Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
33 * the sender.
34 */
35
36 /*
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
40 * unexpected state.
41 *
42 * --------
43 * | NEW* | transient initial state
44 * --------
45 * | con_sock_state_init()
46 * v
47 * ----------
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
50 * ^ \
51 * | \ con_sock_state_connecting()
52 * | ----------------------
53 * | \
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
56 * | \ \ \
57 * | ----------- \ \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
60 * | ^ \ |
61 * | | \ |
62 * | + con_sock_state_closing() \ |
63 * | / \ | |
64 * | / --------------- | |
65 * | / \ v v
66 * | / --------------
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
70 * | | v
71 * -------------
72 * | CONNECTED | TCP connection established
73 * -------------
74 *
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76 */
77
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
83
84 /*
85 * connection states
86 */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
93
94 /*
95 * ceph_connection flag bits
96 */
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 switch (con_flag) {
107 case CON_FLAG_LOSSYTX:
108 case CON_FLAG_KEEPALIVE_PENDING:
109 case CON_FLAG_WRITE_PENDING:
110 case CON_FLAG_SOCK_CLOSED:
111 case CON_FLAG_BACKOFF:
112 return true;
113 default:
114 return false;
115 }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 BUG_ON(!con_flag_valid(con_flag));
121
122 clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 BUG_ON(!con_flag_valid(con_flag));
128
129 set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 BUG_ON(!con_flag_valid(con_flag));
135
136 return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 unsigned long con_flag)
141 {
142 BUG_ON(!con_flag_valid(con_flag));
143
144 return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 unsigned long con_flag)
149 {
150 BUG_ON(!con_flag_valid(con_flag));
151
152 return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* Slab caches for frequently-allocated structures */
156
157 static struct kmem_cache *ceph_msg_cache;
158 static struct kmem_cache *ceph_msg_data_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void con_work(struct work_struct *);
177 static void con_fault(struct ceph_connection *con);
178
179 /*
180 * Nicely render a sockaddr as a string. An array of formatted
181 * strings is used, to approximate reentrancy.
182 */
183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
187
188 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
189 static atomic_t addr_str_seq = ATOMIC_INIT(0);
190
191 static struct page *zero_page; /* used in certain error cases */
192
193 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
194 {
195 int i;
196 char *s;
197 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
198 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
199
200 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
201 s = addr_str[i];
202
203 switch (ss->ss_family) {
204 case AF_INET:
205 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
206 ntohs(in4->sin_port));
207 break;
208
209 case AF_INET6:
210 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
211 ntohs(in6->sin6_port));
212 break;
213
214 default:
215 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
216 ss->ss_family);
217 }
218
219 return s;
220 }
221 EXPORT_SYMBOL(ceph_pr_addr);
222
223 static void encode_my_addr(struct ceph_messenger *msgr)
224 {
225 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
226 ceph_encode_addr(&msgr->my_enc_addr);
227 }
228
229 /*
230 * work queue for all reading and writing to/from the socket.
231 */
232 static struct workqueue_struct *ceph_msgr_wq;
233
234 static int ceph_msgr_slab_init(void)
235 {
236 BUG_ON(ceph_msg_cache);
237 ceph_msg_cache = kmem_cache_create("ceph_msg",
238 sizeof (struct ceph_msg),
239 __alignof__(struct ceph_msg), 0, NULL);
240
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
246 sizeof (struct ceph_msg_data),
247 __alignof__(struct ceph_msg_data),
248 0, NULL);
249 if (ceph_msg_data_cache)
250 return 0;
251
252 kmem_cache_destroy(ceph_msg_cache);
253 ceph_msg_cache = NULL;
254
255 return -ENOMEM;
256 }
257
258 static void ceph_msgr_slab_exit(void)
259 {
260 BUG_ON(!ceph_msg_data_cache);
261 kmem_cache_destroy(ceph_msg_data_cache);
262 ceph_msg_data_cache = NULL;
263
264 BUG_ON(!ceph_msg_cache);
265 kmem_cache_destroy(ceph_msg_cache);
266 ceph_msg_cache = NULL;
267 }
268
269 static void _ceph_msgr_exit(void)
270 {
271 if (ceph_msgr_wq) {
272 destroy_workqueue(ceph_msgr_wq);
273 ceph_msgr_wq = NULL;
274 }
275
276 ceph_msgr_slab_exit();
277
278 BUG_ON(zero_page == NULL);
279 kunmap(zero_page);
280 page_cache_release(zero_page);
281 zero_page = NULL;
282 }
283
284 int ceph_msgr_init(void)
285 {
286 BUG_ON(zero_page != NULL);
287 zero_page = ZERO_PAGE(0);
288 page_cache_get(zero_page);
289
290 if (ceph_msgr_slab_init())
291 return -ENOMEM;
292
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 case TCP_CLOSE_WAIT:
434 dout("%s TCP_CLOSE_WAIT\n", __func__);
435 con_sock_state_closing(con);
436 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 queue_con(con);
438 break;
439 case TCP_ESTABLISHED:
440 dout("%s TCP_ESTABLISHED\n", __func__);
441 con_sock_state_connected(con);
442 queue_con(con);
443 break;
444 default: /* Everything else is uninteresting */
445 break;
446 }
447 }
448
449 /*
450 * set up socket callbacks
451 */
452 static void set_sock_callbacks(struct socket *sock,
453 struct ceph_connection *con)
454 {
455 struct sock *sk = sock->sk;
456 sk->sk_user_data = con;
457 sk->sk_data_ready = ceph_sock_data_ready;
458 sk->sk_write_space = ceph_sock_write_space;
459 sk->sk_state_change = ceph_sock_state_change;
460 }
461
462
463 /*
464 * socket helpers
465 */
466
467 /*
468 * initiate connection to a remote socket.
469 */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 struct socket *sock;
474 int ret;
475
476 BUG_ON(con->sock);
477 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
478 IPPROTO_TCP, &sock);
479 if (ret)
480 return ret;
481 sock->sk->sk_allocation = GFP_NOFS;
482
483 #ifdef CONFIG_LOCKDEP
484 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
485 #endif
486
487 set_sock_callbacks(sock, con);
488
489 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
490
491 con_sock_state_connecting(con);
492 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
493 O_NONBLOCK);
494 if (ret == -EINPROGRESS) {
495 dout("connect %s EINPROGRESS sk_state = %u\n",
496 ceph_pr_addr(&con->peer_addr.in_addr),
497 sock->sk->sk_state);
498 } else if (ret < 0) {
499 pr_err("connect %s error %d\n",
500 ceph_pr_addr(&con->peer_addr.in_addr), ret);
501 sock_release(sock);
502 con->error_msg = "connect error";
503
504 return ret;
505 }
506 con->sock = sock;
507 return 0;
508 }
509
510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
511 {
512 struct kvec iov = {buf, len};
513 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
514 int r;
515
516 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
517 if (r == -EAGAIN)
518 r = 0;
519 return r;
520 }
521
522 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
523 int page_offset, size_t length)
524 {
525 void *kaddr;
526 int ret;
527
528 BUG_ON(page_offset + length > PAGE_SIZE);
529
530 kaddr = kmap(page);
531 BUG_ON(!kaddr);
532 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
533 kunmap(page);
534
535 return ret;
536 }
537
538 /*
539 * write something. @more is true if caller will be sending more data
540 * shortly.
541 */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543 size_t kvlen, size_t len, int more)
544 {
545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 int r;
547
548 if (more)
549 msg.msg_flags |= MSG_MORE;
550 else
551 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
552
553 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554 if (r == -EAGAIN)
555 r = 0;
556 return r;
557 }
558
559 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
560 int offset, size_t size, bool more)
561 {
562 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
563 int ret;
564
565 ret = kernel_sendpage(sock, page, offset, size, flags);
566 if (ret == -EAGAIN)
567 ret = 0;
568
569 return ret;
570 }
571
572 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
573 int offset, size_t size, bool more)
574 {
575 int ret;
576 struct kvec iov;
577
578 /* sendpage cannot properly handle pages with page_count == 0,
579 * we need to fallback to sendmsg if that's the case */
580 if (page_count(page) >= 1)
581 return __ceph_tcp_sendpage(sock, page, offset, size, more);
582
583 iov.iov_base = kmap(page) + offset;
584 iov.iov_len = size;
585 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
586 kunmap(page);
587
588 return ret;
589 }
590
591 /*
592 * Shutdown/close the socket for the given connection.
593 */
594 static int con_close_socket(struct ceph_connection *con)
595 {
596 int rc = 0;
597
598 dout("con_close_socket on %p sock %p\n", con, con->sock);
599 if (con->sock) {
600 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
601 sock_release(con->sock);
602 con->sock = NULL;
603 }
604
605 /*
606 * Forcibly clear the SOCK_CLOSED flag. It gets set
607 * independent of the connection mutex, and we could have
608 * received a socket close event before we had the chance to
609 * shut the socket down.
610 */
611 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
612
613 con_sock_state_closed(con);
614 return rc;
615 }
616
617 /*
618 * Reset a connection. Discard all incoming and outgoing messages
619 * and clear *_seq state.
620 */
621 static void ceph_msg_remove(struct ceph_msg *msg)
622 {
623 list_del_init(&msg->list_head);
624 BUG_ON(msg->con == NULL);
625 msg->con->ops->put(msg->con);
626 msg->con = NULL;
627
628 ceph_msg_put(msg);
629 }
630 static void ceph_msg_remove_list(struct list_head *head)
631 {
632 while (!list_empty(head)) {
633 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
634 list_head);
635 ceph_msg_remove(msg);
636 }
637 }
638
639 static void reset_connection(struct ceph_connection *con)
640 {
641 /* reset connection, out_queue, msg_ and connect_seq */
642 /* discard existing out_queue and msg_seq */
643 dout("reset_connection %p\n", con);
644 ceph_msg_remove_list(&con->out_queue);
645 ceph_msg_remove_list(&con->out_sent);
646
647 if (con->in_msg) {
648 BUG_ON(con->in_msg->con != con);
649 con->in_msg->con = NULL;
650 ceph_msg_put(con->in_msg);
651 con->in_msg = NULL;
652 con->ops->put(con);
653 }
654
655 con->connect_seq = 0;
656 con->out_seq = 0;
657 if (con->out_msg) {
658 ceph_msg_put(con->out_msg);
659 con->out_msg = NULL;
660 }
661 con->in_seq = 0;
662 con->in_seq_acked = 0;
663 }
664
665 /*
666 * mark a peer down. drop any open connections.
667 */
668 void ceph_con_close(struct ceph_connection *con)
669 {
670 mutex_lock(&con->mutex);
671 dout("con_close %p peer %s\n", con,
672 ceph_pr_addr(&con->peer_addr.in_addr));
673 con->state = CON_STATE_CLOSED;
674
675 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
676 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
677 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
678 con_flag_clear(con, CON_FLAG_BACKOFF);
679
680 reset_connection(con);
681 con->peer_global_seq = 0;
682 cancel_delayed_work(&con->work);
683 con_close_socket(con);
684 mutex_unlock(&con->mutex);
685 }
686 EXPORT_SYMBOL(ceph_con_close);
687
688 /*
689 * Reopen a closed connection, with a new peer address.
