051 int err, ctl_len, total_len;
2052
2053 err = -EFAULT;
2054 if (MSG_CMSG_COMPAT & flags)
2055 err = get_compat_msghdr(msg_sys, msg_compat);
2056 else
2057 err = copy_msghdr_from_user(msg_sys, msg);
2058 if (err)
2059 return err;
2060
2061 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2062 err = -EMSGSIZE;
2063 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2064 goto out;
2065 err = -ENOMEM;
2066 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2067 GFP_KERNEL);
2068 if (!iov)
2069 goto out;
2070 }
2071
2072 /* This will also move the address data into kernel space */
2073 if (MSG_CMSG_COMPAT & flags) {
2074 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2075 } else
2076 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2077 if (err < 0)
2078 goto out_freeiov;
2079 total_len = err;
2080
2081 err = -ENOBUFS;
2082
2083 if (msg_sys->msg_controllen > INT_MAX)
2084 goto out_freeiov;
2085 ctl_len = msg_sys->msg_controllen;
2086 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2087 err =
2088 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2089 sizeof(ctl));
2090 if (err)
2091 goto out_freeiov;
2092 ctl_buf = msg_sys->msg_control;
2093 ctl_len = msg_sys->msg_controllen;
2094 } else if (ctl_len) {
2095 if (ctl_len > sizeof(ctl)) {
2096 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2097 if (ctl_buf == NULL)
2098 goto out_freeiov;
2099 }
2100 err = -EFAULT;
2101 /*
2102 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2103 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2104 * checking falls down on this.
2105 */
2106 if (copy_from_user(ctl_buf,
2107 (void __user __force *)msg_sys->msg_control,
2108 ctl_len))
2109 goto out_freectl;
2110 msg_sys->msg_control = ctl_buf;
2111 }
2112 msg_sys->msg_flags = flags;
2113
2114 if (sock->file->f_flags & O_NONBLOCK)
2115 msg_sys->msg_flags |= MSG_DONTWAIT;
2116 /*
2117 * If this is sendmmsg() and current destination address is same as
2118 * previously succeeded address, omit asking LSM's decision.
2119 * used_address->name_len is initialized to UINT_MAX so that the first
2120 * destination address never matches.
2121 */
2122 if (used_address && msg_sys->msg_name &&
2123 used_address->name_len == msg_sys->msg_namelen &&
2124 !memcmp(&used_address->name, msg_sys->msg_name,
2125 used_address->name_len)) {
2126 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2127 goto out_freectl;
2128 }
2129 err = sock_sendmsg(sock, msg_sys, total_len);
2130 /*
2131 * If this is sendmmsg() and sending to current destination address was
2132 * successful, remember it.
2133 */
2134 if (used_address && err >= 0) {
2135 used_address->name_len = msg_sys->msg_namelen;
2136 if (msg_sys->msg_name)
2137 memcpy(&used_address->name, msg_sys->msg_name,
2138 used_address->name_len);
2139 }
2140
2141 out_freectl:
2142 if (ctl_buf != ctl)
2143 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2144 out_freeiov:
2145 if (iov != iovstack)
2146 kfree(iov);
2147 out:
2148 return err;
2149 }
2150
2151 /*
2152 * BSD sendmsg interface
2153 */
2154
2155 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2156 {
2157 int fput_needed, err;
2158 struct msghdr msg_sys;
2159 struct socket *sock;
2160
2161 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2162 if (!sock)
2163 goto out;
2164
2165 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2166
2167 fput_light(sock->file, fput_needed);
2168 out:
2169 return err;
2170 }
2171
2172 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2173 {
2174 if (flags & MSG_CMSG_COMPAT)
2175 return -EINVAL;
2176 return __sys_sendmsg(fd, msg, flags);
2177 }
2178
2179 /*
2180 * Linux sendmmsg interface
2181 */
2182
2183 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2184 unsigned int flags)
2185 {
2186 int fput_needed, err, datagrams;
2187 struct socket *sock;
2188 struct mmsghdr __user *entry;
2189 struct compat_mmsghdr __user *compat_entry;
2190 struct msghdr msg_sys;
2191 struct used_address used_address;
2192
2193 if (vlen > UIO_MAXIOV)
2194 vlen = UIO_MAXIOV;
2195
2196 datagrams = 0;
2197
2198 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2199 if (!sock)
2200 return err;
2201
2202 used_address.name_len = UINT_MAX;
2203 entry = mmsg;
2204 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2205 err = 0;
2206
2207 while (datagrams < vlen) {
2208 if (MSG_CMSG_COMPAT & flags) {
2209 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2210 &msg_sys, flags, &used_address);
2211 if (err < 0)
2212 break;
2213 err = __put_user(err, &compat_entry->msg_len);
2214 ++compat_entry;
2215 } else {
2216 err = ___sys_sendmsg(sock,
2217 (struct msghdr __user *)entry,
2218 &msg_sys, flags, &used_address);
2219 if (err < 0)
2220 break;
2221 err = put_user(err, &entry->msg_len);
2222 ++entry;
2223 }
2224
2225 if (err)
2226 break;
2227 ++datagrams;
2228 }
2229
2230 fput_light(sock->file, fput_needed);
2231
2232 /* We only return an error if no datagrams were able to be sent */
2233 if (datagrams != 0)
2234 return datagrams;
2235
2236 return err;
2237 }
2238
2239 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2240 unsigned int, vlen, unsigned int, flags)
2241 {
2242 if (flags & MSG_CMSG_COMPAT)
2243 return -EINVAL;
2244 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2245 }
2246
2247 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2248 struct msghdr *msg_sys, unsigned int flags, int nosec)
