Merge tag 'v3.10.58' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236 printk(KERN_INFO "[socket_conn]IPV4 socket[%lu] sport:%u \n", SOCK_INODE(sk->sk_socket)->i_ino, ntohs(inet->inet_sport));
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
291 tcp_sync_mss(sk, mtu);
292
293 /* Resend the TCP packet because it's
294 * clear that the old packet has been
295 * dropped. This is the new "fast" path mtu
296 * discovery.
297 */
298 tcp_simple_retransmit(sk);
299 } /* else let the usual retransmit timer handle it */
300 }
301 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
302
303 static void do_redirect(struct sk_buff *skb, struct sock *sk)
304 {
305 struct dst_entry *dst = __sk_dst_check(sk, 0);
306
307 if (dst)
308 dst->ops->redirect(dst, sk, skb);
309 }
310
311 /*
312 * This routine is called by the ICMP module when it gets some
313 * sort of error condition. If err < 0 then the socket should
314 * be closed and the error returned to the user. If err > 0
315 * it's just the icmp type << 8 | icmp code. After adjustment
316 * header points to the first 8 bytes of the tcp header. We need
317 * to find the appropriate port.
318 *
319 * The locking strategy used here is very "optimistic". When
320 * someone else accesses the socket the ICMP is just dropped
321 * and for some paths there is no check at all.
322 * A more general error queue to queue errors for later handling
323 * is probably better.
324 *
325 */
326
327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
328 {
329 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
330 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
331 struct inet_connection_sock *icsk;
332 struct tcp_sock *tp;
333 struct inet_sock *inet;
334 const int type = icmp_hdr(icmp_skb)->type;
335 const int code = icmp_hdr(icmp_skb)->code;
336 struct sock *sk;
337 struct sk_buff *skb;
338 struct request_sock *req;
339 __u32 seq;
340 __u32 remaining;
341 int err;
342 struct net *net = dev_net(icmp_skb->dev);
343
344 if (icmp_skb->len < (iph->ihl << 2) + 8) {
345 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346 return;
347 }
348
349 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350 iph->saddr, th->source, inet_iif(icmp_skb));
351 if (!sk) {
352 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 return;
354 }
355 if (sk->sk_state == TCP_TIME_WAIT) {
356 inet_twsk_put(inet_twsk(sk));
357 return;
358 }
359
360 bh_lock_sock(sk);
361 /* If too many ICMPs get dropped on busy
362 * servers this needs to be solved differently.
363 * We do take care of PMTU discovery (RFC1191) special case :
364 * we can receive locally generated ICMP messages while socket is held.
365 */
366 if (sock_owned_by_user(sk)) {
367 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369 }
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
372
373 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375 goto out;
376 }
377
378 icsk = inet_csk(sk);
379 tp = tcp_sk(sk);
380 req = tp->fastopen_rsk;
381 seq = ntohl(th->seq);
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, tp->snd_una, tp->snd_nxt) &&
384 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
385 /* For a Fast Open socket, allow seq to be snt_isn. */
386 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
387 goto out;
388 }
389
390 switch (type) {
391 case ICMP_REDIRECT:
392 do_redirect(icmp_skb, sk);
393 goto out;
394 case ICMP_SOURCE_QUENCH:
395 /* Just silently ignore these. */
396 goto out;
397 case ICMP_PARAMETERPROB:
398 err = EPROTO;
399 break;
400 case ICMP_DEST_UNREACH:
401 if (code > NR_ICMP_UNREACH)
402 goto out;
403
404 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
405 /* We are not interested in TCP_LISTEN and open_requests
406 * (SYN-ACKs send out by Linux are always <576bytes so
407 * they should go through unfragmented).
408 */
409 if (sk->sk_state == TCP_LISTEN)
410 goto out;
411
412 tp->mtu_info = info;
413 if (!sock_owned_by_user(sk)) {
414 tcp_v4_mtu_reduced(sk);
415 } else {
416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 sock_hold(sk);
418 }
419 goto out;
420 }
421
422 err = icmp_err_convert[code].errno;
423 /* check if icmp_skb allows revert of backoff
424 * (see draft-zimmermann-tcp-lcd) */
425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 break;
427 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
428 !icsk->icsk_backoff)
429 break;
430
431 /* XXX (TFO) - revisit the following logic for TFO */
432
433 if (sock_owned_by_user(sk))
434 break;
435
436 icsk->icsk_backoff--;
437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 tcp_bound_rto(sk);
440
441 skb = tcp_write_queue_head(sk);
442 BUG_ON(!skb);
443
444 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447 if (remaining) {
448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 remaining, sysctl_tcp_rto_max);
450 } else {
451 /* RTO revert clocked out retransmission.
452 * Will retransmit now */
453 tcp_retransmit_timer(sk);
454 }
455
456 break;
457 case ICMP_TIME_EXCEEDED:
458 err = EHOSTUNREACH;
459 break;
460 default:
461 goto out;
462 }
463
464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 * than following the TCP_SYN_RECV case and closing the socket,
466 * we ignore the ICMP error and keep trying like a fully established
467 * socket. Is this the right thing to do?
468 */
469 if (req && req->sk == NULL)
470 goto out;
471
472 switch (sk->sk_state) {
473 struct request_sock *req, **prev;
474 case TCP_LISTEN:
475 if (sock_owned_by_user(sk))
476 goto out;
477
478 req = inet_csk_search_req(sk, &prev, th->dest,
479 iph->daddr, iph->saddr);
480 if (!req)
481 goto out;
482
483 /* ICMPs are not backlogged, hence we cannot get
484 an established socket here.
485 */
486 WARN_ON(req->sk);
487
488 if (seq != tcp_rsk(req)->snt_isn) {
489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 goto out;
491 }
492
493 /*
494 * Still in SYN_RECV, just remove it silently.
495 * There is no good way to pass the error to the newly
496 * created socket, and POSIX does not want network
497 * errors returned from accept().
498 */
499 inet_csk_reqsk_queue_drop(sk, req, prev);
500 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
501 goto out;
502
503 case TCP_SYN_SENT:
504 case TCP_SYN_RECV: /* Cannot happen.
505 It can f.e. if SYNs crossed,
506 or Fast Open.
507 */
508 if (!sock_owned_by_user(sk)) {
509 sk->sk_err = err;
510
511 sk->sk_error_report(sk);
512
513 tcp_done(sk);
514 } else {
515 sk->sk_err_soft = err;
516 }
517 goto out;
518 }
519
520 /* If we've already connected we will keep trying
521 * until we time out, or the user gives up.
522 *
523 * rfc1122 4.2.3.9 allows to consider as hard errors
524 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
525 * but it is obsoleted by pmtu discovery).
526 *
527 * Note, that in modern internet, where routing is unreliable
528 * and in each dark corner broken firewalls sit, sending random
529 * errors ordered by their masters even this two messages finally lose
530 * their original sense (even Linux sends invalid PORT_UNREACHs)
531 *
532 * Now we are in compliance with RFCs.
533 * --ANK (980905)
534 */
535
536 inet = inet_sk(sk);
537 if (!sock_owned_by_user(sk) && inet->recverr) {
538 sk->sk_err = err;
539 sk->sk_error_report(sk);
540 } else { /* Only an error on timeout */
541 sk->sk_err_soft = err;
542 }
543
544 out:
545 bh_unlock_sock(sk);
546 sock_put(sk);
547 }
548
549 static void __tcp_v4_send_check(struct sk_buff *skb,
550 __be32 saddr, __be32 daddr)
551 {
552 struct tcphdr *th = tcp_hdr(skb);
553
554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
556 skb->csum_start = skb_transport_header(skb) - skb->head;
557 skb->csum_offset = offsetof(struct tcphdr, check);
558 } else {
559 th->check = tcp_v4_check(skb->len, saddr, daddr,
560 csum_partial(th,
561 th->doff << 2,
562 skb->csum));
563 }
564 }
565
566 /* This routine computes an IPv4 TCP checksum. */
567 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
568 {
569 const struct inet_sock *inet = inet_sk(sk);
570
571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
572 }
573 EXPORT_SYMBOL(tcp_v4_send_check);
574
575 int tcp_v4_gso_send_check(struct sk_buff *skb)
576 {
577 const struct iphdr *iph;
578 struct tcphdr *th;
579
580 if (!pskb_may_pull(skb, sizeof(*th)))
581 return -EINVAL;
582
583 iph = ip_hdr(skb);
584 th = tcp_hdr(skb);
585
586 th->check = 0;
587 skb->ip_summed = CHECKSUM_PARTIAL;
588 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
589 return 0;
590 }
591
592 /*
593 * This routine will send an RST to the other tcp.
594 *
595 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
596 * for reset.
597 * Answer: if a packet caused RST, it is not for a socket
598 * existing in our system, if it is matched to a socket,
599 * it is just duplicate segment or bug in other side's TCP.
600 * So that we build reply only basing on parameters
601 * arrived with segment.
602 * Exception: precedence violation. We do not implement it in any case.
603 */
604
605 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
606 {
607 const struct tcphdr *th = tcp_hdr(skb);
608 struct {
609 struct tcphdr th;
610 #ifdef CONFIG_TCP_MD5SIG
611 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
612 #endif
613 } rep;
614 struct ip_reply_arg arg;
615 #ifdef CONFIG_TCP_MD5SIG
616 struct tcp_md5sig_key *key;
617 const __u8 *hash_location = NULL;
618 unsigned char newhash[16];
619 int genhash;
620 struct sock *sk1 = NULL;
621 #endif
622 struct net *net;
623
624 /* Never send a reset in response to a reset. */
625 if (th->rst)
626 return;
627
628 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
629 return;
630
631 /* Swap the send and the receive. */
632 memset(&rep, 0, sizeof(rep));
633 rep.th.dest = th->source;
634 rep.th.source = th->dest;
635 rep.th.doff = sizeof(struct tcphdr) / 4;
636 rep.th.rst = 1;
637
638 if (th->ack) {
639 rep.th.seq = th->ack_seq;
640 } else {
641 rep.th.ack = 1;
642 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
643 skb->len - (th->doff << 2));
644 }
645
646 memset(&arg, 0, sizeof(arg));
647 arg.iov[0].iov_base = (unsigned char *)&rep;
648 arg.iov[0].iov_len = sizeof(rep.th);
649
650 #ifdef CONFIG_TCP_MD5SIG
651 hash_location = tcp_parse_md5sig_option(th);
652 if (!sk && hash_location) {
653 /*
654 * active side is lost. Try to find listening socket through
655 * source port, and then find md5 key through listening socket.