690 */
691 void ceph_con_open(struct ceph_connection *con,
692 __u8 entity_type, __u64 entity_num,
693 struct ceph_entity_addr *addr)
694 {
695 mutex_lock(&con->mutex);
696 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
697
698 WARN_ON(con->state != CON_STATE_CLOSED);
699 con->state = CON_STATE_PREOPEN;
700
701 con->peer_name.type = (__u8) entity_type;
702 con->peer_name.num = cpu_to_le64(entity_num);
703
704 memcpy(&con->peer_addr, addr, sizeof(*addr));
705 con->delay = 0; /* reset backoff memory */
706 mutex_unlock(&con->mutex);
707 queue_con(con);
708 }
709 EXPORT_SYMBOL(ceph_con_open);
710
711 /*
712 * return true if this connection ever successfully opened
713 */
714 bool ceph_con_opened(struct ceph_connection *con)
715 {
716 return con->connect_seq > 0;
717 }
718
719 /*
720 * initialize a new connection.
721 */
722 void ceph_con_init(struct ceph_connection *con, void *private,
723 const struct ceph_connection_operations *ops,
724 struct ceph_messenger *msgr)
725 {
726 dout("con_init %p\n", con);
727 memset(con, 0, sizeof(*con));
728 con->private = private;
729 con->ops = ops;
730 con->msgr = msgr;
731
732 con_sock_state_init(con);
733
734 mutex_init(&con->mutex);
735 INIT_LIST_HEAD(&con->out_queue);
736 INIT_LIST_HEAD(&con->out_sent);
737 INIT_DELAYED_WORK(&con->work, con_work);
738
739 con->state = CON_STATE_CLOSED;
740 }
741 EXPORT_SYMBOL(ceph_con_init);
742
743
744 /*
745 * We maintain a global counter to order connection attempts. Get
746 * a unique seq greater than @gt.
747 */
748 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
749 {
750 u32 ret;
751
752 spin_lock(&msgr->global_seq_lock);
753 if (msgr->global_seq < gt)
754 msgr->global_seq = gt;
755 ret = ++msgr->global_seq;
756 spin_unlock(&msgr->global_seq_lock);
757 return ret;
758 }
759
760 static void con_out_kvec_reset(struct ceph_connection *con)
761 {
762 con->out_kvec_left = 0;
763 con->out_kvec_bytes = 0;
764 con->out_kvec_cur = &con->out_kvec[0];
765 }
766
767 static void con_out_kvec_add(struct ceph_connection *con,
768 size_t size, void *data)
769 {
770 int index;
771
772 index = con->out_kvec_left;
773 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
774
775 con->out_kvec[index].iov_len = size;
776 con->out_kvec[index].iov_base = data;
777 con->out_kvec_left++;
778 con->out_kvec_bytes += size;
779 }
780
781 #ifdef CONFIG_BLOCK
782
783 /*
784 * For a bio data item, a piece is whatever remains of the next
785 * entry in the current bio iovec, or the first entry in the next
786 * bio in the list.
787 */
788 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
789 size_t length)
790 {
791 struct ceph_msg_data *data = cursor->data;
792 struct bio *bio;
793
794 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
795
796 bio = data->bio;
797 BUG_ON(!bio);
798 BUG_ON(!bio->bi_vcnt);
799
800 cursor->resid = min(length, data->bio_length);
801 cursor->bio = bio;
802 cursor->vector_index = 0;
803 cursor->vector_offset = 0;
804 cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
805 }
806
807 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
808 size_t *page_offset,
809 size_t *length)
810 {
811 struct ceph_msg_data *data = cursor->data;
812 struct bio *bio;
813 struct bio_vec *bio_vec;
814 unsigned int index;
815
816 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
817
818 bio = cursor->bio;
819 BUG_ON(!bio);
820
821 index = cursor->vector_index;
822 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
823
824 bio_vec = &bio->bi_io_vec[index];
825 BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
826 *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
827 BUG_ON(*page_offset >= PAGE_SIZE);
828 if (cursor->last_piece) /* pagelist offset is always 0 */
829 *length = cursor->resid;
830 else
831 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
832 BUG_ON(*length > cursor->resid);
833 BUG_ON(*page_offset + *length > PAGE_SIZE);
834
835 return bio_vec->bv_page;
836 }
837
838 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
839 size_t bytes)
840 {
841 struct bio *bio;
842 struct bio_vec *bio_vec;
843 unsigned int index;
844
845 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
846
847 bio = cursor->bio;
848 BUG_ON(!bio);
849
850 index = cursor->vector_index;
851 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
852 bio_vec = &bio->bi_io_vec[index];
853
854 /* Advance the cursor offset */
855
856 BUG_ON(cursor->resid < bytes);
857 cursor->resid -= bytes;
858 cursor->vector_offset += bytes;
859 if (cursor->vector_offset < bio_vec->bv_len)
860 return false; /* more bytes to process in this segment */
861 BUG_ON(cursor->vector_offset != bio_vec->bv_len);
862
863 /* Move on to the next segment, and possibly the next bio */
864
865 if (++index == (unsigned int) bio->bi_vcnt) {
866 bio = bio->bi_next;
867 index = 0;
868 }
869 cursor->bio = bio;
870 cursor->vector_index = index;
871 cursor->vector_offset = 0;
872
873 if (!cursor->last_piece) {
874 BUG_ON(!cursor->resid);
875 BUG_ON(!bio);
876 /* A short read is OK, so use <= rather than == */
877 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
878 cursor->last_piece = true;
879 }
880
881 return true;
882 }
883 #endif /* CONFIG_BLOCK */
884
885 /*
886 * For a page array, a piece comes from the first page in the array
887 * that has not already been fully consumed.
888 */
889 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
890 size_t length)
891 {
892 struct ceph_msg_data *data = cursor->data;
893 int page_count;
894
895 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
896
897 BUG_ON(!data->pages);
898 BUG_ON(!data->length);
899
900 cursor->resid = min(length, data->length);
901 page_count = calc_pages_for(data->alignment, (u64)data->length);
902 cursor->page_offset = data->alignment & ~PAGE_MASK;
903 cursor->page_index = 0;
904 BUG_ON(page_count > (int)USHRT_MAX);
905 cursor->page_count = (unsigned short)page_count;
906 BUG_ON(length > SIZE_MAX - cursor->page_offset);
907 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
908 }
909
910 static struct page *
911 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
912 size_t *page_offset, size_t *length)
913 {
914 struct ceph_msg_data *data = cursor->data;
915
916 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
917
918 BUG_ON(cursor->page_index >= cursor->page_count);
919 BUG_ON(cursor->page_offset >= PAGE_SIZE);
920
921 *page_offset = cursor->page_offset;
922 if (cursor->last_piece)
923 *length = cursor->resid;
924 else
925 *length = PAGE_SIZE - *page_offset;
926
927 return data->pages[cursor->page_index];
928 }
929
930 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
931 size_t bytes)
932 {
933 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
934
935 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
936
937 /* Advance the cursor page offset */
938
939 cursor->resid -= bytes;
940 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
941 if (!bytes || cursor->page_offset)
942 return false; /* more bytes to process in the current page */
943
944 /* Move on to the next page; offset is already at 0 */
945
946 BUG_ON(cursor->page_index >= cursor->page_count);
947 cursor->page_index++;
948 cursor->last_piece = cursor->resid <= PAGE_SIZE;
949
950 return true;
951 }
952
953 /*
954 * For a pagelist, a piece is whatever remains to be consumed in the
955 * first page in the list, or the front of the next page.
956 */
957 static void
958 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
959 size_t length)
960 {
961 struct ceph_msg_data *data = cursor->data;
962 struct ceph_pagelist *pagelist;
963 struct page *page;
964
965 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
966
967 pagelist = data->pagelist;
968 BUG_ON(!pagelist);
969
970 if (!length)
971 return; /* pagelist can be assigned but empty */
972
973 BUG_ON(list_empty(&pagelist->head));
974 page = list_first_entry(&pagelist->head, struct page, lru);
975
976 cursor->resid = min(length, pagelist->length);
977 cursor->page = page;
978 cursor->offset = 0;
979 cursor->last_piece = cursor->resid <= PAGE_SIZE;
980 }
981
982 static struct page *
983 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
984 size_t *page_offset, size_t *length)
985 {
986 struct ceph_msg_data *data = cursor->data;
987 struct ceph_pagelist *pagelist;
988
989 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
990
991 pagelist = data->pagelist;
992 BUG_ON(!pagelist);
993
994 BUG_ON(!cursor->page);
995 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
996
997 /* offset of first page in pagelist is always 0 */
998 *page_offset = cursor->offset & ~PAGE_MASK;
999 if (cursor->last_piece)
1000 *length = cursor->resid;
1001 else
1002 *length = PAGE_SIZE - *page_offset;
1003
1004 return cursor->page;
1005 }
1006
1007 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1008 size_t bytes)
1009 {
1010 struct ceph_msg_data *data = cursor->data;
1011 struct ceph_pagelist *pagelist;
1012
1013 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014
1015 pagelist = data->pagelist;
1016 BUG_ON(!pagelist);
1017
1018 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1019 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1020
1021 /* Advance the cursor offset */
1022
1023 cursor->resid -= bytes;
1024 cursor->offset += bytes;
1025 /* offset of first page in pagelist is always 0 */
1026 if (!bytes || cursor->offset & ~PAGE_MASK)
1027 return false; /* more bytes to process in the current page */
1028
1029 /* Move on to the next page */
1030
1031 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1032 cursor->page = list_entry_next(cursor->page, lru);
1033 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1034
1035 return true;
1036 }
1037
1038 /*
1039 * Message data is handled (sent or received) in pieces, where each
1040 * piece resides on a single page. The network layer might not
1041 * consume an entire piece at once. A data item's cursor keeps
1042 * track of which piece is next to process and how much remains to
1043 * be processed in that piece. It also tracks whether the current
1044 * piece is the last one in the data item.
1045 */
1046 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1047 {
1048 size_t length = cursor->total_resid;
1049
1050 switch (cursor->data->type) {
1051 case CEPH_MSG_DATA_PAGELIST:
1052 ceph_msg_data_pagelist_cursor_init(cursor, length);
1053 break;
1054 case CEPH_MSG_DATA_PAGES:
1055 ceph_msg_data_pages_cursor_init(cursor, length);
1056 break;
1057 #ifdef CONFIG_BLOCK
1058 case CEPH_MSG_DATA_BIO:
1059 ceph_msg_data_bio_cursor_init(cursor, length);
1060 break;
1061 #endif /* CONFIG_BLOCK */
1062 case CEPH_MSG_DATA_NONE:
1063 default:
1064 /* BUG(); */
1065 break;
1066 }
1067 cursor->need_crc = true;
1068 }
1069
1070 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1071 {
1072 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1073 struct ceph_msg_data *data;
1074
1075 BUG_ON(!length);
1076 BUG_ON(length > msg->data_length);
1077 BUG_ON(list_empty(&msg->data));
1078
1079 cursor->data_head = &msg->data;
1080 cursor->total_resid = length;
1081 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1082 cursor->data = data;
1083
1084 __ceph_msg_data_cursor_init(cursor);
1085 }
1086
1087 /*
1088 * Return the page containing the next piece to process for a given
1089 * data item, and supply the page offset and length of that piece.
