Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/reciprocal_div.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <net/netdma.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_DEFAULT_INIT_RCVWND;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 unsigned int len;
134
135 icsk->icsk_ack.last_seg_size = 0;
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
164 if (len == lss) {
165 icsk->icsk_ack.rcv_mss = len;
166 return;
167 }
168 }
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180 if (quickacks == 0)
181 quickacks = 2;
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201
202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207 if (tp->ecn_flags & TCP_ECN_OK)
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 if (!(tp->ecn_flags & TCP_ECN_OK))
225 return;
226
227 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 case INET_ECN_NOT_ECT:
229 /* Funny extension: if ECT is not set on a segment,
230 * and we already seen ECT on a previous segment,
231 * it is probably a retransmit.
232 */
233 if (tp->ecn_flags & TCP_ECN_SEEN)
234 tcp_enter_quickack_mode((struct sock *)tp);
235 break;
236 case INET_ECN_CE:
237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock *)tp);
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 }
242 /* fallinto */
243 default:
244 tp->ecn_flags |= TCP_ECN_SEEN;
245 }
246 }
247
248 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
251 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
255 {
256 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
257 tp->ecn_flags &= ~TCP_ECN_OK;
258 }
259
260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
261 {
262 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
263 return true;
264 return false;
265 }
266
267 /* Buffer size and advertised window tuning.
268 *
269 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 */
271
272 static void tcp_fixup_sndbuf(struct sock *sk)
273 {
274 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
275
276 sndmem *= TCP_INIT_CWND;
277 if (sk->sk_sndbuf < sndmem)
278 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
279 }
280
281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
282 *
283 * All tcp_full_space() is split to two parts: "network" buffer, allocated
284 * forward and advertised in receiver window (tp->rcv_wnd) and
285 * "application buffer", required to isolate scheduling/application
286 * latencies from network.
287 * window_clamp is maximal advertised window. It can be less than
288 * tcp_full_space(), in this case tcp_full_space() - window_clamp
289 * is reserved for "application" buffer. The less window_clamp is
290 * the smoother our behaviour from viewpoint of network, but the lower
291 * throughput and the higher sensitivity of the connection to losses. 8)
292 *
293 * rcv_ssthresh is more strict window_clamp used at "slow start"
294 * phase to predict further behaviour of this connection.
295 * It is used for two goals:
296 * - to enforce header prediction at sender, even when application
297 * requires some significant "application buffer". It is check #1.
298 * - to prevent pruning of receive queue because of misprediction
299 * of receiver window. Check #2.
300 *
301 * The scheme does not work when sender sends good segments opening
302 * window and then starts to feed us spaghetti. But it should work
303 * in common situations. Otherwise, we have to rely on queue collapsing.
304 */
305
306 /* Slow part of check#2. */
307 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
308 {
309 struct tcp_sock *tp = tcp_sk(sk);
310 /* Optimize this! */
311 int truesize = tcp_win_from_space(skb->truesize) >> 1;
312 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
313
314 while (tp->rcv_ssthresh <= window) {
315 if (truesize <= skb->len)
316 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
317
318 truesize >>= 1;
319 window >>= 1;
320 }
321 return 0;
322 }
323
324 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327
328 /* Check #1 */
329 if (tp->rcv_ssthresh < tp->window_clamp &&
330 (int)tp->rcv_ssthresh < tcp_space(sk) &&
331 !sk_under_memory_pressure(sk)) {
332 int incr;
333
334 /* Check #2. Increase window, if skb with such overhead
335 * will fit to rcvbuf in future.
336 */
337 if (tcp_win_from_space(skb->truesize) <= skb->len)
338 incr = 2 * tp->advmss;
339 else
340 incr = __tcp_grow_window(sk, skb);
341
342 if (incr) {
343 incr = max_t(int, incr, 2 * skb->len);
344 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
345 tp->window_clamp);
346 inet_csk(sk)->icsk_ack.quick |= 1;
347 }
348 }
349 }
350
351 /* 3. Tuning rcvbuf, when connection enters established state. */
352
353 static void tcp_fixup_rcvbuf(struct sock *sk)
354 {
355 u32 mss = tcp_sk(sk)->advmss;
356 u32 icwnd = sysctl_tcp_default_init_rwnd;
357 int rcvmem;
358
359 /* Limit to 10 segments if mss <= 1460,
360 * or 14600/mss segments, with a minimum of two segments.
361 */
362 if (mss > 1460)
363 icwnd = max_t(u32, (1460 * icwnd) / mss, 2);
364
365 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
366 while (tcp_win_from_space(rcvmem) < mss)
367 rcvmem += 128;
368
369 rcvmem *= icwnd;
370
371 if (sk->sk_rcvbuf < rcvmem)
372 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
373 }
374
375 /* 4. Try to fixup all. It is made immediately after connection enters
376 * established state.
377 */
378 void tcp_init_buffer_space(struct sock *sk)
379 {
380 struct tcp_sock *tp = tcp_sk(sk);
381 int maxwin;
382
383 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
384 tcp_fixup_rcvbuf(sk);
385 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
386 tcp_fixup_sndbuf(sk);
387
388 tp->rcvq_space.space = tp->rcv_wnd;
389
390 maxwin = tcp_full_space(sk);
391
392 if (tp->window_clamp >= maxwin) {
393 tp->window_clamp = maxwin;
394
395 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
396 tp->window_clamp = max(maxwin -
397 (maxwin >> sysctl_tcp_app_win),
398 4 * tp->advmss);
399 }
400
401 /* Force reservation of one segment. */
402 if (sysctl_tcp_app_win &&
403 tp->window_clamp > 2 * tp->advmss &&
404 tp->window_clamp + tp->advmss > maxwin)
405 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
406
407 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
408 tp->snd_cwnd_stamp = tcp_time_stamp;
409 }
410
411 /* 5. Recalculate window clamp after socket hit its memory bounds. */
412 static void tcp_clamp_window(struct sock *sk)
413 {
414 struct tcp_sock *tp = tcp_sk(sk);
415 struct inet_connection_sock *icsk = inet_csk(sk);
416
417 icsk->icsk_ack.quick = 0;
418
419 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
420 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
421 !sk_under_memory_pressure(sk) &&
422 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
423 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
424 sysctl_tcp_rmem[2]);
425 }
426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
427 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
428 }
429
430 /* Initialize RCV_MSS value.
431 * RCV_MSS is an our guess about MSS used by the peer.
432 * We haven't any direct information about the MSS.
433 * It's better to underestimate the RCV_MSS rather than overestimate.
434 * Overestimations make us ACKing less frequently than needed.
435 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
436 */
437 void tcp_initialize_rcv_mss(struct sock *sk)
438 {
439 const struct tcp_sock *tp = tcp_sk(sk);
440 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
441
442 hint = min(hint, tp->rcv_wnd / 2);
443 hint = min(hint, TCP_MSS_DEFAULT);
444 hint = max(hint, TCP_MIN_MSS);
445
446 inet_csk(sk)->icsk_ack.rcv_mss = hint;
447 }
448 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
449
450 /* Receiver "autotuning" code.
451 *
452 * The algorithm for RTT estimation w/o timestamps is based on
453 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
454 * <http://public.lanl.gov/radiant/pubs.html#DRS>
455 *
456 * More detail on this code can be found at
457 * <http://staff.psc.edu/jheffner/>,
458 * though this reference is out of date. A new paper
459 * is pending.
460 */
461 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
462 {
463 u32 new_sample = tp->rcv_rtt_est.rtt;
464 long m = sample;
465
466 if (m == 0)
467 m = 1;
468
469 if (new_sample != 0) {
470 /* If we sample in larger samples in the non-timestamp
471 * case, we could grossly overestimate the RTT especially
472 * with chatty applications or bulk transfer apps which
473 * are stalled on filesystem I/O.
474 *
475 * Also, since we are only going for a minimum in the
476 * non-timestamp case, we do not smooth things out
477 * else with timestamps disabled convergence takes too
478 * long.
479 */
480 if (!win_dep) {
481 m -= (new_sample >> 3);
482 new_sample += m;
483 } else {
484 m <<= 3;
485 if (m < new_sample)
486 new_sample = m;
487 }
488 } else {
489 /* No previous measure. */
490 new_sample = m << 3;
491 }
492
493 if (tp->rcv_rtt_est.rtt != new_sample)
494 tp->rcv_rtt_est.rtt = new_sample;
495 }
496
497 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
498 {
499 if (tp->rcv_rtt_est.time == 0)
500 goto new_measure;
501 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
502 return;
503 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
504
505 new_measure:
506 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
507 tp->rcv_rtt_est.time = tcp_time_stamp;
508 }
509
510 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
511 const struct sk_buff *skb)
512 {
513 struct tcp_sock *tp = tcp_sk(sk);
514 if (tp->rx_opt.rcv_tsecr &&
515 (TCP_SKB_CB(skb)->end_seq -
516 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
517 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
518 }
519
520 /*
521 * This function should be called every time data is copied to user space.
522 * It calculates the appropriate TCP receive buffer space.
523 */
524 void tcp_rcv_space_adjust(struct sock *sk)
525 {
526 struct tcp_sock *tp = tcp_sk(sk);
527 int time;
528 int space;
529
530 if (tp->rcvq_space.time == 0)
531 goto new_measure;
532
533 time = tcp_time_stamp - tp->rcvq_space.time;
534 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
535 return;
536
537 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
538
539 space = max(tp->rcvq_space.space, space);
540
541 if (tp->rcvq_space.space != space) {
542 int rcvmem;
543
544 tp->rcvq_space.space = space;
545
546 if (sysctl_tcp_moderate_rcvbuf &&
547 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
548 int new_clamp = space;
549
550 /* Receive space grows, normalize in order to
551 * take into account packet headers and sk_buff
552 * structure overhead.
553 */
554 space /= tp->advmss;
555 if (!space)
556 space = 1;
557 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
558 while (tcp_win_from_space(rcvmem) < tp->advmss)
559 rcvmem += 128;
560 space *= rcvmem;
561 space = min(space, sysctl_tcp_rmem[2]);
562 if (space > sk->sk_rcvbuf) {
563 sk->sk_rcvbuf = space;
564
565 /* Make the window clamp follow along. */
566 tp->window_clamp = new_clamp;
567 }
568 }
569 }
570
571 new_measure:
572 tp->rcvq_space.seq = tp->copied_seq;
573 tp->rcvq_space.time = tcp_time_stamp;
574 }
575
576 /* There is something which you must keep in mind when you analyze the
577 * behavior of the tp->ato delayed ack timeout interval. When a
578 * connection starts up, we want to ack as quickly as possible. The
579 * problem is that "good" TCP's do slow start at the beginning of data
580 * transmission. The means that until we send the first few ACK's the
581 * sender will sit on his end and only queue most of his data, because
582 * he can only send snd_cwnd unacked packets at any given time. For
583 * each ACK we send, he increments snd_cwnd and transmits more of his
584 * queue. -DaveM
585 */
586 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
587 {
588 struct tcp_sock *tp = tcp_sk(sk);
589 struct inet_connection_sock *icsk = inet_csk(sk);
590 u32 now;
591
592 inet_csk_schedule_ack(sk);
593
594 tcp_measure_rcv_mss(sk, skb);
595
596 tcp_rcv_rtt_measure(tp);
597
598 now = tcp_time_stamp;
599
600 if (!icsk->icsk_ack.ato) {
601 /* The _first_ data packet received, initialize
602 * delayed ACK engine.
603 */
604 tcp_incr_quickack(sk);
605 icsk->icsk_ack.ato = TCP_ATO_MIN;
606 } else {
607 int m = now - icsk->icsk_ack.lrcvtime;
608
609 if (m <= TCP_ATO_MIN / 2) {
610 /* The fastest case is the first. */
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
612 } else if (m < icsk->icsk_ack.ato) {
613 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
614 if (icsk->icsk_ack.ato > icsk->icsk_rto)
615 icsk->icsk_ack.ato = icsk->icsk_rto;
616 } else if (m > icsk->icsk_rto) {
617 /* Too long gap. Apparently sender failed to
618 * restart window, so that we send ACKs quickly.
619 */
620 tcp_incr_quickack(sk);
621 sk_mem_reclaim(sk);
622 }
623 }
624 icsk->icsk_ack.lrcvtime = now;
625
626 TCP_ECN_check_ce(tp, skb);
627
628 if (skb->len >= 128)
629 tcp_grow_window(sk, skb);
630 }
631
632 /* Called to compute a smoothed rtt estimate. The data fed to this
633 * routine either comes from timestamps, or from segments that were
634 * known _not_ to have been retransmitted [see Karn/Partridge
635 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
636 * piece by Van Jacobson.
637 * NOTE: the next three routines used to be one big routine.
638 * To save cycles in the RFC 1323 implementation it was better to break
639 * it up into three procedures. -- erics
640 */
641 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
642 {
643 struct tcp_sock *tp = tcp_sk(sk);
644 long m = mrtt; /* RTT */
645
646 /* The following amusing code comes from Jacobson's
647 * article in SIGCOMM '88. Note that rtt and mdev
648 * are scaled versions of rtt and mean deviation.
649 * This is designed to be as fast as possible
650 * m stands for "measurement".
651 *
652 * On a 1990 paper the rto value is changed to:
653 * RTO = rtt + 4 * mdev
654 *
655 * Funny. This algorithm seems to be very broken.
656 * These formulae increase RTO, when it should be decreased, increase
657 * too slowly, when it should be increased quickly, decrease too quickly
658 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
659 * does not matter how to _calculate_ it. Seems, it was trap
660 * that VJ failed to avoid. 8)
661 */
662 if (m == 0)
663 m = 1;
664 if (tp->srtt != 0) {
665 m -= (tp->srtt >> 3); /* m is now error in rtt est */
666 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
667 if (m < 0) {
668 m = -m; /* m is now abs(error) */
669 m -= (tp->mdev >> 2); /* similar update on mdev */
670 /* This is similar to one of Eifel findings.
671 * Eifel blocks mdev updates when rtt decreases.
672 * This solution is a bit different: we use finer gain
673 * for mdev in this case (alpha*beta).
674 * Like Eifel it also prevents growth of rto,
675 * but also it limits too fast rto decreases,
676 * happening in pure Eifel.
677 */
678 if (m > 0)
679 m >>= 3;
680 } else {
681 m -= (tp->mdev >> 2); /* similar update on mdev */
682 }
683 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
684 if (tp->mdev > tp->mdev_max) {
685 tp->mdev_max = tp->mdev;
686 if (tp->mdev_max > tp->rttvar)
687 tp->rttvar = tp->mdev_max;
688 }
689 if (after(tp->snd_una, tp->rtt_seq)) {
690 if (tp->mdev_max < tp->rttvar)
691 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
692 tp->rtt_seq = tp->snd_nxt;
693 tp->mdev_max = tcp_rto_min(sk);
694 }
695 } else {
696 /* no previous measure. */
697 tp->srtt = m << 3; /* take the measured time to be rtt */
698 tp->mdev = m << 1; /* make sure rto = 3*rtt */
699 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
700 tp->rtt_seq = tp->snd_nxt;
701 }
702 }
703
704 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
705 * Note: TCP stack does not yet implement pacing.
706 * FQ packet scheduler can be used to implement cheap but effective
707 * TCP pacing, to smooth the burst on large writes when packets
708 * in flight is significantly lower than cwnd (or rwin)
709 */
710 static void tcp_update_pacing_rate(struct sock *sk)
711 {
712 const struct tcp_sock *tp = tcp_sk(sk);
713 u64 rate;
714
715 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
716 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
717
718 rate *= max(tp->snd_cwnd, tp->packets_out);
719
720 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
721 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
722 * We probably need usec resolution in the future.
723 * Note: This also takes care of possible srtt=0 case,
724 * when tcp_rtt_estimator() was not yet called.
725 */
726 if (tp->srtt > 8 + 2)
727 do_div(rate, tp->srtt);
728
729 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
730 }
731
732 /* Calculate rto without backoff. This is the second half of Van Jacobson's
733 * routine referred to above.
734 */
735 void tcp_set_rto(struct sock *sk)
736 {
737 const struct tcp_sock *tp = tcp_sk(sk);
738 /* Old crap is replaced with new one. 8)
739 *
740 * More seriously:
741 * 1. If rtt variance happened to be less 50msec, it is hallucination.
742 * It cannot be less due to utterly erratic ACK generation made
743 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
744 * to do with delayed acks, because at cwnd>2 true delack timeout
745 * is invisible. Actually, Linux-2.4 also generates erratic
746 * ACKs in some circumstances.
747 */
748 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
749
750 /* 2. Fixups made earlier cannot be right.
751 * If we do not estimate RTO correctly without them,
752 * all the algo is pure shit and should be replaced
753 * with correct one. It is exactly, which we pretend to do.
754 */
755
756 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
757 * guarantees that rto is higher.
758 */
759 tcp_bound_rto(sk);
760 }
761
762 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
763 {
764 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
765
766 if (!cwnd)
767 cwnd = TCP_INIT_CWND;
768 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
769 }
770
771 /*
772 * Packet counting of FACK is based on in-order assumptions, therefore TCP
773 * disables it when reordering is detected
774 */
775 void tcp_disable_fack(struct tcp_sock *tp)
776 {
777 /* RFC3517 uses different metric in lost marker => reset on change */
778 if (tcp_is_fack(tp))
779 tp->lost_skb_hint = NULL;
780 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
781 }
782
783 /* Take a notice that peer is sending D-SACKs */
784 static void tcp_dsack_seen(struct tcp_sock *tp)
785 {
786 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
787 }
788
789 static void tcp_update_reordering(struct sock *sk, const int metric,
790 const int ts)
791 {
792 struct tcp_sock *tp = tcp_sk(sk);
793 if (metric > tp->reordering) {
794 int mib_idx;
795
796 tp->reordering = min(TCP_MAX_REORDERING, metric);
797
798 /* This exciting event is worth to be remembered. 8) */
799 if (ts)
800 mib_idx = LINUX_MIB_TCPTSREORDER;
801 else if (tcp_is_reno(tp))
802 mib_idx = LINUX_MIB_TCPRENOREORDER;
803 else if (tcp_is_fack(tp))
804 mib_idx = LINUX_MIB_TCPFACKREORDER;
805 else
806 mib_idx = LINUX_MIB_TCPSACKREORDER;
807
808 NET_INC_STATS_BH(sock_net(sk), mib_idx);
809 #if FASTRETRANS_DEBUG > 1
810 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
811 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
812 tp->reordering,
813 tp->fackets_out,
814 tp->sacked_out,
815 tp->undo_marker ? tp->undo_retrans : 0);
816 #endif
817 tcp_disable_fack(tp);
818 }
819
820 if (metric > 0)
821 tcp_disable_early_retrans(tp);
822 }
823
824 /* This must be called before lost_out is incremented */
825 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
826 {
827 if ((tp->retransmit_skb_hint == NULL) ||
828 before(TCP_SKB_CB(skb)->seq,
829 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
830 tp->retransmit_skb_hint = skb;
831
832 if (!tp->lost_out ||
833 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
834 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
835 }
836
837 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
838 {
839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 tcp_verify_retransmit_hint(tp, skb);
841
842 tp->lost_out += tcp_skb_pcount(skb);
843 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
844 }
845 }
846
847 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
848 struct sk_buff *skb)
849 {
850 tcp_verify_retransmit_hint(tp, skb);
851
852 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
853 tp->lost_out += tcp_skb_pcount(skb);
854 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
855 }
856 }
857
858 /* This procedure tags the retransmission queue when SACKs arrive.
859 *
860 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861 * Packets in queue with these bits set are counted in variables
862 * sacked_out, retrans_out and lost_out, correspondingly.
863 *
864 * Valid combinations are:
865 * Tag InFlight Description
866 * 0 1 - orig segment is in flight.
867 * S 0 - nothing flies, orig reached receiver.
868 * L 0 - nothing flies, orig lost by net.
869 * R 2 - both orig and retransmit are in flight.
870 * L|R 1 - orig is lost, retransmit is in flight.
871 * S|R 1 - orig reached receiver, retrans is still in flight.
872 * (L|S|R is logically valid, it could occur when L|R is sacked,
873 * but it is equivalent to plain S and code short-curcuits it to S.
874 * L|S is logically invalid, it would mean -1 packet in flight 8))
875 *
876 * These 6 states form finite state machine, controlled by the following events:
877 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879 * 3. Loss detection event of two flavors:
880 * A. Scoreboard estimator decided the packet is lost.
881 * A'. Reno "three dupacks" marks head of queue lost.
882 * A''. Its FACK modification, head until snd.fack is lost.
883 * B. SACK arrives sacking SND.NXT at the moment, when the
884 * segment was retransmitted.
885 * 4. D-SACK added new rule: D-SACK changes any tag to S.
886 *
887 * It is pleasant to note, that state diagram turns out to be commutative,
888 * so that we are allowed not to be bothered by order of our actions,
889 * when multiple events arrive simultaneously. (see the function below).
890 *
891 * Reordering detection.
892 * --------------------
893 * Reordering metric is maximal distance, which a packet can be displaced
894 * in packet stream. With SACKs we can estimate it:
895 *
896 * 1. SACK fills old hole and the corresponding segment was not
897 * ever retransmitted -> reordering. Alas, we cannot use it
898 * when segment was retransmitted.
899 * 2. The last flaw is solved with D-SACK. D-SACK arrives
900 * for retransmitted and already SACKed segment -> reordering..
901 * Both of these heuristics are not used in Loss state, when we cannot
902 * account for retransmits accurately.
903 *
904 * SACK block validation.