2249 {
2250 struct compat_msghdr __user *msg_compat =
2251 (struct compat_msghdr __user *)msg;
2252 struct iovec iovstack[UIO_FASTIOV];
2253 struct iovec *iov = iovstack;
2254 unsigned long cmsg_ptr;
2255 int err, total_len, len;
2256
2257 /* kernel mode address */
2258 struct sockaddr_storage addr;
2259
2260 /* user mode address pointers */
2261 struct sockaddr __user *uaddr;
2262 int __user *uaddr_len;
2263
2264 if (MSG_CMSG_COMPAT & flags)
2265 err = get_compat_msghdr(msg_sys, msg_compat);
2266 else
2267 err = copy_msghdr_from_user(msg_sys, msg);
2268 if (err)
2269 return err;
2270
2271 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2272 err = -EMSGSIZE;
2273 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2274 goto out;
2275 err = -ENOMEM;
2276 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2277 GFP_KERNEL);
2278 if (!iov)
2279 goto out;
2280 }
2281
2282 /* Save the user-mode address (verify_iovec will change the
2283 * kernel msghdr to use the kernel address space)
2284 */
2285 uaddr = (__force void __user *)msg_sys->msg_name;
2286 uaddr_len = COMPAT_NAMELEN(msg);
2287 if (MSG_CMSG_COMPAT & flags)
2288 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2289 else
2290 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2291 if (err < 0)
2292 goto out_freeiov;
2293 total_len = err;
2294
2295 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2296 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2297
2298 /* We assume all kernel code knows the size of sockaddr_storage */
2299 msg_sys->msg_namelen = 0;
2300
2301 if (sock->file->f_flags & O_NONBLOCK)
2302 flags |= MSG_DONTWAIT;
2303 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2304 total_len, flags);
2305 if (err < 0)
2306 goto out_freeiov;
2307 len = err;
2308
2309 if (uaddr != NULL) {
2310 err = move_addr_to_user(&addr,
2311 msg_sys->msg_namelen, uaddr,
2312 uaddr_len);
2313 if (err < 0)
2314 goto out_freeiov;
2315 }
2316 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2317 COMPAT_FLAGS(msg));
2318 if (err)
2319 goto out_freeiov;
2320 if (MSG_CMSG_COMPAT & flags)
2321 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2322 &msg_compat->msg_controllen);
2323 else
2324 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2325 &msg->msg_controllen);
2326 if (err)
2327 goto out_freeiov;
2328 err = len;
2329
2330 out_freeiov:
2331 if (iov != iovstack)
2332 kfree(iov);
2333 out:
2334 return err;
2335 }
2336
2337 /*
2338 * BSD recvmsg interface
2339 */
2340
2341 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2342 {
2343 int fput_needed, err;
2344 struct msghdr msg_sys;
2345 struct socket *sock;
2346
2347 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2348 if (!sock)
2349 goto out;
2350
2351 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2352
2353 fput_light(sock->file, fput_needed);
2354 out:
2355 return err;
2356 }
2357
2358 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2359 unsigned int, flags)
2360 {
2361 if (flags & MSG_CMSG_COMPAT)
2362 return -EINVAL;
2363 return __sys_recvmsg(fd, msg, flags);
2364 }
2365
2366 /*
2367 * Linux recvmmsg interface
2368 */
2369
2370 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2371 unsigned int flags, struct timespec *timeout)
2372 {
2373 int fput_needed, err, datagrams;
2374 struct socket *sock;
2375 struct mmsghdr __user *entry;
2376 struct compat_mmsghdr __user *compat_entry;
2377 struct msghdr msg_sys;
2378 struct timespec end_time;
2379
2380 if (timeout &&
2381 poll_select_set_timeout(&end_time, timeout->tv_sec,
2382 timeout->tv_nsec))
2383 return -EINVAL;
2384
2385 datagrams = 0;
2386
2387 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2388 if (!sock)
2389 return err;
2390
2391 err = sock_error(sock->sk);
2392 if (err) {
2393 datagrams = err;
2394 goto out_put;
2395 }
2396
2397 entry = mmsg;
2398 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2399
2400 while (datagrams < vlen) {
2401 /*
2402 * No need to ask LSM for more than the first datagram.
2403 */
2404 if (MSG_CMSG_COMPAT & flags) {
2405 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2406 &msg_sys, flags & ~MSG_WAITFORONE,
2407 datagrams);
2408 if (err < 0)
2409 break;
2410 err = __put_user(err, &compat_entry->msg_len);
2411 ++compat_entry;
2412 } else {
2413 err = ___sys_recvmsg(sock,
2414 (struct msghdr __user *)entry,
2415 &msg_sys, flags & ~MSG_WAITFORONE,
2416 datagrams);
2417 if (err < 0)
2418 break;
2419 err = put_user(err, &entry->msg_len);
2420 ++entry;
2421 }
2422
2423 if (err)
2424 break;
2425 ++datagrams;
2426
2427 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2428 if (flags & MSG_WAITFORONE)
2429 flags |= MSG_DONTWAIT;
2430
2431 if (timeout) {
2432 ktime_get_ts(timeout);
2433 *timeout = timespec_sub(end_time, *timeout);
2434 if (timeout->tv_sec < 0) {
2435 timeout->tv_sec = timeout->tv_nsec = 0;
2436 break;
2437 }
2438
2439 /* Timeout, return less than vlen datagrams */
2440 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2441 break;
2442 }
2443
2444 /* Out of band data, return right away */
2445 if (msg_sys.msg_flags & MSG_OOB)
2446 break;
2447 }
2448
2449 if (err == 0)
2450 goto out_put;
2451
2452 if (datagrams == 0) {
2453 datagrams = err;
2454 goto out_put;
2455 }
2456
2457 /*
2458 * We may return less entries than requested (vlen) if the
2459 * sock is non block and there aren't enough datagrams...
