drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 /* I: attributes used when instantiating ordered pools on demand */
299 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
301 struct workqueue_struct *system_wq __read_mostly;
302 EXPORT_SYMBOL(system_wq);
303 struct workqueue_struct *system_highpri_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_highpri_wq);
305 struct workqueue_struct *system_long_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_long_wq);
307 struct workqueue_struct *system_unbound_wq __read_mostly;
308 EXPORT_SYMBOL_GPL(system_unbound_wq);
309 struct workqueue_struct *system_freezable_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_freezable_wq);
311
312 static int worker_thread(void *__worker);
313 static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
316 #define CREATE_TRACE_POINTS
317 #include <trace/events/workqueue.h>
318
319 #define assert_rcu_or_pool_mutex() \
320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
323
324 #define assert_rcu_or_wq_mutex(wq) \
325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
326 lockdep_is_held(&wq->mutex), \
327 "sched RCU or wq->mutex should be held")
328
329 #ifdef CONFIG_LOCKDEP
330 #define assert_manager_or_pool_lock(pool) \
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335 #else
336 #define assert_manager_or_pool_lock(pool) do { } while (0)
337 #endif
338
339 #define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
342 (pool)++)
343
344 /**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
347 * @pi: integer used for iteration
348 *
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
355 */
356 #define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
359 else
360
361 /**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372 #define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
377 /**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
381 *
382 * This must be called either with wq->mutex held or sched RCU read locked.
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pwq(pwq, wq) \
390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
392 else
393
394 #ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396 static struct debug_obj_descr work_debug_descr;
397
398 static void *work_debug_hint(void *addr)
399 {
400 return ((struct work_struct *) addr)->func;
401 }
402
403 /*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407 static int work_fixup_init(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426 static int work_fixup_activate(void *addr, enum debug_obj_state state)
427 {
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int work_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
474 .debug_hint = work_debug_hint,
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478 };
479
480 static inline void debug_work_activate(struct work_struct *work)
481 {
482 debug_object_activate(work, &work_debug_descr);
483 }
484
485 static inline void debug_work_deactivate(struct work_struct *work)
486 {
487 debug_object_deactivate(work, &work_debug_descr);
488 }
489
490 void __init_work(struct work_struct *work, int onstack)
491 {
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496 }
497 EXPORT_SYMBOL_GPL(__init_work);
498
499 void destroy_work_on_stack(struct work_struct *work)
500 {
501 debug_object_free(work, &work_debug_descr);
502 }
503 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505 #else
506 static inline void debug_work_activate(struct work_struct *work) { }
507 static inline void debug_work_deactivate(struct work_struct *work) { }
508 #endif
509
510 #ifdef CONFIG_MTK_WQ_DEBUG
511 extern void mttrace_workqueue_execute_work(struct work_struct *work);
512 extern void mttrace_workqueue_activate_work(struct work_struct *work);
513 extern void mttrace_workqueue_queue_work(unsigned int req_cpu, struct work_struct *work);
514 extern void mttrace_workqueue_execute_end(struct work_struct *work);
515 #endif //CONFIG_MTK_WQ_DEBUG
516
517 /* allocate ID and assign it to @pool */
518 static int worker_pool_assign_id(struct worker_pool *pool)
519 {
520 int ret;
521
522 lockdep_assert_held(&wq_pool_mutex);
523
524 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
525 if (ret >= 0) {
526 pool->id = ret;
527 return 0;
528 }
529 return ret;
530 }
531
532 /**
533 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
534 * @wq: the target workqueue
535 * @node: the node ID
536 *
537 * This must be called either with pwq_lock held or sched RCU read locked.
538 * If the pwq needs to be used beyond the locking in effect, the caller is
539 * responsible for guaranteeing that the pwq stays online.
540 */
541 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
542 int node)
543 {
544 assert_rcu_or_wq_mutex(wq);
545 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
546 }
547
548 static unsigned int work_color_to_flags(int color)
549 {
550 return color << WORK_STRUCT_COLOR_SHIFT;
551 }
552
553 static int get_work_color(struct work_struct *work)
554 {
555 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
556 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
557 }
558
559 static int work_next_color(int color)
560 {
561 return (color + 1) % WORK_NR_COLORS;
562 }
563
564 /*
565 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
566 * contain the pointer to the queued pwq. Once execution starts, the flag
567 * is cleared and the high bits contain OFFQ flags and pool ID.
568 *
569 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
570 * and clear_work_data() can be used to set the pwq, pool or clear
571 * work->data. These functions should only be called while the work is
572 * owned - ie. while the PENDING bit is set.
573 *
574 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
575 * corresponding to a work. Pool is available once the work has been
576 * queued anywhere after initialization until it is sync canceled. pwq is
577 * available only while the work item is queued.
578 *
579 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
580 * canceled. While being canceled, a work item may have its PENDING set
581 * but stay off timer and worklist for arbitrarily long and nobody should
582 * try to steal the PENDING bit.
583 */
584 static inline void set_work_data(struct work_struct *work, unsigned long data,
585 unsigned long flags)
586 {
587 WARN_ON_ONCE(!work_pending(work));
588 atomic_long_set(&work->data, data | flags | work_static(work));
589 }
590
591 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
592 unsigned long extra_flags)
593 {
594 set_work_data(work, (unsigned long)pwq,
595 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
596 }
597
598 static void set_work_pool_and_keep_pending(struct work_struct *work,
599 int pool_id)
600 {
601 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
602 WORK_STRUCT_PENDING);
603 }
604
605 static void set_work_pool_and_clear_pending(struct work_struct *work,
606 int pool_id)
607 {
608 /*
609 * The following wmb is paired with the implied mb in
610 * test_and_set_bit(PENDING) and ensures all updates to @work made
611 * here are visible to and precede any updates by the next PENDING
612 * owner.
613 */
614 smp_wmb();
615 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
616 /*
617 * The following mb guarantees that previous clear of a PENDING bit
618 * will not be reordered with any speculative LOADS or STORES from
619 * work->current_func, which is executed afterwards. This possible
620 * reordering can lead to a missed execution on attempt to qeueue
621 * the same @work. E.g. consider this case:
622 *
623 * CPU#0 CPU#1
624 * ---------------------------- --------------------------------
625 *
626 * 1 STORE event_indicated
627 * 2 queue_work_on() {
628 * 3 test_and_set_bit(PENDING)
629 * 4 } set_..._and_clear_pending() {
630 * 5 set_work_data() # clear bit
631 * 6 smp_mb()
632 * 7 work->current_func() {
633 * 8 LOAD event_indicated
634 * }
635 *
636 * Without an explicit full barrier speculative LOAD on line 8 can
637 * be executed before CPU#0 does STORE on line 1. If that happens,
638 * CPU#0 observes the PENDING bit is still set and new execution of
639 * a @work is not queued in a hope, that CPU#1 will eventually
640 * finish the queued @work. Meanwhile CPU#1 does not see
641 * event_indicated is set, because speculative LOAD was executed
642 * before actual STORE.
643 */
644 smp_mb();
645 }
646
647 static void clear_work_data(struct work_struct *work)
648 {
649 smp_wmb(); /* see set_work_pool_and_clear_pending() */
650 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
651 }
652
653 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
654 {
655 unsigned long data = atomic_long_read(&work->data);
656
657 if (data & WORK_STRUCT_PWQ)
658 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
659 else
660 return NULL;
661 }
662
663 /**
664 * get_work_pool - return the worker_pool a given work was associated with
665 * @work: the work item of interest
666 *
667 * Return the worker_pool @work was last associated with. %NULL if none.
668 *
669 * Pools are created and destroyed under wq_pool_mutex, and allows read
670 * access under sched-RCU read lock. As such, this function should be
671 * called under wq_pool_mutex or with preemption disabled.
672 *
673 * All fields of the returned pool are accessible as long as the above
674 * mentioned locking is in effect. If the returned pool needs to be used
675 * beyond the critical section, the caller is responsible for ensuring the
676 * returned pool is and stays online.
677 */
678 static struct worker_pool *get_work_pool(struct work_struct *work)
679 {
680 unsigned long data = atomic_long_read(&work->data);
681 int pool_id;
682
683 assert_rcu_or_pool_mutex();
684
685 if (data & WORK_STRUCT_PWQ)
686 return ((struct pool_workqueue *)
687 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
688
689 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
690 if (pool_id == WORK_OFFQ_POOL_NONE)
691 return NULL;
692
693 return idr_find(&worker_pool_idr, pool_id);
694 }
695
696 /**
697 * get_work_pool_id - return the worker pool ID a given work is associated with
698 * @work: the work item of interest
699 *
700 * Return the worker_pool ID @work was last associated with.
701 * %WORK_OFFQ_POOL_NONE if none.
702 */
703 static int get_work_pool_id(struct work_struct *work)
704 {
705 unsigned long data = atomic_long_read(&work->data);
706
707 if (data & WORK_STRUCT_PWQ)
708 return ((struct pool_workqueue *)
709 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
710
711 return data >> WORK_OFFQ_POOL_SHIFT;
712 }
713
714 static void mark_work_canceling(struct work_struct *work)
715 {
716 unsigned long pool_id = get_work_pool_id(work);
717
718 pool_id <<= WORK_OFFQ_POOL_SHIFT;
719 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
720 }
721
722 static bool work_is_canceling(struct work_struct *work)
723 {
724 unsigned long data = atomic_long_read(&work->data);
725
726 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
727 }
728
729 /*
730 * Policy functions. These define the policies on how the global worker
731 * pools are managed. Unless noted otherwise, these functions assume that
732 * they're being called with pool->lock held.
733 */
734
735 static bool __need_more_worker(struct worker_pool *pool)
736 {
737 return !atomic_read(&pool->nr_running);
738 }
739
740 /*
741 * Need to wake up a worker? Called from anything but currently
742 * running workers.
743 *
744 * Note that, because unbound workers never contribute to nr_running, this
745 * function will always return %true for unbound pools as long as the
746 * worklist isn't empty.
747 */
748 static bool need_more_worker(struct worker_pool *pool)
749 {
750 return !list_empty(&pool->worklist) && __need_more_worker(pool);
751 }
752
753 /* Can I start working? Called from busy but !running workers. */
754 static bool may_start_working(struct worker_pool *pool)
755 {
756 return pool->nr_idle;
757 }
758
759 /* Do I need to keep working? Called from currently running workers. */
760 static bool keep_working(struct worker_pool *pool)
761 {
762 return !list_empty(&pool->worklist) &&
763 atomic_read(&pool->nr_running) <= 1;
764 }
765
766 /* Do we need a new worker? Called from manager. */
767 static bool need_to_create_worker(struct worker_pool *pool)
768 {
769 return need_more_worker(pool) && !may_start_working(pool);
770 }
771
772 /* Do I need to be the manager? */
773 static bool need_to_manage_workers(struct worker_pool *pool)
774 {
775 return need_to_create_worker(pool) ||
776 (pool->flags & POOL_MANAGE_WORKERS);
777 }
778
779 /* Do we have too many workers and should some go away? */
780 static bool too_many_workers(struct worker_pool *pool)
781 {
782 bool managing = mutex_is_locked(&pool->manager_arb);
783 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
784 int nr_busy = pool->nr_workers - nr_idle;
785
786 /*
787 * nr_idle and idle_list may disagree if idle rebinding is in
788 * progress. Never return %true if idle_list is empty.
789 */
790 if (list_empty(&pool->idle_list))
791 return false;
792
793 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
794 }
795
796 /*
797 * Wake up functions.
798 */
799
800 /* Return the first worker. Safe with preemption disabled */
801 static struct worker *first_worker(struct worker_pool *pool)
802 {
803 if (unlikely(list_empty(&pool->idle_list)))
804 return NULL;
805
806 return list_first_entry(&pool->idle_list, struct worker, entry);
807 }
808
809 /**
810 * wake_up_worker - wake up an idle worker
811 * @pool: worker pool to wake worker from
812 *
813 * Wake up the first idle worker of @pool.
814 *
815 * CONTEXT:
816 * spin_lock_irq(pool->lock).
817 */
818 static void wake_up_worker(struct worker_pool *pool)
819 {
820 struct worker *worker = first_worker(pool);
821
822 if (likely(worker))
823 wake_up_process(worker->task);
824 }
825
826 /**
827 * wq_worker_waking_up - a worker is waking up
828 * @task: task waking up
829 * @cpu: CPU @task is waking up to
830 *
831 * This function is called during try_to_wake_up() when a worker is
832 * being awoken.
833 *
834 * CONTEXT:
835 * spin_lock_irq(rq->lock)
836 */
837 void wq_worker_waking_up(struct task_struct *task, int cpu)
838 {
839 struct worker *worker = kthread_data(task);
840
841 if (!(worker->flags & WORKER_NOT_RUNNING)) {
842 WARN_ON_ONCE(worker->pool->cpu != cpu);
843 atomic_inc(&worker->pool->nr_running);
844 }
845 }
846
847 /**
848 * wq_worker_sleeping - a worker is going to sleep
849 * @task: task going to sleep
850 * @cpu: CPU in question, must be the current CPU number
851 *
852 * This function is called during schedule() when a busy worker is
853 * going to sleep. Worker on the same cpu can be woken up by
854 * returning pointer to its task.
855 *
856 * CONTEXT:
857 * spin_lock_irq(rq->lock)
858 *
859 * RETURNS:
860 * Worker task on @cpu to wake up, %NULL if none.
861 */
862 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
863 {
864 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
865 struct worker_pool *pool;
866
867 /*
868 * Rescuers, which may not have all the fields set up like normal
869 * workers, also reach here, let's not access anything before
870 * checking NOT_RUNNING.
871 */
872 if (worker->flags & WORKER_NOT_RUNNING)
873 return NULL;
874
875 pool = worker->pool;
876
877 /* this can only happen on the local cpu */
878 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
879 return NULL;
880
881 /*
882 * The counterpart of the following dec_and_test, implied mb,
883 * worklist not empty test sequence is in insert_work().
884 * Please read comment there.
885 *
886 * NOT_RUNNING is clear. This means that we're bound to and
887 * running on the local cpu w/ rq lock held and preemption
888 * disabled, which in turn means that none else could be
889 * manipulating idle_list, so dereferencing idle_list without pool
890 * lock is safe.
891 */
892 if (atomic_dec_and_test(&pool->nr_running) &&
893 !list_empty(&pool->worklist))
894 to_wakeup = first_worker(pool);
895 return to_wakeup ? to_wakeup->task : NULL;
896 }
897
898 /**
899 * worker_set_flags - set worker flags and adjust nr_running accordingly
900 * @worker: self
901 * @flags: flags to set
902 * @wakeup: wakeup an idle worker if necessary
903 *
904 * Set @flags in @worker->flags and adjust nr_running accordingly. If
905 * nr_running becomes zero and @wakeup is %true, an idle worker is
906 * woken up.
907 *
908 * CONTEXT:
909 * spin_lock_irq(pool->lock)
910 */
911 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
912 bool wakeup)
913 {
914 struct worker_pool *pool = worker->pool;
915
916 WARN_ON_ONCE(worker->task != current);
917
918 /*
919 * If transitioning into NOT_RUNNING, adjust nr_running and
920 * wake up an idle worker as necessary if requested by
921 * @wakeup.
922 */
923 if ((flags & WORKER_NOT_RUNNING) &&
924 !(worker->flags & WORKER_NOT_RUNNING)) {
925 if (wakeup) {
926 if (atomic_dec_and_test(&pool->nr_running) &&
927 !list_empty(&pool->worklist))
928 wake_up_worker(pool);
929 } else
930 atomic_dec(&pool->nr_running);
931 }
932
933 worker->flags |= flags;
934 }
935
936 /**
937 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
938 * @worker: self
939 * @flags: flags to clear
940 *
941 * Clear @flags in @worker->flags and adjust nr_running accordingly.
942 *
943 * CONTEXT:
944 * spin_lock_irq(pool->lock)
945 */
946 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
947 {
948 struct worker_pool *pool = worker->pool;
949 unsigned int oflags = worker->flags;
950
951 WARN_ON_ONCE(worker->task != current);
952
953 worker->flags &= ~flags;
954
955 /*
956 * If transitioning out of NOT_RUNNING, increment nr_running. Note
957 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
958 * of multiple flags, not a single flag.
959 */
960 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
961 if (!(worker->flags & WORKER_NOT_RUNNING))
962 atomic_inc(&pool->nr_running);
963 }
964
965 /**
966 * find_worker_executing_work - find worker which is executing a work
967 * @pool: pool of interest
968 * @work: work to find worker for
969 *
970 * Find a worker which is executing @work on @pool by searching
971 * @pool->busy_hash which is keyed by the address of @work. For a worker
972 * to match, its current execution should match the address of @work and
973 * its work function. This is to avoid unwanted dependency between
974 * unrelated work executions through a work item being recycled while still
975 * being executed.
976 *
977 * This is a bit tricky. A work item may be freed once its execution
978 * starts and nothing prevents the freed area from being recycled for
979 * another work item. If the same work item address ends up being reused
980 * before the original execution finishes, workqueue will identify the
981 * recycled work item as currently executing and make it wait until the
982 * current execution finishes, introducing an unwanted dependency.
983 *
984 * This function checks the work item address and work function to avoid
985 * false positives. Note that this isn't complete as one may construct a
986 * work function which can introduce dependency onto itself through a
987 * recycled work item. Well, if somebody wants to shoot oneself in the
988 * foot that badly, there's only so much we can do, and if such deadlock
989 * actually occurs, it should be easy to locate the culprit work function.
990 *
991 * CONTEXT:
992 * spin_lock_irq(pool->lock).
993 *
994 * RETURNS:
995 * Pointer to worker which is executing @work if found, NULL
996 * otherwise.
997 */
998 static struct worker *find_worker_executing_work(struct worker_pool *pool,
999 struct work_struct *work)
1000 {
1001 struct worker *worker;
1002
1003 hash_for_each_possible(pool->busy_hash, worker, hentry,
1004 (unsigned long)work)
1005 if (worker->current_work == work &&
1006 worker->current_func == work->func)
1007 return worker;
1008
1009 return NULL;
1010 }
1011
1012 /**
1013 * move_linked_works - move linked works to a list
1014 * @work: start of series of works to be scheduled
1015 * @head: target list to append @work to
1016 * @nextp: out paramter for nested worklist walking
1017 *
1018 * Schedule linked works starting from @work to @head. Work series to
1019 * be scheduled starts at @work and includes any consecutive work with
1020 * WORK_STRUCT_LINKED set in its predecessor.
