Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 #ifdef CONFIG_MTK_EXTMEM
31 extern void* extmem_malloc_page_align(size_t bytes);
32 extern void extmem_free(void* mem);
33 #endif
34
35 static void update_pages_handler(struct work_struct *work);
36
37 /*
38 * The ring buffer header is special. We must manually up keep it.
39 */
40 int ring_buffer_print_entry_header(struct trace_seq *s)
41 {
42 int ret;
43
44 ret = trace_seq_printf(s, "# compressed entry header\n");
45 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
46 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
47 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
48 ret = trace_seq_printf(s, "\n");
49 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
50 RINGBUF_TYPE_PADDING);
51 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
52 RINGBUF_TYPE_TIME_EXTEND);
53 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
54 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
55
56 return ret;
57 }
58
59 /*
60 * The ring buffer is made up of a list of pages. A separate list of pages is
61 * allocated for each CPU. A writer may only write to a buffer that is
62 * associated with the CPU it is currently executing on. A reader may read
63 * from any per cpu buffer.
64 *
65 * The reader is special. For each per cpu buffer, the reader has its own
66 * reader page. When a reader has read the entire reader page, this reader
67 * page is swapped with another page in the ring buffer.
68 *
69 * Now, as long as the writer is off the reader page, the reader can do what
70 * ever it wants with that page. The writer will never write to that page
71 * again (as long as it is out of the ring buffer).
72 *
73 * Here's some silly ASCII art.
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * | |-->| |-->| |
91 * +---+ +---+ +---+
92 * ^ |
93 * | |
94 * +---------------+
95 *
96 *
97 * +------+
98 * |reader| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | |-->| |-->| |
102 * | +---+ +---+ +---+
103 * | |
104 * | |
105 * +------------------------------+
106 *
107 *
108 * +------+
109 * |buffer| RING BUFFER
110 * |page |------------------v
111 * +------+ +---+ +---+ +---+
112 * ^ | | | |-->| |
113 * | New +---+ +---+ +---+
114 * | Reader------^ |
115 * | page |
116 * +------------------------------+
117 *
118 *
119 * After we make this swap, the reader can hand this page off to the splice
120 * code and be done with it. It can even allocate a new page if it needs to
121 * and swap that into the ring buffer.
122 *
123 * We will be using cmpxchg soon to make all this lockless.
124 *
125 */
126
127 /*
128 * A fast way to enable or disable all ring buffers is to
129 * call tracing_on or tracing_off. Turning off the ring buffers
130 * prevents all ring buffers from being recorded to.
131 * Turning this switch on, makes it OK to write to the
132 * ring buffer, if the ring buffer is enabled itself.
133 *
134 * There's three layers that must be on in order to write
135 * to the ring buffer.
136 *
137 * 1) This global flag must be set.
138 * 2) The ring buffer must be enabled for recording.
139 * 3) The per cpu buffer must be enabled for recording.
140 *
141 * In case of an anomaly, this global flag has a bit set that
142 * will permantly disable all ring buffers.
143 */
144
145 /*
146 * Global flag to disable all recording to ring buffers
147 * This has two bits: ON, DISABLED
148 *
149 * ON DISABLED
150 * ---- ----------
151 * 0 0 : ring buffers are off
152 * 1 0 : ring buffers are on
153 * X 1 : ring buffers are permanently disabled
154 */
155
156 enum {
157 RB_BUFFERS_ON_BIT = 0,
158 RB_BUFFERS_DISABLED_BIT = 1,
159 };
160
161 enum {
162 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
163 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
164 };
165
166 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
167
168 /* Used for individual buffers (after the counter) */
169 #define RB_BUFFER_OFF (1 << 20)
170
171 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
172
173 /**
174 * tracing_off_permanent - permanently disable ring buffers
175 *
176 * This function, once called, will disable all ring buffers
177 * permanently.
178 */
179 void tracing_off_permanent(void)
180 {
181 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
182 }
183
184 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
185 #define RB_ALIGNMENT 4U
186 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
187 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
188
189 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
190 # define RB_FORCE_8BYTE_ALIGNMENT 0
191 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
192 #else
193 # define RB_FORCE_8BYTE_ALIGNMENT 1
194 # define RB_ARCH_ALIGNMENT 8U
195 #endif
196
197 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
198
199 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
200 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
201
202 enum {
203 RB_LEN_TIME_EXTEND = 8,
204 RB_LEN_TIME_STAMP = 16,
205 };
206
207 #define skip_time_extend(event) \
208 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
209
210 static inline int rb_null_event(struct ring_buffer_event *event)
211 {
212 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
213 }
214
215 static void rb_event_set_padding(struct ring_buffer_event *event)
216 {
217 /* padding has a NULL time_delta */
218 event->type_len = RINGBUF_TYPE_PADDING;
219 event->time_delta = 0;
220 }
221
222 static unsigned
223 rb_event_data_length(struct ring_buffer_event *event)
224 {
225 unsigned length;
226
227 if (event->type_len)
228 length = event->type_len * RB_ALIGNMENT;
229 else
230 length = event->array[0];
231 return length + RB_EVNT_HDR_SIZE;
232 }
233
234 /*
235 * Return the length of the given event. Will return
236 * the length of the time extend if the event is a
237 * time extend.
238 */
239 static inline unsigned
240 rb_event_length(struct ring_buffer_event *event)
241 {
242 switch (event->type_len) {
243 case RINGBUF_TYPE_PADDING:
244 if (rb_null_event(event))
245 /* undefined */
246 return -1;
247 return event->array[0] + RB_EVNT_HDR_SIZE;
248
249 case RINGBUF_TYPE_TIME_EXTEND:
250 return RB_LEN_TIME_EXTEND;
251
252 case RINGBUF_TYPE_TIME_STAMP:
253 return RB_LEN_TIME_STAMP;
254
255 case RINGBUF_TYPE_DATA:
256 return rb_event_data_length(event);
257 default:
258 BUG();
259 }
260 /* not hit */
261 return 0;
262 }
263
264 /*
265 * Return total length of time extend and data,
266 * or just the event length for all other events.
267 */
268 static inline unsigned
269 rb_event_ts_length(struct ring_buffer_event *event)
270 {
271 unsigned len = 0;
272
273 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
274 /* time extends include the data event after it */
275 len = RB_LEN_TIME_EXTEND;
276 event = skip_time_extend(event);
277 }
278 return len + rb_event_length(event);
279 }
280
281 /**
282 * ring_buffer_event_length - return the length of the event
283 * @event: the event to get the length of
284 *
285 * Returns the size of the data load of a data event.
286 * If the event is something other than a data event, it
287 * returns the size of the event itself. With the exception
288 * of a TIME EXTEND, where it still returns the size of the
289 * data load of the data event after it.
290 */
291 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
292 {
293 unsigned length;
294
295 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
296 event = skip_time_extend(event);
297
298 length = rb_event_length(event);
299 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
300 return length;
301 length -= RB_EVNT_HDR_SIZE;
302 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
303 length -= sizeof(event->array[0]);
304 return length;
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
307
308 /* inline for ring buffer fast paths */
309 static void *
310 rb_event_data(struct ring_buffer_event *event)
311 {
312 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
313 event = skip_time_extend(event);
314 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
315 /* If length is in len field, then array[0] has the data */
316 if (event->type_len)
317 return (void *)&event->array[0];
318 /* Otherwise length is in array[0] and array[1] has the data */
319 return (void *)&event->array[1];
320 }
321
322 /**
323 * ring_buffer_event_data - return the data of the event
324 * @event: the event to get the data from
325 */
326 void *ring_buffer_event_data(struct ring_buffer_event *event)
327 {
328 return rb_event_data(event);
329 }
330 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
331
332 #define for_each_buffer_cpu(buffer, cpu) \
333 for_each_cpu(cpu, buffer->cpumask)
334
335 #define TS_SHIFT 27
336 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
337 #define TS_DELTA_TEST (~TS_MASK)
338
339 /* Flag when events were overwritten */
340 #define RB_MISSED_EVENTS (1 << 31)
341 /* Missed count stored at end */
342 #define RB_MISSED_STORED (1 << 30)
343
344 struct buffer_data_page {
345 u64 time_stamp; /* page time stamp */
346 local_t commit; /* write committed index */
347 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
348 };
349
350 /*
351 * Note, the buffer_page list must be first. The buffer pages
352 * are allocated in cache lines, which means that each buffer
353 * page will be at the beginning of a cache line, and thus
354 * the least significant bits will be zero. We use this to
355 * add flags in the list struct pointers, to make the ring buffer
356 * lockless.
357 */
358 struct buffer_page {
359 struct list_head list; /* list of buffer pages */
360 local_t write; /* index for next write */
361 unsigned read; /* index for next read */
362 local_t entries; /* entries on this page */
363 unsigned long real_end; /* real end of data */
364 struct buffer_data_page *page; /* Actual data page */
365 };
366
367 /*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
381
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 local_set(&bpage->commit, 0);
385 }
386
387 /**
388 * ring_buffer_page_len - the size of data on the page.
389 * @page: The page to read
390 *
391 * Returns the amount of data on the page, including buffer page header.
392 */
393 size_t ring_buffer_page_len(void *page)
394 {
395 return local_read(&((struct buffer_data_page *)page)->commit)
396 + BUF_PAGE_HDR_SIZE;
397 }
398
399 /*
400 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
401 * this issue out.
402 */
403 static void free_buffer_page(struct buffer_page *bpage)
404 {
405 #ifdef CONFIG_MTK_EXTMEM
406 extmem_free((void*) bpage->page);
407 #else
408 free_page((unsigned long)bpage->page);
409 #endif
410 kfree(bpage);
411 }
412
413 /*
414 * We need to fit the time_stamp delta into 27 bits.
415 */
416 static inline int test_time_stamp(u64 delta)
417 {
418 if (delta & TS_DELTA_TEST)
419 return 1;
420 return 0;
421 }
422
423 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
424
425 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
426 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
427
428 int ring_buffer_print_page_header(struct trace_seq *s)
429 {
430 struct buffer_data_page field;
431 int ret;
432
433 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
434 "offset:0;\tsize:%u;\tsigned:%u;\n",
435 (unsigned int)sizeof(field.time_stamp),
436 (unsigned int)is_signed_type(u64));
437
438 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
439 "offset:%u;\tsize:%u;\tsigned:%u;\n",
440 (unsigned int)offsetof(typeof(field), commit),
441 (unsigned int)sizeof(field.commit),
442 (unsigned int)is_signed_type(long));
443
444 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
445 "offset:%u;\tsize:%u;\tsigned:%u;\n",
446 (unsigned int)offsetof(typeof(field), commit),
447 1,
448 (unsigned int)is_signed_type(long));
449
450 ret = trace_seq_printf(s, "\tfield: char data;\t"
451 "offset:%u;\tsize:%u;\tsigned:%u;\n",
452 (unsigned int)offsetof(typeof(field), data),
453 (unsigned int)BUF_PAGE_SIZE,
454 (unsigned int)is_signed_type(char));
455
456 return ret;
457 }
458
459 struct rb_irq_work {
460 struct irq_work work;
461 wait_queue_head_t waiters;
462 bool waiters_pending;
463 };
464
465 /*
466 * head_page == tail_page && head == tail then buffer is empty.
467 */
468 struct ring_buffer_per_cpu {
469 int cpu;
470 atomic_t record_disabled;
471 struct ring_buffer *buffer;
472 raw_spinlock_t reader_lock; /* serialize readers */
473 arch_spinlock_t lock;
474 struct lock_class_key lock_key;
475 unsigned int nr_pages;
476 struct list_head *pages;
477 struct buffer_page *head_page; /* read from head */
478 struct buffer_page *tail_page; /* write to tail */
479 struct buffer_page *commit_page; /* committed pages */
480 struct buffer_page *reader_page;
481 unsigned long lost_events;
482 unsigned long last_overrun;
483 local_t entries_bytes;
484 local_t entries;
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
488 local_t committing;
489 local_t commits;
490 unsigned long read;
491 unsigned long read_bytes;
492 u64 write_stamp;
493 u64 read_stamp;
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 int nr_pages_to_update;
496 struct list_head new_pages; /* new pages to add */
497 struct work_struct update_pages_work;
498 struct completion update_done;
499
500 struct rb_irq_work irq_work;
501 };
502
503 struct ring_buffer {
504 unsigned flags;
505 int cpus;
506 atomic_t record_disabled;
507 atomic_t resize_disabled;
508 cpumask_var_t cpumask;
509
510 struct lock_class_key *reader_lock_key;
511
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
515
516 #ifdef CONFIG_HOTPLUG_CPU
517 struct notifier_block cpu_notify;
518 #endif
519 u64 (*clock)(void);
520
521 struct rb_irq_work irq_work;
522 };
523
524 struct ring_buffer_iter {
525 struct ring_buffer_per_cpu *cpu_buffer;
526 unsigned long head;
527 struct buffer_page *head_page;
528 struct buffer_page *cache_reader_page;
529 unsigned long cache_read;
530 u64 read_stamp;
531 };
532
533 /*
534 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
535 *
536 * Schedules a delayed work to wake up any task that is blocked on the
537 * ring buffer waiters queue.
538 */
539 static void rb_wake_up_waiters(struct irq_work *work)
540 {
541 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
542
543 wake_up_all(&rbwork->waiters);
544 }
545
546 /**
547 * ring_buffer_wait - wait for input to the ring buffer
548 * @buffer: buffer to wait on
549 * @cpu: the cpu buffer to wait on
550 *
551 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
552 * as data is added to any of the @buffer's cpu buffers. Otherwise
553 * it will wait for data to be added to a specific cpu buffer.
554 */
555 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
556 {
557 struct ring_buffer_per_cpu *cpu_buffer;
558 DEFINE_WAIT(wait);
559 struct rb_irq_work *work;
560
561 /*
562 * Depending on what the caller is waiting for, either any
563 * data in any cpu buffer, or a specific buffer, put the
564 * caller on the appropriate wait queue.
565 */
566 if (cpu == RING_BUFFER_ALL_CPUS)
567 work = &buffer->irq_work;
568 else {
569 if (!cpumask_test_cpu(cpu, buffer->cpumask))
570 return -ENODEV;
571 cpu_buffer = buffer->buffers[cpu];
572 work = &cpu_buffer->irq_work;
573 }
574
575
576 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
577
578 /*
579 * The events can happen in critical sections where
580 * checking a work queue can cause deadlocks.
581 * After adding a task to the queue, this flag is set
582 * only to notify events to try to wake up the queue
583 * using irq_work.
584 *
585 * We don't clear it even if the buffer is no longer
586 * empty. The flag only causes the next event to run
587 * irq_work to do the work queue wake up. The worse
588 * that can happen if we race with !trace_empty() is that
589 * an event will cause an irq_work to try to wake up
590 * an empty queue.
591 *
592 * There's no reason to protect this flag either, as
593 * the work queue and irq_work logic will do the necessary
594 * synchronization for the wake ups. The only thing
595 * that is necessary is that the wake up happens after
596 * a task has been queued. It's OK for spurious wake ups.
597 */
598 work->waiters_pending = true;
599
600 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
601 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
602 schedule();
603
604 finish_wait(&work->waiters, &wait);
605 return 0;
606 }
607
608 /**
609 * ring_buffer_poll_wait - poll on buffer input
610 * @buffer: buffer to wait on
611 * @cpu: the cpu buffer to wait on
612 * @filp: the file descriptor
613 * @poll_table: The poll descriptor
614 *
615 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
616 * as data is added to any of the @buffer's cpu buffers. Otherwise
617 * it will wait for data to be added to a specific cpu buffer.
618 *
619 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
620 * zero otherwise.
621 */
622 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
623 struct file *filp, poll_table *poll_table)
624 {
625 struct ring_buffer_per_cpu *cpu_buffer;
626 struct rb_irq_work *work;
627
628 if (cpu == RING_BUFFER_ALL_CPUS)
629 work = &buffer->irq_work;
630 else {
631 if (!cpumask_test_cpu(cpu, buffer->cpumask))
632 return -EINVAL;
633
634 cpu_buffer = buffer->buffers[cpu];
635 work = &cpu_buffer->irq_work;
636 }
637
638 poll_wait(filp, &work->waiters, poll_table);
639 work->waiters_pending = true;
640 /*
641 * There's a tight race between setting the waiters_pending and
642 * checking if the ring buffer is empty. Once the waiters_pending bit
643 * is set, the next event will wake the task up, but we can get stuck
644 * if there's only a single event in.
645 *
646 * FIXME: Ideally, we need a memory barrier on the writer side as well,
647 * but adding a memory barrier to all events will cause too much of a
648 * performance hit in the fast path. We only need a memory barrier when
649 * the buffer goes from empty to having content. But as this race is
650 * extremely small, and it's not a problem if another event comes in, we
651 * will fix it later.
652 */
653 smp_mb();
654
655 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
656 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
657 return POLLIN | POLLRDNORM;
658 return 0;
659 }
660
661 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
662 #define RB_WARN_ON(b, cond) \
663 ({ \
664 int _____ret = unlikely(cond); \
665 if (_____ret) { \
666 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
667 struct ring_buffer_per_cpu *__b = \
668 (void *)b; \
669 atomic_inc(&__b->buffer->record_disabled); \
670 } else \
671 atomic_inc(&b->record_disabled); \
672 WARN_ON(1); \
673 } \
674 _____ret; \
675 })
676
677 /* Up this if you want to test the TIME_EXTENTS and normalization */
678 #define DEBUG_SHIFT 0
679
680 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
681 {
682 /* shift to debug/test normalization and TIME_EXTENTS */
683 return buffer->clock() << DEBUG_SHIFT;
684 }
685
686 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
687 {
688 u64 time;
689
690 preempt_disable_notrace();
691 time = rb_time_stamp(buffer);
692 preempt_enable_no_resched_notrace();
693
694 return time;
695 }
696 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
697
698 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
699 int cpu, u64 *ts)
700 {
701 /* Just stupid testing the normalize function and deltas */
702 *ts >>= DEBUG_SHIFT;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
705
706 /*
707 * Making the ring buffer lockless makes things tricky.