1090 * Indicate whether this is the last piece in this data item.
1091 */
1092 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1093 size_t *page_offset, size_t *length,
1094 bool *last_piece)
1095 {
1096 struct page *page;
1097
1098 switch (cursor->data->type) {
1099 case CEPH_MSG_DATA_PAGELIST:
1100 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1101 break;
1102 case CEPH_MSG_DATA_PAGES:
1103 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1104 break;
1105 #ifdef CONFIG_BLOCK
1106 case CEPH_MSG_DATA_BIO:
1107 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1108 break;
1109 #endif /* CONFIG_BLOCK */
1110 case CEPH_MSG_DATA_NONE:
1111 default:
1112 page = NULL;
1113 break;
1114 }
1115 BUG_ON(!page);
1116 BUG_ON(*page_offset + *length > PAGE_SIZE);
1117 BUG_ON(!*length);
1118 if (last_piece)
1119 *last_piece = cursor->last_piece;
1120
1121 return page;
1122 }
1123
1124 /*
1125 * Returns true if the result moves the cursor on to the next piece
1126 * of the data item.
1127 */
1128 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1129 size_t bytes)
1130 {
1131 bool new_piece;
1132
1133 BUG_ON(bytes > cursor->resid);
1134 switch (cursor->data->type) {
1135 case CEPH_MSG_DATA_PAGELIST:
1136 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1137 break;
1138 case CEPH_MSG_DATA_PAGES:
1139 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1140 break;
1141 #ifdef CONFIG_BLOCK
1142 case CEPH_MSG_DATA_BIO:
1143 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1144 break;
1145 #endif /* CONFIG_BLOCK */
1146 case CEPH_MSG_DATA_NONE:
1147 default:
1148 BUG();
1149 break;
1150 }
1151 cursor->total_resid -= bytes;
1152
1153 if (!cursor->resid && cursor->total_resid) {
1154 WARN_ON(!cursor->last_piece);
1155 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1156 cursor->data = list_entry_next(cursor->data, links);
1157 __ceph_msg_data_cursor_init(cursor);
1158 new_piece = true;
1159 }
1160 cursor->need_crc = new_piece;
1161
1162 return new_piece;
1163 }
1164
1165 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1166 {
1167 BUG_ON(!msg);
1168 BUG_ON(!data_len);
1169
1170 /* Initialize data cursor */
1171
1172 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1173 }
1174
1175 /*
1176 * Prepare footer for currently outgoing message, and finish things
1177 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1178 */
1179 static void prepare_write_message_footer(struct ceph_connection *con)
1180 {
1181 struct ceph_msg *m = con->out_msg;
1182 int v = con->out_kvec_left;
1183
1184 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1185
1186 dout("prepare_write_message_footer %p\n", con);
1187 con->out_kvec_is_msg = true;
1188 con->out_kvec[v].iov_base = &m->footer;
1189 con->out_kvec[v].iov_len = sizeof(m->footer);
1190 con->out_kvec_bytes += sizeof(m->footer);
1191 con->out_kvec_left++;
1192 con->out_more = m->more_to_follow;
1193 con->out_msg_done = true;
1194 }
1195
1196 /*
1197 * Prepare headers for the next outgoing message.
1198 */
1199 static void prepare_write_message(struct ceph_connection *con)
1200 {
1201 struct ceph_msg *m;
1202 u32 crc;
1203
1204 con_out_kvec_reset(con);
1205 con->out_kvec_is_msg = true;
1206 con->out_msg_done = false;
1207
1208 /* Sneak an ack in there first? If we can get it into the same
1209 * TCP packet that's a good thing. */
1210 if (con->in_seq > con->in_seq_acked) {
1211 con->in_seq_acked = con->in_seq;
1212 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1213 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1214 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1215 &con->out_temp_ack);
1216 }
1217
1218 BUG_ON(list_empty(&con->out_queue));
1219 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1220 con->out_msg = m;
1221 BUG_ON(m->con != con);
1222
1223 /* put message on sent list */
1224 ceph_msg_get(m);
1225 list_move_tail(&m->list_head, &con->out_sent);
1226
1227 /*
1228 * only assign outgoing seq # if we haven't sent this message
1229 * yet. if it is requeued, resend with it's original seq.
1230 */
1231 if (m->needs_out_seq) {
1232 m->hdr.seq = cpu_to_le64(++con->out_seq);
1233 m->needs_out_seq = false;
1234 }
1235 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1236
1237 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1238 m, con->out_seq, le16_to_cpu(m->hdr.type),
1239 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1240 m->data_length);
1241 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1242
1243 /* tag + hdr + front + middle */
1244 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1245 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1246 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1247
1248 if (m->middle)
1249 con_out_kvec_add(con, m->middle->vec.iov_len,
1250 m->middle->vec.iov_base);
1251
1252 /* fill in crc (except data pages), footer */
1253 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1254 con->out_msg->hdr.crc = cpu_to_le32(crc);
1255 con->out_msg->footer.flags = 0;
1256
1257 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1258 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1259 if (m->middle) {
1260 crc = crc32c(0, m->middle->vec.iov_base,
1261 m->middle->vec.iov_len);
1262 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1263 } else
1264 con->out_msg->footer.middle_crc = 0;
1265 dout("%s front_crc %u middle_crc %u\n", __func__,
1266 le32_to_cpu(con->out_msg->footer.front_crc),
1267 le32_to_cpu(con->out_msg->footer.middle_crc));
1268
1269 /* is there a data payload? */
1270 con->out_msg->footer.data_crc = 0;
1271 if (m->data_length) {
1272 prepare_message_data(con->out_msg, m->data_length);
1273 con->out_more = 1; /* data + footer will follow */
1274 } else {
1275 /* no, queue up footer too and be done */
1276 prepare_write_message_footer(con);
1277 }
1278
1279 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1280 }
1281
1282 /*
1283 * Prepare an ack.
1284 */
1285 static void prepare_write_ack(struct ceph_connection *con)
1286 {
1287 dout("prepare_write_ack %p %llu -> %llu\n", con,
1288 con->in_seq_acked, con->in_seq);
1289 con->in_seq_acked = con->in_seq;
1290
1291 con_out_kvec_reset(con);
1292
1293 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1294
1295 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1296 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1297 &con->out_temp_ack);
1298
1299 con->out_more = 1; /* more will follow.. eventually.. */
1300 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1301 }
1302
1303 /*
1304 * Prepare to share the seq during handshake
1305 */
1306 static void prepare_write_seq(struct ceph_connection *con)
1307 {
1308 dout("prepare_write_seq %p %llu -> %llu\n", con,
1309 con->in_seq_acked, con->in_seq);
1310 con->in_seq_acked = con->in_seq;
1311
1312 con_out_kvec_reset(con);
1313
1314 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1315 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1316 &con->out_temp_ack);
1317
1318 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1319 }
1320
1321 /*
1322 * Prepare to write keepalive byte.
1323 */
1324 static void prepare_write_keepalive(struct ceph_connection *con)
1325 {
1326 dout("prepare_write_keepalive %p\n", con);
1327 con_out_kvec_reset(con);
1328 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1329 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1330 }
1331
1332 /*
1333 * Connection negotiation.
1334 */
1335
1336 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1337 int *auth_proto)
1338 {
1339 struct ceph_auth_handshake *auth;
1340
1341 if (!con->ops->get_authorizer) {
1342 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1343 con->out_connect.authorizer_len = 0;
1344 return NULL;
1345 }
1346
1347 /* Can't hold the mutex while getting authorizer */
1348 mutex_unlock(&con->mutex);
1349 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1350 mutex_lock(&con->mutex);
1351
1352 if (IS_ERR(auth))
1353 return auth;
1354 if (con->state != CON_STATE_NEGOTIATING)
1355 return ERR_PTR(-EAGAIN);
1356
1357 con->auth_reply_buf = auth->authorizer_reply_buf;
1358 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1359 return auth;
1360 }
1361
1362 /*
1363 * We connected to a peer and are saying hello.
1364 */
1365 static void prepare_write_banner(struct ceph_connection *con)
1366 {
1367 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1368 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1369 &con->msgr->my_enc_addr);
1370
1371 con->out_more = 0;
1372 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1373 }
1374
1375 static int prepare_write_connect(struct ceph_connection *con)
1376 {
1377 unsigned int global_seq = get_global_seq(con->msgr, 0);
1378 int proto;
1379 int auth_proto;
1380 struct ceph_auth_handshake *auth;
1381
1382 switch (con->peer_name.type) {
1383 case CEPH_ENTITY_TYPE_MON:
1384 proto = CEPH_MONC_PROTOCOL;
1385 break;
1386 case CEPH_ENTITY_TYPE_OSD:
1387 proto = CEPH_OSDC_PROTOCOL;
1388 break;
1389 case CEPH_ENTITY_TYPE_MDS:
1390 proto = CEPH_MDSC_PROTOCOL;
1391 break;
1392 default:
1393 BUG();
1394 }
1395
1396 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1397 con->connect_seq, global_seq, proto);
1398
1399 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1400 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1401 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1402 con->out_connect.global_seq = cpu_to_le32(global_seq);
1403 con->out_connect.protocol_version = cpu_to_le32(proto);
1404 con->out_connect.flags = 0;
1405
1406 auth_proto = CEPH_AUTH_UNKNOWN;
1407 auth = get_connect_authorizer(con, &auth_proto);
1408 if (IS_ERR(auth))
1409 return PTR_ERR(auth);
1410
1411 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1412 con->out_connect.authorizer_len = auth ?
1413 cpu_to_le32(auth->authorizer_buf_len) : 0;
1414
1415 con_out_kvec_add(con, sizeof (con->out_connect),
1416 &con->out_connect);
1417 if (auth && auth->authorizer_buf_len)
1418 con_out_kvec_add(con, auth->authorizer_buf_len,
1419 auth->authorizer_buf);
1420
1421 con->out_more = 0;
1422 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * write as much of pending kvecs to the socket as we can.
1429 * 1 -> done
1430 * 0 -> socket full, but more to do
1431 * <0 -> error
1432 */
1433 static int write_partial_kvec(struct ceph_connection *con)
1434 {
1435 int ret;
1436
1437 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1438 while (con->out_kvec_bytes > 0) {
1439 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1440 con->out_kvec_left, con->out_kvec_bytes,
1441 con->out_more);
1442 if (ret <= 0)
1443 goto out;
1444 con->out_kvec_bytes -= ret;
1445 if (con->out_kvec_bytes == 0)
1446 break; /* done */
1447
1448 /* account for full iov entries consumed */
1449 while (ret >= con->out_kvec_cur->iov_len) {
1450 BUG_ON(!con->out_kvec_left);
1451 ret -= con->out_kvec_cur->iov_len;
1452 con->out_kvec_cur++;
1453 con->out_kvec_left--;
1454 }
1455 /* and for a partially-consumed entry */
1456 if (ret) {
1457 con->out_kvec_cur->iov_len -= ret;
1458 con->out_kvec_cur->iov_base += ret;
1459 }
1460 }
1461 con->out_kvec_left = 0;
1462 con->out_kvec_is_msg = false;
1463 ret = 1;
1464 out:
1465 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1466 con->out_kvec_bytes, con->out_kvec_left, ret);
1467 return ret; /* done! */
1468 }
1469
1470 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1471 unsigned int page_offset,
1472 unsigned int length)
1473 {
1474 char *kaddr;
1475
1476 kaddr = kmap(page);
1477 BUG_ON(kaddr == NULL);
1478 crc = crc32c(crc, kaddr + page_offset, length);
1479 kunmap(page);
1480
1481 return crc;
1482 }
1483 /*
1484 * Write as much message data payload as we can. If we finish, queue
1485 * up the footer.