1021 *
1022 * If @nextp is not NULL, it's updated to point to the next work of
1023 * the last scheduled work. This allows move_linked_works() to be
1024 * nested inside outer list_for_each_entry_safe().
1025 *
1026 * CONTEXT:
1027 * spin_lock_irq(pool->lock).
1028 */
1029 static void move_linked_works(struct work_struct *work, struct list_head *head,
1030 struct work_struct **nextp)
1031 {
1032 struct work_struct *n;
1033
1034 /*
1035 * Linked worklist will always end before the end of the list,
1036 * use NULL for list head.
1037 */
1038 list_for_each_entry_safe_from(work, n, NULL, entry) {
1039 list_move_tail(&work->entry, head);
1040 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1041 break;
1042 }
1043
1044 /*
1045 * If we're already inside safe list traversal and have moved
1046 * multiple works to the scheduled queue, the next position
1047 * needs to be updated.
1048 */
1049 if (nextp)
1050 *nextp = n;
1051 }
1052
1053 /**
1054 * get_pwq - get an extra reference on the specified pool_workqueue
1055 * @pwq: pool_workqueue to get
1056 *
1057 * Obtain an extra reference on @pwq. The caller should guarantee that
1058 * @pwq has positive refcnt and be holding the matching pool->lock.
1059 */
1060 static void get_pwq(struct pool_workqueue *pwq)
1061 {
1062 lockdep_assert_held(&pwq->pool->lock);
1063 WARN_ON_ONCE(pwq->refcnt <= 0);
1064 pwq->refcnt++;
1065 }
1066
1067 /**
1068 * put_pwq - put a pool_workqueue reference
1069 * @pwq: pool_workqueue to put
1070 *
1071 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1072 * destruction. The caller should be holding the matching pool->lock.
1073 */
1074 static void put_pwq(struct pool_workqueue *pwq)
1075 {
1076 lockdep_assert_held(&pwq->pool->lock);
1077 if (likely(--pwq->refcnt))
1078 return;
1079 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1080 return;
1081 /*
1082 * @pwq can't be released under pool->lock, bounce to
1083 * pwq_unbound_release_workfn(). This never recurses on the same
1084 * pool->lock as this path is taken only for unbound workqueues and
1085 * the release work item is scheduled on a per-cpu workqueue. To
1086 * avoid lockdep warning, unbound pool->locks are given lockdep
1087 * subclass of 1 in get_unbound_pool().
1088 */
1089 schedule_work(&pwq->unbound_release_work);
1090 }
1091
1092 /**
1093 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1094 * @pwq: pool_workqueue to put (can be %NULL)
1095 *
1096 * put_pwq() with locking. This function also allows %NULL @pwq.
1097 */
1098 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1099 {
1100 if (pwq) {
1101 /*
1102 * As both pwqs and pools are sched-RCU protected, the
1103 * following lock operations are safe.
1104 */
1105 spin_lock_irq(&pwq->pool->lock);
1106 put_pwq(pwq);
1107 spin_unlock_irq(&pwq->pool->lock);
1108 }
1109 }
1110
1111 static void pwq_activate_delayed_work(struct work_struct *work)
1112 {
1113 struct pool_workqueue *pwq = get_work_pwq(work);
1114
1115 trace_workqueue_activate_work(work);
1116 #ifdef CONFIG_MTK_WQ_DEBUG
1117 mttrace_workqueue_activate_work(work);
1118 #endif //CONFIG_MTK_WQ_DEBUG
1119 move_linked_works(work, &pwq->pool->worklist, NULL);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 pwq->nr_active++;
1122 }
1123
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 struct work_struct, entry);
1128
1129 pwq_activate_delayed_work(work);
1130 }
1131
1132 /**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color == WORK_NO_COLOR)
1147 goto out_put;
1148
1149 pwq->nr_in_flight[color]--;
1150
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
1153 /* one down, submit a delayed one */
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq->flush_color != color))
1160 goto out_put;
1161
1162 /* are there still in-flight works? */
1163 if (pwq->nr_in_flight[color])
1164 goto out_put;
1165
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
1168
1169 /*
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1172 */
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 put_pwq(pwq);
1177 }
1178
1179 /**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist. Return values are
1187 *
1188 * 1 if @work was pending and we successfully stole PENDING
1189 * 0 if @work was idle and we claimed PENDING
1190 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1191 * -ENOENT if someone else is canceling @work, this state may persist
1192 * for arbitrarily long
1193 *
1194 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1195 * interrupted while holding PENDING and @work off queue, irq must be
1196 * disabled on entry. This, combined with delayed_work->timer being
1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198 *
1199 * On successful return, >= 0, irq is disabled and the caller is
1200 * responsible for releasing it using local_irq_restore(*@flags).
1201 *
1202 * This function is safe to call from any context including IRQ handler.
1203 */
1204 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1205 unsigned long *flags)
1206 {
1207 struct worker_pool *pool;
1208 struct pool_workqueue *pwq;
1209
1210 local_irq_save(*flags);
1211
1212 /* try to steal the timer if it exists */
1213 if (is_dwork) {
1214 struct delayed_work *dwork = to_delayed_work(work);
1215
1216 /*
1217 * dwork->timer is irqsafe. If del_timer() fails, it's
1218 * guaranteed that the timer is not queued anywhere and not
1219 * running on the local CPU.
1220 */
1221 if (likely(del_timer(&dwork->timer)))
1222 return 1;
1223 }
1224
1225 /* try to claim PENDING the normal way */
1226 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1227 return 0;
1228
1229 /*
1230 * The queueing is in progress, or it is already queued. Try to
1231 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232 */
1233 pool = get_work_pool(work);
1234 if (!pool)
1235 goto fail;
1236
1237 spin_lock(&pool->lock);
1238 /*
1239 * work->data is guaranteed to point to pwq only while the work
1240 * item is queued on pwq->wq, and both updating work->data to point
1241 * to pwq on queueing and to pool on dequeueing are done under
1242 * pwq->pool->lock. This in turn guarantees that, if work->data
1243 * points to pwq which is associated with a locked pool, the work
1244 * item is currently queued on that pool.
1245 */
1246 pwq = get_work_pwq(work);
1247 if (pwq && pwq->pool == pool) {
1248 debug_work_deactivate(work);
1249
1250 /*
1251 * A delayed work item cannot be grabbed directly because
1252 * it might have linked NO_COLOR work items which, if left
1253 * on the delayed_list, will confuse pwq->nr_active
1254 * management later on and cause stall. Make sure the work
1255 * item is activated before grabbing.
1256 */
1257 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1258 pwq_activate_delayed_work(work);
1259
1260 list_del_init(&work->entry);
1261 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1262
1263 /* work->data points to pwq iff queued, point to pool */
1264 set_work_pool_and_keep_pending(work, pool->id);
1265
1266 spin_unlock(&pool->lock);
1267 return 1;
1268 }
1269 spin_unlock(&pool->lock);
1270 fail:
1271 local_irq_restore(*flags);
1272 if (work_is_canceling(work))
1273 return -ENOENT;
1274 cpu_relax();
1275 return -EAGAIN;
1276 }
1277
1278 /**
1279 * insert_work - insert a work into a pool
1280 * @pwq: pwq @work belongs to
1281 * @work: work to insert
1282 * @head: insertion point
1283 * @extra_flags: extra WORK_STRUCT_* flags to set
1284 *
1285 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1286 * work_struct flags.
1287 *
1288 * CONTEXT:
1289 * spin_lock_irq(pool->lock).
1290 */
1291 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1292 struct list_head *head, unsigned int extra_flags)
1293 {
1294 struct worker_pool *pool = pwq->pool;
1295
1296 /* we own @work, set data and link */
1297 set_work_pwq(work, pwq, extra_flags);
1298 list_add_tail(&work->entry, head);
1299 get_pwq(pwq);
1300
1301 /*
1302 * Ensure either wq_worker_sleeping() sees the above
1303 * list_add_tail() or we see zero nr_running to avoid workers lying
1304 * around lazily while there are works to be processed.
1305 */
1306 smp_mb();
1307
1308 if (__need_more_worker(pool))
1309 wake_up_worker(pool);
1310 }
1311
1312 /*
1313 * Test whether @work is being queued from another work executing on the
1314 * same workqueue.
1315 */
1316 static bool is_chained_work(struct workqueue_struct *wq)
1317 {
1318 struct worker *worker;
1319
1320 worker = current_wq_worker();
1321 /*
1322 * Return %true iff I'm a worker execuing a work item on @wq. If
1323 * I'm @worker, it's safe to dereference it without locking.
1324 */
1325 return worker && worker->current_pwq->wq == wq;
1326 }
1327
1328 static void __queue_work(int cpu, struct workqueue_struct *wq,
1329 struct work_struct *work)
1330 {
1331 struct pool_workqueue *pwq;
1332 struct worker_pool *last_pool;
1333 struct list_head *worklist;
1334 unsigned int work_flags;
1335 unsigned int req_cpu = cpu;
1336
1337 /*
1338 * While a work item is PENDING && off queue, a task trying to
1339 * steal the PENDING will busy-loop waiting for it to either get
1340 * queued or lose PENDING. Grabbing PENDING and queueing should
1341 * happen with IRQ disabled.
1342 */
1343 WARN_ON_ONCE(!irqs_disabled());
1344
1345 debug_work_activate(work);
1346
1347 /* if dying, only works from the same workqueue are allowed */
1348 if (unlikely(wq->flags & __WQ_DRAINING) &&
1349 WARN_ON_ONCE(!is_chained_work(wq)))
1350 return;
1351 retry:
1352 if (req_cpu == WORK_CPU_UNBOUND)
1353 cpu = raw_smp_processor_id();
1354
1355 /* pwq which will be used unless @work is executing elsewhere */
1356 if (!(wq->flags & WQ_UNBOUND))
1357 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1358 else
1359 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1360
1361 /*
1362 * If @work was previously on a different pool, it might still be
1363 * running there, in which case the work needs to be queued on that
1364 * pool to guarantee non-reentrancy.
1365 */
1366 last_pool = get_work_pool(work);
1367 if (last_pool && last_pool != pwq->pool) {
1368 struct worker *worker;
1369
1370 spin_lock(&last_pool->lock);
1371
1372 worker = find_worker_executing_work(last_pool, work);
1373
1374 if (worker && worker->current_pwq->wq == wq) {
1375 pwq = worker->current_pwq;
1376 } else {
1377 /* meh... not running there, queue here */
1378 spin_unlock(&last_pool->lock);
1379 spin_lock(&pwq->pool->lock);
1380 }
1381 } else {
1382 spin_lock(&pwq->pool->lock);
1383 }
1384
1385 /*
1386 * pwq is determined and locked. For unbound pools, we could have
1387 * raced with pwq release and it could already be dead. If its
1388 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1389 * without another pwq replacing it in the numa_pwq_tbl or while
1390 * work items are executing on it, so the retrying is guaranteed to
1391 * make forward-progress.
1392 */
1393 if (unlikely(!pwq->refcnt)) {
1394 if (wq->flags & WQ_UNBOUND) {
1395 spin_unlock(&pwq->pool->lock);
1396 cpu_relax();
1397 goto retry;
1398 }
1399 /* oops */
1400 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1401 wq->name, cpu);
1402 }
1403
1404 /* pwq determined, queue */
1405 trace_workqueue_queue_work(req_cpu, pwq, work);
1406 #ifdef CONFIG_MTK_WQ_DEBUG
1407 mttrace_workqueue_queue_work(cpu, work);
1408 #endif //CONFIG_MTK_WQ_DEBUG
1409
1410 if (WARN_ON(!list_empty(&work->entry))) {
1411 spin_unlock(&pwq->pool->lock);
1412 return;
1413 }
1414
1415 pwq->nr_in_flight[pwq->work_color]++;
1416 work_flags = work_color_to_flags(pwq->work_color);
1417
1418 if (likely(pwq->nr_active < pwq->max_active)) {
1419 trace_workqueue_activate_work(work);
1420 #ifdef CONFIG_MTK_WQ_DEBUG
1421 mttrace_workqueue_activate_work(work);
1422 #endif //CONFIG_MTK_WQ_DEBUG
1423 pwq->nr_active++;
1424 worklist = &pwq->pool->worklist;
1425 } else {
1426 work_flags |= WORK_STRUCT_DELAYED;
1427 worklist = &pwq->delayed_works;
1428 }
1429
1430 insert_work(pwq, work, worklist, work_flags);
1431
1432 spin_unlock(&pwq->pool->lock);
1433 }
1434
1435 /**
1436 * queue_work_on - queue work on specific cpu
1437 * @cpu: CPU number to execute work on
1438 * @wq: workqueue to use
1439 * @work: work to queue
1440 *
1441 * Returns %false if @work was already on a queue, %true otherwise.
1442 *
1443 * We queue the work to a specific CPU, the caller must ensure it
1444 * can't go away.
1445 */
1446 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1447 struct work_struct *work)
1448 {
1449 bool ret = false;
1450 unsigned long flags;
1451
1452 local_irq_save(flags);
1453
1454 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1455 __queue_work(cpu, wq, work);
1456 ret = true;
1457 }
1458
1459 local_irq_restore(flags);
1460 return ret;
1461 }
1462 EXPORT_SYMBOL(queue_work_on);
1463
1464 void delayed_work_timer_fn(unsigned long __data)
1465 {
1466 struct delayed_work *dwork = (struct delayed_work *)__data;
1467
1468 /* should have been called from irqsafe timer with irq already off */
1469 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1470 }
1471 EXPORT_SYMBOL(delayed_work_timer_fn);
1472
1473 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1474 struct delayed_work *dwork, unsigned long delay)
1475 {
1476 struct timer_list *timer = &dwork->timer;
1477 struct work_struct *work = &dwork->work;
1478
1479 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1480 timer->data != (unsigned long)dwork);
1481 WARN_ON_ONCE(timer_pending(timer));
1482 WARN_ON_ONCE(!list_empty(&work->entry));
1483
1484 /*
1485 * If @delay is 0, queue @dwork->work immediately. This is for
1486 * both optimization and correctness. The earliest @timer can
1487 * expire is on the closest next tick and delayed_work users depend
1488 * on that there's no such delay when @delay is 0.
1489 */
1490 if (!delay) {
1491 __queue_work(cpu, wq, &dwork->work);
1492 return;
1493 }
1494
1495 timer_stats_timer_set_start_info(&dwork->timer);
1496
1497 dwork->wq = wq;
1498 dwork->cpu = cpu;
1499 timer->expires = jiffies + delay;
1500
1501 if (unlikely(cpu != WORK_CPU_UNBOUND))
1502 add_timer_on(timer, cpu);
1503 else
1504 add_timer(timer);
1505 }
1506
1507 /**
1508 * queue_delayed_work_on - queue work on specific CPU after delay
1509 * @cpu: CPU number to execute work on
1510 * @wq: workqueue to use
1511 * @dwork: work to queue
1512 * @delay: number of jiffies to wait before queueing
1513 *
1514 * Returns %false if @work was already on a queue, %true otherwise. If
1515 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1516 * execution.
1517 */
1518 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1519 struct delayed_work *dwork, unsigned long delay)
1520 {
1521 struct work_struct *work = &dwork->work;
1522 bool ret = false;
1523 unsigned long flags;
1524
1525 /* read the comment in __queue_work() */
1526 local_irq_save(flags);
1527
1528 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1529 __queue_delayed_work(cpu, wq, dwork, delay);
1530 ret = true;
1531 }
1532
1533 local_irq_restore(flags);
1534 return ret;
1535 }
1536 EXPORT_SYMBOL(queue_delayed_work_on);
1537
1538 /**
1539 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1546 * modify @dwork's timer so that it expires after @delay. If @delay is
1547 * zero, @work is guaranteed to be scheduled immediately regardless of its
1548 * current state.
1549 *
1550 * Returns %false if @dwork was idle and queued, %true if @dwork was
1551 * pending and its timer was modified.
1552 *
1553 * This function is safe to call from any context including IRQ handler.
1554 * See try_to_grab_pending() for details.
1555 */
1556 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1557 struct delayed_work *dwork, unsigned long delay)
1558 {
1559 unsigned long flags;
1560 int ret;
1561
1562 do {
1563 ret = try_to_grab_pending(&dwork->work, true, &flags);
1564 } while (unlikely(ret == -EAGAIN));
1565
1566 if (likely(ret >= 0)) {
1567 __queue_delayed_work(cpu, wq, dwork, delay);
1568 local_irq_restore(flags);
1569 }
1570
1571 /* -ENOENT from try_to_grab_pending() becomes %true */
1572 return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1575
1576 /**
1577 * worker_enter_idle - enter idle state
1578 * @worker: worker which is entering idle state
1579 *
1580 * @worker is entering idle state. Update stats and idle timer if
1581 * necessary.
1582 *
1583 * LOCKING:
1584 * spin_lock_irq(pool->lock).
1585 */
1586 static void worker_enter_idle(struct worker *worker)
1587 {
1588 struct worker_pool *pool = worker->pool;
1589
1590 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1591 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1592 (worker->hentry.next || worker->hentry.pprev)))
1593 return;
1594
1595 /* can't use worker_set_flags(), also called from start_worker() */
1596 worker->flags |= WORKER_IDLE;
1597 pool->nr_idle++;
1598 worker->last_active = jiffies;
1599
1600 /* idle_list is LIFO */
1601 list_add(&worker->entry, &pool->idle_list);
1602
1603 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1604 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1605
1606 /*
1607 * Sanity check nr_running. Because wq_unbind_fn() releases
1608 * pool->lock between setting %WORKER_UNBOUND and zapping
1609 * nr_running, the warning may trigger spuriously. Check iff
1610 * unbind is not in progress.
1611 */
1612 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1613 pool->nr_workers == pool->nr_idle &&
1614 atomic_read(&pool->nr_running));
1615 }
1616
1617 /**
1618 * worker_leave_idle - leave idle state
1619 * @worker: worker which is leaving idle state
1620 *
1621 * @worker is leaving idle state. Update stats.
1622 *
1623 * LOCKING:
1624 * spin_lock_irq(pool->lock).