905 * ----------------------
906 *
907 * SACK block range validation checks that the received SACK block fits to
908 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
909 * Note that SND.UNA is not included to the range though being valid because
910 * it means that the receiver is rather inconsistent with itself reporting
911 * SACK reneging when it should advance SND.UNA. Such SACK block this is
912 * perfectly valid, however, in light of RFC2018 which explicitly states
913 * that "SACK block MUST reflect the newest segment. Even if the newest
914 * segment is going to be discarded ...", not that it looks very clever
915 * in case of head skb. Due to potentional receiver driven attacks, we
916 * choose to avoid immediate execution of a walk in write queue due to
917 * reneging and defer head skb's loss recovery to standard loss recovery
918 * procedure that will eventually trigger (nothing forbids us doing this).
919 *
920 * Implements also blockage to start_seq wrap-around. Problem lies in the
921 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
922 * there's no guarantee that it will be before snd_nxt (n). The problem
923 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
924 * wrap (s_w):
925 *
926 * <- outs wnd -> <- wrapzone ->
927 * u e n u_w e_w s n_w
928 * | | | | | | |
929 * |<------------+------+----- TCP seqno space --------------+---------->|
930 * ...-- <2^31 ->| |<--------...
931 * ...---- >2^31 ------>| |<--------...
932 *
933 * Current code wouldn't be vulnerable but it's better still to discard such
934 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
935 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
936 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
937 * equal to the ideal case (infinite seqno space without wrap caused issues).
938 *
939 * With D-SACK the lower bound is extended to cover sequence space below
940 * SND.UNA down to undo_marker, which is the last point of interest. Yet
941 * again, D-SACK block must not to go across snd_una (for the same reason as
942 * for the normal SACK blocks, explained above). But there all simplicity
943 * ends, TCP might receive valid D-SACKs below that. As long as they reside
944 * fully below undo_marker they do not affect behavior in anyway and can
945 * therefore be safely ignored. In rare cases (which are more or less
946 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
947 * fragmentation and packet reordering past skb's retransmission. To consider
948 * them correctly, the acceptable range must be extended even more though
949 * the exact amount is rather hard to quantify. However, tp->max_window can
950 * be used as an exaggerated estimate.
951 */
952 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
953 u32 start_seq, u32 end_seq)
954 {
955 /* Too far in future, or reversed (interpretation is ambiguous) */
956 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
957 return false;
958
959 /* Nasty start_seq wrap-around check (see comments above) */
960 if (!before(start_seq, tp->snd_nxt))
961 return false;
962
963 /* In outstanding window? ...This is valid exit for D-SACKs too.
964 * start_seq == snd_una is non-sensical (see comments above)
965 */
966 if (after(start_seq, tp->snd_una))
967 return true;
968
969 if (!is_dsack || !tp->undo_marker)
970 return false;
971
972 /* ...Then it's D-SACK, and must reside below snd_una completely */
973 if (after(end_seq, tp->snd_una))
974 return false;
975
976 if (!before(start_seq, tp->undo_marker))
977 return true;
978
979 /* Too old */
980 if (!after(end_seq, tp->undo_marker))
981 return false;
982
983 /* Undo_marker boundary crossing (overestimates a lot). Known already:
984 * start_seq < undo_marker and end_seq >= undo_marker.
985 */
986 return !before(start_seq, end_seq - tp->max_window);
987 }
988
989 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
990 * Event "B". Later note: FACK people cheated me again 8), we have to account
991 * for reordering! Ugly, but should help.
992 *
993 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
994 * less than what is now known to be received by the other end (derived from
995 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
996 * retransmitted skbs to avoid some costly processing per ACKs.
997 */
998 static void tcp_mark_lost_retrans(struct sock *sk)
999 {
1000 const struct inet_connection_sock *icsk = inet_csk(sk);
1001 struct tcp_sock *tp = tcp_sk(sk);
1002 struct sk_buff *skb;
1003 int cnt = 0;
1004 u32 new_low_seq = tp->snd_nxt;
1005 u32 received_upto = tcp_highest_sack_seq(tp);
1006
1007 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1008 !after(received_upto, tp->lost_retrans_low) ||
1009 icsk->icsk_ca_state != TCP_CA_Recovery)
1010 return;
1011
1012 tcp_for_write_queue(skb, sk) {
1013 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1014
1015 if (skb == tcp_send_head(sk))
1016 break;
1017 if (cnt == tp->retrans_out)
1018 break;
1019 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1020 continue;
1021
1022 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1023 continue;
1024
1025 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1026 * constraint here (see above) but figuring out that at
1027 * least tp->reordering SACK blocks reside between ack_seq
1028 * and received_upto is not easy task to do cheaply with
1029 * the available datastructures.
1030 *
1031 * Whether FACK should check here for tp->reordering segs
1032 * in-between one could argue for either way (it would be
1033 * rather simple to implement as we could count fack_count
1034 * during the walk and do tp->fackets_out - fack_count).
1035 */
1036 if (after(received_upto, ack_seq)) {
1037 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1038 tp->retrans_out -= tcp_skb_pcount(skb);
1039
1040 tcp_skb_mark_lost_uncond_verify(tp, skb);
1041 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1042 } else {
1043 if (before(ack_seq, new_low_seq))
1044 new_low_seq = ack_seq;
1045 cnt += tcp_skb_pcount(skb);
1046 }
1047 }
1048
1049 if (tp->retrans_out)
1050 tp->lost_retrans_low = new_low_seq;
1051 }
1052
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 bool dup_sack = false;
1061
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 dup_sack = true;
1064 tcp_dsack_seen(tp);
1065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 } else if (num_sacks > 1) {
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
1072 dup_sack = true;
1073 tcp_dsack_seen(tp);
1074 NET_INC_STATS_BH(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
1076 }
1077 }
1078
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1084
1085 return dup_sack;
1086 }
1087
1088 struct tcp_sacktag_state {
1089 int reord;
1090 int fack_count;
1091 int flag;
1092 };
1093
1094 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1095 * the incoming SACK may not exactly match but we can find smaller MSS
1096 * aligned portion of it that matches. Therefore we might need to fragment
1097 * which may fail and creates some hassle (caller must handle error case
1098 * returns).
1099 *
1100 * FIXME: this could be merged to shift decision code
1101 */
1102 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1103 u32 start_seq, u32 end_seq)
1104 {
1105 int err;
1106 bool in_sack;
1107 unsigned int pkt_len;
1108 unsigned int mss;
1109
1110 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1111 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1112
1113 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1114 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1115 mss = tcp_skb_mss(skb);
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1117
1118 if (!in_sack) {
1119 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1120 if (pkt_len < mss)
1121 pkt_len = mss;
1122 } else {
1123 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1124 if (pkt_len < mss)
1125 return -EINVAL;
1126 }
1127
1128 /* Round if necessary so that SACKs cover only full MSSes
1129 * and/or the remaining small portion (if present)
1130 */
1131 if (pkt_len > mss) {
1132 unsigned int new_len = (pkt_len / mss) * mss;
1133 if (!in_sack && new_len < pkt_len) {
1134 new_len += mss;
1135 if (new_len >= skb->len)
1136 return 0;
1137 }
1138 pkt_len = new_len;
1139 }
1140 err = tcp_fragment(sk, skb, pkt_len, mss);
1141 if (err < 0)
1142 return err;
1143 }
1144
1145 return in_sack;
1146 }
1147
1148 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1149 static u8 tcp_sacktag_one(struct sock *sk,
1150 struct tcp_sacktag_state *state, u8 sacked,
1151 u32 start_seq, u32 end_seq,
1152 bool dup_sack, int pcount)
1153 {
1154 struct tcp_sock *tp = tcp_sk(sk);
1155 int fack_count = state->fack_count;
1156
1157 /* Account D-SACK for retransmitted packet. */
1158 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1159 if (tp->undo_marker && tp->undo_retrans > 0 &&
1160 after(end_seq, tp->undo_marker))
1161 tp->undo_retrans--;
1162 if (sacked & TCPCB_SACKED_ACKED)
1163 state->reord = min(fack_count, state->reord);
1164 }
1165
1166 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1167 if (!after(end_seq, tp->snd_una))
1168 return sacked;
1169
1170 if (!(sacked & TCPCB_SACKED_ACKED)) {
1171 if (sacked & TCPCB_SACKED_RETRANS) {
1172 /* If the segment is not tagged as lost,
1173 * we do not clear RETRANS, believing
1174 * that retransmission is still in flight.
1175 */
1176 if (sacked & TCPCB_LOST) {
1177 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1178 tp->lost_out -= pcount;
1179 tp->retrans_out -= pcount;
1180 }
1181 } else {
1182 if (!(sacked & TCPCB_RETRANS)) {
1183 /* New sack for not retransmitted frame,
1184 * which was in hole. It is reordering.
1185 */
1186 if (before(start_seq,
1187 tcp_highest_sack_seq(tp)))
1188 state->reord = min(fack_count,
1189 state->reord);
1190 if (!after(end_seq, tp->high_seq))
1191 state->flag |= FLAG_ORIG_SACK_ACKED;
1192 }
1193
1194 if (sacked & TCPCB_LOST) {
1195 sacked &= ~TCPCB_LOST;
1196 tp->lost_out -= pcount;
1197 }
1198 }
1199
1200 sacked |= TCPCB_SACKED_ACKED;
1201 state->flag |= FLAG_DATA_SACKED;
1202 tp->sacked_out += pcount;
1203
1204 fack_count += pcount;
1205
1206 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1207 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1208 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1209 tp->lost_cnt_hint += pcount;
1210
1211 if (fack_count > tp->fackets_out)
1212 tp->fackets_out = fack_count;
1213 }
1214
1215 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1216 * frames and clear it. undo_retrans is decreased above, L|R frames
1217 * are accounted above as well.
1218 */
1219 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1220 sacked &= ~TCPCB_SACKED_RETRANS;
1221 tp->retrans_out -= pcount;
1222 }
1223
1224 return sacked;
1225 }
1226
1227 /* Shift newly-SACKed bytes from this skb to the immediately previous
1228 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1229 */
1230 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1231 struct tcp_sacktag_state *state,
1232 unsigned int pcount, int shifted, int mss,
1233 bool dup_sack)
1234 {
1235 struct tcp_sock *tp = tcp_sk(sk);
1236 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1237 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1238 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1239
1240 BUG_ON(!pcount);
1241
1242 /* Adjust counters and hints for the newly sacked sequence
1243 * range but discard the return value since prev is already
1244 * marked. We must tag the range first because the seq
1245 * advancement below implicitly advances
1246 * tcp_highest_sack_seq() when skb is highest_sack.
1247 */
1248 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1249 start_seq, end_seq, dup_sack, pcount);
1250
1251 if (skb == tp->lost_skb_hint)
1252 tp->lost_cnt_hint += pcount;
1253
1254 TCP_SKB_CB(prev)->end_seq += shifted;
1255 TCP_SKB_CB(skb)->seq += shifted;
1256
1257 skb_shinfo(prev)->gso_segs += pcount;
1258 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1259 skb_shinfo(skb)->gso_segs -= pcount;
1260
1261 /* When we're adding to gso_segs == 1, gso_size will be zero,
1262 * in theory this shouldn't be necessary but as long as DSACK
1263 * code can come after this skb later on it's better to keep
1264 * setting gso_size to something.
1265 */
1266 if (!skb_shinfo(prev)->gso_size) {
1267 skb_shinfo(prev)->gso_size = mss;
1268 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1269 }
1270
1271 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1272 if (skb_shinfo(skb)->gso_segs <= 1) {
1273 skb_shinfo(skb)->gso_size = 0;
1274 skb_shinfo(skb)->gso_type = 0;
1275 }
1276
1277 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1278 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1279
1280 if (skb->len > 0) {
1281 BUG_ON(!tcp_skb_pcount(skb));
1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1283 return false;
1284 }
1285
1286 /* Whole SKB was eaten :-) */
1287
1288 if (skb == tp->retransmit_skb_hint)
1289 tp->retransmit_skb_hint = prev;
1290 if (skb == tp->scoreboard_skb_hint)
1291 tp->scoreboard_skb_hint = prev;
1292 if (skb == tp->lost_skb_hint) {
1293 tp->lost_skb_hint = prev;
1294 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1295 }
1296
1297 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1298 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1299 TCP_SKB_CB(prev)->end_seq++;
1300
1301 if (skb == tcp_highest_sack(sk))
1302 tcp_advance_highest_sack(sk, skb);
1303
1304 tcp_unlink_write_queue(skb, sk);
1305 sk_wmem_free_skb(sk, skb);
1306
1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1308
1309 return true;
1310 }
1311
1312 /* I wish gso_size would have a bit more sane initialization than
1313 * something-or-zero which complicates things
1314 */
1315 static int tcp_skb_seglen(const struct sk_buff *skb)
1316 {
1317 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1318 }
1319
1320 /* Shifting pages past head area doesn't work */
1321 static int skb_can_shift(const struct sk_buff *skb)
1322 {
1323 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1324 }
1325
1326 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1327 * skb.
1328 */
1329 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1330 struct tcp_sacktag_state *state,
1331 u32 start_seq, u32 end_seq,
1332 bool dup_sack)
1333 {
1334 struct tcp_sock *tp = tcp_sk(sk);
1335 struct sk_buff *prev;
1336 int mss;
1337 int pcount = 0;
1338 int len;
1339 int in_sack;
1340
1341 if (!sk_can_gso(sk))
1342 goto fallback;
1343
1344 /* Normally R but no L won't result in plain S */
1345 if (!dup_sack &&
1346 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1347 goto fallback;
1348 if (!skb_can_shift(skb))
1349 goto fallback;
1350 /* This frame is about to be dropped (was ACKed). */
1351 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1352 goto fallback;
1353
1354 /* Can only happen with delayed DSACK + discard craziness */
1355 if (unlikely(skb == tcp_write_queue_head(sk)))
1356 goto fallback;
1357 prev = tcp_write_queue_prev(sk, skb);
1358
1359 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1360 goto fallback;
1361
1362 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1363 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1364
1365 if (in_sack) {
1366 len = skb->len;
1367 pcount = tcp_skb_pcount(skb);
1368 mss = tcp_skb_seglen(skb);
1369
1370 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1371 * drop this restriction as unnecessary
1372 */
1373 if (mss != tcp_skb_seglen(prev))
1374 goto fallback;
1375 } else {
1376 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1377 goto noop;
1378 /* CHECKME: This is non-MSS split case only?, this will
1379 * cause skipped skbs due to advancing loop btw, original
1380 * has that feature too
1381 */
1382 if (tcp_skb_pcount(skb) <= 1)
1383 goto noop;
1384
1385 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1386 if (!in_sack) {
1387 /* TODO: head merge to next could be attempted here
1388 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1389 * though it might not be worth of the additional hassle
1390 *
1391 * ...we can probably just fallback to what was done
1392 * previously. We could try merging non-SACKed ones
1393 * as well but it probably isn't going to buy off
1394 * because later SACKs might again split them, and
1395 * it would make skb timestamp tracking considerably
1396 * harder problem.
1397 */
1398 goto fallback;
1399 }
1400
1401 len = end_seq - TCP_SKB_CB(skb)->seq;
1402 BUG_ON(len < 0);
1403 BUG_ON(len > skb->len);
1404
1405 /* MSS boundaries should be honoured or else pcount will
1406 * severely break even though it makes things bit trickier.
1407 * Optimize common case to avoid most of the divides
1408 */
1409 mss = tcp_skb_mss(skb);
1410
1411 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1412 * drop this restriction as unnecessary
1413 */
1414 if (mss != tcp_skb_seglen(prev))
1415 goto fallback;
1416
1417 if (len == mss) {
1418 pcount = 1;
1419 } else if (len < mss) {
1420 goto noop;
1421 } else {
1422 pcount = len / mss;
1423 len = pcount * mss;
1424 }
1425 }
1426
1427 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1428 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1429 goto fallback;
1430
1431 if (!skb_shift(prev, skb, len))
1432 goto fallback;
1433 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1434 goto out;
1435
1436 /* Hole filled allows collapsing with the next as well, this is very
1437 * useful when hole on every nth skb pattern happens
1438 */
1439 if (prev == tcp_write_queue_tail(sk))
1440 goto out;
1441 skb = tcp_write_queue_next(sk, prev);
1442
1443 if (!skb_can_shift(skb) ||
1444 (skb == tcp_send_head(sk)) ||
1445 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1446 (mss != tcp_skb_seglen(skb)))
1447 goto out;
1448
1449 len = skb->len;
1450 if (skb_shift(prev, skb, len)) {
1451 pcount += tcp_skb_pcount(skb);
1452 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1453 }
1454
1455 out:
1456 state->fack_count += pcount;
1457 return prev;
1458
1459 noop:
1460 return skb;
1461
1462 fallback:
1463 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1464 return NULL;
1465 }
1466
1467 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1468 struct tcp_sack_block *next_dup,
1469 struct tcp_sacktag_state *state,
1470 u32 start_seq, u32 end_seq,
1471 bool dup_sack_in)
1472 {
1473 struct tcp_sock *tp = tcp_sk(sk);
1474 struct sk_buff *tmp;
1475
1476 tcp_for_write_queue_from(skb, sk) {
1477 int in_sack = 0;
1478 bool dup_sack = dup_sack_in;
1479
1480 if (skb == tcp_send_head(sk))
1481 break;
1482
1483 /* queue is in-order => we can short-circuit the walk early */
1484 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1485 break;
1486
1487 if ((next_dup != NULL) &&
1488 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1489 in_sack = tcp_match_skb_to_sack(sk, skb,
1490 next_dup->start_seq,
1491 next_dup->end_seq);
1492 if (in_sack > 0)
1493 dup_sack = true;
1494 }
1495
1496 /* skb reference here is a bit tricky to get right, since
1497 * shifting can eat and free both this skb and the next,
1498 * so not even _safe variant of the loop is enough.
1499 */
1500 if (in_sack <= 0) {
1501 tmp = tcp_shift_skb_data(sk, skb, state,
1502 start_seq, end_seq, dup_sack);
1503 if (tmp != NULL) {
1504 if (tmp != skb) {
1505 skb = tmp;
1506 continue;
1507 }
1508
1509 in_sack = 0;
1510 } else {
1511 in_sack = tcp_match_skb_to_sack(sk, skb,
1512 start_seq,
1513 end_seq);
1514 }
1515 }
1516
1517 if (unlikely(in_sack < 0))
1518 break;
1519
1520 if (in_sack) {
1521 TCP_SKB_CB(skb)->sacked =
1522 tcp_sacktag_one(sk,
1523 state,
1524 TCP_SKB_CB(skb)->sacked,
1525 TCP_SKB_CB(skb)->seq,
1526 TCP_SKB_CB(skb)->end_seq,
1527 dup_sack,
1528 tcp_skb_pcount(skb));
1529
1530 if (!before(TCP_SKB_CB(skb)->seq,
1531 tcp_highest_sack_seq(tp)))
1532 tcp_advance_highest_sack(sk, skb);
1533 }
1534
1535 state->fack_count += tcp_skb_pcount(skb);
1536 }
1537 return skb;
1538 }
1539
1540 /* Avoid all extra work that is being done by sacktag while walking in
1541 * a normal way
1542 */
1543 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1544 struct tcp_sacktag_state *state,
1545 u32 skip_to_seq)
1546 {
1547 tcp_for_write_queue_from(skb, sk) {
1548 if (skb == tcp_send_head(sk))
1549 break;
1550
1551 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1552 break;
1553
1554 state->fack_count += tcp_skb_pcount(skb);
1555 }
1556 return skb;
1557 }
1558
1559 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1560 struct sock *sk,
1561 struct tcp_sack_block *next_dup,
1562 struct tcp_sacktag_state *state,
1563 u32 skip_to_seq)
1564 {
1565 if (next_dup == NULL)
1566 return skb;
1567
1568 if (before(next_dup->start_seq, skip_to_seq)) {
1569 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1570 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1571 next_dup->start_seq, next_dup->end_seq,
1572 1);
1573 }
1574
1575 return skb;
1576 }
1577
1578 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1579 {
1580 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1581 }
1582
1583 static int
1584 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1585 u32 prior_snd_una)
1586 {
1587 struct tcp_sock *tp = tcp_sk(sk);
1588 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1589 TCP_SKB_CB(ack_skb)->sacked);
1590 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1591 struct tcp_sack_block sp[TCP_NUM_SACKS];
1592 struct tcp_sack_block *cache;
1593 struct tcp_sacktag_state state;
1594 struct sk_buff *skb;
1595 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1596 int used_sacks;
1597 bool found_dup_sack = false;
1598 int i, j;
1599 int first_sack_index;
1600
1601 state.flag = 0;
1602 state.reord = tp->packets_out;
1603
1604 if (!tp->sacked_out) {
1605 if (WARN_ON(tp->fackets_out))
1606 tp->fackets_out = 0;
1607 tcp_highest_sack_reset(sk);
1608 }
1609
1610 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1611 num_sacks, prior_snd_una);
1612 if (found_dup_sack)
1613 state.flag |= FLAG_DSACKING_ACK;
1614
1615 /* Eliminate too old ACKs, but take into
1616 * account more or less fresh ones, they can
1617 * contain valid SACK info.