1486 * 1 -> done, footer is now queued in out_kvec[].
1487 * 0 -> socket full, but more to do
1488 * <0 -> error
1489 */
1490 static int write_partial_message_data(struct ceph_connection *con)
1491 {
1492 struct ceph_msg *msg = con->out_msg;
1493 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1494 bool do_datacrc = !con->msgr->nocrc;
1495 u32 crc;
1496
1497 dout("%s %p msg %p\n", __func__, con, msg);
1498
1499 if (list_empty(&msg->data))
1500 return -EINVAL;
1501
1502 /*
1503 * Iterate through each page that contains data to be
1504 * written, and send as much as possible for each.
1505 *
1506 * If we are calculating the data crc (the default), we will
1507 * need to map the page. If we have no pages, they have
1508 * been revoked, so use the zero page.
1509 */
1510 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1511 while (cursor->resid) {
1512 struct page *page;
1513 size_t page_offset;
1514 size_t length;
1515 bool last_piece;
1516 bool need_crc;
1517 int ret;
1518
1519 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1520 &last_piece);
1521 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1522 length, last_piece);
1523 if (ret <= 0) {
1524 if (do_datacrc)
1525 msg->footer.data_crc = cpu_to_le32(crc);
1526
1527 return ret;
1528 }
1529 if (do_datacrc && cursor->need_crc)
1530 crc = ceph_crc32c_page(crc, page, page_offset, length);
1531 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1532 }
1533
1534 dout("%s %p msg %p done\n", __func__, con, msg);
1535
1536 /* prepare and queue up footer, too */
1537 if (do_datacrc)
1538 msg->footer.data_crc = cpu_to_le32(crc);
1539 else
1540 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1541 con_out_kvec_reset(con);
1542 prepare_write_message_footer(con);
1543
1544 return 1; /* must return > 0 to indicate success */
1545 }
1546
1547 /*
1548 * write some zeros
1549 */
1550 static int write_partial_skip(struct ceph_connection *con)
1551 {
1552 int ret;
1553
1554 while (con->out_skip > 0) {
1555 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1556
1557 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1558 if (ret <= 0)
1559 goto out;
1560 con->out_skip -= ret;
1561 }
1562 ret = 1;
1563 out:
1564 return ret;
1565 }
1566
1567 /*
1568 * Prepare to read connection handshake, or an ack.
1569 */
1570 static void prepare_read_banner(struct ceph_connection *con)
1571 {
1572 dout("prepare_read_banner %p\n", con);
1573 con->in_base_pos = 0;
1574 }
1575
1576 static void prepare_read_connect(struct ceph_connection *con)
1577 {
1578 dout("prepare_read_connect %p\n", con);
1579 con->in_base_pos = 0;
1580 }
1581
1582 static void prepare_read_ack(struct ceph_connection *con)
1583 {
1584 dout("prepare_read_ack %p\n", con);
1585 con->in_base_pos = 0;
1586 }
1587
1588 static void prepare_read_seq(struct ceph_connection *con)
1589 {
1590 dout("prepare_read_seq %p\n", con);
1591 con->in_base_pos = 0;
1592 con->in_tag = CEPH_MSGR_TAG_SEQ;
1593 }
1594
1595 static void prepare_read_tag(struct ceph_connection *con)
1596 {
1597 dout("prepare_read_tag %p\n", con);
1598 con->in_base_pos = 0;
1599 con->in_tag = CEPH_MSGR_TAG_READY;
1600 }
1601
1602 /*
1603 * Prepare to read a message.
1604 */
1605 static int prepare_read_message(struct ceph_connection *con)
1606 {
1607 dout("prepare_read_message %p\n", con);
1608 BUG_ON(con->in_msg != NULL);
1609 con->in_base_pos = 0;
1610 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1611 return 0;
1612 }
1613
1614
1615 static int read_partial(struct ceph_connection *con,
1616 int end, int size, void *object)
1617 {
1618 while (con->in_base_pos < end) {
1619 int left = end - con->in_base_pos;
1620 int have = size - left;
1621 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1622 if (ret <= 0)
1623 return ret;
1624 con->in_base_pos += ret;
1625 }
1626 return 1;
1627 }
1628
1629
1630 /*
1631 * Read all or part of the connect-side handshake on a new connection
1632 */
1633 static int read_partial_banner(struct ceph_connection *con)
1634 {
1635 int size;
1636 int end;
1637 int ret;
1638
1639 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1640
1641 /* peer's banner */
1642 size = strlen(CEPH_BANNER);
1643 end = size;
1644 ret = read_partial(con, end, size, con->in_banner);
1645 if (ret <= 0)
1646 goto out;
1647
1648 size = sizeof (con->actual_peer_addr);
1649 end += size;
1650 ret = read_partial(con, end, size, &con->actual_peer_addr);
1651 if (ret <= 0)
1652 goto out;
1653
1654 size = sizeof (con->peer_addr_for_me);
1655 end += size;
1656 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1657 if (ret <= 0)
1658 goto out;
1659
1660 out:
1661 return ret;
1662 }
1663
1664 static int read_partial_connect(struct ceph_connection *con)
1665 {
1666 int size;
1667 int end;
1668 int ret;
1669
1670 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1671
1672 size = sizeof (con->in_reply);
1673 end = size;
1674 ret = read_partial(con, end, size, &con->in_reply);
1675 if (ret <= 0)
1676 goto out;
1677
1678 size = le32_to_cpu(con->in_reply.authorizer_len);
1679 end += size;
1680 ret = read_partial(con, end, size, con->auth_reply_buf);
1681 if (ret <= 0)
1682 goto out;
1683
1684 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1685 con, (int)con->in_reply.tag,
1686 le32_to_cpu(con->in_reply.connect_seq),
1687 le32_to_cpu(con->in_reply.global_seq));
1688 out:
1689 return ret;
1690
1691 }
1692
1693 /*
1694 * Verify the hello banner looks okay.
1695 */
1696 static int verify_hello(struct ceph_connection *con)
1697 {
1698 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1699 pr_err("connect to %s got bad banner\n",
1700 ceph_pr_addr(&con->peer_addr.in_addr));
1701 con->error_msg = "protocol error, bad banner";
1702 return -1;
1703 }
1704 return 0;
1705 }
1706
1707 static bool addr_is_blank(struct sockaddr_storage *ss)
1708 {
1709 switch (ss->ss_family) {
1710 case AF_INET:
1711 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1712 case AF_INET6:
1713 return
1714 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1715 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1716 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1717 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1718 }
1719 return false;
1720 }
1721
1722 static int addr_port(struct sockaddr_storage *ss)
1723 {
1724 switch (ss->ss_family) {
1725 case AF_INET:
1726 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1727 case AF_INET6:
1728 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1729 }
1730 return 0;
1731 }
1732
1733 static void addr_set_port(struct sockaddr_storage *ss, int p)
1734 {
1735 switch (ss->ss_family) {
1736 case AF_INET:
1737 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1738 break;
1739 case AF_INET6:
1740 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1741 break;
1742 }
1743 }
1744
1745 /*
1746 * Unlike other *_pton function semantics, zero indicates success.
1747 */
1748 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1749 char delim, const char **ipend)
1750 {
1751 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1752 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1753
1754 memset(ss, 0, sizeof(*ss));
1755
1756 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1757 ss->ss_family = AF_INET;
1758 return 0;
1759 }
1760
1761 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1762 ss->ss_family = AF_INET6;
1763 return 0;
1764 }
1765
1766 return -EINVAL;
1767 }
1768
1769 /*
1770 * Extract hostname string and resolve using kernel DNS facility.
1771 */
1772 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1773 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1774 struct sockaddr_storage *ss, char delim, const char **ipend)
1775 {
1776 const char *end, *delim_p;
1777 char *colon_p, *ip_addr = NULL;
1778 int ip_len, ret;
1779
1780 /*
1781 * The end of the hostname occurs immediately preceding the delimiter or
1782 * the port marker (':') where the delimiter takes precedence.
1783 */
1784 delim_p = memchr(name, delim, namelen);
1785 colon_p = memchr(name, ':', namelen);
1786
1787 if (delim_p && colon_p)
1788 end = delim_p < colon_p ? delim_p : colon_p;
1789 else if (!delim_p && colon_p)
1790 end = colon_p;
1791 else {
1792 end = delim_p;
1793 if (!end) /* case: hostname:/ */
1794 end = name + namelen;
1795 }
1796
1797 if (end <= name)
1798 return -EINVAL;
1799
1800 /* do dns_resolve upcall */
1801 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1802 if (ip_len > 0)
1803 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1804 else
1805 ret = -ESRCH;
1806
1807 kfree(ip_addr);
1808
1809 *ipend = end;
1810
1811 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1812 ret, ret ? "failed" : ceph_pr_addr(ss));
1813
1814 return ret;
1815 }
1816 #else
1817 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1818 struct sockaddr_storage *ss, char delim, const char **ipend)
1819 {
1820 return -EINVAL;
1821 }
1822 #endif
1823
1824 /*
1825 * Parse a server name (IP or hostname). If a valid IP address is not found
1826 * then try to extract a hostname to resolve using userspace DNS upcall.
1827 */
1828 static int ceph_parse_server_name(const char *name, size_t namelen,
1829 struct sockaddr_storage *ss, char delim, const char **ipend)
1830 {
1831 int ret;
1832
1833 ret = ceph_pton(name, namelen, ss, delim, ipend);
1834 if (ret)
1835 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1836
1837 return ret;
1838 }
1839
1840 /*
1841 * Parse an ip[:port] list into an addr array. Use the default
1842 * monitor port if a port isn't specified.