708 * Although writes only happen on the CPU that they are on,
709 * and they only need to worry about interrupts. Reads can
710 * happen on any CPU.
711 *
712 * The reader page is always off the ring buffer, but when the
713 * reader finishes with a page, it needs to swap its page with
714 * a new one from the buffer. The reader needs to take from
715 * the head (writes go to the tail). But if a writer is in overwrite
716 * mode and wraps, it must push the head page forward.
717 *
718 * Here lies the problem.
719 *
720 * The reader must be careful to replace only the head page, and
721 * not another one. As described at the top of the file in the
722 * ASCII art, the reader sets its old page to point to the next
723 * page after head. It then sets the page after head to point to
724 * the old reader page. But if the writer moves the head page
725 * during this operation, the reader could end up with the tail.
726 *
727 * We use cmpxchg to help prevent this race. We also do something
728 * special with the page before head. We set the LSB to 1.
729 *
730 * When the writer must push the page forward, it will clear the
731 * bit that points to the head page, move the head, and then set
732 * the bit that points to the new head page.
733 *
734 * We also don't want an interrupt coming in and moving the head
735 * page on another writer. Thus we use the second LSB to catch
736 * that too. Thus:
737 *
738 * head->list->prev->next bit 1 bit 0
739 * ------- -------
740 * Normal page 0 0
741 * Points to head page 0 1
742 * New head page 1 0
743 *
744 * Note we can not trust the prev pointer of the head page, because:
745 *
746 * +----+ +-----+ +-----+
747 * | |------>| T |---X--->| N |
748 * | |<------| | | |
749 * +----+ +-----+ +-----+
750 * ^ ^ |
751 * | +-----+ | |
752 * +----------| R |----------+ |
753 * | |<-----------+
754 * +-----+
755 *
756 * Key: ---X--> HEAD flag set in pointer
757 * T Tail page
758 * R Reader page
759 * N Next page
760 *
761 * (see __rb_reserve_next() to see where this happens)
762 *
763 * What the above shows is that the reader just swapped out
764 * the reader page with a page in the buffer, but before it
765 * could make the new header point back to the new page added
766 * it was preempted by a writer. The writer moved forward onto
767 * the new page added by the reader and is about to move forward
768 * again.
769 *
770 * You can see, it is legitimate for the previous pointer of
771 * the head (or any page) not to point back to itself. But only
772 * temporarially.
773 */
774
775 #define RB_PAGE_NORMAL 0UL
776 #define RB_PAGE_HEAD 1UL
777 #define RB_PAGE_UPDATE 2UL
778
779
780 #define RB_FLAG_MASK 3UL
781
782 /* PAGE_MOVED is not part of the mask */
783 #define RB_PAGE_MOVED 4UL
784
785 /*
786 * rb_list_head - remove any bit
787 */
788 static struct list_head *rb_list_head(struct list_head *list)
789 {
790 unsigned long val = (unsigned long)list;
791
792 return (struct list_head *)(val & ~RB_FLAG_MASK);
793 }
794
795 /*
796 * rb_is_head_page - test if the given page is the head page
797 *
798 * Because the reader may move the head_page pointer, we can
799 * not trust what the head page is (it may be pointing to
800 * the reader page). But if the next page is a header page,
801 * its flags will be non zero.
802 */
803 static inline int
804 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
805 struct buffer_page *page, struct list_head *list)
806 {
807 unsigned long val;
808
809 val = (unsigned long)list->next;
810
811 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
812 return RB_PAGE_MOVED;
813
814 return val & RB_FLAG_MASK;
815 }
816
817 /*
818 * rb_is_reader_page
819 *
820 * The unique thing about the reader page, is that, if the
821 * writer is ever on it, the previous pointer never points
822 * back to the reader page.
823 */
824 static int rb_is_reader_page(struct buffer_page *page)
825 {
826 struct list_head *list = page->list.prev;
827
828 return rb_list_head(list->next) != &page->list;
829 }
830
831 /*
832 * rb_set_list_to_head - set a list_head to be pointing to head.
833 */
834 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
835 struct list_head *list)
836 {
837 unsigned long *ptr;
838
839 ptr = (unsigned long *)&list->next;
840 *ptr |= RB_PAGE_HEAD;
841 *ptr &= ~RB_PAGE_UPDATE;
842 }
843
844 /*
845 * rb_head_page_activate - sets up head page
846 */
847 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
848 {
849 struct buffer_page *head;
850
851 head = cpu_buffer->head_page;
852 if (!head)
853 return;
854
855 /*
856 * Set the previous list pointer to have the HEAD flag.
857 */
858 rb_set_list_to_head(cpu_buffer, head->list.prev);
859 }
860
861 static void rb_list_head_clear(struct list_head *list)
862 {
863 unsigned long *ptr = (unsigned long *)&list->next;
864
865 *ptr &= ~RB_FLAG_MASK;
866 }
867
868 /*
869 * rb_head_page_dactivate - clears head page ptr (for free list)
870 */
871 static void
872 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
873 {
874 struct list_head *hd;
875
876 /* Go through the whole list and clear any pointers found. */
877 rb_list_head_clear(cpu_buffer->pages);
878
879 list_for_each(hd, cpu_buffer->pages)
880 rb_list_head_clear(hd);
881 }
882
883 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag, int new_flag)
887 {
888 struct list_head *list;
889 unsigned long val = (unsigned long)&head->list;
890 unsigned long ret;
891
892 list = &prev->list;
893
894 val &= ~RB_FLAG_MASK;
895
896 ret = cmpxchg((unsigned long *)&list->next,
897 val | old_flag, val | new_flag);
898
899 /* check if the reader took the page */
900 if ((ret & ~RB_FLAG_MASK) != val)
901 return RB_PAGE_MOVED;
902
903 return ret & RB_FLAG_MASK;
904 }
905
906 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
910 {
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_UPDATE);
913 }
914
915 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
919 {
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_HEAD);
922 }
923
924 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag)
928 {
929 return rb_head_page_set(cpu_buffer, head, prev,
930 old_flag, RB_PAGE_NORMAL);
931 }
932
933 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
934 struct buffer_page **bpage)
935 {
936 struct list_head *p = rb_list_head((*bpage)->list.next);
937
938 *bpage = list_entry(p, struct buffer_page, list);
939 }
940
941 static struct buffer_page *
942 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944 struct buffer_page *head;
945 struct buffer_page *page;
946 struct list_head *list;
947 int i;
948
949 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
950 return NULL;
951
952 /* sanity check */
953 list = cpu_buffer->pages;
954 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
955 return NULL;
956
957 page = head = cpu_buffer->head_page;
958 /*
959 * It is possible that the writer moves the header behind
960 * where we started, and we miss in one loop.
961 * A second loop should grab the header, but we'll do
962 * three loops just because I'm paranoid.
963 */
964 for (i = 0; i < 3; i++) {
965 do {
966 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
967 cpu_buffer->head_page = page;
968 return page;
969 }
970 rb_inc_page(cpu_buffer, &page);
971 } while (page != head);
972 }
973
974 RB_WARN_ON(cpu_buffer, 1);
975
976 return NULL;
977 }
978
979 static int rb_head_page_replace(struct buffer_page *old,
980 struct buffer_page *new)
981 {
982 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
983 unsigned long val;
984 unsigned long ret;
985
986 val = *ptr & ~RB_FLAG_MASK;
987 val |= RB_PAGE_HEAD;
988
989 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
990
991 return ret == val;
992 }
993
994 /*
995 * rb_tail_page_update - move the tail page forward
996 *
997 * Returns 1 if moved tail page, 0 if someone else did.
998 */
999 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1000 struct buffer_page *tail_page,
1001 struct buffer_page *next_page)
1002 {
1003 struct buffer_page *old_tail;
1004 unsigned long old_entries;
1005 unsigned long old_write;
1006 int ret = 0;
1007
1008 /*
1009 * The tail page now needs to be moved forward.
1010 *
1011 * We need to reset the tail page, but without messing
1012 * with possible erasing of data brought in by interrupts
1013 * that have moved the tail page and are currently on it.
1014 *
1015 * We add a counter to the write field to denote this.
1016 */
1017 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1018 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1019
1020 /*
1021 * Just make sure we have seen our old_write and synchronize
1022 * with any interrupts that come in.
1023 */
1024 barrier();
1025
1026 /*
1027 * If the tail page is still the same as what we think
1028 * it is, then it is up to us to update the tail
1029 * pointer.
1030 */
1031 if (tail_page == cpu_buffer->tail_page) {
1032 /* Zero the write counter */
1033 unsigned long val = old_write & ~RB_WRITE_MASK;
1034 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1035
1036 /*
1037 * This will only succeed if an interrupt did
1038 * not come in and change it. In which case, we
1039 * do not want to modify it.
1040 *
1041 * We add (void) to let the compiler know that we do not care
1042 * about the return value of these functions. We use the
1043 * cmpxchg to only update if an interrupt did not already
1044 * do it for us. If the cmpxchg fails, we don't care.
1045 */
1046 (void)local_cmpxchg(&next_page->write, old_write, val);
1047 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1048
1049 /*
1050 * No need to worry about races with clearing out the commit.
1051 * it only can increment when a commit takes place. But that
1052 * only happens in the outer most nested commit.
1053 */
1054 local_set(&next_page->page->commit, 0);
1055
1056 old_tail = cmpxchg(&cpu_buffer->tail_page,
1057 tail_page, next_page);
1058
1059 if (old_tail == tail_page)
1060 ret = 1;
1061 }
1062
1063 return ret;
1064 }
1065
1066 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1067 struct buffer_page *bpage)
1068 {
1069 unsigned long val = (unsigned long)bpage;
1070
1071 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1072 return 1;
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 */
1080 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1081 struct list_head *list)
1082 {
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1084 return 1;
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1086 return 1;
1087 return 0;
1088 }
1089
1090 /**
1091 * check_pages - integrity check of buffer pages
1092 * @cpu_buffer: CPU buffer with pages to test
1093 *
1094 * As a safety measure we check to make sure the data pages have not
1095 * been corrupted.
1096 */
1097 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1098 {
1099 struct list_head *head = cpu_buffer->pages;
1100 struct buffer_page *bpage, *tmp;
1101
1102 /* Reset the head page if it exists */
1103 if (cpu_buffer->head_page)
1104 rb_set_head_page(cpu_buffer);
1105
1106 rb_head_page_deactivate(cpu_buffer);
1107
1108 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1109 return -1;
1110 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1111 return -1;
1112
1113 if (rb_check_list(cpu_buffer, head))
1114 return -1;
1115
1116 list_for_each_entry_safe(bpage, tmp, head, list) {
1117 if (RB_WARN_ON(cpu_buffer,
1118 bpage->list.next->prev != &bpage->list))
1119 return -1;
1120 if (RB_WARN_ON(cpu_buffer,
1121 bpage->list.prev->next != &bpage->list))
1122 return -1;
1123 if (rb_check_list(cpu_buffer, &bpage->list))
1124 return -1;
1125 }
1126
1127 rb_head_page_activate(cpu_buffer);
1128
1129 return 0;
1130 }
1131
1132 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1133 {
1134 int i;
1135 struct buffer_page *bpage, *tmp;
1136
1137 for (i = 0; i < nr_pages; i++) {
1138 #if !defined (CONFIG_MTK_EXTMEM)
1139 struct page *page;
1140 #endif
1141 /*
1142 * __GFP_NORETRY flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is
1144 * not destabilized.
1145 */
1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147 GFP_KERNEL | __GFP_NORETRY,
1148 cpu_to_node(cpu));
1149 if (!bpage)
1150 goto free_pages;
1151
1152 list_add(&bpage->list, pages);
1153
1154 #ifdef CONFIG_MTK_EXTMEM
1155 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1156 if(bpage->page == NULL) {
1157 pr_err("%s[%s] ext memory alloc failed!!!\n", __FILE__, __FUNCTION__);
1158 goto free_pages;
1159 }
1160 #else
1161 page = alloc_pages_node(cpu_to_node(cpu),
1162 GFP_KERNEL | __GFP_NORETRY, 0);
1163 if (!page)
1164 goto free_pages;
1165 bpage->page = page_address(page);
1166 #endif
1167 rb_init_page(bpage->page);
1168 }
1169
1170 return 0;
1171
1172 free_pages:
1173 list_for_each_entry_safe(bpage, tmp, pages, list) {
1174 list_del_init(&bpage->list);
1175 free_buffer_page(bpage);
1176 }
1177
1178 return -ENOMEM;
1179 }
1180
1181 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1182 unsigned nr_pages)
1183 {
1184 LIST_HEAD(pages);
1185
1186 WARN_ON(!nr_pages);
1187
1188 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1189 return -ENOMEM;
1190
1191 /*
1192 * The ring buffer page list is a circular list that does not
1193 * start and end with a list head. All page list items point to
1194 * other pages.
1195 */
1196 cpu_buffer->pages = pages.next;
1197 list_del(&pages);
1198
1199 cpu_buffer->nr_pages = nr_pages;
1200
1201 rb_check_pages(cpu_buffer);
1202
1203 return 0;
1204 }
1205
1206 static struct ring_buffer_per_cpu *
1207 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1208 {
1209 struct ring_buffer_per_cpu *cpu_buffer;
1210 struct buffer_page *bpage;
1211 #if !defined (CONFIG_MTK_EXTMEM)
1212 struct page *page;
1213 #endif
1214 int ret;
1215
1216 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217 GFP_KERNEL, cpu_to_node(cpu));
1218 if (!cpu_buffer)
1219 return NULL;
1220
1221 cpu_buffer->cpu = cpu;
1222 cpu_buffer->buffer = buffer;
1223 raw_spin_lock_init(&cpu_buffer->reader_lock);
1224 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1225 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1226 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1227 init_completion(&cpu_buffer->update_done);
1228 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1229 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1230
1231 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1232 GFP_KERNEL, cpu_to_node(cpu));
1233 if (!bpage)
1234 goto fail_free_buffer;
1235
1236 rb_check_bpage(cpu_buffer, bpage);
1237
1238 cpu_buffer->reader_page = bpage;
1239
1240 #ifdef CONFIG_MTK_EXTMEM
1241 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1242 if(bpage->page == NULL)
1243 goto fail_free_reader;
1244 #else
1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 if (!page)
1247 goto fail_free_reader;
1248 bpage->page = page_address(page);
1249 #endif
1250 rb_init_page(bpage->page);
1251
1252 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1253 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1254
1255 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1256 if (ret < 0)
1257 goto fail_free_reader;
1258
1259 cpu_buffer->head_page
1260 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1261 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1262
1263 rb_head_page_activate(cpu_buffer);
1264
1265 return cpu_buffer;
1266
1267 fail_free_reader:
1268 free_buffer_page(cpu_buffer->reader_page);
1269
1270 fail_free_buffer:
1271 kfree(cpu_buffer);
1272 return NULL;
1273 }
1274
1275 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1276 {
1277 struct list_head *head = cpu_buffer->pages;
1278 struct buffer_page *bpage, *tmp;
1279
1280 free_buffer_page(cpu_buffer->reader_page);
1281
1282 rb_head_page_deactivate(cpu_buffer);
1283
1284 if (head) {
1285 list_for_each_entry_safe(bpage, tmp, head, list) {
1286 list_del_init(&bpage->list);
1287 free_buffer_page(bpage);
1288 }
1289 bpage = list_entry(head, struct buffer_page, list);
1290 free_buffer_page(bpage);
1291 }
1292
1293 kfree(cpu_buffer);
1294 }
1295
1296 #ifdef CONFIG_HOTPLUG_CPU
1297 static int rb_cpu_notify(struct notifier_block *self,
1298 unsigned long action, void *hcpu);
1299 #endif
1300
1301 /**
1302 * ring_buffer_alloc - allocate a new ring_buffer
1303 * @size: the size in bytes per cpu that is needed.
1304 * @flags: attributes to set for the ring buffer.
1305 *
1306 * Currently the only flag that is available is the RB_FL_OVERWRITE
1307 * flag. This flag means that the buffer will overwrite old data
1308 * when the buffer wraps. If this flag is not set, the buffer will
1309 * drop data when the tail hits the head.
1310 */
1311 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1312 struct lock_class_key *key)
1313 {
1314 struct ring_buffer *buffer;
1315 int bsize;
1316 int cpu, nr_pages;
1317
1318 /* keep it in its own cache line */
1319 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer)
1322 return NULL;
1323
1324 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1325 goto fail_free_buffer;
1326
1327 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 buffer->flags = flags;
1329 buffer->clock = trace_clock_local;
1330 buffer->reader_lock_key = key;
1331
1332 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1333 init_waitqueue_head(&buffer->irq_work.waiters);
1334
1335 /* need at least two pages */
1336 if (nr_pages < 2)
1337 nr_pages = 2;
1338
1339 /*
1340 * In case of non-hotplug cpu, if the ring-buffer is allocated
1341 * in early initcall, it will not be notified of secondary cpus.
1342 * In that off case, we need to allocate for all possible cpus.