1625 */
1626 static void worker_leave_idle(struct worker *worker)
1627 {
1628 struct worker_pool *pool = worker->pool;
1629
1630 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1631 return;
1632 worker_clr_flags(worker, WORKER_IDLE);
1633 pool->nr_idle--;
1634 list_del_init(&worker->entry);
1635 }
1636
1637 /**
1638 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1639 * @pool: target worker_pool
1640 *
1641 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1642 *
1643 * Works which are scheduled while the cpu is online must at least be
1644 * scheduled to a worker which is bound to the cpu so that if they are
1645 * flushed from cpu callbacks while cpu is going down, they are
1646 * guaranteed to execute on the cpu.
1647 *
1648 * This function is to be used by unbound workers and rescuers to bind
1649 * themselves to the target cpu and may race with cpu going down or
1650 * coming online. kthread_bind() can't be used because it may put the
1651 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1652 * verbatim as it's best effort and blocking and pool may be
1653 * [dis]associated in the meantime.
1654 *
1655 * This function tries set_cpus_allowed() and locks pool and verifies the
1656 * binding against %POOL_DISASSOCIATED which is set during
1657 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1658 * enters idle state or fetches works without dropping lock, it can
1659 * guarantee the scheduling requirement described in the first paragraph.
1660 *
1661 * CONTEXT:
1662 * Might sleep. Called without any lock but returns with pool->lock
1663 * held.
1664 *
1665 * RETURNS:
1666 * %true if the associated pool is online (@worker is successfully
1667 * bound), %false if offline.
1668 */
1669 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1670 __acquires(&pool->lock)
1671 {
1672 while (true) {
1673 /*
1674 * The following call may fail, succeed or succeed
1675 * without actually migrating the task to the cpu if
1676 * it races with cpu hotunplug operation. Verify
1677 * against POOL_DISASSOCIATED.
1678 */
1679 if (!(pool->flags & POOL_DISASSOCIATED))
1680 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1681
1682 spin_lock_irq(&pool->lock);
1683 if (pool->flags & POOL_DISASSOCIATED)
1684 return false;
1685 if (task_cpu(current) == pool->cpu &&
1686 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1687 return true;
1688 spin_unlock_irq(&pool->lock);
1689
1690 /*
1691 * We've raced with CPU hot[un]plug. Give it a breather
1692 * and retry migration. cond_resched() is required here;
1693 * otherwise, we might deadlock against cpu_stop trying to
1694 * bring down the CPU on non-preemptive kernel.
1695 */
1696 cpu_relax();
1697 cond_resched();
1698 }
1699 }
1700
1701 static struct worker *alloc_worker(void)
1702 {
1703 struct worker *worker;
1704
1705 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1706 if (worker) {
1707 INIT_LIST_HEAD(&worker->entry);
1708 INIT_LIST_HEAD(&worker->scheduled);
1709 /* on creation a worker is in !idle && prep state */
1710 worker->flags = WORKER_PREP;
1711 }
1712 return worker;
1713 }
1714
1715 /**
1716 * create_worker - create a new workqueue worker
1717 * @pool: pool the new worker will belong to
1718 *
1719 * Create a new worker which is bound to @pool. The returned worker
1720 * can be started by calling start_worker() or destroyed using
1721 * destroy_worker().
1722 *
1723 * CONTEXT:
1724 * Might sleep. Does GFP_KERNEL allocations.
1725 *
1726 * RETURNS:
1727 * Pointer to the newly created worker.
1728 */
1729 static struct worker *create_worker(struct worker_pool *pool)
1730 {
1731 struct worker *worker = NULL;
1732 int id = -1;
1733 char id_buf[16];
1734
1735 lockdep_assert_held(&pool->manager_mutex);
1736
1737 /*
1738 * ID is needed to determine kthread name. Allocate ID first
1739 * without installing the pointer.
1740 */
1741 idr_preload(GFP_KERNEL);
1742 spin_lock_irq(&pool->lock);
1743
1744 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1745
1746 spin_unlock_irq(&pool->lock);
1747 idr_preload_end();
1748 if (id < 0)
1749 goto fail;
1750
1751 worker = alloc_worker();
1752 if (!worker)
1753 goto fail;
1754
1755 worker->pool = pool;
1756 worker->id = id;
1757
1758 if (pool->cpu >= 0)
1759 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1760 pool->attrs->nice < 0 ? "H" : "");
1761 else
1762 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1763
1764 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1765 "kworker/%s", id_buf);
1766 if (IS_ERR(worker->task))
1767 goto fail;
1768
1769 /*
1770 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1771 * online CPUs. It'll be re-applied when any of the CPUs come up.
1772 */
1773 set_user_nice(worker->task, pool->attrs->nice);
1774 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1775
1776 /* prevent userland from meddling with cpumask of workqueue workers */
1777 worker->task->flags |= PF_NO_SETAFFINITY;
1778
1779 /*
1780 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1781 * remains stable across this function. See the comments above the
1782 * flag definition for details.
1783 */
1784 if (pool->flags & POOL_DISASSOCIATED)
1785 worker->flags |= WORKER_UNBOUND;
1786
1787 /* successful, commit the pointer to idr */
1788 spin_lock_irq(&pool->lock);
1789 idr_replace(&pool->worker_idr, worker, worker->id);
1790 spin_unlock_irq(&pool->lock);
1791
1792 return worker;
1793
1794 fail:
1795 if (id >= 0) {
1796 spin_lock_irq(&pool->lock);
1797 idr_remove(&pool->worker_idr, id);
1798 spin_unlock_irq(&pool->lock);
1799 }
1800 kfree(worker);
1801 return NULL;
1802 }
1803
1804 /**
1805 * start_worker - start a newly created worker
1806 * @worker: worker to start
1807 *
1808 * Make the pool aware of @worker and start it.
1809 *
1810 * CONTEXT:
1811 * spin_lock_irq(pool->lock).
1812 */
1813 static void start_worker(struct worker *worker)
1814 {
1815 worker->flags |= WORKER_STARTED;
1816 worker->pool->nr_workers++;
1817 worker_enter_idle(worker);
1818 wake_up_process(worker->task);
1819 }
1820
1821 /**
1822 * create_and_start_worker - create and start a worker for a pool
1823 * @pool: the target pool
1824 *
1825 * Grab the managership of @pool and create and start a new worker for it.
1826 */
1827 static int create_and_start_worker(struct worker_pool *pool)
1828 {
1829 struct worker *worker;
1830
1831 mutex_lock(&pool->manager_mutex);
1832
1833 worker = create_worker(pool);
1834 if (worker) {
1835 spin_lock_irq(&pool->lock);
1836 start_worker(worker);
1837 spin_unlock_irq(&pool->lock);
1838 }
1839
1840 mutex_unlock(&pool->manager_mutex);
1841
1842 return worker ? 0 : -ENOMEM;
1843 }
1844
1845 /**
1846 * destroy_worker - destroy a workqueue worker
1847 * @worker: worker to be destroyed
1848 *
1849 * Destroy @worker and adjust @pool stats accordingly.
1850 *
1851 * CONTEXT:
1852 * spin_lock_irq(pool->lock) which is released and regrabbed.
1853 */
1854 static void destroy_worker(struct worker *worker)
1855 {
1856 struct worker_pool *pool = worker->pool;
1857
1858 lockdep_assert_held(&pool->manager_mutex);
1859 lockdep_assert_held(&pool->lock);
1860
1861 /* sanity check frenzy */
1862 if (WARN_ON(worker->current_work) ||
1863 WARN_ON(!list_empty(&worker->scheduled)))
1864 return;
1865
1866 if (worker->flags & WORKER_STARTED)
1867 pool->nr_workers--;
1868 if (worker->flags & WORKER_IDLE)
1869 pool->nr_idle--;
1870
1871 /*
1872 * Once WORKER_DIE is set, the kworker may destroy itself at any
1873 * point. Pin to ensure the task stays until we're done with it.
1874 */
1875 get_task_struct(worker->task);
1876
1877 list_del_init(&worker->entry);
1878 worker->flags |= WORKER_DIE;
1879
1880 idr_remove(&pool->worker_idr, worker->id);
1881
1882 spin_unlock_irq(&pool->lock);
1883
1884 kthread_stop(worker->task);
1885 put_task_struct(worker->task);
1886 kfree(worker);
1887
1888 spin_lock_irq(&pool->lock);
1889 }
1890
1891 static void idle_worker_timeout(unsigned long __pool)
1892 {
1893 struct worker_pool *pool = (void *)__pool;
1894
1895 spin_lock_irq(&pool->lock);
1896
1897 if (too_many_workers(pool)) {
1898 struct worker *worker;
1899 unsigned long expires;
1900
1901 /* idle_list is kept in LIFO order, check the last one */
1902 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1903 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1904
1905 if (time_before(jiffies, expires))
1906 mod_timer(&pool->idle_timer, expires);
1907 else {
1908 /* it's been idle for too long, wake up manager */
1909 pool->flags |= POOL_MANAGE_WORKERS;
1910 wake_up_worker(pool);
1911 }
1912 }
1913
1914 spin_unlock_irq(&pool->lock);
1915 }
1916
1917 static void send_mayday(struct work_struct *work)
1918 {
1919 struct pool_workqueue *pwq = get_work_pwq(work);
1920 struct workqueue_struct *wq = pwq->wq;
1921
1922 lockdep_assert_held(&wq_mayday_lock);
1923
1924 if (!wq->rescuer)
1925 return;
1926
1927 /* mayday mayday mayday */
1928 if (list_empty(&pwq->mayday_node)) {
1929 /*
1930 * If @pwq is for an unbound wq, its base ref may be put at
1931 * any time due to an attribute change. Pin @pwq until the
1932 * rescuer is done with it.
1933 */
1934 get_pwq(pwq);
1935 list_add_tail(&pwq->mayday_node, &wq->maydays);
1936 wake_up_process(wq->rescuer->task);
1937 }
1938 }
1939
1940 static void pool_mayday_timeout(unsigned long __pool)
1941 {
1942 struct worker_pool *pool = (void *)__pool;
1943 struct work_struct *work;
1944
1945 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1946 spin_lock(&pool->lock);
1947
1948 if (need_to_create_worker(pool)) {
1949 /*
1950 * We've been trying to create a new worker but
1951 * haven't been successful. We might be hitting an
1952 * allocation deadlock. Send distress signals to
1953 * rescuers.
1954 */
1955 list_for_each_entry(work, &pool->worklist, entry)
1956 send_mayday(work);
1957 }
1958
1959 spin_unlock(&pool->lock);
1960 spin_unlock_irq(&wq_mayday_lock);
1961
1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1963 }
1964
1965 /**
1966 * maybe_create_worker - create a new worker if necessary
1967 * @pool: pool to create a new worker for
1968 *
1969 * Create a new worker for @pool if necessary. @pool is guaranteed to
1970 * have at least one idle worker on return from this function. If
1971 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1972 * sent to all rescuers with works scheduled on @pool to resolve
1973 * possible allocation deadlock.
1974 *
1975 * On return, need_to_create_worker() is guaranteed to be %false and
1976 * may_start_working() %true.
1977 *
1978 * LOCKING:
1979 * spin_lock_irq(pool->lock) which may be released and regrabbed
1980 * multiple times. Does GFP_KERNEL allocations. Called only from
1981 * manager.
1982 */
1983 static void maybe_create_worker(struct worker_pool *pool)
1984 __releases(&pool->lock)
1985 __acquires(&pool->lock)
1986 {
1987 if (!need_to_create_worker(pool))
1988 return;
1989 restart:
1990 spin_unlock_irq(&pool->lock);
1991
1992 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1993 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1994
1995 while (true) {
1996 struct worker *worker;
1997
1998 worker = create_worker(pool);
1999 if (worker) {
2000 del_timer_sync(&pool->mayday_timer);
2001 spin_lock_irq(&pool->lock);
2002 start_worker(worker);
2003 if (WARN_ON_ONCE(need_to_create_worker(pool)))
2004 goto restart;
2005 return;
2006 }
2007
2008 if (!need_to_create_worker(pool))
2009 break;
2010
2011 __set_current_state(TASK_INTERRUPTIBLE);
2012 schedule_timeout(CREATE_COOLDOWN);
2013
2014 if (!need_to_create_worker(pool))
2015 break;
2016 }
2017
2018 del_timer_sync(&pool->mayday_timer);
2019 spin_lock_irq(&pool->lock);
2020 if (need_to_create_worker(pool))
2021 goto restart;
2022 return;
2023 }
2024
2025 /**
2026 * maybe_destroy_worker - destroy workers which have been idle for a while
2027 * @pool: pool to destroy workers for
2028 *
2029 * Destroy @pool workers which have been idle for longer than
2030 * IDLE_WORKER_TIMEOUT.
2031 *
2032 * LOCKING:
2033 * spin_lock_irq(pool->lock) which may be released and regrabbed
2034 * multiple times. Called only from manager.
2035 */
2036 static void maybe_destroy_workers(struct worker_pool *pool)
2037 {
2038 while (too_many_workers(pool)) {
2039 struct worker *worker;
2040 unsigned long expires;
2041
2042 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2043 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2044
2045 if (time_before(jiffies, expires)) {
2046 mod_timer(&pool->idle_timer, expires);
2047 break;
2048 }
2049
2050 destroy_worker(worker);
2051 }
2052 }
2053
2054 /**
2055 * manage_workers - manage worker pool
2056 * @worker: self
2057 *
2058 * Assume the manager role and manage the worker pool @worker belongs
2059 * to. At any given time, there can be only zero or one manager per
2060 * pool. The exclusion is handled automatically by this function.
2061 *
2062 * The caller can safely start processing works on false return. On
2063 * true return, it's guaranteed that need_to_create_worker() is false
2064 * and may_start_working() is true.
2065 *
2066 * CONTEXT:
2067 * spin_lock_irq(pool->lock) which may be released and regrabbed
2068 * multiple times. Does GFP_KERNEL allocations.
2069 *
2070 * RETURNS:
2071 * %false if the pool doesn't need management and the caller can safely
2072 * start processing works, %true if management function was performed and
2073 * the conditions that the caller verified before calling the function may
2074 * no longer be true.
2075 */
2076 static bool manage_workers(struct worker *worker)
2077 {
2078 struct worker_pool *pool = worker->pool;
2079
2080 /*
2081 * Managership is governed by two mutexes - manager_arb and
2082 * manager_mutex. manager_arb handles arbitration of manager role.
2083 * Anyone who successfully grabs manager_arb wins the arbitration
2084 * and becomes the manager. mutex_trylock() on pool->manager_arb
2085 * failure while holding pool->lock reliably indicates that someone
2086 * else is managing the pool and the worker which failed trylock
2087 * can proceed to executing work items. This means that anyone
2088 * grabbing manager_arb is responsible for actually performing
2089 * manager duties. If manager_arb is grabbed and released without
2090 * actual management, the pool may stall indefinitely.
2091 *
2092 * manager_mutex is used for exclusion of actual management
2093 * operations. The holder of manager_mutex can be sure that none
2094 * of management operations, including creation and destruction of
2095 * workers, won't take place until the mutex is released. Because
2096 * manager_mutex doesn't interfere with manager role arbitration,
2097 * it is guaranteed that the pool's management, while may be
2098 * delayed, won't be disturbed by someone else grabbing
2099 * manager_mutex.
2100 */
2101 if (!mutex_trylock(&pool->manager_arb))
2102 return false;
2103
2104 /*
2105 * With manager arbitration won, manager_mutex would be free in
2106 * most cases. trylock first without dropping @pool->lock.
2107 */
2108 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2109 spin_unlock_irq(&pool->lock);
2110 mutex_lock(&pool->manager_mutex);
2111 spin_lock_irq(&pool->lock);
2112 }
2113
2114 pool->flags &= ~POOL_MANAGE_WORKERS;
2115
2116 /*
2117 * Destroy and then create so that may_start_working() is true
2118 * on return.
2119 */
2120 maybe_destroy_workers(pool);
2121 maybe_create_worker(pool);
2122
2123 mutex_unlock(&pool->manager_mutex);
2124 mutex_unlock(&pool->manager_arb);
2125 return true;
2126 }
2127
2128 /**
2129 * process_one_work - process single work
2130 * @worker: self
2131 * @work: work to process
2132 *
2133 * Process @work. This function contains all the logics necessary to
2134 * process a single work including synchronization against and
2135 * interaction with other workers on the same cpu, queueing and
2136 * flushing. As long as context requirement is met, any worker can
2137 * call this function to process a work.
2138 *
2139 * CONTEXT:
2140 * spin_lock_irq(pool->lock) which is released and regrabbed.
2141 */
2142 static void process_one_work(struct worker *worker, struct work_struct *work)
2143 __releases(&pool->lock)
2144 __acquires(&pool->lock)
2145 {
2146 struct pool_workqueue *pwq = get_work_pwq(work);
2147 struct worker_pool *pool = worker->pool;
2148 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2149 int work_color;
2150 struct worker *collision;
2151 unsigned long long exec_start;
2152 char func[128];
2153
2154 #ifdef CONFIG_LOCKDEP
2155 /*
2156 * It is permissible to free the struct work_struct from
2157 * inside the function that is called from it, this we need to
2158 * take into account for lockdep too. To avoid bogus "held
2159 * lock freed" warnings as well as problems when looking into
2160 * work->lockdep_map, make a copy and use that here.
2161 */
2162 struct lockdep_map lockdep_map;
2163
2164 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2165 #endif
2166 /*
2167 * Ensure we're on the correct CPU. DISASSOCIATED test is
2168 * necessary to avoid spurious warnings from rescuers servicing the
2169 * unbound or a disassociated pool.
2170 */
2171 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2172 !(pool->flags & POOL_DISASSOCIATED) &&
2173 raw_smp_processor_id() != pool->cpu);
2174
2175 /*
2176 * A single work shouldn't be executed concurrently by
2177 * multiple workers on a single cpu. Check whether anyone is
2178 * already processing the work. If so, defer the work to the
2179 * currently executing one.
2180 */
2181 collision = find_worker_executing_work(pool, work);
2182 if (unlikely(collision)) {
2183 move_linked_works(work, &collision->scheduled, NULL);
2184 return;
2185 }
2186
2187 /* claim and dequeue */
2188 debug_work_deactivate(work);
2189 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2190 worker->current_work = work;
2191 worker->current_func = work->func;
2192 worker->current_pwq = pwq;
2193 work_color = get_work_color(work);
2194
2195 list_del_init(&work->entry);
2196
2197 /*
2198 * CPU intensive works don't participate in concurrency
2199 * management. They're the scheduler's responsibility.