656 * we are not loose security here:
657 * Incoming packet is checked with md5 hash with finding key,
658 * no RST generated if md5 hash doesn't match.
659 */
660 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
661 &tcp_hashinfo, ip_hdr(skb)->saddr,
662 th->source, ip_hdr(skb)->daddr,
663 ntohs(th->source), inet_iif(skb));
664 /* don't send rst if it can't find key */
665 if (!sk1)
666 return;
667 rcu_read_lock();
668 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
669 &ip_hdr(skb)->saddr, AF_INET);
670 if (!key)
671 goto release_sk1;
672
673 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
674 if (genhash || memcmp(hash_location, newhash, 16) != 0)
675 goto release_sk1;
676 } else {
677 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
678 &ip_hdr(skb)->saddr,
679 AF_INET) : NULL;
680 }
681
682 if (key) {
683 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
684 (TCPOPT_NOP << 16) |
685 (TCPOPT_MD5SIG << 8) |
686 TCPOLEN_MD5SIG);
687 /* Update length and the length the header thinks exists */
688 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
689 rep.th.doff = arg.iov[0].iov_len / 4;
690
691 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
692 key, ip_hdr(skb)->saddr,
693 ip_hdr(skb)->daddr, &rep.th);
694 }
695 #endif
696 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
697 ip_hdr(skb)->saddr, /* XXX */
698 arg.iov[0].iov_len, IPPROTO_TCP, 0);
699 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
700 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
701 /* When socket is gone, all binding information is lost.
702 * routing might fail in this case. No choice here, if we choose to force
703 * input interface, we will misroute in case of asymmetric route.
704 */
705 if (sk)
706 arg.bound_dev_if = sk->sk_bound_dev_if;
707
708 net = dev_net(skb_dst(skb)->dev);
709 arg.tos = ip_hdr(skb)->tos;
710 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
711 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
712
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
714 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
715
716 #ifdef CONFIG_TCP_MD5SIG
717 release_sk1:
718 if (sk1) {
719 rcu_read_unlock();
720 sock_put(sk1);
721 }
722 #endif
723 }
724
725 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
726 outside socket context is ugly, certainly. What can I do?
727 */
728
729 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
730 u32 win, u32 tsval, u32 tsecr, int oif,
731 struct tcp_md5sig_key *key,
732 int reply_flags, u8 tos)
733 {
734 const struct tcphdr *th = tcp_hdr(skb);
735 struct {
736 struct tcphdr th;
737 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
738 #ifdef CONFIG_TCP_MD5SIG
739 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
740 #endif
741 ];
742 } rep;
743 struct ip_reply_arg arg;
744 struct net *net = dev_net(skb_dst(skb)->dev);
745
746 memset(&rep.th, 0, sizeof(struct tcphdr));
747 memset(&arg, 0, sizeof(arg));
748
749 arg.iov[0].iov_base = (unsigned char *)&rep;
750 arg.iov[0].iov_len = sizeof(rep.th);
751 if (tsecr) {
752 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
753 (TCPOPT_TIMESTAMP << 8) |
754 TCPOLEN_TIMESTAMP);
755 rep.opt[1] = htonl(tsval);
756 rep.opt[2] = htonl(tsecr);
757 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
758 }
759
760 /* Swap the send and the receive. */
761 rep.th.dest = th->source;
762 rep.th.source = th->dest;
763 rep.th.doff = arg.iov[0].iov_len / 4;
764 rep.th.seq = htonl(seq);
765 rep.th.ack_seq = htonl(ack);
766 rep.th.ack = 1;
767 rep.th.window = htons(win);
768
769 #ifdef CONFIG_TCP_MD5SIG
770 if (key) {
771 int offset = (tsecr) ? 3 : 0;
772
773 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
774 (TCPOPT_NOP << 16) |
775 (TCPOPT_MD5SIG << 8) |
776 TCPOLEN_MD5SIG);
777 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
778 rep.th.doff = arg.iov[0].iov_len/4;
779
780 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
781 key, ip_hdr(skb)->saddr,
782 ip_hdr(skb)->daddr, &rep.th);
783 }
784 #endif
785 arg.flags = reply_flags;
786 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
787 ip_hdr(skb)->saddr, /* XXX */
788 arg.iov[0].iov_len, IPPROTO_TCP, 0);
789 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
790 if (oif)
791 arg.bound_dev_if = oif;
792 arg.tos = tos;
793 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
794 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
795
796 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
797 }
798
799 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
800 {
801 struct inet_timewait_sock *tw = inet_twsk(sk);
802 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
803
804 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
805 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
806 tcp_time_stamp + tcptw->tw_ts_offset,
807 tcptw->tw_ts_recent,
808 tw->tw_bound_dev_if,
809 tcp_twsk_md5_key(tcptw),
810 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
811 tw->tw_tos
812 );
813
814 inet_twsk_put(tw);
815 }
816
817 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
818 struct request_sock *req)
819 {
820 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
821 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
822 */
823 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
824 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
825 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
826 tcp_time_stamp,
827 req->ts_recent,
828 0,
829 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
830 AF_INET),
831 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
832 ip_hdr(skb)->tos);
833 }
834
835 /*
836 * Send a SYN-ACK after having received a SYN.
837 * This still operates on a request_sock only, not on a big
838 * socket.
839 */
840 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
841 struct request_sock *req,
842 u16 queue_mapping,
843 bool nocache)
844 {
845 const struct inet_request_sock *ireq = inet_rsk(req);
846 struct flowi4 fl4;
847 int err = -1;
848 struct sk_buff * skb;
849
850 /* First, grab a route. */
851 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
852 return -1;
853
854 skb = tcp_make_synack(sk, dst, req, NULL);
855
856 if (skb) {
857 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
858
859 skb_set_queue_mapping(skb, queue_mapping);
860 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
861 ireq->rmt_addr,
862 ireq->opt);
863 err = net_xmit_eval(err);
864 if (!tcp_rsk(req)->snt_synack && !err)
865 tcp_rsk(req)->snt_synack = tcp_time_stamp;
866 }
867
868 return err;
869 }
870
871 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
872 {
873 int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
874
875 if (!res)
876 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
877 return res;
878 }
879
880 /*
881 * IPv4 request_sock destructor.
882 */
883 static void tcp_v4_reqsk_destructor(struct request_sock *req)
884 {
885 kfree(inet_rsk(req)->opt);
886 }
887
888 /*
889 * Return true if a syncookie should be sent
890 */
891 bool tcp_syn_flood_action(struct sock *sk,
892 const struct sk_buff *skb,
893 const char *proto)
894 {
895 const char *msg = "Dropping request";
896 bool want_cookie = false;
897 struct listen_sock *lopt;
898
899
900
901 #ifdef CONFIG_SYN_COOKIES
902 if (sysctl_tcp_syncookies) {
903 msg = "Sending cookies";
904 want_cookie = true;
905 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
906 } else
907 #endif
908 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
909
910 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
911 if (!lopt->synflood_warned) {
912 lopt->synflood_warned = 1;
913 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
914 proto, ntohs(tcp_hdr(skb)->dest), msg);
915 }
916 return want_cookie;
917 }
918 EXPORT_SYMBOL(tcp_syn_flood_action);
919
920 /*
921 * Save and compile IPv4 options into the request_sock if needed.
922 */
923 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
924 {
925 const struct ip_options *opt = &(IPCB(skb)->opt);
926 struct ip_options_rcu *dopt = NULL;
927
928 if (opt && opt->optlen) {
929 int opt_size = sizeof(*dopt) + opt->optlen;
930
931 dopt = kmalloc(opt_size, GFP_ATOMIC);
932 if (dopt) {
933 if (ip_options_echo(&dopt->opt, skb)) {
934 kfree(dopt);
935 dopt = NULL;
936 }
937 }
938 }
939 return dopt;
940 }
941
942 #ifdef CONFIG_TCP_MD5SIG
943 /*
944 * RFC2385 MD5 checksumming requires a mapping of
945 * IP address->MD5 Key.
946 * We need to maintain these in the sk structure.