1343 */
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 get_online_cpus();
1346 cpumask_copy(buffer->cpumask, cpu_online_mask);
1347 #else
1348 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1349 #endif
1350 buffer->cpus = nr_cpu_ids;
1351
1352 bsize = sizeof(void *) * nr_cpu_ids;
1353 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1354 GFP_KERNEL);
1355 if (!buffer->buffers)
1356 goto fail_free_cpumask;
1357
1358 for_each_buffer_cpu(buffer, cpu) {
1359 buffer->buffers[cpu] =
1360 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1361 if (!buffer->buffers[cpu])
1362 goto fail_free_buffers;
1363 }
1364
1365 #ifdef CONFIG_HOTPLUG_CPU
1366 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1367 buffer->cpu_notify.priority = 0;
1368 register_cpu_notifier(&buffer->cpu_notify);
1369 #endif
1370
1371 put_online_cpus();
1372 mutex_init(&buffer->mutex);
1373
1374 return buffer;
1375
1376 fail_free_buffers:
1377 for_each_buffer_cpu(buffer, cpu) {
1378 if (buffer->buffers[cpu])
1379 rb_free_cpu_buffer(buffer->buffers[cpu]);
1380 }
1381 kfree(buffer->buffers);
1382
1383 fail_free_cpumask:
1384 free_cpumask_var(buffer->cpumask);
1385 put_online_cpus();
1386
1387 fail_free_buffer:
1388 kfree(buffer);
1389 return NULL;
1390 }
1391 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1392
1393 /**
1394 * ring_buffer_free - free a ring buffer.
1395 * @buffer: the buffer to free.
1396 */
1397 void
1398 ring_buffer_free(struct ring_buffer *buffer)
1399 {
1400 int cpu;
1401
1402 get_online_cpus();
1403
1404 #ifdef CONFIG_HOTPLUG_CPU
1405 unregister_cpu_notifier(&buffer->cpu_notify);
1406 #endif
1407
1408 for_each_buffer_cpu(buffer, cpu)
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
1411 put_online_cpus();
1412
1413 kfree(buffer->buffers);
1414 free_cpumask_var(buffer->cpumask);
1415
1416 kfree(buffer);
1417 }
1418 EXPORT_SYMBOL_GPL(ring_buffer_free);
1419
1420 void ring_buffer_set_clock(struct ring_buffer *buffer,
1421 u64 (*clock)(void))
1422 {
1423 buffer->clock = clock;
1424 }
1425
1426 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427
1428 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429 {
1430 return local_read(&bpage->entries) & RB_WRITE_MASK;
1431 }
1432
1433 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434 {
1435 return local_read(&bpage->write) & RB_WRITE_MASK;
1436 }
1437
1438 static int
1439 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1440 {
1441 struct list_head *tail_page, *to_remove, *next_page;
1442 struct buffer_page *to_remove_page, *tmp_iter_page;
1443 struct buffer_page *last_page, *first_page;
1444 unsigned int nr_removed;
1445 unsigned long head_bit;
1446 int page_entries;
1447
1448 head_bit = 0;
1449
1450 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1451 atomic_inc(&cpu_buffer->record_disabled);
1452 /*
1453 * We don't race with the readers since we have acquired the reader
1454 * lock. We also don't race with writers after disabling recording.
1455 * This makes it easy to figure out the first and the last page to be
1456 * removed from the list. We unlink all the pages in between including
1457 * the first and last pages. This is done in a busy loop so that we
1458 * lose the least number of traces.
1459 * The pages are freed after we restart recording and unlock readers.
1460 */
1461 tail_page = &cpu_buffer->tail_page->list;
1462
1463 /*
1464 * tail page might be on reader page, we remove the next page
1465 * from the ring buffer
1466 */
1467 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1468 tail_page = rb_list_head(tail_page->next);
1469 to_remove = tail_page;
1470
1471 /* start of pages to remove */
1472 first_page = list_entry(rb_list_head(to_remove->next),
1473 struct buffer_page, list);
1474
1475 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1476 to_remove = rb_list_head(to_remove)->next;
1477 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1478 }
1479
1480 next_page = rb_list_head(to_remove)->next;
1481
1482 /*
1483 * Now we remove all pages between tail_page and next_page.
1484 * Make sure that we have head_bit value preserved for the
1485 * next page
1486 */
1487 tail_page->next = (struct list_head *)((unsigned long)next_page |
1488 head_bit);
1489 next_page = rb_list_head(next_page);
1490 next_page->prev = tail_page;
1491
1492 /* make sure pages points to a valid page in the ring buffer */
1493 cpu_buffer->pages = next_page;
1494
1495 /* update head page */
1496 if (head_bit)
1497 cpu_buffer->head_page = list_entry(next_page,
1498 struct buffer_page, list);
1499
1500 /*
1501 * change read pointer to make sure any read iterators reset
1502 * themselves
1503 */
1504 cpu_buffer->read = 0;
1505
1506 /* pages are removed, resume tracing and then free the pages */
1507 atomic_dec(&cpu_buffer->record_disabled);
1508 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1509
1510 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511
1512 /* last buffer page to remove */
1513 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1514 list);
1515 tmp_iter_page = first_page;
1516
1517 do {
1518 to_remove_page = tmp_iter_page;
1519 rb_inc_page(cpu_buffer, &tmp_iter_page);
1520
1521 /* update the counters */
1522 page_entries = rb_page_entries(to_remove_page);
1523 if (page_entries) {
1524 /*
1525 * If something was added to this page, it was full
1526 * since it is not the tail page. So we deduct the
1527 * bytes consumed in ring buffer from here.
1528 * Increment overrun to account for the lost events.
1529 */
1530 local_add(page_entries, &cpu_buffer->overrun);
1531 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1532 }
1533
1534 /*
1535 * We have already removed references to this list item, just
1536 * free up the buffer_page and its page
1537 */
1538 free_buffer_page(to_remove_page);
1539 nr_removed--;
1540
1541 } while (to_remove_page != last_page);
1542
1543 RB_WARN_ON(cpu_buffer, nr_removed);
1544
1545 return nr_removed == 0;
1546 }
1547
1548 static int
1549 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1550 {
1551 struct list_head *pages = &cpu_buffer->new_pages;
1552 int retries, success;
1553
1554 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1555 /*
1556 * We are holding the reader lock, so the reader page won't be swapped
1557 * in the ring buffer. Now we are racing with the writer trying to
1558 * move head page and the tail page.
1559 * We are going to adapt the reader page update process where:
1560 * 1. We first splice the start and end of list of new pages between
1561 * the head page and its previous page.
1562 * 2. We cmpxchg the prev_page->next to point from head page to the
1563 * start of new pages list.
1564 * 3. Finally, we update the head->prev to the end of new list.
1565 *
1566 * We will try this process 10 times, to make sure that we don't keep
1567 * spinning.
1568 */
1569 retries = 10;
1570 success = 0;
1571 while (retries--) {
1572 struct list_head *head_page, *prev_page, *r;
1573 struct list_head *last_page, *first_page;
1574 struct list_head *head_page_with_bit;
1575
1576 head_page = &rb_set_head_page(cpu_buffer)->list;
1577 if (!head_page)
1578 break;
1579 prev_page = head_page->prev;
1580
1581 first_page = pages->next;
1582 last_page = pages->prev;
1583
1584 head_page_with_bit = (struct list_head *)
1585 ((unsigned long)head_page | RB_PAGE_HEAD);
1586
1587 last_page->next = head_page_with_bit;
1588 first_page->prev = prev_page;
1589
1590 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1591
1592 if (r == head_page_with_bit) {
1593 /*
1594 * yay, we replaced the page pointer to our new list,
1595 * now, we just have to update to head page's prev
1596 * pointer to point to end of list
1597 */
1598 head_page->prev = last_page;
1599 success = 1;
1600 break;
1601 }
1602 }
1603
1604 if (success)
1605 INIT_LIST_HEAD(pages);
1606 /*
1607 * If we weren't successful in adding in new pages, warn and stop
1608 * tracing
1609 */
1610 RB_WARN_ON(cpu_buffer, !success);
1611 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1612
1613 /* free pages if they weren't inserted */
1614 if (!success) {
1615 struct buffer_page *bpage, *tmp;
1616 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1617 list) {
1618 list_del_init(&bpage->list);
1619 free_buffer_page(bpage);
1620 }
1621 }
1622 return success;
1623 }
1624
1625 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1626 {
1627 int success;
1628
1629 if (cpu_buffer->nr_pages_to_update > 0)
1630 success = rb_insert_pages(cpu_buffer);
1631 else
1632 success = rb_remove_pages(cpu_buffer,
1633 -cpu_buffer->nr_pages_to_update);
1634
1635 if (success)
1636 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1637 }
1638
1639 static void update_pages_handler(struct work_struct *work)
1640 {
1641 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1642 struct ring_buffer_per_cpu, update_pages_work);
1643 rb_update_pages(cpu_buffer);
1644 complete(&cpu_buffer->update_done);
1645 }
1646
1647 /**
1648 * ring_buffer_resize - resize the ring buffer
1649 * @buffer: the buffer to resize.
1650 * @size: the new size.
1651 *
1652 * Minimum size is 2 * BUF_PAGE_SIZE.
1653 *
1654 * Returns 0 on success and < 0 on failure.
1655 */
1656 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 int cpu_id)
1658 {
1659 struct ring_buffer_per_cpu *cpu_buffer;
1660 unsigned nr_pages;
1661 int cpu, err = 0;
1662
1663 /*
1664 * Always succeed at resizing a non-existent buffer:
1665 */
1666 if (!buffer)
1667 return size;
1668
1669 /* Make sure the requested buffer exists */
1670 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 return size;
1673
1674 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 size *= BUF_PAGE_SIZE;
1676
1677 /* we need a minimum of two pages */
1678 if (size < BUF_PAGE_SIZE * 2)
1679 size = BUF_PAGE_SIZE * 2;
1680
1681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1682
1683 /*
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1687 */
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
1690
1691 /* prevent another thread from changing buffer sizes */
1692 mutex_lock(&buffer->mutex);
1693
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
1698
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
1701 /*
1702 * nothing more to do for removing pages or no update
1703 */
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
1706 /*
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
1709 */
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712 &cpu_buffer->new_pages, cpu)) {
1713 /* not enough memory for new pages */
1714 err = -ENOMEM;
1715 goto out_err;
1716 }
1717 }
1718
1719 get_online_cpus();
1720 /*
1721 * Fire off all the required work handlers
1722 * We can't schedule on offline CPUs, but it's not necessary
1723 * since we can change their buffer sizes without any race.
1724 */
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
1727 if (!cpu_buffer->nr_pages_to_update)
1728 continue;
1729
1730 /* The update must run on the CPU that is being updated. */
1731 preempt_disable();
1732 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1733 rb_update_pages(cpu_buffer);
1734 cpu_buffer->nr_pages_to_update = 0;
1735 } else {
1736 /*
1737 * Can not disable preemption for schedule_work_on()
1738 * on PREEMPT_RT.
1739 */
1740 preempt_enable();
1741 schedule_work_on(cpu,
1742 &cpu_buffer->update_pages_work);
1743 preempt_disable();
1744 }
1745 preempt_enable();
1746 }
1747
1748 /* wait for all the updates to complete */
1749 for_each_buffer_cpu(buffer, cpu) {
1750 cpu_buffer = buffer->buffers[cpu];
1751 if (!cpu_buffer->nr_pages_to_update)
1752 continue;
1753
1754 if (cpu_online(cpu))
1755 wait_for_completion(&cpu_buffer->update_done);
1756 cpu_buffer->nr_pages_to_update = 0;
1757 }
1758
1759 put_online_cpus();
1760 } else {
1761 /* Make sure this CPU has been intitialized */
1762 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1763 goto out;
1764
1765 cpu_buffer = buffer->buffers[cpu_id];
1766
1767 if (nr_pages == cpu_buffer->nr_pages)
1768 goto out;
1769
1770 cpu_buffer->nr_pages_to_update = nr_pages -
1771 cpu_buffer->nr_pages;
1772
1773 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1774 if (cpu_buffer->nr_pages_to_update > 0 &&
1775 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1776 &cpu_buffer->new_pages, cpu_id)) {
1777 err = -ENOMEM;
1778 goto out_err;
1779 }
1780
1781 get_online_cpus();
1782
1783 preempt_disable();
1784 /* The update must run on the CPU that is being updated. */
1785 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1786 rb_update_pages(cpu_buffer);
1787 else {
1788 /*
1789 * Can not disable preemption for schedule_work_on()
1790 * on PREEMPT_RT.
1791 */
1792 preempt_enable();
1793 schedule_work_on(cpu_id,
1794 &cpu_buffer->update_pages_work);
1795 wait_for_completion(&cpu_buffer->update_done);
1796 preempt_disable();
1797 }
1798 preempt_enable();
1799
1800 cpu_buffer->nr_pages_to_update = 0;
1801 put_online_cpus();
1802 }
1803
1804 out:
1805 /*
1806 * The ring buffer resize can happen with the ring buffer
1807 * enabled, so that the update disturbs the tracing as little
1808 * as possible. But if the buffer is disabled, we do not need
1809 * to worry about that, and we can take the time to verify
1810 * that the buffer is not corrupt.
1811 */
1812 if (atomic_read(&buffer->record_disabled)) {
1813 atomic_inc(&buffer->record_disabled);
1814 /*
1815 * Even though the buffer was disabled, we must make sure
1816 * that it is truly disabled before calling rb_check_pages.
1817 * There could have been a race between checking
1818 * record_disable and incrementing it.
1819 */
1820 synchronize_sched();
1821 for_each_buffer_cpu(buffer, cpu) {
1822 cpu_buffer = buffer->buffers[cpu];
1823 rb_check_pages(cpu_buffer);
1824 }
1825 atomic_dec(&buffer->record_disabled);
1826 }
1827
1828 mutex_unlock(&buffer->mutex);
1829 return size;
1830
1831 out_err:
1832 for_each_buffer_cpu(buffer, cpu) {
1833 struct buffer_page *bpage, *tmp;
1834
1835 cpu_buffer = buffer->buffers[cpu];
1836 cpu_buffer->nr_pages_to_update = 0;
1837
1838 if (list_empty(&cpu_buffer->new_pages))
1839 continue;
1840
1841 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1842 list) {
1843 list_del_init(&bpage->list);
1844 free_buffer_page(bpage);
1845 }
1846 }
1847 mutex_unlock(&buffer->mutex);
1848 return err;
1849 }
1850 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1851
1852 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1853 {
1854 mutex_lock(&buffer->mutex);
1855 if (val)
1856 buffer->flags |= RB_FL_OVERWRITE;
1857 else
1858 buffer->flags &= ~RB_FL_OVERWRITE;
1859 mutex_unlock(&buffer->mutex);
1860 }
1861 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1862
1863 static inline void *
1864 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1865 {
1866 return bpage->data + index;
1867 }
1868
1869 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1870 {
1871 return bpage->page->data + index;
1872 }
1873
1874 static inline struct ring_buffer_event *
1875 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1876 {
1877 return __rb_page_index(cpu_buffer->reader_page,
1878 cpu_buffer->reader_page->read);
1879 }
1880
1881 static inline struct ring_buffer_event *
1882 rb_iter_head_event(struct ring_buffer_iter *iter)
1883 {
1884 return __rb_page_index(iter->head_page, iter->head);
1885 }
1886
1887 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1888 {
1889 return local_read(&bpage->page->commit);
1890 }
1891
1892 /* Size is determined by what has been committed */
1893 static inline unsigned rb_page_size(struct buffer_page *bpage)
1894 {
1895 return rb_page_commit(bpage);
1896 }
1897
1898 static inline unsigned
1899 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1900 {
1901 return rb_page_commit(cpu_buffer->commit_page);
1902 }
1903
1904 static inline unsigned
1905 rb_event_index(struct ring_buffer_event *event)
1906 {
1907 unsigned long addr = (unsigned long)event;
1908
1909 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1910 }
1911
1912 static inline int
1913 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1914 struct ring_buffer_event *event)
1915 {
1916 unsigned long addr = (unsigned long)event;
1917 unsigned long index;
1918
1919 index = rb_event_index(event);
1920 addr &= PAGE_MASK;
1921
1922 return cpu_buffer->commit_page->page == (void *)addr &&
1923 rb_commit_index(cpu_buffer) == index;
1924 }
1925
1926 static void
1927 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1928 {
1929 unsigned long max_count;
1930
1931 /*
1932 * We only race with interrupts and NMIs on this CPU.
1933 * If we own the commit event, then we can commit
1934 * all others that interrupted us, since the interruptions
1935 * are in stack format (they finish before they come
1936 * back to us). This allows us to do a simple loop to
1937 * assign the commit to the tail.
1938 */
1939 again:
1940 max_count = cpu_buffer->nr_pages * 100;
1941
1942 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1943 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1944 return;
1945 if (RB_WARN_ON(cpu_buffer,
1946 rb_is_reader_page(cpu_buffer->tail_page)))
1947 return;
1948 local_set(&cpu_buffer->commit_page->page->commit,
1949 rb_page_write(cpu_buffer->commit_page));
1950 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1951 cpu_buffer->write_stamp =
1952 cpu_buffer->commit_page->page->time_stamp;
1953 /* add barrier to keep gcc from optimizing too much */
1954 barrier();
1955 }
1956 while (rb_commit_index(cpu_buffer) !=
1957 rb_page_write(cpu_buffer->commit_page)) {
1958
1959 local_set(&cpu_buffer->commit_page->page->commit,
1960 rb_page_write(cpu_buffer->commit_page));
1961 RB_WARN_ON(cpu_buffer,
1962 local_read(&cpu_buffer->commit_page->page->commit) &
1963 ~RB_WRITE_MASK);
1964 barrier();
1965 }
1966
1967 /* again, keep gcc from optimizing */
1968 barrier();
1969
1970 /*
1971 * If an interrupt came in just after the first while loop
1972 * and pushed the tail page forward, we will be left with
1973 * a dangling commit that will never go forward.