2200 */
2201 if (unlikely(cpu_intensive))
2202 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2203
2204 /*
2205 * Unbound pool isn't concurrency managed and work items should be
2206 * executed ASAP. Wake up another worker if necessary.
2207 */
2208 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2209 wake_up_worker(pool);
2210
2211 /*
2212 * Record the last pool and clear PENDING which should be the last
2213 * update to @work. Also, do this inside @pool->lock so that
2214 * PENDING and queued state changes happen together while IRQ is
2215 * disabled.
2216 */
2217 set_work_pool_and_clear_pending(work, pool->id);
2218
2219 spin_unlock_irq(&pool->lock);
2220
2221 lock_map_acquire_read(&pwq->wq->lockdep_map);
2222 lock_map_acquire(&lockdep_map);
2223
2224 exec_start = sched_clock();
2225 sprintf(func, "%pf", work->func);
2226
2227 trace_workqueue_execute_start(work);
2228 #ifdef CONFIG_MTK_WQ_DEBUG
2229 mttrace_workqueue_execute_work(work);
2230 #endif //CONFIG_MTK_WQ_DEBUG
2231
2232 worker->current_func(work);
2233
2234 /*
2235 * While we must be careful to not use "work" after this, the trace
2236 * point will only record its address.
2237 */
2238 trace_workqueue_execute_end(work);
2239 #ifdef CONFIG_MTK_WQ_DEBUG
2240 mttrace_workqueue_execute_end(work);
2241 #endif //CONFIG_MTK_WQ_DEBUG
2242
2243 if ((sched_clock() - exec_start)> 1000000000) // dump log if execute more than 1 sec
2244 pr_warning("WQ warning! work (%s, %p) execute more than 1 sec, time: %llu ns\n", func, work, sched_clock() - exec_start);
2245
2246 lock_map_release(&lockdep_map);
2247 lock_map_release(&pwq->wq->lockdep_map);
2248
2249 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2250 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2251 " last function: %pf\n",
2252 current->comm, preempt_count(), task_pid_nr(current),
2253 worker->current_func);
2254 debug_show_held_locks(current);
2255 dump_stack();
2256 }
2257
2258 /*
2259 * The following prevents a kworker from hogging CPU on !PREEMPT
2260 * kernels, where a requeueing work item waiting for something to
2261 * happen could deadlock with stop_machine as such work item could
2262 * indefinitely requeue itself while all other CPUs are trapped in
2263 * stop_machine.
2264 */
2265 cond_resched();
2266
2267 spin_lock_irq(&pool->lock);
2268
2269 /* clear cpu intensive status */
2270 if (unlikely(cpu_intensive))
2271 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2272
2273 /* we're done with it, release */
2274 hash_del(&worker->hentry);
2275 worker->current_work = NULL;
2276 worker->current_func = NULL;
2277 worker->current_pwq = NULL;
2278 worker->desc_valid = false;
2279 pwq_dec_nr_in_flight(pwq, work_color);
2280 }
2281
2282 /**
2283 * process_scheduled_works - process scheduled works
2284 * @worker: self
2285 *
2286 * Process all scheduled works. Please note that the scheduled list
2287 * may change while processing a work, so this function repeatedly
2288 * fetches a work from the top and executes it.
2289 *
2290 * CONTEXT:
2291 * spin_lock_irq(pool->lock) which may be released and regrabbed
2292 * multiple times.
2293 */
2294 static void process_scheduled_works(struct worker *worker)
2295 {
2296 while (!list_empty(&worker->scheduled)) {
2297 struct work_struct *work = list_first_entry(&worker->scheduled,
2298 struct work_struct, entry);
2299 process_one_work(worker, work);
2300 }
2301 }
2302
2303 /**
2304 * worker_thread - the worker thread function
2305 * @__worker: self
2306 *
2307 * The worker thread function. All workers belong to a worker_pool -
2308 * either a per-cpu one or dynamic unbound one. These workers process all
2309 * work items regardless of their specific target workqueue. The only
2310 * exception is work items which belong to workqueues with a rescuer which
2311 * will be explained in rescuer_thread().
2312 */
2313 static int worker_thread(void *__worker)
2314 {
2315 struct worker *worker = __worker;
2316 struct worker_pool *pool = worker->pool;
2317
2318 /* tell the scheduler that this is a workqueue worker */
2319 worker->task->flags |= PF_WQ_WORKER;
2320 woke_up:
2321 spin_lock_irq(&pool->lock);
2322
2323 /* am I supposed to die? */
2324 if (unlikely(worker->flags & WORKER_DIE)) {
2325 spin_unlock_irq(&pool->lock);
2326 WARN_ON_ONCE(!list_empty(&worker->entry));
2327 worker->task->flags &= ~PF_WQ_WORKER;
2328 return 0;
2329 }
2330
2331 worker_leave_idle(worker);
2332 recheck:
2333 /* no more worker necessary? */
2334 if (!need_more_worker(pool))
2335 goto sleep;
2336
2337 /* do we need to manage? */
2338 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2339 goto recheck;
2340
2341 /*
2342 * ->scheduled list can only be filled while a worker is
2343 * preparing to process a work or actually processing it.
2344 * Make sure nobody diddled with it while I was sleeping.
2345 */
2346 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2347
2348 /*
2349 * Finish PREP stage. We're guaranteed to have at least one idle
2350 * worker or that someone else has already assumed the manager
2351 * role. This is where @worker starts participating in concurrency
2352 * management if applicable and concurrency management is restored
2353 * after being rebound. See rebind_workers() for details.
2354 */
2355 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2356
2357 do {
2358 struct work_struct *work =
2359 list_first_entry(&pool->worklist,
2360 struct work_struct, entry);
2361
2362 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2363 /* optimization path, not strictly necessary */
2364 process_one_work(worker, work);
2365 if (unlikely(!list_empty(&worker->scheduled)))
2366 process_scheduled_works(worker);
2367 } else {
2368 move_linked_works(work, &worker->scheduled, NULL);
2369 process_scheduled_works(worker);
2370 }
2371 } while (keep_working(pool));
2372
2373 worker_set_flags(worker, WORKER_PREP, false);
2374 sleep:
2375 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2376 goto recheck;
2377
2378 /*
2379 * pool->lock is held and there's no work to process and no need to
2380 * manage, sleep. Workers are woken up only while holding
2381 * pool->lock or from local cpu, so setting the current state
2382 * before releasing pool->lock is enough to prevent losing any
2383 * event.
2384 */
2385 worker_enter_idle(worker);
2386 __set_current_state(TASK_INTERRUPTIBLE);
2387 spin_unlock_irq(&pool->lock);
2388 schedule();
2389 goto woke_up;
2390 }
2391
2392 /**
2393 * rescuer_thread - the rescuer thread function
2394 * @__rescuer: self
2395 *
2396 * Workqueue rescuer thread function. There's one rescuer for each
2397 * workqueue which has WQ_MEM_RECLAIM set.
2398 *
2399 * Regular work processing on a pool may block trying to create a new
2400 * worker which uses GFP_KERNEL allocation which has slight chance of
2401 * developing into deadlock if some works currently on the same queue
2402 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2403 * the problem rescuer solves.
2404 *
2405 * When such condition is possible, the pool summons rescuers of all
2406 * workqueues which have works queued on the pool and let them process
2407 * those works so that forward progress can be guaranteed.
2408 *
2409 * This should happen rarely.
2410 */
2411 static int rescuer_thread(void *__rescuer)
2412 {
2413 struct worker *rescuer = __rescuer;
2414 struct workqueue_struct *wq = rescuer->rescue_wq;
2415 struct list_head *scheduled = &rescuer->scheduled;
2416 bool should_stop;
2417
2418 set_user_nice(current, RESCUER_NICE_LEVEL);
2419
2420 /*
2421 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2422 * doesn't participate in concurrency management.
2423 */
2424 rescuer->task->flags |= PF_WQ_WORKER;
2425 repeat:
2426 set_current_state(TASK_INTERRUPTIBLE);
2427
2428 /*
2429 * By the time the rescuer is requested to stop, the workqueue
2430 * shouldn't have any work pending, but @wq->maydays may still have
2431 * pwq(s) queued. This can happen by non-rescuer workers consuming
2432 * all the work items before the rescuer got to them. Go through
2433 * @wq->maydays processing before acting on should_stop so that the
2434 * list is always empty on exit.
2435 */
2436 should_stop = kthread_should_stop();
2437
2438 /* see whether any pwq is asking for help */
2439 spin_lock_irq(&wq_mayday_lock);
2440
2441 while (!list_empty(&wq->maydays)) {
2442 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2443 struct pool_workqueue, mayday_node);
2444 struct worker_pool *pool = pwq->pool;
2445 struct work_struct *work, *n;
2446
2447 __set_current_state(TASK_RUNNING);
2448 list_del_init(&pwq->mayday_node);
2449
2450 spin_unlock_irq(&wq_mayday_lock);
2451
2452 /* migrate to the target cpu if possible */
2453 worker_maybe_bind_and_lock(pool);
2454 rescuer->pool = pool;
2455
2456 /*
2457 * Slurp in all works issued via this workqueue and
2458 * process'em.
2459 */
2460 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2461 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2462 if (get_work_pwq(work) == pwq)
2463 move_linked_works(work, scheduled, &n);
2464
2465 process_scheduled_works(rescuer);
2466
2467 /*
2468 * Put the reference grabbed by send_mayday(). @pool won't
2469 * go away while we're holding its lock.
2470 */
2471 put_pwq(pwq);
2472
2473 /*
2474 * Leave this pool. If keep_working() is %true, notify a
2475 * regular worker; otherwise, we end up with 0 concurrency
2476 * and stalling the execution.
2477 */
2478 if (keep_working(pool))
2479 wake_up_worker(pool);
2480
2481 rescuer->pool = NULL;
2482 spin_unlock(&pool->lock);
2483 spin_lock(&wq_mayday_lock);
2484 }
2485
2486 spin_unlock_irq(&wq_mayday_lock);
2487
2488 if (should_stop) {
2489 __set_current_state(TASK_RUNNING);
2490 rescuer->task->flags &= ~PF_WQ_WORKER;
2491 return 0;
2492 }
2493
2494 /* rescuers should never participate in concurrency management */
2495 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2496 schedule();
2497 goto repeat;
2498 }
2499
2500 struct wq_barrier {
2501 struct work_struct work;
2502 struct completion done;
2503 };
2504
2505 static void wq_barrier_func(struct work_struct *work)
2506 {
2507 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2508 complete(&barr->done);
2509 }
2510
2511 /**
2512 * insert_wq_barrier - insert a barrier work
2513 * @pwq: pwq to insert barrier into
2514 * @barr: wq_barrier to insert
2515 * @target: target work to attach @barr to
2516 * @worker: worker currently executing @target, NULL if @target is not executing
2517 *
2518 * @barr is linked to @target such that @barr is completed only after
2519 * @target finishes execution. Please note that the ordering
2520 * guarantee is observed only with respect to @target and on the local
2521 * cpu.
2522 *
2523 * Currently, a queued barrier can't be canceled. This is because
2524 * try_to_grab_pending() can't determine whether the work to be
2525 * grabbed is at the head of the queue and thus can't clear LINKED
2526 * flag of the previous work while there must be a valid next work
2527 * after a work with LINKED flag set.
2528 *
2529 * Note that when @worker is non-NULL, @target may be modified
2530 * underneath us, so we can't reliably determine pwq from @target.
2531 *
2532 * CONTEXT:
2533 * spin_lock_irq(pool->lock).
2534 */
2535 static void insert_wq_barrier(struct pool_workqueue *pwq,
2536 struct wq_barrier *barr,
2537 struct work_struct *target, struct worker *worker)
2538 {
2539 struct list_head *head;
2540 unsigned int linked = 0;
2541
2542 /*
2543 * debugobject calls are safe here even with pool->lock locked
2544 * as we know for sure that this will not trigger any of the
2545 * checks and call back into the fixup functions where we
2546 * might deadlock.
2547 */
2548 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2549 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2550 init_completion(&barr->done);
2551
2552 /*
2553 * If @target is currently being executed, schedule the
2554 * barrier to the worker; otherwise, put it after @target.
2555 */
2556 if (worker)
2557 head = worker->scheduled.next;
2558 else {
2559 unsigned long *bits = work_data_bits(target);
2560
2561 head = target->entry.next;
2562 /* there can already be other linked works, inherit and set */
2563 linked = *bits & WORK_STRUCT_LINKED;
2564 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2565 }
2566
2567 debug_work_activate(&barr->work);
2568 insert_work(pwq, &barr->work, head,
2569 work_color_to_flags(WORK_NO_COLOR) | linked);
2570 }
2571
2572 /**
2573 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2574 * @wq: workqueue being flushed
2575 * @flush_color: new flush color, < 0 for no-op
2576 * @work_color: new work color, < 0 for no-op
2577 *
2578 * Prepare pwqs for workqueue flushing.
2579 *
2580 * If @flush_color is non-negative, flush_color on all pwqs should be
2581 * -1. If no pwq has in-flight commands at the specified color, all
2582 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2583 * has in flight commands, its pwq->flush_color is set to
2584 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2585 * wakeup logic is armed and %true is returned.
2586 *
2587 * The caller should have initialized @wq->first_flusher prior to
2588 * calling this function with non-negative @flush_color. If
2589 * @flush_color is negative, no flush color update is done and %false
2590 * is returned.
2591 *
2592 * If @work_color is non-negative, all pwqs should have the same
2593 * work_color which is previous to @work_color and all will be
2594 * advanced to @work_color.
2595 *
2596 * CONTEXT:
2597 * mutex_lock(wq->mutex).
2598 *
2599 * RETURNS:
2600 * %true if @flush_color >= 0 and there's something to flush. %false
2601 * otherwise.
2602 */
2603 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2604 int flush_color, int work_color)
2605 {
2606 bool wait = false;
2607 struct pool_workqueue *pwq;
2608
2609 if (flush_color >= 0) {
2610 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2611 atomic_set(&wq->nr_pwqs_to_flush, 1);
2612 }
2613
2614 for_each_pwq(pwq, wq) {
2615 struct worker_pool *pool = pwq->pool;
2616
2617 spin_lock_irq(&pool->lock);
2618
2619 if (flush_color >= 0) {
2620 WARN_ON_ONCE(pwq->flush_color != -1);
2621
2622 if (pwq->nr_in_flight[flush_color]) {
2623 pwq->flush_color = flush_color;
2624 atomic_inc(&wq->nr_pwqs_to_flush);
2625 wait = true;
2626 }
2627 }
2628
2629 if (work_color >= 0) {
2630 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2631 pwq->work_color = work_color;
2632 }
2633
2634 spin_unlock_irq(&pool->lock);
2635 }
2636
2637 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2638 complete(&wq->first_flusher->done);
2639
2640 return wait;
2641 }
2642
2643 /**
2644 * flush_workqueue - ensure that any scheduled work has run to completion.
2645 * @wq: workqueue to flush
2646 *
2647 * This function sleeps until all work items which were queued on entry
2648 * have finished execution, but it is not livelocked by new incoming ones.
2649 */
2650 void flush_workqueue(struct workqueue_struct *wq)
2651 {
2652 struct wq_flusher this_flusher = {
2653 .list = LIST_HEAD_INIT(this_flusher.list),
2654 .flush_color = -1,
2655 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2656 };
2657 int next_color;
2658
2659 lock_map_acquire(&wq->lockdep_map);
2660 lock_map_release(&wq->lockdep_map);
2661
2662 mutex_lock(&wq->mutex);
2663
2664 /*
2665 * Start-to-wait phase
2666 */
2667 next_color = work_next_color(wq->work_color);
2668
2669 if (next_color != wq->flush_color) {
2670 /*
2671 * Color space is not full. The current work_color
2672 * becomes our flush_color and work_color is advanced
2673 * by one.
2674 */
2675 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2676 this_flusher.flush_color = wq->work_color;
2677 wq->work_color = next_color;
2678
2679 if (!wq->first_flusher) {
2680 /* no flush in progress, become the first flusher */
2681 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2682
2683 wq->first_flusher = &this_flusher;
2684
2685 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2686 wq->work_color)) {
2687 /* nothing to flush, done */
2688 wq->flush_color = next_color;
2689 wq->first_flusher = NULL;
2690 goto out_unlock;
2691 }
2692 } else {
2693 /* wait in queue */
2694 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2695 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2696 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2697 }
2698 } else {
2699 /*
2700 * Oops, color space is full, wait on overflow queue.
2701 * The next flush completion will assign us
2702 * flush_color and transfer to flusher_queue.
2703 */
2704 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2705 }
2706
2707 mutex_unlock(&wq->mutex);
2708
2709 wait_for_completion(&this_flusher.done);
2710
2711 /*
2712 * Wake-up-and-cascade phase
2713 *
2714 * First flushers are responsible for cascading flushes and
2715 * handling overflow. Non-first flushers can simply return.
2716 */
2717 if (wq->first_flusher != &this_flusher)
2718 return;
2719
2720 mutex_lock(&wq->mutex);
2721
2722 /* we might have raced, check again with mutex held */
2723 if (wq->first_flusher != &this_flusher)
2724 goto out_unlock;
2725
2726 wq->first_flusher = NULL;
2727
2728 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2729 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2730
2731 while (true) {
2732 struct wq_flusher *next, *tmp;
2733
2734 /* complete all the flushers sharing the current flush color */
2735 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2736 if (next->flush_color != wq->flush_color)
2737 break;
2738 list_del_init(&next->list);
2739 complete(&next->done);
2740 }
2741
2742 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2743 wq->flush_color != work_next_color(wq->work_color));
2744
2745 /* this flush_color is finished, advance by one */
2746 wq->flush_color = work_next_color(wq->flush_color);
2747
2748 /* one color has been freed, handle overflow queue */
2749 if (!list_empty(&wq->flusher_overflow)) {
2750 /*
2751 * Assign the same color to all overflowed
2752 * flushers, advance work_color and append to
2753 * flusher_queue. This is the start-to-wait
2754 * phase for these overflowed flushers.
2755 */
2756 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2757 tmp->flush_color = wq->work_color;
2758
2759 wq->work_color = work_next_color(wq->work_color);
2760
2761 list_splice_tail_init(&wq->flusher_overflow,
2762 &wq->flusher_queue);
2763 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2764 }
2765
2766 if (list_empty(&wq->flusher_queue)) {
2767 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2768 break;
2769 }
2770
2771 /*
2772 * Need to flush more colors. Make the next flusher
2773 * the new first flusher and arm pwqs.