2460 */
2461 if (err != -EAGAIN) {
2462 /*
2463 * ... or if recvmsg returns an error after we
2464 * received some datagrams, where we record the
2465 * error to return on the next call or if the
2466 * app asks about it using getsockopt(SO_ERROR).
2467 */
2468 sock->sk->sk_err = -err;
2469 }
2470 out_put:
2471 fput_light(sock->file, fput_needed);
2472
2473 return datagrams;
2474 }
2475
2476 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2477 unsigned int, vlen, unsigned int, flags,
2478 struct timespec __user *, timeout)
2479 {
2480 int datagrams;
2481 struct timespec timeout_sys;
2482
2483 if (flags & MSG_CMSG_COMPAT)
2484 return -EINVAL;
2485
2486 if (!timeout)
2487 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2488
2489 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2490 return -EFAULT;
2491
2492 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2493
2494 if (datagrams > 0 &&
2495 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2496 datagrams = -EFAULT;
2497
2498 return datagrams;
2499 }
2500
2501 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2502 /* Argument list sizes for sys_socketcall */
2503 #define AL(x) ((x) * sizeof(unsigned long))
2504 static const unsigned char nargs[21] = {
2505 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2506 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2507 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2508 AL(4), AL(5), AL(4)
2509 };
2510
2511 #undef AL
2512
2513 /*
2514 * System call vectors.
2515 *
2516 * Argument checking cleaned up. Saved 20% in size.
2517 * This function doesn't need to set the kernel lock because
2518 * it is set by the callees.
2519 */
2520
2521 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2522 {
2523 unsigned long a[AUDITSC_ARGS];
2524 unsigned long a0, a1;
2525 int err;
2526 unsigned int len;
2527
2528 if (call < 1 || call > SYS_SENDMMSG)
2529 return -EINVAL;
2530
2531 len = nargs[call];
2532 if (len > sizeof(a))
2533 return -EINVAL;
2534
2535 /* copy_from_user should be SMP safe. */
2536 if (copy_from_user(a, args, len))
2537 return -EFAULT;
2538
2539 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2540 if (err)
2541 return err;
2542
2543 a0 = a[0];
2544 a1 = a[1];
2545
2546 switch (call) {
2547 case SYS_SOCKET:
2548 err = sys_socket(a0, a1, a[2]);
2549 break;
2550 case SYS_BIND:
2551 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2552 break;
2553 case SYS_CONNECT:
2554 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2555 break;
2556 case SYS_LISTEN:
2557 err = sys_listen(a0, a1);
2558 break;
2559 case SYS_ACCEPT:
2560 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2561 (int __user *)a[2], 0);
2562 break;
2563 case SYS_GETSOCKNAME:
2564 err =
2565 sys_getsockname(a0, (struct sockaddr __user *)a1,
2566 (int __user *)a[2]);
2567 break;
2568 case SYS_GETPEERNAME:
2569 err =
2570 sys_getpeername(a0, (struct sockaddr __user *)a1,
2571 (int __user *)a[2]);
2572 break;
2573 case SYS_SOCKETPAIR:
2574 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2575 break;
2576 case SYS_SEND:
2577 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2578 break;
2579 case SYS_SENDTO:
2580 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2581 (struct sockaddr __user *)a[4], a[5]);
2582 break;
2583 case SYS_RECV:
2584 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2585 break;
2586 case SYS_RECVFROM:
2587 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2588 (struct sockaddr __user *)a[4],
2589 (int __user *)a[5]);
2590 break;
2591 case SYS_SHUTDOWN:
2592 err = sys_shutdown(a0, a1);
2593 break;
2594 case SYS_SETSOCKOPT:
2595 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2596 break;
2597 case SYS_GETSOCKOPT:
2598 err =
2599 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2600 (int __user *)a[4]);
2601 break;
2602 case SYS_SENDMSG:
2603 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2604 break;
2605 case SYS_SENDMMSG:
2606 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2607 break;
2608 case SYS_RECVMSG:
2609 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2610 break;
2611 case SYS_RECVMMSG:
2612 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2613 (struct timespec __user *)a[4]);
2614 break;
2615 case SYS_ACCEPT4:
2616 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2617 (int __user *)a[2], a[3]);
2618 break;
2619 default:
2620 err = -EINVAL;
2621 break;
2622 }
2623 return err;
2624 }
2625
2626 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2627
2628 /**
2629 * sock_register - add a socket protocol handler
2630 * @ops: description of protocol
2631 *
2632 * This function is called by a protocol handler that wants to
2633 * advertise its address family, and have it linked into the
2634 * socket interface. The value ops->family coresponds to the
2635 * socket system call protocol family.
2636 */
2637 int sock_register(const struct net_proto_family *ops)
2638 {
2639 int err;
2640
2641 if (ops->family >= NPROTO) {
2642 printk(KERN_CRIT "[mtk_net][sock]protocol %d >= NPROTO(%d)\n", ops->family,
2643 NPROTO);
2644 return -ENOBUFS;
2645 }
2646
2647 spin_lock(&net_family_lock);
2648 if (rcu_dereference_protected(net_families[ops->family],
2649 lockdep_is_held(&net_family_lock)))
2650 err = -EEXIST;
2651 else {
2652 rcu_assign_pointer(net_families[ops->family], ops);
2653 err = 0;
2654 }
2655 spin_unlock(&net_family_lock);
2656 #ifdef CONFIG_MTK_NET_LOGGING
2657 printk(KERN_INFO "[mtk_net][socekt]NET: Registered protocol family %d\n", ops->family);
2658 #endif
2659 return err;
2660 }
2661 EXPORT_SYMBOL(sock_register);
2662
2663 /**
2664 * sock_unregister - remove a protocol handler
2665 * @family: protocol family to remove
2666 *
2667 * This function is called by a protocol handler that wants to
2668 * remove its address family, and have it unlinked from the
2669 * new socket creation.
2670 *
2671 * If protocol handler is a module, then it can use module reference
2672 * counts to protect against new references. If protocol handler is not
2673 * a module then it needs to provide its own protection in
2674 * the ops->create routine.
2675 */
2676 void sock_unregister(int family)
2677 {
2678 BUG_ON(family < 0 || family >= NPROTO);
2679
2680 spin_lock(&net_family_lock);
2681 RCU_INIT_POINTER(net_families[family], NULL);
2682 spin_unlock(&net_family_lock);
2683
2684 synchronize_rcu();
2685 #ifdef CONFIG_MTK_NET_LOGGING
2686 printk(KERN_INFO "[mtk_net][socket]NET: Unregistered protocol family %d\n", family);
2687 #endif
2688 }
2689 EXPORT_SYMBOL(sock_unregister);
2690
2691 static int __init sock_init(void)
2692 {
2693 int err;
2694 /*
2695 * Initialize the network sysctl infrastructure.
2696 */
2697 err = net_sysctl_init();
2698 if (err)
2699 goto out;
2700
2701 /*
2702 * Initialize skbuff SLAB cache
2703 */
2704 skb_init();
2705
2706 /*
2707 * Initialize the protocols module.
2708 */
2709
2710 init_inodecache();
2711
2712 err = register_filesystem(&sock_fs_type);
2713 if (err)
2714 goto out_fs;
2715 sock_mnt = kern_mount(&sock_fs_type);
2716 if (IS_ERR(sock_mnt)) {
2717 err = PTR_ERR(sock_mnt);
2718 goto out_mount;
2719 }
2720
2721 /* The real protocol initialization is performed in later initcalls.
2722 */
2723
2724 #ifdef CONFIG_NETFILTER
2725 netfilter_init();
2726 #endif
2727
2728 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2729 skb_timestamping_init();
2730 #endif
2731
2732 out:
2733 return err;
2734
2735 out_mount:
2736 unregister_filesystem(&sock_fs_type);
2737 out_fs:
2738 goto out;
2739 }
2740
2741 core_initcall(sock_init); /* early initcall */
2742
2743 #ifdef CONFIG_PROC_FS
2744 void socket_seq_show(struct seq_file *seq)
2745 {
2746 int cpu;
2747 int counter = 0;
2748
2749 for_each_possible_cpu(cpu)
2750 counter += per_cpu(sockets_in_use, cpu);
2751
2752 /* It can be negative, by the way. 8) */
2753 if (counter < 0)
2754 counter = 0;
2755
2756 seq_printf(seq, "sockets: used %d\n", counter);
2757 }
2758 #endif /* CONFIG_PROC_FS */
2759
2760 #ifdef CONFIG_COMPAT
2761 static int do_siocgstamp(struct net *net, struct socket *sock,
2762 unsigned int cmd, void __user *up)
2763 {
2764 mm_segment_t old_fs = get_fs();
2765 struct timeval ktv;
2766 int err;
2767
2768 set_fs(KERNEL_DS);
2769 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2770 set_fs(old_fs);
2771 if (!err)
2772 err = compat_put_timeval(&ktv, up);
2773
2774 return err;
2775 }
2776
2777 static int do_siocgstampns(struct net *net, struct socket *sock,
2778 unsigned int cmd, void __user *up)
2779 {
2780 mm_segment_t old_fs = get_fs();
2781 struct timespec kts;
2782 int err;
2783
2784 set_fs(KERNEL_DS);
2785 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2786 set_fs(old_fs);
2787 if (!err)
2788 err = compat_put_timespec(&kts, up);
2789
2790 return err;
2791 }
2792
2793 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2794 {
2795 struct ifreq __user *uifr;
2796 int err;
2797
2798 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2799 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2800 return -EFAULT;
2801
2802 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2803 if (err)
2804 return err;
2805
2806 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2807 return -EFAULT;
2808
2809 return 0;
2810 }
2811
2812 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2813 {
2814 struct compat_ifconf ifc32;
2815 struct ifconf ifc;
2816 struct ifconf __user *uifc;
2817 struct compat_ifreq __user *ifr32;
2818 struct ifreq __user *ifr;
2819 unsigned int i, j;
2820 int err;
2821
2822 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2823 return -EFAULT;
2824
2825 memset(&ifc, 0, sizeof(ifc));
2826 if (ifc32.ifcbuf == 0) {
2827 ifc32.ifc_len = 0;
2828 ifc.ifc_len = 0;
2829 ifc.ifc_req = NULL;
2830 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2831 } else {
2832 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2833 sizeof(struct ifreq);
2834 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2835 ifc.ifc_len = len;
2836 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2837 ifr32 = compat_ptr(ifc32.ifcbuf);
2838 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2839 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2840 return -EFAULT;
2841 ifr++;
2842 ifr32++;
2843 }
2844 }
2845 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2846 return -EFAULT;
2847
2848 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2849 if (err)
2850 return err;
2851
2852 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2853 return -EFAULT;
2854
2855 ifr = ifc.ifc_req;
2856 ifr32 = compat_ptr(ifc32.ifcbuf);
2857 for (i = 0, j = 0;
2858 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2859 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2860 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2861 return -EFAULT;
2862 ifr32++;
2863 ifr++;
2864 }
2865
2866 if (ifc32.ifcbuf == 0) {
2867 /* Translate from 64-bit structure multiple to
2868 * a 32-bit one.
2869 */
2870 i = ifc.ifc_len;
2871 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2872 ifc32.ifc_len = i;
2873 } else {
2874 ifc32.ifc_len = i;
2875 }
2876 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2877 return -EFAULT;
2878
2879 return 0;
2880 }
2881
2882 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2883 {
2884 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2885 bool convert_in = false, convert_out = false;
2886 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2887 struct ethtool_rxnfc __user *rxnfc;
2888 struct ifreq __user *ifr;
2889 u32 rule_cnt = 0, actual_rule_cnt;
2890 u32 ethcmd;
2891 u32 data;
2892 int ret;
2893
2894 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896
2897 compat_rxnfc = compat_ptr(data);
2898
2899 if (get_user(ethcmd, &compat_rxnfc->cmd))
2900 return -EFAULT;
2901
2902 /* Most ethtool structures are defined without padding.
2903 * Unfortunately struct ethtool_rxnfc is an exception.
2904 */
2905 switch (ethcmd) {
2906 default:
2907 break;
2908 case ETHTOOL_GRXCLSRLALL:
2909 /* Buffer size is variable */
2910 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2911 return -EFAULT;
2912 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2913 return -ENOMEM;
2914 buf_size += rule_cnt * sizeof(u32);
2915 /* fall through */
2916 case ETHTOOL_GRXRINGS:
2917 case ETHTOOL_GRXCLSRLCNT:
2918 case ETHTOOL_GRXCLSRULE:
2919 case ETHTOOL_SRXCLSRLINS:
2920 convert_out = true;
2921 /* fall through */
2922 case ETHTOOL_SRXCLSRLDEL:
2923 buf_size += sizeof(struct ethtool_rxnfc);
2924 convert_in = true;
2925 break;
2926 }
2927
2928 ifr = compat_alloc_user_space(buf_size);
2929 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2930
2931 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2932 return -EFAULT;
2933
2934 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2935 &ifr->ifr_ifru.ifru_data))
2936 return -EFAULT;
2937
2938 if (convert_in) {
2939 /* We expect there to be holes between fs.m_ext and
2940 * fs.ring_cookie and at the end of fs, but nowhere else.
2941 */
2942 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2943 sizeof(compat_rxnfc->fs.m_ext) !=
2944 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2945 sizeof(rxnfc->fs.m_ext));
2946 BUILD_BUG_ON(
2947 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2948 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2949 offsetof(struct ethtool_rxnfc, fs.location) -
2950 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2951
2952 if (copy_in_user(rxnfc, compat_rxnfc,
2953 (void __user *)(&rxnfc->fs.m_ext + 1) -
2954 (void __user *)rxnfc) ||
2955 copy_in_user(&rxnfc->fs.ring_cookie,
2956 &compat_rxnfc->fs.ring_cookie,
2957 (void __user *)(&rxnfc->fs.location + 1) -
2958 (void __user *)&rxnfc->fs.ring_cookie) ||
2959 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2960 sizeof(rxnfc->rule_cnt)))
2961 return -EFAULT;
2962 }
2963
2964 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2965 if (ret)
2966 return ret;
2967
2968 if (convert_out) {
2969 if (copy_in_user(compat_rxnfc, rxnfc,
2970 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2971 (const void __user *)rxnfc) ||
2972 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2973 &rxnfc->fs.ring_cookie,
2974 (const void __user *)(&rxnfc->fs.location + 1) -
2975 (const void __user *)&rxnfc->fs.ring_cookie) ||
2976 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2977 sizeof(rxnfc->rule_cnt)))
2978 return -EFAULT;
2979
2980 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2981 /* As an optimisation, we only copy the actual
2982 * number of rules that the underlying
2983 * function returned. Since Mallory might
2984 * change the rule count in user memory, we
2985 * check that it is less than the rule count
2986 * originally given (as the user buffer size),
2987 * which has been range-checked.
2988 */
2989 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2990 return -EFAULT;
2991 if (actual_rule_cnt < rule_cnt)
2992 rule_cnt = actual_rule_cnt;
2993 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2994 &rxnfc->rule_locs[0],
2995 rule_cnt * sizeof(u32)))
2996 return -EFAULT;
2997 }
2998 }
2999
3000 return 0;
3001 }
3002
3003 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3004 {
3005 void __user *uptr;
3006 compat_uptr_t uptr32;
3007 struct ifreq __user *uifr;
3008
3009 uifr = compat_alloc_user_space(sizeof(*uifr));
3010 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3011 return -EFAULT;
3012
3013 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3014 return -EFAULT;
3015
3016 uptr = compat_ptr(uptr32);
3017
3018 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
3019 return -EFAULT;
3020
3021 return dev_ioctl(net, SIOCWANDEV, uifr);
3022 }
3023
3024 static int bond_ioctl(struct net *net, unsigned int cmd,
3025 struct compat_ifreq __user *ifr32)
3026 {
3027 struct ifreq kifr;
3028 struct ifreq __user *uifr;
3029 mm_segment_t old_fs;
3030 int err;
3031 u32 data;
3032 void __user *datap;
3033
3034 switch (cmd) {
3035 case SIOCBONDENSLAVE:
3036 case SIOCBONDRELEASE:
3037 case SIOCBONDSETHWADDR:
3038 case SIOCBONDCHANGEACTIVE:
3039 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3040 return -EFAULT;
3041
3042 old_fs = get_fs();
3043 set_fs(KERNEL_DS);
3044 err = dev_ioctl(net, cmd,
3045 (struct ifreq __user __force *) &kifr);
3046 set_fs(old_fs);
3047
3048 return err;
3049 case SIOCBONDSLAVEINFOQUERY:
3050 case SIOCBONDINFOQUERY:
3051 uifr = compat_alloc_user_space(sizeof(*uifr));
3052 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3053 return -EFAULT;
3054
3055 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3056 return -EFAULT;
3057
3058 datap = compat_ptr(data);
3059 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
3060 return -EFAULT;
3061
3062 return dev_ioctl(net, cmd, uifr);
3063 default:
3064 return -ENOIOCTLCMD;
3065 }
3066 }
3067
3068 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3069 struct compat_ifreq __user *u_ifreq32)
3070 {
3071 struct ifreq __user *u_ifreq64;
3072 char tmp_buf[IFNAMSIZ];
3073 void __user *data64;
3074 u32 data32;
3075
3076 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3077 IFNAMSIZ))
3078 return -EFAULT;
3079 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3080 return -EFAULT;
3081 data64 = compat_ptr(data32);
3082
3083 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3084
3085 /* Don't check these user accesses, just let that get trapped
3086 * in the ioctl handler instead.
3087 */
3088 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3089 IFNAMSIZ))
3090 return -EFAULT;
3091 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3092 return -EFAULT;
3093
3094 return dev_ioctl(net, cmd, u_ifreq64);
3095 }
3096
3097 static int dev_ifsioc(struct net *net, struct socket *sock,
3098 unsigned int cmd, struct compat_ifreq __user *uifr32)
3099 {
3100 struct ifreq __user *uifr;
3101 int err;
3102
3103 uifr = compat_alloc_user_space(sizeof(*uifr));
3104 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3105 return -EFAULT;
3106
3107 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3108
3109 if (!err) {
3110 switch (cmd) {
3111 case SIOCGIFFLAGS:
3112 case SIOCGIFMETRIC:
3113 case SIOCGIFMTU:
3114 case SIOCGIFMEM:
3115 case SIOCGIFHWADDR:
3116 case SIOCGIFINDEX:
3117 case SIOCGIFADDR:
3118 case SIOCGIFBRDADDR:
3119 case SIOCGIFDSTADDR:
3120 case SIOCGIFNETMASK:
3121 case SIOCGIFPFLAGS:
3122 case SIOCGIFTXQLEN:
3123 case SIOCGMIIPHY:
3124 case SIOCGMIIREG:
3125 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3126 err = -EFAULT;
3127 break;
3128 }
3129 }
3130 return err;
3131 }
3132
3133 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3134 struct compat_ifreq __user *uifr32)
3135 {
3136 struct ifreq ifr;
3137 struct compat_ifmap __user *uifmap32;
3138 mm_segment_t old_fs;
3139 int err;
3140
3141 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3142 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3143 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3144 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3145 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3146 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3147 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3148 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3149 if (err)
3150 return -EFAULT;
3151
3152 old_fs = get_fs();
3153 set_fs(KERNEL_DS);
3154 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3155 set_fs(old_fs);
3156
3157 if (cmd == SIOCGIFMAP && !err) {
3158 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3159 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3160 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3161 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3162 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3163 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3164 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3165 if (err)
3166 err = -EFAULT;
3167 }
3168 return err;
3169 }
3170
3171 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3172 {
3173 void __user *uptr;
3174 compat_uptr_t uptr32;
3175 struct ifreq __user *uifr;
3176
3177 uifr = compat_alloc_user_space(sizeof(*uifr));
3178 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3179 return -EFAULT;
3180
3181 if (get_user(uptr32, &uifr32->ifr_data))
3182 return -EFAULT;
3183
3184 uptr = compat_ptr(uptr32);
3185
3186 if (put_user(uptr, &uifr->ifr_data))
3187 return -EFAULT;
3188
3189 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3190 }
3191
3192 struct rtentry32 {
3193 u32 rt_pad1;
3194 struct sockaddr rt_dst; /* target address */
3195 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3196 struct sockaddr rt_genmask; /* target network mask (IP) */
3197 unsigned short rt_flags;
3198 short rt_pad2;
3199 u32 rt_pad3;
3200 unsigned char rt_tos;
3201 unsigned char rt_class;
3202 short rt_pad4;
3203 short rt_metric; /* +1 for binary compatibility! */
3204 /* char * */ u32 rt_dev; /* forcing the device at add */
3205 u32 rt_mtu; /* per route MTU/Window */
3206 u32 rt_window; /* Window clamping */
3207 unsigned short rt_irtt; /* Initial RTT */
3208 };
3209
3210 struct in6_rtmsg32 {
3211 struct in6_addr rtmsg_dst;
3212 struct in6_addr rtmsg_src;
3213 struct in6_addr rtmsg_gateway;
3214 u32 rtmsg_type;
3215 u16 rtmsg_dst_len;
3216 u16 rtmsg_src_len;
3217 u32 rtmsg_metric;
3218 u32 rtmsg_info;
3219 u32 rtmsg_flags;
3220 s32 rtmsg_ifindex;
3221 };
3222
3223 static int routing_ioctl(struct net *net, struct socket *sock,
3224 unsigned int cmd, void __user *argp)
3225 {
3226 int ret;
3227 void *r = NULL;
3228 struct in6_rtmsg r6;
3229 struct rtentry r4;
3230 char devname[16];
3231 u32 rtdev;
3232 mm_segment_t old_fs = get_fs();
3233
3234 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3235 struct in6_rtmsg32 __user *ur6 = argp;
3236 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3237 3 * sizeof(struct in6_addr));
3238 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3239 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3240 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3241 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3242 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3243 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3244 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3245
3246 r = (void *) &r6;
3247 } else { /* ipv4 */
3248 struct rtentry32 __user *ur4 = argp;
3249 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3250 3 * sizeof(struct sockaddr));
3251 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3252 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3253 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3254 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3255 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3256 ret |= __get_user(rtdev, &(ur4->rt_dev));
3257 if (rtdev) {
3258 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3259 r4.rt_dev = (char __user __force *)devname;
3260 devname[15] = 0;
3261 } else
3262 r4.rt_dev = NULL;
3263
3264 r = (void *) &r4;
3265 }
3266
3267 if (ret) {
3268 ret = -EFAULT;
3269 goto out;
3270 }
3271
3272 set_fs(KERNEL_DS);
3273 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3274 set_fs(old_fs);
3275
3276 out:
3277 return ret;
3278 }
3279
3280 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3281 * for some operations; this forces use of the newer bridge-utils that
3282 * use compatible ioctls
3283 */
3284 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3285 {
3286 compat_ulong_t tmp;
3287
3288 if (get_user(tmp, argp))
3289 return -EFAULT;
3290 if (tmp == BRCTL_GET_VERSION)
3291 return BRCTL_VERSION + 1;
3292 return -EINVAL;
3293 }
3294
3295 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3296 unsigned int cmd, unsigned long arg)
3297 {
3298 void __user *argp = compat_ptr(arg);
3299 struct sock *sk = sock->sk;
3300 struct net *net = sock_net(sk);
3301
3302 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3303 return siocdevprivate_ioctl(net, cmd, argp);
3304
3305 switch (cmd) {
3306 case SIOCSIFBR:
3307 case SIOCGIFBR:
3308 return old_bridge_ioctl(argp);
3309 case SIOCGIFNAME:
3310 return dev_ifname32(net, argp);
3311 case SIOCGIFCONF:
3312 return dev_ifconf(net, argp);
3313 case SIOCETHTOOL:
3314 return ethtool_ioctl(net, argp);
3315 case SIOCWANDEV:
3316 return compat_siocwandev(net, argp);
3317 case SIOCGIFMAP:
3318 case SIOCSIFMAP:
3319 return compat_sioc_ifmap(net, cmd, argp);
3320 case SIOCBONDENSLAVE:
3321 case SIOCBONDRELEASE:
3322 case SIOCBONDSETHWADDR:
3323 case SIOCBONDSLAVEINFOQUERY:
3324 case SIOCBONDINFOQUERY:
3325 case SIOCBONDCHANGEACTIVE:
3326 return bond_ioctl(net, cmd, argp);
3327 case SIOCADDRT:
3328 case SIOCDELRT:
3329 return routing_ioctl(net, sock, cmd, argp);
3330 case SIOCGSTAMP:
3331 return do_siocgstamp(net, sock, cmd, argp);
3332 case SIOCGSTAMPNS:
3333 return do_siocgstampns(net, sock, cmd, argp);
3334 case SIOCSHWTSTAMP:
3335 return compat_siocshwtstamp(net, argp);
3336
3337 case FIOSETOWN:
3338 case SIOCSPGRP:
3339 case FIOGETOWN:
3340 case SIOCGPGRP:
3341 case SIOCBRADDBR:
3342 case SIOCBRDELBR:
3343 case SIOCGIFVLAN:
3344 case SIOCSIFVLAN:
3345 case SIOCADDDLCI:
3346 case SIOCDELDLCI:
3347 return sock_ioctl(file, cmd, arg);
3348
3349 case SIOCGIFFLAGS:
3350 case SIOCSIFFLAGS:
3351 case SIOCGIFMETRIC:
3352 case SIOCSIFMETRIC:
3353 case SIOCGIFMTU:
3354 case SIOCSIFMTU:
3355 case SIOCGIFMEM:
3356 case SIOCSIFMEM:
3357 case SIOCGIFHWADDR:
3358 case SIOCSIFHWADDR:
3359 case SIOCADDMULTI:
3360 case SIOCDELMULTI:
3361 case SIOCGIFINDEX:
3362 case SIOCGIFADDR:
3363 case SIOCSIFADDR:
3364 case SIOCSIFHWBROADCAST:
3365 case SIOCDIFADDR:
3366 case SIOCGIFBRDADDR:
3367 case SIOCSIFBRDADDR:
3368 case SIOCGIFDSTADDR:
3369 case SIOCSIFDSTADDR:
3370 case SIOCGIFNETMASK:
3371 case SIOCSIFNETMASK:
3372 case SIOCSIFPFLAGS:
3373 case SIOCGIFPFLAGS:
3374 case SIOCGIFTXQLEN:
3375 case SIOCSIFTXQLEN:
3376 case SIOCBRADDIF:
3377 case SIOCBRDELIF:
3378 case SIOCSIFNAME:
3379 case SIOCGMIIPHY:
3380 case SIOCGMIIREG:
3381 case SIOCSMIIREG:
3382 return dev_ifsioc(net, sock, cmd, argp);
3383
3384 case SIOCSARP:
3385 case SIOCGARP:
3386 case SIOCDARP:
3387 case SIOCATMARK:
3388 return sock_do_ioctl(net, sock, cmd, arg);
3389 }
3390
3391 return -ENOIOCTLCMD;
3392 }
3393
3394 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3395 unsigned long arg)
3396 {
3397 struct socket *sock = file->private_data;
3398 int ret = -ENOIOCTLCMD;
3399 struct sock *sk;
3400 struct net *net;
3401
3402 sk = sock->sk;
3403 net = sock_net(sk);
3404
3405 if (sock->ops->compat_ioctl)
3406 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3407
3408 if (ret == -ENOIOCTLCMD &&
3409 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3410 ret = compat_wext_handle_ioctl(net, cmd, arg);
3411
3412 if (ret == -ENOIOCTLCMD)
3413 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3414
3415 return ret;
3416 }
3417 #endif
3418
3419 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3420 {
3421 return sock->ops->bind(sock, addr, addrlen);
3422 }
3423 EXPORT_SYMBOL(kernel_bind);
3424
3425 int kernel_listen(struct socket *sock, int backlog)
3426 {
3427 return sock->ops->listen(sock, backlog);
3428 }
3429 EXPORT_SYMBOL(kernel_listen);
3430
3431 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3432 {
3433 struct sock *sk = sock->sk;
3434 int err;
3435
3436 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3437 newsock);
3438 if (err < 0)
3439 goto done;
3440
3441 err = sock->ops->accept(sock, *newsock, flags);
3442 if (err < 0) {
3443 sock_release(*newsock);
3444 *newsock = NULL;
3445 goto done;
3446 }
3447
3448 (*newsock)->ops = sock->ops;
3449 __module_get((*newsock)->ops->owner);
3450
3451 done:
3452 return err;
3453 }
3454 EXPORT_SYMBOL(kernel_accept);
3455
3456 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3457 int flags)
3458 {
3459 return sock->ops->connect(sock, addr, addrlen, flags);
3460 }
3461 EXPORT_SYMBOL(kernel_connect);
3462
3463 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3464 int *addrlen)
3465 {
3466 return sock->ops->getname(sock, addr, addrlen, 0);
3467 }
3468 EXPORT_SYMBOL(kernel_getsockname);
3469
3470 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3471 int *addrlen)
3472 {
3473 return sock->ops->getname(sock, addr, addrlen, 1);
3474 }
3475 EXPORT_SYMBOL(kernel_getpeername);
3476
3477 int kernel_getsockopt(struct socket *sock, int level, int optname,
3478 char *optval, int *optlen)
3479 {
3480 mm_segment_t oldfs = get_fs();
3481 char __user *uoptval;
3482 int __user *uoptlen;
3483 int err;
3484
3485 uoptval = (char __user __force *) optval;
3486 uoptlen = (int __user __force *) optlen;
3487
3488 set_fs(KERNEL_DS);
3489 if (level == SOL_SOCKET)
3490 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3491 else
3492 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3493 uoptlen);
3494 set_fs(oldfs);
3495 return err;
3496 }
3497 EXPORT_SYMBOL(kernel_getsockopt);
3498
3499 int kernel_setsockopt(struct socket *sock, int level, int optname,
3500 char *optval, unsigned int optlen)
3501 {
3502 mm_segment_t oldfs = get_fs();
3503 char __user *uoptval;
3504 int err;
3505
3506 uoptval = (char __user __force *) optval;
3507
3508 set_fs(KERNEL_DS);
3509 if (level == SOL_SOCKET)
3510 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3511 else
3512 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3513 optlen);
3514 set_fs(oldfs);
3515 return err;
3516 }
3517 EXPORT_SYMBOL(kernel_setsockopt);
3518
3519 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3520 size_t size, int flags)
3521 {
3522 if (sock->ops->sendpage)
3523 return sock->ops->sendpage(sock, page, offset, size, flags);
3524
3525 return sock_no_sendpage(sock, page, offset, size, flags);
3526 }
3527 EXPORT_SYMBOL(kernel_sendpage);
3528
3529 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3530 {
3531 mm_segment_t oldfs = get_fs();
3532 int err;
3533
3534 set_fs(KERNEL_DS);
3535 err = sock->ops->ioctl(sock, cmd, arg);
3536 set_fs(oldfs);
3537
3538 return err;
3539 }
3540 EXPORT_SYMBOL(kernel_sock_ioctl);
3541
3542 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3543 {
3544 return sock->ops->shutdown(sock, how);
3545 }
3546 EXPORT_SYMBOL(kernel_sock_shutdown);