Merge tag 'v3.10.90' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 #include <linux/debugfs.h>
47
48 #include <asm/tlbflush.h>
49 #include <asm/div64.h>
50
51 #include <linux/swapops.h>
52 #include <linux/balloon_compaction.h>
53
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/vmscan.h>
58
59 struct scan_control {
60 /* Incremented by the number of inactive pages that were scanned */
61 unsigned long nr_scanned;
62
63 /* Number of pages freed so far during a call to shrink_zones() */
64 unsigned long nr_reclaimed;
65
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 unsigned long hibernation_mode;
70
71 /* This context's GFP mask */
72 gfp_t gfp_mask;
73
74 int may_writepage;
75
76 /* Can mapped pages be reclaimed? */
77 int may_unmap;
78
79 /* Can pages be swapped as part of reclaim? */
80 int may_swap;
81
82 int order;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /*
88 * The memory cgroup that hit its limit and as a result is the
89 * primary target of this reclaim invocation.
90 */
91 struct mem_cgroup *target_mem_cgroup;
92
93 /*
94 * Nodemask of nodes allowed by the caller. If NULL, all nodes
95 * are scanned.
96 */
97 nodemask_t *nodemask;
98 };
99
100 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101
102 #ifdef ARCH_HAS_PREFETCH
103 #define prefetch_prev_lru_page(_page, _base, _field) \
104 do { \
105 if ((_page)->lru.prev != _base) { \
106 struct page *prev; \
107 \
108 prev = lru_to_page(&(_page->lru)); \
109 prefetch(&prev->_field); \
110 } \
111 } while (0)
112 #else
113 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114 #endif
115
116 #ifdef ARCH_HAS_PREFETCHW
117 #define prefetchw_prev_lru_page(_page, _base, _field) \
118 do { \
119 if ((_page)->lru.prev != _base) { \
120 struct page *prev; \
121 \
122 prev = lru_to_page(&(_page->lru)); \
123 prefetchw(&prev->_field); \
124 } \
125 } while (0)
126 #else
127 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 #endif
129
130 /*
131 * From 0 .. 100. Higher means more swappy.
132 */
133 int vm_swappiness = 60;
134 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
135
136 static LIST_HEAD(shrinker_list);
137 static DECLARE_RWSEM(shrinker_rwsem);
138
139 #ifdef CONFIG_MEMCG
140 static bool global_reclaim(struct scan_control *sc)
141 {
142 return !sc->target_mem_cgroup;
143 }
144 #else
145 static bool global_reclaim(struct scan_control *sc)
146 {
147 return true;
148 }
149 #endif
150
151 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
152 {
153 if (!mem_cgroup_disabled())
154 return mem_cgroup_get_lru_size(lruvec, lru);
155
156 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
157 }
158
159 struct dentry *debug_file;
160
161 static int debug_shrinker_show(struct seq_file *s, void *unused)
162 {
163 struct shrinker *shrinker;
164 struct shrink_control sc;
165
166 sc.gfp_mask = -1;
167 sc.nr_to_scan = 0;
168
169 down_read(&shrinker_rwsem);
170 list_for_each_entry(shrinker, &shrinker_list, list) {
171 int num_objs;
172
173 num_objs = shrinker->shrink(shrinker, &sc);
174 seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
175 }
176 up_read(&shrinker_rwsem);
177 return 0;
178 }
179
180 static int debug_shrinker_open(struct inode *inode, struct file *file)
181 {
182 return single_open(file, debug_shrinker_show, inode->i_private);
183 }
184
185 static const struct file_operations debug_shrinker_fops = {
186 .open = debug_shrinker_open,
187 .read = seq_read,
188 .llseek = seq_lseek,
189 .release = single_release,
190 };
191
192 /*
193 * Add a shrinker callback to be called from the vm
194 */
195 void register_shrinker(struct shrinker *shrinker)
196 {
197 atomic_long_set(&shrinker->nr_in_batch, 0);
198 down_write(&shrinker_rwsem);
199 list_add_tail(&shrinker->list, &shrinker_list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(register_shrinker);
203
204 static int __init add_shrinker_debug(void)
205 {
206 debugfs_create_file("shrinker", 0644, NULL, NULL,
207 &debug_shrinker_fops);
208 return 0;
209 }
210
211 late_initcall(add_shrinker_debug);
212
213 /*
214 * Remove one
215 */
216 void unregister_shrinker(struct shrinker *shrinker)
217 {
218 down_write(&shrinker_rwsem);
219 list_del(&shrinker->list);
220 up_write(&shrinker_rwsem);
221 }
222 EXPORT_SYMBOL(unregister_shrinker);
223
224 static inline int do_shrinker_shrink(struct shrinker *shrinker,
225 struct shrink_control *sc,
226 unsigned long nr_to_scan)
227 {
228 sc->nr_to_scan = nr_to_scan;
229 return (*shrinker->shrink)(shrinker, sc);
230 }
231
232 #define SHRINK_BATCH 128
233 /*
234 * Call the shrink functions to age shrinkable caches
235 *
236 * Here we assume it costs one seek to replace a lru page and that it also
237 * takes a seek to recreate a cache object. With this in mind we age equal
238 * percentages of the lru and ageable caches. This should balance the seeks
239 * generated by these structures.
240 *
241 * If the vm encountered mapped pages on the LRU it increase the pressure on
242 * slab to avoid swapping.
243 *
244 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
245 *
246 * `lru_pages' represents the number of on-LRU pages in all the zones which
247 * are eligible for the caller's allocation attempt. It is used for balancing
248 * slab reclaim versus page reclaim.
249 *
250 * Returns the number of slab objects which we shrunk.
251 */
252 unsigned long shrink_slab(struct shrink_control *shrink,
253 unsigned long nr_pages_scanned,
254 unsigned long lru_pages)
255 {
256 struct shrinker *shrinker;
257 unsigned long ret = 0;
258
259 if (nr_pages_scanned == 0)
260 nr_pages_scanned = SWAP_CLUSTER_MAX;
261
262 if (!down_read_trylock(&shrinker_rwsem)) {
263 /* Assume we'll be able to shrink next time */
264 ret = 1;
265 goto out;
266 }
267
268 list_for_each_entry(shrinker, &shrinker_list, list) {
269 unsigned long long delta;
270 long total_scan;
271 long max_pass;
272 int shrink_ret = 0;
273 long nr;
274 long new_nr;
275 long batch_size = shrinker->batch ? shrinker->batch
276 : SHRINK_BATCH;
277
278 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
279 if (max_pass <= 0)
280 continue;
281
282 /*
283 * copy the current shrinker scan count into a local variable
284 * and zero it so that other concurrent shrinker invocations
285 * don't also do this scanning work.
286 */
287 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
288
289 total_scan = nr;
290 delta = (4 * nr_pages_scanned) / shrinker->seeks;
291 delta *= max_pass;
292 do_div(delta, lru_pages + 1);
293 total_scan += delta;
294 if (total_scan < 0) {
295 printk(KERN_ERR "shrink_slab: %pF negative objects to "
296 "delete nr=%ld\n",
297 shrinker->shrink, total_scan);
298 total_scan = max_pass;
299 }
300
301 /*
302 * We need to avoid excessive windup on filesystem shrinkers
303 * due to large numbers of GFP_NOFS allocations causing the
304 * shrinkers to return -1 all the time. This results in a large
305 * nr being built up so when a shrink that can do some work
306 * comes along it empties the entire cache due to nr >>>
307 * max_pass. This is bad for sustaining a working set in
308 * memory.
309 *
310 * Hence only allow the shrinker to scan the entire cache when
311 * a large delta change is calculated directly.
312 */
313 if (delta < max_pass / 4)
314 total_scan = min(total_scan, max_pass / 2);
315
316 /*
317 * Avoid risking looping forever due to too large nr value:
318 * never try to free more than twice the estimate number of
319 * freeable entries.
320 */
321 if (total_scan > max_pass * 2)
322 total_scan = max_pass * 2;
323
324 trace_mm_shrink_slab_start(shrinker, shrink, nr,
325 nr_pages_scanned, lru_pages,
326 max_pass, delta, total_scan);
327
328 while (total_scan >= batch_size) {
329 int nr_before;
330
331 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
332 shrink_ret = do_shrinker_shrink(shrinker, shrink,
333 batch_size);
334 if (shrink_ret == -1)
335 break;
336 if (shrink_ret < nr_before)
337 ret += nr_before - shrink_ret;
338 count_vm_events(SLABS_SCANNED, batch_size);
339 total_scan -= batch_size;
340
341 cond_resched();
342 }
343
344 /*
345 * move the unused scan count back into the shrinker in a
346 * manner that handles concurrent updates. If we exhausted the
347 * scan, there is no need to do an update.
348 */
349 if (total_scan > 0)
350 new_nr = atomic_long_add_return(total_scan,
351 &shrinker->nr_in_batch);
352 else
353 new_nr = atomic_long_read(&shrinker->nr_in_batch);
354
355 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
356 }
357 up_read(&shrinker_rwsem);
358 out:
359 cond_resched();
360 return ret;
361 }
362
363 static inline int is_page_cache_freeable(struct page *page)
364 {
365 /*
366 * A freeable page cache page is referenced only by the caller
367 * that isolated the page, the page cache radix tree and
368 * optional buffer heads at page->private.
369 */
370 return page_count(page) - page_has_private(page) == 2;
371 }
372
373 static int may_write_to_queue(struct backing_dev_info *bdi,
374 struct scan_control *sc)
375 {
376 if (current->flags & PF_SWAPWRITE)
377 return 1;
378 if (!bdi_write_congested(bdi))
379 return 1;
380 if (bdi == current->backing_dev_info)
381 return 1;
382 return 0;
383 }
384
385 /*
386 * We detected a synchronous write error writing a page out. Probably
387 * -ENOSPC. We need to propagate that into the address_space for a subsequent
388 * fsync(), msync() or close().
389 *
390 * The tricky part is that after writepage we cannot touch the mapping: nothing
391 * prevents it from being freed up. But we have a ref on the page and once
392 * that page is locked, the mapping is pinned.
393 *
394 * We're allowed to run sleeping lock_page() here because we know the caller has
395 * __GFP_FS.
396 */
397 static void handle_write_error(struct address_space *mapping,
398 struct page *page, int error)
399 {
400 lock_page(page);
401 if (page_mapping(page) == mapping)
402 mapping_set_error(mapping, error);
403 unlock_page(page);
404 }
405
406 /* possible outcome of pageout() */
407 typedef enum {
408 /* failed to write page out, page is locked */
409 PAGE_KEEP,
410 /* move page to the active list, page is locked */
411 PAGE_ACTIVATE,
412 /* page has been sent to the disk successfully, page is unlocked */
413 PAGE_SUCCESS,
414 /* page is clean and locked */
415 PAGE_CLEAN,
416 } pageout_t;
417
418 /*
419 * pageout is called by shrink_page_list() for each dirty page.
420 * Calls ->writepage().
421 */
422 static pageout_t pageout(struct page *page, struct address_space *mapping,
423 struct scan_control *sc)
424 {
425 /*
426 * If the page is dirty, only perform writeback if that write
427 * will be non-blocking. To prevent this allocation from being
428 * stalled by pagecache activity. But note that there may be
429 * stalls if we need to run get_block(). We could test
430 * PagePrivate for that.
431 *
432 * If this process is currently in __generic_file_aio_write() against
433 * this page's queue, we can perform writeback even if that
434 * will block.
435 *
436 * If the page is swapcache, write it back even if that would
437 * block, for some throttling. This happens by accident, because
438 * swap_backing_dev_info is bust: it doesn't reflect the
439 * congestion state of the swapdevs. Easy to fix, if needed.
440 */
441 if (!is_page_cache_freeable(page))
442 return PAGE_KEEP;
443 if (!mapping) {
444 /*
445 * Some data journaling orphaned pages can have
446 * page->mapping == NULL while being dirty with clean buffers.
447 */
448 if (page_has_private(page)) {
449 if (try_to_free_buffers(page)) {
450 ClearPageDirty(page);
451 printk("%s: orphaned page\n", __func__);
452 return PAGE_CLEAN;
453 }
454 }
455 return PAGE_KEEP;
456 }
457 if (mapping->a_ops->writepage == NULL)
458 return PAGE_ACTIVATE;
459 if (!may_write_to_queue(mapping->backing_dev_info, sc))
460 return PAGE_KEEP;
461
462 if (clear_page_dirty_for_io(page)) {
463 int res;
464 struct writeback_control wbc = {
465 .sync_mode = WB_SYNC_NONE,
466 .nr_to_write = SWAP_CLUSTER_MAX,
467 .range_start = 0,
468 .range_end = LLONG_MAX,
469 .for_reclaim = 1,
470 };
471
472 SetPageReclaim(page);
473 res = mapping->a_ops->writepage(page, &wbc);
474 if (res < 0)
475 handle_write_error(mapping, page, res);
476 if (res == AOP_WRITEPAGE_ACTIVATE) {
477 ClearPageReclaim(page);
478 return PAGE_ACTIVATE;
479 }
480
481 if (!PageWriteback(page)) {
482 /* synchronous write or broken a_ops? */
483 ClearPageReclaim(page);
484 }
485 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
486 inc_zone_page_state(page, NR_VMSCAN_WRITE);
487 return PAGE_SUCCESS;
488 }
489
490 return PAGE_CLEAN;
491 }
492
493 /*
494 * Same as remove_mapping, but if the page is removed from the mapping, it
495 * gets returned with a refcount of 0.
496 */
497 static int __remove_mapping(struct address_space *mapping, struct page *page)
498 {
499 BUG_ON(!PageLocked(page));
500 BUG_ON(mapping != page_mapping(page));
501
502 spin_lock_irq(&mapping->tree_lock);
503 /*
504 * The non racy check for a busy page.
505 *
506 * Must be careful with the order of the tests. When someone has
507 * a ref to the page, it may be possible that they dirty it then
508 * drop the reference. So if PageDirty is tested before page_count
509 * here, then the following race may occur:
510 *
511 * get_user_pages(&page);
512 * [user mapping goes away]
513 * write_to(page);
514 * !PageDirty(page) [good]
515 * SetPageDirty(page);
516 * put_page(page);
517 * !page_count(page) [good, discard it]
518 *
519 * [oops, our write_to data is lost]
520 *
521 * Reversing the order of the tests ensures such a situation cannot
522 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
523 * load is not satisfied before that of page->_count.
524 *
525 * Note that if SetPageDirty is always performed via set_page_dirty,
526 * and thus under tree_lock, then this ordering is not required.
527 */
528 if (!page_freeze_refs(page, 2))
529 goto cannot_free;
530 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
531 if (unlikely(PageDirty(page))) {
532 page_unfreeze_refs(page, 2);
533 goto cannot_free;
534 }
535
536 if (PageSwapCache(page)) {
537 swp_entry_t swap = { .val = page_private(page) };
538 __delete_from_swap_cache(page);
539 spin_unlock_irq(&mapping->tree_lock);
540 swapcache_free(swap, page);
541 } else {
542 void (*freepage)(struct page *);
543
544 freepage = mapping->a_ops->freepage;
545
546 __delete_from_page_cache(page);
547 spin_unlock_irq(&mapping->tree_lock);
548 mem_cgroup_uncharge_cache_page(page);
549
550 if (freepage != NULL)
551 freepage(page);
552 }
553
554 return 1;
555
556 cannot_free:
557 spin_unlock_irq(&mapping->tree_lock);
558 return 0;
559 }
560
561 /*
562 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
563 * someone else has a ref on the page, abort and return 0. If it was
564 * successfully detached, return 1. Assumes the caller has a single ref on
565 * this page.