2774 */
2775 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2776 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2777
2778 list_del_init(&next->list);
2779 wq->first_flusher = next;
2780
2781 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2782 break;
2783
2784 /*
2785 * Meh... this color is already done, clear first
2786 * flusher and repeat cascading.
2787 */
2788 wq->first_flusher = NULL;
2789 }
2790
2791 out_unlock:
2792 mutex_unlock(&wq->mutex);
2793 }
2794 EXPORT_SYMBOL_GPL(flush_workqueue);
2795
2796 /**
2797 * drain_workqueue - drain a workqueue
2798 * @wq: workqueue to drain
2799 *
2800 * Wait until the workqueue becomes empty. While draining is in progress,
2801 * only chain queueing is allowed. IOW, only currently pending or running
2802 * work items on @wq can queue further work items on it. @wq is flushed
2803 * repeatedly until it becomes empty. The number of flushing is detemined
2804 * by the depth of chaining and should be relatively short. Whine if it
2805 * takes too long.
2806 */
2807 void drain_workqueue(struct workqueue_struct *wq)
2808 {
2809 unsigned int flush_cnt = 0;
2810 struct pool_workqueue *pwq;
2811
2812 /*
2813 * __queue_work() needs to test whether there are drainers, is much
2814 * hotter than drain_workqueue() and already looks at @wq->flags.
2815 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2816 */
2817 mutex_lock(&wq->mutex);
2818 if (!wq->nr_drainers++)
2819 wq->flags |= __WQ_DRAINING;
2820 mutex_unlock(&wq->mutex);
2821 reflush:
2822 flush_workqueue(wq);
2823
2824 mutex_lock(&wq->mutex);
2825
2826 for_each_pwq(pwq, wq) {
2827 bool drained;
2828
2829 spin_lock_irq(&pwq->pool->lock);
2830 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2831 spin_unlock_irq(&pwq->pool->lock);
2832
2833 if (drained)
2834 continue;
2835
2836 if (++flush_cnt == 10 ||
2837 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2838 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2839 wq->name, flush_cnt);
2840
2841 mutex_unlock(&wq->mutex);
2842 goto reflush;
2843 }
2844
2845 if (!--wq->nr_drainers)
2846 wq->flags &= ~__WQ_DRAINING;
2847 mutex_unlock(&wq->mutex);
2848 }
2849 EXPORT_SYMBOL_GPL(drain_workqueue);
2850
2851 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2852 {
2853 struct worker *worker = NULL;
2854 struct worker_pool *pool;
2855 struct pool_workqueue *pwq;
2856
2857 might_sleep();
2858
2859 local_irq_disable();
2860 pool = get_work_pool(work);
2861 if (!pool) {
2862 local_irq_enable();
2863 return false;
2864 }
2865
2866 spin_lock(&pool->lock);
2867 /* see the comment in try_to_grab_pending() with the same code */
2868 pwq = get_work_pwq(work);
2869 if (pwq) {
2870 if (unlikely(pwq->pool != pool))
2871 goto already_gone;
2872 } else {
2873 worker = find_worker_executing_work(pool, work);
2874 if (!worker)
2875 goto already_gone;
2876 pwq = worker->current_pwq;
2877 }
2878
2879 insert_wq_barrier(pwq, barr, work, worker);
2880 spin_unlock_irq(&pool->lock);
2881
2882 /*
2883 * If @max_active is 1 or rescuer is in use, flushing another work
2884 * item on the same workqueue may lead to deadlock. Make sure the
2885 * flusher is not running on the same workqueue by verifying write
2886 * access.
2887 */
2888 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2889 lock_map_acquire(&pwq->wq->lockdep_map);
2890 else
2891 lock_map_acquire_read(&pwq->wq->lockdep_map);
2892 lock_map_release(&pwq->wq->lockdep_map);
2893
2894 return true;
2895 already_gone:
2896 spin_unlock_irq(&pool->lock);
2897 return false;
2898 }
2899
2900 /**
2901 * flush_work - wait for a work to finish executing the last queueing instance
2902 * @work: the work to flush
2903 *
2904 * Wait until @work has finished execution. @work is guaranteed to be idle
2905 * on return if it hasn't been requeued since flush started.
2906 *
2907 * RETURNS:
2908 * %true if flush_work() waited for the work to finish execution,
2909 * %false if it was already idle.
2910 */
2911 bool flush_work(struct work_struct *work)
2912 {
2913 struct wq_barrier barr;
2914
2915 lock_map_acquire(&work->lockdep_map);
2916 lock_map_release(&work->lockdep_map);
2917
2918 if (start_flush_work(work, &barr)) {
2919 wait_for_completion(&barr.done);
2920 destroy_work_on_stack(&barr.work);
2921 return true;
2922 } else {
2923 return false;
2924 }
2925 }
2926 EXPORT_SYMBOL_GPL(flush_work);
2927
2928 struct cwt_wait {
2929 wait_queue_t wait;
2930 struct work_struct *work;
2931 };
2932
2933 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2934 {
2935 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2936
2937 if (cwait->work != key)
2938 return 0;
2939 return autoremove_wake_function(wait, mode, sync, key);
2940 }
2941
2942 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2943 {
2944 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2945 unsigned long flags;
2946 int ret;
2947
2948 do {
2949 ret = try_to_grab_pending(work, is_dwork, &flags);
2950 /*
2951 * If someone else is already canceling, wait for it to
2952 * finish. flush_work() doesn't work for PREEMPT_NONE
2953 * because we may get scheduled between @work's completion
2954 * and the other canceling task resuming and clearing
2955 * CANCELING - flush_work() will return false immediately
2956 * as @work is no longer busy, try_to_grab_pending() will
2957 * return -ENOENT as @work is still being canceled and the
2958 * other canceling task won't be able to clear CANCELING as
2959 * we're hogging the CPU.
2960 *
2961 * Let's wait for completion using a waitqueue. As this
2962 * may lead to the thundering herd problem, use a custom
2963 * wake function which matches @work along with exclusive
2964 * wait and wakeup.
2965 */
2966 if (unlikely(ret == -ENOENT)) {
2967 struct cwt_wait cwait;
2968
2969 init_wait(&cwait.wait);
2970 cwait.wait.func = cwt_wakefn;
2971 cwait.work = work;
2972
2973 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2974 TASK_UNINTERRUPTIBLE);
2975 if (work_is_canceling(work))
2976 schedule();
2977 finish_wait(&cancel_waitq, &cwait.wait);
2978 }
2979 } while (unlikely(ret < 0));
2980
2981 /* tell other tasks trying to grab @work to back off */
2982 mark_work_canceling(work);
2983 local_irq_restore(flags);
2984
2985 flush_work(work);
2986 clear_work_data(work);
2987
2988 /*
2989 * Paired with prepare_to_wait() above so that either
2990 * waitqueue_active() is visible here or !work_is_canceling() is
2991 * visible there.
2992 */
2993 smp_mb();
2994 if (waitqueue_active(&cancel_waitq))
2995 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2996
2997 return ret;
2998 }
2999
3000 /**
3001 * cancel_work_sync - cancel a work and wait for it to finish
3002 * @work: the work to cancel
3003 *
3004 * Cancel @work and wait for its execution to finish. This function
3005 * can be used even if the work re-queues itself or migrates to
3006 * another workqueue. On return from this function, @work is
3007 * guaranteed to be not pending or executing on any CPU.
3008 *
3009 * cancel_work_sync(&delayed_work->work) must not be used for
3010 * delayed_work's. Use cancel_delayed_work_sync() instead.
3011 *
3012 * The caller must ensure that the workqueue on which @work was last
3013 * queued can't be destroyed before this function returns.
3014 *
3015 * RETURNS:
3016 * %true if @work was pending, %false otherwise.
3017 */
3018 bool cancel_work_sync(struct work_struct *work)
3019 {
3020 return __cancel_work_timer(work, false);
3021 }
3022 EXPORT_SYMBOL_GPL(cancel_work_sync);
3023
3024 /**
3025 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3026 * @dwork: the delayed work to flush
3027 *
3028 * Delayed timer is cancelled and the pending work is queued for
3029 * immediate execution. Like flush_work(), this function only
3030 * considers the last queueing instance of @dwork.
3031 *
3032 * RETURNS:
3033 * %true if flush_work() waited for the work to finish execution,
3034 * %false if it was already idle.
3035 */
3036 bool flush_delayed_work(struct delayed_work *dwork)
3037 {
3038 local_irq_disable();
3039 if (del_timer_sync(&dwork->timer))
3040 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3041 local_irq_enable();
3042 return flush_work(&dwork->work);
3043 }
3044 EXPORT_SYMBOL(flush_delayed_work);
3045
3046 /**
3047 * cancel_delayed_work - cancel a delayed work
3048 * @dwork: delayed_work to cancel
3049 *
3050 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3051 * and canceled; %false if wasn't pending. Note that the work callback
3052 * function may still be running on return, unless it returns %true and the
3053 * work doesn't re-arm itself. Explicitly flush or use
3054 * cancel_delayed_work_sync() to wait on it.
3055 *
3056 * This function is safe to call from any context including IRQ handler.
3057 */
3058 bool cancel_delayed_work(struct delayed_work *dwork)
3059 {
3060 unsigned long flags;
3061 int ret;
3062
3063 do {
3064 ret = try_to_grab_pending(&dwork->work, true, &flags);
3065 } while (unlikely(ret == -EAGAIN));
3066
3067 if (unlikely(ret < 0))
3068 return false;
3069
3070 set_work_pool_and_clear_pending(&dwork->work,
3071 get_work_pool_id(&dwork->work));
3072 local_irq_restore(flags);
3073 return ret;
3074 }
3075 EXPORT_SYMBOL(cancel_delayed_work);
3076
3077 /**
3078 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3079 * @dwork: the delayed work cancel
3080 *
3081 * This is cancel_work_sync() for delayed works.
3082 *
3083 * RETURNS:
3084 * %true if @dwork was pending, %false otherwise.
3085 */
3086 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3087 {
3088 return __cancel_work_timer(&dwork->work, true);
3089 }
3090 EXPORT_SYMBOL(cancel_delayed_work_sync);
3091
3092 /**
3093 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3094 * @func: the function to call
3095 *
3096 * schedule_on_each_cpu() executes @func on each online CPU using the
3097 * system workqueue and blocks until all CPUs have completed.
3098 * schedule_on_each_cpu() is very slow.
3099 *
3100 * RETURNS:
3101 * 0 on success, -errno on failure.
3102 */
3103 int schedule_on_each_cpu(work_func_t func)
3104 {
3105 int cpu;
3106 struct work_struct __percpu *works;
3107
3108 works = alloc_percpu(struct work_struct);
3109 if (!works)
3110 return -ENOMEM;
3111
3112 get_online_cpus();
3113
3114 for_each_online_cpu(cpu) {
3115 struct work_struct *work = per_cpu_ptr(works, cpu);
3116
3117 INIT_WORK(work, func);
3118 schedule_work_on(cpu, work);
3119 }
3120
3121 for_each_online_cpu(cpu)
3122 flush_work(per_cpu_ptr(works, cpu));
3123
3124 put_online_cpus();
3125 free_percpu(works);
3126 return 0;
3127 }
3128
3129 /**
3130 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3131 *
3132 * Forces execution of the kernel-global workqueue and blocks until its
3133 * completion.
3134 *
3135 * Think twice before calling this function! It's very easy to get into
3136 * trouble if you don't take great care. Either of the following situations
3137 * will lead to deadlock:
3138 *
3139 * One of the work items currently on the workqueue needs to acquire
3140 * a lock held by your code or its caller.
3141 *
3142 * Your code is running in the context of a work routine.
3143 *
3144 * They will be detected by lockdep when they occur, but the first might not
3145 * occur very often. It depends on what work items are on the workqueue and
3146 * what locks they need, which you have no control over.
3147 *
3148 * In most situations flushing the entire workqueue is overkill; you merely
3149 * need to know that a particular work item isn't queued and isn't running.
3150 * In such cases you should use cancel_delayed_work_sync() or
3151 * cancel_work_sync() instead.
3152 */
3153 void flush_scheduled_work(void)
3154 {
3155 flush_workqueue(system_wq);
3156 }
3157 EXPORT_SYMBOL(flush_scheduled_work);
3158
3159 /**
3160 * execute_in_process_context - reliably execute the routine with user context
3161 * @fn: the function to execute
3162 * @ew: guaranteed storage for the execute work structure (must
3163 * be available when the work executes)
3164 *
3165 * Executes the function immediately if process context is available,
3166 * otherwise schedules the function for delayed execution.
3167 *
3168 * Returns: 0 - function was executed
3169 * 1 - function was scheduled for execution
3170 */
3171 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3172 {
3173 if (!in_interrupt()) {
3174 fn(&ew->work);
3175 return 0;
3176 }
3177
3178 INIT_WORK(&ew->work, fn);
3179 schedule_work(&ew->work);
3180
3181 return 1;
3182 }
3183 EXPORT_SYMBOL_GPL(execute_in_process_context);
3184
3185 #ifdef CONFIG_SYSFS
3186 /*
3187 * Workqueues with WQ_SYSFS flag set is visible to userland via
3188 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3189 * following attributes.
3190 *
3191 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3192 * max_active RW int : maximum number of in-flight work items
3193 *
3194 * Unbound workqueues have the following extra attributes.
3195 *
3196 * id RO int : the associated pool ID
3197 * nice RW int : nice value of the workers
3198 * cpumask RW mask : bitmask of allowed CPUs for the workers
3199 */
3200 struct wq_device {
3201 struct workqueue_struct *wq;
3202 struct device dev;
3203 };
3204
3205 static struct workqueue_struct *dev_to_wq(struct device *dev)
3206 {
3207 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3208
3209 return wq_dev->wq;
3210 }
3211
3212 static ssize_t wq_per_cpu_show(struct device *dev,
3213 struct device_attribute *attr, char *buf)
3214 {
3215 struct workqueue_struct *wq = dev_to_wq(dev);
3216
3217 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3218 }
3219
3220 static ssize_t wq_max_active_show(struct device *dev,
3221 struct device_attribute *attr, char *buf)
3222 {
3223 struct workqueue_struct *wq = dev_to_wq(dev);
3224
3225 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3226 }
3227
3228 static ssize_t wq_max_active_store(struct device *dev,
3229 struct device_attribute *attr,
3230 const char *buf, size_t count)
3231 {
3232 struct workqueue_struct *wq = dev_to_wq(dev);
3233 int val;
3234
3235 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3236 return -EINVAL;
3237
3238 workqueue_set_max_active(wq, val);
3239 return count;
3240 }
3241
3242 static struct device_attribute wq_sysfs_attrs[] = {
3243 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3244 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3245 __ATTR_NULL,
3246 };
3247
3248 static ssize_t wq_pool_ids_show(struct device *dev,
3249 struct device_attribute *attr, char *buf)
3250 {
3251 struct workqueue_struct *wq = dev_to_wq(dev);
3252 const char *delim = "";
3253 int node, written = 0;
3254
3255 rcu_read_lock_sched();
3256 for_each_node(node) {
3257 written += scnprintf(buf + written, PAGE_SIZE - written,
3258 "%s%d:%d", delim, node,
3259 unbound_pwq_by_node(wq, node)->pool->id);
3260 delim = " ";
3261 }
3262 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3263 rcu_read_unlock_sched();
3264
3265 return written;
3266 }
3267
3268 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3269 char *buf)
3270 {
3271 struct workqueue_struct *wq = dev_to_wq(dev);
3272 int written;
3273
3274 mutex_lock(&wq->mutex);
3275 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3276 mutex_unlock(&wq->mutex);
3277
3278 return written;
3279 }
3280
3281 /* prepare workqueue_attrs for sysfs store operations */
3282 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3283 {
3284 struct workqueue_attrs *attrs;
3285
3286 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3287 if (!attrs)
3288 return NULL;
3289
3290 mutex_lock(&wq->mutex);
3291 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3292 mutex_unlock(&wq->mutex);
3293 return attrs;
3294 }
3295
3296 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3297 const char *buf, size_t count)
3298 {
3299 struct workqueue_struct *wq = dev_to_wq(dev);
3300 struct workqueue_attrs *attrs;
3301 int ret;
3302
3303 attrs = wq_sysfs_prep_attrs(wq);
3304 if (!attrs)
3305 return -ENOMEM;
3306
3307 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3308 attrs->nice >= -20 && attrs->nice <= 19)
3309 ret = apply_workqueue_attrs(wq, attrs);
3310 else
3311 ret = -EINVAL;
3312
3313 free_workqueue_attrs(attrs);
3314 return ret ?: count;
3315 }
3316
3317 static ssize_t wq_cpumask_show(struct device *dev,
3318 struct device_attribute *attr, char *buf)
3319 {
3320 struct workqueue_struct *wq = dev_to_wq(dev);
3321 int written;
3322
3323 mutex_lock(&wq->mutex);
3324 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3325 mutex_unlock(&wq->mutex);
3326
3327 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3328 return written;
3329 }
3330
3331 static ssize_t wq_cpumask_store(struct device *dev,
3332 struct device_attribute *attr,
3333 const char *buf, size_t count)
3334 {
3335 struct workqueue_struct *wq = dev_to_wq(dev);
3336 struct workqueue_attrs *attrs;
3337 int ret;
3338
3339 attrs = wq_sysfs_prep_attrs(wq);
3340 if (!attrs)
3341 return -ENOMEM;
3342
3343 ret = cpumask_parse(buf, attrs->cpumask);
3344 if (!ret)
3345 ret = apply_workqueue_attrs(wq, attrs);
3346
3347 free_workqueue_attrs(attrs);
3348 return ret ?: count;
3349 }
3350
3351 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3352 char *buf)
3353 {
3354 struct workqueue_struct *wq = dev_to_wq(dev);
3355 int written;
3356
3357 mutex_lock(&wq->mutex);
3358 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3359 !wq->unbound_attrs->no_numa);
3360 mutex_unlock(&wq->mutex);
3361
3362 return written;
3363 }
3364
3365 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3366 const char *buf, size_t count)
3367 {
3368 struct workqueue_struct *wq = dev_to_wq(dev);
3369 struct workqueue_attrs *attrs;
3370 int v, ret;
3371
3372 attrs = wq_sysfs_prep_attrs(wq);
3373 if (!attrs)
3374 return -ENOMEM;
3375
3376 ret = -EINVAL;
3377 if (sscanf(buf, "%d", &v) == 1) {
3378 attrs->no_numa = !v;
3379 ret = apply_workqueue_attrs(wq, attrs);
3380 }
3381
3382 free_workqueue_attrs(attrs);
3383 return ret ?: count;
3384 }
3385
3386 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3387 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3388 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3389 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3390 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3391 __ATTR_NULL,
3392 };
3393
3394 static struct bus_type wq_subsys = {
3395 .name = "workqueue",
3396 .dev_attrs = wq_sysfs_attrs,
3397 };
3398
3399 static int __init wq_sysfs_init(void)
3400 {
3401 return subsys_virtual_register(&wq_subsys, NULL);
3402 }
3403 core_initcall(wq_sysfs_init);
3404
3405 static void wq_device_release(struct device *dev)
3406 {
3407 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3408
3409 kfree(wq_dev);
3410 }
3411
3412 /**
3413 * workqueue_sysfs_register - make a workqueue visible in sysfs
3414 * @wq: the workqueue to register
3415 *
3416 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3417 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3418 * which is the preferred method.