1974 */
1975 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1976 goto again;
1977 }
1978
1979 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1980 {
1981 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1982 cpu_buffer->reader_page->read = 0;
1983 }
1984
1985 static void rb_inc_iter(struct ring_buffer_iter *iter)
1986 {
1987 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1988
1989 /*
1990 * The iterator could be on the reader page (it starts there).
1991 * But the head could have moved, since the reader was
1992 * found. Check for this case and assign the iterator
1993 * to the head page instead of next.
1994 */
1995 if (iter->head_page == cpu_buffer->reader_page)
1996 iter->head_page = rb_set_head_page(cpu_buffer);
1997 else
1998 rb_inc_page(cpu_buffer, &iter->head_page);
1999
2000 iter->read_stamp = iter->head_page->page->time_stamp;
2001 iter->head = 0;
2002 }
2003
2004 /* Slow path, do not inline */
2005 static noinline struct ring_buffer_event *
2006 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2007 {
2008 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2009
2010 /* Not the first event on the page? */
2011 if (rb_event_index(event)) {
2012 event->time_delta = delta & TS_MASK;
2013 event->array[0] = delta >> TS_SHIFT;
2014 } else {
2015 /* nope, just zero it */
2016 event->time_delta = 0;
2017 event->array[0] = 0;
2018 }
2019
2020 return skip_time_extend(event);
2021 }
2022
2023 /**
2024 * rb_update_event - update event type and data
2025 * @event: the event to update
2026 * @type: the type of event
2027 * @length: the size of the event field in the ring buffer
2028 *
2029 * Update the type and data fields of the event. The length
2030 * is the actual size that is written to the ring buffer,
2031 * and with this, we can determine what to place into the
2032 * data field.
2033 */
2034 static void
2035 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2036 struct ring_buffer_event *event, unsigned length,
2037 int add_timestamp, u64 delta)
2038 {
2039 /* Only a commit updates the timestamp */
2040 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2041 delta = 0;
2042
2043 /*
2044 * If we need to add a timestamp, then we
2045 * add it to the start of the resevered space.
2046 */
2047 if (unlikely(add_timestamp)) {
2048 event = rb_add_time_stamp(event, delta);
2049 length -= RB_LEN_TIME_EXTEND;
2050 delta = 0;
2051 }
2052
2053 event->time_delta = delta;
2054 length -= RB_EVNT_HDR_SIZE;
2055 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2056 event->type_len = 0;
2057 event->array[0] = length;
2058 } else
2059 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2060 }
2061
2062 /*
2063 * rb_handle_head_page - writer hit the head page
2064 *
2065 * Returns: +1 to retry page
2066 * 0 to continue
2067 * -1 on error
2068 */
2069 static int
2070 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2071 struct buffer_page *tail_page,
2072 struct buffer_page *next_page)
2073 {
2074 struct buffer_page *new_head;
2075 int entries;
2076 int type;
2077 int ret;
2078
2079 entries = rb_page_entries(next_page);
2080
2081 /*
2082 * The hard part is here. We need to move the head
2083 * forward, and protect against both readers on
2084 * other CPUs and writers coming in via interrupts.
2085 */
2086 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2087 RB_PAGE_HEAD);
2088
2089 /*
2090 * type can be one of four:
2091 * NORMAL - an interrupt already moved it for us
2092 * HEAD - we are the first to get here.
2093 * UPDATE - we are the interrupt interrupting
2094 * a current move.
2095 * MOVED - a reader on another CPU moved the next
2096 * pointer to its reader page. Give up
2097 * and try again.
2098 */
2099
2100 switch (type) {
2101 case RB_PAGE_HEAD:
2102 /*
2103 * We changed the head to UPDATE, thus
2104 * it is our responsibility to update
2105 * the counters.
2106 */
2107 local_add(entries, &cpu_buffer->overrun);
2108 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2109
2110 /*
2111 * The entries will be zeroed out when we move the
2112 * tail page.
2113 */
2114
2115 /* still more to do */
2116 break;
2117
2118 case RB_PAGE_UPDATE:
2119 /*
2120 * This is an interrupt that interrupt the
2121 * previous update. Still more to do.
2122 */
2123 break;
2124 case RB_PAGE_NORMAL:
2125 /*
2126 * An interrupt came in before the update
2127 * and processed this for us.
2128 * Nothing left to do.
2129 */
2130 return 1;
2131 case RB_PAGE_MOVED:
2132 /*
2133 * The reader is on another CPU and just did
2134 * a swap with our next_page.
2135 * Try again.
2136 */
2137 return 1;
2138 default:
2139 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2140 return -1;
2141 }
2142
2143 /*
2144 * Now that we are here, the old head pointer is
2145 * set to UPDATE. This will keep the reader from
2146 * swapping the head page with the reader page.
2147 * The reader (on another CPU) will spin till
2148 * we are finished.
2149 *
2150 * We just need to protect against interrupts
2151 * doing the job. We will set the next pointer
2152 * to HEAD. After that, we set the old pointer
2153 * to NORMAL, but only if it was HEAD before.
2154 * otherwise we are an interrupt, and only
2155 * want the outer most commit to reset it.
2156 */
2157 new_head = next_page;
2158 rb_inc_page(cpu_buffer, &new_head);
2159
2160 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2161 RB_PAGE_NORMAL);
2162
2163 /*
2164 * Valid returns are:
2165 * HEAD - an interrupt came in and already set it.
2166 * NORMAL - One of two things:
2167 * 1) We really set it.
2168 * 2) A bunch of interrupts came in and moved
2169 * the page forward again.
2170 */
2171 switch (ret) {
2172 case RB_PAGE_HEAD:
2173 case RB_PAGE_NORMAL:
2174 /* OK */
2175 break;
2176 default:
2177 RB_WARN_ON(cpu_buffer, 1);
2178 return -1;
2179 }
2180
2181 /*
2182 * It is possible that an interrupt came in,
2183 * set the head up, then more interrupts came in
2184 * and moved it again. When we get back here,
2185 * the page would have been set to NORMAL but we
2186 * just set it back to HEAD.
2187 *
2188 * How do you detect this? Well, if that happened
2189 * the tail page would have moved.
2190 */
2191 if (ret == RB_PAGE_NORMAL) {
2192 /*
2193 * If the tail had moved passed next, then we need
2194 * to reset the pointer.
2195 */
2196 if (cpu_buffer->tail_page != tail_page &&
2197 cpu_buffer->tail_page != next_page)
2198 rb_head_page_set_normal(cpu_buffer, new_head,
2199 next_page,
2200 RB_PAGE_HEAD);
2201 }
2202
2203 /*
2204 * If this was the outer most commit (the one that
2205 * changed the original pointer from HEAD to UPDATE),
2206 * then it is up to us to reset it to NORMAL.
2207 */
2208 if (type == RB_PAGE_HEAD) {
2209 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2210 tail_page,
2211 RB_PAGE_UPDATE);
2212 if (RB_WARN_ON(cpu_buffer,
2213 ret != RB_PAGE_UPDATE))
2214 return -1;
2215 }
2216
2217 return 0;
2218 }
2219
2220 static unsigned rb_calculate_event_length(unsigned length)
2221 {
2222 struct ring_buffer_event event; /* Used only for sizeof array */
2223
2224 /* zero length can cause confusions */
2225 if (!length)
2226 length = 1;
2227
2228 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2229 length += sizeof(event.array[0]);
2230
2231 length += RB_EVNT_HDR_SIZE;
2232 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2233
2234 return length;
2235 }
2236
2237 static inline void
2238 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2239 struct buffer_page *tail_page,
2240 unsigned long tail, unsigned long length)
2241 {
2242 struct ring_buffer_event *event;
2243
2244 /*
2245 * Only the event that crossed the page boundary
2246 * must fill the old tail_page with padding.
2247 */
2248 if (tail >= BUF_PAGE_SIZE) {
2249 /*
2250 * If the page was filled, then we still need
2251 * to update the real_end. Reset it to zero
2252 * and the reader will ignore it.
2253 */
2254 if (tail == BUF_PAGE_SIZE)
2255 tail_page->real_end = 0;
2256
2257 local_sub(length, &tail_page->write);
2258 return;
2259 }
2260
2261 event = __rb_page_index(tail_page, tail);
2262 kmemcheck_annotate_bitfield(event, bitfield);
2263
2264 /* account for padding bytes */
2265 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2266
2267 /*
2268 * Save the original length to the meta data.
2269 * This will be used by the reader to add lost event
2270 * counter.
2271 */
2272 tail_page->real_end = tail;
2273
2274 /*
2275 * If this event is bigger than the minimum size, then
2276 * we need to be careful that we don't subtract the
2277 * write counter enough to allow another writer to slip
2278 * in on this page.
2279 * We put in a discarded commit instead, to make sure
2280 * that this space is not used again.
2281 *
2282 * If we are less than the minimum size, we don't need to
2283 * worry about it.
2284 */
2285 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2286 /* No room for any events */
2287
2288 /* Mark the rest of the page with padding */
2289 rb_event_set_padding(event);
2290
2291 /* Set the write back to the previous setting */
2292 local_sub(length, &tail_page->write);
2293 return;
2294 }
2295
2296 /* Put in a discarded event */
2297 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2298 event->type_len = RINGBUF_TYPE_PADDING;
2299 /* time delta must be non zero */
2300 event->time_delta = 1;
2301
2302 /* Set write to end of buffer */
2303 length = (tail + length) - BUF_PAGE_SIZE;
2304 local_sub(length, &tail_page->write);
2305 }
2306
2307 /*
2308 * This is the slow path, force gcc not to inline it.
2309 */
2310 static noinline struct ring_buffer_event *
2311 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2312 unsigned long length, unsigned long tail,
2313 struct buffer_page *tail_page, u64 ts)
2314 {
2315 struct buffer_page *commit_page = cpu_buffer->commit_page;
2316 struct ring_buffer *buffer = cpu_buffer->buffer;
2317 struct buffer_page *next_page;
2318 int ret;
2319
2320 next_page = tail_page;
2321
2322 rb_inc_page(cpu_buffer, &next_page);
2323
2324 /*
2325 * If for some reason, we had an interrupt storm that made
2326 * it all the way around the buffer, bail, and warn
2327 * about it.
2328 */
2329 if (unlikely(next_page == commit_page)) {
2330 local_inc(&cpu_buffer->commit_overrun);
2331 goto out_reset;
2332 }
2333
2334 /*
2335 * This is where the fun begins!
2336 *
2337 * We are fighting against races between a reader that
2338 * could be on another CPU trying to swap its reader
2339 * page with the buffer head.
2340 *
2341 * We are also fighting against interrupts coming in and
2342 * moving the head or tail on us as well.
2343 *
2344 * If the next page is the head page then we have filled
2345 * the buffer, unless the commit page is still on the
2346 * reader page.
2347 */
2348 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2349
2350 /*
2351 * If the commit is not on the reader page, then
2352 * move the header page.
2353 */
2354 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2355 /*
2356 * If we are not in overwrite mode,
2357 * this is easy, just stop here.
2358 */
2359 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2360 local_inc(&cpu_buffer->dropped_events);
2361 goto out_reset;
2362 }
2363
2364 ret = rb_handle_head_page(cpu_buffer,
2365 tail_page,
2366 next_page);
2367 if (ret < 0)
2368 goto out_reset;
2369 if (ret)
2370 goto out_again;
2371 } else {
2372 /*
2373 * We need to be careful here too. The
2374 * commit page could still be on the reader
2375 * page. We could have a small buffer, and
2376 * have filled up the buffer with events
2377 * from interrupts and such, and wrapped.
2378 *
2379 * Note, if the tail page is also the on the
2380 * reader_page, we let it move out.
2381 */
2382 if (unlikely((cpu_buffer->commit_page !=
2383 cpu_buffer->tail_page) &&
2384 (cpu_buffer->commit_page ==
2385 cpu_buffer->reader_page))) {
2386 local_inc(&cpu_buffer->commit_overrun);
2387 goto out_reset;
2388 }
2389 }
2390 }
2391
2392 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2393 if (ret) {
2394 /*
2395 * Nested commits always have zero deltas, so
2396 * just reread the time stamp
2397 */
2398 ts = rb_time_stamp(buffer);
2399 next_page->page->time_stamp = ts;
2400 }
2401
2402 out_again:
2403
2404 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2405
2406 /* fail and let the caller try again */
2407 return ERR_PTR(-EAGAIN);
2408
2409 out_reset:
2410 /* reset write */
2411 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2412
2413 return NULL;
2414 }
2415
2416 static struct ring_buffer_event *
2417 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2418 unsigned long length, u64 ts,
2419 u64 delta, int add_timestamp)
2420 {
2421 struct buffer_page *tail_page;
2422 struct ring_buffer_event *event;
2423 unsigned long tail, write;
2424
2425 /*
2426 * If the time delta since the last event is too big to
2427 * hold in the time field of the event, then we append a
2428 * TIME EXTEND event ahead of the data event.
2429 */
2430 if (unlikely(add_timestamp))
2431 length += RB_LEN_TIME_EXTEND;
2432
2433 tail_page = cpu_buffer->tail_page;
2434 write = local_add_return(length, &tail_page->write);
2435
2436 /* set write to only the index of the write */
2437 write &= RB_WRITE_MASK;
2438 tail = write - length;
2439
2440 /*
2441 * If this is the first commit on the page, then it has the same
2442 * timestamp as the page itself.
2443 */
2444 if (!tail)
2445 delta = 0;
2446
2447 /* See if we shot pass the end of this buffer page */
2448 if (unlikely(write > BUF_PAGE_SIZE))
2449 return rb_move_tail(cpu_buffer, length, tail,
2450 tail_page, ts);
2451
2452 /* We reserved something on the buffer */
2453
2454 event = __rb_page_index(tail_page, tail);
2455 kmemcheck_annotate_bitfield(event, bitfield);
2456 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2457
2458 local_inc(&tail_page->entries);
2459
2460 /*
2461 * If this is the first commit on the page, then update
2462 * its timestamp.
2463 */
2464 if (!tail)
2465 tail_page->page->time_stamp = ts;
2466
2467 /* account for these added bytes */
2468 local_add(length, &cpu_buffer->entries_bytes);
2469
2470 return event;
2471 }
2472
2473 static inline int
2474 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2475 struct ring_buffer_event *event)
2476 {
2477 unsigned long new_index, old_index;
2478 struct buffer_page *bpage;
2479 unsigned long index;
2480 unsigned long addr;
2481
2482 new_index = rb_event_index(event);
2483 old_index = new_index + rb_event_ts_length(event);
2484 addr = (unsigned long)event;
2485 addr &= PAGE_MASK;
2486
2487 bpage = cpu_buffer->tail_page;
2488
2489 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2490 unsigned long write_mask =
2491 local_read(&bpage->write) & ~RB_WRITE_MASK;
2492 unsigned long event_length = rb_event_length(event);
2493 /*
2494 * This is on the tail page. It is possible that
2495 * a write could come in and move the tail page
2496 * and write to the next page. That is fine
2497 * because we just shorten what is on this page.
2498 */
2499 old_index += write_mask;
2500 new_index += write_mask;
2501 index = local_cmpxchg(&bpage->write, old_index, new_index);
2502 if (index == old_index) {
2503 /* update counters */
2504 local_sub(event_length, &cpu_buffer->entries_bytes);
2505 return 1;
2506 }
2507 }
2508
2509 /* could not discard */
2510 return 0;
2511 }
2512
2513 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2514 {
2515 local_inc(&cpu_buffer->committing);
2516 local_inc(&cpu_buffer->commits);
2517 }
2518
2519 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2520 {
2521 unsigned long commits;
2522
2523 if (RB_WARN_ON(cpu_buffer,
2524 !local_read(&cpu_buffer->committing)))
2525 return;
2526
2527 again:
2528 commits = local_read(&cpu_buffer->commits);
2529 /* synchronize with interrupts */
2530 barrier();
2531 if (local_read(&cpu_buffer->committing) == 1)
2532 rb_set_commit_to_write(cpu_buffer);
2533
2534 local_dec(&cpu_buffer->committing);
2535
2536 /* synchronize with interrupts */
2537 barrier();
2538
2539 /*
2540 * Need to account for interrupts coming in between the
2541 * updating of the commit page and the clearing of the
2542 * committing counter.
2543 */
2544 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2545 !local_read(&cpu_buffer->committing)) {
2546 local_inc(&cpu_buffer->committing);
2547 goto again;
2548 }
2549 }
2550
2551 static struct ring_buffer_event *
2552 rb_reserve_next_event(struct ring_buffer *buffer,
2553 struct ring_buffer_per_cpu *cpu_buffer,
2554 unsigned long length)
2555 {
2556 struct ring_buffer_event *event;
2557 u64 ts, delta;
2558 int nr_loops = 0;
2559 int add_timestamp;
2560 u64 diff;
2561
2562 rb_start_commit(cpu_buffer);
2563
2564 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2565 /*
2566 * Due to the ability to swap a cpu buffer from a buffer
2567 * it is possible it was swapped before we committed.
2568 * (committing stops a swap). We check for it here and
2569 * if it happened, we have to fail the write.
2570 */
2571 barrier();
2572 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2573 local_dec(&cpu_buffer->committing);
2574 local_dec(&cpu_buffer->commits);
2575 return NULL;
2576 }
2577 #endif
2578
2579 length = rb_calculate_event_length(length);
2580 again:
2581 add_timestamp = 0;
2582 delta = 0;
2583
2584 /*
2585 * We allow for interrupts to reenter here and do a trace.
2586 * If one does, it will cause this original code to loop
2587 * back here. Even with heavy interrupts happening, this
2588 * should only happen a few times in a row. If this happens
2589 * 1000 times in a row, there must be either an interrupt
2590 * storm or we have something buggy.