1843 */
1844 int ceph_parse_ips(const char *c, const char *end,
1845 struct ceph_entity_addr *addr,
1846 int max_count, int *count)
1847 {
1848 int i, ret = -EINVAL;
1849 const char *p = c;
1850
1851 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1852 for (i = 0; i < max_count; i++) {
1853 const char *ipend;
1854 struct sockaddr_storage *ss = &addr[i].in_addr;
1855 int port;
1856 char delim = ',';
1857
1858 if (*p == '[') {
1859 delim = ']';
1860 p++;
1861 }
1862
1863 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1864 if (ret)
1865 goto bad;
1866 ret = -EINVAL;
1867
1868 p = ipend;
1869
1870 if (delim == ']') {
1871 if (*p != ']') {
1872 dout("missing matching ']'\n");
1873 goto bad;
1874 }
1875 p++;
1876 }
1877
1878 /* port? */
1879 if (p < end && *p == ':') {
1880 port = 0;
1881 p++;
1882 while (p < end && *p >= '0' && *p <= '9') {
1883 port = (port * 10) + (*p - '0');
1884 p++;
1885 }
1886 if (port > 65535 || port == 0)
1887 goto bad;
1888 } else {
1889 port = CEPH_MON_PORT;
1890 }
1891
1892 addr_set_port(ss, port);
1893
1894 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1895
1896 if (p == end)
1897 break;
1898 if (*p != ',')
1899 goto bad;
1900 p++;
1901 }
1902
1903 if (p != end)
1904 goto bad;
1905
1906 if (count)
1907 *count = i + 1;
1908 return 0;
1909
1910 bad:
1911 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1912 return ret;
1913 }
1914 EXPORT_SYMBOL(ceph_parse_ips);
1915
1916 static int process_banner(struct ceph_connection *con)
1917 {
1918 dout("process_banner on %p\n", con);
1919
1920 if (verify_hello(con) < 0)
1921 return -1;
1922
1923 ceph_decode_addr(&con->actual_peer_addr);
1924 ceph_decode_addr(&con->peer_addr_for_me);
1925
1926 /*
1927 * Make sure the other end is who we wanted. note that the other
1928 * end may not yet know their ip address, so if it's 0.0.0.0, give
1929 * them the benefit of the doubt.
1930 */
1931 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1932 sizeof(con->peer_addr)) != 0 &&
1933 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1934 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1935 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1936 ceph_pr_addr(&con->peer_addr.in_addr),
1937 (int)le32_to_cpu(con->peer_addr.nonce),
1938 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1939 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1940 con->error_msg = "wrong peer at address";
1941 return -1;
1942 }
1943
1944 /*
1945 * did we learn our address?
1946 */
1947 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1948 int port = addr_port(&con->msgr->inst.addr.in_addr);
1949
1950 memcpy(&con->msgr->inst.addr.in_addr,
1951 &con->peer_addr_for_me.in_addr,
1952 sizeof(con->peer_addr_for_me.in_addr));
1953 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1954 encode_my_addr(con->msgr);
1955 dout("process_banner learned my addr is %s\n",
1956 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1957 }
1958
1959 return 0;
1960 }
1961
1962 static int process_connect(struct ceph_connection *con)
1963 {
1964 u64 sup_feat = con->msgr->supported_features;
1965 u64 req_feat = con->msgr->required_features;
1966 u64 server_feat = le64_to_cpu(con->in_reply.features);
1967 int ret;
1968
1969 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1970
1971 switch (con->in_reply.tag) {
1972 case CEPH_MSGR_TAG_FEATURES:
1973 pr_err("%s%lld %s feature set mismatch,"
1974 " my %llx < server's %llx, missing %llx\n",
1975 ENTITY_NAME(con->peer_name),
1976 ceph_pr_addr(&con->peer_addr.in_addr),
1977 sup_feat, server_feat, server_feat & ~sup_feat);
1978 con->error_msg = "missing required protocol features";
1979 reset_connection(con);
1980 return -1;
1981
1982 case CEPH_MSGR_TAG_BADPROTOVER:
1983 pr_err("%s%lld %s protocol version mismatch,"
1984 " my %d != server's %d\n",
1985 ENTITY_NAME(con->peer_name),
1986 ceph_pr_addr(&con->peer_addr.in_addr),
1987 le32_to_cpu(con->out_connect.protocol_version),
1988 le32_to_cpu(con->in_reply.protocol_version));
1989 con->error_msg = "protocol version mismatch";
1990 reset_connection(con);
1991 return -1;
1992
1993 case CEPH_MSGR_TAG_BADAUTHORIZER:
1994 con->auth_retry++;
1995 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1996 con->auth_retry);
1997 if (con->auth_retry == 2) {
1998 con->error_msg = "connect authorization failure";
1999 return -1;
2000 }
2001 con_out_kvec_reset(con);
2002 ret = prepare_write_connect(con);
2003 if (ret < 0)
2004 return ret;
2005 prepare_read_connect(con);
2006 break;
2007
2008 case CEPH_MSGR_TAG_RESETSESSION:
2009 /*
2010 * If we connected with a large connect_seq but the peer
2011 * has no record of a session with us (no connection, or
2012 * connect_seq == 0), they will send RESETSESION to indicate
2013 * that they must have reset their session, and may have
2014 * dropped messages.
2015 */
2016 dout("process_connect got RESET peer seq %u\n",
2017 le32_to_cpu(con->in_reply.connect_seq));
2018 pr_err("%s%lld %s connection reset\n",
2019 ENTITY_NAME(con->peer_name),
2020 ceph_pr_addr(&con->peer_addr.in_addr));
2021 reset_connection(con);
2022 con_out_kvec_reset(con);
2023 ret = prepare_write_connect(con);
2024 if (ret < 0)
2025 return ret;
2026 prepare_read_connect(con);
2027
2028 /* Tell ceph about it. */
2029 mutex_unlock(&con->mutex);
2030 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2031 if (con->ops->peer_reset)
2032 con->ops->peer_reset(con);
2033 mutex_lock(&con->mutex);
2034 if (con->state != CON_STATE_NEGOTIATING)
2035 return -EAGAIN;
2036 break;
2037
2038 case CEPH_MSGR_TAG_RETRY_SESSION:
2039 /*
2040 * If we sent a smaller connect_seq than the peer has, try
2041 * again with a larger value.
2042 */
2043 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2044 le32_to_cpu(con->out_connect.connect_seq),
2045 le32_to_cpu(con->in_reply.connect_seq));
2046 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2047 con_out_kvec_reset(con);
2048 ret = prepare_write_connect(con);
2049 if (ret < 0)
2050 return ret;
2051 prepare_read_connect(con);
2052 break;
2053
2054 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2055 /*
2056 * If we sent a smaller global_seq than the peer has, try
2057 * again with a larger value.
2058 */
2059 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2060 con->peer_global_seq,
2061 le32_to_cpu(con->in_reply.global_seq));
2062 get_global_seq(con->msgr,
2063 le32_to_cpu(con->in_reply.global_seq));
2064 con_out_kvec_reset(con);
2065 ret = prepare_write_connect(con);
2066 if (ret < 0)
2067 return ret;
2068 prepare_read_connect(con);
2069 break;
2070
2071 case CEPH_MSGR_TAG_SEQ:
2072 case CEPH_MSGR_TAG_READY:
2073 if (req_feat & ~server_feat) {
2074 pr_err("%s%lld %s protocol feature mismatch,"
2075 " my required %llx > server's %llx, need %llx\n",
2076 ENTITY_NAME(con->peer_name),
2077 ceph_pr_addr(&con->peer_addr.in_addr),
2078 req_feat, server_feat, req_feat & ~server_feat);
2079 con->error_msg = "missing required protocol features";
2080 reset_connection(con);
2081 return -1;
2082 }
2083
2084 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2085 con->state = CON_STATE_OPEN;
2086 con->auth_retry = 0; /* we authenticated; clear flag */
2087 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2088 con->connect_seq++;
2089 con->peer_features = server_feat;
2090 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2091 con->peer_global_seq,
2092 le32_to_cpu(con->in_reply.connect_seq),
2093 con->connect_seq);
2094 WARN_ON(con->connect_seq !=
2095 le32_to_cpu(con->in_reply.connect_seq));
2096
2097 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2098 con_flag_set(con, CON_FLAG_LOSSYTX);
2099
2100 con->delay = 0; /* reset backoff memory */
2101
2102 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2103 prepare_write_seq(con);
2104 prepare_read_seq(con);
2105 } else {
2106 prepare_read_tag(con);
2107 }
2108 break;
2109
2110 case CEPH_MSGR_TAG_WAIT:
2111 /*
2112 * If there is a connection race (we are opening
2113 * connections to each other), one of us may just have
2114 * to WAIT. This shouldn't happen if we are the
2115 * client.
2116 */
2117 pr_err("process_connect got WAIT as client\n");
2118 con->error_msg = "protocol error, got WAIT as client";
2119 return -1;
2120
2121 default:
2122 pr_err("connect protocol error, will retry\n");
2123 con->error_msg = "protocol error, garbage tag during connect";
2124 return -1;
2125 }
2126 return 0;
2127 }
2128
2129
2130 /*
2131 * read (part of) an ack
2132 */
2133 static int read_partial_ack(struct ceph_connection *con)
2134 {
2135 int size = sizeof (con->in_temp_ack);
2136 int end = size;
2137
2138 return read_partial(con, end, size, &con->in_temp_ack);
2139 }
2140
2141 /*
2142 * We can finally discard anything that's been acked.
2143 */
2144 static void process_ack(struct ceph_connection *con)
2145 {
2146 struct ceph_msg *m;
2147 u64 ack = le64_to_cpu(con->in_temp_ack);
2148 u64 seq;
2149
2150 while (!list_empty(&con->out_sent)) {
2151 m = list_first_entry(&con->out_sent, struct ceph_msg,
2152 list_head);
2153 seq = le64_to_cpu(m->hdr.seq);
2154 if (seq > ack)
2155 break;
2156 dout("got ack for seq %llu type %d at %p\n", seq,
2157 le16_to_cpu(m->hdr.type), m);
2158 m->ack_stamp = jiffies;
2159 ceph_msg_remove(m);
2160 }
2161 prepare_read_tag(con);
2162 }
2163
2164
2165 static int read_partial_message_section(struct ceph_connection *con,
2166 struct kvec *section,
2167 unsigned int sec_len, u32 *crc)
2168 {
2169 int ret, left;
2170
2171 BUG_ON(!section);
2172
2173 while (section->iov_len < sec_len) {
2174 BUG_ON(section->iov_base == NULL);
2175 left = sec_len - section->iov_len;
2176 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2177 section->iov_len, left);
2178 if (ret <= 0)
2179 return ret;
2180 section->iov_len += ret;
2181 }
2182 if (section->iov_len == sec_len)
2183 *crc = crc32c(0, section->iov_base, section->iov_len);
2184
2185 return 1;
2186 }
2187
2188 static int read_partial_msg_data(struct ceph_connection *con)
2189 {
2190 struct ceph_msg *msg = con->in_msg;
2191 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2192 const bool do_datacrc = !con->msgr->nocrc;
2193 struct page *page;
2194 size_t page_offset;
2195 size_t length;
2196 u32 crc = 0;
2197 int ret;
2198
2199 BUG_ON(!msg);
2200 if (list_empty(&msg->data))
2201 return -EIO;
2202
2203 if (do_datacrc)
2204 crc = con->in_data_crc;
2205 while (cursor->resid) {
2206 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2207 NULL);
2208 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2209 if (ret <= 0) {
2210 if (do_datacrc)
2211 con->in_data_crc = crc;
2212
2213 return ret;
2214 }
2215
2216 if (do_datacrc)
2217 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2218 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2219 }
2220 if (do_datacrc)
2221 con->in_data_crc = crc;
2222
2223 return 1; /* must return > 0 to indicate success */
2224 }
2225
2226 /*
2227 * read (part of) a message.