947 */
948
949 /* Find the Key structure for an address. */
950 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
951 const union tcp_md5_addr *addr,
952 int family)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 struct tcp_md5sig_key *key;
956 unsigned int size = sizeof(struct in_addr);
957 struct tcp_md5sig_info *md5sig;
958
959 /* caller either holds rcu_read_lock() or socket lock */
960 md5sig = rcu_dereference_check(tp->md5sig_info,
961 sock_owned_by_user(sk) ||
962 lockdep_is_held(&sk->sk_lock.slock));
963 if (!md5sig)
964 return NULL;
965 #if IS_ENABLED(CONFIG_IPV6)
966 if (family == AF_INET6)
967 size = sizeof(struct in6_addr);
968 #endif
969 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
970 if (key->family != family)
971 continue;
972 if (!memcmp(&key->addr, addr, size))
973 return key;
974 }
975 return NULL;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_lookup);
978
979 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
980 struct sock *addr_sk)
981 {
982 union tcp_md5_addr *addr;
983
984 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
985 return tcp_md5_do_lookup(sk, addr, AF_INET);
986 }
987 EXPORT_SYMBOL(tcp_v4_md5_lookup);
988
989 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
990 struct request_sock *req)
991 {
992 union tcp_md5_addr *addr;
993
994 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
995 return tcp_md5_do_lookup(sk, addr, AF_INET);
996 }
997
998 /* This can be called on a newly created socket, from other files */
999 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1000 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1001 {
1002 /* Add Key to the list */
1003 struct tcp_md5sig_key *key;
1004 struct tcp_sock *tp = tcp_sk(sk);
1005 struct tcp_md5sig_info *md5sig;
1006
1007 key = tcp_md5_do_lookup(sk, addr, family);
1008 if (key) {
1009 /* Pre-existing entry - just update that one. */
1010 memcpy(key->key, newkey, newkeylen);
1011 key->keylen = newkeylen;
1012 return 0;
1013 }
1014
1015 md5sig = rcu_dereference_protected(tp->md5sig_info,
1016 sock_owned_by_user(sk));
1017 if (!md5sig) {
1018 md5sig = kmalloc(sizeof(*md5sig), gfp);
1019 if (!md5sig)
1020 return -ENOMEM;
1021
1022 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1023 INIT_HLIST_HEAD(&md5sig->head);
1024 rcu_assign_pointer(tp->md5sig_info, md5sig);
1025 }
1026
1027 key = sock_kmalloc(sk, sizeof(*key), gfp);
1028 if (!key)
1029 return -ENOMEM;
1030 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1031 sock_kfree_s(sk, key, sizeof(*key));
1032 return -ENOMEM;
1033 }
1034
1035 memcpy(key->key, newkey, newkeylen);
1036 key->keylen = newkeylen;
1037 key->family = family;
1038 memcpy(&key->addr, addr,
1039 (family == AF_INET6) ? sizeof(struct in6_addr) :
1040 sizeof(struct in_addr));
1041 hlist_add_head_rcu(&key->node, &md5sig->head);
1042 return 0;
1043 }
1044 EXPORT_SYMBOL(tcp_md5_do_add);
1045
1046 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1047 {
1048 struct tcp_sock *tp = tcp_sk(sk);
1049 struct tcp_md5sig_key *key;
1050 struct tcp_md5sig_info *md5sig;
1051
1052 key = tcp_md5_do_lookup(sk, addr, family);
1053 if (!key)
1054 return -ENOENT;
1055 hlist_del_rcu(&key->node);
1056 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1057 kfree_rcu(key, rcu);
1058 md5sig = rcu_dereference_protected(tp->md5sig_info,
1059 sock_owned_by_user(sk));
1060 if (hlist_empty(&md5sig->head))
1061 tcp_free_md5sig_pool();
1062 return 0;
1063 }
1064 EXPORT_SYMBOL(tcp_md5_do_del);
1065
1066 static void tcp_clear_md5_list(struct sock *sk)
1067 {
1068 struct tcp_sock *tp = tcp_sk(sk);
1069 struct tcp_md5sig_key *key;
1070 struct hlist_node *n;
1071 struct tcp_md5sig_info *md5sig;
1072
1073 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1074
1075 if (!hlist_empty(&md5sig->head))
1076 tcp_free_md5sig_pool();
1077 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1078 hlist_del_rcu(&key->node);
1079 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1080 kfree_rcu(key, rcu);
1081 }
1082 }
1083
1084 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1085 int optlen)
1086 {
1087 struct tcp_md5sig cmd;
1088 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1089
1090 if (optlen < sizeof(cmd))
1091 return -EINVAL;
1092
1093 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1094 return -EFAULT;
1095
1096 if (sin->sin_family != AF_INET)
1097 return -EINVAL;
1098
1099 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1100 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1101 AF_INET);
1102
1103 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1104 return -EINVAL;
1105
1106 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1107 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1108 GFP_KERNEL);
1109 }
1110
1111 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1112 __be32 daddr, __be32 saddr, int nbytes)
1113 {
1114 struct tcp4_pseudohdr *bp;
1115 struct scatterlist sg;
1116
1117 bp = &hp->md5_blk.ip4;
1118
1119 /*
1120 * 1. the TCP pseudo-header (in the order: source IP address,
1121 * destination IP address, zero-padded protocol number, and
1122 * segment length)
1123 */
1124 bp->saddr = saddr;
1125 bp->daddr = daddr;
1126 bp->pad = 0;
1127 bp->protocol = IPPROTO_TCP;
1128 bp->len = cpu_to_be16(nbytes);
1129
1130 sg_init_one(&sg, bp, sizeof(*bp));
1131 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1132 }
1133
1134 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1135 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1136 {
1137 struct tcp_md5sig_pool *hp;
1138 struct hash_desc *desc;
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1148 goto clear_hash;
1149 if (tcp_md5_hash_header(hp, th))
1150 goto clear_hash;
1151 if (tcp_md5_hash_key(hp, key))
1152 goto clear_hash;
1153 if (crypto_hash_final(desc, md5_hash))
1154 goto clear_hash;
1155
1156 tcp_put_md5sig_pool();
1157 return 0;
1158
1159 clear_hash:
1160 tcp_put_md5sig_pool();
1161 clear_hash_noput:
1162 memset(md5_hash, 0, 16);
1163 return 1;
1164 }
1165
1166 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1167 const struct sock *sk, const struct request_sock *req,
1168 const struct sk_buff *skb)
1169 {
1170 struct tcp_md5sig_pool *hp;
1171 struct hash_desc *desc;
1172 const struct tcphdr *th = tcp_hdr(skb);
1173 __be32 saddr, daddr;
1174
1175 if (sk) {
1176 saddr = inet_sk(sk)->inet_saddr;
1177 daddr = inet_sk(sk)->inet_daddr;
1178 } else if (req) {
1179 saddr = inet_rsk(req)->loc_addr;
1180 daddr = inet_rsk(req)->rmt_addr;
1181 } else {
1182 const struct iphdr *iph = ip_hdr(skb);
1183 saddr = iph->saddr;
1184 daddr = iph->daddr;
1185 }
1186
1187 hp = tcp_get_md5sig_pool();
1188 if (!hp)
1189 goto clear_hash_noput;
1190 desc = &hp->md5_desc;
1191
1192 if (crypto_hash_init(desc))
1193 goto clear_hash;
1194
1195 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1196 goto clear_hash;
1197 if (tcp_md5_hash_header(hp, th))
1198 goto clear_hash;
1199 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1200 goto clear_hash;
1201 if (tcp_md5_hash_key(hp, key))
1202 goto clear_hash;
1203 if (crypto_hash_final(desc, md5_hash))
1204 goto clear_hash;
1205
1206 tcp_put_md5sig_pool();
1207 return 0;
1208
1209 clear_hash:
1210 tcp_put_md5sig_pool();
1211 clear_hash_noput:
1212 memset(md5_hash, 0, 16);
1213 return 1;
1214 }
1215 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1216
1217 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1218 {
1219 /*
1220 * This gets called for each TCP segment that arrives
1221 * so we want to be efficient.
1222 * We have 3 drop cases:
1223 * o No MD5 hash and one expected.
1224 * o MD5 hash and we're not expecting one.
1225 * o MD5 hash and its wrong.
1226 */
1227 const __u8 *hash_location = NULL;
1228 struct tcp_md5sig_key *hash_expected;
1229 const struct iphdr *iph = ip_hdr(skb);
1230 const struct tcphdr *th = tcp_hdr(skb);
1231 int genhash;
1232 unsigned char newhash[16];
1233
1234 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1235 AF_INET);
1236 hash_location = tcp_parse_md5sig_option(th);
1237
1238 /* We've parsed the options - do we have a hash? */
1239 if (!hash_expected && !hash_location)
1240 return false;
1241
1242 if (hash_expected && !hash_location) {
1243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1244 return true;
1245 }
1246
1247 if (!hash_expected && hash_location) {
1248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1249 return true;
1250 }
1251
1252 /* Okay, so this is hash_expected and hash_location -
1253 * so we need to calculate the checksum.
1254 */
1255 genhash = tcp_v4_md5_hash_skb(newhash,
1256 hash_expected,
1257 NULL, NULL, skb);
1258
1259 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1260 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1261 &iph->saddr, ntohs(th->source),
1262 &iph->daddr, ntohs(th->dest),
1263 genhash ? " tcp_v4_calc_md5_hash failed"
1264 : "");
1265 return true;
1266 }
1267 return false;
1268 }
1269
1270 #endif
1271
1272 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1273 .family = PF_INET,
1274 .obj_size = sizeof(struct tcp_request_sock),
1275 .rtx_syn_ack = tcp_v4_rtx_synack,
1276 .send_ack = tcp_v4_reqsk_send_ack,
1277 .destructor = tcp_v4_reqsk_destructor,
1278 .send_reset = tcp_v4_send_reset,
1279 .syn_ack_timeout = tcp_syn_ack_timeout,
1280 };
1281
1282 #ifdef CONFIG_TCP_MD5SIG
1283 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1284 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1285 .calc_md5_hash = tcp_v4_md5_hash_skb,
1286 };
1287 #endif
1288
1289 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1290 struct request_sock *req,
1291 struct tcp_fastopen_cookie *foc,
1292 struct tcp_fastopen_cookie *valid_foc)
1293 {
1294 bool skip_cookie = false;
1295 struct fastopen_queue *fastopenq;
1296
1297 if (likely(!fastopen_cookie_present(foc))) {
1298 /* See include/net/tcp.h for the meaning of these knobs */
1299 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1300 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1301 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1302 skip_cookie = true; /* no cookie to validate */
1303 else
1304 return false;
1305 }
1306 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1307 /* A FO option is present; bump the counter. */
1308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1309
1310 /* Make sure the listener has enabled fastopen, and we don't
1311 * exceed the max # of pending TFO requests allowed before trying
1312 * to validating the cookie in order to avoid burning CPU cycles
1313 * unnecessarily.
1314 *
1315 * XXX (TFO) - The implication of checking the max_qlen before
1316 * processing a cookie request is that clients can't differentiate
1317 * between qlen overflow causing Fast Open to be disabled
1318 * temporarily vs a server not supporting Fast Open at all.
1319 */
1320 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1321 fastopenq == NULL || fastopenq->max_qlen == 0)
1322 return false;
1323
1324 if (fastopenq->qlen >= fastopenq->max_qlen) {
1325 struct request_sock *req1;
1326 spin_lock(&fastopenq->lock);
1327 req1 = fastopenq->rskq_rst_head;
1328 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1329 spin_unlock(&fastopenq->lock);
1330 NET_INC_STATS_BH(sock_net(sk),
1331 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1332 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1333 foc->len = -1;
1334 return false;
1335 }
1336 fastopenq->rskq_rst_head = req1->dl_next;
1337 fastopenq->qlen--;
1338 spin_unlock(&fastopenq->lock);
1339 reqsk_free(req1);
1340 }
1341 if (skip_cookie) {
1342 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1343 return true;
1344 }
1345 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1346 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1347 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1348 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1349 memcmp(&foc->val[0], &valid_foc->val[0],
1350 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1351 return false;
1352 valid_foc->len = -1;
1353 }
1354 /* Acknowledge the data received from the peer. */
1355 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1356 return true;
1357 } else if (foc->len == 0) { /* Client requesting a cookie */
1358 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1359 NET_INC_STATS_BH(sock_net(sk),
1360 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1361 } else {
1362 /* Client sent a cookie with wrong size. Treat it
1363 * the same as invalid and return a valid one.