1618 */
1619 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1620 return 0;
1621
1622 if (!tp->packets_out)
1623 goto out;
1624
1625 used_sacks = 0;
1626 first_sack_index = 0;
1627 for (i = 0; i < num_sacks; i++) {
1628 bool dup_sack = !i && found_dup_sack;
1629
1630 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1631 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1632
1633 if (!tcp_is_sackblock_valid(tp, dup_sack,
1634 sp[used_sacks].start_seq,
1635 sp[used_sacks].end_seq)) {
1636 int mib_idx;
1637
1638 if (dup_sack) {
1639 if (!tp->undo_marker)
1640 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1641 else
1642 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1643 } else {
1644 /* Don't count olds caused by ACK reordering */
1645 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1646 !after(sp[used_sacks].end_seq, tp->snd_una))
1647 continue;
1648 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1649 }
1650
1651 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1652 if (i == 0)
1653 first_sack_index = -1;
1654 continue;
1655 }
1656
1657 /* Ignore very old stuff early */
1658 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1659 continue;
1660
1661 used_sacks++;
1662 }
1663
1664 /* order SACK blocks to allow in order walk of the retrans queue */
1665 for (i = used_sacks - 1; i > 0; i--) {
1666 for (j = 0; j < i; j++) {
1667 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1668 swap(sp[j], sp[j + 1]);
1669
1670 /* Track where the first SACK block goes to */
1671 if (j == first_sack_index)
1672 first_sack_index = j + 1;
1673 }
1674 }
1675 }
1676
1677 skb = tcp_write_queue_head(sk);
1678 state.fack_count = 0;
1679 i = 0;
1680
1681 if (!tp->sacked_out) {
1682 /* It's already past, so skip checking against it */
1683 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1684 } else {
1685 cache = tp->recv_sack_cache;
1686 /* Skip empty blocks in at head of the cache */
1687 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1688 !cache->end_seq)
1689 cache++;
1690 }
1691
1692 while (i < used_sacks) {
1693 u32 start_seq = sp[i].start_seq;
1694 u32 end_seq = sp[i].end_seq;
1695 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1696 struct tcp_sack_block *next_dup = NULL;
1697
1698 if (found_dup_sack && ((i + 1) == first_sack_index))
1699 next_dup = &sp[i + 1];
1700
1701 /* Skip too early cached blocks */
1702 while (tcp_sack_cache_ok(tp, cache) &&
1703 !before(start_seq, cache->end_seq))
1704 cache++;
1705
1706 /* Can skip some work by looking recv_sack_cache? */
1707 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1708 after(end_seq, cache->start_seq)) {
1709
1710 /* Head todo? */
1711 if (before(start_seq, cache->start_seq)) {
1712 skb = tcp_sacktag_skip(skb, sk, &state,
1713 start_seq);
1714 skb = tcp_sacktag_walk(skb, sk, next_dup,
1715 &state,
1716 start_seq,
1717 cache->start_seq,
1718 dup_sack);
1719 }
1720
1721 /* Rest of the block already fully processed? */
1722 if (!after(end_seq, cache->end_seq))
1723 goto advance_sp;
1724
1725 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1726 &state,
1727 cache->end_seq);
1728
1729 /* ...tail remains todo... */
1730 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1731 /* ...but better entrypoint exists! */
1732 skb = tcp_highest_sack(sk);
1733 if (skb == NULL)
1734 break;
1735 state.fack_count = tp->fackets_out;
1736 cache++;
1737 goto walk;
1738 }
1739
1740 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1741 /* Check overlap against next cached too (past this one already) */
1742 cache++;
1743 continue;
1744 }
1745
1746 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1747 skb = tcp_highest_sack(sk);
1748 if (skb == NULL)
1749 break;
1750 state.fack_count = tp->fackets_out;
1751 }
1752 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1753
1754 walk:
1755 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1756 start_seq, end_seq, dup_sack);
1757
1758 advance_sp:
1759 i++;
1760 }
1761
1762 /* Clear the head of the cache sack blocks so we can skip it next time */
1763 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1764 tp->recv_sack_cache[i].start_seq = 0;
1765 tp->recv_sack_cache[i].end_seq = 0;
1766 }
1767 for (j = 0; j < used_sacks; j++)
1768 tp->recv_sack_cache[i++] = sp[j];
1769
1770 tcp_mark_lost_retrans(sk);
1771
1772 tcp_verify_left_out(tp);
1773
1774 if ((state.reord < tp->fackets_out) &&
1775 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1776 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1777
1778 out:
1779
1780 #if FASTRETRANS_DEBUG > 0
1781 WARN_ON((int)tp->sacked_out < 0);
1782 WARN_ON((int)tp->lost_out < 0);
1783 WARN_ON((int)tp->retrans_out < 0);
1784 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1785 #endif
1786 return state.flag;
1787 }
1788
1789 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1790 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1791 */
1792 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1793 {
1794 u32 holes;
1795
1796 holes = max(tp->lost_out, 1U);
1797 holes = min(holes, tp->packets_out);
1798
1799 if ((tp->sacked_out + holes) > tp->packets_out) {
1800 tp->sacked_out = tp->packets_out - holes;
1801 return true;
1802 }
1803 return false;
1804 }
1805
1806 /* If we receive more dupacks than we expected counting segments
1807 * in assumption of absent reordering, interpret this as reordering.
1808 * The only another reason could be bug in receiver TCP.
1809 */
1810 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 if (tcp_limit_reno_sacked(tp))
1814 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1815 }
1816
1817 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1818
1819 static void tcp_add_reno_sack(struct sock *sk)
1820 {
1821 struct tcp_sock *tp = tcp_sk(sk);
1822 tp->sacked_out++;
1823 tcp_check_reno_reordering(sk, 0);
1824 tcp_verify_left_out(tp);
1825 }
1826
1827 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1828
1829 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1830 {
1831 struct tcp_sock *tp = tcp_sk(sk);
1832
1833 if (acked > 0) {
1834 /* One ACK acked hole. The rest eat duplicate ACKs. */
1835 if (acked - 1 >= tp->sacked_out)
1836 tp->sacked_out = 0;
1837 else
1838 tp->sacked_out -= acked - 1;
1839 }
1840 tcp_check_reno_reordering(sk, acked);
1841 tcp_verify_left_out(tp);
1842 }
1843
1844 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1845 {
1846 tp->sacked_out = 0;
1847 }
1848
1849 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1850 {
1851 tp->retrans_out = 0;
1852 tp->lost_out = 0;
1853
1854 tp->undo_marker = 0;
1855 tp->undo_retrans = -1;
1856 }
1857
1858 void tcp_clear_retrans(struct tcp_sock *tp)
1859 {
1860 tcp_clear_retrans_partial(tp);
1861
1862 tp->fackets_out = 0;
1863 tp->sacked_out = 0;
1864 }
1865
1866 /* Enter Loss state. If "how" is not zero, forget all SACK information
1867 * and reset tags completely, otherwise preserve SACKs. If receiver
1868 * dropped its ofo queue, we will know this due to reneging detection.
1869 */
1870 void tcp_enter_loss(struct sock *sk, int how)
1871 {
1872 const struct inet_connection_sock *icsk = inet_csk(sk);
1873 struct inet_connection_sock *icsk1 = inet_csk(sk);
1874 struct tcp_sock *tp = tcp_sk(sk);
1875 struct sk_buff *skb;
1876 bool new_recovery = false;
1877
1878 /* Reduce ssthresh if it has not yet been made inside this window. */
1879 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1880 !after(tp->high_seq, tp->snd_una) ||
1881 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1882 new_recovery = true;
1883 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1884 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1885 tcp_ca_event(sk, CA_EVENT_LOSS);
1886 }
1887 if (icsk->icsk_MMSRB == 1)
1888 {
1889 #ifdef CONFIG_MTK_NET_LOGGING
1890 printk("[mtk_net][mmspb] tcp_enter_loss snd_cwnd=%u, snd_cwnd_cnt=%u\n", tp->snd_cwnd, tp->snd_cwnd_cnt);
1891 #endif
1892 if (tp->mss_cache != 0)
1893 tp->snd_cwnd = (tp->rcv_wnd / tp->mss_cache);
1894 else
1895 {
1896 tp->snd_cwnd = (tp->rcv_wnd / tp->advmss);
1897 }
1898
1899 if (tp->snd_ssthresh > 16)
1900 {
1901 tp->snd_cwnd = tp->snd_ssthresh / 2;//set snd_cwnd is half of default snd_ssthresh
1902 }
1903 else
1904 {
1905 tp->snd_cwnd = tp->snd_ssthresh / 2 + 4;
1906 }
1907 #ifdef CONFIG_MTK_NET_LOGGING
1908 printk("[mtk_net][mmspb] tcp_enter_loss update snd_cwnd=%u\n", tp->snd_cwnd);
1909 #endif
1910 icsk1->icsk_MMSRB = 0;
1911 #ifdef CONFIG_MTK_NET_LOGGING
1912 printk("[mtk_net][mmspb] tcp_enter_loss set icsk_MMSRB=0\n");
1913 #endif
1914 }
1915 else
1916 {
1917 tp->snd_cwnd = 1;
1918 }
1919
1920 //tp->snd_cwnd = 1;
1921 tp->snd_cwnd_cnt = 0;
1922 tp->snd_cwnd_stamp = tcp_time_stamp;
1923
1924 tcp_clear_retrans_partial(tp);
1925
1926 if (tcp_is_reno(tp))
1927 tcp_reset_reno_sack(tp);
1928
1929 tp->undo_marker = tp->snd_una;
1930 if (how) {
1931 tp->sacked_out = 0;
1932 tp->fackets_out = 0;
1933 }
1934 tcp_clear_all_retrans_hints(tp);
1935
1936 tcp_for_write_queue(skb, sk) {
1937 if (skb == tcp_send_head(sk))
1938 break;
1939
1940 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1941 tp->undo_marker = 0;
1942 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1943 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1944 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1946 tp->lost_out += tcp_skb_pcount(skb);
1947 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1948 }
1949 }
1950 tcp_verify_left_out(tp);
1951
1952 tp->reordering = min_t(unsigned int, tp->reordering,
1953 sysctl_tcp_reordering);
1954 tcp_set_ca_state(sk, TCP_CA_Loss);
1955 tp->high_seq = tp->snd_nxt;
1956 TCP_ECN_queue_cwr(tp);
1957
1958 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1959 * loss recovery is underway except recurring timeout(s) on
1960 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1961 */
1962 tp->frto = sysctl_tcp_frto &&
1963 (new_recovery || icsk->icsk_retransmits) &&
1964 !inet_csk(sk)->icsk_mtup.probe_size;
1965 }
1966
1967 /* If ACK arrived pointing to a remembered SACK, it means that our
1968 * remembered SACKs do not reflect real state of receiver i.e.
1969 * receiver _host_ is heavily congested (or buggy).
1970 *
1971 * Do processing similar to RTO timeout.
1972 */
1973 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1974 {
1975 if (flag & FLAG_SACK_RENEGING) {
1976 struct inet_connection_sock *icsk = inet_csk(sk);
1977 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1978
1979 tcp_enter_loss(sk, 1);
1980 icsk->icsk_retransmits++;
1981 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1982 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1983 icsk->icsk_rto, sysctl_tcp_rto_max);
1984 return true;
1985 }
1986 return false;
1987 }
1988
1989 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1990 {
1991 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1992 }
1993
1994 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1995 * counter when SACK is enabled (without SACK, sacked_out is used for
1996 * that purpose).
1997 *
1998 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1999 * segments up to the highest received SACK block so far and holes in
2000 * between them.
2001 *
2002 * With reordering, holes may still be in flight, so RFC3517 recovery
2003 * uses pure sacked_out (total number of SACKed segments) even though
2004 * it violates the RFC that uses duplicate ACKs, often these are equal
2005 * but when e.g. out-of-window ACKs or packet duplication occurs,
2006 * they differ. Since neither occurs due to loss, TCP should really
2007 * ignore them.
2008 */
2009 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2010 {
2011 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2012 }
2013
2014 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2015 {
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 unsigned long delay;
2018
2019 /* Delay early retransmit and entering fast recovery for
2020 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2021 * available, or RTO is scheduled to fire first.
2022 */
2023 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2024 (flag & FLAG_ECE) || !tp->srtt)
2025 return false;
2026
2027 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2028 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2029 return false;
2030
2031 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2032 sysctl_tcp_rto_max);
2033 return true;
2034 }
2035
2036 static inline int tcp_skb_timedout(const struct sock *sk,
2037 const struct sk_buff *skb)
2038 {
2039 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2040 }
2041
2042 static inline int tcp_head_timedout(const struct sock *sk)
2043 {
2044 const struct tcp_sock *tp = tcp_sk(sk);
2045
2046 return tp->packets_out &&
2047 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2048 }
2049
2050 /* Linux NewReno/SACK/FACK/ECN state machine.
2051 * --------------------------------------
2052 *
2053 * "Open" Normal state, no dubious events, fast path.
2054 * "Disorder" In all the respects it is "Open",
2055 * but requires a bit more attention. It is entered when
2056 * we see some SACKs or dupacks. It is split of "Open"
2057 * mainly to move some processing from fast path to slow one.
2058 * "CWR" CWND was reduced due to some Congestion Notification event.
2059 * It can be ECN, ICMP source quench, local device congestion.
2060 * "Recovery" CWND was reduced, we are fast-retransmitting.
2061 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2062 *
2063 * tcp_fastretrans_alert() is entered:
2064 * - each incoming ACK, if state is not "Open"
2065 * - when arrived ACK is unusual, namely:
2066 * * SACK
2067 * * Duplicate ACK.
2068 * * ECN ECE.
2069 *
2070 * Counting packets in flight is pretty simple.
2071 *
2072 * in_flight = packets_out - left_out + retrans_out
2073 *
2074 * packets_out is SND.NXT-SND.UNA counted in packets.
2075 *
2076 * retrans_out is number of retransmitted segments.
2077 *
2078 * left_out is number of segments left network, but not ACKed yet.
2079 *
2080 * left_out = sacked_out + lost_out
2081 *
2082 * sacked_out: Packets, which arrived to receiver out of order
2083 * and hence not ACKed. With SACKs this number is simply
2084 * amount of SACKed data. Even without SACKs
2085 * it is easy to give pretty reliable estimate of this number,
2086 * counting duplicate ACKs.
2087 *
2088 * lost_out: Packets lost by network. TCP has no explicit
2089 * "loss notification" feedback from network (for now).
2090 * It means that this number can be only _guessed_.
2091 * Actually, it is the heuristics to predict lossage that
2092 * distinguishes different algorithms.
2093 *
2094 * F.e. after RTO, when all the queue is considered as lost,
2095 * lost_out = packets_out and in_flight = retrans_out.
2096 *
2097 * Essentially, we have now two algorithms counting
2098 * lost packets.
2099 *
2100 * FACK: It is the simplest heuristics. As soon as we decided
2101 * that something is lost, we decide that _all_ not SACKed
2102 * packets until the most forward SACK are lost. I.e.
2103 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2104 * It is absolutely correct estimate, if network does not reorder
2105 * packets. And it loses any connection to reality when reordering
2106 * takes place. We use FACK by default until reordering
2107 * is suspected on the path to this destination.
2108 *
2109 * NewReno: when Recovery is entered, we assume that one segment
2110 * is lost (classic Reno). While we are in Recovery and
2111 * a partial ACK arrives, we assume that one more packet
2112 * is lost (NewReno). This heuristics are the same in NewReno
2113 * and SACK.
2114 *
2115 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2116 * deflation etc. CWND is real congestion window, never inflated, changes
2117 * only according to classic VJ rules.
2118 *
2119 * Really tricky (and requiring careful tuning) part of algorithm
2120 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2121 * The first determines the moment _when_ we should reduce CWND and,
2122 * hence, slow down forward transmission. In fact, it determines the moment
2123 * when we decide that hole is caused by loss, rather than by a reorder.
2124 *
2125 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2126 * holes, caused by lost packets.
2127 *
2128 * And the most logically complicated part of algorithm is undo
2129 * heuristics. We detect false retransmits due to both too early
2130 * fast retransmit (reordering) and underestimated RTO, analyzing
2131 * timestamps and D-SACKs. When we detect that some segments were
2132 * retransmitted by mistake and CWND reduction was wrong, we undo
2133 * window reduction and abort recovery phase. This logic is hidden
2134 * inside several functions named tcp_try_undo_<something>.
2135 */
2136
2137 /* This function decides, when we should leave Disordered state
2138 * and enter Recovery phase, reducing congestion window.
2139 *
2140 * Main question: may we further continue forward transmission
2141 * with the same cwnd?
2142 */
2143 static bool tcp_time_to_recover(struct sock *sk, int flag)
2144 {
2145 struct tcp_sock *tp = tcp_sk(sk);
2146 __u32 packets_out;
2147
2148 /* Trick#1: The loss is proven. */
2149 if (tp->lost_out)
2150 return true;
2151
2152 /* Not-A-Trick#2 : Classic rule... */
2153 if (tcp_dupack_heuristics(tp) > tp->reordering)
2154 return true;
2155
2156 /* Trick#3 : when we use RFC2988 timer restart, fast
2157 * retransmit can be triggered by timeout of queue head.
2158 */
2159 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2160 return true;
2161
2162 /* Trick#4: It is still not OK... But will it be useful to delay
2163 * recovery more?
2164 */
2165 packets_out = tp->packets_out;
2166 if (packets_out <= tp->reordering &&
2167 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2168 !tcp_may_send_now(sk)) {
2169 /* We have nothing to send. This connection is limited
2170 * either by receiver window or by application.
2171 */
2172 return true;
2173 }
2174
2175 /* If a thin stream is detected, retransmit after first
2176 * received dupack. Employ only if SACK is supported in order
2177 * to avoid possible corner-case series of spurious retransmissions
2178 * Use only if there are no unsent data.
2179 */
2180 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2181 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2182 tcp_is_sack(tp) && !tcp_send_head(sk))
2183 return true;
2184
2185 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2186 * retransmissions due to small network reorderings, we implement
2187 * Mitigation A.3 in the RFC and delay the retransmission for a short
2188 * interval if appropriate.
2189 */
2190 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2191 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2192 !tcp_may_send_now(sk))
2193 return !tcp_pause_early_retransmit(sk, flag);
2194
2195 return false;
2196 }
2197
2198 /* New heuristics: it is possible only after we switched to restart timer
2199 * each time when something is ACKed. Hence, we can detect timed out packets
2200 * during fast retransmit without falling to slow start.
2201 *
2202 * Usefulness of this as is very questionable, since we should know which of
2203 * the segments is the next to timeout which is relatively expensive to find
2204 * in general case unless we add some data structure just for that. The
2205 * current approach certainly won't find the right one too often and when it
2206 * finally does find _something_ it usually marks large part of the window
2207 * right away (because a retransmission with a larger timestamp blocks the
2208 * loop from advancing). -ij
2209 */
2210 static void tcp_timeout_skbs(struct sock *sk)
2211 {
2212 struct tcp_sock *tp = tcp_sk(sk);
2213 struct sk_buff *skb;
2214
2215 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2216 return;
2217
2218 skb = tp->scoreboard_skb_hint;
2219 if (tp->scoreboard_skb_hint == NULL)
2220 skb = tcp_write_queue_head(sk);
2221
2222 tcp_for_write_queue_from(skb, sk) {
2223 if (skb == tcp_send_head(sk))
2224 break;
2225 if (!tcp_skb_timedout(sk, skb))
2226 break;
2227
2228 tcp_skb_mark_lost(tp, skb);
2229 }
2230
2231 tp->scoreboard_skb_hint = skb;
2232
2233 tcp_verify_left_out(tp);
2234 }
2235
2236 /* Detect loss in event "A" above by marking head of queue up as lost.
2237 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2238 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2239 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2240 * the maximum SACKed segments to pass before reaching this limit.
2241 */
2242 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2243 {
2244 struct tcp_sock *tp = tcp_sk(sk);
2245 struct sk_buff *skb;
2246 int cnt, oldcnt;
2247 int err;
2248 unsigned int mss;
2249 /* Use SACK to deduce losses of new sequences sent during recovery */
2250 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2251
2252 WARN_ON(packets > tp->packets_out);
2253 if (tp->lost_skb_hint) {
2254 skb = tp->lost_skb_hint;
2255 cnt = tp->lost_cnt_hint;
2256 /* Head already handled? */
2257 if (mark_head && skb != tcp_write_queue_head(sk))
2258 return;
2259 } else {
2260 skb = tcp_write_queue_head(sk);
2261 cnt = 0;
2262 }
2263
2264 tcp_for_write_queue_from(skb, sk) {
2265 if (skb == tcp_send_head(sk))
2266 break;
2267 /* TODO: do this better */
2268 /* this is not the most efficient way to do this... */
2269 tp->lost_skb_hint = skb;
2270 tp->lost_cnt_hint = cnt;
2271
2272 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2273 break;
2274
2275 oldcnt = cnt;
2276 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2277 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2278 cnt += tcp_skb_pcount(skb);
2279
2280 if (cnt > packets) {
2281 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2282 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2283 (oldcnt >= packets))
2284 break;
2285
2286 mss = skb_shinfo(skb)->gso_size;
2287 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2288 if (err < 0)
2289 break;
2290 cnt = packets;
2291 }
2292
2293 tcp_skb_mark_lost(tp, skb);
2294
2295 if (mark_head)
2296 break;
2297 }
2298 tcp_verify_left_out(tp);
2299 }
2300
2301 /* Account newly detected lost packet(s) */
2302
2303 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2304 {
2305 struct tcp_sock *tp = tcp_sk(sk);
2306
2307 if (tcp_is_reno(tp)) {
2308 tcp_mark_head_lost(sk, 1, 1);
2309 } else if (tcp_is_fack(tp)) {
2310 int lost = tp->fackets_out - tp->reordering;
2311 if (lost <= 0)
2312 lost = 1;
2313 tcp_mark_head_lost(sk, lost, 0);
2314 } else {
2315 int sacked_upto = tp->sacked_out - tp->reordering;
2316 if (sacked_upto >= 0)
2317 tcp_mark_head_lost(sk, sacked_upto, 0);
2318 else if (fast_rexmit)
2319 tcp_mark_head_lost(sk, 1, 1);
2320 }
2321
2322 tcp_timeout_skbs(sk);
2323 }
2324
2325 /* CWND moderation, preventing bursts due to too big ACKs
2326 * in dubious situations.
2327 */
2328 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2329 {
2330 tp->snd_cwnd = min(tp->snd_cwnd,
2331 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2332 tp->snd_cwnd_stamp = tcp_time_stamp;
2333 }
2334
2335 /* Nothing was retransmitted or returned timestamp is less
2336 * than timestamp of the first retransmission.
2337 */
2338 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2339 {
2340 return !tp->retrans_stamp ||
2341 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2342 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2343 }
2344
2345 /* Undo procedures. */
2346
2347 #if FASTRETRANS_DEBUG > 1
2348 static void DBGUNDO(struct sock *sk, const char *msg)
2349 {
2350 struct tcp_sock *tp = tcp_sk(sk);
2351 struct inet_sock *inet = inet_sk(sk);
2352
2353 if (sk->sk_family == AF_INET) {
2354 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355 msg,
2356 &inet->inet_daddr, ntohs(inet->inet_dport),
2357 tp->snd_cwnd, tcp_left_out(tp),
2358 tp->snd_ssthresh, tp->prior_ssthresh,
2359 tp->packets_out);
2360 }
2361 #if IS_ENABLED(CONFIG_IPV6)
2362 else if (sk->sk_family == AF_INET6) {
2363 struct ipv6_pinfo *np = inet6_sk(sk);
2364 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365 msg,
2366 &np->daddr, ntohs(inet->inet_dport),
2367 tp->snd_cwnd, tcp_left_out(tp),
2368 tp->snd_ssthresh, tp->prior_ssthresh,
2369 tp->packets_out);
2370 }
2371 #endif
2372 }
2373 #else
2374 #define DBGUNDO(x...) do { } while (0)
2375 #endif
2376
2377 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2378 {
2379 struct tcp_sock *tp = tcp_sk(sk);
2380
2381 if (tp->prior_ssthresh) {
2382 const struct inet_connection_sock *icsk = inet_csk(sk);
2383
2384 if (icsk->icsk_ca_ops->undo_cwnd)
2385 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2386 else
2387 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2388
2389 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2390 tp->snd_ssthresh = tp->prior_ssthresh;
2391 TCP_ECN_withdraw_cwr(tp);
2392 }
2393 } else {
2394 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2395 }
2396 tp->snd_cwnd_stamp = tcp_time_stamp;
2397 }
2398
2399 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2400 {
2401 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2402 }
2403
2404 /* People celebrate: "We love our President!" */
2405 static bool tcp_try_undo_recovery(struct sock *sk)
2406 {
2407 struct tcp_sock *tp = tcp_sk(sk);
2408
2409 if (tcp_may_undo(tp)) {
2410 int mib_idx;
2411
2412 /* Happy end! We did not retransmit anything
2413 * or our original transmission succeeded.
2414 */
2415 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2416 tcp_undo_cwr(sk, true);
2417 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2418 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2419 else
2420 mib_idx = LINUX_MIB_TCPFULLUNDO;
2421
2422 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2423 tp->undo_marker = 0;
2424 }
2425 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2426 /* Hold old state until something *above* high_seq
2427 * is ACKed. For Reno it is MUST to prevent false
2428 * fast retransmits (RFC2582). SACK TCP is safe. */
2429 tcp_moderate_cwnd(tp);
2430 return true;
2431 }
2432 tcp_set_ca_state(sk, TCP_CA_Open);
2433 return false;
2434 }
2435
2436 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2437 static void tcp_try_undo_dsack(struct sock *sk)
2438 {
2439 struct tcp_sock *tp = tcp_sk(sk);
2440
2441 if (tp->undo_marker && !tp->undo_retrans) {
2442 DBGUNDO(sk, "D-SACK");
2443 tcp_undo_cwr(sk, true);
2444 tp->undo_marker = 0;
2445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2446 }
2447 }
2448
2449 /* We can clear retrans_stamp when there are no retransmissions in the
2450 * window. It would seem that it is trivially available for us in
2451 * tp->retrans_out, however, that kind of assumptions doesn't consider
2452 * what will happen if errors occur when sending retransmission for the
2453 * second time. ...It could the that such segment has only
2454 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2455 * the head skb is enough except for some reneging corner cases that
2456 * are not worth the effort.
2457 *
2458 * Main reason for all this complexity is the fact that connection dying
2459 * time now depends on the validity of the retrans_stamp, in particular,
2460 * that successive retransmissions of a segment must not advance
2461 * retrans_stamp under any conditions.
2462 */
2463 static bool tcp_any_retrans_done(const struct sock *sk)
2464 {
2465 const struct tcp_sock *tp = tcp_sk(sk);
2466 struct sk_buff *skb;
2467
2468 if (tp->retrans_out)
2469 return true;
2470
2471 skb = tcp_write_queue_head(sk);
2472 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2473 return true;
2474
2475 return false;
2476 }
2477
2478 /* Undo during fast recovery after partial ACK. */
2479
2480 static int tcp_try_undo_partial(struct sock *sk, int acked)
2481 {
2482 struct tcp_sock *tp = tcp_sk(sk);
2483 /* Partial ACK arrived. Force Hoe's retransmit. */
2484 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2485
2486 if (tcp_may_undo(tp)) {
2487 /* Plain luck! Hole if filled with delayed
2488 * packet, rather than with a retransmit.
2489 */
2490 if (!tcp_any_retrans_done(sk))
2491 tp->retrans_stamp = 0;
2492
2493 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2494
2495 DBGUNDO(sk, "Hoe");
2496 tcp_undo_cwr(sk, false);
2497 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2498
2499 /* So... Do not make Hoe's retransmit yet.
2500 * If the first packet was delayed, the rest
2501 * ones are most probably delayed as well.
2502 */
2503 failed = 0;
2504 }
2505 return failed;
2506 }
2507
2508 /* Undo during loss recovery after partial ACK or using F-RTO. */
2509 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512
2513 if (frto_undo || tcp_may_undo(tp)) {
2514 struct sk_buff *skb;
2515 tcp_for_write_queue(skb, sk) {
2516 if (skb == tcp_send_head(sk))
2517 break;
2518 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2519 }
2520
2521 tcp_clear_all_retrans_hints(tp);
2522
2523 DBGUNDO(sk, "partial loss");
2524 tp->lost_out = 0;
2525 tcp_undo_cwr(sk, true);
2526 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2527 if (frto_undo)
2528 NET_INC_STATS_BH(sock_net(sk),
2529 LINUX_MIB_TCPSPURIOUSRTOS);
2530 inet_csk(sk)->icsk_retransmits = 0;
2531 tp->undo_marker = 0;
2532 if (frto_undo || tcp_is_sack(tp))
2533 tcp_set_ca_state(sk, TCP_CA_Open);
2534 return true;
2535 }
2536 return false;
2537 }
2538
2539 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2540 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2541 * It computes the number of packets to send (sndcnt) based on packets newly
2542 * delivered:
2543 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2544 * cwnd reductions across a full RTT.
2545 * 2) If packets in flight is lower than ssthresh (such as due to excess
2546 * losses and/or application stalls), do not perform any further cwnd
2547 * reductions, but instead slow start up to ssthresh.
2548 */
2549 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 tp->high_seq = tp->snd_nxt;
2554 tp->tlp_high_seq = 0;
2555 tp->snd_cwnd_cnt = 0;
2556 tp->prior_cwnd = tp->snd_cwnd;
2557 tp->prr_delivered = 0;
2558 tp->prr_out = 0;
2559 if (set_ssthresh)
2560 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2561 TCP_ECN_queue_cwr(tp);
2562 }
2563
2564 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2565 int fast_rexmit)
2566 {
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 int sndcnt = 0;
2569 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2570
2571 tp->prr_delivered += newly_acked_sacked;
2572 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2573 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2574 tp->prior_cwnd - 1;
2575 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2576 } else {
2577 sndcnt = min_t(int, delta,
2578 max_t(int, tp->prr_delivered - tp->prr_out,
2579 newly_acked_sacked) + 1);
2580 }
2581
2582 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2583 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2584 }
2585
2586 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2587 {
2588 struct tcp_sock *tp = tcp_sk(sk);
2589
2590 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2591 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2592 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2593 tp->snd_cwnd = tp->snd_ssthresh;
2594 tp->snd_cwnd_stamp = tcp_time_stamp;
2595 }
2596 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2597 }
2598
2599 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2600 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2601 {
2602 struct tcp_sock *tp = tcp_sk(sk);
2603
2604 tp->prior_ssthresh = 0;
2605 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2606 tp->undo_marker = 0;
2607 tcp_init_cwnd_reduction(sk, set_ssthresh);
2608 tcp_set_ca_state(sk, TCP_CA_CWR);
2609 }
2610 }
2611
2612 static void tcp_try_keep_open(struct sock *sk)
2613 {
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 int state = TCP_CA_Open;
2616
2617 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2618 state = TCP_CA_Disorder;
2619
2620 if (inet_csk(sk)->icsk_ca_state != state) {
2621 tcp_set_ca_state(sk, state);
2622 tp->high_seq = tp->snd_nxt;
2623 }
2624 }
2625
2626 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2627 {
2628 struct tcp_sock *tp = tcp_sk(sk);
2629
2630 tcp_verify_left_out(tp);
2631
2632 if (!tcp_any_retrans_done(sk))
2633 tp->retrans_stamp = 0;
2634
2635 if (flag & FLAG_ECE)
2636 tcp_enter_cwr(sk, 1);
2637
2638 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2639 tcp_try_keep_open(sk);
2640 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2641 tcp_moderate_cwnd(tp);
2642 } else {
2643 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2644 }
2645 }
2646
2647 static void tcp_mtup_probe_failed(struct sock *sk)
2648 {
2649 struct inet_connection_sock *icsk = inet_csk(sk);
2650
2651 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2652 icsk->icsk_mtup.probe_size = 0;
2653 }
2654
2655 static void tcp_mtup_probe_success(struct sock *sk)
2656 {
2657 struct tcp_sock *tp = tcp_sk(sk);
2658 struct inet_connection_sock *icsk = inet_csk(sk);
2659
2660 /* FIXME: breaks with very large cwnd */
2661 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2662 tp->snd_cwnd = tp->snd_cwnd *
2663 tcp_mss_to_mtu(sk, tp->mss_cache) /
2664 icsk->icsk_mtup.probe_size;
2665 tp->snd_cwnd_cnt = 0;
2666 tp->snd_cwnd_stamp = tcp_time_stamp;
2667 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2668
2669 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2670 icsk->icsk_mtup.probe_size = 0;
2671 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2672 }
2673
2674 /* Do a simple retransmit without using the backoff mechanisms in
2675 * tcp_timer. This is used for path mtu discovery.
2676 * The socket is already locked here.
2677 */
2678 void tcp_simple_retransmit(struct sock *sk)
2679 {
2680 const struct inet_connection_sock *icsk = inet_csk(sk);
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 struct sk_buff *skb;
2683 unsigned int mss = tcp_current_mss(sk);
2684 u32 prior_lost = tp->lost_out;
2685
2686 tcp_for_write_queue(skb, sk) {
2687 if (skb == tcp_send_head(sk))
2688 break;
2689 if (tcp_skb_seglen(skb) > mss &&
2690 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2691 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2692 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2693 tp->retrans_out -= tcp_skb_pcount(skb);
2694 }
2695 tcp_skb_mark_lost_uncond_verify(tp, skb);
2696 }
2697 }
2698
2699 tcp_clear_retrans_hints_partial(tp);
2700
2701 if (prior_lost == tp->lost_out)
2702 return;
2703
2704 if (tcp_is_reno(tp))
2705 tcp_limit_reno_sacked(tp);
2706
2707 tcp_verify_left_out(tp);
2708
2709 /* Don't muck with the congestion window here.
2710 * Reason is that we do not increase amount of _data_
2711 * in network, but units changed and effective
2712 * cwnd/ssthresh really reduced now.
2713 */
2714 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2715 tp->high_seq = tp->snd_nxt;
2716 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2717 tp->prior_ssthresh = 0;
2718 tp->undo_marker = 0;
2719 tcp_set_ca_state(sk, TCP_CA_Loss);
2720 }
2721 tcp_xmit_retransmit_queue(sk);
2722 }
2723 EXPORT_SYMBOL(tcp_simple_retransmit);
2724
2725 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2726 {
2727 struct tcp_sock *tp = tcp_sk(sk);
2728 int mib_idx;
2729
2730 if (tcp_is_reno(tp))
2731 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2732 else
2733 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2734
2735 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2736
2737 tp->prior_ssthresh = 0;
2738 tp->undo_marker = tp->snd_una;
2739 tp->undo_retrans = tp->retrans_out ? : -1;
2740
2741 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742 if (!ece_ack)
2743 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2744 tcp_init_cwnd_reduction(sk, true);
2745 }
2746 tcp_set_ca_state(sk, TCP_CA_Recovery);
2747 }
2748
2749 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2750 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2751 */
2752 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2753 {
2754 struct inet_connection_sock *icsk = inet_csk(sk);
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 bool recovered = !before(tp->snd_una, tp->high_seq);
2757
2758 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2759 /* Step 3.b. A timeout is spurious if not all data are
2760 * lost, i.e., never-retransmitted data are (s)acked.
2761 */
2762 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2763 return;
2764
2765 if (after(tp->snd_nxt, tp->high_seq) &&
2766 (flag & FLAG_DATA_SACKED || is_dupack)) {
2767 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2768 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2769 tp->high_seq = tp->snd_nxt;
2770 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2771 TCP_NAGLE_OFF);
2772 if (after(tp->snd_nxt, tp->high_seq))
2773 return; /* Step 2.b */
2774 tp->frto = 0;
2775 }
2776 }
2777
2778 if (recovered) {
2779 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2780 icsk->icsk_retransmits = 0;
2781 tcp_try_undo_recovery(sk);
2782 return;
2783 }
2784 if (flag & FLAG_DATA_ACKED)
2785 icsk->icsk_retransmits = 0;
2786 if (tcp_is_reno(tp)) {
2787 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2788 * delivered. Lower inflight to clock out (re)tranmissions.
2789 */
2790 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2791 tcp_add_reno_sack(sk);
2792 else if (flag & FLAG_SND_UNA_ADVANCED)
2793 tcp_reset_reno_sack(tp);
2794 }
2795 if (tcp_try_undo_loss(sk, false))
2796 return;
2797 tcp_xmit_retransmit_queue(sk);
2798 }
2799
2800 /* Process an event, which can update packets-in-flight not trivially.
2801 * Main goal of this function is to calculate new estimate for left_out,
2802 * taking into account both packets sitting in receiver's buffer and
2803 * packets lost by network.
2804 *
2805 * Besides that it does CWND reduction, when packet loss is detected
2806 * and changes state of machine.
2807 *
2808 * It does _not_ decide what to send, it is made in function
2809 * tcp_xmit_retransmit_queue().
2810 */
2811 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2812 int prior_sacked, int prior_packets,
2813 bool is_dupack, int flag)
2814 {
2815 struct inet_connection_sock *icsk = inet_csk(sk);
2816 struct tcp_sock *tp = tcp_sk(sk);
2817 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2818 (tcp_fackets_out(tp) > tp->reordering));
2819 int newly_acked_sacked = 0;
2820 int fast_rexmit = 0;
2821
2822 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2823 tp->sacked_out = 0;
2824 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2825 tp->fackets_out = 0;
2826
2827 /* Now state machine starts.
2828 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2829 if (flag & FLAG_ECE)
2830 tp->prior_ssthresh = 0;
2831
2832 /* B. In all the states check for reneging SACKs. */
2833 if (tcp_check_sack_reneging(sk, flag))
2834 return;
2835
2836 /* C. Check consistency of the current state. */
2837 tcp_verify_left_out(tp);
2838
2839 /* D. Check state exit conditions. State can be terminated
2840 * when high_seq is ACKed. */
2841 if (icsk->icsk_ca_state == TCP_CA_Open) {
2842 WARN_ON(tp->retrans_out != 0);
2843 tp->retrans_stamp = 0;
2844 } else if (!before(tp->snd_una, tp->high_seq)) {
2845 switch (icsk->icsk_ca_state) {
2846 case TCP_CA_CWR:
2847 /* CWR is to be held something *above* high_seq
2848 * is ACKed for CWR bit to reach receiver. */
2849 if (tp->snd_una != tp->high_seq) {
2850 tcp_end_cwnd_reduction(sk);
2851 tcp_set_ca_state(sk, TCP_CA_Open);
2852 }
2853 break;
2854
2855 case TCP_CA_Recovery:
2856 if (tcp_is_reno(tp))
2857 tcp_reset_reno_sack(tp);
2858 if (tcp_try_undo_recovery(sk))
2859 return;
2860 tcp_end_cwnd_reduction(sk);
2861 break;
2862 }
2863 }
2864
2865 /* E. Process state. */
2866 switch (icsk->icsk_ca_state) {
2867 case TCP_CA_Recovery:
2868 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2869 if (tcp_is_reno(tp) && is_dupack)
2870 tcp_add_reno_sack(sk);
2871 } else
2872 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2873 newly_acked_sacked = prior_packets - tp->packets_out +
2874 tp->sacked_out - prior_sacked;
2875 break;
2876 case TCP_CA_Loss:
2877 tcp_process_loss(sk, flag, is_dupack);
2878 if (icsk->icsk_ca_state != TCP_CA_Open)
2879 return;
2880 /* Fall through to processing in Open state. */
2881 default:
2882 if (tcp_is_reno(tp)) {
2883 if (flag & FLAG_SND_UNA_ADVANCED)
2884 tcp_reset_reno_sack(tp);
2885 if (is_dupack)
2886 tcp_add_reno_sack(sk);
2887 }
2888 newly_acked_sacked = prior_packets - tp->packets_out +
2889 tp->sacked_out - prior_sacked;
2890
2891 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2892 tcp_try_undo_dsack(sk);
2893
2894 if (!tcp_time_to_recover(sk, flag)) {
2895 tcp_try_to_open(sk, flag, newly_acked_sacked);
2896 return;
2897 }
2898
2899 /* MTU probe failure: don't reduce cwnd */
2900 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2901 icsk->icsk_mtup.probe_size &&
2902 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2903 tcp_mtup_probe_failed(sk);
2904 /* Restores the reduction we did in tcp_mtup_probe() */
2905 tp->snd_cwnd++;
2906 tcp_simple_retransmit(sk);
2907 return;
2908 }
2909
2910 /* Otherwise enter Recovery state */
2911 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2912 fast_rexmit = 1;
2913 }
2914
2915 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2916 tcp_update_scoreboard(sk, fast_rexmit);
2917 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2918 tcp_xmit_retransmit_queue(sk);
2919 }
2920
2921 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2922 {
2923 tcp_rtt_estimator(sk, seq_rtt);
2924 tcp_set_rto(sk);
2925 inet_csk(sk)->icsk_backoff = 0;
2926 }
2927 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2928
2929 /* Read draft-ietf-tcplw-high-performance before mucking
2930 * with this code. (Supersedes RFC1323)
2931 */
2932 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2933 {
2934 /* RTTM Rule: A TSecr value received in a segment is used to
2935 * update the averaged RTT measurement only if the segment
2936 * acknowledges some new data, i.e., only if it advances the
2937 * left edge of the send window.
2938 *
2939 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2941 *
2942 * Changed: reset backoff as soon as we see the first valid sample.
2943 * If we do not, we get strongly overestimated rto. With timestamps
2944 * samples are accepted even from very old segments: f.e., when rtt=1
2945 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2946 * answer arrives rto becomes 120 seconds! If at least one of segments
2947 * in window is lost... Voila. --ANK (010210)
2948 */
2949 struct tcp_sock *tp = tcp_sk(sk);
2950
2951 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2952 }
2953
2954 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2955 {
2956 /* We don't have a timestamp. Can only use
2957 * packets that are not retransmitted to determine
2958 * rtt estimates. Also, we must not reset the
2959 * backoff for rto until we get a non-retransmitted
2960 * packet. This allows us to deal with a situation
2961 * where the network delay has increased suddenly.
2962 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2963 */
2964
2965 if (flag & FLAG_RETRANS_DATA_ACKED)
2966 return;
2967
2968 tcp_valid_rtt_meas(sk, seq_rtt);
2969 }
2970
2971 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2972 const s32 seq_rtt)
2973 {
2974 const struct tcp_sock *tp = tcp_sk(sk);
2975 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2976 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2977 tcp_ack_saw_tstamp(sk, flag);
2978 else if (seq_rtt >= 0)
2979 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2980 }
2981
2982 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2983 {
2984 const struct inet_connection_sock *icsk = inet_csk(sk);
2985 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2986 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2987 }
2988
2989 /* Restart timer after forward progress on connection.
2990 * RFC2988 recommends to restart timer to now+rto.
2991 */
2992 void tcp_rearm_rto(struct sock *sk)
2993 {
2994 const struct inet_connection_sock *icsk = inet_csk(sk);
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 /* If the retrans timer is currently being used by Fast Open
2998 * for SYN-ACK retrans purpose, stay put.
2999 */
3000 if (tp->fastopen_rsk)
3001 return;
3002
3003 if (!tp->packets_out) {
3004 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3005 } else {
3006 u32 rto = inet_csk(sk)->icsk_rto;
3007 /* Offset the time elapsed after installing regular RTO */
3008 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3009 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3010 struct sk_buff *skb = tcp_write_queue_head(sk);
3011 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3012 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3013 /* delta may not be positive if the socket is locked
3014 * when the retrans timer fires and is rescheduled.
3015 */
3016 if (delta > 0)
3017 rto = delta;
3018 }
3019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3020 sysctl_tcp_rto_max);
3021 }
3022 }
3023
3024 /* This function is called when the delayed ER timer fires. TCP enters
3025 * fast recovery and performs fast-retransmit.
