Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/export.h>
5 #include <linux/err.h>
6 #include <linux/sched.h>
7 #include <linux/security.h>
8 #include <linux/swap.h>
9 #include <linux/swapops.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 #include "internal.h"
14
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/kmem.h>
17
18 /**
19 * kstrdup - allocate space for and copy an existing string
20 * @s: the string to duplicate
21 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
22 */
23 char *kstrdup(const char *s, gfp_t gfp)
24 {
25 size_t len;
26 char *buf;
27
28 if (!s)
29 return NULL;
30
31 len = strlen(s) + 1;
32 buf = kmalloc_track_caller(len, gfp);
33 if (buf)
34 memcpy(buf, s, len);
35 return buf;
36 }
37 EXPORT_SYMBOL(kstrdup);
38
39 /**
40 * kstrndup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @max: read at most @max chars from @s
43 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
44 */
45 char *kstrndup(const char *s, size_t max, gfp_t gfp)
46 {
47 size_t len;
48 char *buf;
49
50 if (!s)
51 return NULL;
52
53 len = strnlen(s, max);
54 buf = kmalloc_track_caller(len+1, gfp);
55 if (buf) {
56 memcpy(buf, s, len);
57 buf[len] = '\0';
58 }
59 return buf;
60 }
61 EXPORT_SYMBOL(kstrndup);
62
63 /**
64 * kmemdup - duplicate region of memory
65 *
66 * @src: memory region to duplicate
67 * @len: memory region length
68 * @gfp: GFP mask to use
69 */
70 void *kmemdup(const void *src, size_t len, gfp_t gfp)
71 {
72 void *p;
73
74 p = kmalloc_track_caller(len, gfp);
75 if (p)
76 memcpy(p, src, len);
77 return p;
78 }
79 EXPORT_SYMBOL(kmemdup);
80
81 /**
82 * memdup_user - duplicate memory region from user space
83 *
84 * @src: source address in user space
85 * @len: number of bytes to copy
86 *
87 * Returns an ERR_PTR() on failure.
88 */
89 void *memdup_user(const void __user *src, size_t len)
90 {
91 void *p;
92
93 /*
94 * Always use GFP_KERNEL, since copy_from_user() can sleep and
95 * cause pagefault, which makes it pointless to use GFP_NOFS
96 * or GFP_ATOMIC.
97 */
98 p = kmalloc_track_caller(len, GFP_KERNEL);
99 if (!p)
100 return ERR_PTR(-ENOMEM);
101
102 if (copy_from_user(p, src, len)) {
103 kfree(p);
104 return ERR_PTR(-EFAULT);
105 }
106
107 return p;
108 }
109 EXPORT_SYMBOL(memdup_user);
110
111 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
112 gfp_t flags)
113 {
114 void *ret;
115 size_t ks = 0;
116
117 if (p)
118 ks = ksize(p);
119
120 if (ks >= new_size)
121 return (void *)p;
122
123 ret = kmalloc_track_caller(new_size, flags);
124 if (ret && p)
125 memcpy(ret, p, ks);
126
127 return ret;
128 }
129
130 /**
131 * __krealloc - like krealloc() but don't free @p.
132 * @p: object to reallocate memory for.
133 * @new_size: how many bytes of memory are required.
134 * @flags: the type of memory to allocate.
135 *
136 * This function is like krealloc() except it never frees the originally
137 * allocated buffer. Use this if you don't want to free the buffer immediately
138 * like, for example, with RCU.
139 */
140 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
141 {
142 if (unlikely(!new_size))
143 return ZERO_SIZE_PTR;
144
145 return __do_krealloc(p, new_size, flags);
146
147 }
148 EXPORT_SYMBOL(__krealloc);
149
150 /**
151 * krealloc - reallocate memory. The contents will remain unchanged.
152 * @p: object to reallocate memory for.
153 * @new_size: how many bytes of memory are required.
154 * @flags: the type of memory to allocate.