3419 *
3420 * Workqueue user should use this function directly iff it wants to apply
3421 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3422 * apply_workqueue_attrs() may race against userland updating the
3423 * attributes.
3424 *
3425 * Returns 0 on success, -errno on failure.
3426 */
3427 int workqueue_sysfs_register(struct workqueue_struct *wq)
3428 {
3429 struct wq_device *wq_dev;
3430 int ret;
3431
3432 /*
3433 * Adjusting max_active or creating new pwqs by applyting
3434 * attributes breaks ordering guarantee. Disallow exposing ordered
3435 * workqueues.
3436 */
3437 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3438 return -EINVAL;
3439
3440 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3441 if (!wq_dev)
3442 return -ENOMEM;
3443
3444 wq_dev->wq = wq;
3445 wq_dev->dev.bus = &wq_subsys;
3446 wq_dev->dev.init_name = wq->name;
3447 wq_dev->dev.release = wq_device_release;
3448
3449 /*
3450 * unbound_attrs are created separately. Suppress uevent until
3451 * everything is ready.
3452 */
3453 dev_set_uevent_suppress(&wq_dev->dev, true);
3454
3455 ret = device_register(&wq_dev->dev);
3456 if (ret) {
3457 kfree(wq_dev);
3458 wq->wq_dev = NULL;
3459 return ret;
3460 }
3461
3462 if (wq->flags & WQ_UNBOUND) {
3463 struct device_attribute *attr;
3464
3465 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3466 ret = device_create_file(&wq_dev->dev, attr);
3467 if (ret) {
3468 device_unregister(&wq_dev->dev);
3469 wq->wq_dev = NULL;
3470 return ret;
3471 }
3472 }
3473 }
3474
3475 dev_set_uevent_suppress(&wq_dev->dev, false);
3476 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3477 return 0;
3478 }
3479
3480 /**
3481 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3482 * @wq: the workqueue to unregister
3483 *
3484 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3485 */
3486 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3487 {
3488 struct wq_device *wq_dev = wq->wq_dev;
3489
3490 if (!wq->wq_dev)
3491 return;
3492
3493 wq->wq_dev = NULL;
3494 device_unregister(&wq_dev->dev);
3495 }
3496 #else /* CONFIG_SYSFS */
3497 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3498 #endif /* CONFIG_SYSFS */
3499
3500 /**
3501 * free_workqueue_attrs - free a workqueue_attrs
3502 * @attrs: workqueue_attrs to free
3503 *
3504 * Undo alloc_workqueue_attrs().
3505 */
3506 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3507 {
3508 if (attrs) {
3509 free_cpumask_var(attrs->cpumask);
3510 kfree(attrs);
3511 }
3512 }
3513
3514 /**
3515 * alloc_workqueue_attrs - allocate a workqueue_attrs
3516 * @gfp_mask: allocation mask to use
3517 *
3518 * Allocate a new workqueue_attrs, initialize with default settings and
3519 * return it. Returns NULL on failure.
3520 */
3521 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3522 {
3523 struct workqueue_attrs *attrs;
3524
3525 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3526 if (!attrs)
3527 goto fail;
3528 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3529 goto fail;
3530
3531 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3532 return attrs;
3533 fail:
3534 free_workqueue_attrs(attrs);
3535 return NULL;
3536 }
3537
3538 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3539 const struct workqueue_attrs *from)
3540 {
3541 to->nice = from->nice;
3542 cpumask_copy(to->cpumask, from->cpumask);
3543 /*
3544 * Unlike hash and equality test, this function doesn't ignore
3545 * ->no_numa as it is used for both pool and wq attrs. Instead,
3546 * get_unbound_pool() explicitly clears ->no_numa after copying.
3547 */
3548 to->no_numa = from->no_numa;
3549 }
3550
3551 /* hash value of the content of @attr */
3552 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3553 {
3554 u32 hash = 0;
3555
3556 hash = jhash_1word(attrs->nice, hash);
3557 hash = jhash(cpumask_bits(attrs->cpumask),
3558 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3559 return hash;
3560 }
3561
3562 /* content equality test */
3563 static bool wqattrs_equal(const struct workqueue_attrs *a,
3564 const struct workqueue_attrs *b)
3565 {
3566 if (a->nice != b->nice)
3567 return false;
3568 if (!cpumask_equal(a->cpumask, b->cpumask))
3569 return false;
3570 return true;
3571 }
3572
3573 /**
3574 * init_worker_pool - initialize a newly zalloc'd worker_pool
3575 * @pool: worker_pool to initialize
3576 *
3577 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3578 * Returns 0 on success, -errno on failure. Even on failure, all fields
3579 * inside @pool proper are initialized and put_unbound_pool() can be called
3580 * on @pool safely to release it.
3581 */
3582 static int init_worker_pool(struct worker_pool *pool)
3583 {
3584 spin_lock_init(&pool->lock);
3585 pool->id = -1;
3586 pool->cpu = -1;
3587 pool->node = NUMA_NO_NODE;
3588 pool->flags |= POOL_DISASSOCIATED;
3589 INIT_LIST_HEAD(&pool->worklist);
3590 INIT_LIST_HEAD(&pool->idle_list);
3591 hash_init(pool->busy_hash);
3592
3593 init_timer_deferrable(&pool->idle_timer);
3594 pool->idle_timer.function = idle_worker_timeout;
3595 pool->idle_timer.data = (unsigned long)pool;
3596
3597 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3598 (unsigned long)pool);
3599
3600 mutex_init(&pool->manager_arb);
3601 mutex_init(&pool->manager_mutex);
3602 idr_init(&pool->worker_idr);
3603
3604 INIT_HLIST_NODE(&pool->hash_node);
3605 pool->refcnt = 1;
3606
3607 /* shouldn't fail above this point */
3608 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3609 if (!pool->attrs)
3610 return -ENOMEM;
3611 return 0;
3612 }
3613
3614 static void rcu_free_pool(struct rcu_head *rcu)
3615 {
3616 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3617
3618 idr_destroy(&pool->worker_idr);
3619 free_workqueue_attrs(pool->attrs);
3620 kfree(pool);
3621 }
3622
3623 /**
3624 * put_unbound_pool - put a worker_pool
3625 * @pool: worker_pool to put
3626 *
3627 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3628 * safe manner. get_unbound_pool() calls this function on its failure path
3629 * and this function should be able to release pools which went through,
3630 * successfully or not, init_worker_pool().
3631 *
3632 * Should be called with wq_pool_mutex held.
3633 */
3634 static void put_unbound_pool(struct worker_pool *pool)
3635 {
3636 struct worker *worker;
3637
3638 lockdep_assert_held(&wq_pool_mutex);
3639
3640 if (--pool->refcnt)
3641 return;
3642
3643 /* sanity checks */
3644 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3645 WARN_ON(!list_empty(&pool->worklist)))
3646 return;
3647
3648 /* release id and unhash */
3649 if (pool->id >= 0)
3650 idr_remove(&worker_pool_idr, pool->id);
3651 hash_del(&pool->hash_node);
3652
3653 /*
3654 * Become the manager and destroy all workers. Grabbing
3655 * manager_arb prevents @pool's workers from blocking on
3656 * manager_mutex.
3657 */
3658 mutex_lock(&pool->manager_arb);
3659 mutex_lock(&pool->manager_mutex);
3660 spin_lock_irq(&pool->lock);
3661
3662 while ((worker = first_worker(pool)))
3663 destroy_worker(worker);
3664 WARN_ON(pool->nr_workers || pool->nr_idle);
3665
3666 spin_unlock_irq(&pool->lock);
3667 mutex_unlock(&pool->manager_mutex);
3668 mutex_unlock(&pool->manager_arb);
3669
3670 /* shut down the timers */
3671 del_timer_sync(&pool->idle_timer);
3672 del_timer_sync(&pool->mayday_timer);
3673
3674 /* sched-RCU protected to allow dereferences from get_work_pool() */
3675 call_rcu_sched(&pool->rcu, rcu_free_pool);
3676 }
3677
3678 /**
3679 * get_unbound_pool - get a worker_pool with the specified attributes
3680 * @attrs: the attributes of the worker_pool to get
3681 *
3682 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3683 * reference count and return it. If there already is a matching
3684 * worker_pool, it will be used; otherwise, this function attempts to
3685 * create a new one. On failure, returns NULL.
3686 *
3687 * Should be called with wq_pool_mutex held.
3688 */
3689 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3690 {
3691 u32 hash = wqattrs_hash(attrs);
3692 struct worker_pool *pool;
3693 int node;
3694
3695 lockdep_assert_held(&wq_pool_mutex);
3696
3697 /* do we already have a matching pool? */
3698 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3699 if (wqattrs_equal(pool->attrs, attrs)) {
3700 pool->refcnt++;
3701 goto out_unlock;
3702 }
3703 }
3704
3705 /* nope, create a new one */
3706 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3707 if (!pool || init_worker_pool(pool) < 0)
3708 goto fail;
3709
3710 if (workqueue_freezing)
3711 pool->flags |= POOL_FREEZING;
3712
3713 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3714 copy_workqueue_attrs(pool->attrs, attrs);
3715
3716 /*
3717 * no_numa isn't a worker_pool attribute, always clear it. See
3718 * 'struct workqueue_attrs' comments for detail.
3719 */
3720 pool->attrs->no_numa = false;
3721
3722 /* if cpumask is contained inside a NUMA node, we belong to that node */
3723 if (wq_numa_enabled) {
3724 for_each_node(node) {
3725 if (cpumask_subset(pool->attrs->cpumask,
3726 wq_numa_possible_cpumask[node])) {
3727 pool->node = node;
3728 break;
3729 }
3730 }
3731 }
3732
3733 if (worker_pool_assign_id(pool) < 0)
3734 goto fail;
3735
3736 /* create and start the initial worker */
3737 if (create_and_start_worker(pool) < 0)
3738 goto fail;
3739
3740 /* install */
3741 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3742 out_unlock:
3743 return pool;
3744 fail:
3745 if (pool)
3746 put_unbound_pool(pool);
3747 return NULL;
3748 }
3749
3750 static void rcu_free_pwq(struct rcu_head *rcu)
3751 {
3752 kmem_cache_free(pwq_cache,
3753 container_of(rcu, struct pool_workqueue, rcu));
3754 }
3755
3756 /*
3757 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3758 * and needs to be destroyed.
3759 */
3760 static void pwq_unbound_release_workfn(struct work_struct *work)
3761 {
3762 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3763 unbound_release_work);
3764 struct workqueue_struct *wq = pwq->wq;
3765 struct worker_pool *pool = pwq->pool;
3766 bool is_last;
3767
3768 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3769 return;
3770
3771 /*
3772 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3773 * necessary on release but do it anyway. It's easier to verify
3774 * and consistent with the linking path.
3775 */
3776 mutex_lock(&wq->mutex);
3777 list_del_rcu(&pwq->pwqs_node);
3778 is_last = list_empty(&wq->pwqs);
3779 mutex_unlock(&wq->mutex);
3780
3781 mutex_lock(&wq_pool_mutex);
3782 put_unbound_pool(pool);
3783 mutex_unlock(&wq_pool_mutex);
3784
3785 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3786
3787 /*
3788 * If we're the last pwq going away, @wq is already dead and no one
3789 * is gonna access it anymore. Free it.
3790 */
3791 if (is_last) {
3792 free_workqueue_attrs(wq->unbound_attrs);
3793 kfree(wq);
3794 }
3795 }
3796
3797 /**
3798 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3799 * @pwq: target pool_workqueue
3800 *
3801 * If @pwq isn't freezing, set @pwq->max_active to the associated
3802 * workqueue's saved_max_active and activate delayed work items
3803 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3804 */
3805 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3806 {
3807 struct workqueue_struct *wq = pwq->wq;
3808 bool freezable = wq->flags & WQ_FREEZABLE;
3809
3810 /* for @wq->saved_max_active */
3811 lockdep_assert_held(&wq->mutex);
3812
3813 /* fast exit for non-freezable wqs */
3814 if (!freezable && pwq->max_active == wq->saved_max_active)
3815 return;
3816
3817 spin_lock_irq(&pwq->pool->lock);
3818
3819 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3820 pwq->max_active = wq->saved_max_active;
3821
3822 while (!list_empty(&pwq->delayed_works) &&
3823 pwq->nr_active < pwq->max_active)
3824 pwq_activate_first_delayed(pwq);
3825
3826 /*
3827 * Need to kick a worker after thawed or an unbound wq's
3828 * max_active is bumped. It's a slow path. Do it always.
3829 */
3830 wake_up_worker(pwq->pool);
3831 } else {
3832 pwq->max_active = 0;
3833 }
3834
3835 spin_unlock_irq(&pwq->pool->lock);
3836 }
3837
3838 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3839 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3840 struct worker_pool *pool)
3841 {
3842 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3843
3844 memset(pwq, 0, sizeof(*pwq));
3845
3846 pwq->pool = pool;
3847 pwq->wq = wq;
3848 pwq->flush_color = -1;
3849 pwq->refcnt = 1;
3850 INIT_LIST_HEAD(&pwq->delayed_works);
3851 INIT_LIST_HEAD(&pwq->pwqs_node);
3852 INIT_LIST_HEAD(&pwq->mayday_node);
3853 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3854 }
3855
3856 /* sync @pwq with the current state of its associated wq and link it */
3857 static void link_pwq(struct pool_workqueue *pwq)
3858 {
3859 struct workqueue_struct *wq = pwq->wq;
3860
3861 lockdep_assert_held(&wq->mutex);
3862
3863 /* may be called multiple times, ignore if already linked */
3864 if (!list_empty(&pwq->pwqs_node))
3865 return;
3866
3867 /*
3868 * Set the matching work_color. This is synchronized with
3869 * wq->mutex to avoid confusing flush_workqueue().
3870 */
3871 pwq->work_color = wq->work_color;
3872
3873 /* sync max_active to the current setting */
3874 pwq_adjust_max_active(pwq);
3875
3876 /* link in @pwq */
3877 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3878 }
3879
3880 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3881 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3882 const struct workqueue_attrs *attrs)
3883 {
3884 struct worker_pool *pool;
3885 struct pool_workqueue *pwq;
3886
3887 lockdep_assert_held(&wq_pool_mutex);
3888
3889 pool = get_unbound_pool(attrs);
3890 if (!pool)
3891 return NULL;
3892
3893 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3894 if (!pwq) {
3895 put_unbound_pool(pool);
3896 return NULL;
3897 }
3898
3899 init_pwq(pwq, wq, pool);
3900 return pwq;
3901 }
3902
3903 /* undo alloc_unbound_pwq(), used only in the error path */
3904 static void free_unbound_pwq(struct pool_workqueue *pwq)
3905 {
3906 lockdep_assert_held(&wq_pool_mutex);
3907
3908 if (pwq) {
3909 put_unbound_pool(pwq->pool);
3910 kmem_cache_free(pwq_cache, pwq);
3911 }
3912 }
3913
3914 /**
3915 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3916 * @attrs: the wq_attrs of interest
3917 * @node: the target NUMA node
3918 * @cpu_going_down: if >= 0, the CPU to consider as offline
3919 * @cpumask: outarg, the resulting cpumask
3920 *
3921 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3922 * @cpu_going_down is >= 0, that cpu is considered offline during
3923 * calculation. The result is stored in @cpumask. This function returns
3924 * %true if the resulting @cpumask is different from @attrs->cpumask,
3925 * %false if equal.
3926 *
3927 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3928 * enabled and @node has online CPUs requested by @attrs, the returned
3929 * cpumask is the intersection of the possible CPUs of @node and
3930 * @attrs->cpumask.
3931 *
3932 * The caller is responsible for ensuring that the cpumask of @node stays
3933 * stable.
3934 */
3935 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3936 int cpu_going_down, cpumask_t *cpumask)
3937 {
3938 if (!wq_numa_enabled || attrs->no_numa)
3939 goto use_dfl;
3940
3941 /* does @node have any online CPUs @attrs wants? */
3942 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3943 if (cpu_going_down >= 0)
3944 cpumask_clear_cpu(cpu_going_down, cpumask);
3945
3946 if (cpumask_empty(cpumask))
3947 goto use_dfl;
3948
3949 /* yeap, return possible CPUs in @node that @attrs wants */
3950 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3951 return !cpumask_equal(cpumask, attrs->cpumask);
3952
3953 use_dfl:
3954 cpumask_copy(cpumask, attrs->cpumask);
3955 return false;
3956 }
3957
3958 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3959 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3960 int node,
3961 struct pool_workqueue *pwq)
3962 {
3963 struct pool_workqueue *old_pwq;
3964
3965 lockdep_assert_held(&wq->mutex);
3966
3967 /* link_pwq() can handle duplicate calls */
3968 link_pwq(pwq);
3969
3970 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3971 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3972 return old_pwq;
3973 }
3974
3975 /**
3976 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3977 * @wq: the target workqueue
3978 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3979 *
3980 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3981 * machines, this function maps a separate pwq to each NUMA node with
3982 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3983 * NUMA node it was issued on. Older pwqs are released as in-flight work
3984 * items finish. Note that a work item which repeatedly requeues itself
3985 * back-to-back will stay on its current pwq.
3986 *
3987 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3988 * failure.