2591 * Bail!
2592 */
2593 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2594 goto out_fail;
2595
2596 ts = rb_time_stamp(cpu_buffer->buffer);
2597 diff = ts - cpu_buffer->write_stamp;
2598
2599 /* make sure this diff is calculated here */
2600 barrier();
2601
2602 /* Did the write stamp get updated already? */
2603 if (likely(ts >= cpu_buffer->write_stamp)) {
2604 delta = diff;
2605 if (unlikely(test_time_stamp(delta))) {
2606 int local_clock_stable = 1;
2607 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2608 local_clock_stable = sched_clock_stable;
2609 #endif
2610 WARN_ONCE(delta > (1ULL << 59),
2611 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2612 (unsigned long long)delta,
2613 (unsigned long long)ts,
2614 (unsigned long long)cpu_buffer->write_stamp,
2615 local_clock_stable ? "" :
2616 "If you just came from a suspend/resume,\n"
2617 "please switch to the trace global clock:\n"
2618 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2619 add_timestamp = 1;
2620 }
2621 }
2622
2623 event = __rb_reserve_next(cpu_buffer, length, ts,
2624 delta, add_timestamp);
2625 if (unlikely(PTR_ERR(event) == -EAGAIN))
2626 goto again;
2627
2628 if (!event)
2629 goto out_fail;
2630
2631 return event;
2632
2633 out_fail:
2634 rb_end_commit(cpu_buffer);
2635 return NULL;
2636 }
2637
2638 #ifdef CONFIG_TRACING
2639
2640 /*
2641 * The lock and unlock are done within a preempt disable section.
2642 * The current_context per_cpu variable can only be modified
2643 * by the current task between lock and unlock. But it can
2644 * be modified more than once via an interrupt. To pass this
2645 * information from the lock to the unlock without having to
2646 * access the 'in_interrupt()' functions again (which do show
2647 * a bit of overhead in something as critical as function tracing,
2648 * we use a bitmask trick.
2649 *
2650 * bit 0 = NMI context
2651 * bit 1 = IRQ context
2652 * bit 2 = SoftIRQ context
2653 * bit 3 = normal context.
2654 *
2655 * This works because this is the order of contexts that can
2656 * preempt other contexts. A SoftIRQ never preempts an IRQ
2657 * context.
2658 *
2659 * When the context is determined, the corresponding bit is
2660 * checked and set (if it was set, then a recursion of that context
2661 * happened).
2662 *
2663 * On unlock, we need to clear this bit. To do so, just subtract
2664 * 1 from the current_context and AND it to itself.
2665 *
2666 * (binary)
2667 * 101 - 1 = 100
2668 * 101 & 100 = 100 (clearing bit zero)
2669 *
2670 * 1010 - 1 = 1001
2671 * 1010 & 1001 = 1000 (clearing bit 1)
2672 *
2673 * The least significant bit can be cleared this way, and it
2674 * just so happens that it is the same bit corresponding to
2675 * the current context.
2676 */
2677 static DEFINE_PER_CPU(unsigned int, current_context);
2678
2679 static __always_inline int trace_recursive_lock(void)
2680 {
2681 unsigned int val = this_cpu_read(current_context);
2682 int bit;
2683
2684 if (in_interrupt()) {
2685 if (in_nmi())
2686 bit = 0;
2687 else if (in_irq())
2688 bit = 1;
2689 else
2690 bit = 2;
2691 } else
2692 bit = 3;
2693
2694 if (unlikely(val & (1 << bit)))
2695 return 1;
2696
2697 val |= (1 << bit);
2698 this_cpu_write(current_context, val);
2699
2700 return 0;
2701 }
2702
2703 static __always_inline void trace_recursive_unlock(void)
2704 {
2705 unsigned int val = this_cpu_read(current_context);
2706
2707 val--;
2708 val &= this_cpu_read(current_context);
2709 this_cpu_write(current_context, val);
2710 }
2711
2712 #else
2713
2714 #define trace_recursive_lock() (0)
2715 #define trace_recursive_unlock() do { } while (0)
2716
2717 #endif
2718
2719 /**
2720 * ring_buffer_lock_reserve - reserve a part of the buffer
2721 * @buffer: the ring buffer to reserve from
2722 * @length: the length of the data to reserve (excluding event header)
2723 *
2724 * Returns a reseverd event on the ring buffer to copy directly to.
2725 * The user of this interface will need to get the body to write into
2726 * and can use the ring_buffer_event_data() interface.
2727 *
2728 * The length is the length of the data needed, not the event length
2729 * which also includes the event header.
2730 *
2731 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2732 * If NULL is returned, then nothing has been allocated or locked.
2733 */
2734 struct ring_buffer_event *
2735 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2736 {
2737 struct ring_buffer_per_cpu *cpu_buffer;
2738 struct ring_buffer_event *event;
2739 int cpu;
2740
2741 if (ring_buffer_flags != RB_BUFFERS_ON)
2742 return NULL;
2743
2744 /* If we are tracing schedule, we don't want to recurse */
2745 preempt_disable_notrace();
2746
2747 if (atomic_read(&buffer->record_disabled))
2748 goto out_nocheck;
2749
2750 if (trace_recursive_lock())
2751 goto out_nocheck;
2752
2753 cpu = raw_smp_processor_id();
2754
2755 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2756 goto out;
2757
2758 cpu_buffer = buffer->buffers[cpu];
2759
2760 if (atomic_read(&cpu_buffer->record_disabled))
2761 goto out;
2762
2763 if (length > BUF_MAX_DATA_SIZE)
2764 goto out;
2765
2766 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2767 if (!event)
2768 goto out;
2769
2770 return event;
2771
2772 out:
2773 trace_recursive_unlock();
2774
2775 out_nocheck:
2776 preempt_enable_notrace();
2777 return NULL;
2778 }
2779 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2780
2781 static void
2782 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2783 struct ring_buffer_event *event)
2784 {
2785 u64 delta;
2786
2787 /*
2788 * The event first in the commit queue updates the
2789 * time stamp.
2790 */
2791 if (rb_event_is_commit(cpu_buffer, event)) {
2792 /*
2793 * A commit event that is first on a page
2794 * updates the write timestamp with the page stamp
2795 */
2796 if (!rb_event_index(event))
2797 cpu_buffer->write_stamp =
2798 cpu_buffer->commit_page->page->time_stamp;
2799 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2800 delta = event->array[0];
2801 delta <<= TS_SHIFT;
2802 delta += event->time_delta;
2803 cpu_buffer->write_stamp += delta;
2804 } else
2805 cpu_buffer->write_stamp += event->time_delta;
2806 }
2807 }
2808
2809 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2810 struct ring_buffer_event *event)
2811 {
2812 local_inc(&cpu_buffer->entries);
2813 rb_update_write_stamp(cpu_buffer, event);
2814 rb_end_commit(cpu_buffer);
2815 }
2816
2817 static __always_inline void
2818 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2819 {
2820 if (buffer->irq_work.waiters_pending) {
2821 buffer->irq_work.waiters_pending = false;
2822 /* irq_work_queue() supplies it's own memory barriers */
2823 irq_work_queue(&buffer->irq_work.work);
2824 }
2825
2826 if (cpu_buffer->irq_work.waiters_pending) {
2827 cpu_buffer->irq_work.waiters_pending = false;
2828 /* irq_work_queue() supplies it's own memory barriers */
2829 irq_work_queue(&cpu_buffer->irq_work.work);
2830 }
2831 }
2832
2833 /**
2834 * ring_buffer_unlock_commit - commit a reserved
2835 * @buffer: The buffer to commit to
2836 * @event: The event pointer to commit.
2837 *
2838 * This commits the data to the ring buffer, and releases any locks held.
2839 *
2840 * Must be paired with ring_buffer_lock_reserve.
2841 */
2842 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2843 struct ring_buffer_event *event)
2844 {
2845 struct ring_buffer_per_cpu *cpu_buffer;
2846 int cpu = raw_smp_processor_id();
2847
2848 cpu_buffer = buffer->buffers[cpu];
2849
2850 rb_commit(cpu_buffer, event);
2851
2852 rb_wakeups(buffer, cpu_buffer);
2853
2854 trace_recursive_unlock();
2855
2856 preempt_enable_notrace();
2857
2858 return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2861
2862 static inline void rb_event_discard(struct ring_buffer_event *event)
2863 {
2864 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2865 event = skip_time_extend(event);
2866
2867 /* array[0] holds the actual length for the discarded event */
2868 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2869 event->type_len = RINGBUF_TYPE_PADDING;
2870 /* time delta must be non zero */
2871 if (!event->time_delta)
2872 event->time_delta = 1;
2873 }
2874
2875 /*
2876 * Decrement the entries to the page that an event is on.
2877 * The event does not even need to exist, only the pointer
2878 * to the page it is on. This may only be called before the commit
2879 * takes place.
2880 */
2881 static inline void
2882 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2883 struct ring_buffer_event *event)
2884 {
2885 unsigned long addr = (unsigned long)event;
2886 struct buffer_page *bpage = cpu_buffer->commit_page;
2887 struct buffer_page *start;
2888
2889 addr &= PAGE_MASK;
2890
2891 /* Do the likely case first */
2892 if (likely(bpage->page == (void *)addr)) {
2893 local_dec(&bpage->entries);
2894 return;
2895 }
2896
2897 /*
2898 * Because the commit page may be on the reader page we
2899 * start with the next page and check the end loop there.
2900 */
2901 rb_inc_page(cpu_buffer, &bpage);
2902 start = bpage;
2903 do {
2904 if (bpage->page == (void *)addr) {
2905 local_dec(&bpage->entries);
2906 return;
2907 }
2908 rb_inc_page(cpu_buffer, &bpage);
2909 } while (bpage != start);
2910
2911 /* commit not part of this buffer?? */
2912 RB_WARN_ON(cpu_buffer, 1);
2913 }
2914
2915 /**
2916 * ring_buffer_commit_discard - discard an event that has not been committed
2917 * @buffer: the ring buffer
2918 * @event: non committed event to discard
2919 *
2920 * Sometimes an event that is in the ring buffer needs to be ignored.
2921 * This function lets the user discard an event in the ring buffer
2922 * and then that event will not be read later.
2923 *
2924 * This function only works if it is called before the the item has been
2925 * committed. It will try to free the event from the ring buffer
2926 * if another event has not been added behind it.
2927 *
2928 * If another event has been added behind it, it will set the event
2929 * up as discarded, and perform the commit.
2930 *
2931 * If this function is called, do not call ring_buffer_unlock_commit on
2932 * the event.
2933 */
2934 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2935 struct ring_buffer_event *event)
2936 {
2937 struct ring_buffer_per_cpu *cpu_buffer;
2938 int cpu;
2939
2940 /* The event is discarded regardless */
2941 rb_event_discard(event);
2942
2943 cpu = smp_processor_id();
2944 cpu_buffer = buffer->buffers[cpu];
2945
2946 /*
2947 * This must only be called if the event has not been
2948 * committed yet. Thus we can assume that preemption
2949 * is still disabled.
2950 */
2951 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2952
2953 rb_decrement_entry(cpu_buffer, event);
2954 if (rb_try_to_discard(cpu_buffer, event))
2955 goto out;
2956
2957 /*
2958 * The commit is still visible by the reader, so we
2959 * must still update the timestamp.
2960 */
2961 rb_update_write_stamp(cpu_buffer, event);
2962 out:
2963 rb_end_commit(cpu_buffer);
2964
2965 trace_recursive_unlock();
2966
2967 preempt_enable_notrace();
2968
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2971
2972 /**
2973 * ring_buffer_write - write data to the buffer without reserving
2974 * @buffer: The ring buffer to write to.
2975 * @length: The length of the data being written (excluding the event header)
2976 * @data: The data to write to the buffer.
2977 *
2978 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2979 * one function. If you already have the data to write to the buffer, it
2980 * may be easier to simply call this function.
2981 *
2982 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2983 * and not the length of the event which would hold the header.
2984 */
2985 int ring_buffer_write(struct ring_buffer *buffer,
2986 unsigned long length,
2987 void *data)
2988 {
2989 struct ring_buffer_per_cpu *cpu_buffer;
2990 struct ring_buffer_event *event;
2991 void *body;
2992 int ret = -EBUSY;
2993 int cpu;
2994
2995 if (ring_buffer_flags != RB_BUFFERS_ON)
2996 return -EBUSY;
2997
2998 preempt_disable_notrace();
2999
3000 if (atomic_read(&buffer->record_disabled))
3001 goto out;
3002
3003 cpu = raw_smp_processor_id();
3004
3005 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3006 goto out;
3007
3008 cpu_buffer = buffer->buffers[cpu];
3009
3010 if (atomic_read(&cpu_buffer->record_disabled))
3011 goto out;
3012
3013 if (length > BUF_MAX_DATA_SIZE)
3014 goto out;
3015
3016 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3017 if (!event)
3018 goto out;
3019
3020 body = rb_event_data(event);
3021
3022 memcpy(body, data, length);
3023
3024 rb_commit(cpu_buffer, event);
3025
3026 rb_wakeups(buffer, cpu_buffer);
3027
3028 ret = 0;
3029 out:
3030 preempt_enable_notrace();
3031
3032 return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(ring_buffer_write);
3035
3036 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3037 {
3038 struct buffer_page *reader = cpu_buffer->reader_page;
3039 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3040 struct buffer_page *commit = cpu_buffer->commit_page;
3041
3042 /* In case of error, head will be NULL */
3043 if (unlikely(!head))
3044 return 1;
3045
3046 return reader->read == rb_page_commit(reader) &&
3047 (commit == reader ||
3048 (commit == head &&
3049 head->read == rb_page_commit(commit)));
3050 }
3051
3052 /**
3053 * ring_buffer_record_disable - stop all writes into the buffer
3054 * @buffer: The ring buffer to stop writes to.
3055 *
3056 * This prevents all writes to the buffer. Any attempt to write
3057 * to the buffer after this will fail and return NULL.
3058 *
3059 * The caller should call synchronize_sched() after this.
3060 */
3061 void ring_buffer_record_disable(struct ring_buffer *buffer)
3062 {
3063 atomic_inc(&buffer->record_disabled);
3064 }
3065 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3066
3067 /**
3068 * ring_buffer_record_enable - enable writes to the buffer
3069 * @buffer: The ring buffer to enable writes
3070 *
3071 * Note, multiple disables will need the same number of enables
3072 * to truly enable the writing (much like preempt_disable).
3073 */
3074 void ring_buffer_record_enable(struct ring_buffer *buffer)
3075 {
3076 atomic_dec(&buffer->record_disabled);
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3079
3080 /**
3081 * ring_buffer_record_off - stop all writes into the buffer
3082 * @buffer: The ring buffer to stop writes to.
3083 *
3084 * This prevents all writes to the buffer. Any attempt to write
3085 * to the buffer after this will fail and return NULL.
3086 *
3087 * This is different than ring_buffer_record_disable() as
3088 * it works like an on/off switch, where as the disable() version
3089 * must be paired with a enable().
3090 */
3091 void ring_buffer_record_off(struct ring_buffer *buffer)
3092 {
3093 unsigned int rd;
3094 unsigned int new_rd;
3095
3096 do {
3097 rd = atomic_read(&buffer->record_disabled);
3098 new_rd = rd | RB_BUFFER_OFF;
3099 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3100 }
3101 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3102
3103 /**
3104 * ring_buffer_record_on - restart writes into the buffer
3105 * @buffer: The ring buffer to start writes to.
3106 *
3107 * This enables all writes to the buffer that was disabled by
3108 * ring_buffer_record_off().
3109 *
3110 * This is different than ring_buffer_record_enable() as
3111 * it works like an on/off switch, where as the enable() version
3112 * must be paired with a disable().
3113 */
3114 void ring_buffer_record_on(struct ring_buffer *buffer)
3115 {
3116 unsigned int rd;
3117 unsigned int new_rd;
3118
3119 do {
3120 rd = atomic_read(&buffer->record_disabled);
3121 new_rd = rd & ~RB_BUFFER_OFF;
3122 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3125
3126 /**
3127 * ring_buffer_record_is_on - return true if the ring buffer can write
3128 * @buffer: The ring buffer to see if write is enabled
3129 *
3130 * Returns true if the ring buffer is in a state that it accepts writes.
3131 */
3132 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3133 {
3134 return !atomic_read(&buffer->record_disabled);
3135 }
3136
3137 /**
3138 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3139 * @buffer: The ring buffer to stop writes to.
3140 * @cpu: The CPU buffer to stop
3141 *
3142 * This prevents all writes to the buffer. Any attempt to write
3143 * to the buffer after this will fail and return NULL.
3144 *
3145 * The caller should call synchronize_sched() after this.
3146 */
3147 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3148 {
3149 struct ring_buffer_per_cpu *cpu_buffer;
3150
3151 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3152 return;
3153
3154 cpu_buffer = buffer->buffers[cpu];
3155 atomic_inc(&cpu_buffer->record_disabled);
3156 }
3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3158
3159 /**
3160 * ring_buffer_record_enable_cpu - enable writes to the buffer
3161 * @buffer: The ring buffer to enable writes
3162 * @cpu: The CPU to enable.
3163 *
3164 * Note, multiple disables will need the same number of enables
3165 * to truly enable the writing (much like preempt_disable).
3166 */
3167 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3168 {
3169 struct ring_buffer_per_cpu *cpu_buffer;
3170
3171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 return;
3173
3174 cpu_buffer = buffer->buffers[cpu];
3175 atomic_dec(&cpu_buffer->record_disabled);
3176 }
3177 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3178
3179 /*
3180 * The total entries in the ring buffer is the running counter
3181 * of entries entered into the ring buffer, minus the sum of
3182 * the entries read from the ring buffer and the number of
3183 * entries that were overwritten.