1364 */
1365 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366 }
1367 return false;
1368 }
1369
1370 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1371 struct sk_buff *skb,
1372 struct sk_buff *skb_synack,
1373 struct request_sock *req)
1374 {
1375 struct tcp_sock *tp = tcp_sk(sk);
1376 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377 const struct inet_request_sock *ireq = inet_rsk(req);
1378 struct sock *child;
1379 int err;
1380
1381 req->num_retrans = 0;
1382 req->num_timeout = 0;
1383 req->sk = NULL;
1384
1385 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386 if (child == NULL) {
1387 NET_INC_STATS_BH(sock_net(sk),
1388 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389 kfree_skb(skb_synack);
1390 return -1;
1391 }
1392 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393 ireq->rmt_addr, ireq->opt);
1394 err = net_xmit_eval(err);
1395 if (!err)
1396 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397 /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399 spin_lock(&queue->fastopenq->lock);
1400 queue->fastopenq->qlen++;
1401 spin_unlock(&queue->fastopenq->lock);
1402
1403 /* Initialize the child socket. Have to fix some values to take
1404 * into account the child is a Fast Open socket and is created
1405 * only out of the bits carried in the SYN packet.
1406 */
1407 tp = tcp_sk(child);
1408
1409 tp->fastopen_rsk = req;
1410 /* Do a hold on the listner sk so that if the listener is being
1411 * closed, the child that has been accepted can live on and still
1412 * access listen_lock.
1413 */
1414 sock_hold(sk);
1415 tcp_rsk(req)->listener = sk;
1416
1417 /* RFC1323: The window in SYN & SYN/ACK segments is never
1418 * scaled. So correct it appropriately.
1419 */
1420 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422 /* Activate the retrans timer so that SYNACK can be retransmitted.
1423 * The request socket is not added to the SYN table of the parent
1424 * because it's been added to the accept queue directly.
1425 */
1426 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427 TCP_TIMEOUT_INIT, sysctl_tcp_rto_max);
1428
1429 /* Add the child socket directly into the accept queue */
1430 inet_csk_reqsk_queue_add(sk, req, child);
1431
1432 /* Now finish processing the fastopen child socket. */
1433 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434 tcp_init_congestion_control(child);
1435 tcp_mtup_init(child);
1436 tcp_init_buffer_space(child);
1437 tcp_init_metrics(child);
1438
1439 /* Queue the data carried in the SYN packet. We need to first
1440 * bump skb's refcnt because the caller will attempt to free it.
1441 *
1442 * XXX (TFO) - we honor a zero-payload TFO request for now.
1443 * (Any reason not to?)
1444 */
1445 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446 /* Don't queue the skb if there is no payload in SYN.
1447 * XXX (TFO) - How about SYN+FIN?
1448 */
1449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450 } else {
1451 skb = skb_get(skb);
1452 skb_dst_drop(skb);
1453 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454 skb_set_owner_r(skb, child);
1455 __skb_queue_tail(&child->sk_receive_queue, skb);
1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 tp->syn_data_acked = 1;
1458 }
1459 sk->sk_data_ready(sk, 0);
1460 bh_unlock_sock(child);
1461 sock_put(child);
1462 WARN_ON(req->sk == NULL);
1463 return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468 struct tcp_options_received tmp_opt;
1469 struct request_sock *req;
1470 struct inet_request_sock *ireq;
1471 struct tcp_sock *tp = tcp_sk(sk);
1472 struct dst_entry *dst = NULL;
1473 __be32 saddr = ip_hdr(skb)->saddr;
1474 __be32 daddr = ip_hdr(skb)->daddr;
1475 __u32 isn = TCP_SKB_CB(skb)->when;
1476 bool want_cookie = false;
1477 struct flowi4 fl4;
1478 struct tcp_fastopen_cookie foc = { .len = -1 };
1479 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1480 struct sk_buff *skb_synack;
1481 int do_fastopen;
1482
1483 /* Never answer to SYNs send to broadcast or multicast */
1484 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1485 goto drop;
1486
1487 /* TW buckets are converted to open requests without
1488 * limitations, they conserve resources and peer is
1489 * evidently real one.
1490 */
1491 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1492 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1493 if (!want_cookie)
1494 goto drop;
1495 }
1496
1497 /* Accept backlog is full. If we have already queued enough
1498 * of warm entries in syn queue, drop request. It is better than
1499 * clogging syn queue with openreqs with exponentially increasing
1500 * timeout.
1501 */
1502 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504 goto drop;
1505 }
1506
1507 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508 if (!req)
1509 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515 tcp_clear_options(&tmp_opt);
1516 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517 tmp_opt.user_mss = tp->rx_opt.user_mss;
1518 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1519
1520 if (want_cookie && !tmp_opt.saw_tstamp)
1521 tcp_clear_options(&tmp_opt);
1522
1523 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1524 tcp_openreq_init(req, &tmp_opt, skb);
1525
1526 ireq = inet_rsk(req);
1527 ireq->loc_addr = daddr;
1528 ireq->rmt_addr = saddr;
1529 ireq->no_srccheck = inet_sk(sk)->transparent;
1530 ireq->opt = tcp_v4_save_options(skb);
1531 ireq->ir_mark = inet_request_mark(sk, skb);
1532
1533 if (security_inet_conn_request(sk, skb, req))
1534 goto drop_and_free;
1535
1536 if (!want_cookie || tmp_opt.tstamp_ok)
1537 TCP_ECN_create_request(req, skb, sock_net(sk));
1538
1539 if (want_cookie) {
1540 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1541 req->cookie_ts = tmp_opt.tstamp_ok;
1542 } else if (!isn) {
1543 /* VJ's idea. We save last timestamp seen
1544 * from the destination in peer table, when entering
1545 * state TIME-WAIT, and check against it before
1546 * accepting new connection request.
1547 *
1548 * If "isn" is not zero, this request hit alive
1549 * timewait bucket, so that all the necessary checks
1550 * are made in the function processing timewait state.
1551 */
1552 if (tmp_opt.saw_tstamp &&
1553 tcp_death_row.sysctl_tw_recycle &&
1554 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1555 fl4.daddr == saddr) {
1556 if (!tcp_peer_is_proven(req, dst, true)) {
1557 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1558 goto drop_and_release;
1559 }
1560 }
1561 /* Kill the following clause, if you dislike this way. */
1562 else if (!sysctl_tcp_syncookies &&
1563 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1564 (sysctl_max_syn_backlog >> 2)) &&
1565 !tcp_peer_is_proven(req, dst, false)) {
1566 /* Without syncookies last quarter of
1567 * backlog is filled with destinations,
1568 * proven to be alive.
1569 * It means that we continue to communicate
1570 * to destinations, already remembered
1571 * to the moment of synflood.
1572 */
1573 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1574 &saddr, ntohs(tcp_hdr(skb)->source));
1575 goto drop_and_release;
1576 }
1577
1578 isn = tcp_v4_init_sequence(skb);
1579 }
1580 tcp_rsk(req)->snt_isn = isn;
1581
1582 if (dst == NULL) {
1583 dst = inet_csk_route_req(sk, &fl4, req);
1584 if (dst == NULL)
1585 goto drop_and_free;
1586 }
1587 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1588
1589 /* We don't call tcp_v4_send_synack() directly because we need
1590 * to make sure a child socket can be created successfully before
1591 * sending back synack!
1592 *
1593 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1594 * (or better yet, call tcp_send_synack() in the child context
1595 * directly, but will have to fix bunch of other code first)
1596 * after syn_recv_sock() except one will need to first fix the
1597 * latter to remove its dependency on the current implementation
1598 * of tcp_v4_send_synack()->tcp_select_initial_window().
1599 */
1600 skb_synack = tcp_make_synack(sk, dst, req,
1601 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1602
1603 if (skb_synack) {
1604 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1605 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1606 } else
1607 goto drop_and_free;
1608
1609 if (likely(!do_fastopen)) {
1610 int err;
1611 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1612 ireq->rmt_addr, ireq->opt);
1613 err = net_xmit_eval(err);
1614 if (err || want_cookie)
1615 goto drop_and_free;
1616
1617 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1618 tcp_rsk(req)->listener = NULL;
1619 /* Add the request_sock to the SYN table */
1620 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1621 if (fastopen_cookie_present(&foc) && foc.len != 0)
1622 NET_INC_STATS_BH(sock_net(sk),
1623 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1624 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1625 goto drop_and_free;
1626
1627 return 0;
1628
1629 drop_and_release:
1630 dst_release(dst);
1631 drop_and_free:
1632 reqsk_free(req);
1633 drop:
1634 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1635 return 0;
1636 }
1637 EXPORT_SYMBOL(tcp_v4_conn_request);
1638
1639
1640 /*
1641 * The three way handshake has completed - we got a valid synack -
1642 * now create the new socket.
1643 */
1644 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1645 struct request_sock *req,
1646 struct dst_entry *dst)
1647 {
1648 struct inet_request_sock *ireq;
1649 struct inet_sock *newinet;
1650 struct tcp_sock *newtp;
1651 struct sock *newsk;
1652 #ifdef CONFIG_TCP_MD5SIG
1653 struct tcp_md5sig_key *key;
1654 #endif
1655 struct ip_options_rcu *inet_opt;
1656
1657 if (sk_acceptq_is_full(sk))
1658 goto exit_overflow;
1659
1660 newsk = tcp_create_openreq_child(sk, req, skb);
1661 if (!newsk)
1662 goto exit_nonewsk;
1663
1664 newsk->sk_gso_type = SKB_GSO_TCPV4;
1665 inet_sk_rx_dst_set(newsk, skb);
1666
1667 newtp = tcp_sk(newsk);
1668 newinet = inet_sk(newsk);
1669 ireq = inet_rsk(req);
1670 newinet->inet_daddr = ireq->rmt_addr;
1671 newinet->inet_rcv_saddr = ireq->loc_addr;
1672 newinet->inet_saddr = ireq->loc_addr;
1673 inet_opt = ireq->opt;
1674 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1675 ireq->opt = NULL;
1676 newinet->mc_index = inet_iif(skb);
1677 newinet->mc_ttl = ip_hdr(skb)->ttl;
1678 newinet->rcv_tos = ip_hdr(skb)->tos;
1679 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1680 if (inet_opt)
1681 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1682 newinet->inet_id = newtp->write_seq ^ jiffies;
1683
1684 if (!dst) {
1685 dst = inet_csk_route_child_sock(sk, newsk, req);
1686 if (!dst)
1687 goto put_and_exit;
1688 } else {
1689 /* syncookie case : see end of cookie_v4_check() */
1690 }
1691 sk_setup_caps(newsk, dst);
1692
1693 tcp_mtup_init(newsk);
1694 tcp_sync_mss(newsk, dst_mtu(dst));
1695 newtp->advmss = dst_metric_advmss(dst);
1696 if (tcp_sk(sk)->rx_opt.user_mss &&
1697 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1698 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1699
1700 tcp_initialize_rcv_mss(newsk);
1701 tcp_synack_rtt_meas(newsk, req);
1702 newtp->total_retrans = req->num_retrans;
1703
1704 #ifdef CONFIG_TCP_MD5SIG
1705 /* Copy over the MD5 key from the original socket */
1706 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1707 AF_INET);
1708 if (key != NULL) {
1709 /*
1710 * We're using one, so create a matching key
1711 * on the newsk structure. If we fail to get
1712 * memory, then we end up not copying the key
1713 * across. Shucks.
1714 */
1715 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1716 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1717 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1718 }
1719 #endif
1720
1721 if (__inet_inherit_port(sk, newsk) < 0)
1722 goto put_and_exit;
1723 __inet_hash_nolisten(newsk, NULL);
1724
1725 return newsk;
1726
1727 exit_overflow:
1728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1729 exit_nonewsk:
1730 dst_release(dst);
1731 exit:
1732 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1733 return NULL;
1734 put_and_exit:
1735 inet_csk_prepare_forced_close(newsk);
1736 tcp_done(newsk);
1737 goto exit;
1738 }
1739 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1740
1741 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1742 {
1743 struct tcphdr *th = tcp_hdr(skb);
1744 const struct iphdr *iph = ip_hdr(skb);
1745 struct sock *nsk;
1746 struct request_sock **prev;
1747 /* Find possible connection requests. */
1748 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1749 iph->saddr, iph->daddr);
1750 if (req)
1751 return tcp_check_req(sk, skb, req, prev, false);
1752
1753 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1754 th->source, iph->daddr, th->dest, inet_iif(skb));
1755
1756 if (nsk) {
1757 if (nsk->sk_state != TCP_TIME_WAIT) {
1758 bh_lock_sock(nsk);
1759 return nsk;
1760 }
1761 inet_twsk_put(inet_twsk(nsk));
1762 return NULL;
1763 }
1764
1765 #ifdef CONFIG_SYN_COOKIES
1766 if (!th->syn)
1767 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1768 #endif
1769 return sk;
1770 }
1771
1772 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1773 {
1774 const struct iphdr *iph = ip_hdr(skb);
1775
1776 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1777 if (!tcp_v4_check(skb->len, iph->saddr,
1778 iph->daddr, skb->csum)) {
1779 skb->ip_summed = CHECKSUM_UNNECESSARY;
1780 return 0;
1781 }
1782 }
1783
1784 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1785 skb->len, IPPROTO_TCP, 0);
1786
1787 if (skb->len <= 76) {
1788 return __skb_checksum_complete(skb);
1789 }
1790 return 0;
1791 }
1792
1793
1794 /* The socket must have it's spinlock held when we get
1795 * here.
1796 *
1797 * We have a potential double-lock case here, so even when
1798 * doing backlog processing we use the BH locking scheme.
1799 * This is because we cannot sleep with the original spinlock
1800 * held.
1801 */
1802 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1803 {
1804 struct sock *rsk;
1805 #ifdef CONFIG_TCP_MD5SIG
1806 /*
1807 * We really want to reject the packet as early as possible
1808 * if:
1809 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1810 * o There is an MD5 option and we're not expecting one
1811 */
1812 if (tcp_v4_inbound_md5_hash(sk, skb))
1813 goto discard;
1814 #endif
1815
1816 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1817 struct dst_entry *dst = sk->sk_rx_dst;
1818
1819 sock_rps_save_rxhash(sk, skb);
1820 if (dst) {
1821 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1822 dst->ops->check(dst, 0) == NULL) {
1823 dst_release(dst);
1824 sk->sk_rx_dst = NULL;
1825 }
1826 }
1827 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1828 rsk = sk;
1829 goto reset;
1830 }
1831 return 0;
1832 }
1833
1834 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1835 goto csum_err;
1836
1837 if (sk->sk_state == TCP_LISTEN) {
1838 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1839 if (!nsk)
1840 goto discard;
1841
1842 if (nsk != sk) {
1843 sock_rps_save_rxhash(nsk, skb);
1844 if (tcp_child_process(sk, nsk, skb)) {
1845 rsk = nsk;
1846 goto reset;
1847 }
1848 return 0;
1849 }
1850 } else
1851 sock_rps_save_rxhash(sk, skb);
1852
1853 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1854 rsk = sk;
1855 goto reset;
1856 }
1857 return 0;
1858
1859 reset:
1860 tcp_v4_send_reset(rsk, skb);
1861 discard:
1862 kfree_skb(skb);
1863 /* Be careful here. If this function gets more complicated and
1864 * gcc suffers from register pressure on the x86, sk (in %ebx)
1865 * might be destroyed here. This current version compiles correctly,
1866 * but you have been warned.
1867 */
1868 return 0;
1869
1870 csum_err:
1871 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1872 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1873 goto discard;
1874 }
1875 EXPORT_SYMBOL(tcp_v4_do_rcv);
1876
1877 void tcp_v4_early_demux(struct sk_buff *skb)
1878 {
1879 const struct iphdr *iph;
1880 const struct tcphdr *th;
1881 struct sock *sk;
1882
1883 if (skb->pkt_type != PACKET_HOST)
1884 return;
1885
1886 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1887 return;
1888
1889 iph = ip_hdr(skb);
1890 th = tcp_hdr(skb);
1891
1892 if (th->doff < sizeof(struct tcphdr) / 4)
1893 return;
1894
1895 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1896 iph->saddr, th->source,
1897 iph->daddr, ntohs(th->dest),
1898 skb->skb_iif);
1899 if (sk) {
1900 skb->sk = sk;
1901 skb->destructor = sock_edemux;
1902 if (sk->sk_state != TCP_TIME_WAIT) {
1903 struct dst_entry *dst = sk->sk_rx_dst;
1904
1905 if (dst)
1906 dst = dst_check(dst, 0);
1907 if (dst &&
1908 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1909 skb_dst_set_noref(skb, dst);
1910 }
1911 }
1912 }
1913
1914 /* Packet is added to VJ-style prequeue for processing in process
1915 * context, if a reader task is waiting. Apparently, this exciting
1916 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1917 * failed somewhere. Latency? Burstiness? Well, at least now we will
1918 * see, why it failed. 8)8) --ANK
1919 *
1920 */
1921 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1922 {
1923 struct tcp_sock *tp = tcp_sk(sk);
1924
1925 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1926 return false;
1927
1928 if (skb->len <= tcp_hdrlen(skb) &&
1929 skb_queue_len(&tp->ucopy.prequeue) == 0)
1930 return false;
1931
1932 skb_dst_force(skb);
1933 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1934 tp->ucopy.memory += skb->truesize;
1935 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1936 struct sk_buff *skb1;
1937
1938 BUG_ON(sock_owned_by_user(sk));
1939
1940 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1941 sk_backlog_rcv(sk, skb1);
1942 NET_INC_STATS_BH(sock_net(sk),
1943 LINUX_MIB_TCPPREQUEUEDROPPED);
1944 }
1945
1946 tp->ucopy.memory = 0;
1947 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1948 wake_up_interruptible_sync_poll(sk_sleep(sk),
1949 POLLIN | POLLRDNORM | POLLRDBAND);
1950 if (!inet_csk_ack_scheduled(sk))
1951 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1952 (3 * tcp_rto_min(sk)) / 4,
1953 sysctl_tcp_rto_max);
1954 }
1955 return true;
1956 }
1957 EXPORT_SYMBOL(tcp_prequeue);
1958
1959 /*
1960 * From tcp_input.c
1961 */
1962
1963 int tcp_v4_rcv(struct sk_buff *skb)
1964 {
1965 const struct iphdr *iph;
1966 const struct tcphdr *th;
1967 struct sock *sk;
1968 int ret;
1969 struct net *net = dev_net(skb->dev);
1970
1971 if (skb->pkt_type != PACKET_HOST)
1972 goto discard_it;
1973
1974 /* Count it even if it's bad */
1975 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1976
1977 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1978 goto discard_it;
1979
1980 th = tcp_hdr(skb);
1981
1982 if (th->doff < sizeof(struct tcphdr) / 4)
1983 goto bad_packet;
1984 if (!pskb_may_pull(skb, th->doff * 4))
1985 goto discard_it;
1986
1987 /* An explanation is required here, I think.
1988 * Packet length and doff are validated by header prediction,
1989 * provided case of th->doff==0 is eliminated.