3026 */
3027 void tcp_resume_early_retransmit(struct sock *sk)
3028 {
3029 struct tcp_sock *tp = tcp_sk(sk);
3030
3031 tcp_rearm_rto(sk);
3032
3033 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3034 if (!tp->do_early_retrans)
3035 return;
3036
3037 tcp_enter_recovery(sk, false);
3038 tcp_update_scoreboard(sk, 1);
3039 tcp_xmit_retransmit_queue(sk);
3040 }
3041
3042 /* If we get here, the whole TSO packet has not been acked. */
3043 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3044 {
3045 struct tcp_sock *tp = tcp_sk(sk);
3046 u32 packets_acked;
3047
3048 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3049
3050 packets_acked = tcp_skb_pcount(skb);
3051 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3052 return 0;
3053 packets_acked -= tcp_skb_pcount(skb);
3054
3055 if (packets_acked) {
3056 BUG_ON(tcp_skb_pcount(skb) == 0);
3057 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3058 }
3059
3060 return packets_acked;
3061 }
3062
3063 /* Remove acknowledged frames from the retransmission queue. If our packet
3064 * is before the ack sequence we can discard it as it's confirmed to have
3065 * arrived at the other end.
3066 */
3067 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3068 u32 prior_snd_una)
3069 {
3070 struct tcp_sock *tp = tcp_sk(sk);
3071 const struct inet_connection_sock *icsk = inet_csk(sk);
3072 struct sk_buff *skb;
3073 u32 now = tcp_time_stamp;
3074 int fully_acked = true;
3075 int flag = 0;
3076 u32 pkts_acked = 0;
3077 u32 reord = tp->packets_out;
3078 u32 prior_sacked = tp->sacked_out;
3079 s32 seq_rtt = -1;
3080 s32 ca_seq_rtt = -1;
3081 ktime_t last_ackt = net_invalid_timestamp();
3082
3083 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3084 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3085 u32 acked_pcount;
3086 u8 sacked = scb->sacked;
3087
3088 /* Determine how many packets and what bytes were acked, tso and else */
3089 if (after(scb->end_seq, tp->snd_una)) {
3090 if (tcp_skb_pcount(skb) == 1 ||
3091 !after(tp->snd_una, scb->seq))
3092 break;
3093
3094 acked_pcount = tcp_tso_acked(sk, skb);
3095 if (!acked_pcount)
3096 break;
3097
3098 fully_acked = false;
3099 } else {
3100 acked_pcount = tcp_skb_pcount(skb);
3101 }
3102
3103 if (sacked & TCPCB_RETRANS) {
3104 if (sacked & TCPCB_SACKED_RETRANS)
3105 tp->retrans_out -= acked_pcount;
3106 flag |= FLAG_RETRANS_DATA_ACKED;
3107 ca_seq_rtt = -1;
3108 seq_rtt = -1;
3109 } else {
3110 ca_seq_rtt = now - scb->when;
3111 last_ackt = skb->tstamp;
3112 if (seq_rtt < 0) {
3113 seq_rtt = ca_seq_rtt;
3114 }
3115 if (!(sacked & TCPCB_SACKED_ACKED)) {
3116 reord = min(pkts_acked, reord);
3117 if (!after(scb->end_seq, tp->high_seq))
3118 flag |= FLAG_ORIG_SACK_ACKED;
3119 }
3120 }
3121
3122 if (sacked & TCPCB_SACKED_ACKED)
3123 tp->sacked_out -= acked_pcount;
3124 if (sacked & TCPCB_LOST)
3125 tp->lost_out -= acked_pcount;
3126
3127 tp->packets_out -= acked_pcount;
3128 pkts_acked += acked_pcount;
3129
3130 /* Initial outgoing SYN's get put onto the write_queue
3131 * just like anything else we transmit. It is not
3132 * true data, and if we misinform our callers that
3133 * this ACK acks real data, we will erroneously exit
3134 * connection startup slow start one packet too
3135 * quickly. This is severely frowned upon behavior.
3136 */
3137 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3138 flag |= FLAG_DATA_ACKED;
3139 } else {
3140 flag |= FLAG_SYN_ACKED;
3141 tp->retrans_stamp = 0;
3142 }
3143
3144 if (!fully_acked)
3145 break;
3146
3147 tcp_unlink_write_queue(skb, sk);
3148 sk_wmem_free_skb(sk, skb);
3149 tp->scoreboard_skb_hint = NULL;
3150 if (skb == tp->retransmit_skb_hint)
3151 tp->retransmit_skb_hint = NULL;
3152 if (skb == tp->lost_skb_hint)
3153 tp->lost_skb_hint = NULL;
3154 }
3155
3156 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3157 tp->snd_up = tp->snd_una;
3158
3159 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3160 flag |= FLAG_SACK_RENEGING;
3161
3162 if (flag & FLAG_ACKED) {
3163 const struct tcp_congestion_ops *ca_ops
3164 = inet_csk(sk)->icsk_ca_ops;
3165
3166 if (unlikely(icsk->icsk_mtup.probe_size &&
3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3168 tcp_mtup_probe_success(sk);
3169 }
3170
3171 tcp_ack_update_rtt(sk, flag, seq_rtt);
3172 tcp_rearm_rto(sk);
3173
3174 if (tcp_is_reno(tp)) {
3175 tcp_remove_reno_sacks(sk, pkts_acked);
3176 } else {
3177 int delta;
3178
3179 /* Non-retransmitted hole got filled? That's reordering */
3180 if (reord < prior_fackets)
3181 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3182
3183 delta = tcp_is_fack(tp) ? pkts_acked :
3184 prior_sacked - tp->sacked_out;
3185 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3186 }
3187
3188 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3189
3190 if (ca_ops->pkts_acked) {
3191 s32 rtt_us = -1;
3192
3193 /* Is the ACK triggering packet unambiguous? */
3194 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3195 /* High resolution needed and available? */
3196 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3197 !ktime_equal(last_ackt,
3198 net_invalid_timestamp()))
3199 rtt_us = ktime_us_delta(ktime_get_real(),
3200 last_ackt);
3201 else if (ca_seq_rtt >= 0)
3202 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3203 }
3204
3205 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3206 }
3207 }
3208
3209 #if FASTRETRANS_DEBUG > 0
3210 WARN_ON((int)tp->sacked_out < 0);
3211 WARN_ON((int)tp->lost_out < 0);
3212 WARN_ON((int)tp->retrans_out < 0);
3213 if (!tp->packets_out && tcp_is_sack(tp)) {
3214 icsk = inet_csk(sk);
3215 if (tp->lost_out) {
3216 pr_debug("Leak l=%u %d\n",
3217 tp->lost_out, icsk->icsk_ca_state);
3218 tp->lost_out = 0;
3219 }
3220 if (tp->sacked_out) {
3221 pr_debug("Leak s=%u %d\n",
3222 tp->sacked_out, icsk->icsk_ca_state);
3223 tp->sacked_out = 0;
3224 }
3225 if (tp->retrans_out) {
3226 pr_debug("Leak r=%u %d\n",
3227 tp->retrans_out, icsk->icsk_ca_state);
3228 tp->retrans_out = 0;
3229 }
3230 }
3231 #endif
3232 return flag;
3233 }
3234
3235 static void tcp_ack_probe(struct sock *sk)
3236 {
3237 const struct tcp_sock *tp = tcp_sk(sk);
3238 struct inet_connection_sock *icsk = inet_csk(sk);
3239
3240 /* Was it a usable window open? */
3241
3242 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3243 icsk->icsk_backoff = 0;
3244 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3245 /* Socket must be waked up by subsequent tcp_data_snd_check().
3246 * This function is not for random using!
3247 */
3248 } else {
3249 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3250 min_t(unsigned int, icsk->icsk_rto << icsk->icsk_backoff, sysctl_tcp_rto_max),
3251 sysctl_tcp_rto_max);
3252 }
3253 }
3254
3255 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3256 {
3257 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3258 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3259 }
3260
3261 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3262 {
3263 const struct tcp_sock *tp = tcp_sk(sk);
3264 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3265 !tcp_in_cwnd_reduction(sk);
3266 }
3267
3268 /* Check that window update is acceptable.
3269 * The function assumes that snd_una<=ack<=snd_next.
3270 */
3271 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3272 const u32 ack, const u32 ack_seq,
3273 const u32 nwin)
3274 {
3275 return after(ack, tp->snd_una) ||
3276 after(ack_seq, tp->snd_wl1) ||
3277 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3278 }
3279
3280 /* Update our send window.
3281 *
3282 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3283 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3284 */
3285 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3286 u32 ack_seq)
3287 {
3288 struct tcp_sock *tp = tcp_sk(sk);
3289 int flag = 0;
3290 u32 nwin = ntohs(tcp_hdr(skb)->window);
3291
3292 if (likely(!tcp_hdr(skb)->syn))
3293 nwin <<= tp->rx_opt.snd_wscale;
3294
3295 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3296 flag |= FLAG_WIN_UPDATE;
3297 tcp_update_wl(tp, ack_seq);
3298
3299 if (tp->snd_wnd != nwin) {
3300 tp->snd_wnd = nwin;
3301
3302 /* Note, it is the only place, where
3303 * fast path is recovered for sending TCP.
3304 */
3305 tp->pred_flags = 0;
3306 tcp_fast_path_check(sk);
3307
3308 if (nwin > tp->max_window) {
3309 tp->max_window = nwin;
3310 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3311 }
3312 }
3313 }
3314
3315 tp->snd_una = ack;
3316
3317 return flag;
3318 }
3319
3320 /* RFC 5961 7 [ACK Throttling] */
3321 static void tcp_send_challenge_ack(struct sock *sk)
3322 {
3323 /* unprotected vars, we dont care of overwrites */
3324 static u32 challenge_timestamp;
3325 static unsigned int challenge_count;
3326 u32 now = jiffies / HZ;
3327 u32 count;
3328
3329 if (now != challenge_timestamp) {
3330 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3331
3332 challenge_timestamp = now;
3333 ACCESS_ONCE(challenge_count) = half +
3334 reciprocal_divide(prandom_u32(),
3335 sysctl_tcp_challenge_ack_limit);
3336 }
3337 count = ACCESS_ONCE(challenge_count);
3338 if (count > 0) {
3339 ACCESS_ONCE(challenge_count) = count - 1;
3340 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3341 tcp_send_ack(sk);
3342 }
3343 }
3344
3345 static void tcp_store_ts_recent(struct tcp_sock *tp)
3346 {
3347 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3348 tp->rx_opt.ts_recent_stamp = get_seconds();
3349 }
3350
3351 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3352 {
3353 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3354 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3355 * extra check below makes sure this can only happen
3356 * for pure ACK frames. -DaveM
3357 *
3358 * Not only, also it occurs for expired timestamps.
3359 */
3360
3361 if (tcp_paws_check(&tp->rx_opt, 0))
3362 tcp_store_ts_recent(tp);
3363 }
3364 }
3365
3366 /* This routine deals with acks during a TLP episode.
3367 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3368 */
3369 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3370 {
3371 struct tcp_sock *tp = tcp_sk(sk);
3372 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3373 !(flag & (FLAG_SND_UNA_ADVANCED |
3374 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3375
3376 /* Mark the end of TLP episode on receiving TLP dupack or when
3377 * ack is after tlp_high_seq.
3378 */
3379 if (is_tlp_dupack) {
3380 tp->tlp_high_seq = 0;
3381 return;
3382 }
3383
3384 if (after(ack, tp->tlp_high_seq)) {
3385 tp->tlp_high_seq = 0;
3386 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3387 if (!(flag & FLAG_DSACKING_ACK)) {
3388 tcp_init_cwnd_reduction(sk, true);
3389 tcp_set_ca_state(sk, TCP_CA_CWR);
3390 tcp_end_cwnd_reduction(sk);
3391 tcp_try_keep_open(sk);
3392 NET_INC_STATS_BH(sock_net(sk),
3393 LINUX_MIB_TCPLOSSPROBERECOVERY);
3394 }
3395 }
3396 }
3397
3398 /* This routine deals with incoming acks, but not outgoing ones. */
3399 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3400 {
3401 struct inet_connection_sock *icsk = inet_csk(sk);
3402 struct tcp_sock *tp = tcp_sk(sk);
3403 u32 prior_snd_una = tp->snd_una;
3404 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3405 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3406 bool is_dupack = false;
3407 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3408 u32 prior_fackets;
3409 int prior_packets = tp->packets_out;
3410 int prior_sacked = tp->sacked_out;
3411 int pkts_acked = 0;
3412 int previous_packets_out = 0;
3413
3414 /* If the ack is older than previous acks
3415 * then we can probably ignore it.
3416 */
3417 if (before(ack, prior_snd_una)) {
3418 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3419 if (before(ack, prior_snd_una - tp->max_window)) {
3420 tcp_send_challenge_ack(sk);
3421 return -1;
3422 }
3423 goto old_ack;
3424 }
3425
3426 /* If the ack includes data we haven't sent yet, discard
3427 * this segment (RFC793 Section 3.9).
3428 */
3429 if (after(ack, tp->snd_nxt))
3430 goto invalid_ack;
3431
3432 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3433 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3434 tcp_rearm_rto(sk);
3435
3436 if (after(ack, prior_snd_una))
3437 flag |= FLAG_SND_UNA_ADVANCED;
3438
3439 prior_fackets = tp->fackets_out;
3440 prior_in_flight = tcp_packets_in_flight(tp);
3441
3442 /* ts_recent update must be made after we are sure that the packet
3443 * is in window.
3444 */
3445 if (flag & FLAG_UPDATE_TS_RECENT)
3446 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3447
3448 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3449 /* Window is constant, pure forward advance.
3450 * No more checks are required.
3451 * Note, we use the fact that SND.UNA>=SND.WL2.
3452 */
3453 tcp_update_wl(tp, ack_seq);
3454 tp->snd_una = ack;
3455 flag |= FLAG_WIN_UPDATE;
3456
3457 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3458
3459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3460 } else {
3461 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3462 flag |= FLAG_DATA;
3463 else
3464 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3465
3466 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3467
3468 if (TCP_SKB_CB(skb)->sacked)
3469 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3470
3471 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3472 flag |= FLAG_ECE;
3473
3474 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3475 }
3476
3477 /* We passed data and got it acked, remove any soft error
3478 * log. Something worked...
3479 */
3480 sk->sk_err_soft = 0;
3481 icsk->icsk_probes_out = 0;
3482 tp->rcv_tstamp = tcp_time_stamp;
3483 if (!prior_packets)
3484 goto no_queue;
3485
3486 /* See if we can take anything off of the retransmit queue. */
3487 previous_packets_out = tp->packets_out;
3488 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3489
3490 pkts_acked = previous_packets_out - tp->packets_out;
3491
3492 if (tcp_ack_is_dubious(sk, flag)) {
3493 /* Advance CWND, if state allows this. */
3494 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3495 tcp_cong_avoid(sk, ack, prior_in_flight);
3496 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3497 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3498 prior_packets, is_dupack, flag);
3499 } else {
3500 if (flag & FLAG_DATA_ACKED)
3501 tcp_cong_avoid(sk, ack, prior_in_flight);
3502 }
3503
3504 if (tp->tlp_high_seq)
3505 tcp_process_tlp_ack(sk, ack, flag);
3506
3507 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3508 struct dst_entry *dst = __sk_dst_get(sk);
3509 if (dst)
3510 dst_confirm(dst);
3511 }
3512
3513 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3514 tcp_schedule_loss_probe(sk);
3515 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3516 tcp_update_pacing_rate(sk);
3517 return 1;
3518
3519 no_queue:
3520 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3521 if (flag & FLAG_DSACKING_ACK)
3522 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3523 prior_packets, is_dupack, flag);
3524 /* If this ack opens up a zero window, clear backoff. It was
3525 * being used to time the probes, and is probably far higher than
3526 * it needs to be for normal retransmission.
3527 */
3528 if (tcp_send_head(sk))
3529 tcp_ack_probe(sk);
3530
3531 if (tp->tlp_high_seq)
3532 tcp_process_tlp_ack(sk, ack, flag);
3533 return 1;
3534
3535 invalid_ack:
3536 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3537 return -1;
3538
3539 old_ack:
3540 /* If data was SACKed, tag it and see if we should send more data.
3541 * If data was DSACKed, see if we can undo a cwnd reduction.
3542 */
3543 if (TCP_SKB_CB(skb)->sacked) {
3544 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3545 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3546 prior_packets, is_dupack, flag);
3547 }
3548
3549 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3550 return 0;
3551 }
3552
3553 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3554 * But, this can also be called on packets in the established flow when
3555 * the fast version below fails.
3556 */
3557 void tcp_parse_options(const struct sk_buff *skb,
3558 struct tcp_options_received *opt_rx, int estab,
3559 struct tcp_fastopen_cookie *foc)
3560 {
3561 const unsigned char *ptr;
3562 const struct tcphdr *th = tcp_hdr(skb);
3563 int length = (th->doff * 4) - sizeof(struct tcphdr);
3564
3565 ptr = (const unsigned char *)(th + 1);
3566 opt_rx->saw_tstamp = 0;
3567
3568 while (length > 0) {
3569 int opcode = *ptr++;
3570 int opsize;
3571
3572 switch (opcode) {
3573 case TCPOPT_EOL:
3574 return;
3575 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3576 length--;
3577 continue;
3578 default:
3579 opsize = *ptr++;
3580 if (opsize < 2) /* "silly options" */
3581 return;
3582 if (opsize > length)
3583 return; /* don't parse partial options */
3584 switch (opcode) {
3585 case TCPOPT_MSS:
3586 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3587 u16 in_mss = get_unaligned_be16(ptr);
3588 if (in_mss) {
3589 if (opt_rx->user_mss &&
3590 opt_rx->user_mss < in_mss)
3591 in_mss = opt_rx->user_mss;
3592 opt_rx->mss_clamp = in_mss;
3593 }
3594 }
3595 break;
3596 case TCPOPT_WINDOW:
3597 if (opsize == TCPOLEN_WINDOW && th->syn &&
3598 !estab && sysctl_tcp_window_scaling) {
3599 __u8 snd_wscale = *(__u8 *)ptr;
3600 opt_rx->wscale_ok = 1;
3601 if (snd_wscale > 14) {
3602 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3603 __func__,
3604 snd_wscale);
3605 snd_wscale = 14;
3606 }
3607 opt_rx->snd_wscale = snd_wscale;
3608 }
3609 break;
3610 case TCPOPT_TIMESTAMP:
3611 if ((opsize == TCPOLEN_TIMESTAMP) &&
3612 ((estab && opt_rx->tstamp_ok) ||
3613 (!estab && sysctl_tcp_timestamps))) {
3614 opt_rx->saw_tstamp = 1;
3615 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3616 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3617 }
3618 break;
3619 case TCPOPT_SACK_PERM:
3620 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3621 !estab && sysctl_tcp_sack) {
3622 opt_rx->sack_ok = TCP_SACK_SEEN;
3623 tcp_sack_reset(opt_rx);
3624 }
3625 break;
3626
3627 case TCPOPT_SACK:
3628 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3629 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3630 opt_rx->sack_ok) {
3631 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3632 }
3633 break;
3634 #ifdef CONFIG_TCP_MD5SIG
3635 case TCPOPT_MD5SIG:
3636 /*
3637 * The MD5 Hash has already been
3638 * checked (see tcp_v{4,6}_do_rcv()).
3639 */
3640 break;
3641 #endif
3642 case TCPOPT_EXP:
3643 /* Fast Open option shares code 254 using a
3644 * 16 bits magic number. It's valid only in
3645 * SYN or SYN-ACK with an even size.
3646 */
3647 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3648 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3649 foc == NULL || !th->syn || (opsize & 1))
3650 break;
3651 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3652 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3653 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3654 memcpy(foc->val, ptr + 2, foc->len);
3655 else if (foc->len != 0)
3656 foc->len = -1;
3657 break;
3658
3659 }
3660 ptr += opsize-2;
3661 length -= opsize;
3662 }
3663 }
3664 }
3665 EXPORT_SYMBOL(tcp_parse_options);
3666
3667 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3668 {
3669 const __be32 *ptr = (const __be32 *)(th + 1);
3670
3671 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3672 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3673 tp->rx_opt.saw_tstamp = 1;
3674 ++ptr;
3675 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3676 ++ptr;
3677 if (*ptr)
3678 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3679 else
3680 tp->rx_opt.rcv_tsecr = 0;
3681 return true;
3682 }
3683 return false;
3684 }
3685
3686 /* Fast parse options. This hopes to only see timestamps.
3687 * If it is wrong it falls back on tcp_parse_options().
3688 */
3689 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3690 const struct tcphdr *th, struct tcp_sock *tp)
3691 {
3692 /* In the spirit of fast parsing, compare doff directly to constant
3693 * values. Because equality is used, short doff can be ignored here.
3694 */
3695 if (th->doff == (sizeof(*th) / 4)) {
3696 tp->rx_opt.saw_tstamp = 0;
3697 return false;
3698 } else if (tp->rx_opt.tstamp_ok &&
3699 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3700 if (tcp_parse_aligned_timestamp(tp, th))
3701 return true;
3702 }
3703
3704 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3705 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3706 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3707
3708 return true;
3709 }
3710
3711 #ifdef CONFIG_TCP_MD5SIG
3712 /*
3713 * Parse MD5 Signature option
3714 */
3715 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3716 {
3717 int length = (th->doff << 2) - sizeof(*th);
3718 const u8 *ptr = (const u8 *)(th + 1);
3719
3720 /* If the TCP option is too short, we can short cut */
3721 if (length < TCPOLEN_MD5SIG)
3722 return NULL;
3723
3724 while (length > 0) {
3725 int opcode = *ptr++;
3726 int opsize;
3727
3728 switch(opcode) {
3729 case TCPOPT_EOL:
3730 return NULL;
3731 case TCPOPT_NOP:
3732 length--;
3733 continue;
3734 default:
3735 opsize = *ptr++;
3736 if (opsize < 2 || opsize > length)
3737 return NULL;
3738 if (opcode == TCPOPT_MD5SIG)
3739 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3740 }
3741 ptr += opsize - 2;
3742 length -= opsize;
3743 }
3744 return NULL;
3745 }
3746 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3747 #endif
3748
3749 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3750 *
3751 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3752 * it can pass through stack. So, the following predicate verifies that
3753 * this segment is not used for anything but congestion avoidance or
3754 * fast retransmit. Moreover, we even are able to eliminate most of such
3755 * second order effects, if we apply some small "replay" window (~RTO)
3756 * to timestamp space.
3757 *
3758 * All these measures still do not guarantee that we reject wrapped ACKs
3759 * on networks with high bandwidth, when sequence space is recycled fastly,
3760 * but it guarantees that such events will be very rare and do not affect
3761 * connection seriously. This doesn't look nice, but alas, PAWS is really
3762 * buggy extension.
3763 *
3764 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3765 * states that events when retransmit arrives after original data are rare.
3766 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3767 * the biggest problem on large power networks even with minor reordering.
3768 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3769 * up to bandwidth of 18Gigabit/sec. 8) ]
3770 */
3771
3772 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3773 {
3774 const struct tcp_sock *tp = tcp_sk(sk);
3775 const struct tcphdr *th = tcp_hdr(skb);
3776 u32 seq = TCP_SKB_CB(skb)->seq;
3777 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3778
3779 return (/* 1. Pure ACK with correct sequence number. */
3780 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3781
3782 /* 2. ... and duplicate ACK. */
3783 ack == tp->snd_una &&
3784
3785 /* 3. ... and does not update window. */
3786 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3787
3788 /* 4. ... and sits in replay window. */
3789 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3790 }
3791
3792 static inline bool tcp_paws_discard(const struct sock *sk,
3793 const struct sk_buff *skb)
3794 {
3795 const struct tcp_sock *tp = tcp_sk(sk);
3796
3797 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3798 !tcp_disordered_ack(sk, skb);
3799 }
3800
3801 /* Check segment sequence number for validity.
3802 *
3803 * Segment controls are considered valid, if the segment
3804 * fits to the window after truncation to the window. Acceptability
3805 * of data (and SYN, FIN, of course) is checked separately.
3806 * See tcp_data_queue(), for example.
3807 *
3808 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3809 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3810 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3811 * (borrowed from freebsd)
3812 */
3813
3814 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3815 {
3816 return !before(end_seq, tp->rcv_wup) &&
3817 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3818 }
3819
3820 /* When we get a reset we do this. */
3821 void tcp_reset(struct sock *sk)
3822 {
3823 /* We want the right error as BSD sees it (and indeed as we do). */
3824 switch (sk->sk_state) {
3825 case TCP_SYN_SENT:
3826 sk->sk_err = ECONNREFUSED;
3827 break;
3828 case TCP_CLOSE_WAIT:
3829 sk->sk_err = EPIPE;
3830 break;
3831 case TCP_CLOSE:
3832 return;
3833 default:
3834 sk->sk_err = ECONNRESET;
3835 }
3836 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3837 smp_wmb();
3838
3839 if (!sock_flag(sk, SOCK_DEAD))
3840 sk->sk_error_report(sk);
3841
3842 tcp_done(sk);
3843 }
3844
3845 /*
3846 * Process the FIN bit. This now behaves as it is supposed to work
3847 * and the FIN takes effect when it is validly part of sequence
3848 * space. Not before when we get holes.
3849 *
3850 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3851 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3852 * TIME-WAIT)
3853 *
3854 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3855 * close and we go into CLOSING (and later onto TIME-WAIT)
3856 *
3857 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3858 */
3859 static void tcp_fin(struct sock *sk)
3860 {
3861 struct tcp_sock *tp = tcp_sk(sk);
3862
3863 inet_csk_schedule_ack(sk);
3864
3865 sk->sk_shutdown |= RCV_SHUTDOWN;
3866 sock_set_flag(sk, SOCK_DONE);
3867
3868 switch (sk->sk_state) {
3869 case TCP_SYN_RECV:
3870 case TCP_ESTABLISHED:
3871 /* Move to CLOSE_WAIT */
3872 tcp_set_state(sk, TCP_CLOSE_WAIT);
3873 inet_csk(sk)->icsk_ack.pingpong = 1;
3874 break;
3875
3876 case TCP_CLOSE_WAIT:
3877 case TCP_CLOSING:
3878 /* Received a retransmission of the FIN, do
3879 * nothing.
3880 */
3881 break;
3882 case TCP_LAST_ACK:
3883 /* RFC793: Remain in the LAST-ACK state. */
3884 break;
3885
3886 case TCP_FIN_WAIT1:
3887 /* This case occurs when a simultaneous close
3888 * happens, we must ack the received FIN and
3889 * enter the CLOSING state.
3890 */
3891 tcp_send_ack(sk);
3892 tcp_set_state(sk, TCP_CLOSING);
3893 break;
3894 case TCP_FIN_WAIT2:
3895 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3896 tcp_send_ack(sk);
3897 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3898 break;
3899 default:
3900 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3901 * cases we should never reach this piece of code.
3902 */
3903 pr_err("%s: Impossible, sk->sk_state=%d\n",
3904 __func__, sk->sk_state);
3905 break;
3906 }
3907
3908 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3909 * Probably, we should reset in this case. For now drop them.
3910 */
3911 __skb_queue_purge(&tp->out_of_order_queue);
3912 if (tcp_is_sack(tp))
3913 tcp_sack_reset(&tp->rx_opt);
3914 sk_mem_reclaim(sk);
3915
3916 if (!sock_flag(sk, SOCK_DEAD)) {
3917 sk->sk_state_change(sk);
3918
3919 /* Do not send POLL_HUP for half duplex close. */
3920 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3921 sk->sk_state == TCP_CLOSE)
3922 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3923 else
3924 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3925 }
3926 }
3927
3928 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3929 u32 end_seq)
3930 {
3931 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3932 if (before(seq, sp->start_seq))
3933 sp->start_seq = seq;
3934 if (after(end_seq, sp->end_seq))
3935 sp->end_seq = end_seq;
3936 return true;
3937 }
3938 return false;
3939 }
3940
3941 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3942 {
3943 struct tcp_sock *tp = tcp_sk(sk);
3944
3945 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3946 int mib_idx;
3947
3948 if (before(seq, tp->rcv_nxt))
3949 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3950 else
3951 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3952
3953 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3954
3955 tp->rx_opt.dsack = 1;
3956 tp->duplicate_sack[0].start_seq = seq;
3957 tp->duplicate_sack[0].end_seq = end_seq;
3958 }
3959 }
3960
3961 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3962 {
3963 struct tcp_sock *tp = tcp_sk(sk);
3964
3965 if (!tp->rx_opt.dsack)
3966 tcp_dsack_set(sk, seq, end_seq);
3967 else
3968 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3969 }
3970
3971 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3972 {
3973 struct tcp_sock *tp = tcp_sk(sk);
3974
3975 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3976 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3977 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3978 tcp_enter_quickack_mode(sk);
3979
3980 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3981 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3982
3983 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3984 end_seq = tp->rcv_nxt;
3985 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3986 }
3987 }
3988
3989 tcp_send_ack(sk);
3990 }
3991
3992 /* These routines update the SACK block as out-of-order packets arrive or
3993 * in-order packets close up the sequence space.
3994 */
3995 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3996 {
3997 int this_sack;
3998 struct tcp_sack_block *sp = &tp->selective_acks[0];
3999 struct tcp_sack_block *swalk = sp + 1;
4000
4001 /* See if the recent change to the first SACK eats into
4002 * or hits the sequence space of other SACK blocks, if so coalesce.
4003 */
4004 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4005 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4006 int i;
4007
4008 /* Zap SWALK, by moving every further SACK up by one slot.
4009 * Decrease num_sacks.
4010 */
4011 tp->rx_opt.num_sacks--;
4012 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4013 sp[i] = sp[i + 1];
4014 continue;
4015 }
4016 this_sack++, swalk++;
4017 }
4018 }
4019
4020 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4021 {
4022 struct tcp_sock *tp = tcp_sk(sk);
4023 struct tcp_sack_block *sp = &tp->selective_acks[0];
4024 int cur_sacks = tp->rx_opt.num_sacks;
4025 int this_sack;
4026
4027 if (!cur_sacks)
4028 goto new_sack;
4029
4030 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4031 if (tcp_sack_extend(sp, seq, end_seq)) {
4032 /* Rotate this_sack to the first one. */
4033 for (; this_sack > 0; this_sack--, sp--)
4034 swap(*sp, *(sp - 1));
4035 if (cur_sacks > 1)
4036 tcp_sack_maybe_coalesce(tp);
4037 return;
4038 }
4039 }
4040
4041 /* Could not find an adjacent existing SACK, build a new one,
4042 * put it at the front, and shift everyone else down. We
4043 * always know there is at least one SACK present already here.
4044 *
4045 * If the sack array is full, forget about the last one.
4046 */
4047 if (this_sack >= TCP_NUM_SACKS) {
4048 this_sack--;
4049 tp->rx_opt.num_sacks--;
4050 sp--;
4051 }
4052 for (; this_sack > 0; this_sack--, sp--)
4053 *sp = *(sp - 1);
4054
4055 new_sack:
4056 /* Build the new head SACK, and we're done. */
4057 sp->start_seq = seq;
4058 sp->end_seq = end_seq;
4059 tp->rx_opt.num_sacks++;
4060 }
4061
4062 /* RCV.NXT advances, some SACKs should be eaten. */
4063
4064 static void tcp_sack_remove(struct tcp_sock *tp)
4065 {
4066 struct tcp_sack_block *sp = &tp->selective_acks[0];
4067 int num_sacks = tp->rx_opt.num_sacks;
4068 int this_sack;
4069
4070 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4071 if (skb_queue_empty(&tp->out_of_order_queue)) {
4072 tp->rx_opt.num_sacks = 0;
4073 return;
4074 }
4075
4076 for (this_sack = 0; this_sack < num_sacks;) {
4077 /* Check if the start of the sack is covered by RCV.NXT. */
4078 if (!before(tp->rcv_nxt, sp->start_seq)) {
4079 int i;
4080
4081 /* RCV.NXT must cover all the block! */
4082 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4083
4084 /* Zap this SACK, by moving forward any other SACKS. */
4085 for (i=this_sack+1; i < num_sacks; i++)
4086 tp->selective_acks[i-1] = tp->selective_acks[i];
4087 num_sacks--;
4088 continue;
4089 }
4090 this_sack++;
4091 sp++;
4092 }
4093 tp->rx_opt.num_sacks = num_sacks;
4094 }
4095
4096 /* This one checks to see if we can put data from the
4097 * out_of_order queue into the receive_queue.
4098 */
4099 static void tcp_ofo_queue(struct sock *sk)
4100 {
4101 struct tcp_sock *tp = tcp_sk(sk);
4102 __u32 dsack_high = tp->rcv_nxt;
4103 struct sk_buff *skb;
4104
4105 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4106 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4107 break;
4108
4109 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4110 __u32 dsack = dsack_high;
4111 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4112 dsack_high = TCP_SKB_CB(skb)->end_seq;
4113 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4114 }
4115
4116 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4117 SOCK_DEBUG(sk, "ofo packet was already received\n");
4118 __skb_unlink(skb, &tp->out_of_order_queue);
4119 __kfree_skb(skb);
4120 continue;
4121 }
4122 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4123 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4124 TCP_SKB_CB(skb)->end_seq);
4125
4126 __skb_unlink(skb, &tp->out_of_order_queue);
4127 __skb_queue_tail(&sk->sk_receive_queue, skb);
4128 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4129 if (tcp_hdr(skb)->fin)
4130 tcp_fin(sk);
4131 }
4132 }
4133
4134 static bool tcp_prune_ofo_queue(struct sock *sk);
4135 static int tcp_prune_queue(struct sock *sk);
4136
4137 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4138 unsigned int size)
4139 {
4140 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4141 !sk_rmem_schedule(sk, skb, size)) {
4142
4143 if (tcp_prune_queue(sk) < 0)
4144 return -1;
4145
4146 if (!sk_rmem_schedule(sk, skb, size)) {
4147 if (!tcp_prune_ofo_queue(sk))
4148 return -1;
4149
4150 if (!sk_rmem_schedule(sk, skb, size))
4151 return -1;
4152 }
4153 }
4154 return 0;
4155 }
4156
4157 /**
4158 * tcp_try_coalesce - try to merge skb to prior one
4159 * @sk: socket
4160 * @to: prior buffer
4161 * @from: buffer to add in queue
4162 * @fragstolen: pointer to boolean
4163 *
4164 * Before queueing skb @from after @to, try to merge them
4165 * to reduce overall memory use and queue lengths, if cost is small.
4166 * Packets in ofo or receive queues can stay a long time.
4167 * Better try to coalesce them right now to avoid future collapses.
4168 * Returns true if caller should free @from instead of queueing it
4169 */
4170 static bool tcp_try_coalesce(struct sock *sk,
4171 struct sk_buff *to,
4172 struct sk_buff *from,
4173 bool *fragstolen)
4174 {
4175 int delta;
4176
4177 *fragstolen = false;
4178
4179 if (tcp_hdr(from)->fin)
4180 return false;
4181
4182 /* Its possible this segment overlaps with prior segment in queue */
4183 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4184 return false;
4185
4186 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4187 return false;
4188
4189 atomic_add(delta, &sk->sk_rmem_alloc);
4190 sk_mem_charge(sk, delta);
4191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4192 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4193 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4194 return true;
4195 }
4196
4197 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4198 {
4199 struct tcp_sock *tp = tcp_sk(sk);
4200 struct sk_buff *skb1;
4201 u32 seq, end_seq;
4202
4203 TCP_ECN_check_ce(tp, skb);
4204
4205 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4206 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4207 __kfree_skb(skb);
4208 return;
4209 }
4210
4211 /* Disable header prediction. */
4212 tp->pred_flags = 0;
4213 inet_csk_schedule_ack(sk);
4214
4215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4216 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4217 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4218
4219 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4220 if (!skb1) {
4221 /* Initial out of order segment, build 1 SACK. */
4222 if (tcp_is_sack(tp)) {
4223 tp->rx_opt.num_sacks = 1;
4224 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4225 tp->selective_acks[0].end_seq =
4226 TCP_SKB_CB(skb)->end_seq;
4227 }
4228 __skb_queue_head(&tp->out_of_order_queue, skb);
4229 goto end;
4230 }
4231
4232 seq = TCP_SKB_CB(skb)->seq;
4233 end_seq = TCP_SKB_CB(skb)->end_seq;
4234
4235 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4236 bool fragstolen;
4237
4238 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4239 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4240 } else {
4241 kfree_skb_partial(skb, fragstolen);
4242 skb = NULL;
4243 }
4244
4245 if (!tp->rx_opt.num_sacks ||
4246 tp->selective_acks[0].end_seq != seq)
4247 goto add_sack;
4248
4249 /* Common case: data arrive in order after hole. */
4250 tp->selective_acks[0].end_seq = end_seq;
4251 goto end;
4252 }
4253
4254 /* Find place to insert this segment. */
4255 while (1) {
4256 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4257 break;
4258 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4259 skb1 = NULL;
4260 break;
4261 }
4262 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4263 }
4264
4265 /* Do skb overlap to previous one? */
4266 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4267 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4268 /* All the bits are present. Drop. */
4269 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4270 __kfree_skb(skb);
4271 skb = NULL;
4272 tcp_dsack_set(sk, seq, end_seq);
4273 goto add_sack;
4274 }
4275 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4276 /* Partial overlap. */
4277 tcp_dsack_set(sk, seq,
4278 TCP_SKB_CB(skb1)->end_seq);
4279 } else {
4280 if (skb_queue_is_first(&tp->out_of_order_queue,
4281 skb1))
4282 skb1 = NULL;
4283 else
4284 skb1 = skb_queue_prev(
4285 &tp->out_of_order_queue,
4286 skb1);
4287 }
4288 }
4289 if (!skb1)
4290 __skb_queue_head(&tp->out_of_order_queue, skb);
4291 else
4292 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4293
4294 /* And clean segments covered by new one as whole. */
4295 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4296 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4297
4298 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4299 break;
4300 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4301 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4302 end_seq);
4303 break;
4304 }
4305 __skb_unlink(skb1, &tp->out_of_order_queue);
4306 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4307 TCP_SKB_CB(skb1)->end_seq);
4308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4309 __kfree_skb(skb1);
4310 }
4311
4312 add_sack:
4313 if (tcp_is_sack(tp))
4314 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4315 end:
4316 if (skb)
4317 skb_set_owner_r(skb, sk);
4318 }
4319
4320 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4321 bool *fragstolen)
4322 {
4323 int eaten;
4324 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4325
4326 __skb_pull(skb, hdrlen);
4327 eaten = (tail &&
4328 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4329 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4330 if (!eaten) {
4331 __skb_queue_tail(&sk->sk_receive_queue, skb);
4332 skb_set_owner_r(skb, sk);
4333 }
4334 return eaten;
4335 }
4336
4337 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4338 {
4339 struct sk_buff *skb = NULL;
4340 struct tcphdr *th;
4341 bool fragstolen;
4342
4343 if (size == 0)
4344 return 0;
4345
4346 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4347 if (!skb)
4348 goto err;
4349
4350 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4351 goto err_free;
4352
4353 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4354 skb_reset_transport_header(skb);
4355 memset(th, 0, sizeof(*th));
4356
4357 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4358 goto err_free;
4359
4360 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4361 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4362 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4363
4364 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4365 WARN_ON_ONCE(fragstolen); /* should not happen */
4366 __kfree_skb(skb);
4367 }
4368 return size;
4369
4370 err_free:
4371 kfree_skb(skb);
4372 err:
4373 return -ENOMEM;
4374 }
4375
4376 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4377 {
4378 const struct tcphdr *th = tcp_hdr(skb);
4379 struct tcp_sock *tp = tcp_sk(sk);
4380 int eaten = -1;
4381 bool fragstolen = false;
4382
4383 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4384 goto drop;
4385
4386 skb_dst_drop(skb);
4387 __skb_pull(skb, th->doff * 4);
4388
4389 TCP_ECN_accept_cwr(tp, skb);
4390
4391 tp->rx_opt.dsack = 0;
4392
4393 /* Queue data for delivery to the user.
4394 * Packets in sequence go to the receive queue.
4395 * Out of sequence packets to the out_of_order_queue.
4396 */
4397 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4398 if (tcp_receive_window(tp) == 0)
4399 goto out_of_window;
4400
4401 /* Ok. In sequence. In window. */
4402 if (tp->ucopy.task == current &&
4403 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4404 sock_owned_by_user(sk) && !tp->urg_data) {
4405 int chunk = min_t(unsigned int, skb->len,
4406 tp->ucopy.len);
4407
4408 __set_current_state(TASK_RUNNING);
4409
4410 local_bh_enable();
4411 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4412 tp->ucopy.len -= chunk;
4413 tp->copied_seq += chunk;
4414 eaten = (chunk == skb->len);
4415 tcp_rcv_space_adjust(sk);
4416 }
4417 local_bh_disable();
4418 }
4419
4420 if (eaten <= 0) {
4421 queue_and_out:
4422 if (eaten < 0 &&
4423 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4424 goto drop;
4425
4426 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4427 }
4428 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4429 if (skb->len)
4430 tcp_event_data_recv(sk, skb);
4431 if (th->fin)
4432 tcp_fin(sk);
4433
4434 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4435 tcp_ofo_queue(sk);
4436
4437 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4438 * gap in queue is filled.
4439 */
4440 if (skb_queue_empty(&tp->out_of_order_queue))
4441 inet_csk(sk)->icsk_ack.pingpong = 0;
4442 }
4443
4444 if (tp->rx_opt.num_sacks)
4445 tcp_sack_remove(tp);
4446
4447 tcp_fast_path_check(sk);
4448
4449 if (eaten > 0)
4450 kfree_skb_partial(skb, fragstolen);
4451 if (!sock_flag(sk, SOCK_DEAD))
4452 sk->sk_data_ready(sk, 0);
4453 return;
4454 }
4455
4456 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4457 /* A retransmit, 2nd most common case. Force an immediate ack. */
4458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4459 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4460
4461 out_of_window:
4462 tcp_enter_quickack_mode(sk);
4463 inet_csk_schedule_ack(sk);
4464 drop:
4465 __kfree_skb(skb);
4466 return;
4467 }
4468
4469 /* Out of window. F.e. zero window probe. */
4470 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4471 goto out_of_window;
4472
4473 tcp_enter_quickack_mode(sk);
4474
4475 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476 /* Partial packet, seq < rcv_next < end_seq */
4477 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4478 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4479 TCP_SKB_CB(skb)->end_seq);
4480
4481 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4482
4483 /* If window is closed, drop tail of packet. But after
4484 * remembering D-SACK for its head made in previous line.
4485 */
4486 if (!tcp_receive_window(tp))
4487 goto out_of_window;
4488 goto queue_and_out;
4489 }
4490
4491 tcp_data_queue_ofo(sk, skb);
4492 }
4493
4494 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4495 struct sk_buff_head *list)
4496 {
4497 struct sk_buff *next = NULL;
4498
4499 if (!skb_queue_is_last(list, skb))
4500 next = skb_queue_next(list, skb);
4501
4502 __skb_unlink(skb, list);
4503 __kfree_skb(skb);
4504 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4505
4506 return next;
4507 }
4508
4509 /* Collapse contiguous sequence of skbs head..tail with
4510 * sequence numbers start..end.
4511 *
4512 * If tail is NULL, this means until the end of the list.