566 */
567 int remove_mapping(struct address_space *mapping, struct page *page)
568 {
569 if (__remove_mapping(mapping, page)) {
570 /*
571 * Unfreezing the refcount with 1 rather than 2 effectively
572 * drops the pagecache ref for us without requiring another
573 * atomic operation.
574 */
575 page_unfreeze_refs(page, 1);
576 return 1;
577 }
578 return 0;
579 }
580
581 /**
582 * putback_lru_page - put previously isolated page onto appropriate LRU list
583 * @page: page to be put back to appropriate lru list
584 *
585 * Add previously isolated @page to appropriate LRU list.
586 * Page may still be unevictable for other reasons.
587 *
588 * lru_lock must not be held, interrupts must be enabled.
589 */
590 void putback_lru_page(struct page *page)
591 {
592 int lru;
593 int active = !!TestClearPageActive(page);
594 int was_unevictable = PageUnevictable(page);
595
596 VM_BUG_ON(PageLRU(page));
597
598 redo:
599 ClearPageUnevictable(page);
600
601 if (page_evictable(page)) {
602 /*
603 * For evictable pages, we can use the cache.
604 * In event of a race, worst case is we end up with an
605 * unevictable page on [in]active list.
606 * We know how to handle that.
607 */
608 lru = active + page_lru_base_type(page);
609 lru_cache_add_lru(page, lru);
610 } else {
611 /*
612 * Put unevictable pages directly on zone's unevictable
613 * list.
614 */
615 lru = LRU_UNEVICTABLE;
616 add_page_to_unevictable_list(page);
617 /*
618 * When racing with an mlock or AS_UNEVICTABLE clearing
619 * (page is unlocked) make sure that if the other thread
620 * does not observe our setting of PG_lru and fails
621 * isolation/check_move_unevictable_pages,
622 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
623 * the page back to the evictable list.
624 *
625 * The other side is TestClearPageMlocked() or shmem_lock().
626 */
627 smp_mb();
628 }
629
630 /*
631 * page's status can change while we move it among lru. If an evictable
632 * page is on unevictable list, it never be freed. To avoid that,
633 * check after we added it to the list, again.
634 */
635 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
636 if (!isolate_lru_page(page)) {
637 put_page(page);
638 goto redo;
639 }
640 /* This means someone else dropped this page from LRU
641 * So, it will be freed or putback to LRU again. There is
642 * nothing to do here.
643 */
644 }
645
646 if (was_unevictable && lru != LRU_UNEVICTABLE)
647 count_vm_event(UNEVICTABLE_PGRESCUED);
648 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
649 count_vm_event(UNEVICTABLE_PGCULLED);
650
651 put_page(page); /* drop ref from isolate */
652 }
653
654 enum page_references {
655 PAGEREF_RECLAIM,
656 PAGEREF_RECLAIM_CLEAN,
657 PAGEREF_KEEP,
658 PAGEREF_ACTIVATE,
659 };
660
661 static enum page_references page_check_references(struct page *page,
662 struct scan_control *sc)
663 {
664 int referenced_ptes, referenced_page;
665 unsigned long vm_flags;
666
667 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
668 &vm_flags);
669 referenced_page = TestClearPageReferenced(page);
670
671 /*
672 * Mlock lost the isolation race with us. Let try_to_unmap()
673 * move the page to the unevictable list.
674 */
675 if (vm_flags & VM_LOCKED)
676 return PAGEREF_RECLAIM;
677
678 if (referenced_ptes) {
679 if (PageSwapBacked(page))
680 return PAGEREF_ACTIVATE;
681 /*
682 * All mapped pages start out with page table
683 * references from the instantiating fault, so we need
684 * to look twice if a mapped file page is used more
685 * than once.
686 *
687 * Mark it and spare it for another trip around the
688 * inactive list. Another page table reference will
689 * lead to its activation.
690 *
691 * Note: the mark is set for activated pages as well
692 * so that recently deactivated but used pages are
693 * quickly recovered.
694 */
695 SetPageReferenced(page);
696
697 if (referenced_page || referenced_ptes > 1)
698 return PAGEREF_ACTIVATE;
699
700 /*
701 * Activate file-backed executable pages after first usage.
702 */
703 if (vm_flags & VM_EXEC)
704 return PAGEREF_ACTIVATE;
705
706 return PAGEREF_KEEP;
707 }
708
709 /* Reclaim if clean, defer dirty pages to writeback */
710 if (referenced_page && !PageSwapBacked(page))
711 return PAGEREF_RECLAIM_CLEAN;
712
713 return PAGEREF_RECLAIM;
714 }
715
716 /*
717 * shrink_page_list() returns the number of reclaimed pages
718 */
719 static unsigned long shrink_page_list(struct list_head *page_list,
720 struct zone *zone,
721 struct scan_control *sc,
722 enum ttu_flags ttu_flags,
723 unsigned long *ret_nr_dirty,
724 unsigned long *ret_nr_writeback,
725 bool force_reclaim)
726 {
727 LIST_HEAD(ret_pages);
728 LIST_HEAD(free_pages);
729 int pgactivate = 0;
730 unsigned long nr_dirty = 0;
731 unsigned long nr_congested = 0;
732 unsigned long nr_reclaimed = 0;
733 unsigned long nr_writeback = 0;
734
735 cond_resched();
736
737 mem_cgroup_uncharge_start();
738 while (!list_empty(page_list)) {
739 struct address_space *mapping;
740 struct page *page;
741 int may_enter_fs;
742 enum page_references references = PAGEREF_RECLAIM_CLEAN;
743
744 cond_resched();
745
746 page = lru_to_page(page_list);
747 list_del(&page->lru);
748
749 if (!trylock_page(page))
750 goto keep;
751
752 VM_BUG_ON(PageActive(page));
753 VM_BUG_ON(page_zone(page) != zone);
754
755 sc->nr_scanned++;
756
757 if (unlikely(!page_evictable(page)))
758 goto cull_mlocked;
759
760 if (!sc->may_unmap && page_mapped(page))
761 goto keep_locked;
762
763 /* Double the slab pressure for mapped and swapcache pages */
764 if (page_mapped(page) || PageSwapCache(page))
765 sc->nr_scanned++;
766
767 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
768 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
769
770 if (PageWriteback(page)) {
771 /*
772 * memcg doesn't have any dirty pages throttling so we
773 * could easily OOM just because too many pages are in
774 * writeback and there is nothing else to reclaim.
775 *
776 * Require may_enter_fs to wait on writeback, because
777 * fs may not have submitted IO yet. And a loop driver
778 * thread might enter reclaim, and deadlock if it waits
779 * on a page for which it is needed to do the write
780 * (loop masks off __GFP_IO|__GFP_FS for this reason);
781 * but more thought would probably show more reasons.
782 */
783 if (global_reclaim(sc) ||
784 !PageReclaim(page) || !may_enter_fs) {
785 /*
786 * This is slightly racy - end_page_writeback()
787 * might have just cleared PageReclaim, then
788 * setting PageReclaim here end up interpreted
789 * as PageReadahead - but that does not matter
790 * enough to care. What we do want is for this
791 * page to have PageReclaim set next time memcg
792 * reclaim reaches the tests above, so it will
793 * then wait_on_page_writeback() to avoid OOM;
794 * and it's also appropriate in global reclaim.
795 */
796 SetPageReclaim(page);
797 nr_writeback++;
798 goto keep_locked;
799 }
800 wait_on_page_writeback(page);
801 }
802
803 if (!force_reclaim)
804 references = page_check_references(page, sc);
805
806 switch (references) {
807 case PAGEREF_ACTIVATE:
808 goto activate_locked;
809 case PAGEREF_KEEP:
810 goto keep_locked;
811 case PAGEREF_RECLAIM:
812 case PAGEREF_RECLAIM_CLEAN:
813 ; /* try to reclaim the page below */
814 }
815
816 /*
817 * Anonymous process memory has backing store?
818 * Try to allocate it some swap space here.
819 */
820 if (PageAnon(page) && !PageSwapCache(page)) {
821 if (!(sc->gfp_mask & __GFP_IO))
822 goto keep_locked;
823 if (!add_to_swap(page, page_list))
824 goto activate_locked;
825 may_enter_fs = 1;
826 }
827
828 mapping = page_mapping(page);
829
830 /*
831 * The page is mapped into the page tables of one or more
832 * processes. Try to unmap it here.
833 */
834 if (page_mapped(page) && mapping) {
835 switch (try_to_unmap(page, ttu_flags)) {
836 case SWAP_FAIL:
837 goto activate_locked;
838 case SWAP_AGAIN:
839 goto keep_locked;
840 case SWAP_MLOCK:
841 goto cull_mlocked;
842 case SWAP_SUCCESS:
843 ; /* try to free the page below */
844 }
845 }
846
847 if (PageDirty(page)) {
848 nr_dirty++;
849
850 /*
851 * Only kswapd can writeback filesystem pages to
852 * avoid risk of stack overflow but do not writeback
853 * unless under significant pressure.
854 */
855 if (page_is_file_cache(page) &&
856 (!current_is_kswapd() ||
857 sc->priority >= DEF_PRIORITY - 2)) {
858 /*
859 * Immediately reclaim when written back.
860 * Similar in principal to deactivate_page()
861 * except we already have the page isolated
862 * and know it's dirty
863 */
864 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
865 SetPageReclaim(page);
866
867 goto keep_locked;
868 }
869
870 if (references == PAGEREF_RECLAIM_CLEAN)
871 goto keep_locked;
872 if (!may_enter_fs)
873 goto keep_locked;
874 if (!sc->may_writepage)
875 goto keep_locked;
876
877 /* Page is dirty, try to write it out here */
878 switch (pageout(page, mapping, sc)) {
879 case PAGE_KEEP:
880 nr_congested++;
881 goto keep_locked;
882 case PAGE_ACTIVATE:
883 goto activate_locked;
884 case PAGE_SUCCESS:
885 if (PageWriteback(page))
886 goto keep;
887 if (PageDirty(page))
888 goto keep;
889
890 /*
891 * A synchronous write - probably a ramdisk. Go
892 * ahead and try to reclaim the page.
893 */
894 if (!trylock_page(page))
895 goto keep;
896 if (PageDirty(page) || PageWriteback(page))
897 goto keep_locked;
898 mapping = page_mapping(page);
899 case PAGE_CLEAN:
900 ; /* try to free the page below */
901 }
902 }
903
904 /*
905 * If the page has buffers, try to free the buffer mappings
906 * associated with this page. If we succeed we try to free
907 * the page as well.
908 *
909 * We do this even if the page is PageDirty().
910 * try_to_release_page() does not perform I/O, but it is
911 * possible for a page to have PageDirty set, but it is actually
912 * clean (all its buffers are clean). This happens if the
913 * buffers were written out directly, with submit_bh(). ext3
914 * will do this, as well as the blockdev mapping.
915 * try_to_release_page() will discover that cleanness and will
916 * drop the buffers and mark the page clean - it can be freed.
917 *
918 * Rarely, pages can have buffers and no ->mapping. These are
919 * the pages which were not successfully invalidated in
920 * truncate_complete_page(). We try to drop those buffers here
921 * and if that worked, and the page is no longer mapped into
922 * process address space (page_count == 1) it can be freed.
923 * Otherwise, leave the page on the LRU so it is swappable.
924 */
925 if (page_has_private(page)) {
926 if (!try_to_release_page(page, sc->gfp_mask))
927 goto activate_locked;
928 if (!mapping && page_count(page) == 1) {
929 unlock_page(page);
930 if (put_page_testzero(page))
931 goto free_it;
932 else {
933 /*
934 * rare race with speculative reference.
935 * the speculative reference will free
936 * this page shortly, so we may
937 * increment nr_reclaimed here (and
938 * leave it off the LRU).
939 */
940 nr_reclaimed++;
941 continue;
942 }
943 }
944 }
945
946 if (!mapping || !__remove_mapping(mapping, page))
947 goto keep_locked;
948
949 /*
950 * At this point, we have no other references and there is
951 * no way to pick any more up (removed from LRU, removed
952 * from pagecache). Can use non-atomic bitops now (and
953 * we obviously don't have to worry about waking up a process
954 * waiting on the page lock, because there are no references.
955 */
956 __clear_page_locked(page);
957 free_it:
958 nr_reclaimed++;
959
960 /*
961 * Is there need to periodically free_page_list? It would
962 * appear not as the counts should be low
963 */
964 list_add(&page->lru, &free_pages);
965 continue;
966
967 cull_mlocked:
968 if (PageSwapCache(page))
969 try_to_free_swap(page);
970 unlock_page(page);
971 list_add(&page->lru, &ret_pages);
972 continue;
973
974 activate_locked:
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page) && vm_swap_full())
977 try_to_free_swap(page);
978 VM_BUG_ON(PageActive(page));
979 SetPageActive(page);
980 pgactivate++;
981 keep_locked:
982 unlock_page(page);
983 keep:
984 list_add(&page->lru, &ret_pages);
985 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
986 }
987
988 /*
989 * Tag a zone as congested if all the dirty pages encountered were
990 * backed by a congested BDI. In this case, reclaimers should just
991 * back off and wait for congestion to clear because further reclaim
992 * will encounter the same problem
993 */
994 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
995 zone_set_flag(zone, ZONE_CONGESTED);
996
997 free_hot_cold_page_list(&free_pages, 1);
998
999 list_splice(&ret_pages, page_list);
1000 count_vm_events(PGACTIVATE, pgactivate);
1001 mem_cgroup_uncharge_end();
1002 *ret_nr_dirty += nr_dirty;
1003 *ret_nr_writeback += nr_writeback;
1004 return nr_reclaimed;
1005 }
1006
1007 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1008 struct list_head *page_list)
1009 {
1010 struct scan_control sc = {
1011 .gfp_mask = GFP_KERNEL,
1012 .priority = DEF_PRIORITY,
1013 .may_unmap = 1,
1014 };
1015 unsigned long ret, dummy1, dummy2;
1016 struct page *page, *next;
1017 LIST_HEAD(clean_pages);
1018
1019 list_for_each_entry_safe(page, next, page_list, lru) {
1020 if (page_is_file_cache(page) && !PageDirty(page) &&
1021 !isolated_balloon_page(page)) {
1022 ClearPageActive(page);
1023 list_move(&page->lru, &clean_pages);
1024 }
1025 }
1026
1027 ret = shrink_page_list(&clean_pages, zone, &sc,
1028 TTU_UNMAP|TTU_IGNORE_ACCESS,
1029 &dummy1, &dummy2, true);
1030 list_splice(&clean_pages, page_list);
1031 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1032 return ret;
1033 }
1034
1035 /*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1046 {
1047 int ret = -EINVAL;
1048
1049 /* Only take pages on the LRU. */
1050 if (!PageLRU(page))
1051 return ret;
1052
1053 /* Compaction should not handle unevictable pages but CMA can do so */
1054 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1055 return ret;
1056
1057 ret = -EBUSY;
1058
1059 /*
1060 * To minimise LRU disruption, the caller can indicate that it only
1061 * wants to isolate pages it will be able to operate on without
1062 * blocking - clean pages for the most part.