3184 */
3185 static inline unsigned long
3186 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188 return local_read(&cpu_buffer->entries) -
3189 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3190 }
3191
3192 /**
3193 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3194 * @buffer: The ring buffer
3195 * @cpu: The per CPU buffer to read from.
3196 */
3197 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3198 {
3199 unsigned long flags;
3200 struct ring_buffer_per_cpu *cpu_buffer;
3201 struct buffer_page *bpage;
3202 u64 ret = 0;
3203
3204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205 return 0;
3206
3207 cpu_buffer = buffer->buffers[cpu];
3208 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3209 /*
3210 * if the tail is on reader_page, oldest time stamp is on the reader
3211 * page
3212 */
3213 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3214 bpage = cpu_buffer->reader_page;
3215 else
3216 bpage = rb_set_head_page(cpu_buffer);
3217 if (bpage)
3218 ret = bpage->page->time_stamp;
3219 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3220
3221 return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3224
3225 /**
3226 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3227 * @buffer: The ring buffer
3228 * @cpu: The per CPU buffer to read from.
3229 */
3230 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3231 {
3232 struct ring_buffer_per_cpu *cpu_buffer;
3233 unsigned long ret;
3234
3235 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236 return 0;
3237
3238 cpu_buffer = buffer->buffers[cpu];
3239 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3240
3241 return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3244
3245 /**
3246 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3247 * @buffer: The ring buffer
3248 * @cpu: The per CPU buffer to get the entries from.
3249 */
3250 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3251 {
3252 struct ring_buffer_per_cpu *cpu_buffer;
3253
3254 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3255 return 0;
3256
3257 cpu_buffer = buffer->buffers[cpu];
3258
3259 return rb_num_of_entries(cpu_buffer);
3260 }
3261 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3262
3263 /**
3264 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3265 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3266 * @buffer: The ring buffer
3267 * @cpu: The per CPU buffer to get the number of overruns from
3268 */
3269 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3270 {
3271 struct ring_buffer_per_cpu *cpu_buffer;
3272 unsigned long ret;
3273
3274 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3275 return 0;
3276
3277 cpu_buffer = buffer->buffers[cpu];
3278 ret = local_read(&cpu_buffer->overrun);
3279
3280 return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3283
3284 /**
3285 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3286 * commits failing due to the buffer wrapping around while there are uncommitted
3287 * events, such as during an interrupt storm.
3288 * @buffer: The ring buffer
3289 * @cpu: The per CPU buffer to get the number of overruns from
3290 */
3291 unsigned long
3292 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3293 {
3294 struct ring_buffer_per_cpu *cpu_buffer;
3295 unsigned long ret;
3296
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return 0;
3299
3300 cpu_buffer = buffer->buffers[cpu];
3301 ret = local_read(&cpu_buffer->commit_overrun);
3302
3303 return ret;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3306
3307 /**
3308 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3309 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3310 * @buffer: The ring buffer
3311 * @cpu: The per CPU buffer to get the number of overruns from
3312 */
3313 unsigned long
3314 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3315 {
3316 struct ring_buffer_per_cpu *cpu_buffer;
3317 unsigned long ret;
3318
3319 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3320 return 0;
3321
3322 cpu_buffer = buffer->buffers[cpu];
3323 ret = local_read(&cpu_buffer->dropped_events);
3324
3325 return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3328
3329 /**
3330 * ring_buffer_read_events_cpu - get the number of events successfully read
3331 * @buffer: The ring buffer
3332 * @cpu: The per CPU buffer to get the number of events read
3333 */
3334 unsigned long
3335 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3336 {
3337 struct ring_buffer_per_cpu *cpu_buffer;
3338
3339 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3340 return 0;
3341
3342 cpu_buffer = buffer->buffers[cpu];
3343 return cpu_buffer->read;
3344 }
3345 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3346
3347 /**
3348 * ring_buffer_entries - get the number of entries in a buffer
3349 * @buffer: The ring buffer
3350 *
3351 * Returns the total number of entries in the ring buffer
3352 * (all CPU entries)
3353 */
3354 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3355 {
3356 struct ring_buffer_per_cpu *cpu_buffer;
3357 unsigned long entries = 0;
3358 int cpu;
3359
3360 /* if you care about this being correct, lock the buffer */
3361 for_each_buffer_cpu(buffer, cpu) {
3362 cpu_buffer = buffer->buffers[cpu];
3363 entries += rb_num_of_entries(cpu_buffer);
3364 }
3365
3366 return entries;
3367 }
3368 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3369
3370 /**
3371 * ring_buffer_overruns - get the number of overruns in buffer
3372 * @buffer: The ring buffer
3373 *
3374 * Returns the total number of overruns in the ring buffer
3375 * (all CPU entries)
3376 */
3377 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3378 {
3379 struct ring_buffer_per_cpu *cpu_buffer;
3380 unsigned long overruns = 0;
3381 int cpu;
3382
3383 /* if you care about this being correct, lock the buffer */
3384 for_each_buffer_cpu(buffer, cpu) {
3385 cpu_buffer = buffer->buffers[cpu];
3386 overruns += local_read(&cpu_buffer->overrun);
3387 }
3388
3389 return overruns;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3392
3393 static void rb_iter_reset(struct ring_buffer_iter *iter)
3394 {
3395 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3396
3397 /* Iterator usage is expected to have record disabled */
3398 iter->head_page = cpu_buffer->reader_page;
3399 iter->head = cpu_buffer->reader_page->read;
3400
3401 iter->cache_reader_page = iter->head_page;
3402 iter->cache_read = iter->head;
3403
3404 if (iter->head)
3405 iter->read_stamp = cpu_buffer->read_stamp;
3406 else
3407 iter->read_stamp = iter->head_page->page->time_stamp;
3408 }
3409
3410 /**
3411 * ring_buffer_iter_reset - reset an iterator
3412 * @iter: The iterator to reset
3413 *
3414 * Resets the iterator, so that it will start from the beginning
3415 * again.
3416 */
3417 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3418 {
3419 struct ring_buffer_per_cpu *cpu_buffer;
3420 unsigned long flags;
3421
3422 if (!iter)
3423 return;
3424
3425 cpu_buffer = iter->cpu_buffer;
3426
3427 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428 rb_iter_reset(iter);
3429 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3430 }
3431 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3432
3433 /**
3434 * ring_buffer_iter_empty - check if an iterator has no more to read
3435 * @iter: The iterator to check
3436 */
3437 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3438 {
3439 struct ring_buffer_per_cpu *cpu_buffer;
3440
3441 cpu_buffer = iter->cpu_buffer;
3442
3443 return iter->head_page == cpu_buffer->commit_page &&
3444 iter->head == rb_commit_index(cpu_buffer);
3445 }
3446 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3447
3448 static void
3449 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3450 struct ring_buffer_event *event)
3451 {
3452 u64 delta;
3453
3454 switch (event->type_len) {
3455 case RINGBUF_TYPE_PADDING:
3456 return;
3457
3458 case RINGBUF_TYPE_TIME_EXTEND:
3459 delta = event->array[0];
3460 delta <<= TS_SHIFT;
3461 delta += event->time_delta;
3462 cpu_buffer->read_stamp += delta;
3463 return;
3464
3465 case RINGBUF_TYPE_TIME_STAMP:
3466 /* FIXME: not implemented */
3467 return;
3468
3469 case RINGBUF_TYPE_DATA:
3470 cpu_buffer->read_stamp += event->time_delta;
3471 return;
3472
3473 default:
3474 BUG();
3475 }
3476 return;
3477 }
3478
3479 static void
3480 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3481 struct ring_buffer_event *event)
3482 {
3483 u64 delta;
3484
3485 switch (event->type_len) {
3486 case RINGBUF_TYPE_PADDING:
3487 return;
3488
3489 case RINGBUF_TYPE_TIME_EXTEND:
3490 delta = event->array[0];
3491 delta <<= TS_SHIFT;
3492 delta += event->time_delta;
3493 iter->read_stamp += delta;
3494 return;
3495
3496 case RINGBUF_TYPE_TIME_STAMP:
3497 /* FIXME: not implemented */
3498 return;
3499
3500 case RINGBUF_TYPE_DATA:
3501 iter->read_stamp += event->time_delta;
3502 return;
3503
3504 default:
3505 BUG();
3506 }
3507 return;
3508 }
3509
3510 static struct buffer_page *
3511 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3512 {
3513 struct buffer_page *reader = NULL;
3514 unsigned long overwrite;
3515 unsigned long flags;
3516 int nr_loops = 0;
3517 int ret;
3518
3519 local_irq_save(flags);
3520 arch_spin_lock(&cpu_buffer->lock);
3521
3522 again:
3523 /*
3524 * This should normally only loop twice. But because the
3525 * start of the reader inserts an empty page, it causes
3526 * a case where we will loop three times. There should be no
3527 * reason to loop four times (that I know of).
3528 */
3529 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3530 reader = NULL;
3531 goto out;
3532 }
3533
3534 reader = cpu_buffer->reader_page;
3535
3536 /* If there's more to read, return this page */
3537 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3538 goto out;
3539
3540 /* Never should we have an index greater than the size */
3541 if (RB_WARN_ON(cpu_buffer,
3542 cpu_buffer->reader_page->read > rb_page_size(reader)))
3543 goto out;
3544
3545 /* check if we caught up to the tail */
3546 reader = NULL;
3547 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3548 goto out;
3549
3550 /* Don't bother swapping if the ring buffer is empty */
3551 if (rb_num_of_entries(cpu_buffer) == 0)
3552 goto out;
3553
3554 /*
3555 * Reset the reader page to size zero.
3556 */
3557 local_set(&cpu_buffer->reader_page->write, 0);
3558 local_set(&cpu_buffer->reader_page->entries, 0);
3559 local_set(&cpu_buffer->reader_page->page->commit, 0);
3560 cpu_buffer->reader_page->real_end = 0;
3561
3562 spin:
3563 /*
3564 * Splice the empty reader page into the list around the head.
3565 */
3566 reader = rb_set_head_page(cpu_buffer);
3567 if (!reader)
3568 goto out;
3569 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3570 cpu_buffer->reader_page->list.prev = reader->list.prev;
3571
3572 /*
3573 * cpu_buffer->pages just needs to point to the buffer, it
3574 * has no specific buffer page to point to. Lets move it out
3575 * of our way so we don't accidentally swap it.
3576 */
3577 cpu_buffer->pages = reader->list.prev;
3578
3579 /* The reader page will be pointing to the new head */
3580 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3581
3582 /*
3583 * We want to make sure we read the overruns after we set up our
3584 * pointers to the next object. The writer side does a
3585 * cmpxchg to cross pages which acts as the mb on the writer
3586 * side. Note, the reader will constantly fail the swap
3587 * while the writer is updating the pointers, so this
3588 * guarantees that the overwrite recorded here is the one we
3589 * want to compare with the last_overrun.
3590 */
3591 smp_mb();
3592 overwrite = local_read(&(cpu_buffer->overrun));
3593
3594 /*
3595 * Here's the tricky part.
3596 *
3597 * We need to move the pointer past the header page.
3598 * But we can only do that if a writer is not currently
3599 * moving it. The page before the header page has the
3600 * flag bit '1' set if it is pointing to the page we want.
3601 * but if the writer is in the process of moving it
3602 * than it will be '2' or already moved '0'.
3603 */
3604
3605 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3606
3607 /*
3608 * If we did not convert it, then we must try again.
3609 */
3610 if (!ret)
3611 goto spin;
3612
3613 /*
3614 * Yeah! We succeeded in replacing the page.
3615 *
3616 * Now make the new head point back to the reader page.
3617 */
3618 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3619 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3620
3621 /* Finally update the reader page to the new head */
3622 cpu_buffer->reader_page = reader;
3623 rb_reset_reader_page(cpu_buffer);
3624
3625 if (overwrite != cpu_buffer->last_overrun) {
3626 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3627 cpu_buffer->last_overrun = overwrite;
3628 }
3629
3630 goto again;
3631
3632 out:
3633 arch_spin_unlock(&cpu_buffer->lock);
3634 local_irq_restore(flags);
3635
3636 return reader;
3637 }
3638
3639 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3640 {
3641 struct ring_buffer_event *event;
3642 struct buffer_page *reader;
3643 unsigned length;
3644
3645 reader = rb_get_reader_page(cpu_buffer);
3646
3647 /* This function should not be called when buffer is empty */
3648 if (RB_WARN_ON(cpu_buffer, !reader))
3649 return;
3650
3651 event = rb_reader_event(cpu_buffer);
3652
3653 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3654 cpu_buffer->read++;
3655
3656 rb_update_read_stamp(cpu_buffer, event);
3657
3658 length = rb_event_length(event);
3659 cpu_buffer->reader_page->read += length;
3660 }
3661
3662 static void rb_advance_iter(struct ring_buffer_iter *iter)
3663 {
3664 struct ring_buffer_per_cpu *cpu_buffer;
3665 struct ring_buffer_event *event;
3666 unsigned length;
3667
3668 cpu_buffer = iter->cpu_buffer;
3669
3670 /*
3671 * Check if we are at the end of the buffer.
3672 */
3673 if (iter->head >= rb_page_size(iter->head_page)) {
3674 /* discarded commits can make the page empty */
3675 if (iter->head_page == cpu_buffer->commit_page)
3676 return;
3677 rb_inc_iter(iter);
3678 return;
3679 }
3680
3681 event = rb_iter_head_event(iter);
3682
3683 length = rb_event_length(event);
3684
3685 /*
3686 * This should not be called to advance the header if we are
3687 * at the tail of the buffer.
3688 */
3689 if (RB_WARN_ON(cpu_buffer,
3690 (iter->head_page == cpu_buffer->commit_page) &&
3691 (iter->head + length > rb_commit_index(cpu_buffer))))
3692 return;
3693
3694 rb_update_iter_read_stamp(iter, event);
3695
3696 iter->head += length;
3697
3698 /* check for end of page padding */
3699 if ((iter->head >= rb_page_size(iter->head_page)) &&
3700 (iter->head_page != cpu_buffer->commit_page))
3701 rb_inc_iter(iter);
3702 }
3703
3704 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3705 {
3706 return cpu_buffer->lost_events;
3707 }
3708
3709 static struct ring_buffer_event *
3710 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3711 unsigned long *lost_events)
3712 {
3713 struct ring_buffer_event *event;
3714 struct buffer_page *reader;
3715 int nr_loops = 0;
3716
3717 again:
3718 /*
3719 * We repeat when a time extend is encountered.
3720 * Since the time extend is always attached to a data event,
3721 * we should never loop more than once.
3722 * (We never hit the following condition more than twice).
3723 */
3724 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3725 return NULL;
3726
3727 reader = rb_get_reader_page(cpu_buffer);
3728 if (!reader)
3729 return NULL;
3730
3731 event = rb_reader_event(cpu_buffer);
3732
3733 switch (event->type_len) {
3734 case RINGBUF_TYPE_PADDING:
3735 if (rb_null_event(event))
3736 RB_WARN_ON(cpu_buffer, 1);
3737 /*
3738 * Because the writer could be discarding every
3739 * event it creates (which would probably be bad)
3740 * if we were to go back to "again" then we may never
3741 * catch up, and will trigger the warn on, or lock
3742 * the box. Return the padding, and we will release
3743 * the current locks, and try again.
3744 */
3745 return event;
3746
3747 case RINGBUF_TYPE_TIME_EXTEND:
3748 /* Internal data, OK to advance */
3749 rb_advance_reader(cpu_buffer);
3750 goto again;
3751
3752 case RINGBUF_TYPE_TIME_STAMP:
3753 /* FIXME: not implemented */
3754 rb_advance_reader(cpu_buffer);
3755 goto again;
3756
3757 case RINGBUF_TYPE_DATA:
3758 if (ts) {
3759 *ts = cpu_buffer->read_stamp + event->time_delta;
3760 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3761 cpu_buffer->cpu, ts);
3762 }
3763 if (lost_events)
3764 *lost_events = rb_lost_events(cpu_buffer);
3765 return event;
3766
3767 default:
3768 BUG();
3769 }
3770
3771 return NULL;
3772 }
3773 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3774
3775 static struct ring_buffer_event *
3776 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3777 {
3778 struct ring_buffer *buffer;
3779 struct ring_buffer_per_cpu *cpu_buffer;
3780 struct ring_buffer_event *event;
3781 int nr_loops = 0;
3782
3783 cpu_buffer = iter->cpu_buffer;
3784 buffer = cpu_buffer->buffer;
3785
3786 /*
3787 * Check if someone performed a consuming read to
3788 * the buffer. A consuming read invalidates the iterator
3789 * and we need to reset the iterator in this case.
3790 */
3791 if (unlikely(iter->cache_read != cpu_buffer->read ||
3792 iter->cache_reader_page != cpu_buffer->reader_page))
3793 rb_iter_reset(iter);
3794
3795 again:
3796 if (ring_buffer_iter_empty(iter))
3797 return NULL;
3798
3799 /*
3800 * We repeat when a time extend is encountered or we hit
3801 * the end of the page. Since the time extend is always attached
3802 * to a data event, we should never loop more than three times.
3803 * Once for going to next page, once on time extend, and
3804 * finally once to get the event.
3805 * (We never hit the following condition more than thrice).