3989 */
3990 int apply_workqueue_attrs(struct workqueue_struct *wq,
3991 const struct workqueue_attrs *attrs)
3992 {
3993 struct workqueue_attrs *new_attrs, *tmp_attrs;
3994 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3995 int node, ret;
3996
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
4000
4001 /* creating multiple pwqs breaks ordering guarantee */
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
4008
4009 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
4010 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4011 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4012 if (!pwq_tbl || !new_attrs || !tmp_attrs)
4013 goto enomem;
4014
4015 /* make a copy of @attrs and sanitize it */
4016 copy_workqueue_attrs(new_attrs, attrs);
4017 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4018
4019 /*
4020 * We may create multiple pwqs with differing cpumasks. Make a
4021 * copy of @new_attrs which will be modified and used to obtain
4022 * pools.
4023 */
4024 copy_workqueue_attrs(tmp_attrs, new_attrs);
4025
4026 /*
4027 * CPUs should stay stable across pwq creations and installations.
4028 * Pin CPUs, determine the target cpumask for each node and create
4029 * pwqs accordingly.
4030 */
4031 get_online_cpus();
4032
4033 mutex_lock(&wq_pool_mutex);
4034
4035 /*
4036 * If something goes wrong during CPU up/down, we'll fall back to
4037 * the default pwq covering whole @attrs->cpumask. Always create
4038 * it even if we don't use it immediately.
4039 */
4040 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4041 if (!dfl_pwq)
4042 goto enomem_pwq;
4043
4044 for_each_node(node) {
4045 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
4046 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4047 if (!pwq_tbl[node])
4048 goto enomem_pwq;
4049 } else {
4050 dfl_pwq->refcnt++;
4051 pwq_tbl[node] = dfl_pwq;
4052 }
4053 }
4054
4055 mutex_unlock(&wq_pool_mutex);
4056
4057 /* all pwqs have been created successfully, let's install'em */
4058 mutex_lock(&wq->mutex);
4059
4060 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4061
4062 /* save the previous pwq and install the new one */
4063 for_each_node(node)
4064 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4065
4066 /* @dfl_pwq might not have been used, ensure it's linked */
4067 link_pwq(dfl_pwq);
4068 swap(wq->dfl_pwq, dfl_pwq);
4069
4070 mutex_unlock(&wq->mutex);
4071
4072 /* put the old pwqs */
4073 for_each_node(node)
4074 put_pwq_unlocked(pwq_tbl[node]);
4075 put_pwq_unlocked(dfl_pwq);
4076
4077 put_online_cpus();
4078 ret = 0;
4079 /* fall through */
4080 out_free:
4081 free_workqueue_attrs(tmp_attrs);
4082 free_workqueue_attrs(new_attrs);
4083 kfree(pwq_tbl);
4084 return ret;
4085
4086 enomem_pwq:
4087 free_unbound_pwq(dfl_pwq);
4088 for_each_node(node)
4089 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4090 free_unbound_pwq(pwq_tbl[node]);
4091 mutex_unlock(&wq_pool_mutex);
4092 put_online_cpus();
4093 enomem:
4094 ret = -ENOMEM;
4095 goto out_free;
4096 }
4097
4098 /**
4099 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4100 * @wq: the target workqueue
4101 * @cpu: the CPU coming up or going down
4102 * @online: whether @cpu is coming up or going down
4103 *
4104 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4105 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4106 * @wq accordingly.
4107 *
4108 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4109 * falls back to @wq->dfl_pwq which may not be optimal but is always
4110 * correct.
4111 *
4112 * Note that when the last allowed CPU of a NUMA node goes offline for a
4113 * workqueue with a cpumask spanning multiple nodes, the workers which were
4114 * already executing the work items for the workqueue will lose their CPU
4115 * affinity and may execute on any CPU. This is similar to how per-cpu
4116 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4117 * affinity, it's the user's responsibility to flush the work item from
4118 * CPU_DOWN_PREPARE.
4119 */
4120 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4121 bool online)
4122 {
4123 int node = cpu_to_node(cpu);
4124 int cpu_off = online ? -1 : cpu;
4125 struct pool_workqueue *old_pwq = NULL, *pwq;
4126 struct workqueue_attrs *target_attrs;
4127 cpumask_t *cpumask;
4128
4129 lockdep_assert_held(&wq_pool_mutex);
4130
4131 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4132 return;
4133
4134 /*
4135 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4136 * Let's use a preallocated one. The following buf is protected by
4137 * CPU hotplug exclusion.
4138 */
4139 target_attrs = wq_update_unbound_numa_attrs_buf;
4140 cpumask = target_attrs->cpumask;
4141
4142 mutex_lock(&wq->mutex);
4143 if (wq->unbound_attrs->no_numa)
4144 goto out_unlock;
4145
4146 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4147 pwq = unbound_pwq_by_node(wq, node);
4148
4149 /*
4150 * Let's determine what needs to be done. If the target cpumask is
4151 * different from wq's, we need to compare it to @pwq's and create
4152 * a new one if they don't match. If the target cpumask equals
4153 * wq's, the default pwq should be used. If @pwq is already the
4154 * default one, nothing to do; otherwise, install the default one.
4155 */
4156 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4157 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4158 goto out_unlock;
4159 } else {
4160 if (pwq == wq->dfl_pwq)
4161 goto out_unlock;
4162 else
4163 goto use_dfl_pwq;
4164 }
4165
4166 mutex_unlock(&wq->mutex);
4167
4168 /* create a new pwq */
4169 pwq = alloc_unbound_pwq(wq, target_attrs);
4170 if (!pwq) {
4171 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4172 wq->name);
4173 mutex_lock(&wq->mutex);
4174 goto use_dfl_pwq;
4175 }
4176
4177 /*
4178 * Install the new pwq. As this function is called only from CPU
4179 * hotplug callbacks and applying a new attrs is wrapped with
4180 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4181 * inbetween.
4182 */
4183 mutex_lock(&wq->mutex);
4184 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4185 goto out_unlock;
4186
4187 use_dfl_pwq:
4188 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4189 get_pwq(wq->dfl_pwq);
4190 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4191 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4192 out_unlock:
4193 mutex_unlock(&wq->mutex);
4194 put_pwq_unlocked(old_pwq);
4195 }
4196
4197 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4198 {
4199 bool highpri = wq->flags & WQ_HIGHPRI;
4200 int cpu, ret;
4201
4202 if (!(wq->flags & WQ_UNBOUND)) {
4203 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4204 if (!wq->cpu_pwqs)
4205 return -ENOMEM;
4206
4207 for_each_possible_cpu(cpu) {
4208 struct pool_workqueue *pwq =
4209 per_cpu_ptr(wq->cpu_pwqs, cpu);
4210 struct worker_pool *cpu_pools =
4211 per_cpu(cpu_worker_pools, cpu);
4212
4213 init_pwq(pwq, wq, &cpu_pools[highpri]);
4214
4215 mutex_lock(&wq->mutex);
4216 link_pwq(pwq);
4217 mutex_unlock(&wq->mutex);
4218 }
4219 return 0;
4220 } else if (wq->flags & __WQ_ORDERED) {
4221 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4222 /* there should only be single pwq for ordering guarantee */
4223 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4224 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4225 "ordering guarantee broken for workqueue %s\n", wq->name);
4226 return ret;
4227 } else {
4228 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4229 }
4230 }
4231
4232 static int wq_clamp_max_active(int max_active, unsigned int flags,
4233 const char *name)
4234 {
4235 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4236
4237 if (max_active < 1 || max_active > lim)
4238 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4239 max_active, name, 1, lim);
4240
4241 return clamp_val(max_active, 1, lim);
4242 }
4243
4244 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4245 unsigned int flags,
4246 int max_active,
4247 struct lock_class_key *key,
4248 const char *lock_name, ...)
4249 {
4250 size_t tbl_size = 0;
4251 va_list args;
4252 struct workqueue_struct *wq;
4253 struct pool_workqueue *pwq;
4254
4255 /*
4256 * Unbound && max_active == 1 used to imply ordered, which is no
4257 * longer the case on NUMA machines due to per-node pools. While
4258 * alloc_ordered_workqueue() is the right way to create an ordered
4259 * workqueue, keep the previous behavior to avoid subtle breakages
4260 * on NUMA.
4261 */
4262 if ((flags & WQ_UNBOUND) && max_active == 1)
4263 flags |= __WQ_ORDERED;
4264
4265 /* allocate wq and format name */
4266 if (flags & WQ_UNBOUND)
4267 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4268
4269 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4270 if (!wq)
4271 return NULL;
4272
4273 if (flags & WQ_UNBOUND) {
4274 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4275 if (!wq->unbound_attrs)
4276 goto err_free_wq;
4277 }
4278
4279 va_start(args, lock_name);
4280 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4281 va_end(args);
4282
4283 max_active = max_active ?: WQ_DFL_ACTIVE;
4284 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4285
4286 /* init wq */
4287 wq->flags = flags;
4288 wq->saved_max_active = max_active;
4289 mutex_init(&wq->mutex);
4290 atomic_set(&wq->nr_pwqs_to_flush, 0);
4291 INIT_LIST_HEAD(&wq->pwqs);
4292 INIT_LIST_HEAD(&wq->flusher_queue);
4293 INIT_LIST_HEAD(&wq->flusher_overflow);
4294 INIT_LIST_HEAD(&wq->maydays);
4295
4296 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4297 INIT_LIST_HEAD(&wq->list);
4298
4299 if (alloc_and_link_pwqs(wq) < 0)
4300 goto err_free_wq;
4301
4302 /*
4303 * Workqueues which may be used during memory reclaim should
4304 * have a rescuer to guarantee forward progress.
4305 */
4306 if (flags & WQ_MEM_RECLAIM) {
4307 struct worker *rescuer;
4308
4309 rescuer = alloc_worker();
4310 if (!rescuer)
4311 goto err_destroy;
4312
4313 rescuer->rescue_wq = wq;
4314 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4315 wq->name);
4316 if (IS_ERR(rescuer->task)) {
4317 kfree(rescuer);
4318 goto err_destroy;
4319 }
4320
4321 wq->rescuer = rescuer;
4322 rescuer->task->flags |= PF_NO_SETAFFINITY;
4323 wake_up_process(rescuer->task);
4324 }
4325
4326 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4327 goto err_destroy;
4328
4329 /*
4330 * wq_pool_mutex protects global freeze state and workqueues list.
4331 * Grab it, adjust max_active and add the new @wq to workqueues
4332 * list.
4333 */
4334 mutex_lock(&wq_pool_mutex);
4335
4336 mutex_lock(&wq->mutex);
4337 for_each_pwq(pwq, wq)
4338 pwq_adjust_max_active(pwq);
4339 mutex_unlock(&wq->mutex);
4340
4341 list_add(&wq->list, &workqueues);
4342
4343 mutex_unlock(&wq_pool_mutex);
4344
4345 return wq;
4346
4347 err_free_wq:
4348 free_workqueue_attrs(wq->unbound_attrs);
4349 kfree(wq);
4350 return NULL;
4351 err_destroy:
4352 destroy_workqueue(wq);
4353 return NULL;
4354 }
4355 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4356
4357 /**
4358 * destroy_workqueue - safely terminate a workqueue
4359 * @wq: target workqueue
4360 *
4361 * Safely destroy a workqueue. All work currently pending will be done first.
4362 */
4363 void destroy_workqueue(struct workqueue_struct *wq)
4364 {
4365 struct pool_workqueue *pwq;
4366 int node;
4367
4368 /* drain it before proceeding with destruction */
4369 drain_workqueue(wq);
4370
4371 /* sanity checks */
4372 mutex_lock(&wq->mutex);
4373 for_each_pwq(pwq, wq) {
4374 int i;
4375
4376 for (i = 0; i < WORK_NR_COLORS; i++) {
4377 if (WARN_ON(pwq->nr_in_flight[i])) {
4378 mutex_unlock(&wq->mutex);
4379 return;
4380 }
4381 }
4382
4383 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4384 WARN_ON(pwq->nr_active) ||
4385 WARN_ON(!list_empty(&pwq->delayed_works))) {
4386 mutex_unlock(&wq->mutex);
4387 return;
4388 }
4389 }
4390 mutex_unlock(&wq->mutex);
4391
4392 /*
4393 * wq list is used to freeze wq, remove from list after
4394 * flushing is complete in case freeze races us.
4395 */
4396 mutex_lock(&wq_pool_mutex);
4397 list_del_init(&wq->list);
4398 mutex_unlock(&wq_pool_mutex);
4399
4400 workqueue_sysfs_unregister(wq);
4401
4402 if (wq->rescuer) {
4403 kthread_stop(wq->rescuer->task);
4404 kfree(wq->rescuer);
4405 wq->rescuer = NULL;
4406 }
4407
4408 if (!(wq->flags & WQ_UNBOUND)) {
4409 /*
4410 * The base ref is never dropped on per-cpu pwqs. Directly
4411 * free the pwqs and wq.
4412 */
4413 free_percpu(wq->cpu_pwqs);
4414 kfree(wq);
4415 } else {
4416 /*
4417 * We're the sole accessor of @wq at this point. Directly
4418 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4419 * @wq will be freed when the last pwq is released.
4420 */
4421 for_each_node(node) {
4422 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4423 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4424 put_pwq_unlocked(pwq);
4425 }
4426
4427 /*
4428 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4429 * put. Don't access it afterwards.
4430 */
4431 pwq = wq->dfl_pwq;
4432 wq->dfl_pwq = NULL;
4433 put_pwq_unlocked(pwq);
4434 }
4435 }
4436 EXPORT_SYMBOL_GPL(destroy_workqueue);
4437
4438 /**
4439 * workqueue_set_max_active - adjust max_active of a workqueue
4440 * @wq: target workqueue
4441 * @max_active: new max_active value.
4442 *
4443 * Set max_active of @wq to @max_active.
4444 *
4445 * CONTEXT:
4446 * Don't call from IRQ context.
4447 */
4448 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4449 {
4450 struct pool_workqueue *pwq;
4451
4452 /* disallow meddling with max_active for ordered workqueues */
4453 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4454 return;
4455
4456 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4457
4458 mutex_lock(&wq->mutex);
4459
4460 wq->flags &= ~__WQ_ORDERED;
4461 wq->saved_max_active = max_active;
4462
4463 for_each_pwq(pwq, wq)
4464 pwq_adjust_max_active(pwq);
4465
4466 mutex_unlock(&wq->mutex);
4467 }
4468 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4469
4470 /**
4471 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4472 *
4473 * Determine whether %current is a workqueue rescuer. Can be used from
4474 * work functions to determine whether it's being run off the rescuer task.
4475 */
4476 bool current_is_workqueue_rescuer(void)
4477 {
4478 struct worker *worker = current_wq_worker();
4479
4480 return worker && worker->rescue_wq;
4481 }
4482
4483 /**
4484 * workqueue_congested - test whether a workqueue is congested
4485 * @cpu: CPU in question
4486 * @wq: target workqueue
4487 *
4488 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4489 * no synchronization around this function and the test result is
4490 * unreliable and only useful as advisory hints or for debugging.
4491 *
4492 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4493 * Note that both per-cpu and unbound workqueues may be associated with
4494 * multiple pool_workqueues which have separate congested states. A
4495 * workqueue being congested on one CPU doesn't mean the workqueue is also
4496 * contested on other CPUs / NUMA nodes.
4497 *
4498 * RETURNS:
4499 * %true if congested, %false otherwise.
4500 */
4501 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4502 {
4503 struct pool_workqueue *pwq;
4504 bool ret;
4505
4506 rcu_read_lock_sched();
4507
4508 if (cpu == WORK_CPU_UNBOUND)
4509 cpu = smp_processor_id();
4510
4511 if (!(wq->flags & WQ_UNBOUND))
4512 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4513 else
4514 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4515
4516 ret = !list_empty(&pwq->delayed_works);
4517 rcu_read_unlock_sched();
4518
4519 return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(workqueue_congested);
4522
4523 /**
4524 * work_busy - test whether a work is currently pending or running
4525 * @work: the work to be tested
4526 *
4527 * Test whether @work is currently pending or running. There is no
4528 * synchronization around this function and the test result is
4529 * unreliable and only useful as advisory hints or for debugging.
4530 *
4531 * RETURNS:
4532 * OR'd bitmask of WORK_BUSY_* bits.
4533 */
4534 unsigned int work_busy(struct work_struct *work)
4535 {
4536 struct worker_pool *pool;
4537 unsigned long flags;
4538 unsigned int ret = 0;
4539
4540 if (work_pending(work))
4541 ret |= WORK_BUSY_PENDING;
4542
4543 local_irq_save(flags);
4544 pool = get_work_pool(work);
4545 if (pool) {
4546 spin_lock(&pool->lock);
4547 if (find_worker_executing_work(pool, work))
4548 ret |= WORK_BUSY_RUNNING;
4549 spin_unlock(&pool->lock);
4550 }
4551 local_irq_restore(flags);
4552
4553 return ret;
4554 }
4555 EXPORT_SYMBOL_GPL(work_busy);
4556
4557 /**
4558 * set_worker_desc - set description for the current work item
4559 * @fmt: printf-style format string
4560 * @...: arguments for the format string
4561 *
4562 * This function can be called by a running work function to describe what
4563 * the work item is about. If the worker task gets dumped, this
4564 * information will be printed out together to help debugging. The
4565 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4566 */
4567 void set_worker_desc(const char *fmt, ...)
4568 {
4569 struct worker *worker = current_wq_worker();
4570 va_list args;
4571
4572 if (worker) {
4573 va_start(args, fmt);
4574 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4575 va_end(args);
4576 worker->desc_valid = true;
4577 }
4578 }
4579
4580 /**
4581 * print_worker_info - print out worker information and description
4582 * @log_lvl: the log level to use when printing
4583 * @task: target task
4584 *
4585 * If @task is a worker and currently executing a work item, print out the
4586 * name of the workqueue being serviced and worker description set with
4587 * set_worker_desc() by the currently executing work item.
4588 *
4589 * This function can be safely called on any task as long as the
4590 * task_struct itself is accessible. While safe, this function isn't
4591 * synchronized and may print out mixups or garbages of limited length.
4592 */
4593 void print_worker_info(const char *log_lvl, struct task_struct *task)
4594 {
4595 work_func_t *fn = NULL;
4596 char name[WQ_NAME_LEN] = { };
4597 char desc[WORKER_DESC_LEN] = { };
4598 struct pool_workqueue *pwq = NULL;
4599 struct workqueue_struct *wq = NULL;
4600 bool desc_valid = false;
4601 struct worker *worker;
4602
4603 if (!(task->flags & PF_WQ_WORKER))
4604 return;
4605
4606 /*
4607 * This function is called without any synchronization and @task
4608 * could be in any state. Be careful with dereferences.