1063 *
1064 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1065 * is used by reclaim when it is cannot write to backing storage
1066 *
1067 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1068 * that it is possible to migrate without blocking
1069 */
1070 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1071 /* All the caller can do on PageWriteback is block */
1072 if (PageWriteback(page))
1073 return ret;
1074
1075 if (PageDirty(page)) {
1076 struct address_space *mapping;
1077
1078 /* ISOLATE_CLEAN means only clean pages */
1079 if (mode & ISOLATE_CLEAN)
1080 return ret;
1081
1082 /*
1083 * Only pages without mappings or that have a
1084 * ->migratepage callback are possible to migrate
1085 * without blocking
1086 */
1087 mapping = page_mapping(page);
1088 if (mapping && !mapping->a_ops->migratepage)
1089 return ret;
1090 }
1091 }
1092
1093 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1094 return ret;
1095
1096 if (likely(get_page_unless_zero(page))) {
1097 /*
1098 * Be careful not to clear PageLRU until after we're
1099 * sure the page is not being freed elsewhere -- the
1100 * page release code relies on it.
1101 */
1102 ClearPageLRU(page);
1103 ret = 0;
1104 }
1105
1106 return ret;
1107 }
1108
1109 /*
1110 * zone->lru_lock is heavily contended. Some of the functions that
1111 * shrink the lists perform better by taking out a batch of pages
1112 * and working on them outside the LRU lock.
1113 *
1114 * For pagecache intensive workloads, this function is the hottest
1115 * spot in the kernel (apart from copy_*_user functions).
1116 *
1117 * Appropriate locks must be held before calling this function.
1118 *
1119 * @nr_to_scan: The number of pages to look through on the list.
1120 * @lruvec: The LRU vector to pull pages from.
1121 * @dst: The temp list to put pages on to.
1122 * @nr_scanned: The number of pages that were scanned.
1123 * @sc: The scan_control struct for this reclaim session
1124 * @mode: One of the LRU isolation modes
1125 * @lru: LRU list id for isolating
1126 *
1127 * returns how many pages were moved onto *@dst.
1128 */
1129 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1130 struct lruvec *lruvec, struct list_head *dst,
1131 unsigned long *nr_scanned, struct scan_control *sc,
1132 isolate_mode_t mode, enum lru_list lru)
1133 {
1134 struct list_head *src = &lruvec->lists[lru];
1135 unsigned long nr_taken = 0;
1136 unsigned long scan;
1137
1138 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1139 struct page *page;
1140 int nr_pages;
1141
1142 page = lru_to_page(src);
1143 prefetchw_prev_lru_page(page, src, flags);
1144
1145 VM_BUG_ON(!PageLRU(page));
1146
1147 switch (__isolate_lru_page(page, mode)) {
1148 case 0:
1149 nr_pages = hpage_nr_pages(page);
1150 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1151 list_move(&page->lru, dst);
1152 nr_taken += nr_pages;
1153 break;
1154
1155 case -EBUSY:
1156 /* else it is being freed elsewhere */
1157 list_move(&page->lru, src);
1158 continue;
1159
1160 default:
1161 BUG();
1162 }
1163 }
1164
1165 *nr_scanned = scan;
1166 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1167 nr_taken, mode, is_file_lru(lru));
1168 return nr_taken;
1169 }
1170
1171 /**
1172 * isolate_lru_page - tries to isolate a page from its LRU list
1173 * @page: page to isolate from its LRU list
1174 *
1175 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1176 * vmstat statistic corresponding to whatever LRU list the page was on.
1177 *
1178 * Returns 0 if the page was removed from an LRU list.
1179 * Returns -EBUSY if the page was not on an LRU list.
1180 *
1181 * The returned page will have PageLRU() cleared. If it was found on
1182 * the active list, it will have PageActive set. If it was found on
1183 * the unevictable list, it will have the PageUnevictable bit set. That flag
1184 * may need to be cleared by the caller before letting the page go.
1185 *
1186 * The vmstat statistic corresponding to the list on which the page was
1187 * found will be decremented.
1188 *
1189 * Restrictions:
1190 * (1) Must be called with an elevated refcount on the page. This is a
1191 * fundamentnal difference from isolate_lru_pages (which is called
1192 * without a stable reference).
1193 * (2) the lru_lock must not be held.
1194 * (3) interrupts must be enabled.
1195 */
1196 int isolate_lru_page(struct page *page)
1197 {
1198 int ret = -EBUSY;
1199
1200 VM_BUG_ON(!page_count(page));
1201
1202 if (PageLRU(page)) {
1203 struct zone *zone = page_zone(page);
1204 struct lruvec *lruvec;
1205
1206 spin_lock_irq(&zone->lru_lock);
1207 lruvec = mem_cgroup_page_lruvec(page, zone);
1208 if (PageLRU(page)) {
1209 int lru = page_lru(page);
1210 get_page(page);
1211 ClearPageLRU(page);
1212 del_page_from_lru_list(page, lruvec, lru);
1213 ret = 0;
1214 }
1215 spin_unlock_irq(&zone->lru_lock);
1216 }
1217 return ret;
1218 }
1219
1220 /*
1221 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1222 * then get resheduled. When there are massive number of tasks doing page
1223 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1224 * the LRU list will go small and be scanned faster than necessary, leading to
1225 * unnecessary swapping, thrashing and OOM.
1226 */
1227 static int too_many_isolated(struct zone *zone, int file,
1228 struct scan_control *sc)
1229 {
1230 unsigned long inactive, isolated;
1231
1232 if (current_is_kswapd() || sc->hibernation_mode)
1233 return 0;
1234
1235 if (!global_reclaim(sc))
1236 return 0;
1237
1238 if (file) {
1239 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1240 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1241 } else {
1242 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1243 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1244 }
1245
1246 /*
1247 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1248 * won't get blocked by normal direct-reclaimers, forming a circular
1249 * deadlock.
1250 */
1251 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1252 inactive >>= 3;
1253
1254 return isolated > inactive;
1255 }
1256
1257 static noinline_for_stack void
1258 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1259 {
1260 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1261 struct zone *zone = lruvec_zone(lruvec);
1262 LIST_HEAD(pages_to_free);
1263
1264 /*
1265 * Put back any unfreeable pages.
1266 */
1267 while (!list_empty(page_list)) {
1268 struct page *page = lru_to_page(page_list);
1269 int lru;
1270
1271 VM_BUG_ON(PageLRU(page));
1272 list_del(&page->lru);
1273 if (unlikely(!page_evictable(page))) {
1274 spin_unlock_irq(&zone->lru_lock);
1275 putback_lru_page(page);
1276 spin_lock_irq(&zone->lru_lock);
1277 continue;
1278 }
1279
1280 lruvec = mem_cgroup_page_lruvec(page, zone);
1281
1282 SetPageLRU(page);
1283 lru = page_lru(page);
1284 add_page_to_lru_list(page, lruvec, lru);
1285
1286 if (is_active_lru(lru)) {
1287 int file = is_file_lru(lru);
1288 int numpages = hpage_nr_pages(page);
1289 reclaim_stat->recent_rotated[file] += numpages;
1290 }
1291 if (put_page_testzero(page)) {
1292 __ClearPageLRU(page);
1293 __ClearPageActive(page);
1294 del_page_from_lru_list(page, lruvec, lru);
1295
1296 if (unlikely(PageCompound(page))) {
1297 spin_unlock_irq(&zone->lru_lock);
1298 (*get_compound_page_dtor(page))(page);
1299 spin_lock_irq(&zone->lru_lock);
1300 } else
1301 list_add(&page->lru, &pages_to_free);
1302 }
1303 }
1304
1305 /*
1306 * To save our caller's stack, now use input list for pages to free.
1307 */
1308 list_splice(&pages_to_free, page_list);
1309 }
1310
1311 /*
1312 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1313 * of reclaimed pages
1314 */
1315 static noinline_for_stack unsigned long
1316 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1317 struct scan_control *sc, enum lru_list lru)
1318 {
1319 LIST_HEAD(page_list);
1320 unsigned long nr_scanned;
1321 unsigned long nr_reclaimed = 0;
1322 unsigned long nr_taken;
1323 unsigned long nr_dirty = 0;
1324 unsigned long nr_writeback = 0;
1325 isolate_mode_t isolate_mode = 0;
1326 int file = is_file_lru(lru);
1327 struct zone *zone = lruvec_zone(lruvec);
1328 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1329
1330 while (unlikely(too_many_isolated(zone, file, sc))) {
1331 congestion_wait(BLK_RW_ASYNC, HZ/10);
1332
1333 /* We are about to die and free our memory. Return now. */
1334 if (fatal_signal_pending(current))
1335 return SWAP_CLUSTER_MAX;
1336 }
1337
1338 lru_add_drain();
1339
1340 if (!sc->may_unmap)
1341 isolate_mode |= ISOLATE_UNMAPPED;
1342 if (!sc->may_writepage)
1343 isolate_mode |= ISOLATE_CLEAN;
1344
1345 spin_lock_irq(&zone->lru_lock);
1346
1347 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1348 &nr_scanned, sc, isolate_mode, lru);
1349
1350 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1351 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1352
1353 if (global_reclaim(sc)) {
1354 zone->pages_scanned += nr_scanned;
1355 if (current_is_kswapd())
1356 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1357 else
1358 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1359 }
1360 spin_unlock_irq(&zone->lru_lock);
1361
1362 if (nr_taken == 0)
1363 return 0;
1364
1365 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1366 &nr_dirty, &nr_writeback, false);
1367
1368 spin_lock_irq(&zone->lru_lock);
1369
1370 reclaim_stat->recent_scanned[file] += nr_taken;
1371
1372 if (global_reclaim(sc)) {
1373 if (current_is_kswapd())
1374 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1375 nr_reclaimed);
1376 else
1377 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1378 nr_reclaimed);
1379 }
1380
1381 putback_inactive_pages(lruvec, &page_list);
1382
1383 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1384
1385 spin_unlock_irq(&zone->lru_lock);
1386
1387 free_hot_cold_page_list(&page_list, 1);
1388
1389 /*
1390 * If reclaim is isolating dirty pages under writeback, it implies
1391 * that the long-lived page allocation rate is exceeding the page
1392 * laundering rate. Either the global limits are not being effective
1393 * at throttling processes due to the page distribution throughout
1394 * zones or there is heavy usage of a slow backing device. The
1395 * only option is to throttle from reclaim context which is not ideal
1396 * as there is no guarantee the dirtying process is throttled in the
1397 * same way balance_dirty_pages() manages.
1398 *
1399 * This scales the number of dirty pages that must be under writeback
1400 * before throttling depending on priority. It is a simple backoff
1401 * function that has the most effect in the range DEF_PRIORITY to
1402 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1403 * in trouble and reclaim is considered to be in trouble.
1404 *
1405 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1406 * DEF_PRIORITY-1 50% must be PageWriteback
1407 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1408 * ...
1409 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1410 * isolated page is PageWriteback
1411 */
1412 if (nr_writeback && nr_writeback >=
1413 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1414 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1415
1416 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1417 zone_idx(zone),
1418 nr_scanned, nr_reclaimed,
1419 sc->priority,
1420 trace_shrink_flags(file));
1421 return nr_reclaimed;
1422 }
1423
1424 /*
1425 * This moves pages from the active list to the inactive list.
1426 *
1427 * We move them the other way if the page is referenced by one or more
1428 * processes, from rmap.
1429 *
1430 * If the pages are mostly unmapped, the processing is fast and it is
1431 * appropriate to hold zone->lru_lock across the whole operation. But if
1432 * the pages are mapped, the processing is slow (page_referenced()) so we
1433 * should drop zone->lru_lock around each page. It's impossible to balance
1434 * this, so instead we remove the pages from the LRU while processing them.
1435 * It is safe to rely on PG_active against the non-LRU pages in here because
1436 * nobody will play with that bit on a non-LRU page.
1437 *
1438 * The downside is that we have to touch page->_count against each page.
1439 * But we had to alter page->flags anyway.
1440 */
1441
1442 static void move_active_pages_to_lru(struct lruvec *lruvec,
1443 struct list_head *list,
1444 struct list_head *pages_to_free,
1445 enum lru_list lru)
1446 {
1447 struct zone *zone = lruvec_zone(lruvec);
1448 unsigned long pgmoved = 0;
1449 struct page *page;
1450 int nr_pages;
1451
1452 while (!list_empty(list)) {
1453 page = lru_to_page(list);
1454 lruvec = mem_cgroup_page_lruvec(page, zone);
1455
1456 VM_BUG_ON(PageLRU(page));
1457 SetPageLRU(page);
1458
1459 nr_pages = hpage_nr_pages(page);
1460 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1461 list_move(&page->lru, &lruvec->lists[lru]);
1462 pgmoved += nr_pages;
1463
1464 if (put_page_testzero(page)) {
1465 __ClearPageLRU(page);
1466 __ClearPageActive(page);
1467 del_page_from_lru_list(page, lruvec, lru);
1468
1469 if (unlikely(PageCompound(page))) {
1470 spin_unlock_irq(&zone->lru_lock);
1471 (*get_compound_page_dtor(page))(page);
1472 spin_lock_irq(&zone->lru_lock);
1473 } else
1474 list_add(&page->lru, pages_to_free);
1475 }
1476 }
1477 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1478 if (!is_active_lru(lru))
1479 __count_vm_events(PGDEACTIVATE, pgmoved);
1480 }
1481
1482 static void shrink_active_list(unsigned long nr_to_scan,
1483 struct lruvec *lruvec,
1484 struct scan_control *sc,
1485 enum lru_list lru)
1486 {
1487 unsigned long nr_taken;
1488 unsigned long nr_scanned;
1489 unsigned long vm_flags;
1490 LIST_HEAD(l_hold); /* The pages which were snipped off */
1491 LIST_HEAD(l_active);
1492 LIST_HEAD(l_inactive);
1493 struct page *page;
1494 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1495 unsigned long nr_rotated = 0;
1496 isolate_mode_t isolate_mode = 0;
1497 int file = is_file_lru(lru);
1498 struct zone *zone = lruvec_zone(lruvec);
1499
1500 lru_add_drain();
1501
1502 if (!sc->may_unmap)
1503 isolate_mode |= ISOLATE_UNMAPPED;
1504 if (!sc->may_writepage)
1505 isolate_mode |= ISOLATE_CLEAN;
1506
1507 spin_lock_irq(&zone->lru_lock);
1508
1509 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1510 &nr_scanned, sc, isolate_mode, lru);
1511 if (global_reclaim(sc))
1512 zone->pages_scanned += nr_scanned;
1513
1514 reclaim_stat->recent_scanned[file] += nr_taken;
1515
1516 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1517 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1518 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1519 spin_unlock_irq(&zone->lru_lock);
1520
1521 while (!list_empty(&l_hold)) {
1522 cond_resched();
1523 page = lru_to_page(&l_hold);
1524 list_del(&page->lru);
1525
1526 if (unlikely(!page_evictable(page))) {
1527 putback_lru_page(page);
1528 continue;
1529 }
1530
1531 if (unlikely(buffer_heads_over_limit)) {
1532 if (page_has_private(page) && trylock_page(page)) {
1533 if (page_has_private(page))
1534 try_to_release_page(page, 0);
1535 unlock_page(page);
1536 }
1537 }
1538
1539 if (page_referenced(page, 0, sc->target_mem_cgroup,
1540 &vm_flags)) {
1541 nr_rotated += hpage_nr_pages(page);
1542 /*
1543 * Identify referenced, file-backed active pages and
1544 * give them one more trip around the active list. So
1545 * that executable code get better chances to stay in
1546 * memory under moderate memory pressure. Anon pages
1547 * are not likely to be evicted by use-once streaming
1548 * IO, plus JVM can create lots of anon VM_EXEC pages,
1549 * so we ignore them here.
1550 */
1551 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1552 list_add(&page->lru, &l_active);
1553 continue;
1554 }
1555 }
1556
1557 ClearPageActive(page); /* we are de-activating */
1558 list_add(&page->lru, &l_inactive);
1559 }
1560
1561 /*
1562 * Move pages back to the lru list.