2228 */
2229 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2230
2231 static int read_partial_message(struct ceph_connection *con)
2232 {
2233 struct ceph_msg *m = con->in_msg;
2234 int size;
2235 int end;
2236 int ret;
2237 unsigned int front_len, middle_len, data_len;
2238 bool do_datacrc = !con->msgr->nocrc;
2239 u64 seq;
2240 u32 crc;
2241
2242 dout("read_partial_message con %p msg %p\n", con, m);
2243
2244 /* header */
2245 size = sizeof (con->in_hdr);
2246 end = size;
2247 ret = read_partial(con, end, size, &con->in_hdr);
2248 if (ret <= 0)
2249 return ret;
2250
2251 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2252 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2253 pr_err("read_partial_message bad hdr "
2254 " crc %u != expected %u\n",
2255 crc, con->in_hdr.crc);
2256 return -EBADMSG;
2257 }
2258
2259 front_len = le32_to_cpu(con->in_hdr.front_len);
2260 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2261 return -EIO;
2262 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2263 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2264 return -EIO;
2265 data_len = le32_to_cpu(con->in_hdr.data_len);
2266 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2267 return -EIO;
2268
2269 /* verify seq# */
2270 seq = le64_to_cpu(con->in_hdr.seq);
2271 if ((s64)seq - (s64)con->in_seq < 1) {
2272 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2273 ENTITY_NAME(con->peer_name),
2274 ceph_pr_addr(&con->peer_addr.in_addr),
2275 seq, con->in_seq + 1);
2276 con->in_base_pos = -front_len - middle_len - data_len -
2277 sizeof(m->footer);
2278 con->in_tag = CEPH_MSGR_TAG_READY;
2279 return 0;
2280 } else if ((s64)seq - (s64)con->in_seq > 1) {
2281 pr_err("read_partial_message bad seq %lld expected %lld\n",
2282 seq, con->in_seq + 1);
2283 con->error_msg = "bad message sequence # for incoming message";
2284 return -EBADMSG;
2285 }
2286
2287 /* allocate message? */
2288 if (!con->in_msg) {
2289 int skip = 0;
2290
2291 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2292 front_len, data_len);
2293 ret = ceph_con_in_msg_alloc(con, &skip);
2294 if (ret < 0)
2295 return ret;
2296
2297 BUG_ON(!con->in_msg ^ skip);
2298 if (con->in_msg && data_len > con->in_msg->data_length) {
2299 pr_warning("%s skipping long message (%u > %zd)\n",
2300 __func__, data_len, con->in_msg->data_length);
2301 ceph_msg_put(con->in_msg);
2302 con->in_msg = NULL;
2303 skip = 1;
2304 }
2305 if (skip) {
2306 /* skip this message */
2307 dout("alloc_msg said skip message\n");
2308 con->in_base_pos = -front_len - middle_len - data_len -
2309 sizeof(m->footer);
2310 con->in_tag = CEPH_MSGR_TAG_READY;
2311 con->in_seq++;
2312 return 0;
2313 }
2314
2315 BUG_ON(!con->in_msg);
2316 BUG_ON(con->in_msg->con != con);
2317 m = con->in_msg;
2318 m->front.iov_len = 0; /* haven't read it yet */
2319 if (m->middle)
2320 m->middle->vec.iov_len = 0;
2321
2322 /* prepare for data payload, if any */
2323
2324 if (data_len)
2325 prepare_message_data(con->in_msg, data_len);
2326 }
2327
2328 /* front */
2329 ret = read_partial_message_section(con, &m->front, front_len,
2330 &con->in_front_crc);
2331 if (ret <= 0)
2332 return ret;
2333
2334 /* middle */
2335 if (m->middle) {
2336 ret = read_partial_message_section(con, &m->middle->vec,
2337 middle_len,
2338 &con->in_middle_crc);
2339 if (ret <= 0)
2340 return ret;
2341 }
2342
2343 /* (page) data */
2344 if (data_len) {
2345 ret = read_partial_msg_data(con);
2346 if (ret <= 0)
2347 return ret;
2348 }
2349
2350 /* footer */
2351 size = sizeof (m->footer);
2352 end += size;
2353 ret = read_partial(con, end, size, &m->footer);
2354 if (ret <= 0)
2355 return ret;
2356
2357 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2358 m, front_len, m->footer.front_crc, middle_len,
2359 m->footer.middle_crc, data_len, m->footer.data_crc);
2360
2361 /* crc ok? */
2362 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2363 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2364 m, con->in_front_crc, m->footer.front_crc);
2365 return -EBADMSG;
2366 }
2367 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2368 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2369 m, con->in_middle_crc, m->footer.middle_crc);
2370 return -EBADMSG;
2371 }
2372 if (do_datacrc &&
2373 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2374 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2375 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2376 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2377 return -EBADMSG;
2378 }
2379
2380 return 1; /* done! */
2381 }
2382
2383 /*
2384 * Process message. This happens in the worker thread. The callback should
2385 * be careful not to do anything that waits on other incoming messages or it
2386 * may deadlock.
2387 */
2388 static void process_message(struct ceph_connection *con)
2389 {
2390 struct ceph_msg *msg;
2391
2392 BUG_ON(con->in_msg->con != con);
2393 con->in_msg->con = NULL;
2394 msg = con->in_msg;
2395 con->in_msg = NULL;
2396 con->ops->put(con);
2397
2398 /* if first message, set peer_name */
2399 if (con->peer_name.type == 0)
2400 con->peer_name = msg->hdr.src;
2401
2402 con->in_seq++;
2403 mutex_unlock(&con->mutex);
2404
2405 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2406 msg, le64_to_cpu(msg->hdr.seq),
2407 ENTITY_NAME(msg->hdr.src),
2408 le16_to_cpu(msg->hdr.type),
2409 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2410 le32_to_cpu(msg->hdr.front_len),
2411 le32_to_cpu(msg->hdr.data_len),
2412 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2413 con->ops->dispatch(con, msg);
2414
2415 mutex_lock(&con->mutex);
2416 }
2417
2418
2419 /*
2420 * Write something to the socket. Called in a worker thread when the
2421 * socket appears to be writeable and we have something ready to send.
2422 */
2423 static int try_write(struct ceph_connection *con)
2424 {
2425 int ret = 1;
2426
2427 dout("try_write start %p state %lu\n", con, con->state);
2428
2429 more:
2430 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2431
2432 /* open the socket first? */
2433 if (con->state == CON_STATE_PREOPEN) {
2434 BUG_ON(con->sock);
2435 con->state = CON_STATE_CONNECTING;
2436
2437 con_out_kvec_reset(con);
2438 prepare_write_banner(con);
2439 prepare_read_banner(con);
2440
2441 BUG_ON(con->in_msg);
2442 con->in_tag = CEPH_MSGR_TAG_READY;
2443 dout("try_write initiating connect on %p new state %lu\n",
2444 con, con->state);
2445 ret = ceph_tcp_connect(con);
2446 if (ret < 0) {
2447 con->error_msg = "connect error";
2448 goto out;
2449 }
2450 }
2451
2452 more_kvec:
2453 /* kvec data queued? */
2454 if (con->out_skip) {
2455 ret = write_partial_skip(con);
2456 if (ret <= 0)
2457 goto out;
2458 }
2459 if (con->out_kvec_left) {
2460 ret = write_partial_kvec(con);
2461 if (ret <= 0)
2462 goto out;
2463 }
2464
2465 /* msg pages? */
2466 if (con->out_msg) {
2467 if (con->out_msg_done) {
2468 ceph_msg_put(con->out_msg);
2469 con->out_msg = NULL; /* we're done with this one */
2470 goto do_next;
2471 }
2472
2473 ret = write_partial_message_data(con);
2474 if (ret == 1)
2475 goto more_kvec; /* we need to send the footer, too! */
2476 if (ret == 0)
2477 goto out;
2478 if (ret < 0) {
2479 dout("try_write write_partial_message_data err %d\n",
2480 ret);
2481 goto out;
2482 }
2483 }
2484
2485 do_next:
2486 if (con->state == CON_STATE_OPEN) {
2487 /* is anything else pending? */
2488 if (!list_empty(&con->out_queue)) {
2489 prepare_write_message(con);
2490 goto more;
2491 }
2492 if (con->in_seq > con->in_seq_acked) {
2493 prepare_write_ack(con);
2494 goto more;
2495 }
2496 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2497 prepare_write_keepalive(con);
2498 goto more;
2499 }
2500 }
2501
2502 /* Nothing to do! */
2503 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2504 dout("try_write nothing else to write.\n");
2505 ret = 0;
2506 out:
2507 dout("try_write done on %p ret %d\n", con, ret);
2508 return ret;
2509 }
2510
2511
2512
2513 /*
2514 * Read what we can from the socket.
2515 */
2516 static int try_read(struct ceph_connection *con)
2517 {
2518 int ret = -1;
2519
2520 more:
2521 dout("try_read start on %p state %lu\n", con, con->state);
2522 if (con->state != CON_STATE_CONNECTING &&
2523 con->state != CON_STATE_NEGOTIATING &&
2524 con->state != CON_STATE_OPEN)
2525 return 0;
2526
2527 BUG_ON(!con->sock);
2528
2529 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2530 con->in_base_pos);
2531
2532 if (con->state == CON_STATE_CONNECTING) {
2533 dout("try_read connecting\n");
2534 ret = read_partial_banner(con);
2535 if (ret <= 0)
2536 goto out;
2537 ret = process_banner(con);
2538 if (ret < 0)
2539 goto out;
2540
2541 con->state = CON_STATE_NEGOTIATING;
2542
2543 /*
2544 * Received banner is good, exchange connection info.
2545 * Do not reset out_kvec, as sending our banner raced
2546 * with receiving peer banner after connect completed.
2547 */
2548 ret = prepare_write_connect(con);
2549 if (ret < 0)
2550 goto out;
2551 prepare_read_connect(con);
2552
2553 /* Send connection info before awaiting response */
2554 goto out;
2555 }
2556
2557 if (con->state == CON_STATE_NEGOTIATING) {
2558 dout("try_read negotiating\n");
2559 ret = read_partial_connect(con);
2560 if (ret <= 0)
2561 goto out;
2562 ret = process_connect(con);
2563 if (ret < 0)
2564 goto out;
2565 goto more;
2566 }
2567
2568 WARN_ON(con->state != CON_STATE_OPEN);
2569
2570 if (con->in_base_pos < 0) {
2571 /*
2572 * skipping + discarding content.
2573 *
2574 * FIXME: there must be a better way to do this!
2575 */
2576 static char buf[SKIP_BUF_SIZE];
2577 int skip = min((int) sizeof (buf), -con->in_base_pos);
2578
2579 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2580 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2581 if (ret <= 0)
2582 goto out;
2583 con->in_base_pos += ret;
2584 if (con->in_base_pos)
2585 goto more;
2586 }
2587 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2588 /*
2589 * what's next?