4609 */
4610 worker = probe_kthread_data(task);
4611
4612 /*
4613 * Carefully copy the associated workqueue's workfn and name. Keep
4614 * the original last '\0' in case the original contains garbage.
4615 */
4616 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4617 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4618 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4619 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4620
4621 /* copy worker description */
4622 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4623 if (desc_valid)
4624 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4625
4626 if (fn || name[0] || desc[0]) {
4627 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4628 if (desc[0])
4629 pr_cont(" (%s)", desc);
4630 pr_cont("\n");
4631 }
4632 }
4633
4634 /*
4635 * CPU hotplug.
4636 *
4637 * There are two challenges in supporting CPU hotplug. Firstly, there
4638 * are a lot of assumptions on strong associations among work, pwq and
4639 * pool which make migrating pending and scheduled works very
4640 * difficult to implement without impacting hot paths. Secondly,
4641 * worker pools serve mix of short, long and very long running works making
4642 * blocked draining impractical.
4643 *
4644 * This is solved by allowing the pools to be disassociated from the CPU
4645 * running as an unbound one and allowing it to be reattached later if the
4646 * cpu comes back online.
4647 */
4648
4649 static void wq_unbind_fn(struct work_struct *work)
4650 {
4651 int cpu = smp_processor_id();
4652 struct worker_pool *pool;
4653 struct worker *worker;
4654 int wi;
4655
4656 for_each_cpu_worker_pool(pool, cpu) {
4657 WARN_ON_ONCE(cpu != smp_processor_id());
4658
4659 mutex_lock(&pool->manager_mutex);
4660 spin_lock_irq(&pool->lock);
4661
4662 /*
4663 * We've blocked all manager operations. Make all workers
4664 * unbound and set DISASSOCIATED. Before this, all workers
4665 * except for the ones which are still executing works from
4666 * before the last CPU down must be on the cpu. After
4667 * this, they may become diasporas.
4668 */
4669 for_each_pool_worker(worker, wi, pool)
4670 worker->flags |= WORKER_UNBOUND;
4671
4672 pool->flags |= POOL_DISASSOCIATED;
4673
4674 spin_unlock_irq(&pool->lock);
4675 mutex_unlock(&pool->manager_mutex);
4676
4677 /*
4678 * Call schedule() so that we cross rq->lock and thus can
4679 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4680 * This is necessary as scheduler callbacks may be invoked
4681 * from other cpus.
4682 */
4683 schedule();
4684
4685 /*
4686 * Sched callbacks are disabled now. Zap nr_running.
4687 * After this, nr_running stays zero and need_more_worker()
4688 * and keep_working() are always true as long as the
4689 * worklist is not empty. This pool now behaves as an
4690 * unbound (in terms of concurrency management) pool which
4691 * are served by workers tied to the pool.
4692 */
4693 atomic_set(&pool->nr_running, 0);
4694
4695 /*
4696 * With concurrency management just turned off, a busy
4697 * worker blocking could lead to lengthy stalls. Kick off
4698 * unbound chain execution of currently pending work items.
4699 */
4700 spin_lock_irq(&pool->lock);
4701 wake_up_worker(pool);
4702 spin_unlock_irq(&pool->lock);
4703 }
4704 }
4705
4706 /**
4707 * rebind_workers - rebind all workers of a pool to the associated CPU
4708 * @pool: pool of interest
4709 *
4710 * @pool->cpu is coming online. Rebind all workers to the CPU.
4711 */
4712 static void rebind_workers(struct worker_pool *pool)
4713 {
4714 struct worker *worker;
4715 int wi;
4716
4717 lockdep_assert_held(&pool->manager_mutex);
4718
4719 /*
4720 * Restore CPU affinity of all workers. As all idle workers should
4721 * be on the run-queue of the associated CPU before any local
4722 * wake-ups for concurrency management happen, restore CPU affinty
4723 * of all workers first and then clear UNBOUND. As we're called
4724 * from CPU_ONLINE, the following shouldn't fail.
4725 */
4726 for_each_pool_worker(worker, wi, pool)
4727 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4728 pool->attrs->cpumask) < 0);
4729
4730 spin_lock_irq(&pool->lock);
4731
4732 for_each_pool_worker(worker, wi, pool) {
4733 unsigned int worker_flags = worker->flags;
4734
4735 /*
4736 * A bound idle worker should actually be on the runqueue
4737 * of the associated CPU for local wake-ups targeting it to
4738 * work. Kick all idle workers so that they migrate to the
4739 * associated CPU. Doing this in the same loop as
4740 * replacing UNBOUND with REBOUND is safe as no worker will
4741 * be bound before @pool->lock is released.
4742 */
4743 if (worker_flags & WORKER_IDLE)
4744 wake_up_process(worker->task);
4745
4746 /*
4747 * We want to clear UNBOUND but can't directly call
4748 * worker_clr_flags() or adjust nr_running. Atomically
4749 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4750 * @worker will clear REBOUND using worker_clr_flags() when
4751 * it initiates the next execution cycle thus restoring
4752 * concurrency management. Note that when or whether
4753 * @worker clears REBOUND doesn't affect correctness.
4754 *
4755 * ACCESS_ONCE() is necessary because @worker->flags may be
4756 * tested without holding any lock in
4757 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4758 * fail incorrectly leading to premature concurrency
4759 * management operations.
4760 */
4761 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4762 worker_flags |= WORKER_REBOUND;
4763 worker_flags &= ~WORKER_UNBOUND;
4764 ACCESS_ONCE(worker->flags) = worker_flags;
4765 }
4766
4767 spin_unlock_irq(&pool->lock);
4768 }
4769
4770 /**
4771 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4772 * @pool: unbound pool of interest
4773 * @cpu: the CPU which is coming up
4774 *
4775 * An unbound pool may end up with a cpumask which doesn't have any online
4776 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4777 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4778 * online CPU before, cpus_allowed of all its workers should be restored.
4779 */
4780 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4781 {
4782 static cpumask_t cpumask;
4783 struct worker *worker;
4784 int wi;
4785
4786 lockdep_assert_held(&pool->manager_mutex);
4787
4788 /* is @cpu allowed for @pool? */
4789 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4790 return;
4791
4792 /* is @cpu the only online CPU? */
4793 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4794 if (cpumask_weight(&cpumask) != 1)
4795 return;
4796
4797 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4798 for_each_pool_worker(worker, wi, pool)
4799 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4800 pool->attrs->cpumask) < 0);
4801 }
4802
4803 /*
4804 * Workqueues should be brought up before normal priority CPU notifiers.
4805 * This will be registered high priority CPU notifier.
4806 */
4807 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4808 unsigned long action,
4809 void *hcpu)
4810 {
4811 int cpu = (unsigned long)hcpu;
4812 struct worker_pool *pool;
4813 struct workqueue_struct *wq;
4814 int pi;
4815
4816 switch (action & ~CPU_TASKS_FROZEN) {
4817 case CPU_UP_PREPARE:
4818 for_each_cpu_worker_pool(pool, cpu) {
4819 if (pool->nr_workers)
4820 continue;
4821 if (create_and_start_worker(pool) < 0)
4822 return NOTIFY_BAD;
4823 }
4824 break;
4825
4826 case CPU_DOWN_FAILED:
4827 case CPU_ONLINE:
4828 mutex_lock(&wq_pool_mutex);
4829
4830 for_each_pool(pool, pi) {
4831 mutex_lock(&pool->manager_mutex);
4832
4833 if (pool->cpu == cpu) {
4834 spin_lock_irq(&pool->lock);
4835 pool->flags &= ~POOL_DISASSOCIATED;
4836 spin_unlock_irq(&pool->lock);
4837
4838 rebind_workers(pool);
4839 } else if (pool->cpu < 0) {
4840 restore_unbound_workers_cpumask(pool, cpu);
4841 }
4842
4843 mutex_unlock(&pool->manager_mutex);
4844 }
4845
4846 /* update NUMA affinity of unbound workqueues */
4847 list_for_each_entry(wq, &workqueues, list)
4848 wq_update_unbound_numa(wq, cpu, true);
4849
4850 mutex_unlock(&wq_pool_mutex);
4851 break;
4852 }
4853 return NOTIFY_OK;
4854 }
4855
4856 /*
4857 * Workqueues should be brought down after normal priority CPU notifiers.
4858 * This will be registered as low priority CPU notifier.
4859 */
4860 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4861 unsigned long action,
4862 void *hcpu)
4863 {
4864 int cpu = (unsigned long)hcpu;
4865 struct work_struct unbind_work;
4866 struct workqueue_struct *wq;
4867
4868 switch (action & ~CPU_TASKS_FROZEN) {
4869 case CPU_DOWN_PREPARE:
4870 /* unbinding per-cpu workers should happen on the local CPU */
4871 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4872 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4873
4874 /* update NUMA affinity of unbound workqueues */
4875 mutex_lock(&wq_pool_mutex);
4876 list_for_each_entry(wq, &workqueues, list)
4877 wq_update_unbound_numa(wq, cpu, false);
4878 mutex_unlock(&wq_pool_mutex);
4879
4880 /* wait for per-cpu unbinding to finish */
4881 flush_work(&unbind_work);
4882 break;
4883 }
4884 return NOTIFY_OK;
4885 }
4886
4887 #ifdef CONFIG_SMP
4888
4889 struct work_for_cpu {
4890 struct work_struct work;
4891 long (*fn)(void *);
4892 void *arg;
4893 long ret;
4894 };
4895
4896 static void work_for_cpu_fn(struct work_struct *work)
4897 {
4898 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4899
4900 wfc->ret = wfc->fn(wfc->arg);
4901 }
4902
4903 /**
4904 * work_on_cpu - run a function in user context on a particular cpu
4905 * @cpu: the cpu to run on
4906 * @fn: the function to run
4907 * @arg: the function arg
4908 *
4909 * This will return the value @fn returns.
4910 * It is up to the caller to ensure that the cpu doesn't go offline.
4911 * The caller must not hold any locks which would prevent @fn from completing.
4912 */
4913 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4914 {
4915 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4916
4917 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4918 schedule_work_on(cpu, &wfc.work);
4919 flush_work(&wfc.work);
4920 return wfc.ret;
4921 }
4922 EXPORT_SYMBOL_GPL(work_on_cpu);
4923 #endif /* CONFIG_SMP */
4924
4925 #ifdef CONFIG_FREEZER
4926
4927 /**
4928 * freeze_workqueues_begin - begin freezing workqueues
4929 *
4930 * Start freezing workqueues. After this function returns, all freezable
4931 * workqueues will queue new works to their delayed_works list instead of
4932 * pool->worklist.
4933 *
4934 * CONTEXT:
4935 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4936 */
4937 void freeze_workqueues_begin(void)
4938 {
4939 struct worker_pool *pool;
4940 struct workqueue_struct *wq;
4941 struct pool_workqueue *pwq;
4942 int pi;
4943
4944 mutex_lock(&wq_pool_mutex);
4945
4946 WARN_ON_ONCE(workqueue_freezing);
4947 workqueue_freezing = true;
4948
4949 /* set FREEZING */
4950 for_each_pool(pool, pi) {
4951 spin_lock_irq(&pool->lock);
4952 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4953 pool->flags |= POOL_FREEZING;
4954 spin_unlock_irq(&pool->lock);
4955 }
4956
4957 list_for_each_entry(wq, &workqueues, list) {
4958 mutex_lock(&wq->mutex);
4959 for_each_pwq(pwq, wq)
4960 pwq_adjust_max_active(pwq);
4961 mutex_unlock(&wq->mutex);
4962 }
4963
4964 mutex_unlock(&wq_pool_mutex);
4965 }
4966
4967 /**
4968 * freeze_workqueues_busy - are freezable workqueues still busy?
4969 *
4970 * Check whether freezing is complete. This function must be called
4971 * between freeze_workqueues_begin() and thaw_workqueues().
4972 *
4973 * CONTEXT:
4974 * Grabs and releases wq_pool_mutex.
4975 *
4976 * RETURNS:
4977 * %true if some freezable workqueues are still busy. %false if freezing
4978 * is complete.
4979 */
4980 bool freeze_workqueues_busy(void)
4981 {
4982 bool busy = false;
4983 struct workqueue_struct *wq;
4984 struct pool_workqueue *pwq;
4985
4986 mutex_lock(&wq_pool_mutex);
4987
4988 WARN_ON_ONCE(!workqueue_freezing);
4989
4990 list_for_each_entry(wq, &workqueues, list) {
4991 if (!(wq->flags & WQ_FREEZABLE))
4992 continue;
4993 /*
4994 * nr_active is monotonically decreasing. It's safe
4995 * to peek without lock.
4996 */
4997 rcu_read_lock_sched();
4998 for_each_pwq(pwq, wq) {
4999 WARN_ON_ONCE(pwq->nr_active < 0);
5000 if (pwq->nr_active) {
5001 busy = true;
5002 rcu_read_unlock_sched();
5003 goto out_unlock;
5004 }
5005 }
5006 rcu_read_unlock_sched();
5007 }
5008 out_unlock:
5009 mutex_unlock(&wq_pool_mutex);
5010 return busy;
5011 }
5012
5013 /**
5014 * thaw_workqueues - thaw workqueues
5015 *
5016 * Thaw workqueues. Normal queueing is restored and all collected
5017 * frozen works are transferred to their respective pool worklists.
5018 *
5019 * CONTEXT:
5020 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5021 */
5022 void thaw_workqueues(void)
5023 {
5024 struct workqueue_struct *wq;
5025 struct pool_workqueue *pwq;
5026 struct worker_pool *pool;
5027 int pi;
5028
5029 mutex_lock(&wq_pool_mutex);
5030
5031 if (!workqueue_freezing)
5032 goto out_unlock;
5033
5034 /* clear FREEZING */
5035 for_each_pool(pool, pi) {
5036 spin_lock_irq(&pool->lock);
5037 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
5038 pool->flags &= ~POOL_FREEZING;
5039 spin_unlock_irq(&pool->lock);
5040 }
5041
5042 /* restore max_active and repopulate worklist */
5043 list_for_each_entry(wq, &workqueues, list) {
5044 mutex_lock(&wq->mutex);
5045 for_each_pwq(pwq, wq)
5046 pwq_adjust_max_active(pwq);
5047 mutex_unlock(&wq->mutex);
5048 }
5049
5050 workqueue_freezing = false;
5051 out_unlock:
5052 mutex_unlock(&wq_pool_mutex);
5053 }
5054 #endif /* CONFIG_FREEZER */
5055
5056 static void __init wq_numa_init(void)
5057 {
5058 cpumask_var_t *tbl;
5059 int node, cpu;
5060
5061 /* determine NUMA pwq table len - highest node id + 1 */
5062 for_each_node(node)
5063 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5064
5065 if (num_possible_nodes() <= 1)
5066 return;
5067
5068 if (wq_disable_numa) {
5069 pr_info("workqueue: NUMA affinity support disabled\n");
5070 return;
5071 }
5072
5073 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5074 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5075
5076 /*
5077 * We want masks of possible CPUs of each node which isn't readily
5078 * available. Build one from cpu_to_node() which should have been
5079 * fully initialized by now.
5080 */
5081 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5082 BUG_ON(!tbl);
5083
5084 for_each_node(node)
5085 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5086 node_online(node) ? node : NUMA_NO_NODE));
5087
5088 for_each_possible_cpu(cpu) {
5089 node = cpu_to_node(cpu);
5090 if (WARN_ON(node == NUMA_NO_NODE)) {
5091 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5092 /* happens iff arch is bonkers, let's just proceed */
5093 return;
5094 }
5095 cpumask_set_cpu(cpu, tbl[node]);
5096 }
5097
5098 wq_numa_possible_cpumask = tbl;
5099 wq_numa_enabled = true;
5100 }
5101
5102 static int __init init_workqueues(void)
5103 {
5104 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5105 int i, cpu;
5106
5107 /* make sure we have enough bits for OFFQ pool ID */
5108 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5109 WORK_CPU_END * NR_STD_WORKER_POOLS);
5110
5111 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5112
5113 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5114
5115 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5116 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5117
5118 wq_numa_init();
5119
5120 /* initialize CPU pools */
5121 for_each_possible_cpu(cpu) {
5122 struct worker_pool *pool;
5123
5124 i = 0;
5125 for_each_cpu_worker_pool(pool, cpu) {
5126 BUG_ON(init_worker_pool(pool));
5127 pool->cpu = cpu;
5128 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5129 pool->attrs->nice = std_nice[i++];
5130 pool->node = cpu_to_node(cpu);
5131
5132 /* alloc pool ID */
5133 mutex_lock(&wq_pool_mutex);
5134 BUG_ON(worker_pool_assign_id(pool));
5135 mutex_unlock(&wq_pool_mutex);
5136 }
5137 }
5138
5139 /* create the initial worker */
5140 for_each_online_cpu(cpu) {
5141 struct worker_pool *pool;
5142
5143 for_each_cpu_worker_pool(pool, cpu) {
5144 pool->flags &= ~POOL_DISASSOCIATED;
5145 BUG_ON(create_and_start_worker(pool) < 0);
5146 }
5147 }
5148
5149 /* create default unbound and ordered wq attrs */
5150 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5151 struct workqueue_attrs *attrs;
5152
5153 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5154 attrs->nice = std_nice[i];
5155 unbound_std_wq_attrs[i] = attrs;
5156
5157 /*
5158 * An ordered wq should have only one pwq as ordering is
5159 * guaranteed by max_active which is enforced by pwqs.
5160 * Turn off NUMA so that dfl_pwq is used for all nodes.
5161 */
5162 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5163 attrs->nice = std_nice[i];
5164 attrs->no_numa = true;
5165 ordered_wq_attrs[i] = attrs;
5166 }
5167
5168 system_wq = alloc_workqueue("events", 0, 0);
5169 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5170 system_long_wq = alloc_workqueue("events_long", 0, 0);
5171 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5172 WQ_UNBOUND_MAX_ACTIVE);
5173 system_freezable_wq = alloc_workqueue("events_freezable",
5174 WQ_FREEZABLE, 0);
5175 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5176 !system_unbound_wq || !system_freezable_wq);
5177 return 0;
5178 }
5179 early_initcall(init_workqueues);