1563 */
1564 spin_lock_irq(&zone->lru_lock);
1565 /*
1566 * Count referenced pages from currently used mappings as rotated,
1567 * even though only some of them are actually re-activated. This
1568 * helps balance scan pressure between file and anonymous pages in
1569 * get_scan_ratio.
1570 */
1571 reclaim_stat->recent_rotated[file] += nr_rotated;
1572
1573 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1574 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1575 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1576 spin_unlock_irq(&zone->lru_lock);
1577
1578 free_hot_cold_page_list(&l_hold, 1);
1579 }
1580
1581 #ifdef CONFIG_SWAP
1582 static int inactive_anon_is_low_global(struct zone *zone)
1583 {
1584 unsigned long active, inactive;
1585
1586 active = zone_page_state(zone, NR_ACTIVE_ANON);
1587 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1588
1589 if (inactive * zone->inactive_ratio < active)
1590 return 1;
1591
1592 return 0;
1593 }
1594
1595 /**
1596 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1597 * @lruvec: LRU vector to check
1598 *
1599 * Returns true if the zone does not have enough inactive anon pages,
1600 * meaning some active anon pages need to be deactivated.
1601 */
1602 static int inactive_anon_is_low(struct lruvec *lruvec)
1603 {
1604 /*
1605 * If we don't have swap space, anonymous page deactivation
1606 * is pointless.
1607 */
1608 if (!total_swap_pages)
1609 return 0;
1610
1611 if (!mem_cgroup_disabled())
1612 return mem_cgroup_inactive_anon_is_low(lruvec);
1613
1614 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1615 }
1616 #else
1617 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1618 {
1619 return 0;
1620 }
1621 #endif
1622
1623 /**
1624 * inactive_file_is_low - check if file pages need to be deactivated
1625 * @lruvec: LRU vector to check
1626 *
1627 * When the system is doing streaming IO, memory pressure here
1628 * ensures that active file pages get deactivated, until more
1629 * than half of the file pages are on the inactive list.
1630 *
1631 * Once we get to that situation, protect the system's working
1632 * set from being evicted by disabling active file page aging.
1633 *
1634 * This uses a different ratio than the anonymous pages, because
1635 * the page cache uses a use-once replacement algorithm.
1636 */
1637 static int inactive_file_is_low(struct lruvec *lruvec)
1638 {
1639 unsigned long inactive;
1640 unsigned long active;
1641
1642 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1643 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1644
1645 return active > inactive;
1646 }
1647
1648 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1649 {
1650 if (is_file_lru(lru))
1651 return inactive_file_is_low(lruvec);
1652 else
1653 return inactive_anon_is_low(lruvec);
1654 }
1655
1656 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1657 struct lruvec *lruvec, struct scan_control *sc)
1658 {
1659 if (is_active_lru(lru)) {
1660 if (inactive_list_is_low(lruvec, lru))
1661 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1662 return 0;
1663 }
1664
1665 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1666 }
1667
1668 static int vmscan_swappiness(struct scan_control *sc)
1669 {
1670 if (global_reclaim(sc))
1671 return vm_swappiness;
1672 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1673 }
1674
1675 enum scan_balance {
1676 SCAN_EQUAL,
1677 SCAN_FRACT,
1678 SCAN_ANON,
1679 SCAN_FILE,
1680 };
1681
1682
1683 #ifdef CONFIG_ZRAM
1684 static int vmscan_swap_file_ratio = 1;
1685 module_param_named(swap_file_ratio, vmscan_swap_file_ratio, int, S_IRUGO | S_IWUSR);
1686
1687 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1688
1689 // vmscan debug
1690 static int vmscan_swap_sum = 200;
1691 module_param_named(swap_sum, vmscan_swap_sum, int, S_IRUGO | S_IWUSR);
1692
1693
1694 static int vmscan_scan_file_sum = 0;
1695 static int vmscan_scan_anon_sum = 0;
1696 static int vmscan_recent_scanned_anon = 0;
1697 static int vmscan_recent_scanned_file = 0;
1698 static int vmscan_recent_rotated_anon = 0;
1699 static int vmscan_recent_rotated_file = 0;
1700 module_param_named(scan_file_sum, vmscan_scan_file_sum, int, S_IRUGO);
1701 module_param_named(scan_anon_sum, vmscan_scan_anon_sum, int, S_IRUGO);
1702 module_param_named(recent_scanned_anon, vmscan_recent_scanned_anon, int, S_IRUGO);
1703 module_param_named(recent_scanned_file, vmscan_recent_scanned_file, int, S_IRUGO);
1704 module_param_named(recent_rotated_anon, vmscan_recent_rotated_anon, int, S_IRUGO);
1705 module_param_named(recent_rotated_file, vmscan_recent_rotated_file, int, S_IRUGO);
1706 #endif // CONFIG_ZRAM
1707
1708
1709 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1710 //#define LOGTAG "VMSCAN"
1711 static unsigned long t=0;
1712 static unsigned long history[2] = {0};
1713 extern int lowmem_minfree[9];
1714 #endif
1715
1716 #endif // CONFIG_ZRAM
1717
1718 /*
1719 * Determine how aggressively the anon and file LRU lists should be
1720 * scanned. The relative value of each set of LRU lists is determined
1721 * by looking at the fraction of the pages scanned we did rotate back
1722 * onto the active list instead of evict.
1723 *
1724 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1725 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1726 */
1727 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1728 unsigned long *nr)
1729 {
1730 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1731 u64 fraction[2];
1732 u64 denominator = 0; /* gcc */
1733 struct zone *zone = lruvec_zone(lruvec);
1734 unsigned long anon_prio, file_prio;
1735 enum scan_balance scan_balance;
1736 unsigned long anon, file, free;
1737 bool force_scan = false;
1738 unsigned long ap, fp;
1739 enum lru_list lru;
1740 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1741 int cpu;
1742 unsigned long SwapinCount, SwapoutCount, cached;
1743 bool bThrashing = false;
1744 #endif
1745
1746 /*
1747 * If the zone or memcg is small, nr[l] can be 0. This
1748 * results in no scanning on this priority and a potential
1749 * priority drop. Global direct reclaim can go to the next
1750 * zone and tends to have no problems. Global kswapd is for
1751 * zone balancing and it needs to scan a minimum amount. When
1752 * reclaiming for a memcg, a priority drop can cause high
1753 * latencies, so it's better to scan a minimum amount there as
1754 * well.
1755 */
1756 if (current_is_kswapd() && zone->all_unreclaimable)
1757 force_scan = true;
1758 if (!global_reclaim(sc))
1759 force_scan = true;
1760
1761 /* If we have no swap space, do not bother scanning anon pages. */
1762 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1763 scan_balance = SCAN_FILE;
1764 goto out;
1765 }
1766
1767 /*
1768 * Global reclaim will swap to prevent OOM even with no
1769 * swappiness, but memcg users want to use this knob to
1770 * disable swapping for individual groups completely when
1771 * using the memory controller's swap limit feature would be
1772 * too expensive.
1773 */
1774 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1775 scan_balance = SCAN_FILE;
1776 goto out;
1777 }
1778
1779 /*
1780 * Do not apply any pressure balancing cleverness when the
1781 * system is close to OOM, scan both anon and file equally
1782 * (unless the swappiness setting disagrees with swapping).
1783 */
1784 if (!sc->priority && vmscan_swappiness(sc)) {
1785 scan_balance = SCAN_EQUAL;
1786 goto out;
1787 }
1788
1789 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1790 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1791 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1792 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1793
1794 /*
1795 * If it's foreseeable that reclaiming the file cache won't be
1796 * enough to get the zone back into a desirable shape, we have
1797 * to swap. Better start now and leave the - probably heavily
1798 * thrashing - remaining file pages alone.
1799 */
1800 if (global_reclaim(sc)) {
1801 free = zone_page_state(zone, NR_FREE_PAGES);
1802 if (unlikely(file + free <= high_wmark_pages(zone))) {
1803 scan_balance = SCAN_ANON;
1804 goto out;
1805 }
1806 }
1807
1808 /*
1809 * There is enough inactive page cache, do not reclaim
1810 * anything from the anonymous working set right now.
1811 */
1812 if (!inactive_file_is_low(lruvec)) {
1813 scan_balance = SCAN_FILE;
1814 goto out;
1815 }
1816
1817 scan_balance = SCAN_FRACT;
1818
1819 /*
1820 * With swappiness at 100, anonymous and file have the same priority.
1821 * This scanning priority is essentially the inverse of IO cost.
1822 */
1823 anon_prio = vmscan_swappiness(sc);
1824 file_prio = 200 - anon_prio;
1825
1826 /*
1827 * With swappiness at 100, anonymous and file have the same priority.
1828 * This scanning priority is essentially the inverse of IO cost.
1829 */
1830 #if defined(CONFIG_ZRAM) && defined(CONFIG_MTK_LCA_RAM_OPTIMIZE)
1831 if (vmscan_swap_file_ratio) {
1832
1833 if(t == 0)
1834 t = jiffies;
1835
1836 if (time_after(jiffies, t + 1 * HZ)) {
1837
1838 for_each_online_cpu(cpu) {
1839 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
1840 SwapinCount += this->event[PSWPIN];
1841 SwapoutCount += this->event[PSWPOUT];
1842 }
1843
1844 if( ((SwapinCount-history[0] + SwapoutCount - history[1]) / (jiffies-t) * HZ) > 3000){
1845 bThrashing = true;
1846 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "!!! thrashing !!!\n");
1847 }else{
1848 bThrashing = false;
1849 //xlog_printk(ANDROID_LOG_WARN, LOGTAG, "!!! NO thrashing !!!\n");
1850 }
1851 history[0] = SwapinCount;
1852 history[1] = SwapoutCount;
1853
1854
1855 t=jiffies;
1856 }
1857
1858
1859 if(!bThrashing){
1860 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1861 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1862 //xlog_printk(ANDROID_LOG_DEBUG, LOGTAG, "1 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1863
1864 } else {
1865 cached = global_page_state(NR_FILE_PAGES) - global_page_state(NR_SHMEM) - total_swapcache_pages();
1866 if(cached > lowmem_minfree[2]) {
1867 anon_prio = vmscan_swappiness(sc);
1868 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1869 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "2 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1870 } else {
1871 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1872 file_prio = (vmscan_swap_sum - vmscan_swappiness(sc)) * file / (anon + file + 1);
1873 //xlog_printk(ANDROID_LOG_ERROR, LOGTAG, "3 anon_prio: %d, file_prio: %d \n", anon_prio, file_prio);
1874 }
1875 }
1876
1877 } else {
1878 anon_prio = vmscan_swappiness(sc);
1879 file_prio = vmscan_swap_sum - vmscan_swappiness(sc);
1880 }
1881 #elif defined(CONFIG_ZRAM) // CONFIG_ZRAM
1882 if (vmscan_swap_file_ratio) {
1883 anon_prio = anon_prio * anon / (anon + file + 1);
1884 file_prio = file_prio * file / (anon + file + 1);
1885 }
1886 #endif // CONFIG_ZRAM
1887
1888
1889
1890 /*
1891 * OK, so we have swap space and a fair amount of page cache
1892 * pages. We use the recently rotated / recently scanned
1893 * ratios to determine how valuable each cache is.
1894 *
1895 * Because workloads change over time (and to avoid overflow)
1896 * we keep these statistics as a floating average, which ends
1897 * up weighing recent references more than old ones.
1898 *
1899 * anon in [0], file in [1]
1900 */
1901 spin_lock_irq(&zone->lru_lock);
1902 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1903 reclaim_stat->recent_scanned[0] /= 2;
1904 reclaim_stat->recent_rotated[0] /= 2;
1905 }
1906
1907 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1908 reclaim_stat->recent_scanned[1] /= 2;
1909 reclaim_stat->recent_rotated[1] /= 2;
1910 }
1911
1912 /*
1913 * The amount of pressure on anon vs file pages is inversely
1914 * proportional to the fraction of recently scanned pages on
1915 * each list that were recently referenced and in active use.
1916 */
1917 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1918 ap /= reclaim_stat->recent_rotated[0] + 1;
1919
1920 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1921 fp /= reclaim_stat->recent_rotated[1] + 1;
1922 spin_unlock_irq(&zone->lru_lock);
1923
1924 fraction[0] = ap;
1925 fraction[1] = fp;
1926 denominator = ap + fp + 1;
1927 out:
1928 for_each_evictable_lru(lru) {
1929 int file = is_file_lru(lru);
1930 unsigned long size;
1931 unsigned long scan;
1932
1933 size = get_lru_size(lruvec, lru);
1934 scan = size >> sc->priority;
1935
1936 if (!scan && force_scan)
1937 scan = min(size, SWAP_CLUSTER_MAX);
1938
1939 switch (scan_balance) {
1940 case SCAN_EQUAL:
1941 /* Scan lists relative to size */
1942 break;
1943 case SCAN_FRACT:
1944 /*
1945 * Scan types proportional to swappiness and
1946 * their relative recent reclaim efficiency.
1947 */
1948 scan = div64_u64(scan * fraction[file], denominator);
1949 break;
1950 case SCAN_FILE:
1951 case SCAN_ANON:
1952 /* Scan one type exclusively */
1953 if ((scan_balance == SCAN_FILE) != file)
1954 scan = 0;
1955 break;
1956 default:
1957 /* Look ma, no brain */
1958 BUG();
1959 }
1960 nr[lru] = scan;
1961 }
1962 }
1963
1964 /*
1965 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1966 */
1967 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1968 {
1969 unsigned long nr[NR_LRU_LISTS];
1970 unsigned long nr_to_scan;
1971 enum lru_list lru;
1972 unsigned long nr_reclaimed = 0;
1973 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1974 struct blk_plug plug;
1975
1976 get_scan_count(lruvec, sc, nr);
1977
1978 blk_start_plug(&plug);
1979 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1980 nr[LRU_INACTIVE_FILE]) {
1981 for_each_evictable_lru(lru) {
1982 if (nr[lru]) {
1983 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1984 nr[lru] -= nr_to_scan;
1985
1986 nr_reclaimed += shrink_list(lru, nr_to_scan,
1987 lruvec, sc);
1988 }
1989 }
1990 /*
1991 * On large memory systems, scan >> priority can become
1992 * really large. This is fine for the starting priority;
1993 * we want to put equal scanning pressure on each zone.
1994 * However, if the VM has a harder time of freeing pages,
1995 * with multiple processes reclaiming pages, the total
1996 * freeing target can get unreasonably large.
1997 */
1998 if (nr_reclaimed >= nr_to_reclaim &&
1999 sc->priority < DEF_PRIORITY)
2000 break;
2001 }
2002 blk_finish_plug(&plug);
2003 sc->nr_reclaimed += nr_reclaimed;
2004
2005 /*
2006 * Even if we did not try to evict anon pages at all, we want to
2007 * rebalance the anon lru active/inactive ratio.
2008 */
2009 if (inactive_anon_is_low(lruvec))
2010 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2011 sc, LRU_ACTIVE_ANON);
2012
2013 throttle_vm_writeout(sc->gfp_mask);
2014 }
2015
2016 /* Use reclaim/compaction for costly allocs or under memory pressure */
2017 static bool in_reclaim_compaction(struct scan_control *sc)
2018 {
2019 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2020 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2021 sc->priority < DEF_PRIORITY - 2))
2022 return true;
2023
2024 return false;
2025 }
2026
2027 /*
2028 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2029 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2030 * true if more pages should be reclaimed such that when the page allocator
2031 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2032 * It will give up earlier than that if there is difficulty reclaiming pages.