2590 */
2591 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2592 if (ret <= 0)
2593 goto out;
2594 dout("try_read got tag %d\n", (int)con->in_tag);
2595 switch (con->in_tag) {
2596 case CEPH_MSGR_TAG_MSG:
2597 prepare_read_message(con);
2598 break;
2599 case CEPH_MSGR_TAG_ACK:
2600 prepare_read_ack(con);
2601 break;
2602 case CEPH_MSGR_TAG_CLOSE:
2603 con_close_socket(con);
2604 con->state = CON_STATE_CLOSED;
2605 goto out;
2606 default:
2607 goto bad_tag;
2608 }
2609 }
2610 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2611 ret = read_partial_message(con);
2612 if (ret <= 0) {
2613 switch (ret) {
2614 case -EBADMSG:
2615 con->error_msg = "bad crc";
2616 ret = -EIO;
2617 break;
2618 case -EIO:
2619 con->error_msg = "io error";
2620 break;
2621 }
2622 goto out;
2623 }
2624 if (con->in_tag == CEPH_MSGR_TAG_READY)
2625 goto more;
2626 process_message(con);
2627 if (con->state == CON_STATE_OPEN)
2628 prepare_read_tag(con);
2629 goto more;
2630 }
2631 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2632 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2633 /*
2634 * the final handshake seq exchange is semantically
2635 * equivalent to an ACK
2636 */
2637 ret = read_partial_ack(con);
2638 if (ret <= 0)
2639 goto out;
2640 process_ack(con);
2641 goto more;
2642 }
2643
2644 out:
2645 dout("try_read done on %p ret %d\n", con, ret);
2646 return ret;
2647
2648 bad_tag:
2649 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2650 con->error_msg = "protocol error, garbage tag";
2651 ret = -1;
2652 goto out;
2653 }
2654
2655
2656 /*
2657 * Atomically queue work on a connection after the specified delay.
2658 * Bump @con reference to avoid races with connection teardown.
2659 * Returns 0 if work was queued, or an error code otherwise.
2660 */
2661 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2662 {
2663 if (!con->ops->get(con)) {
2664 dout("%s %p ref count 0\n", __func__, con);
2665
2666 return -ENOENT;
2667 }
2668
2669 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2670 dout("%s %p - already queued\n", __func__, con);
2671 con->ops->put(con);
2672
2673 return -EBUSY;
2674 }
2675
2676 dout("%s %p %lu\n", __func__, con, delay);
2677
2678 return 0;
2679 }
2680
2681 static void queue_con(struct ceph_connection *con)
2682 {
2683 (void) queue_con_delay(con, 0);
2684 }
2685
2686 static bool con_sock_closed(struct ceph_connection *con)
2687 {
2688 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2689 return false;
2690
2691 #define CASE(x) \
2692 case CON_STATE_ ## x: \
2693 con->error_msg = "socket closed (con state " #x ")"; \
2694 break;
2695
2696 switch (con->state) {
2697 CASE(CLOSED);
2698 CASE(PREOPEN);
2699 CASE(CONNECTING);
2700 CASE(NEGOTIATING);
2701 CASE(OPEN);
2702 CASE(STANDBY);
2703 default:
2704 pr_warning("%s con %p unrecognized state %lu\n",
2705 __func__, con, con->state);
2706 con->error_msg = "unrecognized con state";
2707 BUG();
2708 break;
2709 }
2710 #undef CASE
2711
2712 return true;
2713 }
2714
2715 static bool con_backoff(struct ceph_connection *con)
2716 {
2717 int ret;
2718
2719 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2720 return false;
2721
2722 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2723 if (ret) {
2724 dout("%s: con %p FAILED to back off %lu\n", __func__,
2725 con, con->delay);
2726 BUG_ON(ret == -ENOENT);
2727 con_flag_set(con, CON_FLAG_BACKOFF);
2728 }
2729
2730 return true;
2731 }
2732
2733 /* Finish fault handling; con->mutex must *not* be held here */
2734
2735 static void con_fault_finish(struct ceph_connection *con)
2736 {
2737 /*
2738 * in case we faulted due to authentication, invalidate our
2739 * current tickets so that we can get new ones.
2740 */
2741 if (con->auth_retry && con->ops->invalidate_authorizer) {
2742 dout("calling invalidate_authorizer()\n");
2743 con->ops->invalidate_authorizer(con);
2744 }
2745
2746 if (con->ops->fault)
2747 con->ops->fault(con);
2748 }
2749
2750 /*
2751 * Do some work on a connection. Drop a connection ref when we're done.
2752 */
2753 static void con_work(struct work_struct *work)
2754 {
2755 struct ceph_connection *con = container_of(work, struct ceph_connection,
2756 work.work);
2757 bool fault;
2758
2759 mutex_lock(&con->mutex);
2760 while (true) {
2761 int ret;
2762
2763 if ((fault = con_sock_closed(con))) {
2764 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2765 break;
2766 }
2767 if (con_backoff(con)) {
2768 dout("%s: con %p BACKOFF\n", __func__, con);
2769 break;
2770 }
2771 if (con->state == CON_STATE_STANDBY) {
2772 dout("%s: con %p STANDBY\n", __func__, con);
2773 break;
2774 }
2775 if (con->state == CON_STATE_CLOSED) {
2776 dout("%s: con %p CLOSED\n", __func__, con);
2777 BUG_ON(con->sock);
2778 break;
2779 }
2780 if (con->state == CON_STATE_PREOPEN) {
2781 dout("%s: con %p PREOPEN\n", __func__, con);
2782 BUG_ON(con->sock);
2783 }
2784
2785 ret = try_read(con);
2786 if (ret < 0) {
2787 if (ret == -EAGAIN)
2788 continue;
2789 con->error_msg = "socket error on read";
2790 fault = true;
2791 break;
2792 }
2793
2794 ret = try_write(con);
2795 if (ret < 0) {
2796 if (ret == -EAGAIN)
2797 continue;
2798 con->error_msg = "socket error on write";
2799 fault = true;
2800 }
2801
2802 break; /* If we make it to here, we're done */
2803 }
2804 if (fault)
2805 con_fault(con);
2806 mutex_unlock(&con->mutex);
2807
2808 if (fault)
2809 con_fault_finish(con);
2810
2811 con->ops->put(con);
2812 }
2813
2814 /*
2815 * Generic error/fault handler. A retry mechanism is used with
2816 * exponential backoff
2817 */
2818 static void con_fault(struct ceph_connection *con)
2819 {
2820 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2821 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2822 dout("fault %p state %lu to peer %s\n",
2823 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2824
2825 WARN_ON(con->state != CON_STATE_CONNECTING &&
2826 con->state != CON_STATE_NEGOTIATING &&
2827 con->state != CON_STATE_OPEN);
2828
2829 con_close_socket(con);
2830
2831 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2832 dout("fault on LOSSYTX channel, marking CLOSED\n");
2833 con->state = CON_STATE_CLOSED;
2834 return;
2835 }
2836
2837 if (con->in_msg) {
2838 BUG_ON(con->in_msg->con != con);
2839 con->in_msg->con = NULL;
2840 ceph_msg_put(con->in_msg);
2841 con->in_msg = NULL;
2842 con->ops->put(con);
2843 }
2844
2845 /* Requeue anything that hasn't been acked */
2846 list_splice_init(&con->out_sent, &con->out_queue);
2847
2848 /* If there are no messages queued or keepalive pending, place
2849 * the connection in a STANDBY state */
2850 if (list_empty(&con->out_queue) &&
2851 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2852 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2853 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2854 con->state = CON_STATE_STANDBY;
2855 } else {
2856 /* retry after a delay. */
2857 con->state = CON_STATE_PREOPEN;
2858 if (con->delay == 0)
2859 con->delay = BASE_DELAY_INTERVAL;
2860 else if (con->delay < MAX_DELAY_INTERVAL)
2861 con->delay *= 2;
2862 con_flag_set(con, CON_FLAG_BACKOFF);
2863 queue_con(con);
2864 }
2865 }
2866
2867
2868
2869 /*
2870 * initialize a new messenger instance
2871 */
2872 void ceph_messenger_init(struct ceph_messenger *msgr,
2873 struct ceph_entity_addr *myaddr,
2874 u32 supported_features,
2875 u32 required_features,
2876 bool nocrc)
2877 {
2878 msgr->supported_features = supported_features;
2879 msgr->required_features = required_features;
2880
2881 spin_lock_init(&msgr->global_seq_lock);
2882
2883 if (myaddr)
2884 msgr->inst.addr = *myaddr;
2885
2886 /* select a random nonce */
2887 msgr->inst.addr.type = 0;
2888 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2889 encode_my_addr(msgr);
2890 msgr->nocrc = nocrc;
2891
2892 atomic_set(&msgr->stopping, 0);
2893
2894 dout("%s %p\n", __func__, msgr);
2895 }
2896 EXPORT_SYMBOL(ceph_messenger_init);
2897
2898 static void clear_standby(struct ceph_connection *con)
2899 {
2900 /* come back from STANDBY? */
2901 if (con->state == CON_STATE_STANDBY) {
2902 dout("clear_standby %p and ++connect_seq\n", con);
2903 con->state = CON_STATE_PREOPEN;
2904 con->connect_seq++;
2905 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2906 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2907 }
2908 }
2909
2910 /*
2911 * Queue up an outgoing message on the given connection.
2912 */
2913 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2914 {
2915 /* set src+dst */
2916 msg->hdr.src = con->msgr->inst.name;
2917 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2918 msg->needs_out_seq = true;
2919
2920 mutex_lock(&con->mutex);
2921
2922 if (con->state == CON_STATE_CLOSED) {
2923 dout("con_send %p closed, dropping %p\n", con, msg);
2924 ceph_msg_put(msg);
2925 mutex_unlock(&con->mutex);
2926 return;
2927 }
2928
2929 BUG_ON(msg->con != NULL);
2930 msg->con = con->ops->get(con);
2931 BUG_ON(msg->con == NULL);
2932
2933 BUG_ON(!list_empty(&msg->list_head));
2934 list_add_tail(&msg->list_head, &con->out_queue);
2935 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2936 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2937 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2938 le32_to_cpu(msg->hdr.front_len),
2939 le32_to_cpu(msg->hdr.middle_len),
2940 le32_to_cpu(msg->hdr.data_len));
2941
2942 clear_standby(con);
2943 mutex_unlock(&con->mutex);
2944
2945 /* if there wasn't anything waiting to send before, queue
2946 * new work */
2947 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2948 queue_con(con);
2949 }
2950 EXPORT_SYMBOL(ceph_con_send);
2951
2952 /*
2953 * Revoke a message that was previously queued for send
2954 */
2955 void ceph_msg_revoke(struct ceph_msg *msg)
2956 {
2957 struct ceph_connection *con = msg->con;
2958
2959 if (!con)
2960 return; /* Message not in our possession */
2961
2962 mutex_lock(&con->mutex);
2963 if (!list_empty(&msg->list_head)) {
2964 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2965 list_del_init(&msg->list_head);
2966 BUG_ON(msg->con == NULL);
2967 msg->con->ops->put(msg->con);
2968 msg->con = NULL;
2969 msg->hdr.seq = 0;
2970
2971 ceph_msg_put(msg);
2972 }
2973 if (con->out_msg == msg) {
2974 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2975 con->out_msg = NULL;
2976 if (con->out_kvec_is_msg) {
2977 con->out_skip = con->out_kvec_bytes;
2978 con->out_kvec_is_msg = false;
2979 }
2980 msg->hdr.seq = 0;
2981
2982 ceph_msg_put(msg);
2983 }
2984 mutex_unlock(&con->mutex);
2985 }
2986
2987 /*
2988 * Revoke a message that we may be reading data into
2989 */
2990 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2991 {
2992 struct ceph_connection *con;
2993
2994 BUG_ON(msg == NULL);
2995 if (!msg->con) {
2996 dout("%s msg %p null con\n", __func__, msg);
2997
2998 return; /* Message not in our possession */
2999 }
3000
3001 con = msg->con;
3002 mutex_lock(&con->mutex);
3003 if (con->in_msg == msg) {
3004 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3005 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3006 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3007
3008 /* skip rest of message */
3009 dout("%s %p msg %p revoked\n", __func__, con, msg);
3010 con->in_base_pos = con->in_base_pos -
3011 sizeof(struct ceph_msg_header) -
3012 front_len -
3013 middle_len -
3014 data_len -
3015 sizeof(struct ceph_msg_footer);
3016 ceph_msg_put(con->in_msg);
3017 con->in_msg = NULL;
3018 con->in_tag = CEPH_MSGR_TAG_READY;
3019 con->in_seq++;
3020 } else {
3021 dout("%s %p in_msg %p msg %p no-op\n",
3022 __func__, con, con->in_msg, msg);
3023 }
3024 mutex_unlock(&con->mutex);
3025 }
3026
3027 /*
3028 * Queue a keepalive byte to ensure the tcp connection is alive.