3806 */
3807 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3808 return NULL;
3809
3810 if (rb_per_cpu_empty(cpu_buffer))
3811 return NULL;
3812
3813 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3814 rb_inc_iter(iter);
3815 goto again;
3816 }
3817
3818 event = rb_iter_head_event(iter);
3819
3820 switch (event->type_len) {
3821 case RINGBUF_TYPE_PADDING:
3822 if (rb_null_event(event)) {
3823 rb_inc_iter(iter);
3824 goto again;
3825 }
3826 rb_advance_iter(iter);
3827 return event;
3828
3829 case RINGBUF_TYPE_TIME_EXTEND:
3830 /* Internal data, OK to advance */
3831 rb_advance_iter(iter);
3832 goto again;
3833
3834 case RINGBUF_TYPE_TIME_STAMP:
3835 /* FIXME: not implemented */
3836 rb_advance_iter(iter);
3837 goto again;
3838
3839 case RINGBUF_TYPE_DATA:
3840 if (ts) {
3841 *ts = iter->read_stamp + event->time_delta;
3842 ring_buffer_normalize_time_stamp(buffer,
3843 cpu_buffer->cpu, ts);
3844 }
3845 return event;
3846
3847 default:
3848 BUG();
3849 }
3850
3851 return NULL;
3852 }
3853 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3854
3855 static inline int rb_ok_to_lock(void)
3856 {
3857 /*
3858 * If an NMI die dumps out the content of the ring buffer
3859 * do not grab locks. We also permanently disable the ring
3860 * buffer too. A one time deal is all you get from reading
3861 * the ring buffer from an NMI.
3862 */
3863 if (likely(!in_nmi()))
3864 return 1;
3865
3866 tracing_off_permanent();
3867 return 0;
3868 }
3869
3870 /**
3871 * ring_buffer_peek - peek at the next event to be read
3872 * @buffer: The ring buffer to read
3873 * @cpu: The cpu to peak at
3874 * @ts: The timestamp counter of this event.
3875 * @lost_events: a variable to store if events were lost (may be NULL)
3876 *
3877 * This will return the event that will be read next, but does
3878 * not consume the data.
3879 */
3880 struct ring_buffer_event *
3881 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3882 unsigned long *lost_events)
3883 {
3884 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885 struct ring_buffer_event *event;
3886 unsigned long flags;
3887 int dolock;
3888
3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890 return NULL;
3891
3892 dolock = rb_ok_to_lock();
3893 again:
3894 local_irq_save(flags);
3895 if (dolock)
3896 raw_spin_lock(&cpu_buffer->reader_lock);
3897 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899 rb_advance_reader(cpu_buffer);
3900 if (dolock)
3901 raw_spin_unlock(&cpu_buffer->reader_lock);
3902 local_irq_restore(flags);
3903
3904 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3905 goto again;
3906
3907 return event;
3908 }
3909
3910 /**
3911 * ring_buffer_iter_peek - peek at the next event to be read
3912 * @iter: The ring buffer iterator
3913 * @ts: The timestamp counter of this event.
3914 *
3915 * This will return the event that will be read next, but does
3916 * not increment the iterator.
3917 */
3918 struct ring_buffer_event *
3919 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3920 {
3921 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3922 struct ring_buffer_event *event;
3923 unsigned long flags;
3924
3925 again:
3926 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3927 event = rb_iter_peek(iter, ts);
3928 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3929
3930 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3931 goto again;
3932
3933 return event;
3934 }
3935
3936 /**
3937 * ring_buffer_consume - return an event and consume it
3938 * @buffer: The ring buffer to get the next event from
3939 * @cpu: the cpu to read the buffer from
3940 * @ts: a variable to store the timestamp (may be NULL)
3941 * @lost_events: a variable to store if events were lost (may be NULL)
3942 *
3943 * Returns the next event in the ring buffer, and that event is consumed.
3944 * Meaning, that sequential reads will keep returning a different event,
3945 * and eventually empty the ring buffer if the producer is slower.
3946 */
3947 struct ring_buffer_event *
3948 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3949 unsigned long *lost_events)
3950 {
3951 struct ring_buffer_per_cpu *cpu_buffer;
3952 struct ring_buffer_event *event = NULL;
3953 unsigned long flags;
3954 int dolock;
3955
3956 dolock = rb_ok_to_lock();
3957
3958 again:
3959 /* might be called in atomic */
3960 preempt_disable();
3961
3962 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3963 goto out;
3964
3965 cpu_buffer = buffer->buffers[cpu];
3966 local_irq_save(flags);
3967 if (dolock)
3968 raw_spin_lock(&cpu_buffer->reader_lock);
3969
3970 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3971 if (event) {
3972 cpu_buffer->lost_events = 0;
3973 rb_advance_reader(cpu_buffer);
3974 }
3975
3976 if (dolock)
3977 raw_spin_unlock(&cpu_buffer->reader_lock);
3978 local_irq_restore(flags);
3979
3980 out:
3981 preempt_enable();
3982
3983 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3984 goto again;
3985
3986 return event;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3989
3990 /**
3991 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3992 * @buffer: The ring buffer to read from
3993 * @cpu: The cpu buffer to iterate over
3994 *
3995 * This performs the initial preparations necessary to iterate
3996 * through the buffer. Memory is allocated, buffer recording
3997 * is disabled, and the iterator pointer is returned to the caller.
3998 *
3999 * Disabling buffer recordng prevents the reading from being
4000 * corrupted. This is not a consuming read, so a producer is not
4001 * expected.
4002 *
4003 * After a sequence of ring_buffer_read_prepare calls, the user is
4004 * expected to make at least one call to ring_buffer_prepare_sync.
4005 * Afterwards, ring_buffer_read_start is invoked to get things going
4006 * for real.
4007 *
4008 * This overall must be paired with ring_buffer_finish.
4009 */
4010 struct ring_buffer_iter *
4011 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4012 {
4013 struct ring_buffer_per_cpu *cpu_buffer;
4014 struct ring_buffer_iter *iter;
4015
4016 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4017 return NULL;
4018
4019 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4020 if (!iter)
4021 return NULL;
4022
4023 cpu_buffer = buffer->buffers[cpu];
4024
4025 iter->cpu_buffer = cpu_buffer;
4026
4027 atomic_inc(&buffer->resize_disabled);
4028 atomic_inc(&cpu_buffer->record_disabled);
4029
4030 return iter;
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4033
4034 /**
4035 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4036 *
4037 * All previously invoked ring_buffer_read_prepare calls to prepare
4038 * iterators will be synchronized. Afterwards, read_buffer_read_start
4039 * calls on those iterators are allowed.
4040 */
4041 void
4042 ring_buffer_read_prepare_sync(void)
4043 {
4044 synchronize_sched();
4045 }
4046 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4047
4048 /**
4049 * ring_buffer_read_start - start a non consuming read of the buffer
4050 * @iter: The iterator returned by ring_buffer_read_prepare
4051 *
4052 * This finalizes the startup of an iteration through the buffer.
4053 * The iterator comes from a call to ring_buffer_read_prepare and
4054 * an intervening ring_buffer_read_prepare_sync must have been
4055 * performed.
4056 *
4057 * Must be paired with ring_buffer_finish.
4058 */
4059 void
4060 ring_buffer_read_start(struct ring_buffer_iter *iter)
4061 {
4062 struct ring_buffer_per_cpu *cpu_buffer;
4063 unsigned long flags;
4064
4065 if (!iter)
4066 return;
4067
4068 cpu_buffer = iter->cpu_buffer;
4069
4070 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4071 arch_spin_lock(&cpu_buffer->lock);
4072 rb_iter_reset(iter);
4073 arch_spin_unlock(&cpu_buffer->lock);
4074 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4077
4078 /**
4079 * ring_buffer_finish - finish reading the iterator of the buffer
4080 * @iter: The iterator retrieved by ring_buffer_start
4081 *
4082 * This re-enables the recording to the buffer, and frees the
4083 * iterator.
4084 */
4085 void
4086 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4087 {
4088 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4089 unsigned long flags;
4090
4091 /*
4092 * Ring buffer is disabled from recording, here's a good place
4093 * to check the integrity of the ring buffer.
4094 * Must prevent readers from trying to read, as the check
4095 * clears the HEAD page and readers require it.
4096 */
4097 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4098 rb_check_pages(cpu_buffer);
4099 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4100
4101 atomic_dec(&cpu_buffer->record_disabled);
4102 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4103 kfree(iter);
4104 }
4105 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4106
4107 /**
4108 * ring_buffer_read - read the next item in the ring buffer by the iterator
4109 * @iter: The ring buffer iterator
4110 * @ts: The time stamp of the event read.
4111 *
4112 * This reads the next event in the ring buffer and increments the iterator.
4113 */
4114 struct ring_buffer_event *
4115 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4116 {
4117 struct ring_buffer_event *event;
4118 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4119 unsigned long flags;
4120
4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122 again:
4123 event = rb_iter_peek(iter, ts);
4124 if (!event)
4125 goto out;
4126
4127 if (event->type_len == RINGBUF_TYPE_PADDING)
4128 goto again;
4129
4130 rb_advance_iter(iter);
4131 out:
4132 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4133
4134 return event;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_read);
4137
4138 /**
4139 * ring_buffer_size - return the size of the ring buffer (in bytes)
4140 * @buffer: The ring buffer.
4141 */
4142 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4143 {
4144 /*
4145 * Earlier, this method returned
4146 * BUF_PAGE_SIZE * buffer->nr_pages
4147 * Since the nr_pages field is now removed, we have converted this to
4148 * return the per cpu buffer value.
4149 */
4150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4151 return 0;
4152
4153 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4154 }
4155 EXPORT_SYMBOL_GPL(ring_buffer_size);
4156
4157 static void
4158 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4159 {
4160 rb_head_page_deactivate(cpu_buffer);
4161
4162 cpu_buffer->head_page
4163 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4164 local_set(&cpu_buffer->head_page->write, 0);
4165 local_set(&cpu_buffer->head_page->entries, 0);
4166 local_set(&cpu_buffer->head_page->page->commit, 0);
4167
4168 cpu_buffer->head_page->read = 0;
4169
4170 cpu_buffer->tail_page = cpu_buffer->head_page;
4171 cpu_buffer->commit_page = cpu_buffer->head_page;
4172
4173 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4174 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4175 local_set(&cpu_buffer->reader_page->write, 0);
4176 local_set(&cpu_buffer->reader_page->entries, 0);
4177 local_set(&cpu_buffer->reader_page->page->commit, 0);
4178 cpu_buffer->reader_page->read = 0;
4179
4180 local_set(&cpu_buffer->entries_bytes, 0);
4181 local_set(&cpu_buffer->overrun, 0);
4182 local_set(&cpu_buffer->commit_overrun, 0);
4183 local_set(&cpu_buffer->dropped_events, 0);
4184 local_set(&cpu_buffer->entries, 0);
4185 local_set(&cpu_buffer->committing, 0);
4186 local_set(&cpu_buffer->commits, 0);
4187 cpu_buffer->read = 0;
4188 cpu_buffer->read_bytes = 0;
4189
4190 cpu_buffer->write_stamp = 0;
4191 cpu_buffer->read_stamp = 0;
4192
4193 cpu_buffer->lost_events = 0;
4194 cpu_buffer->last_overrun = 0;
4195
4196 rb_head_page_activate(cpu_buffer);
4197 }
4198
4199 /**
4200 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4201 * @buffer: The ring buffer to reset a per cpu buffer of
4202 * @cpu: The CPU buffer to be reset
4203 */
4204 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4205 {
4206 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4207 unsigned long flags;
4208
4209 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210 return;
4211
4212 atomic_inc(&buffer->resize_disabled);
4213 atomic_inc(&cpu_buffer->record_disabled);
4214
4215 /* Make sure all commits have finished */
4216 synchronize_sched();
4217
4218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219
4220 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4221 goto out;
4222
4223 arch_spin_lock(&cpu_buffer->lock);
4224
4225 rb_reset_cpu(cpu_buffer);
4226
4227 arch_spin_unlock(&cpu_buffer->lock);
4228
4229 out:
4230 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4231
4232 atomic_dec(&cpu_buffer->record_disabled);
4233 atomic_dec(&buffer->resize_disabled);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4236
4237 /**
4238 * ring_buffer_reset - reset a ring buffer
4239 * @buffer: The ring buffer to reset all cpu buffers
4240 */
4241 void ring_buffer_reset(struct ring_buffer *buffer)
4242 {
4243 int cpu;
4244
4245 for_each_buffer_cpu(buffer, cpu)
4246 ring_buffer_reset_cpu(buffer, cpu);
4247 }
4248 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4249
4250 /**
4251 * rind_buffer_empty - is the ring buffer empty?
4252 * @buffer: The ring buffer to test
4253 */
4254 int ring_buffer_empty(struct ring_buffer *buffer)
4255 {
4256 struct ring_buffer_per_cpu *cpu_buffer;
4257 unsigned long flags;
4258 int dolock;
4259 int cpu;
4260 int ret;
4261
4262 dolock = rb_ok_to_lock();
4263
4264 /* yes this is racy, but if you don't like the race, lock the buffer */
4265 for_each_buffer_cpu(buffer, cpu) {
4266 cpu_buffer = buffer->buffers[cpu];
4267 local_irq_save(flags);
4268 if (dolock)
4269 raw_spin_lock(&cpu_buffer->reader_lock);
4270 ret = rb_per_cpu_empty(cpu_buffer);
4271 if (dolock)
4272 raw_spin_unlock(&cpu_buffer->reader_lock);
4273 local_irq_restore(flags);
4274
4275 if (!ret)
4276 return 0;
4277 }
4278
4279 return 1;
4280 }
4281 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4282
4283 /**
4284 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4285 * @buffer: The ring buffer
4286 * @cpu: The CPU buffer to test
4287 */
4288 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4289 {
4290 struct ring_buffer_per_cpu *cpu_buffer;
4291 unsigned long flags;
4292 int dolock;
4293 int ret;
4294
4295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4296 return 1;
4297
4298 dolock = rb_ok_to_lock();
4299
4300 cpu_buffer = buffer->buffers[cpu];
4301 local_irq_save(flags);
4302 if (dolock)
4303 raw_spin_lock(&cpu_buffer->reader_lock);
4304 ret = rb_per_cpu_empty(cpu_buffer);
4305 if (dolock)
4306 raw_spin_unlock(&cpu_buffer->reader_lock);
4307 local_irq_restore(flags);
4308
4309 return ret;
4310 }
4311 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4312
4313 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4314 /**
4315 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4316 * @buffer_a: One buffer to swap with
4317 * @buffer_b: The other buffer to swap with
4318 *
4319 * This function is useful for tracers that want to take a "snapshot"
4320 * of a CPU buffer and has another back up buffer lying around.
4321 * it is expected that the tracer handles the cpu buffer not being
4322 * used at the moment.
4323 */
4324 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4325 struct ring_buffer *buffer_b, int cpu)
4326 {
4327 struct ring_buffer_per_cpu *cpu_buffer_a;
4328 struct ring_buffer_per_cpu *cpu_buffer_b;
4329 int ret = -EINVAL;
4330
4331 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4332 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4333 goto out;
4334
4335 cpu_buffer_a = buffer_a->buffers[cpu];
4336 cpu_buffer_b = buffer_b->buffers[cpu];
4337
4338 /* At least make sure the two buffers are somewhat the same */
4339 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4340 goto out;
4341
4342 ret = -EAGAIN;
4343
4344 if (ring_buffer_flags != RB_BUFFERS_ON)
4345 goto out;
4346
4347 if (atomic_read(&buffer_a->record_disabled))
4348 goto out;
4349
4350 if (atomic_read(&buffer_b->record_disabled))
4351 goto out;
4352
4353 if (atomic_read(&cpu_buffer_a->record_disabled))
4354 goto out;
4355
4356 if (atomic_read(&cpu_buffer_b->record_disabled))
4357 goto out;
4358
4359 /*
4360 * We can't do a synchronize_sched here because this
4361 * function can be called in atomic context.
4362 * Normally this will be called from the same CPU as cpu.
4363 * If not it's up to the caller to protect this.
4364 */
4365 atomic_inc(&cpu_buffer_a->record_disabled);
4366 atomic_inc(&cpu_buffer_b->record_disabled);
4367
4368 ret = -EBUSY;
4369 if (local_read(&cpu_buffer_a->committing))
4370 goto out_dec;
4371 if (local_read(&cpu_buffer_b->committing))
4372 goto out_dec;
4373
4374 buffer_a->buffers[cpu] = cpu_buffer_b;
4375 buffer_b->buffers[cpu] = cpu_buffer_a;
4376
4377 cpu_buffer_b->buffer = buffer_a;
4378 cpu_buffer_a->buffer = buffer_b;
4379
4380 ret = 0;
4381
4382 out_dec:
4383 atomic_dec(&cpu_buffer_a->record_disabled);
4384 atomic_dec(&cpu_buffer_b->record_disabled);
4385 out:
4386 return ret;
4387 }
4388 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4389 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4390
4391 /**
4392 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4393 * @buffer: the buffer to allocate for.
4394 *
4395 * This function is used in conjunction with ring_buffer_read_page.
4396 * When reading a full page from the ring buffer, these functions
4397 * can be used to speed up the process. The calling function should
4398 * allocate a few pages first with this function. Then when it
4399 * needs to get pages from the ring buffer, it passes the result
4400 * of this function into ring_buffer_read_page, which will swap
4401 * the page that was allocated, with the read page of the buffer.
4402 *
4403 * Returns:
4404 * The page allocated, or NULL on error.
4405 */
4406 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4407 {
4408 struct buffer_data_page *bpage;
4409 struct page *page;
4410
4411 page = alloc_pages_node(cpu_to_node(cpu),
4412 GFP_KERNEL | __GFP_NORETRY, 0);
4413 if (!page)
4414 return NULL;
4415
4416 bpage = page_address(page);
4417
4418 rb_init_page(bpage);
4419
4420 return bpage;
4421 }
4422 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4423
4424 /**
4425 * ring_buffer_free_read_page - free an allocated read page
4426 * @buffer: the buffer the page was allocate for
4427 * @data: the page to free
4428 *
4429 * Free a page allocated from ring_buffer_alloc_read_page.