2033 */
2034 static inline bool should_continue_reclaim(struct zone *zone,
2035 unsigned long nr_reclaimed,
2036 unsigned long nr_scanned,
2037 struct scan_control *sc)
2038 {
2039 unsigned long pages_for_compaction;
2040 unsigned long inactive_lru_pages;
2041
2042 /* If not in reclaim/compaction mode, stop */
2043 if (!in_reclaim_compaction(sc))
2044 return false;
2045
2046 /* Consider stopping depending on scan and reclaim activity */
2047 if (sc->gfp_mask & __GFP_REPEAT) {
2048 /*
2049 * For __GFP_REPEAT allocations, stop reclaiming if the
2050 * full LRU list has been scanned and we are still failing
2051 * to reclaim pages. This full LRU scan is potentially
2052 * expensive but a __GFP_REPEAT caller really wants to succeed
2053 */
2054 if (!nr_reclaimed && !nr_scanned)
2055 return false;
2056 } else {
2057 /*
2058 * For non-__GFP_REPEAT allocations which can presumably
2059 * fail without consequence, stop if we failed to reclaim
2060 * any pages from the last SWAP_CLUSTER_MAX number of
2061 * pages that were scanned. This will return to the
2062 * caller faster at the risk reclaim/compaction and
2063 * the resulting allocation attempt fails
2064 */
2065 if (!nr_reclaimed)
2066 return false;
2067 }
2068
2069 /*
2070 * If we have not reclaimed enough pages for compaction and the
2071 * inactive lists are large enough, continue reclaiming
2072 */
2073 pages_for_compaction = (2UL << sc->order);
2074 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2075 if (get_nr_swap_pages() > 0)
2076 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2077 if (sc->nr_reclaimed < pages_for_compaction &&
2078 inactive_lru_pages > pages_for_compaction)
2079 return true;
2080
2081 /* If compaction would go ahead or the allocation would succeed, stop */
2082 switch (compaction_suitable(zone, sc->order)) {
2083 case COMPACT_PARTIAL:
2084 case COMPACT_CONTINUE:
2085 return false;
2086 default:
2087 return true;
2088 }
2089 }
2090
2091 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2092 {
2093 unsigned long nr_reclaimed, nr_scanned;
2094
2095 do {
2096 struct mem_cgroup *root = sc->target_mem_cgroup;
2097 struct mem_cgroup_reclaim_cookie reclaim = {
2098 .zone = zone,
2099 .priority = sc->priority,
2100 };
2101 struct mem_cgroup *memcg;
2102
2103 nr_reclaimed = sc->nr_reclaimed;
2104 nr_scanned = sc->nr_scanned;
2105
2106 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2107 do {
2108 struct lruvec *lruvec;
2109
2110 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2111
2112 shrink_lruvec(lruvec, sc);
2113
2114 /*
2115 * Direct reclaim and kswapd have to scan all memory
2116 * cgroups to fulfill the overall scan target for the
2117 * zone.
2118 *
2119 * Limit reclaim, on the other hand, only cares about
2120 * nr_to_reclaim pages to be reclaimed and it will
2121 * retry with decreasing priority if one round over the
2122 * whole hierarchy is not sufficient.
2123 */
2124 if (!global_reclaim(sc) &&
2125 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2126 mem_cgroup_iter_break(root, memcg);
2127 break;
2128 }
2129 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2130 } while (memcg);
2131
2132 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2133 sc->nr_scanned - nr_scanned,
2134 sc->nr_reclaimed - nr_reclaimed);
2135
2136 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2137 sc->nr_scanned - nr_scanned, sc));
2138 }
2139
2140 /* Returns true if compaction should go ahead for a high-order request */
2141 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2142 {
2143 unsigned long balance_gap, watermark;
2144 bool watermark_ok;
2145
2146 /* Do not consider compaction for orders reclaim is meant to satisfy */
2147 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2148 return false;
2149
2150 /*
2151 * Compaction takes time to run and there are potentially other
2152 * callers using the pages just freed. Continue reclaiming until
2153 * there is a buffer of free pages available to give compaction
2154 * a reasonable chance of completing and allocating the page
2155 */
2156 balance_gap = min(low_wmark_pages(zone),
2157 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2158 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2159 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2160 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2161
2162 /*
2163 * If compaction is deferred, reclaim up to a point where
2164 * compaction will have a chance of success when re-enabled
2165 */
2166 if (compaction_deferred(zone, sc->order))
2167 return watermark_ok;
2168
2169 /* If compaction is not ready to start, keep reclaiming */
2170 if (!compaction_suitable(zone, sc->order))
2171 return false;
2172
2173 return watermark_ok;
2174 }
2175
2176 /*
2177 * This is the direct reclaim path, for page-allocating processes. We only
2178 * try to reclaim pages from zones which will satisfy the caller's allocation
2179 * request.
2180 *
2181 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2182 * Because:
2183 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2184 * allocation or
2185 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2186 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2187 * zone defense algorithm.
2188 *
2189 * If a zone is deemed to be full of pinned pages then just give it a light
2190 * scan then give up on it.
2191 *
2192 * This function returns true if a zone is being reclaimed for a costly
2193 * high-order allocation and compaction is ready to begin. This indicates to
2194 * the caller that it should consider retrying the allocation instead of
2195 * further reclaim.
2196 */
2197 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2198 {
2199 struct zoneref *z;
2200 struct zone *zone;
2201 unsigned long nr_soft_reclaimed;
2202 unsigned long nr_soft_scanned;
2203 bool aborted_reclaim = false;
2204
2205 /*
2206 * If the number of buffer_heads in the machine exceeds the maximum
2207 * allowed level, force direct reclaim to scan the highmem zone as
2208 * highmem pages could be pinning lowmem pages storing buffer_heads
2209 */
2210 if (buffer_heads_over_limit)
2211 sc->gfp_mask |= __GFP_HIGHMEM;
2212
2213 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2214 gfp_zone(sc->gfp_mask), sc->nodemask) {
2215 if (!populated_zone(zone))
2216 continue;
2217 /*
2218 * Take care memory controller reclaiming has small influence
2219 * to global LRU.
2220 */
2221 if (global_reclaim(sc)) {
2222 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2223 continue;
2224 if (zone->all_unreclaimable &&
2225 sc->priority != DEF_PRIORITY)
2226 continue; /* Let kswapd poll it */
2227 if (IS_ENABLED(CONFIG_COMPACTION) && !sc->hibernation_mode) {
2228 /*
2229 * If we already have plenty of memory free for
2230 * compaction in this zone, don't free any more.
2231 * Even though compaction is invoked for any
2232 * non-zero order, only frequent costly order
2233 * reclamation is disruptive enough to become a
2234 * noticeable problem, like transparent huge
2235 * page allocations.
2236 */
2237 if (compaction_ready(zone, sc)) {
2238 aborted_reclaim = true;
2239 continue;
2240 }
2241 }
2242 /*
2243 * This steals pages from memory cgroups over softlimit
2244 * and returns the number of reclaimed pages and
2245 * scanned pages. This works for global memory pressure
2246 * and balancing, not for a memcg's limit.
2247 */
2248 nr_soft_scanned = 0;
2249 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2250 sc->order, sc->gfp_mask,
2251 &nr_soft_scanned);
2252 sc->nr_reclaimed += nr_soft_reclaimed;
2253 sc->nr_scanned += nr_soft_scanned;
2254 /* need some check for avoid more shrink_zone() */
2255 }
2256
2257 shrink_zone(zone, sc);
2258 }
2259
2260 return aborted_reclaim;
2261 }
2262
2263 static unsigned long zone_reclaimable_pages(struct zone *zone)
2264 {
2265 int nr;
2266
2267 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2268 zone_page_state(zone, NR_INACTIVE_FILE);
2269
2270 if (get_nr_swap_pages() > 0)
2271 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2272 zone_page_state(zone, NR_INACTIVE_ANON);
2273
2274 return nr;
2275 }
2276
2277 static bool zone_reclaimable(struct zone *zone)
2278 {
2279 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2280 }
2281
2282 /* All zones in zonelist are unreclaimable? */
2283 static bool all_unreclaimable(struct zonelist *zonelist,
2284 struct scan_control *sc)
2285 {
2286 struct zoneref *z;
2287 struct zone *zone;
2288
2289 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2290 gfp_zone(sc->gfp_mask), sc->nodemask) {
2291 if (!populated_zone(zone))
2292 continue;
2293 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2294 continue;
2295 if (!zone->all_unreclaimable)
2296 return false;
2297 }
2298
2299 return true;
2300 }
2301
2302 /*
2303 * This is the main entry point to direct page reclaim.
2304 *
2305 * If a full scan of the inactive list fails to free enough memory then we
2306 * are "out of memory" and something needs to be killed.
2307 *
2308 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2309 * high - the zone may be full of dirty or under-writeback pages, which this
2310 * caller can't do much about. We kick the writeback threads and take explicit
2311 * naps in the hope that some of these pages can be written. But if the
2312 * allocating task holds filesystem locks which prevent writeout this might not
2313 * work, and the allocation attempt will fail.
2314 *
2315 * returns: 0, if no pages reclaimed
2316 * else, the number of pages reclaimed
2317 */
2318 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2319 struct scan_control *sc,
2320 struct shrink_control *shrink)
2321 {
2322 unsigned long total_scanned = 0;
2323 struct reclaim_state *reclaim_state = current->reclaim_state;
2324 struct zoneref *z;
2325 struct zone *zone;
2326 unsigned long writeback_threshold;
2327 bool aborted_reclaim;
2328
2329 #ifdef CONFIG_FREEZER
2330 if (unlikely(pm_freezing && !sc->hibernation_mode))
2331 return 0;
2332 #endif
2333
2334 delayacct_freepages_start();
2335
2336 if (global_reclaim(sc))
2337 count_vm_event(ALLOCSTALL);
2338
2339 do {
2340 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2341 sc->priority);
2342 sc->nr_scanned = 0;
2343 aborted_reclaim = shrink_zones(zonelist, sc);
2344
2345 /*
2346 * Don't shrink slabs when reclaiming memory from
2347 * over limit cgroups
2348 */
2349 if (global_reclaim(sc)) {
2350 unsigned long lru_pages = 0;
2351 for_each_zone_zonelist(zone, z, zonelist,
2352 gfp_zone(sc->gfp_mask)) {
2353 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2354 continue;
2355
2356 lru_pages += zone_reclaimable_pages(zone);
2357 }
2358
2359 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2360 if (reclaim_state) {
2361 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2362 reclaim_state->reclaimed_slab = 0;
2363 }
2364 }
2365 total_scanned += sc->nr_scanned;
2366 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2367 goto out;
2368
2369 /*
2370 * If we're getting trouble reclaiming, start doing
2371 * writepage even in laptop mode.
2372 */
2373 if (sc->priority < DEF_PRIORITY - 2)
2374 sc->may_writepage = 1;
2375
2376 /*
2377 * Try to write back as many pages as we just scanned. This
2378 * tends to cause slow streaming writers to write data to the
2379 * disk smoothly, at the dirtying rate, which is nice. But
2380 * that's undesirable in laptop mode, where we *want* lumpy
2381 * writeout. So in laptop mode, write out the whole world.
2382 */
2383 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2384 if (total_scanned > writeback_threshold) {
2385 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2386 WB_REASON_TRY_TO_FREE_PAGES);
2387 sc->may_writepage = 1;
2388 }
2389
2390 /* Take a nap, wait for some writeback to complete */
2391 if (!sc->hibernation_mode && sc->nr_scanned &&
2392 sc->priority < DEF_PRIORITY - 2) {
2393 struct zone *preferred_zone;
2394
2395 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2396 &cpuset_current_mems_allowed,
2397 &preferred_zone);
2398 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2399 }
2400 } while (--sc->priority >= 0);
2401
2402 out:
2403 delayacct_freepages_end();
2404
2405 if (sc->nr_reclaimed)
2406 return sc->nr_reclaimed;
2407
2408 /*
2409 * As hibernation is going on, kswapd is freezed so that it can't mark
2410 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2411 * check.
2412 */
2413 if (oom_killer_disabled)
2414 return 0;
2415
2416 /* Aborted reclaim to try compaction? don't OOM, then */
2417 if (aborted_reclaim)
2418 return 1;
2419
2420 /* top priority shrink_zones still had more to do? don't OOM, then */
2421 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2422 return 1;
2423
2424 return 0;
2425 }
2426
2427 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2428 {
2429 struct zone *zone;
2430 unsigned long pfmemalloc_reserve = 0;
2431 unsigned long free_pages = 0;
2432 int i;
2433 bool wmark_ok;
2434
2435 for (i = 0; i <= ZONE_NORMAL; i++) {
2436 zone = &pgdat->node_zones[i];
2437 if (!populated_zone(zone))
2438 continue;
2439
2440 pfmemalloc_reserve += min_wmark_pages(zone);
2441 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2442 }
2443
2444 /* If there are no reserves (unexpected config) then do not throttle */
2445 if (!pfmemalloc_reserve)
2446 return true;
2447
2448 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2449
2450 /* kswapd must be awake if processes are being throttled */
2451 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2452 pgdat->classzone_idx = min(pgdat->classzone_idx,
2453 (enum zone_type)ZONE_NORMAL);
2454 wake_up_interruptible(&pgdat->kswapd_wait);
2455 }
2456
2457 return wmark_ok;
2458 }
2459
2460 /*
2461 * Throttle direct reclaimers if backing storage is backed by the network
2462 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2463 * depleted. kswapd will continue to make progress and wake the processes
2464 * when the low watermark is reached.
2465 *
2466 * Returns true if a fatal signal was delivered during throttling. If this
2467 * happens, the page allocator should not consider triggering the OOM killer.
2468 */
2469 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2470 nodemask_t *nodemask)
2471 {
2472 struct zoneref *z;
2473 struct zone *zone;
2474 pg_data_t *pgdat = NULL;
2475
2476 /*
2477 * Kernel threads should not be throttled as they may be indirectly
2478 * responsible for cleaning pages necessary for reclaim to make forward
2479 * progress. kjournald for example may enter direct reclaim while
2480 * committing a transaction where throttling it could forcing other
2481 * processes to block on log_wait_commit().
2482 */
2483 if (current->flags & PF_KTHREAD)
2484 goto out;
2485
2486 /*
2487 * If a fatal signal is pending, this process should not throttle.
2488 * It should return quickly so it can exit and free its memory
2489 */
2490 if (fatal_signal_pending(current))
2491 goto out;
2492
2493 /*
2494 * Check if the pfmemalloc reserves are ok by finding the first node
2495 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2496 * GFP_KERNEL will be required for allocating network buffers when
2497 * swapping over the network so ZONE_HIGHMEM is unusable.
2498 *
2499 * Throttling is based on the first usable node and throttled processes
2500 * wait on a queue until kswapd makes progress and wakes them. There
2501 * is an affinity then between processes waking up and where reclaim
2502 * progress has been made assuming the process wakes on the same node.
2503 * More importantly, processes running on remote nodes will not compete
2504 * for remote pfmemalloc reserves and processes on different nodes
2505 * should make reasonable progress.