155 *
156 * The contents of the object pointed to are preserved up to the
157 * lesser of the new and old sizes. If @p is %NULL, krealloc()
158 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
159 * %NULL pointer, the object pointed to is freed.
160 */
161 void *krealloc(const void *p, size_t new_size, gfp_t flags)
162 {
163 void *ret;
164
165 if (unlikely(!new_size)) {
166 kfree(p);
167 return ZERO_SIZE_PTR;
168 }
169
170 ret = __do_krealloc(p, new_size, flags);
171 if (ret && p != ret)
172 kfree(p);
173
174 return ret;
175 }
176 EXPORT_SYMBOL(krealloc);
177
178 /**
179 * kzfree - like kfree but zero memory
180 * @p: object to free memory of
181 *
182 * The memory of the object @p points to is zeroed before freed.
183 * If @p is %NULL, kzfree() does nothing.
184 *
185 * Note: this function zeroes the whole allocated buffer which can be a good
186 * deal bigger than the requested buffer size passed to kmalloc(). So be
187 * careful when using this function in performance sensitive code.
188 */
189 void kzfree(const void *p)
190 {
191 size_t ks;
192 void *mem = (void *)p;
193
194 if (unlikely(ZERO_OR_NULL_PTR(mem)))
195 return;
196 ks = ksize(mem);
197 memset(mem, 0, ks);
198 kfree(mem);
199 }
200 EXPORT_SYMBOL(kzfree);
201
202 /*
203 * strndup_user - duplicate an existing string from user space
204 * @s: The string to duplicate
205 * @n: Maximum number of bytes to copy, including the trailing NUL.
206 */
207 char *strndup_user(const char __user *s, long n)
208 {
209 char *p;
210 long length;
211
212 length = strnlen_user(s, n);
213
214 if (!length)
215 return ERR_PTR(-EFAULT);
216
217 if (length > n)
218 return ERR_PTR(-EINVAL);
219
220 p = memdup_user(s, length);
221
222 if (IS_ERR(p))
223 return p;
224
225 p[length - 1] = '\0';
226
227 return p;
228 }
229 EXPORT_SYMBOL(strndup_user);
230
231 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
232 struct vm_area_struct *prev, struct rb_node *rb_parent)
233 {
234 struct vm_area_struct *next;
235
236 vma->vm_prev = prev;
237 if (prev) {
238 next = prev->vm_next;
239 prev->vm_next = vma;
240 } else {
241 mm->mmap = vma;
242 if (rb_parent)
243 next = rb_entry(rb_parent,
244 struct vm_area_struct, vm_rb);
245 else
246 next = NULL;
247 }
248 vma->vm_next = next;
249 if (next)
250 next->vm_prev = vma;
251 }
252
253 /* Check if the vma is being used as a stack by this task */
254 static int vm_is_stack_for_task(struct task_struct *t,
255 struct vm_area_struct *vma)
256 {
257 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
258 }
259
260 /*
261 * Check if the vma is being used as a stack.
262 * If is_group is non-zero, check in the entire thread group or else
263 * just check in the current task. Returns the pid of the task that
264 * the vma is stack for.
265 */
266 pid_t vm_is_stack(struct task_struct *task,
267 struct vm_area_struct *vma, int in_group)
268 {
269 pid_t ret = 0;
270
271 if (vm_is_stack_for_task(task, vma))
272 return task->pid;
273
274 if (in_group) {
275 struct task_struct *t;
276
277 rcu_read_lock();
278 for_each_thread(task, t) {
279 if (vm_is_stack_for_task(t, vma)) {
280 ret = t->pid;
281 goto done;
282 }
283 }
284 done:
285 rcu_read_unlock();
286 }
287
288 return ret;
289 }
290
291 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
292 void arch_pick_mmap_layout(struct mm_struct *mm)
293 {
294 mm->mmap_base = TASK_UNMAPPED_BASE;
295 mm->get_unmapped_area = arch_get_unmapped_area;
296 mm->unmap_area = arch_unmap_area;
297 }
298 #endif
299
300 /*
301 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
302 * back to the regular GUP.
303 * If the architecture not support this function, simply return with no
304 * page pinned
305 */
306 int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
307 int nr_pages, int write, struct page **pages)
308 {
309 return 0;
310 }
311 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
312
313 /**
314 * get_user_pages_fast() - pin user pages in memory
315 * @start: starting user address
316 * @nr_pages: number of pages from start to pin
317 * @write: whether pages will be written to
318 * @pages: array that receives pointers to the pages pinned.
319 * Should be at least nr_pages long.
320 *
321 * Returns number of pages pinned. This may be fewer than the number
322 * requested. If nr_pages is 0 or negative, returns 0. If no pages
323 * were pinned, returns -errno.
324 *
325 * get_user_pages_fast provides equivalent functionality to get_user_pages,
326 * operating on current and current->mm, with force=0 and vma=NULL. However
327 * unlike get_user_pages, it must be called without mmap_sem held.
328 *
329 * get_user_pages_fast may take mmap_sem and page table locks, so no
330 * assumptions can be made about lack of locking. get_user_pages_fast is to be
331 * implemented in a way that is advantageous (vs get_user_pages()) when the
332 * user memory area is already faulted in and present in ptes. However if the
333 * pages have to be faulted in, it may turn out to be slightly slower so
334 * callers need to carefully consider what to use. On many architectures,
335 * get_user_pages_fast simply falls back to get_user_pages.
336 */
337 int __attribute__((weak)) get_user_pages_fast(unsigned long start,
338 int nr_pages, int write, struct page **pages)
339 {
340 struct mm_struct *mm = current->mm;
341 int ret;
342
343 down_read(&mm->mmap_sem);
344 ret = get_user_pages(current, mm, start, nr_pages,
345 write, 0, pages, NULL);
346 up_read(&mm->mmap_sem);
347
348 return ret;
349 }
350 EXPORT_SYMBOL_GPL(get_user_pages_fast);
351
352 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
353 unsigned long len, unsigned long prot,
354 unsigned long flag, unsigned long pgoff)
355 {
356 unsigned long ret;
357 struct mm_struct *mm = current->mm;
358 unsigned long populate;
359
360 ret = security_mmap_file(file, prot, flag);
361 if (!ret) {
362 down_write(&mm->mmap_sem);
363 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
364 &populate);
365 up_write(&mm->mmap_sem);
366 if (populate)
367 mm_populate(ret, populate);
368 }
369 return ret;
370 }
371
372 unsigned long vm_mmap(struct file *file, unsigned long addr,
373 unsigned long len, unsigned long prot,
374 unsigned long flag, unsigned long offset)
375 {
376 if (unlikely(offset + PAGE_ALIGN(len) < offset))
377 return -EINVAL;
378 if (unlikely(offset & ~PAGE_MASK))
379 return -EINVAL;
380
381 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
382 }
383 EXPORT_SYMBOL(vm_mmap);
384
385 void kvfree(const void *addr)
386 {
387 if (is_vmalloc_addr(addr))
388 vfree(addr);
389 else
390 kfree(addr);
391 }
392 EXPORT_SYMBOL(kvfree);
393
394 struct address_space *page_mapping(struct page *page)
395 {
396 struct address_space *mapping = page->mapping;
397
398 VM_BUG_ON(PageSlab(page));
399 #ifdef CONFIG_SWAP
400 if (unlikely(PageSwapCache(page))) {
401 swp_entry_t entry;
402
403 entry.val = page_private(page);
404 mapping = swap_address_space(entry);
405 } else
406 #endif
407 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
408 mapping = NULL;
409 return mapping;
410 }
411 EXPORT_SYMBOL_GPL(page_mapping);
412
413 /* Tracepoints definitions. */
414 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
415 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
416 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
417 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
418 EXPORT_TRACEPOINT_SYMBOL(kfree);
419 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);