4513 *
4514 * Segments with FIN/SYN are not collapsed (only because this
4515 * simplifies code)
4516 */
4517 static void
4518 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4519 struct sk_buff *head, struct sk_buff *tail,
4520 u32 start, u32 end)
4521 {
4522 struct sk_buff *skb, *n;
4523 bool end_of_skbs;
4524
4525 /* First, check that queue is collapsible and find
4526 * the point where collapsing can be useful. */
4527 skb = head;
4528 restart:
4529 end_of_skbs = true;
4530 skb_queue_walk_from_safe(list, skb, n) {
4531 if (skb == tail)
4532 break;
4533 /* No new bits? It is possible on ofo queue. */
4534 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4535 skb = tcp_collapse_one(sk, skb, list);
4536 if (!skb)
4537 break;
4538 goto restart;
4539 }
4540
4541 /* The first skb to collapse is:
4542 * - not SYN/FIN and
4543 * - bloated or contains data before "start" or
4544 * overlaps to the next one.
4545 */
4546 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4547 (tcp_win_from_space(skb->truesize) > skb->len ||
4548 before(TCP_SKB_CB(skb)->seq, start))) {
4549 end_of_skbs = false;
4550 break;
4551 }
4552
4553 if (!skb_queue_is_last(list, skb)) {
4554 struct sk_buff *next = skb_queue_next(list, skb);
4555 if (next != tail &&
4556 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4557 end_of_skbs = false;
4558 break;
4559 }
4560 }
4561
4562 /* Decided to skip this, advance start seq. */
4563 start = TCP_SKB_CB(skb)->end_seq;
4564 }
4565 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4566 return;
4567
4568 while (before(start, end)) {
4569 struct sk_buff *nskb;
4570 unsigned int header = skb_headroom(skb);
4571 int copy = SKB_MAX_ORDER(header, 0);
4572
4573 /* Too big header? This can happen with IPv6. */
4574 if (copy < 0)
4575 return;
4576 if (end - start < copy)
4577 copy = end - start;
4578 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4579 if (!nskb)
4580 return;
4581
4582 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4583 skb_set_network_header(nskb, (skb_network_header(skb) -
4584 skb->head));
4585 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4586 skb->head));
4587 skb_reserve(nskb, header);
4588 memcpy(nskb->head, skb->head, header);
4589 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4590 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4591 __skb_queue_before(list, skb, nskb);
4592 skb_set_owner_r(nskb, sk);
4593
4594 /* Copy data, releasing collapsed skbs. */
4595 while (copy > 0) {
4596 int offset = start - TCP_SKB_CB(skb)->seq;
4597 int size = TCP_SKB_CB(skb)->end_seq - start;
4598
4599 BUG_ON(offset < 0);
4600 if (size > 0) {
4601 size = min(copy, size);
4602 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4603 BUG();
4604 TCP_SKB_CB(nskb)->end_seq += size;
4605 copy -= size;
4606 start += size;
4607 }
4608 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4609 skb = tcp_collapse_one(sk, skb, list);
4610 if (!skb ||
4611 skb == tail ||
4612 tcp_hdr(skb)->syn ||
4613 tcp_hdr(skb)->fin)
4614 return;
4615 }
4616 }
4617 }
4618 }
4619
4620 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4621 * and tcp_collapse() them until all the queue is collapsed.
4622 */
4623 static void tcp_collapse_ofo_queue(struct sock *sk)
4624 {
4625 struct tcp_sock *tp = tcp_sk(sk);
4626 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4627 struct sk_buff *head;
4628 u32 start, end;
4629
4630 if (skb == NULL)
4631 return;
4632
4633 start = TCP_SKB_CB(skb)->seq;
4634 end = TCP_SKB_CB(skb)->end_seq;
4635 head = skb;
4636
4637 for (;;) {
4638 struct sk_buff *next = NULL;
4639
4640 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4641 next = skb_queue_next(&tp->out_of_order_queue, skb);
4642 skb = next;
4643
4644 /* Segment is terminated when we see gap or when
4645 * we are at the end of all the queue. */
4646 if (!skb ||
4647 after(TCP_SKB_CB(skb)->seq, end) ||
4648 before(TCP_SKB_CB(skb)->end_seq, start)) {
4649 tcp_collapse(sk, &tp->out_of_order_queue,
4650 head, skb, start, end);
4651 head = skb;
4652 if (!skb)
4653 break;
4654 /* Start new segment */
4655 start = TCP_SKB_CB(skb)->seq;
4656 end = TCP_SKB_CB(skb)->end_seq;
4657 } else {
4658 if (before(TCP_SKB_CB(skb)->seq, start))
4659 start = TCP_SKB_CB(skb)->seq;
4660 if (after(TCP_SKB_CB(skb)->end_seq, end))
4661 end = TCP_SKB_CB(skb)->end_seq;
4662 }
4663 }
4664 }
4665
4666 /*
4667 * Purge the out-of-order queue.
4668 * Return true if queue was pruned.
4669 */
4670 static bool tcp_prune_ofo_queue(struct sock *sk)
4671 {
4672 struct tcp_sock *tp = tcp_sk(sk);
4673 bool res = false;
4674
4675 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4676 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4677 __skb_queue_purge(&tp->out_of_order_queue);
4678
4679 /* Reset SACK state. A conforming SACK implementation will
4680 * do the same at a timeout based retransmit. When a connection
4681 * is in a sad state like this, we care only about integrity
4682 * of the connection not performance.
4683 */
4684 if (tp->rx_opt.sack_ok)
4685 tcp_sack_reset(&tp->rx_opt);
4686 sk_mem_reclaim(sk);
4687 res = true;
4688 }
4689 return res;
4690 }
4691
4692 /* Reduce allocated memory if we can, trying to get
4693 * the socket within its memory limits again.
4694 *
4695 * Return less than zero if we should start dropping frames
4696 * until the socket owning process reads some of the data
4697 * to stabilize the situation.
4698 */
4699 static int tcp_prune_queue(struct sock *sk)
4700 {
4701 struct tcp_sock *tp = tcp_sk(sk);
4702
4703 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4704
4705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4706
4707 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4708 tcp_clamp_window(sk);
4709 else if (sk_under_memory_pressure(sk))
4710 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4711
4712 tcp_collapse_ofo_queue(sk);
4713 if (!skb_queue_empty(&sk->sk_receive_queue))
4714 tcp_collapse(sk, &sk->sk_receive_queue,
4715 skb_peek(&sk->sk_receive_queue),
4716 NULL,
4717 tp->copied_seq, tp->rcv_nxt);
4718 sk_mem_reclaim(sk);
4719
4720 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4721 return 0;
4722
4723 /* Collapsing did not help, destructive actions follow.
4724 * This must not ever occur. */
4725
4726 tcp_prune_ofo_queue(sk);
4727
4728 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4729 return 0;
4730
4731 /* If we are really being abused, tell the caller to silently
4732 * drop receive data on the floor. It will get retransmitted
4733 * and hopefully then we'll have sufficient space.
4734 */
4735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4736
4737 /* Massive buffer overcommit. */
4738 tp->pred_flags = 0;
4739 return -1;
4740 }
4741
4742 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4743 * As additional protections, we do not touch cwnd in retransmission phases,
4744 * and if application hit its sndbuf limit recently.
4745 */
4746 void tcp_cwnd_application_limited(struct sock *sk)
4747 {
4748 struct tcp_sock *tp = tcp_sk(sk);
4749
4750 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4751 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4752 /* Limited by application or receiver window. */
4753 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4754 u32 win_used = max(tp->snd_cwnd_used, init_win);
4755 if (win_used < tp->snd_cwnd) {
4756 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4757 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4758 }
4759 tp->snd_cwnd_used = 0;
4760 }
4761 tp->snd_cwnd_stamp = tcp_time_stamp;
4762 }
4763
4764 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4765 {
4766 const struct tcp_sock *tp = tcp_sk(sk);
4767
4768 /* If the user specified a specific send buffer setting, do
4769 * not modify it.
4770 */
4771 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4772 return false;
4773
4774 /* If we are under global TCP memory pressure, do not expand. */
4775 if (sk_under_memory_pressure(sk))
4776 return false;
4777
4778 /* If we are under soft global TCP memory pressure, do not expand. */
4779 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4780 return false;
4781
4782 /* If we filled the congestion window, do not expand. */
4783 if (tp->packets_out >= tp->snd_cwnd)
4784 return false;
4785
4786 return true;
4787 }
4788
4789 /* When incoming ACK allowed to free some skb from write_queue,
4790 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4791 * on the exit from tcp input handler.
4792 *
4793 * PROBLEM: sndbuf expansion does not work well with largesend.
4794 */
4795 static void tcp_new_space(struct sock *sk)
4796 {
4797 struct tcp_sock *tp = tcp_sk(sk);
4798
4799 if (tcp_should_expand_sndbuf(sk)) {
4800 int sndmem = SKB_TRUESIZE(max_t(u32,
4801 tp->rx_opt.mss_clamp,
4802 tp->mss_cache) +
4803 MAX_TCP_HEADER);
4804 int demanded = max_t(unsigned int, tp->snd_cwnd,
4805 tp->reordering + 1);
4806 sndmem *= 2 * demanded;
4807 if (sndmem > sk->sk_sndbuf)
4808 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4809 tp->snd_cwnd_stamp = tcp_time_stamp;
4810 }
4811
4812 sk->sk_write_space(sk);
4813 }
4814
4815 static void tcp_check_space(struct sock *sk)
4816 {
4817 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4818 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4819 if (sk->sk_socket &&
4820 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4821 tcp_new_space(sk);
4822 }
4823 }
4824
4825 static inline void tcp_data_snd_check(struct sock *sk)
4826 {
4827 tcp_push_pending_frames(sk);
4828 tcp_check_space(sk);
4829 }
4830
4831 /*
4832 * Check if sending an ack is needed.
4833 */
4834 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4835 {
4836 struct tcp_sock *tp = tcp_sk(sk);
4837
4838 /* More than one full frame received... */
4839 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4840 /* ... and right edge of window advances far enough.
4841 * (tcp_recvmsg() will send ACK otherwise). Or...
4842 */
4843 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4844 /* We ACK each frame or... */
4845 tcp_in_quickack_mode(sk) ||
4846 /* We have out of order data. */
4847 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4848 /* Then ack it now */
4849 tcp_send_ack(sk);
4850 } else {
4851 /* Else, send delayed ack. */
4852 tcp_send_delayed_ack(sk);
4853 }
4854 }
4855
4856 static inline void tcp_ack_snd_check(struct sock *sk)
4857 {
4858 if (!inet_csk_ack_scheduled(sk)) {
4859 /* We sent a data segment already. */
4860 return;
4861 }
4862 __tcp_ack_snd_check(sk, 1);
4863 }
4864
4865 /*
4866 * This routine is only called when we have urgent data
4867 * signaled. Its the 'slow' part of tcp_urg. It could be
4868 * moved inline now as tcp_urg is only called from one
4869 * place. We handle URGent data wrong. We have to - as
4870 * BSD still doesn't use the correction from RFC961.
4871 * For 1003.1g we should support a new option TCP_STDURG to permit
4872 * either form (or just set the sysctl tcp_stdurg).
4873 */
4874
4875 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4876 {
4877 struct tcp_sock *tp = tcp_sk(sk);
4878 u32 ptr = ntohs(th->urg_ptr);
4879
4880 if (ptr && !sysctl_tcp_stdurg)
4881 ptr--;
4882 ptr += ntohl(th->seq);
4883
4884 /* Ignore urgent data that we've already seen and read. */
4885 if (after(tp->copied_seq, ptr))
4886 return;
4887
4888 /* Do not replay urg ptr.
4889 *
4890 * NOTE: interesting situation not covered by specs.
4891 * Misbehaving sender may send urg ptr, pointing to segment,
4892 * which we already have in ofo queue. We are not able to fetch
4893 * such data and will stay in TCP_URG_NOTYET until will be eaten
4894 * by recvmsg(). Seems, we are not obliged to handle such wicked
4895 * situations. But it is worth to think about possibility of some
4896 * DoSes using some hypothetical application level deadlock.
4897 */
4898 if (before(ptr, tp->rcv_nxt))
4899 return;
4900
4901 /* Do we already have a newer (or duplicate) urgent pointer? */
4902 if (tp->urg_data && !after(ptr, tp->urg_seq))
4903 return;
4904
4905 /* Tell the world about our new urgent pointer. */
4906 sk_send_sigurg(sk);
4907
4908 /* We may be adding urgent data when the last byte read was
4909 * urgent. To do this requires some care. We cannot just ignore
4910 * tp->copied_seq since we would read the last urgent byte again
4911 * as data, nor can we alter copied_seq until this data arrives
4912 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4913 *
4914 * NOTE. Double Dutch. Rendering to plain English: author of comment
4915 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4916 * and expect that both A and B disappear from stream. This is _wrong_.
4917 * Though this happens in BSD with high probability, this is occasional.
4918 * Any application relying on this is buggy. Note also, that fix "works"
4919 * only in this artificial test. Insert some normal data between A and B and we will
4920 * decline of BSD again. Verdict: it is better to remove to trap
4921 * buggy users.
4922 */
4923 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4924 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4925 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4926 tp->copied_seq++;
4927 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4928 __skb_unlink(skb, &sk->sk_receive_queue);
4929 __kfree_skb(skb);
4930 }
4931 }
4932
4933 tp->urg_data = TCP_URG_NOTYET;
4934 tp->urg_seq = ptr;
4935
4936 /* Disable header prediction. */
4937 tp->pred_flags = 0;
4938 }
4939
4940 /* This is the 'fast' part of urgent handling. */
4941 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4942 {
4943 struct tcp_sock *tp = tcp_sk(sk);
4944
4945 /* Check if we get a new urgent pointer - normally not. */
4946 if (th->urg)
4947 tcp_check_urg(sk, th);
4948
4949 /* Do we wait for any urgent data? - normally not... */
4950 if (tp->urg_data == TCP_URG_NOTYET) {
4951 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4952 th->syn;
4953
4954 /* Is the urgent pointer pointing into this packet? */
4955 if (ptr < skb->len) {
4956 u8 tmp;
4957 if (skb_copy_bits(skb, ptr, &tmp, 1))
4958 BUG();
4959 tp->urg_data = TCP_URG_VALID | tmp;
4960 if (!sock_flag(sk, SOCK_DEAD))
4961 sk->sk_data_ready(sk, 0);
4962 }
4963 }
4964 }
4965
4966 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4967 {
4968 struct tcp_sock *tp = tcp_sk(sk);
4969 int chunk = skb->len - hlen;
4970 int err;
4971
4972 local_bh_enable();
4973 if (skb_csum_unnecessary(skb))
4974 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4975 else
4976 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4977 tp->ucopy.iov);
4978
4979 if (!err) {
4980 tp->ucopy.len -= chunk;
4981 tp->copied_seq += chunk;
4982 tcp_rcv_space_adjust(sk);
4983 }
4984
4985 local_bh_disable();
4986 return err;
4987 }
4988
4989 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4990 struct sk_buff *skb)
4991 {
4992 __sum16 result;
4993
4994 if (sock_owned_by_user(sk)) {
4995 local_bh_enable();
4996 result = __tcp_checksum_complete(skb);
4997 local_bh_disable();
4998 } else {
4999 result = __tcp_checksum_complete(skb);
5000 }
5001 return result;
5002 }
5003
5004 static inline bool tcp_checksum_complete_user(struct sock *sk,
5005 struct sk_buff *skb)
5006 {
5007 return !skb_csum_unnecessary(skb) &&
5008 __tcp_checksum_complete_user(sk, skb);
5009 }
5010
5011 #ifdef CONFIG_NET_DMA
5012 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5013 int hlen)
5014 {
5015 struct tcp_sock *tp = tcp_sk(sk);
5016 int chunk = skb->len - hlen;
5017 int dma_cookie;
5018 bool copied_early = false;
5019
5020 if (tp->ucopy.wakeup)
5021 return false;
5022
5023 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5024 tp->ucopy.dma_chan = net_dma_find_channel();
5025
5026 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5027
5028 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5029 skb, hlen,
5030 tp->ucopy.iov, chunk,
5031 tp->ucopy.pinned_list);
5032
5033 if (dma_cookie < 0)
5034 goto out;
5035
5036 tp->ucopy.dma_cookie = dma_cookie;
5037 copied_early = true;
5038
5039 tp->ucopy.len -= chunk;
5040 tp->copied_seq += chunk;
5041 tcp_rcv_space_adjust(sk);
5042
5043 if ((tp->ucopy.len == 0) ||
5044 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5045 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5046 tp->ucopy.wakeup = 1;
5047 sk->sk_data_ready(sk, 0);
5048 }
5049 } else if (chunk > 0) {
5050 tp->ucopy.wakeup = 1;
5051 sk->sk_data_ready(sk, 0);
5052 }
5053 out:
5054 return copied_early;
5055 }
5056 #endif /* CONFIG_NET_DMA */
5057
5058 /* Does PAWS and seqno based validation of an incoming segment, flags will
5059 * play significant role here.
5060 */
5061 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5062 const struct tcphdr *th, int syn_inerr)
5063 {
5064 struct tcp_sock *tp = tcp_sk(sk);
5065
5066 /* RFC1323: H1. Apply PAWS check first. */
5067 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5068 tcp_paws_discard(sk, skb)) {
5069 if (!th->rst) {
5070 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5071 tcp_send_dupack(sk, skb);
5072 goto discard;
5073 }
5074 /* Reset is accepted even if it did not pass PAWS. */
5075 }
5076
5077 /* Step 1: check sequence number */
5078 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5079 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5080 * (RST) segments are validated by checking their SEQ-fields."
5081 * And page 69: "If an incoming segment is not acceptable,
5082 * an acknowledgment should be sent in reply (unless the RST
5083 * bit is set, if so drop the segment and return)".
5084 */
5085 if (!th->rst) {
5086 if (th->syn)
5087 goto syn_challenge;
5088 tcp_send_dupack(sk, skb);
5089 }
5090 goto discard;
5091 }
5092
5093 /* Step 2: check RST bit */
5094 if (th->rst) {
5095 /* RFC 5961 3.2 :
5096 * If sequence number exactly matches RCV.NXT, then
5097 * RESET the connection
5098 * else
5099 * Send a challenge ACK
5100 */
5101 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5102 tcp_reset(sk);
5103 else
5104 tcp_send_challenge_ack(sk);
5105 goto discard;
5106 }
5107
5108 /* step 3: check security and precedence [ignored] */
5109
5110 /* step 4: Check for a SYN
5111 * RFC 5691 4.2 : Send a challenge ack
5112 */
5113 if (th->syn) {
5114 syn_challenge:
5115 if (syn_inerr)
5116 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5117 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5118 tcp_send_challenge_ack(sk);
5119 goto discard;
5120 }
5121
5122 return true;
5123
5124 discard:
5125 __kfree_skb(skb);
5126 return false;
5127 }
5128
5129 /*
5130 * TCP receive function for the ESTABLISHED state.
5131 *
5132 * It is split into a fast path and a slow path. The fast path is
5133 * disabled when:
5134 * - A zero window was announced from us - zero window probing
5135 * is only handled properly in the slow path.
5136 * - Out of order segments arrived.
5137 * - Urgent data is expected.
5138 * - There is no buffer space left
5139 * - Unexpected TCP flags/window values/header lengths are received
5140 * (detected by checking the TCP header against pred_flags)
5141 * - Data is sent in both directions. Fast path only supports pure senders
5142 * or pure receivers (this means either the sequence number or the ack
5143 * value must stay constant)
5144 * - Unexpected TCP option.
5145 *
5146 * When these conditions are not satisfied it drops into a standard
5147 * receive procedure patterned after RFC793 to handle all cases.
5148 * The first three cases are guaranteed by proper pred_flags setting,
5149 * the rest is checked inline. Fast processing is turned on in
5150 * tcp_data_queue when everything is OK.
5151 */
5152 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5153 const struct tcphdr *th, unsigned int len)
5154 {
5155 struct tcp_sock *tp = tcp_sk(sk);
5156
5157 if (unlikely(sk->sk_rx_dst == NULL))
5158 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5159 /*
5160 * Header prediction.
5161 * The code loosely follows the one in the famous
5162 * "30 instruction TCP receive" Van Jacobson mail.
5163 *
5164 * Van's trick is to deposit buffers into socket queue
5165 * on a device interrupt, to call tcp_recv function
5166 * on the receive process context and checksum and copy
5167 * the buffer to user space. smart...
5168 *
5169 * Our current scheme is not silly either but we take the
5170 * extra cost of the net_bh soft interrupt processing...
5171 * We do checksum and copy also but from device to kernel.
5172 */
5173
5174 tp->rx_opt.saw_tstamp = 0;
5175
5176 /* pred_flags is 0xS?10 << 16 + snd_wnd
5177 * if header_prediction is to be made
5178 * 'S' will always be tp->tcp_header_len >> 2
5179 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5180 * turn it off (when there are holes in the receive
5181 * space for instance)
5182 * PSH flag is ignored.
5183 */
5184
5185 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5186 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5187 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5188 int tcp_header_len = tp->tcp_header_len;
5189
5190 /* Timestamp header prediction: tcp_header_len
5191 * is automatically equal to th->doff*4 due to pred_flags
5192 * match.
5193 */
5194
5195 /* Check timestamp */
5196 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5197 /* No? Slow path! */
5198 if (!tcp_parse_aligned_timestamp(tp, th))
5199 goto slow_path;
5200
5201 /* If PAWS failed, check it more carefully in slow path */
5202 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5203 goto slow_path;
5204
5205 /* DO NOT update ts_recent here, if checksum fails
5206 * and timestamp was corrupted part, it will result
5207 * in a hung connection since we will drop all
5208 * future packets due to the PAWS test.
5209 */
5210 }
5211
5212 if (len <= tcp_header_len) {
5213 /* Bulk data transfer: sender */
5214 if (len == tcp_header_len) {
5215 /* Predicted packet is in window by definition.
5216 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5217 * Hence, check seq<=rcv_wup reduces to:
5218 */
5219 if (tcp_header_len ==
5220 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5221 tp->rcv_nxt == tp->rcv_wup)
5222 tcp_store_ts_recent(tp);
5223
5224 /* We know that such packets are checksummed
5225 * on entry.
5226 */
5227 tcp_ack(sk, skb, 0);
5228 __kfree_skb(skb);
5229 tcp_data_snd_check(sk);
5230 return 0;
5231 } else { /* Header too small */
5232 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5233 goto discard;
5234 }
5235 } else {
5236 int eaten = 0;
5237 int copied_early = 0;
5238 bool fragstolen = false;
5239
5240 if (tp->copied_seq == tp->rcv_nxt &&
5241 len - tcp_header_len <= tp->ucopy.len) {
5242 #ifdef CONFIG_NET_DMA
5243 if (tp->ucopy.task == current &&
5244 sock_owned_by_user(sk) &&
5245 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5246 copied_early = 1;
5247 eaten = 1;
5248 }
5249 #endif
5250 if (tp->ucopy.task == current &&
5251 sock_owned_by_user(sk) && !copied_early) {
5252 __set_current_state(TASK_RUNNING);
5253
5254 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5255 eaten = 1;
5256 }
5257 if (eaten) {
5258 /* Predicted packet is in window by definition.
5259 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5260 * Hence, check seq<=rcv_wup reduces to:
5261 */
5262 if (tcp_header_len ==
5263 (sizeof(struct tcphdr) +
5264 TCPOLEN_TSTAMP_ALIGNED) &&
5265 tp->rcv_nxt == tp->rcv_wup)
5266 tcp_store_ts_recent(tp);
5267
5268 tcp_rcv_rtt_measure_ts(sk, skb);
5269
5270 __skb_pull(skb, tcp_header_len);
5271 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5272 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5273 }
5274 if (copied_early)
5275 tcp_cleanup_rbuf(sk, skb->len);
5276 }
5277 if (!eaten) {
5278 if (tcp_checksum_complete_user(sk, skb))
5279 goto csum_error;
5280
5281 if ((int)skb->truesize > sk->sk_forward_alloc)
5282 goto step5;
5283
5284 /* Predicted packet is in window by definition.
5285 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5286 * Hence, check seq<=rcv_wup reduces to:
5287 */
5288 if (tcp_header_len ==
5289 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5290 tp->rcv_nxt == tp->rcv_wup)
5291 tcp_store_ts_recent(tp);
5292
5293 tcp_rcv_rtt_measure_ts(sk, skb);
5294
5295 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5296
5297 /* Bulk data transfer: receiver */
5298 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5299 &fragstolen);
5300 }
5301
5302 tcp_event_data_recv(sk, skb);
5303
5304 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5305 /* Well, only one small jumplet in fast path... */
5306 tcp_ack(sk, skb, FLAG_DATA);
5307 tcp_data_snd_check(sk);
5308 if (!inet_csk_ack_scheduled(sk))
5309 goto no_ack;
5310 }
5311
5312 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5313 __tcp_ack_snd_check(sk, 0);
5314 no_ack:
5315 #ifdef CONFIG_NET_DMA
5316 if (copied_early)
5317 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5318 else
5319 #endif
5320 if (eaten)
5321 kfree_skb_partial(skb, fragstolen);
5322 sk->sk_data_ready(sk, 0);
5323 return 0;
5324 }
5325 }
5326
5327 slow_path:
5328 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5329 goto csum_error;
5330
5331 if (!th->ack && !th->rst)
5332 goto discard;
5333
5334 /*
5335 * Standard slow path.
5336 */
5337
5338 if (!tcp_validate_incoming(sk, skb, th, 1))
5339 return 0;
5340
5341 step5:
5342 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5343 goto discard;
5344
5345 tcp_rcv_rtt_measure_ts(sk, skb);
5346
5347 /* Process urgent data. */
5348 tcp_urg(sk, skb, th);
5349
5350 /* step 7: process the segment text */
5351 tcp_data_queue(sk, skb);
5352
5353 tcp_data_snd_check(sk);
5354 tcp_ack_snd_check(sk);
5355 return 0;
5356
5357 csum_error:
5358 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5359 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5360
5361 discard:
5362 __kfree_skb(skb);
5363 return 0;
5364 }
5365 EXPORT_SYMBOL(tcp_rcv_established);
5366
5367 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5368 {
5369 struct tcp_sock *tp = tcp_sk(sk);
5370 struct inet_connection_sock *icsk = inet_csk(sk);
5371
5372 tcp_set_state(sk, TCP_ESTABLISHED);
5373
5374 if (skb != NULL) {
5375 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5376 security_inet_conn_established(sk, skb);
5377 }
5378
5379 /* Make sure socket is routed, for correct metrics. */
5380 icsk->icsk_af_ops->rebuild_header(sk);
5381
5382 tcp_init_metrics(sk);
5383
5384 tcp_init_congestion_control(sk);
5385
5386 /* Prevent spurious tcp_cwnd_restart() on first data
5387 * packet.
5388 */
5389 tp->lsndtime = tcp_time_stamp;
5390
5391 tcp_init_buffer_space(sk);
5392
5393 if (sock_flag(sk, SOCK_KEEPOPEN))
5394 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5395
5396 if (!tp->rx_opt.snd_wscale)
5397 __tcp_fast_path_on(tp, tp->snd_wnd);
5398 else
5399 tp->pred_flags = 0;
5400
5401 if (!sock_flag(sk, SOCK_DEAD)) {
5402 sk->sk_state_change(sk);
5403 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5404 }
5405 }
5406
5407 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5408 struct tcp_fastopen_cookie *cookie)
5409 {
5410 struct tcp_sock *tp = tcp_sk(sk);
5411 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5412 u16 mss = tp->rx_opt.mss_clamp;
5413 bool syn_drop;
5414
5415 if (mss == tp->rx_opt.user_mss) {
5416 struct tcp_options_received opt;
5417
5418 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5419 tcp_clear_options(&opt);
5420 opt.user_mss = opt.mss_clamp = 0;
5421 tcp_parse_options(synack, &opt, 0, NULL);
5422 mss = opt.mss_clamp;
5423 }
5424
5425 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5426 cookie->len = -1;
5427
5428 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5429 * the remote receives only the retransmitted (regular) SYNs: either
5430 * the original SYN-data or the corresponding SYN-ACK is lost.
5431 */
5432 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5433
5434 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5435
5436 if (data) { /* Retransmit unacked data in SYN */
5437 tcp_for_write_queue_from(data, sk) {
5438 if (data == tcp_send_head(sk) ||
5439 __tcp_retransmit_skb(sk, data))
5440 break;
5441 }
5442 tcp_rearm_rto(sk);
5443 return true;
5444 }
5445 tp->syn_data_acked = tp->syn_data;
5446 return false;
5447 }
5448
5449 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5450 const struct tcphdr *th, unsigned int len)
5451 {
5452 struct inet_connection_sock *icsk = inet_csk(sk);
5453 struct tcp_sock *tp = tcp_sk(sk);
5454 struct tcp_fastopen_cookie foc = { .len = -1 };
5455 int saved_clamp = tp->rx_opt.mss_clamp;
5456
5457 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5458 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5459 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5460
5461 if (th->ack) {
5462 /* rfc793:
5463 * "If the state is SYN-SENT then
5464 * first check the ACK bit
5465 * If the ACK bit is set
5466 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5467 * a reset (unless the RST bit is set, if so drop
5468 * the segment and return)"
5469 */
5470 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5471 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5472 goto reset_and_undo;
5473
5474 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5475 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5476 tcp_time_stamp)) {
5477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5478 goto reset_and_undo;
5479 }
5480
5481 /* Now ACK is acceptable.
5482 *
5483 * "If the RST bit is set
5484 * If the ACK was acceptable then signal the user "error:
5485 * connection reset", drop the segment, enter CLOSED state,
5486 * delete TCB, and return."
5487 */
5488
5489 if (th->rst) {
5490 tcp_reset(sk);
5491 goto discard;
5492 }
5493
5494 /* rfc793:
5495 * "fifth, if neither of the SYN or RST bits is set then
5496 * drop the segment and return."
5497 *
5498 * See note below!
5499 * --ANK(990513)
5500 */
5501 if (!th->syn)
5502 goto discard_and_undo;
5503
5504 /* rfc793:
5505 * "If the SYN bit is on ...
5506 * are acceptable then ...
5507 * (our SYN has been ACKed), change the connection
5508 * state to ESTABLISHED..."
5509 */
5510
5511 TCP_ECN_rcv_synack(tp, th);
5512
5513 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5514 tcp_ack(sk, skb, FLAG_SLOWPATH);
5515
5516 /* Ok.. it's good. Set up sequence numbers and
5517 * move to established.
5518 */
5519 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5520 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5521
5522 /* RFC1323: The window in SYN & SYN/ACK segments is
5523 * never scaled.
5524 */
5525 tp->snd_wnd = ntohs(th->window);
5526
5527 if (!tp->rx_opt.wscale_ok) {
5528 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5529 tp->window_clamp = min(tp->window_clamp, 65535U);
5530 }
5531
5532 if (tp->rx_opt.saw_tstamp) {
5533 tp->rx_opt.tstamp_ok = 1;
5534 tp->tcp_header_len =
5535 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5536 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5537 tcp_store_ts_recent(tp);
5538 } else {
5539 tp->tcp_header_len = sizeof(struct tcphdr);
5540 }
5541
5542 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5543 tcp_enable_fack(tp);
5544
5545 tcp_mtup_init(sk);
5546 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5547 tcp_initialize_rcv_mss(sk);
5548
5549 /* Remember, tcp_poll() does not lock socket!
5550 * Change state from SYN-SENT only after copied_seq
5551 * is initialized. */
5552 tp->copied_seq = tp->rcv_nxt;
5553
5554 smp_mb();
5555
5556 tcp_finish_connect(sk, skb);
5557
5558 if ((tp->syn_fastopen || tp->syn_data) &&
5559 tcp_rcv_fastopen_synack(sk, skb, &foc))
5560 return -1;
5561
5562 if (sk->sk_write_pending ||
5563 icsk->icsk_accept_queue.rskq_defer_accept ||
5564 icsk->icsk_ack.pingpong) {
5565 /* Save one ACK. Data will be ready after
5566 * several ticks, if write_pending is set.
5567 *
5568 * It may be deleted, but with this feature tcpdumps
5569 * look so _wonderfully_ clever, that I was not able
5570 * to stand against the temptation 8) --ANK
5571 */
5572 inet_csk_schedule_ack(sk);
5573 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5574 tcp_enter_quickack_mode(sk);
5575 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5576 TCP_DELACK_MAX, sysctl_tcp_rto_max);
5577
5578 discard:
5579 __kfree_skb(skb);
5580 return 0;
5581 } else {
5582 tcp_send_ack(sk);
5583 }
5584 return -1;
5585 }
5586
5587 /* No ACK in the segment */
5588
5589 if (th->rst) {
5590 /* rfc793:
5591 * "If the RST bit is set
5592 *
5593 * Otherwise (no ACK) drop the segment and return."
5594 */
5595
5596 goto discard_and_undo;
5597 }
5598
5599 /* PAWS check. */
5600 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5601 tcp_paws_reject(&tp->rx_opt, 0))
5602 goto discard_and_undo;
5603
5604 if (th->syn) {
5605 /* We see SYN without ACK. It is attempt of
5606 * simultaneous connect with crossed SYNs.
5607 * Particularly, it can be connect to self.
5608 */
5609 tcp_set_state(sk, TCP_SYN_RECV);
5610
5611 if (tp->rx_opt.saw_tstamp) {
5612 tp->rx_opt.tstamp_ok = 1;
5613 tcp_store_ts_recent(tp);
5614 tp->tcp_header_len =
5615 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5616 } else {
5617 tp->tcp_header_len = sizeof(struct tcphdr);
5618 }
5619
5620 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5621 tp->copied_seq = tp->rcv_nxt;
5622 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5623
5624 /* RFC1323: The window in SYN & SYN/ACK segments is
5625 * never scaled.
5626 */
5627 tp->snd_wnd = ntohs(th->window);
5628 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5629 tp->max_window = tp->snd_wnd;
5630
5631 TCP_ECN_rcv_syn(tp, th);
5632
5633 tcp_mtup_init(sk);
5634 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5635 tcp_initialize_rcv_mss(sk);
5636
5637 tcp_send_synack(sk);
5638 #if 0
5639 /* Note, we could accept data and URG from this segment.
5640 * There are no obstacles to make this (except that we must
5641 * either change tcp_recvmsg() to prevent it from returning data
5642 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5643 *
5644 * However, if we ignore data in ACKless segments sometimes,
5645 * we have no reasons to accept it sometimes.
5646 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5647 * is not flawless. So, discard packet for sanity.
5648 * Uncomment this return to process the data.
5649 */
5650 return -1;
5651 #else
5652 goto discard;
5653 #endif
5654 }
5655 /* "fifth, if neither of the SYN or RST bits is set then
5656 * drop the segment and return."
5657 */
5658
5659 discard_and_undo:
5660 tcp_clear_options(&tp->rx_opt);
5661 tp->rx_opt.mss_clamp = saved_clamp;
5662 goto discard;
5663
5664 reset_and_undo:
5665 tcp_clear_options(&tp->rx_opt);
5666 tp->rx_opt.mss_clamp = saved_clamp;
5667 return 1;
5668 }
5669
5670 /*
5671 * This function implements the receiving procedure of RFC 793 for
5672 * all states except ESTABLISHED and TIME_WAIT.
5673 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5674 * address independent.
5675 */
5676
5677 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5678 const struct tcphdr *th, unsigned int len)
5679 {
5680 struct tcp_sock *tp = tcp_sk(sk);
5681 struct inet_connection_sock *icsk = inet_csk(sk);
5682 struct request_sock *req;
5683 int queued = 0;
5684
5685 tp->rx_opt.saw_tstamp = 0;
5686
5687 switch (sk->sk_state) {
5688 case TCP_CLOSE:
5689 goto discard;
5690
5691 case TCP_LISTEN:
5692 if (th->ack)
5693 return 1;
5694
5695 if (th->rst)
5696 goto discard;
5697
5698 if (th->syn) {
5699 if (th->fin)
5700 goto discard;
5701 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5702 return 1;
5703
5704 /* Now we have several options: In theory there is
5705 * nothing else in the frame. KA9Q has an option to
5706 * send data with the syn, BSD accepts data with the
5707 * syn up to the [to be] advertised window and
5708 * Solaris 2.1 gives you a protocol error. For now
5709 * we just ignore it, that fits the spec precisely
5710 * and avoids incompatibilities. It would be nice in
5711 * future to drop through and process the data.
5712 *
5713 * Now that TTCP is starting to be used we ought to
5714 * queue this data.
5715 * But, this leaves one open to an easy denial of
5716 * service attack, and SYN cookies can't defend
5717 * against this problem. So, we drop the data
5718 * in the interest of security over speed unless
5719 * it's still in use.
5720 */
5721 kfree_skb(skb);
5722 return 0;
5723 }
5724 goto discard;
5725
5726 case TCP_SYN_SENT:
5727 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5728 if (queued >= 0)
5729 return queued;
5730
5731 /* Do step6 onward by hand. */
5732 tcp_urg(sk, skb, th);
5733 __kfree_skb(skb);
5734 tcp_data_snd_check(sk);
5735 return 0;
5736 }
5737
5738 req = tp->fastopen_rsk;
5739 if (req != NULL) {
5740 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5741 sk->sk_state != TCP_FIN_WAIT1);
5742
5743 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5744 goto discard;
5745 }
5746
5747 if (!th->ack && !th->rst)
5748 goto discard;
5749
5750 if (!tcp_validate_incoming(sk, skb, th, 0))
5751 return 0;
5752
5753 /* step 5: check the ACK field */
5754 if (true) {
5755 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5756 FLAG_UPDATE_TS_RECENT) > 0;
5757
5758 switch (sk->sk_state) {
5759 case TCP_SYN_RECV:
5760 if (acceptable) {
5761 /* Once we leave TCP_SYN_RECV, we no longer
5762 * need req so release it.
5763 */
5764 if (req) {
5765 tcp_synack_rtt_meas(sk, req);
5766 tp->total_retrans = req->num_retrans;
5767
5768 reqsk_fastopen_remove(sk, req, false);
5769 } else {
5770 /* Make sure socket is routed, for
5771 * correct metrics.
5772 */
5773 icsk->icsk_af_ops->rebuild_header(sk);
5774 tcp_init_congestion_control(sk);
5775
5776 tcp_mtup_init(sk);
5777 tcp_init_buffer_space(sk);
5778 tp->copied_seq = tp->rcv_nxt;
5779 }
5780 smp_mb();
5781 tcp_set_state(sk, TCP_ESTABLISHED);
5782 sk->sk_state_change(sk);
5783
5784 /* Note, that this wakeup is only for marginal
5785 * crossed SYN case. Passively open sockets
5786 * are not waked up, because sk->sk_sleep ==
5787 * NULL and sk->sk_socket == NULL.
5788 */
5789 if (sk->sk_socket)
5790 sk_wake_async(sk,
5791 SOCK_WAKE_IO, POLL_OUT);
5792
5793 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5794 tp->snd_wnd = ntohs(th->window) <<
5795 tp->rx_opt.snd_wscale;
5796 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5797
5798 if (tp->rx_opt.tstamp_ok)
5799 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5800
5801 if (req) {
5802 /* Re-arm the timer because data may
5803 * have been sent out. This is similar
5804 * to the regular data transmission case
5805 * when new data has just been ack'ed.
5806 *
5807 * (TFO) - we could try to be more
5808 * aggressive and retranmitting any data
5809 * sooner based on when they were sent
5810 * out.
5811 */
5812 tcp_rearm_rto(sk);
5813 } else
5814 tcp_init_metrics(sk);
5815
5816 tcp_update_pacing_rate(sk);
5817
5818 /* Prevent spurious tcp_cwnd_restart() on
5819 * first data packet.
5820 */
5821 tp->lsndtime = tcp_time_stamp;
5822
5823 tcp_initialize_rcv_mss(sk);
5824 tcp_fast_path_on(tp);
5825 } else {
5826 return 1;
5827 }
5828 break;
5829
5830 case TCP_FIN_WAIT1:
5831 /* If we enter the TCP_FIN_WAIT1 state and we are a
5832 * Fast Open socket and this is the first acceptable
5833 * ACK we have received, this would have acknowledged
5834 * our SYNACK so stop the SYNACK timer.
5835 */
5836 if (req != NULL) {
5837 /* Return RST if ack_seq is invalid.
5838 * Note that RFC793 only says to generate a
5839 * DUPACK for it but for TCP Fast Open it seems
5840 * better to treat this case like TCP_SYN_RECV
5841 * above.
5842 */
5843 if (!acceptable)
5844 return 1;
5845 /* We no longer need the request sock. */
5846 reqsk_fastopen_remove(sk, req, false);
5847 tcp_rearm_rto(sk);
5848 }
5849 if (tp->snd_una == tp->write_seq) {
5850 struct dst_entry *dst;
5851
5852 tcp_set_state(sk, TCP_FIN_WAIT2);
5853 sk->sk_shutdown |= SEND_SHUTDOWN;
5854
5855 dst = __sk_dst_get(sk);
5856 if (dst)
5857 dst_confirm(dst);
5858
5859 if (!sock_flag(sk, SOCK_DEAD))
5860 /* Wake up lingering close() */
5861 sk->sk_state_change(sk);
5862 else {
5863 int tmo;
5864
5865 if (tp->linger2 < 0 ||
5866 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5867 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5868 tcp_done(sk);
5869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5870 return 1;
5871 }
5872
5873 tmo = tcp_fin_time(sk);
5874 if (tmo > TCP_TIMEWAIT_LEN) {
5875 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5876 } else if (th->fin || sock_owned_by_user(sk)) {
5877 /* Bad case. We could lose such FIN otherwise.
5878 * It is not a big problem, but it looks confusing
5879 * and not so rare event. We still can lose it now,
5880 * if it spins in bh_lock_sock(), but it is really
5881 * marginal case.
5882 */
5883 inet_csk_reset_keepalive_timer(sk, tmo);
5884 } else {
5885 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5886 goto discard;
5887 }
5888 }
5889 }
5890 break;
5891
5892 case TCP_CLOSING:
5893 if (tp->snd_una == tp->write_seq) {
5894 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5895 goto discard;
5896 }
5897 break;
5898
5899 case TCP_LAST_ACK:
5900 if (tp->snd_una == tp->write_seq) {
5901 tcp_update_metrics(sk);
5902 tcp_done(sk);
5903 goto discard;
5904 }
5905 break;
5906 }
5907 }
5908
5909 /* step 6: check the URG bit */
5910 tcp_urg(sk, skb, th);
5911
5912 /* step 7: process the segment text */
5913 switch (sk->sk_state) {
5914 case TCP_CLOSE_WAIT:
5915 case TCP_CLOSING:
5916 case TCP_LAST_ACK:
5917 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5918 break;
5919 case TCP_FIN_WAIT1:
5920 case TCP_FIN_WAIT2:
5921 /* RFC 793 says to queue data in these states,
5922 * RFC 1122 says we MUST send a reset.
5923 * BSD 4.4 also does reset.
5924 */
5925 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5926 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5927 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5928 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5929 tcp_reset(sk);
5930 return 1;
5931 }
5932 }
5933 /* Fall through */
5934 case TCP_ESTABLISHED:
5935 tcp_data_queue(sk, skb);
5936 queued = 1;
5937 break;
5938 }
5939
5940 /* tcp_data could move socket to TIME-WAIT */
5941 if (sk->sk_state != TCP_CLOSE) {
5942 tcp_data_snd_check(sk);
5943 tcp_ack_snd_check(sk);
5944 }
5945
5946 if (!queued) {
5947 discard:
5948 __kfree_skb(skb);
5949 }
5950 return 0;
5951 }
5952 EXPORT_SYMBOL(tcp_rcv_state_process);