2506 */
2507 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2508 gfp_mask, nodemask) {
2509 if (zone_idx(zone) > ZONE_NORMAL)
2510 continue;
2511
2512 /* Throttle based on the first usable node */
2513 pgdat = zone->zone_pgdat;
2514 if (pfmemalloc_watermark_ok(pgdat))
2515 goto out;
2516 break;
2517 }
2518
2519 /* If no zone was usable by the allocation flags then do not throttle */
2520 if (!pgdat)
2521 goto out;
2522
2523 /* Account for the throttling */
2524 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2525
2526 /*
2527 * If the caller cannot enter the filesystem, it's possible that it
2528 * is due to the caller holding an FS lock or performing a journal
2529 * transaction in the case of a filesystem like ext[3|4]. In this case,
2530 * it is not safe to block on pfmemalloc_wait as kswapd could be
2531 * blocked waiting on the same lock. Instead, throttle for up to a
2532 * second before continuing.
2533 */
2534 if (!(gfp_mask & __GFP_FS)) {
2535 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2536 pfmemalloc_watermark_ok(pgdat), HZ);
2537
2538 goto check_pending;
2539 }
2540
2541 /* Throttle until kswapd wakes the process */
2542 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2543 pfmemalloc_watermark_ok(pgdat));
2544
2545 check_pending:
2546 if (fatal_signal_pending(current))
2547 return true;
2548
2549 out:
2550 return false;
2551 }
2552
2553 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2554 gfp_t gfp_mask, nodemask_t *nodemask)
2555 {
2556 unsigned long nr_reclaimed;
2557 struct scan_control sc = {
2558 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2559 .may_writepage = !laptop_mode,
2560 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2561 .may_unmap = 1,
2562 .may_swap = 1,
2563 .order = order,
2564 .priority = DEF_PRIORITY,
2565 .target_mem_cgroup = NULL,
2566 .nodemask = nodemask,
2567 };
2568 struct shrink_control shrink = {
2569 .gfp_mask = sc.gfp_mask,
2570 };
2571
2572 /*
2573 * Do not enter reclaim if fatal signal was delivered while throttled.
2574 * 1 is returned so that the page allocator does not OOM kill at this
2575 * point.
2576 */
2577 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2578 return 1;
2579
2580 trace_mm_vmscan_direct_reclaim_begin(order,
2581 sc.may_writepage,
2582 gfp_mask);
2583
2584 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2585
2586 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2587
2588 return nr_reclaimed;
2589 }
2590
2591 #ifdef CONFIG_MEMCG
2592
2593 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2594 gfp_t gfp_mask, bool noswap,
2595 struct zone *zone,
2596 unsigned long *nr_scanned)
2597 {
2598 struct scan_control sc = {
2599 .nr_scanned = 0,
2600 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2601 .may_writepage = !laptop_mode,
2602 .may_unmap = 1,
2603 .may_swap = !noswap,
2604 .order = 0,
2605 .priority = 0,
2606 .target_mem_cgroup = memcg,
2607 };
2608 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2609
2610 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2611 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2612
2613 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2614 sc.may_writepage,
2615 sc.gfp_mask);
2616
2617 /*
2618 * NOTE: Although we can get the priority field, using it
2619 * here is not a good idea, since it limits the pages we can scan.
2620 * if we don't reclaim here, the shrink_zone from balance_pgdat
2621 * will pick up pages from other mem cgroup's as well. We hack
2622 * the priority and make it zero.
2623 */
2624 shrink_lruvec(lruvec, &sc);
2625
2626 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2627
2628 *nr_scanned = sc.nr_scanned;
2629 return sc.nr_reclaimed;
2630 }
2631
2632 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2633 gfp_t gfp_mask,
2634 bool noswap)
2635 {
2636 struct zonelist *zonelist;
2637 unsigned long nr_reclaimed;
2638 int nid;
2639 struct scan_control sc = {
2640 .may_writepage = !laptop_mode,
2641 .may_unmap = 1,
2642 .may_swap = !noswap,
2643 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2644 .order = 0,
2645 .priority = DEF_PRIORITY,
2646 .target_mem_cgroup = memcg,
2647 .nodemask = NULL, /* we don't care the placement */
2648 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2649 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2650 };
2651 struct shrink_control shrink = {
2652 .gfp_mask = sc.gfp_mask,
2653 };
2654
2655 /*
2656 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2657 * take care of from where we get pages. So the node where we start the
2658 * scan does not need to be the current node.
2659 */
2660 nid = mem_cgroup_select_victim_node(memcg);
2661
2662 zonelist = NODE_DATA(nid)->node_zonelists;
2663
2664 trace_mm_vmscan_memcg_reclaim_begin(0,
2665 sc.may_writepage,
2666 sc.gfp_mask);
2667
2668 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2669
2670 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2671
2672 return nr_reclaimed;
2673 }
2674 #endif
2675
2676 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2677 {
2678 struct mem_cgroup *memcg;
2679
2680 if (!total_swap_pages)
2681 return;
2682
2683 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2684 do {
2685 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2686
2687 if (inactive_anon_is_low(lruvec))
2688 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2689 sc, LRU_ACTIVE_ANON);
2690
2691 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2692 } while (memcg);
2693 }
2694
2695 static bool zone_balanced(struct zone *zone, int order,
2696 unsigned long balance_gap, int classzone_idx)
2697 {
2698 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2699 balance_gap, classzone_idx, 0))
2700 return false;
2701
2702 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2703 !compaction_suitable(zone, order))
2704 return false;
2705
2706 return true;
2707 }
2708
2709 /*
2710 * pgdat_balanced() is used when checking if a node is balanced.
2711 *
2712 * For order-0, all zones must be balanced!
2713 *
2714 * For high-order allocations only zones that meet watermarks and are in a
2715 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2716 * total of balanced pages must be at least 25% of the zones allowed by
2717 * classzone_idx for the node to be considered balanced. Forcing all zones to
2718 * be balanced for high orders can cause excessive reclaim when there are
2719 * imbalanced zones.
2720 * The choice of 25% is due to
2721 * o a 16M DMA zone that is balanced will not balance a zone on any
2722 * reasonable sized machine
2723 * o On all other machines, the top zone must be at least a reasonable
2724 * percentage of the middle zones. For example, on 32-bit x86, highmem
2725 * would need to be at least 256M for it to be balance a whole node.
2726 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2727 * to balance a node on its own. These seemed like reasonable ratios.
2728 */
2729 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2730 {
2731 unsigned long managed_pages = 0;
2732 unsigned long balanced_pages = 0;
2733 int i;
2734
2735 /* Check the watermark levels */
2736 for (i = 0; i <= classzone_idx; i++) {
2737 struct zone *zone = pgdat->node_zones + i;
2738
2739 if (!populated_zone(zone))
2740 continue;
2741
2742 managed_pages += zone->managed_pages;
2743
2744 /*
2745 * A special case here:
2746 *
2747 * balance_pgdat() skips over all_unreclaimable after
2748 * DEF_PRIORITY. Effectively, it considers them balanced so
2749 * they must be considered balanced here as well!
2750 */
2751 if (zone->all_unreclaimable) {
2752 balanced_pages += zone->managed_pages;
2753 continue;
2754 }
2755
2756 if (zone_balanced(zone, order, 0, i))
2757 balanced_pages += zone->managed_pages;
2758 else if (!order)
2759 return false;
2760 }
2761
2762 if (order)
2763 return balanced_pages >= (managed_pages >> 2);
2764 else
2765 return true;
2766 }
2767
2768 /*
2769 * Prepare kswapd for sleeping. This verifies that there are no processes
2770 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2771 *
2772 * Returns true if kswapd is ready to sleep
2773 */
2774 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2775 int classzone_idx)
2776 {
2777 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2778 if (remaining)
2779 return false;
2780
2781 /*
2782 * The throttled processes are normally woken up in balance_pgdat() as
2783 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2784 * race between when kswapd checks the watermarks and a process gets
2785 * throttled. There is also a potential race if processes get
2786 * throttled, kswapd wakes, a large process exits thereby balancing the
2787 * zones, which causes kswapd to exit balance_pgdat() before reaching
2788 * the wake up checks. If kswapd is going to sleep, no process should
2789 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2790 * the wake up is premature, processes will wake kswapd and get
2791 * throttled again. The difference from wake ups in balance_pgdat() is
2792 * that here we are under prepare_to_wait().
2793 */
2794 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2795 wake_up_all(&pgdat->pfmemalloc_wait);
2796
2797 return pgdat_balanced(pgdat, order, classzone_idx);
2798 }
2799
2800 /*
2801 * For kswapd, balance_pgdat() will work across all this node's zones until
2802 * they are all at high_wmark_pages(zone).
2803 *
2804 * Returns the final order kswapd was reclaiming at
2805 *
2806 * There is special handling here for zones which are full of pinned pages.
2807 * This can happen if the pages are all mlocked, or if they are all used by
2808 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2809 * What we do is to detect the case where all pages in the zone have been
2810 * scanned twice and there has been zero successful reclaim. Mark the zone as
2811 * dead and from now on, only perform a short scan. Basically we're polling
2812 * the zone for when the problem goes away.
2813 *
2814 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2815 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2816 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2817 * lower zones regardless of the number of free pages in the lower zones. This
2818 * interoperates with the page allocator fallback scheme to ensure that aging
2819 * of pages is balanced across the zones.
2820 */
2821 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2822 int *classzone_idx)
2823 {
2824 bool pgdat_is_balanced = false;
2825 int i;
2826 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2827 struct reclaim_state *reclaim_state = current->reclaim_state;
2828 unsigned long nr_soft_reclaimed;
2829 unsigned long nr_soft_scanned;
2830 struct scan_control sc = {
2831 .gfp_mask = GFP_KERNEL,
2832 .may_unmap = 1,
2833 .may_swap = 1,
2834 /*
2835 * kswapd doesn't want to be bailed out while reclaim. because
2836 * we want to put equal scanning pressure on each zone.
2837 */
2838 .nr_to_reclaim = ULONG_MAX,
2839 .order = order,
2840 .target_mem_cgroup = NULL,
2841 };
2842 struct shrink_control shrink = {
2843 .gfp_mask = sc.gfp_mask,
2844 };
2845 loop_again:
2846 sc.priority = DEF_PRIORITY;
2847 sc.nr_reclaimed = 0;
2848 sc.may_writepage = !laptop_mode;
2849 count_vm_event(PAGEOUTRUN);
2850
2851 do {
2852 unsigned long lru_pages = 0;
2853
2854 /*
2855 * Scan in the highmem->dma direction for the highest
2856 * zone which needs scanning
2857 */
2858 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2859 struct zone *zone = pgdat->node_zones + i;
2860
2861 if (!populated_zone(zone))
2862 continue;
2863
2864 if (zone->all_unreclaimable &&
2865 sc.priority != DEF_PRIORITY)
2866 continue;
2867
2868 /*
2869 * Do some background aging of the anon list, to give
2870 * pages a chance to be referenced before reclaiming.
2871 */
2872 age_active_anon(zone, &sc);
2873
2874 /*
2875 * If the number of buffer_heads in the machine
2876 * exceeds the maximum allowed level and this node
2877 * has a highmem zone, force kswapd to reclaim from
2878 * it to relieve lowmem pressure.
2879 */
2880 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2881 end_zone = i;
2882 break;
2883 }
2884
2885 if (!zone_balanced(zone, order, 0, 0)) {
2886 end_zone = i;
2887 break;
2888 } else {
2889 /* If balanced, clear the congested flag */
2890 zone_clear_flag(zone, ZONE_CONGESTED);
2891 }
2892 }
2893
2894 if (i < 0) {
2895 pgdat_is_balanced = true;
2896 goto out;
2897 }
2898
2899 for (i = 0; i <= end_zone; i++) {
2900 struct zone *zone = pgdat->node_zones + i;
2901
2902 lru_pages += zone_reclaimable_pages(zone);
2903 }
2904
2905 /*
2906 * Now scan the zone in the dma->highmem direction, stopping
2907 * at the last zone which needs scanning.
2908 *
2909 * We do this because the page allocator works in the opposite
2910 * direction. This prevents the page allocator from allocating
2911 * pages behind kswapd's direction of progress, which would
2912 * cause too much scanning of the lower zones.
2913 */
2914 for (i = 0; i <= end_zone; i++) {
2915 struct zone *zone = pgdat->node_zones + i;
2916 int nr_slab, testorder;
2917 unsigned long balance_gap;
2918
2919 if (!populated_zone(zone))
2920 continue;
2921
2922 if (zone->all_unreclaimable &&
2923 sc.priority != DEF_PRIORITY)
2924 continue;
2925
2926 sc.nr_scanned = 0;
2927
2928 nr_soft_scanned = 0;
2929 /*
2930 * Call soft limit reclaim before calling shrink_zone.
2931 */
2932 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2933 order, sc.gfp_mask,
2934 &nr_soft_scanned);
2935 sc.nr_reclaimed += nr_soft_reclaimed;
2936
2937 /*
2938 * We put equal pressure on every zone, unless
2939 * one zone has way too many pages free
2940 * already. The "too many pages" is defined
2941 * as the high wmark plus a "gap" where the
2942 * gap is either the low watermark or 1%
2943 * of the zone, whichever is smaller.
2944 */
2945 balance_gap = min(low_wmark_pages(zone),
2946 (zone->managed_pages +
2947 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2948 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2949 /*
2950 * Kswapd reclaims only single pages with compaction
2951 * enabled. Trying too hard to reclaim until contiguous
2952 * free pages have become available can hurt performance
2953 * by evicting too much useful data from memory.
2954 * Do not reclaim more than needed for compaction.
2955 */
2956 testorder = order;
2957 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2958 compaction_suitable(zone, order) !=
2959 COMPACT_SKIPPED)
2960 testorder = 0;
2961
2962 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2963 !zone_balanced(zone, testorder,
2964 balance_gap, end_zone)) {
2965 shrink_zone(zone, &sc);
2966
2967 reclaim_state->reclaimed_slab = 0;
2968 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2969 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2970
2971 if (nr_slab == 0 && !zone_reclaimable(zone))
2972 zone->all_unreclaimable = 1;
2973 }
2974
2975 /*
2976 * If we're getting trouble reclaiming, start doing
2977 * writepage even in laptop mode.
2978 */
2979 if (sc.priority < DEF_PRIORITY - 2)
2980 sc.may_writepage = 1;
2981
2982 if (zone->all_unreclaimable) {
2983 if (end_zone && end_zone == i)
2984 end_zone--;
2985 continue;
2986 }
2987
2988 if (zone_balanced(zone, testorder, 0, end_zone))
2989 /*
2990 * If a zone reaches its high watermark,
2991 * consider it to be no longer congested. It's
2992 * possible there are dirty pages backed by
2993 * congested BDIs but as pressure is relieved,
2994 * speculatively avoid congestion waits
2995 */
2996 zone_clear_flag(zone, ZONE_CONGESTED);
2997 }
2998
2999 /*
3000 * If the low watermark is met there is no need for processes
3001 * to be throttled on pfmemalloc_wait as they should not be
3002 * able to safely make forward progress. Wake them
3003 */
3004 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3005 pfmemalloc_watermark_ok(pgdat))
3006 wake_up(&pgdat->pfmemalloc_wait);
3007
3008 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
3009 pgdat_is_balanced = true;
3010 break; /* kswapd: all done */
3011 }
3012
3013 /*
3014 * We do this so kswapd doesn't build up large priorities for
3015 * example when it is freeing in parallel with allocators. It
3016 * matches the direct reclaim path behaviour in terms of impact
3017 * on zone->*_priority.
3018 */
3019 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
3020 break;
3021 } while (--sc.priority >= 0);
3022
3023 out:
3024 if (!pgdat_is_balanced) {
3025 cond_resched();
3026
3027 try_to_freeze();
3028
3029 /*
3030 * Fragmentation may mean that the system cannot be
3031 * rebalanced for high-order allocations in all zones.
3032 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
3033 * it means the zones have been fully scanned and are still
3034 * not balanced. For high-order allocations, there is
3035 * little point trying all over again as kswapd may
3036 * infinite loop.
3037 *
3038 * Instead, recheck all watermarks at order-0 as they
3039 * are the most important. If watermarks are ok, kswapd will go
3040 * back to sleep. High-order users can still perform direct
3041 * reclaim if they wish.
3042 */
3043 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
3044 order = sc.order = 0;
3045
3046 goto loop_again;
3047 }
3048
3049 /*
3050 * If kswapd was reclaiming at a higher order, it has the option of
3051 * sleeping without all zones being balanced. Before it does, it must
3052 * ensure that the watermarks for order-0 on *all* zones are met and
3053 * that the congestion flags are cleared. The congestion flag must
3054 * be cleared as kswapd is the only mechanism that clears the flag
3055 * and it is potentially going to sleep here.
3056 */
3057 if (order) {
3058 int zones_need_compaction = 1;
3059
3060 for (i = 0; i <= end_zone; i++) {
3061 struct zone *zone = pgdat->node_zones + i;
3062
3063 if (!populated_zone(zone))
3064 continue;
3065
3066 /* Check if the memory needs to be defragmented. */
3067 if (zone_watermark_ok(zone, order,
3068 low_wmark_pages(zone), *classzone_idx, 0))
3069 zones_need_compaction = 0;
3070 }
3071
3072 if (zones_need_compaction)
3073 compact_pgdat(pgdat, order);
3074 }
3075
3076 /*
3077 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3078 * makes a decision on the order we were last reclaiming at. However,
3079 * if another caller entered the allocator slow path while kswapd
3080 * was awake, order will remain at the higher level
3081 */
3082 *classzone_idx = end_zone;
3083 return order;
3084 }
3085
3086 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3087 {
3088 long remaining = 0;
3089 DEFINE_WAIT(wait);
3090
3091 if (freezing(current) || kthread_should_stop())
3092 return;
3093
3094 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3095
3096 /* Try to sleep for a short interval */
3097 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3098 remaining = schedule_timeout(HZ/10);
3099 finish_wait(&pgdat->kswapd_wait, &wait);
3100 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3101 }
3102
3103 /*
3104 * After a short sleep, check if it was a premature sleep. If not, then
3105 * go fully to sleep until explicitly woken up.
3106 */
3107 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3108 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3109
3110 /*
3111 * vmstat counters are not perfectly accurate and the estimated
3112 * value for counters such as NR_FREE_PAGES can deviate from the
3113 * true value by nr_online_cpus * threshold. To avoid the zone
3114 * watermarks being breached while under pressure, we reduce the
3115 * per-cpu vmstat threshold while kswapd is awake and restore
3116 * them before going back to sleep.
3117 */
3118 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3119
3120 /*
3121 * Compaction records what page blocks it recently failed to
3122 * isolate pages from and skips them in the future scanning.
3123 * When kswapd is going to sleep, it is reasonable to assume
3124 * that pages and compaction may succeed so reset the cache.
3125 */
3126 reset_isolation_suitable(pgdat);
3127
3128 if (!kthread_should_stop())
3129 schedule();
3130
3131 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3132 } else {
3133 if (remaining)
3134 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3135 else
3136 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3137 }
3138 finish_wait(&pgdat->kswapd_wait, &wait);
3139 }
3140
3141 /*
3142 * The background pageout daemon, started as a kernel thread
3143 * from the init process.
3144 *
3145 * This basically trickles out pages so that we have _some_
3146 * free memory available even if there is no other activity
3147 * that frees anything up. This is needed for things like routing
3148 * etc, where we otherwise might have all activity going on in
3149 * asynchronous contexts that cannot page things out.
3150 *
3151 * If there are applications that are active memory-allocators
3152 * (most normal use), this basically shouldn't matter.
3153 */
3154 static int kswapd(void *p)
3155 {
3156 unsigned long order, new_order;
3157 unsigned balanced_order;
3158 int classzone_idx, new_classzone_idx;
3159 int balanced_classzone_idx;
3160 pg_data_t *pgdat = (pg_data_t*)p;
3161 struct task_struct *tsk = current;
3162
3163 struct reclaim_state reclaim_state = {
3164 .reclaimed_slab = 0,
3165 };
3166 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3167
3168 lockdep_set_current_reclaim_state(GFP_KERNEL);
3169
3170 if (!cpumask_empty(cpumask))
3171 set_cpus_allowed_ptr(tsk, cpumask);
3172 current->reclaim_state = &reclaim_state;
3173
3174 /*
3175 * Tell the memory management that we're a "memory allocator",
3176 * and that if we need more memory we should get access to it
3177 * regardless (see "__alloc_pages()"). "kswapd" should
3178 * never get caught in the normal page freeing logic.
3179 *
3180 * (Kswapd normally doesn't need memory anyway, but sometimes
3181 * you need a small amount of memory in order to be able to
3182 * page out something else, and this flag essentially protects
3183 * us from recursively trying to free more memory as we're
3184 * trying to free the first piece of memory in the first place).
3185 */
3186 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3187 set_freezable();
3188
3189 order = new_order = 0;
3190 balanced_order = 0;
3191 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3192 balanced_classzone_idx = classzone_idx;
3193 for ( ; ; ) {
3194 bool ret;
3195
3196 /*
3197 * If the last balance_pgdat was unsuccessful it's unlikely a
3198 * new request of a similar or harder type will succeed soon
3199 * so consider going to sleep on the basis we reclaimed at
3200 */
3201 if (balanced_classzone_idx >= new_classzone_idx &&
3202 balanced_order == new_order) {
3203 new_order = pgdat->kswapd_max_order;
3204 new_classzone_idx = pgdat->classzone_idx;
3205 pgdat->kswapd_max_order = 0;
3206 pgdat->classzone_idx = pgdat->nr_zones - 1;
3207 }
3208
3209 if (order < new_order || classzone_idx > new_classzone_idx) {
3210 /*
3211 * Don't sleep if someone wants a larger 'order'
3212 * allocation or has tigher zone constraints
3213 */
3214 order = new_order;
3215 classzone_idx = new_classzone_idx;
3216 } else {
3217 kswapd_try_to_sleep(pgdat, balanced_order,
3218 balanced_classzone_idx);
3219 order = pgdat->kswapd_max_order;
3220 classzone_idx = pgdat->classzone_idx;
3221 new_order = order;
3222 new_classzone_idx = classzone_idx;
3223 pgdat->kswapd_max_order = 0;
3224 pgdat->classzone_idx = pgdat->nr_zones - 1;
3225 }
3226
3227 ret = try_to_freeze();
3228 if (kthread_should_stop())
3229 break;
3230
3231 /*
3232 * We can speed up thawing tasks if we don't call balance_pgdat
3233 * after returning from the refrigerator
3234 */
3235 if (!ret) {
3236 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3237 balanced_classzone_idx = classzone_idx;
3238 balanced_order = balance_pgdat(pgdat, order,
3239 &balanced_classzone_idx);
3240 }
3241 }
3242
3243 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3244 current->reclaim_state = NULL;
3245 lockdep_clear_current_reclaim_state();
3246
3247 return 0;
3248 }
3249
3250 /*
3251 * A zone is low on free memory, so wake its kswapd task to service it.
3252 */
3253 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3254 {
3255 pg_data_t *pgdat;
3256
3257 if (!populated_zone(zone))
3258 return;
3259
3260 #ifdef CONFIG_FREEZER
3261 if (pm_freezing)
3262 return;
3263 #endif
3264
3265 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3266 return;
3267 pgdat = zone->zone_pgdat;
3268 if (pgdat->kswapd_max_order < order) {
3269 pgdat->kswapd_max_order = order;
3270 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3271 }
3272 if (!waitqueue_active(&pgdat->kswapd_wait))
3273 return;
3274 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3275 return;
3276
3277 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3278 wake_up_interruptible(&pgdat->kswapd_wait);
3279 }
3280
3281 #ifdef CONFIG_HIBERNATION
3282 /*
3283 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3284 * freed pages.
3285 *
3286 * Rather than trying to age LRUs the aim is to preserve the overall
3287 * LRU order by reclaiming preferentially
3288 * inactive > active > active referenced > active mapped
3289 */
3290 unsigned long shrink_memory_mask(unsigned long nr_to_reclaim, gfp_t mask)
3291 {
3292 struct reclaim_state reclaim_state;
3293 struct scan_control sc = {
3294 .gfp_mask = mask,
3295 .may_swap = 1,
3296 .may_unmap = 1,
3297 .may_writepage = 1,
3298 .nr_to_reclaim = nr_to_reclaim,
3299 .hibernation_mode = 1,
3300 .order = 0,
3301 .priority = DEF_PRIORITY,
3302 };
3303 struct shrink_control shrink = {
3304 .gfp_mask = sc.gfp_mask,
3305 };
3306 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3307 struct task_struct *p = current;
3308 unsigned long nr_reclaimed;
3309
3310 p->flags |= PF_MEMALLOC;
3311 lockdep_set_current_reclaim_state(sc.gfp_mask);
3312 reclaim_state.reclaimed_slab = 0;
3313 p->reclaim_state = &reclaim_state;
3314
3315 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3316
3317 p->reclaim_state = NULL;
3318 lockdep_clear_current_reclaim_state();
3319 p->flags &= ~PF_MEMALLOC;
3320
3321 return nr_reclaimed;
3322 }
3323 EXPORT_SYMBOL_GPL(shrink_memory_mask);
3324
3325 #ifdef CONFIG_MTKPASR
3326 extern void shrink_mtkpasr_all(void);
3327 #else
3328 #define shrink_mtkpasr_all() do {} while (0)
3329 #endif
3330 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3331 {
3332 shrink_mtkpasr_all();
3333 return shrink_memory_mask(nr_to_reclaim, GFP_HIGHUSER_MOVABLE);
3334 }
3335 EXPORT_SYMBOL_GPL(shrink_all_memory);
3336 #endif /* CONFIG_HIBERNATION */
3337
3338 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3339 not required for correctness. So if the last cpu in a node goes
3340 away, we get changed to run anywhere: as the first one comes back,
3341 restore their cpu bindings. */
3342 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3343 void *hcpu)
3344 {
3345 int nid;
3346
3347 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3348 for_each_node_state(nid, N_MEMORY) {
3349 pg_data_t *pgdat = NODE_DATA(nid);
3350 const struct cpumask *mask;
3351
3352 mask = cpumask_of_node(pgdat->node_id);
3353
3354 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3355 /* One of our CPUs online: restore mask */
3356 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3357 }
3358 }
3359 return NOTIFY_OK;
3360 }
3361
3362 /*
3363 * This kswapd start function will be called by init and node-hot-add.
3364 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3365 */
3366 int kswapd_run(int nid)
3367 {
3368 pg_data_t *pgdat = NODE_DATA(nid);
3369 int ret = 0;
3370
3371 if (pgdat->kswapd)
3372 return 0;
3373
3374 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3375 if (IS_ERR(pgdat->kswapd)) {
3376 /* failure at boot is fatal */
3377 BUG_ON(system_state == SYSTEM_BOOTING);
3378 pr_err("Failed to start kswapd on node %d\n", nid);
3379 ret = PTR_ERR(pgdat->kswapd);
3380 pgdat->kswapd = NULL;
3381 }
3382 return ret;
3383 }
3384
3385 /*
3386 * Called by memory hotplug when all memory in a node is offlined. Caller must
3387 * hold lock_memory_hotplug().
3388 */
3389 void kswapd_stop(int nid)
3390 {
3391 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3392
3393 if (kswapd) {
3394 kthread_stop(kswapd);
3395 NODE_DATA(nid)->kswapd = NULL;
3396 }
3397 }
3398
3399 static int __init kswapd_init(void)
3400 {
3401 int nid;
3402
3403 swap_setup();
3404 for_each_node_state(nid, N_MEMORY)
3405 kswapd_run(nid);
3406 hotcpu_notifier(cpu_callback, 0);
3407 return 0;
3408 }
3409
3410 module_init(kswapd_init)
3411
3412 #ifdef CONFIG_NUMA
3413 /*
3414 * Zone reclaim mode
3415 *
3416 * If non-zero call zone_reclaim when the number of free pages falls below
3417 * the watermarks.
3418 */
3419 int zone_reclaim_mode __read_mostly;
3420
3421 #define RECLAIM_OFF 0
3422 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3423 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3424 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3425
3426 /*
3427 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3428 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3429 * a zone.
3430 */
3431 #define ZONE_RECLAIM_PRIORITY 4
3432
3433 /*
3434 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3435 * occur.
3436 */
3437 int sysctl_min_unmapped_ratio = 1;
3438
3439 /*
3440 * If the number of slab pages in a zone grows beyond this percentage then
3441 * slab reclaim needs to occur.
3442 */
3443 int sysctl_min_slab_ratio = 5;
3444
3445 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3446 {
3447 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3448 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3449 zone_page_state(zone, NR_ACTIVE_FILE);
3450
3451 /*
3452 * It's possible for there to be more file mapped pages than
3453 * accounted for by the pages on the file LRU lists because
3454 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3455 */
3456 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3457 }
3458
3459 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3460 static long zone_pagecache_reclaimable(struct zone *zone)
3461 {
3462 long nr_pagecache_reclaimable;
3463 long delta = 0;
3464
3465 /*
3466 * If RECLAIM_SWAP is set, then all file pages are considered
3467 * potentially reclaimable. Otherwise, we have to worry about
3468 * pages like swapcache and zone_unmapped_file_pages() provides
3469 * a better estimate
3470 */
3471 if (zone_reclaim_mode & RECLAIM_SWAP)
3472 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3473 else
3474 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3475
3476 /* If we can't clean pages, remove dirty pages from consideration */
3477 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3478 delta += zone_page_state(zone, NR_FILE_DIRTY);
3479
3480 /* Watch for any possible underflows due to delta */
3481 if (unlikely(delta > nr_pagecache_reclaimable))
3482 delta = nr_pagecache_reclaimable;
3483
3484 return nr_pagecache_reclaimable - delta;
3485 }
3486
3487 /*
3488 * Try to free up some pages from this zone through reclaim.
3489 */
3490 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3491 {
3492 /* Minimum pages needed in order to stay on node */
3493 const unsigned long nr_pages = 1 << order;
3494 struct task_struct *p = current;
3495 struct reclaim_state reclaim_state;
3496 struct scan_control sc = {
3497 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3498 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3499 .may_swap = 1,
3500 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3501 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3502 .order = order,
3503 .priority = ZONE_RECLAIM_PRIORITY,
3504 };
3505 struct shrink_control shrink = {
3506 .gfp_mask = sc.gfp_mask,
3507 };
3508 unsigned long nr_slab_pages0, nr_slab_pages1;
3509
3510 cond_resched();
3511 /*
3512 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3513 * and we also need to be able to write out pages for RECLAIM_WRITE
3514 * and RECLAIM_SWAP.
3515 */
3516 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3517 lockdep_set_current_reclaim_state(gfp_mask);
3518 reclaim_state.reclaimed_slab = 0;
3519 p->reclaim_state = &reclaim_state;
3520
3521 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3522 /*
3523 * Free memory by calling shrink zone with increasing
3524 * priorities until we have enough memory freed.
3525 */
3526 do {
3527 shrink_zone(zone, &sc);
3528 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3529 }
3530
3531 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3532 if (nr_slab_pages0 > zone->min_slab_pages) {
3533 /*
3534 * shrink_slab() does not currently allow us to determine how
3535 * many pages were freed in this zone. So we take the current
3536 * number of slab pages and shake the slab until it is reduced
3537 * by the same nr_pages that we used for reclaiming unmapped
3538 * pages.
3539 *
3540 * Note that shrink_slab will free memory on all zones and may
3541 * take a long time.
3542 */
3543 for (;;) {
3544 unsigned long lru_pages = zone_reclaimable_pages(zone);
3545
3546 /* No reclaimable slab or very low memory pressure */
3547 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3548 break;
3549
3550 /* Freed enough memory */
3551 nr_slab_pages1 = zone_page_state(zone,
3552 NR_SLAB_RECLAIMABLE);
3553 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3554 break;
3555 }
3556
3557 /*
3558 * Update nr_reclaimed by the number of slab pages we
3559 * reclaimed from this zone.
3560 */
3561 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3562 if (nr_slab_pages1 < nr_slab_pages0)
3563 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3564 }
3565
3566 p->reclaim_state = NULL;
3567 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3568 lockdep_clear_current_reclaim_state();
3569 return sc.nr_reclaimed >= nr_pages;
3570 }
3571
3572 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3573 {
3574 int node_id;
3575 int ret;
3576
3577 /*
3578 * Zone reclaim reclaims unmapped file backed pages and
3579 * slab pages if we are over the defined limits.
3580 *
3581 * A small portion of unmapped file backed pages is needed for
3582 * file I/O otherwise pages read by file I/O will be immediately
3583 * thrown out if the zone is overallocated. So we do not reclaim
3584 * if less than a specified percentage of the zone is used by
3585 * unmapped file backed pages.
3586 */
3587 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3588 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3589 return ZONE_RECLAIM_FULL;
3590
3591 if (zone->all_unreclaimable)
3592 return ZONE_RECLAIM_FULL;
3593
3594 /*
3595 * Do not scan if the allocation should not be delayed.
3596 */
3597 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3598 return ZONE_RECLAIM_NOSCAN;
3599
3600 /*
3601 * Only run zone reclaim on the local zone or on zones that do not
3602 * have associated processors. This will favor the local processor
3603 * over remote processors and spread off node memory allocations
3604 * as wide as possible.
3605 */
3606 node_id = zone_to_nid(zone);
3607 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3608 return ZONE_RECLAIM_NOSCAN;
3609
3610 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3611 return ZONE_RECLAIM_NOSCAN;
3612
3613 ret = __zone_reclaim(zone, gfp_mask, order);
3614 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3615
3616 if (!ret)
3617 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3618
3619 return ret;
3620 }
3621 #endif
3622
3623 /*
3624 * page_evictable - test whether a page is evictable
3625 * @page: the page to test
3626 *
3627 * Test whether page is evictable--i.e., should be placed on active/inactive
3628 * lists vs unevictable list.
3629 *
3630 * Reasons page might not be evictable:
3631 * (1) page's mapping marked unevictable
3632 * (2) page is part of an mlocked VMA
3633 *
3634 */
3635 int page_evictable(struct page *page)
3636 {
3637 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3638 }
3639
3640 #ifdef CONFIG_SHMEM
3641 /**
3642 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3643 * @pages: array of pages to check
3644 * @nr_pages: number of pages to check
3645 *
3646 * Checks pages for evictability and moves them to the appropriate lru list.
3647 *
3648 * This function is only used for SysV IPC SHM_UNLOCK.
3649 */
3650 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3651 {
3652 struct lruvec *lruvec;
3653 struct zone *zone = NULL;
3654 int pgscanned = 0;
3655 int pgrescued = 0;
3656 int i;
3657
3658 for (i = 0; i < nr_pages; i++) {
3659 struct page *page = pages[i];
3660 struct zone *pagezone;
3661
3662 pgscanned++;
3663 pagezone = page_zone(page);
3664 if (pagezone != zone) {
3665 if (zone)
3666 spin_unlock_irq(&zone->lru_lock);
3667 zone = pagezone;
3668 spin_lock_irq(&zone->lru_lock);
3669 }
3670 lruvec = mem_cgroup_page_lruvec(page, zone);
3671
3672 if (!PageLRU(page) || !PageUnevictable(page))
3673 continue;
3674
3675 if (page_evictable(page)) {
3676 enum lru_list lru = page_lru_base_type(page);
3677
3678 VM_BUG_ON(PageActive(page));
3679 ClearPageUnevictable(page);
3680 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3681 add_page_to_lru_list(page, lruvec, lru);
3682 pgrescued++;
3683 }
3684 }
3685
3686 if (zone) {
3687 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3688 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3689 spin_unlock_irq(&zone->lru_lock);
3690 }
3691 }
3692 #endif /* CONFIG_SHMEM */
3693
3694 static void warn_scan_unevictable_pages(void)
3695 {
3696 printk_once(KERN_WARNING
3697 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3698 "disabled for lack of a legitimate use case. If you have "
3699 "one, please send an email to linux-mm@kvack.org.\n",
3700 current->comm);
3701 }
3702
3703 /*
3704 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3705 * all nodes' unevictable lists for evictable pages
3706 */
3707 unsigned long scan_unevictable_pages;
3708
3709 int scan_unevictable_handler(struct ctl_table *table, int write,
3710 void __user *buffer,
3711 size_t *length, loff_t *ppos)
3712 {
3713 warn_scan_unevictable_pages();
3714 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3715 scan_unevictable_pages = 0;
3716 return 0;
3717 }
3718
3719 #ifdef CONFIG_NUMA
3720 /*
3721 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3722 * a specified node's per zone unevictable lists for evictable pages.
3723 */
3724
3725 static ssize_t read_scan_unevictable_node(struct device *dev,
3726 struct device_attribute *attr,
3727 char *buf)
3728 {
3729 warn_scan_unevictable_pages();
3730 return sprintf(buf, "0\n"); /* always zero; should fit... */
3731 }
3732
3733 static ssize_t write_scan_unevictable_node(struct device *dev,
3734 struct device_attribute *attr,
3735 const char *buf, size_t count)
3736 {
3737 warn_scan_unevictable_pages();
3738 return 1;
3739 }
3740
3741
3742 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3743 read_scan_unevictable_node,
3744 write_scan_unevictable_node);
3745
3746 int scan_unevictable_register_node(struct node *node)
3747 {
3748 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3749 }
3750
3751 void scan_unevictable_unregister_node(struct node *node)
3752 {
3753 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 }
3755 #endif
3756
3757 #ifdef CONFIG_MTKPASR
3758 void try_to_shrink_slab(void)
3759 {
3760 struct shrinker *shrinker;
3761 struct shrink_control shrink = {
3762 .gfp_mask = GFP_KERNEL|__GFP_HIGHMEM,
3763 };
3764
3765 if (!down_read_trylock(&shrinker_rwsem)) {
3766 return;
3767 }
3768
3769 list_for_each_entry(shrinker, &shrinker_list, list) {
3770 int num_objs;
3771 int shrink_ret = 0;
3772 int retry = 2;
3773
3774 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3775 if (num_objs <= 0)
3776 continue;
3777
3778 do {
3779 /* To shrink */
3780 shrink_ret = do_shrinker_shrink(shrinker, &shrink, num_objs);
3781 if (shrink_ret == -1)
3782 break;
3783 /* Check empty */
3784 num_objs = do_shrinker_shrink(shrinker, &shrink, 0);
3785 if (num_objs <= 0)
3786 break;
3787 } while (--retry);
3788 }
3789
3790 up_read(&shrinker_rwsem);
3791 }
3792
3793 extern void free_hot_cold_page(struct page *page, int cold);
3794 /* Isolate pages for PASR */
3795 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3796 int mtkpasr_isolate_page(struct page *page, int check_swap)
3797 #else
3798 int mtkpasr_isolate_page(struct page *page)
3799 #endif
3800 {
3801 struct zone *zone = page_zone(page);
3802 struct lruvec *lruvec;
3803 unsigned long flags;
3804 isolate_mode_t mode = ISOLATE_ASYNC_MIGRATE;
3805
3806 /* Lock this zone - USE trylock version! */
3807 if (!spin_trylock_irqsave(&zone->lru_lock, flags)) {
3808 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3809 printk(KERN_ALERT"[%s][%d] Failed to lock this zone!\n",__FUNCTION__,__LINE__);
3810 printk(KERN_ALERT"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
3811 return -EAGAIN;
3812 }
3813
3814 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3815 /* Check whether we should handle SwapBacked, SwapCache pages */
3816 if (check_swap) {
3817 if (PageSwapBacked(page) || PageSwapCache(page)) {
3818 spin_unlock_irqrestore(&zone->lru_lock, flags);
3819 return -EACCES;
3820 }
3821 }
3822 #endif
3823
3824 /* Try to isolate this page */
3825 if (__isolate_lru_page(page, mode) != 0) {
3826 spin_unlock_irqrestore(&zone->lru_lock, flags);
3827 return -EACCES;
3828 }
3829
3830 /* Successfully isolated */
3831 lruvec = mem_cgroup_page_lruvec(page, zone);
3832 del_page_from_lru_list(page, lruvec, page_lru(page));
3833
3834 /* Unlock this zone */
3835 spin_unlock_irqrestore(&zone->lru_lock, flags);
3836
3837 return 0;
3838 }
3839
3840 /* Drop page (in File/Anon LRUs) (Imitate the behavior of shrink_page_list) */
3841 /* If returns error, caller needs to putback page by itself. */
3842 int mtkpasr_drop_page(struct page *page)
3843 {
3844 int ret;
3845 unsigned long vm_flags = 0x0;
3846 bool active = false;
3847 struct address_space *mapping;
3848 enum ttu_flags unmap_flags = TTU_UNMAP;
3849
3850 /* Suitable scan control */
3851 struct scan_control sc = {
3852 .gfp_mask = GFP_KERNEL,
3853 .order = PAGE_ALLOC_COSTLY_ORDER + 1,
3854 //.reclaim_mode = RECLAIM_MODE_SINGLE|RECLAIM_MODE_SYNC, // We only handle "SwapBacked" pages in this reclaim_mode!
3855 };
3856
3857 /* Try to isolate this page */
3858 #ifdef CONFIG_MTKPASR_ALLEXTCOMP
3859 ret = mtkpasr_isolate_page(page, 0x1);
3860 #else
3861 ret = mtkpasr_isolate_page(page);
3862 #endif
3863 if (ret) {
3864 return ret;
3865 }
3866
3867 /* Check whether it is evictable! */
3868 if (unlikely(!page_evictable(page))) {
3869 putback_lru_page(page);
3870 return -EACCES;
3871 }
3872
3873 /* If it is Active, reference and deactivate it */
3874 if (PageActive(page)) {
3875 active = TestClearPageActive(page);
3876 }
3877
3878 /* If we fail to lock this page, ignore it */
3879 if (!trylock_page(page)) {
3880 goto putback;
3881 }
3882
3883 /* If page is in writeback, we don't handle it here! */
3884 if (PageWriteback(page)) {
3885 goto unlock;
3886 }
3887
3888 /*
3889 * Anonymous process memory has backing store?
3890 * Try to allocate it some swap space here.
3891 */
3892 if (PageAnon(page) && !PageSwapCache(page)) {
3893 /* Check whether we have enough free memory */
3894 if (vm_swap_full()) {
3895 goto unlock;
3896 }
3897
3898 /* Ok! It is safe to add this page to swap. */
3899 if (!add_to_swap(page, NULL)){
3900 goto unlock;
3901 }
3902 }
3903
3904 /* We don't handle dirty file cache here (Related devices may be suspended) */
3905 if (page_is_file_cache(page)) {
3906 /* How do we handle pages in VM_EXEC vmas? */
3907 if ((vm_flags & VM_EXEC)) {
3908 goto unlock;
3909 }
3910 /* We don't handle dirty file pages! */
3911 if (PageDirty(page)) {
3912 #ifdef CONFIG_MTKPASR_DEBUG
3913 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);
3914 #endif
3915 goto unlock;
3916 }
3917 }
3918
3919 /*
3920 * The page is mapped into the page tables of one or more
3921 * processes. Try to unmap it here.
3922 */
3923 mapping = page_mapping(page);
3924 if (page_mapped(page) && mapping) {
3925 #if 0
3926 /* Indicate unmap action for SwapBacked pages */
3927 if (PageSwapBacked(page)) {
3928 unmap_flags |= TTU_IGNORE_ACCESS;
3929 }
3930 #endif
3931 /* To unmap */
3932 switch (try_to_unmap(page, unmap_flags)) {
3933 case SWAP_SUCCESS:
3934 /* try to free the page below */
3935 break;
3936 case SWAP_FAIL:
3937 goto restore_swap;
3938 case SWAP_AGAIN:
3939 goto restore_swap;
3940 case SWAP_MLOCK:
3941 goto restore_swap;
3942
3943 }
3944 }
3945
3946 /* Check whether it is dirtied.
3947 * We have filtered out dirty file pages above. (IMPORTANT!)
3948 * "VM_BUG_ON(!PageSwapBacked(page))"
3949 * */
3950 if (PageDirty(page)) {
3951 /* Page is dirty, try to write it out here */
3952 /* It's ok for zram swap! */
3953 /* Should we need to apply GFP_IOFS? */
3954 switch (pageout(page, mapping, &sc)) {
3955 case PAGE_SUCCESS:
3956 if (PageWriteback(page)) {
3957 goto putback;
3958 }
3959 if (PageDirty(page)) {
3960 goto putback;
3961 }
3962
3963 /*
3964 * A synchronous write - probably a ramdisk. Go
3965 * ahead and try to reclaim the page.
3966 */
3967 if (!trylock_page(page)) {
3968 goto putback;
3969 }
3970 if (PageDirty(page) || PageWriteback(page)) {
3971 goto unlock;
3972 }
3973 mapping = page_mapping(page);
3974 case PAGE_CLEAN:
3975 /* try to free the page below */
3976 break;
3977 default:
3978 #ifdef CONFIG_MTKPASR_DEBUG
3979 /*printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d]\n\n\n\n\n\n",__FUNCTION__,__LINE__);*/
3980 #endif
3981 goto restore_unmap;
3982 }
3983 }
3984
3985 /* Release buffer */
3986 if (page_has_private(page)) {
3987 if (!try_to_release_page(page, sc.gfp_mask)) {
3988 goto unlock;
3989 }
3990 if (!mapping && page_count(page) == 1) {
3991 unlock_page(page);
3992 if (put_page_testzero(page)) {
3993 goto freeit;
3994 } else {
3995 /* Race! TOCHECK */
3996 printk(KERN_ALERT "\n\n\n\n\n\n [%s][%d] RACE!!\n\n\n\n\n\n",__FUNCTION__,__LINE__);
3997 goto notask;
3998 }
3999 }
4000 }
4001 if (!mapping || !__remove_mapping(mapping, page)) {
4002 goto unlock;
4003 }
4004
4005 __clear_page_locked(page);
4006
4007 freeit:
4008 free_hot_cold_page(page, 0);
4009 return 0;
4010
4011 restore_unmap:
4012 /* Do something */
4013
4014 restore_swap:
4015 if (PageSwapCache(page))
4016 try_to_free_swap(page);
4017
4018 unlock:
4019 unlock_page(page);
4020
4021 putback:
4022 /* Activate it again if needed! */
4023 if (active)
4024 SetPageActive(page);
4025
4026 /* We don't putback them to corresponding LRUs, because we want to do more tasks outside this function!
4027 putback_lru_page(page); */
4028
4029 /* Failedly dropped pages. Do migration! */
4030 return -EBUSY;
4031
4032 notask:
4033 return 0;
4034 }
4035 #endif