1990 * So, we defer the checks. */
1991 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1992 goto csum_error;
1993
1994 th = tcp_hdr(skb);
1995 iph = ip_hdr(skb);
1996 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1997 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1998 skb->len - th->doff * 4);
1999 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2000 TCP_SKB_CB(skb)->when = 0;
2001 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2002 TCP_SKB_CB(skb)->sacked = 0;
2003
2004 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2005 if (!sk)
2006 goto no_tcp_socket;
2007
2008 process:
2009 if (sk->sk_state == TCP_TIME_WAIT)
2010 goto do_time_wait;
2011
2012 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2013 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2014 goto discard_and_relse;
2015 }
2016
2017 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2018 goto discard_and_relse;
2019 nf_reset(skb);
2020
2021 if (sk_filter(sk, skb))
2022 goto discard_and_relse;
2023
2024 skb->dev = NULL;
2025
2026 bh_lock_sock_nested(sk);
2027 ret = 0;
2028 if (!sock_owned_by_user(sk)) {
2029 #ifdef CONFIG_NET_DMA
2030 struct tcp_sock *tp = tcp_sk(sk);
2031 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2032 tp->ucopy.dma_chan = net_dma_find_channel();
2033 if (tp->ucopy.dma_chan)
2034 ret = tcp_v4_do_rcv(sk, skb);
2035 else
2036 #endif
2037 {
2038 if (!tcp_prequeue(sk, skb))
2039 ret = tcp_v4_do_rcv(sk, skb);
2040 }
2041 } else if (unlikely(sk_add_backlog(sk, skb,
2042 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2043 bh_unlock_sock(sk);
2044 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2045 goto discard_and_relse;
2046 }
2047 bh_unlock_sock(sk);
2048
2049 sock_put(sk);
2050
2051 return ret;
2052
2053 no_tcp_socket:
2054 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2055 goto discard_it;
2056
2057 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2058 csum_error:
2059 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2060 bad_packet:
2061 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2062 } else {
2063 tcp_v4_send_reset(NULL, skb);
2064 }
2065
2066 discard_it:
2067 /* Discard frame. */
2068 kfree_skb(skb);
2069 return 0;
2070
2071 discard_and_relse:
2072 sock_put(sk);
2073 goto discard_it;
2074
2075 do_time_wait:
2076 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2077 inet_twsk_put(inet_twsk(sk));
2078 goto discard_it;
2079 }
2080
2081 if (skb->len < (th->doff << 2)) {
2082 inet_twsk_put(inet_twsk(sk));
2083 goto bad_packet;
2084 }
2085 if (tcp_checksum_complete(skb)) {
2086 inet_twsk_put(inet_twsk(sk));
2087 goto csum_error;
2088 }
2089 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2090 case TCP_TW_SYN: {
2091 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2092 &tcp_hashinfo,
2093 iph->saddr, th->source,
2094 iph->daddr, th->dest,
2095 inet_iif(skb));
2096 if (sk2) {
2097 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2098 inet_twsk_put(inet_twsk(sk));
2099 sk = sk2;
2100 goto process;
2101 }
2102 /* Fall through to ACK */
2103 }
2104 case TCP_TW_ACK:
2105 tcp_v4_timewait_ack(sk, skb);
2106 break;
2107 case TCP_TW_RST:
2108 goto no_tcp_socket;
2109 case TCP_TW_SUCCESS:;
2110 }
2111 goto discard_it;
2112 }
2113
2114 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2115 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2116 .twsk_unique = tcp_twsk_unique,
2117 .twsk_destructor= tcp_twsk_destructor,
2118 };
2119
2120 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2121 {
2122 struct dst_entry *dst = skb_dst(skb);
2123
2124 dst_hold(dst);
2125 sk->sk_rx_dst = dst;
2126 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2127 }
2128 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2129
2130 const struct inet_connection_sock_af_ops ipv4_specific = {
2131 .queue_xmit = ip_queue_xmit,
2132 .send_check = tcp_v4_send_check,
2133 .rebuild_header = inet_sk_rebuild_header,
2134 .sk_rx_dst_set = inet_sk_rx_dst_set,
2135 .conn_request = tcp_v4_conn_request,
2136 .syn_recv_sock = tcp_v4_syn_recv_sock,
2137 .net_header_len = sizeof(struct iphdr),
2138 .setsockopt = ip_setsockopt,
2139 .getsockopt = ip_getsockopt,
2140 .addr2sockaddr = inet_csk_addr2sockaddr,
2141 .sockaddr_len = sizeof(struct sockaddr_in),
2142 .bind_conflict = inet_csk_bind_conflict,
2143 #ifdef CONFIG_COMPAT
2144 .compat_setsockopt = compat_ip_setsockopt,
2145 .compat_getsockopt = compat_ip_getsockopt,
2146 #endif
2147 .mtu_reduced = tcp_v4_mtu_reduced,
2148 };
2149 EXPORT_SYMBOL(ipv4_specific);
2150
2151 #ifdef CONFIG_TCP_MD5SIG
2152 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2153 .md5_lookup = tcp_v4_md5_lookup,
2154 .calc_md5_hash = tcp_v4_md5_hash_skb,
2155 .md5_parse = tcp_v4_parse_md5_keys,
2156 };
2157 #endif
2158
2159 /* NOTE: A lot of things set to zero explicitly by call to
2160 * sk_alloc() so need not be done here.
2161 */
2162 static int tcp_v4_init_sock(struct sock *sk)
2163 {
2164 struct inet_connection_sock *icsk = inet_csk(sk);
2165
2166 tcp_init_sock(sk);
2167 icsk->icsk_MMSRB = 0;
2168
2169 icsk->icsk_af_ops = &ipv4_specific;
2170
2171 #ifdef CONFIG_TCP_MD5SIG
2172 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2173 #endif
2174
2175 return 0;
2176 }
2177
2178 void tcp_v4_destroy_sock(struct sock *sk)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181
2182 tcp_clear_xmit_timers(sk);
2183
2184 tcp_cleanup_congestion_control(sk);
2185
2186 /* Cleanup up the write buffer. */
2187 tcp_write_queue_purge(sk);
2188
2189 /* Cleans up our, hopefully empty, out_of_order_queue. */
2190 __skb_queue_purge(&tp->out_of_order_queue);
2191
2192 #ifdef CONFIG_TCP_MD5SIG
2193 /* Clean up the MD5 key list, if any */
2194 if (tp->md5sig_info) {
2195 tcp_clear_md5_list(sk);
2196 kfree_rcu(tp->md5sig_info, rcu);
2197 tp->md5sig_info = NULL;
2198 }
2199 #endif
2200
2201 #ifdef CONFIG_NET_DMA
2202 /* Cleans up our sk_async_wait_queue */
2203 __skb_queue_purge(&sk->sk_async_wait_queue);
2204 #endif
2205
2206 /* Clean prequeue, it must be empty really */
2207 __skb_queue_purge(&tp->ucopy.prequeue);
2208
2209 /* Clean up a referenced TCP bind bucket. */
2210 if (inet_csk(sk)->icsk_bind_hash)
2211 inet_put_port(sk);
2212
2213 BUG_ON(tp->fastopen_rsk != NULL);
2214
2215 /* If socket is aborted during connect operation */
2216 tcp_free_fastopen_req(tp);
2217
2218 sk_sockets_allocated_dec(sk);
2219 sock_release_memcg(sk);
2220 }
2221 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2222
2223 void tcp_v4_handle_retrans_time_by_uid(struct uid_err uid_e)
2224 {
2225 unsigned int bucket;
2226 uid_t skuid = (uid_t)(uid_e.appuid);
2227 struct inet_connection_sock *icsk = NULL;//inet_csk(sk);
2228
2229
2230 for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
2231 struct hlist_nulls_node *node;
2232 struct sock *sk;
2233 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
2234
2235 spin_lock_bh(lock);
2236 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
2237
2238 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
2239 continue;
2240 if (sock_flag(sk, SOCK_DEAD))
2241 continue;
2242
2243 if(sk->sk_socket){
2244 if(SOCK_INODE(sk->sk_socket)->i_uid != skuid)
2245 continue;
2246 else
2247 printk("[mmspb] tcp_v4_handle_retrans_time_by_uid socket uid(%d) match!",
2248 SOCK_INODE(sk->sk_socket)->i_uid);
2249 } else{
2250 continue;
2251 }
2252
2253 sock_hold(sk);
2254 spin_unlock_bh(lock);
2255
2256 local_bh_disable();
2257 bh_lock_sock(sk);
2258
2259 // update sk time out value
2260 icsk = inet_csk(sk);
2261 printk("[mmspb] tcp_v4_handle_retrans_time_by_uid update timer\n");
2262
2263 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + 2);
2264 icsk->icsk_rto = sysctl_tcp_rto_min * 30;
2265 icsk->icsk_MMSRB = 1;
2266
2267 bh_unlock_sock(sk);
2268 local_bh_enable();
2269 spin_lock_bh(lock);
2270 sock_put(sk);
2271
2272 }
2273 spin_unlock_bh(lock);
2274 }
2275
2276 }
2277
2278
2279 /*
2280 * tcp_v4_nuke_addr_by_uid - destroy all sockets of spcial uid
2281 */
2282 void tcp_v4_reset_connections_by_uid(struct uid_err uid_e)
2283 {
2284 unsigned int bucket;
2285 uid_t skuid = (uid_t)(uid_e.appuid);
2286
2287 for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
2288 struct hlist_nulls_node *node;
2289 struct sock *sk;
2290 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
2291
2292 restart:
2293 spin_lock_bh(lock);
2294 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
2295
2296 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
2297 continue;
2298 if (sock_flag(sk, SOCK_DEAD))
2299 continue;
2300
2301 if(sk->sk_socket){
2302 if(SOCK_INODE(sk->sk_socket)->i_uid != skuid)
2303 continue;
2304 else
2305 printk(KERN_INFO "SIOCKILLSOCK socket uid(%d) match!",
2306 SOCK_INODE(sk->sk_socket)->i_uid);
2307 } else{
2308 continue;
2309 }
2310
2311 sock_hold(sk);
2312 spin_unlock_bh(lock);
2313
2314 local_bh_disable();
2315 bh_lock_sock(sk);
2316 sk->sk_err = uid_e.errNum;
2317 printk(KERN_INFO "SIOCKILLSOCK set sk err == %d!! \n", sk->sk_err);
2318 sk->sk_error_report(sk);
2319
2320 tcp_done(sk);
2321 bh_unlock_sock(sk);
2322 local_bh_enable();
2323 sock_put(sk);
2324
2325 goto restart;
2326 }
2327 spin_unlock_bh(lock);
2328 }
2329 }
2330
2331
2332 #ifdef CONFIG_PROC_FS
2333 /* Proc filesystem TCP sock list dumping. */
2334
2335 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2336 {
2337 return hlist_nulls_empty(head) ? NULL :
2338 list_entry(head->first, struct inet_timewait_sock, tw_node);
2339 }
2340
2341 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2342 {
2343 return !is_a_nulls(tw->tw_node.next) ?
2344 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2345 }
2346
2347 /*
2348 * Get next listener socket follow cur. If cur is NULL, get first socket
2349 * starting from bucket given in st->bucket; when st->bucket is zero the
2350 * very first socket in the hash table is returned.
2351 */
2352 static void *listening_get_next(struct seq_file *seq, void *cur)
2353 {
2354 struct inet_connection_sock *icsk;
2355 struct hlist_nulls_node *node;
2356 struct sock *sk = cur;
2357 struct inet_listen_hashbucket *ilb;
2358 struct tcp_iter_state *st = seq->private;
2359 struct net *net = seq_file_net(seq);
2360
2361 if (!sk) {
2362 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2363 spin_lock_bh(&ilb->lock);
2364 sk = sk_nulls_head(&ilb->head);
2365 st->offset = 0;
2366 goto get_sk;
2367 }
2368 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2369 ++st->num;
2370 ++st->offset;
2371
2372 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2373 struct request_sock *req = cur;
2374
2375 icsk = inet_csk(st->syn_wait_sk);
2376 req = req->dl_next;
2377 while (1) {
2378 while (req) {
2379 if (req->rsk_ops->family == st->family) {
2380 cur = req;
2381 goto out;
2382 }
2383 req = req->dl_next;
2384 }
2385 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2386 break;
2387 get_req:
2388 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2389 }
2390 sk = sk_nulls_next(st->syn_wait_sk);
2391 st->state = TCP_SEQ_STATE_LISTENING;
2392 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2393 } else {
2394 icsk = inet_csk(sk);
2395 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2396 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2397 goto start_req;
2398 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2399 sk = sk_nulls_next(sk);
2400 }
2401 get_sk:
2402 sk_nulls_for_each_from(sk, node) {
2403 if (!net_eq(sock_net(sk), net))
2404 continue;
2405 if (sk->sk_family == st->family) {
2406 cur = sk;
2407 goto out;
2408 }
2409 icsk = inet_csk(sk);
2410 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2411 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2412 start_req:
2413 st->uid = sock_i_uid(sk);
2414 st->syn_wait_sk = sk;
2415 st->state = TCP_SEQ_STATE_OPENREQ;
2416 st->sbucket = 0;
2417 goto get_req;
2418 }
2419 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2420 }
2421 spin_unlock_bh(&ilb->lock);
2422 st->offset = 0;
2423 if (++st->bucket < INET_LHTABLE_SIZE) {
2424 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2425 spin_lock_bh(&ilb->lock);
2426 sk = sk_nulls_head(&ilb->head);
2427 goto get_sk;
2428 }
2429 cur = NULL;
2430 out:
2431 return cur;
2432 }
2433
2434 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2435 {
2436 struct tcp_iter_state *st = seq->private;
2437 void *rc;
2438
2439 st->bucket = 0;
2440 st->offset = 0;
2441 rc = listening_get_next(seq, NULL);
2442
2443 while (rc && *pos) {
2444 rc = listening_get_next(seq, rc);
2445 --*pos;
2446 }
2447 return rc;
2448 }
2449
2450 static inline bool empty_bucket(struct tcp_iter_state *st)
2451 {
2452 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2453 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2454 }
2455
2456 /*
2457 * Get first established socket starting from bucket given in st->bucket.
2458 * If st->bucket is zero, the very first socket in the hash is returned.
2459 */
2460 static void *established_get_first(struct seq_file *seq)
2461 {
2462 struct tcp_iter_state *st = seq->private;
2463 struct net *net = seq_file_net(seq);
2464 void *rc = NULL;
2465
2466 st->offset = 0;
2467 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2468 struct sock *sk;
2469 struct hlist_nulls_node *node;
2470 struct inet_timewait_sock *tw;
2471 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2472
2473 /* Lockless fast path for the common case of empty buckets */
2474 if (empty_bucket(st))
2475 continue;
2476
2477 spin_lock_bh(lock);
2478 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2479 if (sk->sk_family != st->family ||
2480 !net_eq(sock_net(sk), net)) {
2481 continue;
2482 }
2483 rc = sk;
2484 goto out;
2485 }
2486 st->state = TCP_SEQ_STATE_TIME_WAIT;
2487 inet_twsk_for_each(tw, node,
2488 &tcp_hashinfo.ehash[st->bucket].twchain) {
2489 if (tw->tw_family != st->family ||
2490 !net_eq(twsk_net(tw), net)) {
2491 continue;
2492 }
2493 rc = tw;
2494 goto out;
2495 }
2496 spin_unlock_bh(lock);
2497 st->state = TCP_SEQ_STATE_ESTABLISHED;
2498 }
2499 out:
2500 return rc;
2501 }
2502
2503 static void *established_get_next(struct seq_file *seq, void *cur)
2504 {
2505 struct sock *sk = cur;
2506 struct inet_timewait_sock *tw;
2507 struct hlist_nulls_node *node;
2508 struct tcp_iter_state *st = seq->private;
2509 struct net *net = seq_file_net(seq);
2510
2511 ++st->num;
2512 ++st->offset;
2513
2514 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2515 tw = cur;
2516 tw = tw_next(tw);
2517 get_tw:
2518 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2519 tw = tw_next(tw);
2520 }
2521 if (tw) {
2522 cur = tw;
2523 goto out;
2524 }
2525 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2526 st->state = TCP_SEQ_STATE_ESTABLISHED;
2527
2528 /* Look for next non empty bucket */
2529 st->offset = 0;
2530 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2531 empty_bucket(st))
2532 ;
2533 if (st->bucket > tcp_hashinfo.ehash_mask)
2534 return NULL;
2535
2536 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2537 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2538 } else
2539 sk = sk_nulls_next(sk);
2540
2541 sk_nulls_for_each_from(sk, node) {
2542 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2543 goto found;
2544 }
2545
2546 st->state = TCP_SEQ_STATE_TIME_WAIT;
2547 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2548 goto get_tw;
2549 found:
2550 cur = sk;
2551 out:
2552 return cur;
2553 }
2554
2555 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2556 {
2557 struct tcp_iter_state *st = seq->private;
2558 void *rc;
2559
2560 st->bucket = 0;
2561 rc = established_get_first(seq);
2562
2563 while (rc && pos) {
2564 rc = established_get_next(seq, rc);
2565 --pos;
2566 }
2567 return rc;
2568 }
2569
2570 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2571 {
2572 void *rc;
2573 struct tcp_iter_state *st = seq->private;
2574
2575 st->state = TCP_SEQ_STATE_LISTENING;
2576 rc = listening_get_idx(seq, &pos);
2577
2578 if (!rc) {
2579 st->state = TCP_SEQ_STATE_ESTABLISHED;
2580 rc = established_get_idx(seq, pos);
2581 }
2582
2583 return rc;
2584 }
2585
2586 static void *tcp_seek_last_pos(struct seq_file *seq)
2587 {
2588 struct tcp_iter_state *st = seq->private;
2589 int offset = st->offset;
2590 int orig_num = st->num;
2591 void *rc = NULL;
2592
2593 switch (st->state) {
2594 case TCP_SEQ_STATE_OPENREQ:
2595 case TCP_SEQ_STATE_LISTENING:
2596 if (st->bucket >= INET_LHTABLE_SIZE)
2597 break;
2598 st->state = TCP_SEQ_STATE_LISTENING;
2599 rc = listening_get_next(seq, NULL);
2600 while (offset-- && rc)
2601 rc = listening_get_next(seq, rc);
2602 if (rc)
2603 break;
2604 st->bucket = 0;
2605 /* Fallthrough */
2606 case TCP_SEQ_STATE_ESTABLISHED:
2607 case TCP_SEQ_STATE_TIME_WAIT:
2608 st->state = TCP_SEQ_STATE_ESTABLISHED;
2609 if (st->bucket > tcp_hashinfo.ehash_mask)
2610 break;
2611 rc = established_get_first(seq);
2612 while (offset-- && rc)
2613 rc = established_get_next(seq, rc);
2614 }
2615
2616 st->num = orig_num;
2617
2618 return rc;
2619 }
2620
2621 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2622 {
2623 struct tcp_iter_state *st = seq->private;
2624 void *rc;
2625
2626 if (*pos && *pos == st->last_pos) {
2627 rc = tcp_seek_last_pos(seq);
2628 if (rc)
2629 goto out;
2630 }
2631
2632 st->state = TCP_SEQ_STATE_LISTENING;
2633 st->num = 0;
2634 st->bucket = 0;
2635 st->offset = 0;
2636 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2637
2638 out:
2639 st->last_pos = *pos;
2640 return rc;
2641 }
2642
2643 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2644 {
2645 struct tcp_iter_state *st = seq->private;
2646 void *rc = NULL;
2647
2648 if (v == SEQ_START_TOKEN) {
2649 rc = tcp_get_idx(seq, 0);
2650 goto out;
2651 }
2652
2653 switch (st->state) {
2654 case TCP_SEQ_STATE_OPENREQ:
2655 case TCP_SEQ_STATE_LISTENING:
2656 rc = listening_get_next(seq, v);
2657 if (!rc) {
2658 st->state = TCP_SEQ_STATE_ESTABLISHED;
2659 st->bucket = 0;
2660 st->offset = 0;
2661 rc = established_get_first(seq);
2662 }
2663 break;
2664 case TCP_SEQ_STATE_ESTABLISHED:
2665 case TCP_SEQ_STATE_TIME_WAIT:
2666 rc = established_get_next(seq, v);
2667 break;
2668 }
2669 out:
2670 ++*pos;
2671 st->last_pos = *pos;
2672 return rc;
2673 }
2674
2675 static void tcp_seq_stop(struct seq_file *seq, void *v)
2676 {
2677 struct tcp_iter_state *st = seq->private;
2678
2679 switch (st->state) {
2680 case TCP_SEQ_STATE_OPENREQ:
2681 if (v) {
2682 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2683 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2684 }
2685 case TCP_SEQ_STATE_LISTENING:
2686 if (v != SEQ_START_TOKEN)
2687 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2688 break;
2689 case TCP_SEQ_STATE_TIME_WAIT:
2690 case TCP_SEQ_STATE_ESTABLISHED:
2691 if (v)
2692 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2693 break;
2694 }
2695 }
2696
2697 int tcp_seq_open(struct inode *inode, struct file *file)
2698 {
2699 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2700 struct tcp_iter_state *s;
2701 int err;
2702
2703 err = seq_open_net(inode, file, &afinfo->seq_ops,
2704 sizeof(struct tcp_iter_state));
2705 if (err < 0)
2706 return err;
2707
2708 s = ((struct seq_file *)file->private_data)->private;
2709 s->family = afinfo->family;
2710 s->last_pos = 0;
2711 return 0;
2712 }
2713 EXPORT_SYMBOL(tcp_seq_open);
2714
2715 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2716 {
2717 int rc = 0;
2718 struct proc_dir_entry *p;
2719
2720 afinfo->seq_ops.start = tcp_seq_start;
2721 afinfo->seq_ops.next = tcp_seq_next;
2722 afinfo->seq_ops.stop = tcp_seq_stop;
2723
2724 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2725 afinfo->seq_fops, afinfo);
2726 if (!p)
2727 rc = -ENOMEM;
2728 return rc;
2729 }
2730 EXPORT_SYMBOL(tcp_proc_register);
2731
2732 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2733 {
2734 remove_proc_entry(afinfo->name, net->proc_net);
2735 }
2736 EXPORT_SYMBOL(tcp_proc_unregister);
2737
2738 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2739 struct seq_file *f, int i, kuid_t uid, int *len)
2740 {
2741 const struct inet_request_sock *ireq = inet_rsk(req);
2742 long delta = req->expires - jiffies;
2743
2744 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2745 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2746 i,
2747 ireq->loc_addr,
2748 ntohs(inet_sk(sk)->inet_sport),
2749 ireq->rmt_addr,
2750 ntohs(ireq->rmt_port),
2751 TCP_SYN_RECV,
2752 0, 0, /* could print option size, but that is af dependent. */
2753 1, /* timers active (only the expire timer) */
2754 jiffies_delta_to_clock_t(delta),
2755 req->num_timeout,
2756 from_kuid_munged(seq_user_ns(f), uid),
2757 0, /* non standard timer */
2758 0, /* open_requests have no inode */
2759 atomic_read(&sk->sk_refcnt),
2760 req,
2761 len);
2762 }
2763
2764 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2765 {
2766 int timer_active;
2767 unsigned long timer_expires;
2768 const struct tcp_sock *tp = tcp_sk(sk);
2769 const struct inet_connection_sock *icsk = inet_csk(sk);
2770 const struct inet_sock *inet = inet_sk(sk);
2771 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2772 __be32 dest = inet->inet_daddr;
2773 __be32 src = inet->inet_rcv_saddr;
2774 __u16 destp = ntohs(inet->inet_dport);
2775 __u16 srcp = ntohs(inet->inet_sport);
2776 int rx_queue;
2777
2778 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2779 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2780 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2781 timer_active = 1;
2782 timer_expires = icsk->icsk_timeout;
2783 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2784 timer_active = 4;
2785 timer_expires = icsk->icsk_timeout;
2786 } else if (timer_pending(&sk->sk_timer)) {
2787 timer_active = 2;
2788 timer_expires = sk->sk_timer.expires;
2789 } else {
2790 timer_active = 0;
2791 timer_expires = jiffies;
2792 }
2793
2794 if (sk->sk_state == TCP_LISTEN)
2795 rx_queue = sk->sk_ack_backlog;
2796 else
2797 /*
2798 * because we dont lock socket, we might find a transient negative value
2799 */
2800 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2801
2802 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2803 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2804 i, src, srcp, dest, destp, sk->sk_state,
2805 tp->write_seq - tp->snd_una,
2806 rx_queue,
2807 timer_active,
2808 jiffies_delta_to_clock_t(timer_expires - jiffies),
2809 icsk->icsk_retransmits,
2810 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2811 icsk->icsk_probes_out,
2812 sock_i_ino(sk),
2813 atomic_read(&sk->sk_refcnt), sk,
2814 jiffies_to_clock_t(icsk->icsk_rto),
2815 jiffies_to_clock_t(icsk->icsk_ack.ato),
2816 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2817 tp->snd_cwnd,
2818 sk->sk_state == TCP_LISTEN ?
2819 (fastopenq ? fastopenq->max_qlen : 0) :
2820 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2821 len);
2822 }
2823
2824 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2825 struct seq_file *f, int i, int *len)
2826 {
2827 __be32 dest, src;
2828 __u16 destp, srcp;
2829 long delta = tw->tw_ttd - jiffies;
2830
2831 dest = tw->tw_daddr;
2832 src = tw->tw_rcv_saddr;
2833 destp = ntohs(tw->tw_dport);
2834 srcp = ntohs(tw->tw_sport);
2835
2836 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2837 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2838 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2839 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2840 atomic_read(&tw->tw_refcnt), tw, len);
2841 }
2842
2843 #define TMPSZ 150
2844
2845 static int tcp4_seq_show(struct seq_file *seq, void *v)
2846 {
2847 struct tcp_iter_state *st;
2848 int len;
2849
2850 if (v == SEQ_START_TOKEN) {
2851 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2852 " sl local_address rem_address st tx_queue "
2853 "rx_queue tr tm->when retrnsmt uid timeout "
2854 "inode");
2855 goto out;
2856 }
2857 st = seq->private;
2858
2859 switch (st->state) {
2860 case TCP_SEQ_STATE_LISTENING:
2861 case TCP_SEQ_STATE_ESTABLISHED:
2862 get_tcp4_sock(v, seq, st->num, &len);
2863 break;
2864 case TCP_SEQ_STATE_OPENREQ:
2865 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2866 break;
2867 case TCP_SEQ_STATE_TIME_WAIT:
2868 get_timewait4_sock(v, seq, st->num, &len);
2869 break;
2870 }
2871 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2872 out:
2873 return 0;
2874 }
2875
2876 static const struct file_operations tcp_afinfo_seq_fops = {
2877 .owner = THIS_MODULE,
2878 .open = tcp_seq_open,
2879 .read = seq_read,
2880 .llseek = seq_lseek,
2881 .release = seq_release_net
2882 };
2883
2884 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2885 .name = "tcp",
2886 .family = AF_INET,
2887 .seq_fops = &tcp_afinfo_seq_fops,
2888 .seq_ops = {
2889 .show = tcp4_seq_show,
2890 },
2891 };
2892
2893 static int __net_init tcp4_proc_init_net(struct net *net)
2894 {
2895 return tcp_proc_register(net, &tcp4_seq_afinfo);
2896 }
2897
2898 static void __net_exit tcp4_proc_exit_net(struct net *net)
2899 {
2900 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2901 }
2902
2903 static struct pernet_operations tcp4_net_ops = {
2904 .init = tcp4_proc_init_net,
2905 .exit = tcp4_proc_exit_net,
2906 };
2907
2908 int __init tcp4_proc_init(void)
2909 {
2910 return register_pernet_subsys(&tcp4_net_ops);
2911 }
2912
2913 void tcp4_proc_exit(void)
2914 {
2915 unregister_pernet_subsys(&tcp4_net_ops);
2916 }
2917 #endif /* CONFIG_PROC_FS */
2918
2919 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2920 {
2921 const struct iphdr *iph = skb_gro_network_header(skb);
2922 __wsum wsum;
2923 __sum16 sum;
2924
2925 switch (skb->ip_summed) {
2926 case CHECKSUM_COMPLETE:
2927 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2928 skb->csum)) {
2929 skb->ip_summed = CHECKSUM_UNNECESSARY;
2930 break;
2931 }
2932 flush:
2933 NAPI_GRO_CB(skb)->flush = 1;
2934 return NULL;
2935
2936 case CHECKSUM_NONE:
2937 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2938 skb_gro_len(skb), IPPROTO_TCP, 0);
2939 sum = csum_fold(skb_checksum(skb,
2940 skb_gro_offset(skb),
2941 skb_gro_len(skb),
2942 wsum));
2943 if (sum)
2944 goto flush;
2945
2946 skb->ip_summed = CHECKSUM_UNNECESSARY;
2947 break;
2948 }
2949
2950 return tcp_gro_receive(head, skb);
2951 }
2952
2953 int tcp4_gro_complete(struct sk_buff *skb)
2954 {
2955 const struct iphdr *iph = ip_hdr(skb);
2956 struct tcphdr *th = tcp_hdr(skb);
2957
2958 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2959 iph->saddr, iph->daddr, 0);
2960 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2961
2962 return tcp_gro_complete(skb);
2963 }
2964
2965 struct proto tcp_prot = {
2966 .name = "TCP",
2967 .owner = THIS_MODULE,
2968 .close = tcp_close,
2969 .connect = tcp_v4_connect,
2970 .disconnect = tcp_disconnect,
2971 .accept = inet_csk_accept,
2972 .ioctl = tcp_ioctl,
2973 .init = tcp_v4_init_sock,
2974 .destroy = tcp_v4_destroy_sock,
2975 .shutdown = tcp_shutdown,
2976 .setsockopt = tcp_setsockopt,
2977 .getsockopt = tcp_getsockopt,
2978 .recvmsg = tcp_recvmsg,
2979 .sendmsg = tcp_sendmsg,
2980 .sendpage = tcp_sendpage,
2981 .backlog_rcv = tcp_v4_do_rcv,
2982 .release_cb = tcp_release_cb,
2983 .hash = inet_hash,
2984 .unhash = inet_unhash,
2985 .get_port = inet_csk_get_port,
2986 .enter_memory_pressure = tcp_enter_memory_pressure,
2987 .sockets_allocated = &tcp_sockets_allocated,
2988 .orphan_count = &tcp_orphan_count,
2989 .memory_allocated = &tcp_memory_allocated,
2990 .memory_pressure = &tcp_memory_pressure,
2991 .sysctl_wmem = sysctl_tcp_wmem,
2992 .sysctl_rmem = sysctl_tcp_rmem,
2993 .max_header = MAX_TCP_HEADER,
2994 .obj_size = sizeof(struct tcp_sock),
2995 .slab_flags = SLAB_DESTROY_BY_RCU,
2996 .twsk_prot = &tcp_timewait_sock_ops,
2997 .rsk_prot = &tcp_request_sock_ops,
2998 .h.hashinfo = &tcp_hashinfo,
2999 .no_autobind = true,
3000 #ifdef CONFIG_COMPAT
3001 .compat_setsockopt = compat_tcp_setsockopt,
3002 .compat_getsockopt = compat_tcp_getsockopt,
3003 #endif
3004 #ifdef CONFIG_MEMCG_KMEM
3005 .init_cgroup = tcp_init_cgroup,
3006 .destroy_cgroup = tcp_destroy_cgroup,
3007 .proto_cgroup = tcp_proto_cgroup,
3008 #endif
3009 };
3010 EXPORT_SYMBOL(tcp_prot);
3011
3012 static int __net_init tcp_sk_init(struct net *net)
3013 {
3014 net->ipv4.sysctl_tcp_ecn = 2;
3015 return 0;
3016 }
3017
3018 static void __net_exit tcp_sk_exit(struct net *net)
3019 {
3020 }
3021
3022 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3023 {
3024 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
3025 }
3026
3027 static struct pernet_operations __net_initdata tcp_sk_ops = {
3028 .init = tcp_sk_init,
3029 .exit = tcp_sk_exit,
3030 .exit_batch = tcp_sk_exit_batch,
3031 };
3032
3033 void __init tcp_v4_init(void)
3034 {
3035 inet_hashinfo_init(&tcp_hashinfo);
3036 if (register_pernet_subsys(&tcp_sk_ops))
3037 panic("Failed to create the TCP control socket.\n");
3038 }