3029 */
3030 void ceph_con_keepalive(struct ceph_connection *con)
3031 {
3032 dout("con_keepalive %p\n", con);
3033 mutex_lock(&con->mutex);
3034 clear_standby(con);
3035 mutex_unlock(&con->mutex);
3036 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3037 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3038 queue_con(con);
3039 }
3040 EXPORT_SYMBOL(ceph_con_keepalive);
3041
3042 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3043 {
3044 struct ceph_msg_data *data;
3045
3046 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3047 return NULL;
3048
3049 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3050 if (data)
3051 data->type = type;
3052 INIT_LIST_HEAD(&data->links);
3053
3054 return data;
3055 }
3056
3057 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3058 {
3059 if (!data)
3060 return;
3061
3062 WARN_ON(!list_empty(&data->links));
3063 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3064 ceph_pagelist_release(data->pagelist);
3065 kfree(data->pagelist);
3066 }
3067 kmem_cache_free(ceph_msg_data_cache, data);
3068 }
3069
3070 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3071 size_t length, size_t alignment)
3072 {
3073 struct ceph_msg_data *data;
3074
3075 BUG_ON(!pages);
3076 BUG_ON(!length);
3077
3078 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3079 BUG_ON(!data);
3080 data->pages = pages;
3081 data->length = length;
3082 data->alignment = alignment & ~PAGE_MASK;
3083
3084 list_add_tail(&data->links, &msg->data);
3085 msg->data_length += length;
3086 }
3087 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3088
3089 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3090 struct ceph_pagelist *pagelist)
3091 {
3092 struct ceph_msg_data *data;
3093
3094 BUG_ON(!pagelist);
3095 BUG_ON(!pagelist->length);
3096
3097 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3098 BUG_ON(!data);
3099 data->pagelist = pagelist;
3100
3101 list_add_tail(&data->links, &msg->data);
3102 msg->data_length += pagelist->length;
3103 }
3104 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3105
3106 #ifdef CONFIG_BLOCK
3107 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3108 size_t length)
3109 {
3110 struct ceph_msg_data *data;
3111
3112 BUG_ON(!bio);
3113
3114 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3115 BUG_ON(!data);
3116 data->bio = bio;
3117 data->bio_length = length;
3118
3119 list_add_tail(&data->links, &msg->data);
3120 msg->data_length += length;
3121 }
3122 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3123 #endif /* CONFIG_BLOCK */
3124
3125 /*
3126 * construct a new message with given type, size
3127 * the new msg has a ref count of 1.
3128 */
3129 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3130 bool can_fail)
3131 {
3132 struct ceph_msg *m;
3133
3134 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3135 if (m == NULL)
3136 goto out;
3137
3138 m->hdr.type = cpu_to_le16(type);
3139 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3140 m->hdr.front_len = cpu_to_le32(front_len);
3141
3142 INIT_LIST_HEAD(&m->list_head);
3143 kref_init(&m->kref);
3144 INIT_LIST_HEAD(&m->data);
3145
3146 /* front */
3147 m->front_alloc_len = front_len;
3148 if (front_len) {
3149 if (front_len > PAGE_CACHE_SIZE) {
3150 m->front.iov_base = __vmalloc(front_len, flags,
3151 PAGE_KERNEL);
3152 m->front_is_vmalloc = true;
3153 } else {
3154 m->front.iov_base = kmalloc(front_len, flags);
3155 }
3156 if (m->front.iov_base == NULL) {
3157 dout("ceph_msg_new can't allocate %d bytes\n",
3158 front_len);
3159 goto out2;
3160 }
3161 } else {
3162 m->front.iov_base = NULL;
3163 }
3164 m->front.iov_len = front_len;
3165
3166 dout("ceph_msg_new %p front %d\n", m, front_len);
3167 return m;
3168
3169 out2:
3170 ceph_msg_put(m);
3171 out:
3172 if (!can_fail) {
3173 pr_err("msg_new can't create type %d front %d\n", type,
3174 front_len);
3175 WARN_ON(1);
3176 } else {
3177 dout("msg_new can't create type %d front %d\n", type,
3178 front_len);
3179 }
3180 return NULL;
3181 }
3182 EXPORT_SYMBOL(ceph_msg_new);
3183
3184 /*
3185 * Allocate "middle" portion of a message, if it is needed and wasn't
3186 * allocated by alloc_msg. This allows us to read a small fixed-size
3187 * per-type header in the front and then gracefully fail (i.e.,
3188 * propagate the error to the caller based on info in the front) when
3189 * the middle is too large.
3190 */
3191 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3192 {
3193 int type = le16_to_cpu(msg->hdr.type);
3194 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3195
3196 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3197 ceph_msg_type_name(type), middle_len);
3198 BUG_ON(!middle_len);
3199 BUG_ON(msg->middle);
3200
3201 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3202 if (!msg->middle)
3203 return -ENOMEM;
3204 return 0;
3205 }
3206
3207 /*
3208 * Allocate a message for receiving an incoming message on a
3209 * connection, and save the result in con->in_msg. Uses the
3210 * connection's private alloc_msg op if available.
3211 *
3212 * Returns 0 on success, or a negative error code.
3213 *
3214 * On success, if we set *skip = 1:
3215 * - the next message should be skipped and ignored.
3216 * - con->in_msg == NULL
3217 * or if we set *skip = 0:
3218 * - con->in_msg is non-null.
3219 * On error (ENOMEM, EAGAIN, ...),
3220 * - con->in_msg == NULL
3221 */
3222 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3223 {
3224 struct ceph_msg_header *hdr = &con->in_hdr;
3225 int middle_len = le32_to_cpu(hdr->middle_len);
3226 struct ceph_msg *msg;
3227 int ret = 0;
3228
3229 BUG_ON(con->in_msg != NULL);
3230 BUG_ON(!con->ops->alloc_msg);
3231
3232 mutex_unlock(&con->mutex);
3233 msg = con->ops->alloc_msg(con, hdr, skip);
3234 mutex_lock(&con->mutex);
3235 if (con->state != CON_STATE_OPEN) {
3236 if (msg)
3237 ceph_msg_put(msg);
3238 return -EAGAIN;
3239 }
3240 if (msg) {
3241 BUG_ON(*skip);
3242 con->in_msg = msg;
3243 con->in_msg->con = con->ops->get(con);
3244 BUG_ON(con->in_msg->con == NULL);
3245 } else {
3246 /*
3247 * Null message pointer means either we should skip
3248 * this message or we couldn't allocate memory. The
3249 * former is not an error.
3250 */
3251 if (*skip)
3252 return 0;
3253 con->error_msg = "error allocating memory for incoming message";
3254
3255 return -ENOMEM;
3256 }
3257 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3258
3259 if (middle_len && !con->in_msg->middle) {
3260 ret = ceph_alloc_middle(con, con->in_msg);
3261 if (ret < 0) {
3262 ceph_msg_put(con->in_msg);
3263 con->in_msg = NULL;
3264 }
3265 }
3266
3267 return ret;
3268 }
3269
3270
3271 /*
3272 * Free a generically kmalloc'd message.
3273 */
3274 void ceph_msg_kfree(struct ceph_msg *m)
3275 {
3276 dout("msg_kfree %p\n", m);
3277 if (m->front_is_vmalloc)
3278 vfree(m->front.iov_base);
3279 else
3280 kfree(m->front.iov_base);
3281 kmem_cache_free(ceph_msg_cache, m);
3282 }
3283
3284 /*
3285 * Drop a msg ref. Destroy as needed.
3286 */
3287 void ceph_msg_last_put(struct kref *kref)
3288 {
3289 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3290 LIST_HEAD(data);
3291 struct list_head *links;
3292 struct list_head *next;
3293
3294 dout("ceph_msg_put last one on %p\n", m);
3295 WARN_ON(!list_empty(&m->list_head));
3296
3297 /* drop middle, data, if any */
3298 if (m->middle) {
3299 ceph_buffer_put(m->middle);
3300 m->middle = NULL;
3301 }
3302
3303 list_splice_init(&m->data, &data);
3304 list_for_each_safe(links, next, &data) {
3305 struct ceph_msg_data *data;
3306
3307 data = list_entry(links, struct ceph_msg_data, links);
3308 list_del_init(links);
3309 ceph_msg_data_destroy(data);
3310 }
3311 m->data_length = 0;
3312
3313 if (m->pool)
3314 ceph_msgpool_put(m->pool, m);
3315 else
3316 ceph_msg_kfree(m);
3317 }
3318 EXPORT_SYMBOL(ceph_msg_last_put);
3319
3320 void ceph_msg_dump(struct ceph_msg *msg)
3321 {
3322 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3323 msg->front_alloc_len, msg->data_length);
3324 print_hex_dump(KERN_DEBUG, "header: ",
3325 DUMP_PREFIX_OFFSET, 16, 1,
3326 &msg->hdr, sizeof(msg->hdr), true);
3327 print_hex_dump(KERN_DEBUG, " front: ",
3328 DUMP_PREFIX_OFFSET, 16, 1,
3329 msg->front.iov_base, msg->front.iov_len, true);
3330 if (msg->middle)
3331 print_hex_dump(KERN_DEBUG, "middle: ",
3332 DUMP_PREFIX_OFFSET, 16, 1,
3333 msg->middle->vec.iov_base,
3334 msg->middle->vec.iov_len, true);
3335 print_hex_dump(KERN_DEBUG, "footer: ",
3336 DUMP_PREFIX_OFFSET, 16, 1,
3337 &msg->footer, sizeof(msg->footer), true);
3338 }
3339 EXPORT_SYMBOL(ceph_msg_dump);