4430 */
4431 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4432 {
4433 free_page((unsigned long)data);
4434 }
4435 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4436
4437 /**
4438 * ring_buffer_read_page - extract a page from the ring buffer
4439 * @buffer: buffer to extract from
4440 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4441 * @len: amount to extract
4442 * @cpu: the cpu of the buffer to extract
4443 * @full: should the extraction only happen when the page is full.
4444 *
4445 * This function will pull out a page from the ring buffer and consume it.
4446 * @data_page must be the address of the variable that was returned
4447 * from ring_buffer_alloc_read_page. This is because the page might be used
4448 * to swap with a page in the ring buffer.
4449 *
4450 * for example:
4451 * rpage = ring_buffer_alloc_read_page(buffer);
4452 * if (!rpage)
4453 * return error;
4454 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4455 * if (ret >= 0)
4456 * process_page(rpage, ret);
4457 *
4458 * When @full is set, the function will not return true unless
4459 * the writer is off the reader page.
4460 *
4461 * Note: it is up to the calling functions to handle sleeps and wakeups.
4462 * The ring buffer can be used anywhere in the kernel and can not
4463 * blindly call wake_up. The layer that uses the ring buffer must be
4464 * responsible for that.
4465 *
4466 * Returns:
4467 * >=0 if data has been transferred, returns the offset of consumed data.
4468 * <0 if no data has been transferred.
4469 */
4470 int ring_buffer_read_page(struct ring_buffer *buffer,
4471 void **data_page, size_t len, int cpu, int full)
4472 {
4473 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4474 struct ring_buffer_event *event;
4475 struct buffer_data_page *bpage;
4476 struct buffer_page *reader;
4477 unsigned long missed_events;
4478 unsigned long flags;
4479 unsigned int commit;
4480 unsigned int read;
4481 u64 save_timestamp;
4482 int ret = -1;
4483
4484 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4485 goto out;
4486
4487 /*
4488 * If len is not big enough to hold the page header, then
4489 * we can not copy anything.
4490 */
4491 if (len <= BUF_PAGE_HDR_SIZE)
4492 goto out;
4493
4494 len -= BUF_PAGE_HDR_SIZE;
4495
4496 if (!data_page)
4497 goto out;
4498
4499 bpage = *data_page;
4500 if (!bpage)
4501 goto out;
4502
4503 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4504
4505 reader = rb_get_reader_page(cpu_buffer);
4506 if (!reader)
4507 goto out_unlock;
4508
4509 event = rb_reader_event(cpu_buffer);
4510
4511 read = reader->read;
4512 commit = rb_page_commit(reader);
4513
4514 /* Check if any events were dropped */
4515 missed_events = cpu_buffer->lost_events;
4516
4517 /*
4518 * If this page has been partially read or
4519 * if len is not big enough to read the rest of the page or
4520 * a writer is still on the page, then
4521 * we must copy the data from the page to the buffer.
4522 * Otherwise, we can simply swap the page with the one passed in.
4523 */
4524 if (read || (len < (commit - read)) ||
4525 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4526 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4527 unsigned int rpos = read;
4528 unsigned int pos = 0;
4529 unsigned int size;
4530
4531 if (full)
4532 goto out_unlock;
4533
4534 if (len > (commit - read))
4535 len = (commit - read);
4536
4537 /* Always keep the time extend and data together */
4538 size = rb_event_ts_length(event);
4539
4540 if (len < size)
4541 goto out_unlock;
4542
4543 /* save the current timestamp, since the user will need it */
4544 save_timestamp = cpu_buffer->read_stamp;
4545
4546 /* Need to copy one event at a time */
4547 do {
4548 /* We need the size of one event, because
4549 * rb_advance_reader only advances by one event,
4550 * whereas rb_event_ts_length may include the size of
4551 * one or two events.
4552 * We have already ensured there's enough space if this
4553 * is a time extend. */
4554 size = rb_event_length(event);
4555 memcpy(bpage->data + pos, rpage->data + rpos, size);
4556
4557 len -= size;
4558
4559 rb_advance_reader(cpu_buffer);
4560 rpos = reader->read;
4561 pos += size;
4562
4563 if (rpos >= commit)
4564 break;
4565
4566 event = rb_reader_event(cpu_buffer);
4567 /* Always keep the time extend and data together */
4568 size = rb_event_ts_length(event);
4569 } while (len >= size);
4570
4571 /* update bpage */
4572 local_set(&bpage->commit, pos);
4573 bpage->time_stamp = save_timestamp;
4574
4575 /* we copied everything to the beginning */
4576 read = 0;
4577 } else {
4578 /* update the entry counter */
4579 cpu_buffer->read += rb_page_entries(reader);
4580 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4581
4582 /* swap the pages */
4583 rb_init_page(bpage);
4584 bpage = reader->page;
4585 reader->page = *data_page;
4586 local_set(&reader->write, 0);
4587 local_set(&reader->entries, 0);
4588 reader->read = 0;
4589 *data_page = bpage;
4590
4591 /*
4592 * Use the real_end for the data size,
4593 * This gives us a chance to store the lost events
4594 * on the page.
4595 */
4596 if (reader->real_end)
4597 local_set(&bpage->commit, reader->real_end);
4598 }
4599 ret = read;
4600
4601 cpu_buffer->lost_events = 0;
4602
4603 commit = local_read(&bpage->commit);
4604 /*
4605 * Set a flag in the commit field if we lost events
4606 */
4607 if (missed_events) {
4608 /* If there is room at the end of the page to save the
4609 * missed events, then record it there.
4610 */
4611 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4612 memcpy(&bpage->data[commit], &missed_events,
4613 sizeof(missed_events));
4614 local_add(RB_MISSED_STORED, &bpage->commit);
4615 commit += sizeof(missed_events);
4616 }
4617 local_add(RB_MISSED_EVENTS, &bpage->commit);
4618 }
4619
4620 /*
4621 * This page may be off to user land. Zero it out here.
4622 */
4623 if (commit < BUF_PAGE_SIZE)
4624 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4625
4626 out_unlock:
4627 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4628
4629 out:
4630 return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4633
4634 #ifdef CONFIG_HOTPLUG_CPU
4635 static int rb_cpu_notify(struct notifier_block *self,
4636 unsigned long action, void *hcpu)
4637 {
4638 struct ring_buffer *buffer =
4639 container_of(self, struct ring_buffer, cpu_notify);
4640 long cpu = (long)hcpu;
4641 int cpu_i, nr_pages_same;
4642 unsigned int nr_pages;
4643
4644 switch (action) {
4645 case CPU_UP_PREPARE:
4646 case CPU_UP_PREPARE_FROZEN:
4647 if (cpumask_test_cpu(cpu, buffer->cpumask))
4648 return NOTIFY_OK;
4649
4650 nr_pages = 0;
4651 nr_pages_same = 1;
4652 /* check if all cpu sizes are same */
4653 for_each_buffer_cpu(buffer, cpu_i) {
4654 /* fill in the size from first enabled cpu */
4655 if (nr_pages == 0)
4656 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4657 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4658 nr_pages_same = 0;
4659 break;
4660 }
4661 }
4662 /* allocate minimum pages, user can later expand it */
4663 if (!nr_pages_same)
4664 nr_pages = 2;
4665 buffer->buffers[cpu] =
4666 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4667 if (!buffer->buffers[cpu]) {
4668 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4669 cpu);
4670 return NOTIFY_OK;
4671 }
4672 smp_wmb();
4673 cpumask_set_cpu(cpu, buffer->cpumask);
4674 break;
4675 case CPU_DOWN_PREPARE:
4676 case CPU_DOWN_PREPARE_FROZEN:
4677 /*
4678 * Do nothing.
4679 * If we were to free the buffer, then the user would
4680 * lose any trace that was in the buffer.
4681 */
4682 break;
4683 default:
4684 break;
4685 }
4686 return NOTIFY_OK;
4687 }
4688 #endif
4689
4690 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4691 /*
4692 * This is a basic integrity check of the ring buffer.
4693 * Late in the boot cycle this test will run when configured in.
4694 * It will kick off a thread per CPU that will go into a loop
4695 * writing to the per cpu ring buffer various sizes of data.
4696 * Some of the data will be large items, some small.
4697 *
4698 * Another thread is created that goes into a spin, sending out
4699 * IPIs to the other CPUs to also write into the ring buffer.
4700 * this is to test the nesting ability of the buffer.
4701 *
4702 * Basic stats are recorded and reported. If something in the
4703 * ring buffer should happen that's not expected, a big warning
4704 * is displayed and all ring buffers are disabled.
4705 */
4706 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4707
4708 struct rb_test_data {
4709 struct ring_buffer *buffer;
4710 unsigned long events;
4711 unsigned long bytes_written;
4712 unsigned long bytes_alloc;
4713 unsigned long bytes_dropped;
4714 unsigned long events_nested;
4715 unsigned long bytes_written_nested;
4716 unsigned long bytes_alloc_nested;
4717 unsigned long bytes_dropped_nested;
4718 int min_size_nested;
4719 int max_size_nested;
4720 int max_size;
4721 int min_size;
4722 int cpu;
4723 int cnt;
4724 };
4725
4726 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4727
4728 /* 1 meg per cpu */
4729 #define RB_TEST_BUFFER_SIZE 1048576
4730
4731 static char rb_string[] __initdata =
4732 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4733 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4734 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4735
4736 static bool rb_test_started __initdata;
4737
4738 struct rb_item {
4739 int size;
4740 char str[];
4741 };
4742
4743 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4744 {
4745 struct ring_buffer_event *event;
4746 struct rb_item *item;
4747 bool started;
4748 int event_len;
4749 int size;
4750 int len;
4751 int cnt;
4752
4753 /* Have nested writes different that what is written */
4754 cnt = data->cnt + (nested ? 27 : 0);
4755
4756 /* Multiply cnt by ~e, to make some unique increment */
4757 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4758
4759 len = size + sizeof(struct rb_item);
4760
4761 started = rb_test_started;
4762 /* read rb_test_started before checking buffer enabled */
4763 smp_rmb();
4764
4765 event = ring_buffer_lock_reserve(data->buffer, len);
4766 if (!event) {
4767 /* Ignore dropped events before test starts. */
4768 if (started) {
4769 if (nested)
4770 data->bytes_dropped += len;
4771 else
4772 data->bytes_dropped_nested += len;
4773 }
4774 return len;
4775 }
4776
4777 event_len = ring_buffer_event_length(event);
4778
4779 if (RB_WARN_ON(data->buffer, event_len < len))
4780 goto out;
4781
4782 item = ring_buffer_event_data(event);
4783 item->size = size;
4784 memcpy(item->str, rb_string, size);
4785
4786 if (nested) {
4787 data->bytes_alloc_nested += event_len;
4788 data->bytes_written_nested += len;
4789 data->events_nested++;
4790 if (!data->min_size_nested || len < data->min_size_nested)
4791 data->min_size_nested = len;
4792 if (len > data->max_size_nested)
4793 data->max_size_nested = len;
4794 } else {
4795 data->bytes_alloc += event_len;
4796 data->bytes_written += len;
4797 data->events++;
4798 if (!data->min_size || len < data->min_size)
4799 data->max_size = len;
4800 if (len > data->max_size)
4801 data->max_size = len;
4802 }
4803
4804 out:
4805 ring_buffer_unlock_commit(data->buffer, event);
4806
4807 return 0;
4808 }
4809
4810 static __init int rb_test(void *arg)
4811 {
4812 struct rb_test_data *data = arg;
4813
4814 while (!kthread_should_stop()) {
4815 rb_write_something(data, false);
4816 data->cnt++;
4817
4818 set_current_state(TASK_INTERRUPTIBLE);
4819 /* Now sleep between a min of 100-300us and a max of 1ms */
4820 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4821 }
4822
4823 return 0;
4824 }
4825
4826 static __init void rb_ipi(void *ignore)
4827 {
4828 struct rb_test_data *data;
4829 int cpu = smp_processor_id();
4830
4831 data = &rb_data[cpu];
4832 rb_write_something(data, true);
4833 }
4834
4835 static __init int rb_hammer_test(void *arg)
4836 {
4837 while (!kthread_should_stop()) {
4838
4839 /* Send an IPI to all cpus to write data! */
4840 smp_call_function(rb_ipi, NULL, 1);
4841 /* No sleep, but for non preempt, let others run */
4842 schedule();
4843 }
4844
4845 return 0;
4846 }
4847
4848 static __init int test_ringbuffer(void)
4849 {
4850 struct task_struct *rb_hammer;
4851 struct ring_buffer *buffer;
4852 int cpu;
4853 int ret = 0;
4854
4855 pr_info("Running ring buffer tests...\n");
4856
4857 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4858 if (WARN_ON(!buffer))
4859 return 0;
4860
4861 /* Disable buffer so that threads can't write to it yet */
4862 ring_buffer_record_off(buffer);
4863
4864 for_each_online_cpu(cpu) {
4865 rb_data[cpu].buffer = buffer;
4866 rb_data[cpu].cpu = cpu;
4867 rb_data[cpu].cnt = cpu;
4868 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4869 "rbtester/%d", cpu);
4870 if (WARN_ON(!rb_threads[cpu])) {
4871 pr_cont("FAILED\n");
4872 ret = -1;
4873 goto out_free;
4874 }
4875
4876 kthread_bind(rb_threads[cpu], cpu);
4877 wake_up_process(rb_threads[cpu]);
4878 }
4879
4880 /* Now create the rb hammer! */
4881 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4882 if (WARN_ON(!rb_hammer)) {
4883 pr_cont("FAILED\n");
4884 ret = -1;
4885 goto out_free;
4886 }
4887
4888 ring_buffer_record_on(buffer);
4889 /*
4890 * Show buffer is enabled before setting rb_test_started.
4891 * Yes there's a small race window where events could be
4892 * dropped and the thread wont catch it. But when a ring
4893 * buffer gets enabled, there will always be some kind of
4894 * delay before other CPUs see it. Thus, we don't care about
4895 * those dropped events. We care about events dropped after
4896 * the threads see that the buffer is active.
4897 */
4898 smp_wmb();
4899 rb_test_started = true;
4900
4901 set_current_state(TASK_INTERRUPTIBLE);
4902 /* Just run for 10 seconds */;
4903 schedule_timeout(10 * HZ);
4904
4905 kthread_stop(rb_hammer);
4906
4907 out_free:
4908 for_each_online_cpu(cpu) {
4909 if (!rb_threads[cpu])
4910 break;
4911 kthread_stop(rb_threads[cpu]);
4912 }
4913 if (ret) {
4914 ring_buffer_free(buffer);
4915 return ret;
4916 }
4917
4918 /* Report! */
4919 pr_info("finished\n");
4920 for_each_online_cpu(cpu) {
4921 struct ring_buffer_event *event;
4922 struct rb_test_data *data = &rb_data[cpu];
4923 struct rb_item *item;
4924 unsigned long total_events;
4925 unsigned long total_dropped;
4926 unsigned long total_written;
4927 unsigned long total_alloc;
4928 unsigned long total_read = 0;
4929 unsigned long total_size = 0;
4930 unsigned long total_len = 0;
4931 unsigned long total_lost = 0;
4932 unsigned long lost;
4933 int big_event_size;
4934 int small_event_size;
4935
4936 ret = -1;
4937
4938 total_events = data->events + data->events_nested;
4939 total_written = data->bytes_written + data->bytes_written_nested;
4940 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4941 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4942
4943 big_event_size = data->max_size + data->max_size_nested;
4944 small_event_size = data->min_size + data->min_size_nested;
4945
4946 pr_info("CPU %d:\n", cpu);
4947 pr_info(" events: %ld\n", total_events);
4948 pr_info(" dropped bytes: %ld\n", total_dropped);
4949 pr_info(" alloced bytes: %ld\n", total_alloc);
4950 pr_info(" written bytes: %ld\n", total_written);
4951 pr_info(" biggest event: %d\n", big_event_size);
4952 pr_info(" smallest event: %d\n", small_event_size);
4953
4954 if (RB_WARN_ON(buffer, total_dropped))
4955 break;
4956
4957 ret = 0;
4958
4959 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4960 total_lost += lost;
4961 item = ring_buffer_event_data(event);
4962 total_len += ring_buffer_event_length(event);
4963 total_size += item->size + sizeof(struct rb_item);
4964 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4965 pr_info("FAILED!\n");
4966 pr_info("buffer had: %.*s\n", item->size, item->str);
4967 pr_info("expected: %.*s\n", item->size, rb_string);
4968 RB_WARN_ON(buffer, 1);
4969 ret = -1;
4970 break;
4971 }
4972 total_read++;
4973 }
4974 if (ret)
4975 break;
4976
4977 ret = -1;
4978
4979 pr_info(" read events: %ld\n", total_read);
4980 pr_info(" lost events: %ld\n", total_lost);
4981 pr_info(" total events: %ld\n", total_lost + total_read);
4982 pr_info(" recorded len bytes: %ld\n", total_len);
4983 pr_info(" recorded size bytes: %ld\n", total_size);
4984 if (total_lost)
4985 pr_info(" With dropped events, record len and size may not match\n"
4986 " alloced and written from above\n");
4987 if (!total_lost) {
4988 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4989 total_size != total_written))
4990 break;
4991 }
4992 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4993 break;
4994
4995 ret = 0;
4996 }
4997 if (!ret)
4998 pr_info("Ring buffer PASSED!\n");
4999
5000 ring_buffer_free(buffer);
5001 return 0;
5002 }
5003
5004 late_initcall(test_ringbuffer);
5005 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */