Linux 3.10.55
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
596 return 0;
597 }
598
599 /**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615 {
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
624
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
627 }
628
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
631
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
636 }
637
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
650 } \
651 _____ret; \
652 })
653
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
656
657 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
658 {
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
661 }
662
663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664 {
665 u64 time;
666
667 preempt_disable_notrace();
668 time = rb_time_stamp(buffer);
669 preempt_enable_no_resched_notrace();
670
671 return time;
672 }
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674
675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
677 {
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
680 }
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682
683 /*
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
688 *
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
694 *
695 * Here lies the problem.
696 *
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
703 *
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
706 *
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
710 *
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
714 *
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
720 *
721 * Note we can not trust the prev pointer of the head page, because:
722 *
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
732 *
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
737 *
738 * (see __rb_reserve_next() to see where this happens)
739 *
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
746 *
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
750 */
751
752 #define RB_PAGE_NORMAL 0UL
753 #define RB_PAGE_HEAD 1UL
754 #define RB_PAGE_UPDATE 2UL
755
756
757 #define RB_FLAG_MASK 3UL
758
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED 4UL
761
762 /*
763 * rb_list_head - remove any bit
764 */
765 static struct list_head *rb_list_head(struct list_head *list)
766 {
767 unsigned long val = (unsigned long)list;
768
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
770 }
771
772 /*
773 * rb_is_head_page - test if the given page is the head page
774 *
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
779 */
780 static inline int
781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
783 {
784 unsigned long val;
785
786 val = (unsigned long)list->next;
787
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
790
791 return val & RB_FLAG_MASK;
792 }
793
794 /*
795 * rb_is_reader_page
796 *
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
800 */
801 static int rb_is_reader_page(struct buffer_page *page)
802 {
803 struct list_head *list = page->list.prev;
804
805 return rb_list_head(list->next) != &page->list;
806 }
807
808 /*
809 * rb_set_list_to_head - set a list_head to be pointing to head.
810 */
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
813 {
814 unsigned long *ptr;
815
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
819 }
820
821 /*
822 * rb_head_page_activate - sets up head page
823 */
824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825 {
826 struct buffer_page *head;
827
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
831
832 /*
833 * Set the previous list pointer to have the HEAD flag.
834 */
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
836 }
837
838 static void rb_list_head_clear(struct list_head *list)
839 {
840 unsigned long *ptr = (unsigned long *)&list->next;
841
842 *ptr &= ~RB_FLAG_MASK;
843 }
844
845 /*
846 * rb_head_page_dactivate - clears head page ptr (for free list)
847 */
848 static void
849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850 {
851 struct list_head *hd;
852
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
855
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
858 }
859
860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
864 {
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
868
869 list = &prev->list;
870
871 val &= ~RB_FLAG_MASK;
872
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
875
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
879
880 return ret & RB_FLAG_MASK;
881 }
882
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
887 {
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
890 }
891
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
896 {
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
899 }
900
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
905 {
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
908 }
909
910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
912 {
913 struct list_head *p = rb_list_head((*bpage)->list.next);
914
915 *bpage = list_entry(p, struct buffer_page, list);
916 }
917
918 static struct buffer_page *
919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920 {
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
925
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
928
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
933
934 page = head = cpu_buffer->head_page;
935 /*
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
940 */
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
946 }
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
949 }
950
951 RB_WARN_ON(cpu_buffer, 1);
952
953 return NULL;
954 }
955
956 static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
958 {
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
962
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
965
966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
967
968 return ret == val;
969 }
970
971 /*
972 * rb_tail_page_update - move the tail page forward
973 *
974 * Returns 1 if moved tail page, 0 if someone else did.
975 */
976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
979 {
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
984
985 /*
986 * The tail page now needs to be moved forward.
987 *
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
991 *
992 * We add a counter to the write field to denote this.
993 */
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996
997 /*
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1000 */
1001 barrier();
1002
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013 /*
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
1017 *
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
1022 */
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1025
1026 /*
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1030 */
1031 local_set(&next_page->page->commit, 0);
1032
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1035
1036 if (old_tail == tail_page)
1037 ret = 1;
1038 }
1039
1040 return ret;
1041 }
1042
1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1045 {
1046 unsigned long val = (unsigned long)bpage;
1047
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1059 {
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1065 }
1066
1067 /**
1068 * check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
1071 * As a safety measure we check to make sure the data pages have not
1072 * been corrupted.
1073 */
1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075 {
1076 struct list_head *head = cpu_buffer->pages;
1077 struct buffer_page *bpage, *tmp;
1078
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1082
1083 rb_head_page_deactivate(cpu_buffer);
1084
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
1089
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1092
1093 list_for_each_entry_safe(bpage, tmp, head, list) {
1094 if (RB_WARN_ON(cpu_buffer,
1095 bpage->list.next->prev != &bpage->list))
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
1098 bpage->list.prev->next != &bpage->list))
1099 return -1;
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
1102 }
1103
1104 rb_head_page_activate(cpu_buffer);
1105
1106 return 0;
1107 }
1108
1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1110 {
1111 int i;
1112 struct buffer_page *bpage, *tmp;
1113
1114 for (i = 0; i < nr_pages; i++) {
1115 struct page *page;
1116 /*
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1120 */
1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122 GFP_KERNEL | __GFP_NORETRY,
1123 cpu_to_node(cpu));
1124 if (!bpage)
1125 goto free_pages;
1126
1127 list_add(&bpage->list, pages);
1128
1129 page = alloc_pages_node(cpu_to_node(cpu),
1130 GFP_KERNEL | __GFP_NORETRY, 0);
1131 if (!page)
1132 goto free_pages;
1133 bpage->page = page_address(page);
1134 rb_init_page(bpage->page);
1135 }
1136
1137 return 0;
1138
1139 free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1143 }
1144
1145 return -ENOMEM;
1146 }
1147
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1150 {
1151 LIST_HEAD(pages);
1152
1153 WARN_ON(!nr_pages);
1154
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1157
1158 /*
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1162 */
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
1165
1166 cpu_buffer->nr_pages = nr_pages;
1167
1168 rb_check_pages(cpu_buffer);
1169
1170 return 0;
1171 }
1172
1173 static struct ring_buffer_per_cpu *
1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1175 {
1176 struct ring_buffer_per_cpu *cpu_buffer;
1177 struct buffer_page *bpage;
1178 struct page *page;
1179 int ret;
1180
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1185
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192 init_completion(&cpu_buffer->update_done);
1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1195
1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197 GFP_KERNEL, cpu_to_node(cpu));
1198 if (!bpage)
1199 goto fail_free_buffer;
1200
1201 rb_check_bpage(cpu_buffer, bpage);
1202
1203 cpu_buffer->reader_page = bpage;
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
1206 goto fail_free_reader;
1207 bpage->page = page_address(page);
1208 rb_init_page(bpage->page);
1209
1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1212
1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214 if (ret < 0)
1215 goto fail_free_reader;
1216
1217 cpu_buffer->head_page
1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1220
1221 rb_head_page_activate(cpu_buffer);
1222
1223 return cpu_buffer;
1224
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1227
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1231 }
1232
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234 {
1235 struct list_head *head = cpu_buffer->pages;
1236 struct buffer_page *bpage, *tmp;
1237
1238 free_buffer_page(cpu_buffer->reader_page);
1239
1240 rb_head_page_deactivate(cpu_buffer);
1241
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1246 }
1247 bpage = list_entry(head, struct buffer_page, list);
1248 free_buffer_page(bpage);
1249 }
1250
1251 kfree(cpu_buffer);
1252 }
1253
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
1257 #endif
1258
1259 /**
1260 * ring_buffer_alloc - allocate a new ring_buffer
1261 * @size: the size in bytes per cpu that is needed.
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
1271 {
1272 struct ring_buffer *buffer;
1273 int bsize;
1274 int cpu, nr_pages;
1275
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1281
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1284
1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 buffer->flags = flags;
1287 buffer->clock = trace_clock_local;
1288 buffer->reader_lock_key = key;
1289
1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291 init_waitqueue_head(&buffer->irq_work.waiters);
1292
1293 /* need at least two pages */
1294 if (nr_pages < 2)
1295 nr_pages = 2;
1296
1297 /*
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1301 */
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 get_online_cpus();
1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
1305 #else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307 #endif
1308 buffer->cpus = nr_cpu_ids;
1309
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
1314 goto fail_free_cpumask;
1315
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1321 }
1322
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
1326 register_cpu_notifier(&buffer->cpu_notify);
1327 #endif
1328
1329 put_online_cpus();
1330 mutex_init(&buffer->mutex);
1331
1332 return buffer;
1333
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 }
1339 kfree(buffer->buffers);
1340
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
1343 put_online_cpus();
1344
1345 fail_free_buffer:
1346 kfree(buffer);
1347 return NULL;
1348 }
1349 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1350
1351 /**
1352 * ring_buffer_free - free a ring buffer.
1353 * @buffer: the buffer to free.
1354 */
1355 void
1356 ring_buffer_free(struct ring_buffer *buffer)
1357 {
1358 int cpu;
1359
1360 get_online_cpus();
1361
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 unregister_cpu_notifier(&buffer->cpu_notify);
1364 #endif
1365
1366 for_each_buffer_cpu(buffer, cpu)
1367 rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
1369 put_online_cpus();
1370
1371 kfree(buffer->buffers);
1372 free_cpumask_var(buffer->cpumask);
1373
1374 kfree(buffer);
1375 }
1376 EXPORT_SYMBOL_GPL(ring_buffer_free);
1377
1378 void ring_buffer_set_clock(struct ring_buffer *buffer,
1379 u64 (*clock)(void))
1380 {
1381 buffer->clock = clock;
1382 }
1383
1384 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1385
1386 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1387 {
1388 return local_read(&bpage->entries) & RB_WRITE_MASK;
1389 }
1390
1391 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1392 {
1393 return local_read(&bpage->write) & RB_WRITE_MASK;
1394 }
1395
1396 static int
1397 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1398 {
1399 struct list_head *tail_page, *to_remove, *next_page;
1400 struct buffer_page *to_remove_page, *tmp_iter_page;
1401 struct buffer_page *last_page, *first_page;
1402 unsigned int nr_removed;
1403 unsigned long head_bit;
1404 int page_entries;
1405
1406 head_bit = 0;
1407
1408 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1409 atomic_inc(&cpu_buffer->record_disabled);
1410 /*
1411 * We don't race with the readers since we have acquired the reader
1412 * lock. We also don't race with writers after disabling recording.
1413 * This makes it easy to figure out the first and the last page to be
1414 * removed from the list. We unlink all the pages in between including
1415 * the first and last pages. This is done in a busy loop so that we
1416 * lose the least number of traces.
1417 * The pages are freed after we restart recording and unlock readers.
1418 */
1419 tail_page = &cpu_buffer->tail_page->list;
1420
1421 /*
1422 * tail page might be on reader page, we remove the next page
1423 * from the ring buffer
1424 */
1425 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1426 tail_page = rb_list_head(tail_page->next);
1427 to_remove = tail_page;
1428
1429 /* start of pages to remove */
1430 first_page = list_entry(rb_list_head(to_remove->next),
1431 struct buffer_page, list);
1432
1433 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1434 to_remove = rb_list_head(to_remove)->next;
1435 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1436 }
1437
1438 next_page = rb_list_head(to_remove)->next;
1439
1440 /*
1441 * Now we remove all pages between tail_page and next_page.
1442 * Make sure that we have head_bit value preserved for the
1443 * next page
1444 */
1445 tail_page->next = (struct list_head *)((unsigned long)next_page |
1446 head_bit);
1447 next_page = rb_list_head(next_page);
1448 next_page->prev = tail_page;
1449
1450 /* make sure pages points to a valid page in the ring buffer */
1451 cpu_buffer->pages = next_page;
1452
1453 /* update head page */
1454 if (head_bit)
1455 cpu_buffer->head_page = list_entry(next_page,
1456 struct buffer_page, list);
1457
1458 /*
1459 * change read pointer to make sure any read iterators reset
1460 * themselves
1461 */
1462 cpu_buffer->read = 0;
1463
1464 /* pages are removed, resume tracing and then free the pages */
1465 atomic_dec(&cpu_buffer->record_disabled);
1466 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1467
1468 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1469
1470 /* last buffer page to remove */
1471 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1472 list);
1473 tmp_iter_page = first_page;
1474
1475 do {
1476 to_remove_page = tmp_iter_page;
1477 rb_inc_page(cpu_buffer, &tmp_iter_page);
1478
1479 /* update the counters */
1480 page_entries = rb_page_entries(to_remove_page);
1481 if (page_entries) {
1482 /*
1483 * If something was added to this page, it was full
1484 * since it is not the tail page. So we deduct the
1485 * bytes consumed in ring buffer from here.
1486 * Increment overrun to account for the lost events.
1487 */
1488 local_add(page_entries, &cpu_buffer->overrun);
1489 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1490 }
1491
1492 /*
1493 * We have already removed references to this list item, just
1494 * free up the buffer_page and its page
1495 */
1496 free_buffer_page(to_remove_page);
1497 nr_removed--;
1498
1499 } while (to_remove_page != last_page);
1500
1501 RB_WARN_ON(cpu_buffer, nr_removed);
1502
1503 return nr_removed == 0;
1504 }
1505
1506 static int
1507 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1508 {
1509 struct list_head *pages = &cpu_buffer->new_pages;
1510 int retries, success;
1511
1512 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1513 /*
1514 * We are holding the reader lock, so the reader page won't be swapped
1515 * in the ring buffer. Now we are racing with the writer trying to
1516 * move head page and the tail page.
1517 * We are going to adapt the reader page update process where:
1518 * 1. We first splice the start and end of list of new pages between
1519 * the head page and its previous page.
1520 * 2. We cmpxchg the prev_page->next to point from head page to the
1521 * start of new pages list.
1522 * 3. Finally, we update the head->prev to the end of new list.
1523 *
1524 * We will try this process 10 times, to make sure that we don't keep
1525 * spinning.
1526 */
1527 retries = 10;
1528 success = 0;
1529 while (retries--) {
1530 struct list_head *head_page, *prev_page, *r;
1531 struct list_head *last_page, *first_page;
1532 struct list_head *head_page_with_bit;
1533
1534 head_page = &rb_set_head_page(cpu_buffer)->list;
1535 if (!head_page)
1536 break;
1537 prev_page = head_page->prev;
1538
1539 first_page = pages->next;
1540 last_page = pages->prev;
1541
1542 head_page_with_bit = (struct list_head *)
1543 ((unsigned long)head_page | RB_PAGE_HEAD);
1544
1545 last_page->next = head_page_with_bit;
1546 first_page->prev = prev_page;
1547
1548 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1549
1550 if (r == head_page_with_bit) {
1551 /*
1552 * yay, we replaced the page pointer to our new list,
1553 * now, we just have to update to head page's prev
1554 * pointer to point to end of list
1555 */
1556 head_page->prev = last_page;
1557 success = 1;
1558 break;
1559 }
1560 }
1561
1562 if (success)
1563 INIT_LIST_HEAD(pages);
1564 /*
1565 * If we weren't successful in adding in new pages, warn and stop
1566 * tracing
1567 */
1568 RB_WARN_ON(cpu_buffer, !success);
1569 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1570
1571 /* free pages if they weren't inserted */
1572 if (!success) {
1573 struct buffer_page *bpage, *tmp;
1574 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1575 list) {
1576 list_del_init(&bpage->list);
1577 free_buffer_page(bpage);
1578 }
1579 }
1580 return success;
1581 }
1582
1583 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1584 {
1585 int success;
1586
1587 if (cpu_buffer->nr_pages_to_update > 0)
1588 success = rb_insert_pages(cpu_buffer);
1589 else
1590 success = rb_remove_pages(cpu_buffer,
1591 -cpu_buffer->nr_pages_to_update);
1592
1593 if (success)
1594 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1595 }
1596
1597 static void update_pages_handler(struct work_struct *work)
1598 {
1599 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1600 struct ring_buffer_per_cpu, update_pages_work);
1601 rb_update_pages(cpu_buffer);
1602 complete(&cpu_buffer->update_done);
1603 }
1604
1605 /**
1606 * ring_buffer_resize - resize the ring buffer
1607 * @buffer: the buffer to resize.
1608 * @size: the new size.
1609 *
1610 * Minimum size is 2 * BUF_PAGE_SIZE.
1611 *
1612 * Returns 0 on success and < 0 on failure.
1613 */
1614 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1615 int cpu_id)
1616 {
1617 struct ring_buffer_per_cpu *cpu_buffer;
1618 unsigned nr_pages;
1619 int cpu, err = 0;
1620
1621 /*
1622 * Always succeed at resizing a non-existent buffer:
1623 */
1624 if (!buffer)
1625 return size;
1626
1627 /* Make sure the requested buffer exists */
1628 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1629 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1630 return size;
1631
1632 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1633 size *= BUF_PAGE_SIZE;
1634
1635 /* we need a minimum of two pages */
1636 if (size < BUF_PAGE_SIZE * 2)
1637 size = BUF_PAGE_SIZE * 2;
1638
1639 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1640
1641 /*
1642 * Don't succeed if resizing is disabled, as a reader might be
1643 * manipulating the ring buffer and is expecting a sane state while
1644 * this is true.
1645 */
1646 if (atomic_read(&buffer->resize_disabled))
1647 return -EBUSY;
1648
1649 /* prevent another thread from changing buffer sizes */
1650 mutex_lock(&buffer->mutex);
1651
1652 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1653 /* calculate the pages to update */
1654 for_each_buffer_cpu(buffer, cpu) {
1655 cpu_buffer = buffer->buffers[cpu];
1656
1657 cpu_buffer->nr_pages_to_update = nr_pages -
1658 cpu_buffer->nr_pages;
1659 /*
1660 * nothing more to do for removing pages or no update
1661 */
1662 if (cpu_buffer->nr_pages_to_update <= 0)
1663 continue;
1664 /*
1665 * to add pages, make sure all new pages can be
1666 * allocated without receiving ENOMEM
1667 */
1668 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1669 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1670 &cpu_buffer->new_pages, cpu)) {
1671 /* not enough memory for new pages */
1672 err = -ENOMEM;
1673 goto out_err;
1674 }
1675 }
1676
1677 get_online_cpus();
1678 /*
1679 * Fire off all the required work handlers
1680 * We can't schedule on offline CPUs, but it's not necessary
1681 * since we can change their buffer sizes without any race.
1682 */
1683 for_each_buffer_cpu(buffer, cpu) {
1684 cpu_buffer = buffer->buffers[cpu];
1685 if (!cpu_buffer->nr_pages_to_update)
1686 continue;
1687
1688 /* The update must run on the CPU that is being updated. */
1689 preempt_disable();
1690 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
1694 /*
1695 * Can not disable preemption for schedule_work_on()
1696 * on PREEMPT_RT.
1697 */
1698 preempt_enable();
1699 schedule_work_on(cpu,
1700 &cpu_buffer->update_pages_work);
1701 preempt_disable();
1702 }
1703 preempt_enable();
1704 }
1705
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
1709 if (!cpu_buffer->nr_pages_to_update)
1710 continue;
1711
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
1714 cpu_buffer->nr_pages_to_update = 0;
1715 }
1716
1717 put_online_cpus();
1718 } else {
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
1723 cpu_buffer = buffer->buffers[cpu_id];
1724
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
1727
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
1738
1739 get_online_cpus();
1740
1741 preempt_disable();
1742 /* The update must run on the CPU that is being updated. */
1743 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1744 rb_update_pages(cpu_buffer);
1745 else {
1746 /*
1747 * Can not disable preemption for schedule_work_on()
1748 * on PREEMPT_RT.
1749 */
1750 preempt_enable();
1751 schedule_work_on(cpu_id,
1752 &cpu_buffer->update_pages_work);
1753 wait_for_completion(&cpu_buffer->update_done);
1754 preempt_disable();
1755 }
1756 preempt_enable();
1757
1758 cpu_buffer->nr_pages_to_update = 0;
1759 put_online_cpus();
1760 }
1761
1762 out:
1763 /*
1764 * The ring buffer resize can happen with the ring buffer
1765 * enabled, so that the update disturbs the tracing as little
1766 * as possible. But if the buffer is disabled, we do not need
1767 * to worry about that, and we can take the time to verify
1768 * that the buffer is not corrupt.
1769 */
1770 if (atomic_read(&buffer->record_disabled)) {
1771 atomic_inc(&buffer->record_disabled);
1772 /*
1773 * Even though the buffer was disabled, we must make sure
1774 * that it is truly disabled before calling rb_check_pages.
1775 * There could have been a race between checking
1776 * record_disable and incrementing it.
1777 */
1778 synchronize_sched();
1779 for_each_buffer_cpu(buffer, cpu) {
1780 cpu_buffer = buffer->buffers[cpu];
1781 rb_check_pages(cpu_buffer);
1782 }
1783 atomic_dec(&buffer->record_disabled);
1784 }
1785
1786 mutex_unlock(&buffer->mutex);
1787 return size;
1788
1789 out_err:
1790 for_each_buffer_cpu(buffer, cpu) {
1791 struct buffer_page *bpage, *tmp;
1792
1793 cpu_buffer = buffer->buffers[cpu];
1794 cpu_buffer->nr_pages_to_update = 0;
1795
1796 if (list_empty(&cpu_buffer->new_pages))
1797 continue;
1798
1799 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1800 list) {
1801 list_del_init(&bpage->list);
1802 free_buffer_page(bpage);
1803 }
1804 }
1805 mutex_unlock(&buffer->mutex);
1806 return err;
1807 }
1808 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1809
1810 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1811 {
1812 mutex_lock(&buffer->mutex);
1813 if (val)
1814 buffer->flags |= RB_FL_OVERWRITE;
1815 else
1816 buffer->flags &= ~RB_FL_OVERWRITE;
1817 mutex_unlock(&buffer->mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1820
1821 static inline void *
1822 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1823 {
1824 return bpage->data + index;
1825 }
1826
1827 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1828 {
1829 return bpage->page->data + index;
1830 }
1831
1832 static inline struct ring_buffer_event *
1833 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1834 {
1835 return __rb_page_index(cpu_buffer->reader_page,
1836 cpu_buffer->reader_page->read);
1837 }
1838
1839 static inline struct ring_buffer_event *
1840 rb_iter_head_event(struct ring_buffer_iter *iter)
1841 {
1842 return __rb_page_index(iter->head_page, iter->head);
1843 }
1844
1845 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1846 {
1847 return local_read(&bpage->page->commit);
1848 }
1849
1850 /* Size is determined by what has been committed */
1851 static inline unsigned rb_page_size(struct buffer_page *bpage)
1852 {
1853 return rb_page_commit(bpage);
1854 }
1855
1856 static inline unsigned
1857 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859 return rb_page_commit(cpu_buffer->commit_page);
1860 }
1861
1862 static inline unsigned
1863 rb_event_index(struct ring_buffer_event *event)
1864 {
1865 unsigned long addr = (unsigned long)event;
1866
1867 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1868 }
1869
1870 static inline int
1871 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1872 struct ring_buffer_event *event)
1873 {
1874 unsigned long addr = (unsigned long)event;
1875 unsigned long index;
1876
1877 index = rb_event_index(event);
1878 addr &= PAGE_MASK;
1879
1880 return cpu_buffer->commit_page->page == (void *)addr &&
1881 rb_commit_index(cpu_buffer) == index;
1882 }
1883
1884 static void
1885 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1886 {
1887 unsigned long max_count;
1888
1889 /*
1890 * We only race with interrupts and NMIs on this CPU.
1891 * If we own the commit event, then we can commit
1892 * all others that interrupted us, since the interruptions
1893 * are in stack format (they finish before they come
1894 * back to us). This allows us to do a simple loop to
1895 * assign the commit to the tail.
1896 */
1897 again:
1898 max_count = cpu_buffer->nr_pages * 100;
1899
1900 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1901 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1902 return;
1903 if (RB_WARN_ON(cpu_buffer,
1904 rb_is_reader_page(cpu_buffer->tail_page)))
1905 return;
1906 local_set(&cpu_buffer->commit_page->page->commit,
1907 rb_page_write(cpu_buffer->commit_page));
1908 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1909 cpu_buffer->write_stamp =
1910 cpu_buffer->commit_page->page->time_stamp;
1911 /* add barrier to keep gcc from optimizing too much */
1912 barrier();
1913 }
1914 while (rb_commit_index(cpu_buffer) !=
1915 rb_page_write(cpu_buffer->commit_page)) {
1916
1917 local_set(&cpu_buffer->commit_page->page->commit,
1918 rb_page_write(cpu_buffer->commit_page));
1919 RB_WARN_ON(cpu_buffer,
1920 local_read(&cpu_buffer->commit_page->page->commit) &
1921 ~RB_WRITE_MASK);
1922 barrier();
1923 }
1924
1925 /* again, keep gcc from optimizing */
1926 barrier();
1927
1928 /*
1929 * If an interrupt came in just after the first while loop
1930 * and pushed the tail page forward, we will be left with
1931 * a dangling commit that will never go forward.
1932 */
1933 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1934 goto again;
1935 }
1936
1937 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1938 {
1939 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1940 cpu_buffer->reader_page->read = 0;
1941 }
1942
1943 static void rb_inc_iter(struct ring_buffer_iter *iter)
1944 {
1945 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1946
1947 /*
1948 * The iterator could be on the reader page (it starts there).
1949 * But the head could have moved, since the reader was
1950 * found. Check for this case and assign the iterator
1951 * to the head page instead of next.
1952 */
1953 if (iter->head_page == cpu_buffer->reader_page)
1954 iter->head_page = rb_set_head_page(cpu_buffer);
1955 else
1956 rb_inc_page(cpu_buffer, &iter->head_page);
1957
1958 iter->read_stamp = iter->head_page->page->time_stamp;
1959 iter->head = 0;
1960 }
1961
1962 /* Slow path, do not inline */
1963 static noinline struct ring_buffer_event *
1964 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1965 {
1966 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1967
1968 /* Not the first event on the page? */
1969 if (rb_event_index(event)) {
1970 event->time_delta = delta & TS_MASK;
1971 event->array[0] = delta >> TS_SHIFT;
1972 } else {
1973 /* nope, just zero it */
1974 event->time_delta = 0;
1975 event->array[0] = 0;
1976 }
1977
1978 return skip_time_extend(event);
1979 }
1980
1981 /**
1982 * rb_update_event - update event type and data
1983 * @event: the event to update
1984 * @type: the type of event
1985 * @length: the size of the event field in the ring buffer
1986 *
1987 * Update the type and data fields of the event. The length
1988 * is the actual size that is written to the ring buffer,
1989 * and with this, we can determine what to place into the
1990 * data field.
1991 */
1992 static void
1993 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1994 struct ring_buffer_event *event, unsigned length,
1995 int add_timestamp, u64 delta)
1996 {
1997 /* Only a commit updates the timestamp */
1998 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1999 delta = 0;
2000
2001 /*
2002 * If we need to add a timestamp, then we
2003 * add it to the start of the resevered space.
2004 */
2005 if (unlikely(add_timestamp)) {
2006 event = rb_add_time_stamp(event, delta);
2007 length -= RB_LEN_TIME_EXTEND;
2008 delta = 0;
2009 }
2010
2011 event->time_delta = delta;
2012 length -= RB_EVNT_HDR_SIZE;
2013 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2014 event->type_len = 0;
2015 event->array[0] = length;
2016 } else
2017 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2018 }
2019
2020 /*
2021 * rb_handle_head_page - writer hit the head page
2022 *
2023 * Returns: +1 to retry page
2024 * 0 to continue
2025 * -1 on error
2026 */
2027 static int
2028 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2029 struct buffer_page *tail_page,
2030 struct buffer_page *next_page)
2031 {
2032 struct buffer_page *new_head;
2033 int entries;
2034 int type;
2035 int ret;
2036
2037 entries = rb_page_entries(next_page);
2038
2039 /*
2040 * The hard part is here. We need to move the head
2041 * forward, and protect against both readers on
2042 * other CPUs and writers coming in via interrupts.
2043 */
2044 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2045 RB_PAGE_HEAD);
2046
2047 /*
2048 * type can be one of four:
2049 * NORMAL - an interrupt already moved it for us
2050 * HEAD - we are the first to get here.
2051 * UPDATE - we are the interrupt interrupting
2052 * a current move.
2053 * MOVED - a reader on another CPU moved the next
2054 * pointer to its reader page. Give up
2055 * and try again.
2056 */
2057
2058 switch (type) {
2059 case RB_PAGE_HEAD:
2060 /*
2061 * We changed the head to UPDATE, thus
2062 * it is our responsibility to update
2063 * the counters.
2064 */
2065 local_add(entries, &cpu_buffer->overrun);
2066 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2067
2068 /*
2069 * The entries will be zeroed out when we move the
2070 * tail page.
2071 */
2072
2073 /* still more to do */
2074 break;
2075
2076 case RB_PAGE_UPDATE:
2077 /*
2078 * This is an interrupt that interrupt the
2079 * previous update. Still more to do.
2080 */
2081 break;
2082 case RB_PAGE_NORMAL:
2083 /*
2084 * An interrupt came in before the update
2085 * and processed this for us.
2086 * Nothing left to do.
2087 */
2088 return 1;
2089 case RB_PAGE_MOVED:
2090 /*
2091 * The reader is on another CPU and just did
2092 * a swap with our next_page.
2093 * Try again.
2094 */
2095 return 1;
2096 default:
2097 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2098 return -1;
2099 }
2100
2101 /*
2102 * Now that we are here, the old head pointer is
2103 * set to UPDATE. This will keep the reader from
2104 * swapping the head page with the reader page.
2105 * The reader (on another CPU) will spin till
2106 * we are finished.
2107 *
2108 * We just need to protect against interrupts
2109 * doing the job. We will set the next pointer
2110 * to HEAD. After that, we set the old pointer
2111 * to NORMAL, but only if it was HEAD before.
2112 * otherwise we are an interrupt, and only
2113 * want the outer most commit to reset it.
2114 */
2115 new_head = next_page;
2116 rb_inc_page(cpu_buffer, &new_head);
2117
2118 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2119 RB_PAGE_NORMAL);
2120
2121 /*
2122 * Valid returns are:
2123 * HEAD - an interrupt came in and already set it.
2124 * NORMAL - One of two things:
2125 * 1) We really set it.
2126 * 2) A bunch of interrupts came in and moved
2127 * the page forward again.
2128 */
2129 switch (ret) {
2130 case RB_PAGE_HEAD:
2131 case RB_PAGE_NORMAL:
2132 /* OK */
2133 break;
2134 default:
2135 RB_WARN_ON(cpu_buffer, 1);
2136 return -1;
2137 }
2138
2139 /*
2140 * It is possible that an interrupt came in,
2141 * set the head up, then more interrupts came in
2142 * and moved it again. When we get back here,
2143 * the page would have been set to NORMAL but we
2144 * just set it back to HEAD.
2145 *
2146 * How do you detect this? Well, if that happened
2147 * the tail page would have moved.
2148 */
2149 if (ret == RB_PAGE_NORMAL) {
2150 /*
2151 * If the tail had moved passed next, then we need
2152 * to reset the pointer.
2153 */
2154 if (cpu_buffer->tail_page != tail_page &&
2155 cpu_buffer->tail_page != next_page)
2156 rb_head_page_set_normal(cpu_buffer, new_head,
2157 next_page,
2158 RB_PAGE_HEAD);
2159 }
2160
2161 /*
2162 * If this was the outer most commit (the one that
2163 * changed the original pointer from HEAD to UPDATE),
2164 * then it is up to us to reset it to NORMAL.
2165 */
2166 if (type == RB_PAGE_HEAD) {
2167 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2168 tail_page,
2169 RB_PAGE_UPDATE);
2170 if (RB_WARN_ON(cpu_buffer,
2171 ret != RB_PAGE_UPDATE))
2172 return -1;
2173 }
2174
2175 return 0;
2176 }
2177
2178 static unsigned rb_calculate_event_length(unsigned length)
2179 {
2180 struct ring_buffer_event event; /* Used only for sizeof array */
2181
2182 /* zero length can cause confusions */
2183 if (!length)
2184 length = 1;
2185
2186 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2187 length += sizeof(event.array[0]);
2188
2189 length += RB_EVNT_HDR_SIZE;
2190 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2191
2192 return length;
2193 }
2194
2195 static inline void
2196 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2197 struct buffer_page *tail_page,
2198 unsigned long tail, unsigned long length)
2199 {
2200 struct ring_buffer_event *event;
2201
2202 /*
2203 * Only the event that crossed the page boundary
2204 * must fill the old tail_page with padding.
2205 */
2206 if (tail >= BUF_PAGE_SIZE) {
2207 /*
2208 * If the page was filled, then we still need
2209 * to update the real_end. Reset it to zero
2210 * and the reader will ignore it.
2211 */
2212 if (tail == BUF_PAGE_SIZE)
2213 tail_page->real_end = 0;
2214
2215 local_sub(length, &tail_page->write);
2216 return;
2217 }
2218
2219 event = __rb_page_index(tail_page, tail);
2220 kmemcheck_annotate_bitfield(event, bitfield);
2221
2222 /* account for padding bytes */
2223 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2224
2225 /*
2226 * Save the original length to the meta data.
2227 * This will be used by the reader to add lost event
2228 * counter.
2229 */
2230 tail_page->real_end = tail;
2231
2232 /*
2233 * If this event is bigger than the minimum size, then
2234 * we need to be careful that we don't subtract the
2235 * write counter enough to allow another writer to slip
2236 * in on this page.
2237 * We put in a discarded commit instead, to make sure
2238 * that this space is not used again.
2239 *
2240 * If we are less than the minimum size, we don't need to
2241 * worry about it.
2242 */
2243 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2244 /* No room for any events */
2245
2246 /* Mark the rest of the page with padding */
2247 rb_event_set_padding(event);
2248
2249 /* Set the write back to the previous setting */
2250 local_sub(length, &tail_page->write);
2251 return;
2252 }
2253
2254 /* Put in a discarded event */
2255 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2256 event->type_len = RINGBUF_TYPE_PADDING;
2257 /* time delta must be non zero */
2258 event->time_delta = 1;
2259
2260 /* Set write to end of buffer */
2261 length = (tail + length) - BUF_PAGE_SIZE;
2262 local_sub(length, &tail_page->write);
2263 }
2264
2265 /*
2266 * This is the slow path, force gcc not to inline it.
2267 */
2268 static noinline struct ring_buffer_event *
2269 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2270 unsigned long length, unsigned long tail,
2271 struct buffer_page *tail_page, u64 ts)
2272 {
2273 struct buffer_page *commit_page = cpu_buffer->commit_page;
2274 struct ring_buffer *buffer = cpu_buffer->buffer;
2275 struct buffer_page *next_page;
2276 int ret;
2277
2278 next_page = tail_page;
2279
2280 rb_inc_page(cpu_buffer, &next_page);
2281
2282 /*
2283 * If for some reason, we had an interrupt storm that made
2284 * it all the way around the buffer, bail, and warn
2285 * about it.
2286 */
2287 if (unlikely(next_page == commit_page)) {
2288 local_inc(&cpu_buffer->commit_overrun);
2289 goto out_reset;
2290 }
2291
2292 /*
2293 * This is where the fun begins!
2294 *
2295 * We are fighting against races between a reader that
2296 * could be on another CPU trying to swap its reader
2297 * page with the buffer head.
2298 *
2299 * We are also fighting against interrupts coming in and
2300 * moving the head or tail on us as well.
2301 *
2302 * If the next page is the head page then we have filled
2303 * the buffer, unless the commit page is still on the
2304 * reader page.
2305 */
2306 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2307
2308 /*
2309 * If the commit is not on the reader page, then
2310 * move the header page.
2311 */
2312 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2313 /*
2314 * If we are not in overwrite mode,
2315 * this is easy, just stop here.
2316 */
2317 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2318 local_inc(&cpu_buffer->dropped_events);
2319 goto out_reset;
2320 }
2321
2322 ret = rb_handle_head_page(cpu_buffer,
2323 tail_page,
2324 next_page);
2325 if (ret < 0)
2326 goto out_reset;
2327 if (ret)
2328 goto out_again;
2329 } else {
2330 /*
2331 * We need to be careful here too. The
2332 * commit page could still be on the reader
2333 * page. We could have a small buffer, and
2334 * have filled up the buffer with events
2335 * from interrupts and such, and wrapped.
2336 *
2337 * Note, if the tail page is also the on the
2338 * reader_page, we let it move out.
2339 */
2340 if (unlikely((cpu_buffer->commit_page !=
2341 cpu_buffer->tail_page) &&
2342 (cpu_buffer->commit_page ==
2343 cpu_buffer->reader_page))) {
2344 local_inc(&cpu_buffer->commit_overrun);
2345 goto out_reset;
2346 }
2347 }
2348 }
2349
2350 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2351 if (ret) {
2352 /*
2353 * Nested commits always have zero deltas, so
2354 * just reread the time stamp
2355 */
2356 ts = rb_time_stamp(buffer);
2357 next_page->page->time_stamp = ts;
2358 }
2359
2360 out_again:
2361
2362 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2363
2364 /* fail and let the caller try again */
2365 return ERR_PTR(-EAGAIN);
2366
2367 out_reset:
2368 /* reset write */
2369 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2370
2371 return NULL;
2372 }
2373
2374 static struct ring_buffer_event *
2375 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2376 unsigned long length, u64 ts,
2377 u64 delta, int add_timestamp)
2378 {
2379 struct buffer_page *tail_page;
2380 struct ring_buffer_event *event;
2381 unsigned long tail, write;
2382
2383 /*
2384 * If the time delta since the last event is too big to
2385 * hold in the time field of the event, then we append a
2386 * TIME EXTEND event ahead of the data event.
2387 */
2388 if (unlikely(add_timestamp))
2389 length += RB_LEN_TIME_EXTEND;
2390
2391 tail_page = cpu_buffer->tail_page;
2392 write = local_add_return(length, &tail_page->write);
2393
2394 /* set write to only the index of the write */
2395 write &= RB_WRITE_MASK;
2396 tail = write - length;
2397
2398 /*
2399 * If this is the first commit on the page, then it has the same
2400 * timestamp as the page itself.
2401 */
2402 if (!tail)
2403 delta = 0;
2404
2405 /* See if we shot pass the end of this buffer page */
2406 if (unlikely(write > BUF_PAGE_SIZE))
2407 return rb_move_tail(cpu_buffer, length, tail,
2408 tail_page, ts);
2409
2410 /* We reserved something on the buffer */
2411
2412 event = __rb_page_index(tail_page, tail);
2413 kmemcheck_annotate_bitfield(event, bitfield);
2414 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2415
2416 local_inc(&tail_page->entries);
2417
2418 /*
2419 * If this is the first commit on the page, then update
2420 * its timestamp.
2421 */
2422 if (!tail)
2423 tail_page->page->time_stamp = ts;
2424
2425 /* account for these added bytes */
2426 local_add(length, &cpu_buffer->entries_bytes);
2427
2428 return event;
2429 }
2430
2431 static inline int
2432 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2433 struct ring_buffer_event *event)
2434 {
2435 unsigned long new_index, old_index;
2436 struct buffer_page *bpage;
2437 unsigned long index;
2438 unsigned long addr;
2439
2440 new_index = rb_event_index(event);
2441 old_index = new_index + rb_event_ts_length(event);
2442 addr = (unsigned long)event;
2443 addr &= PAGE_MASK;
2444
2445 bpage = cpu_buffer->tail_page;
2446
2447 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2448 unsigned long write_mask =
2449 local_read(&bpage->write) & ~RB_WRITE_MASK;
2450 unsigned long event_length = rb_event_length(event);
2451 /*
2452 * This is on the tail page. It is possible that
2453 * a write could come in and move the tail page
2454 * and write to the next page. That is fine
2455 * because we just shorten what is on this page.
2456 */
2457 old_index += write_mask;
2458 new_index += write_mask;
2459 index = local_cmpxchg(&bpage->write, old_index, new_index);
2460 if (index == old_index) {
2461 /* update counters */
2462 local_sub(event_length, &cpu_buffer->entries_bytes);
2463 return 1;
2464 }
2465 }
2466
2467 /* could not discard */
2468 return 0;
2469 }
2470
2471 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2472 {
2473 local_inc(&cpu_buffer->committing);
2474 local_inc(&cpu_buffer->commits);
2475 }
2476
2477 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2478 {
2479 unsigned long commits;
2480
2481 if (RB_WARN_ON(cpu_buffer,
2482 !local_read(&cpu_buffer->committing)))
2483 return;
2484
2485 again:
2486 commits = local_read(&cpu_buffer->commits);
2487 /* synchronize with interrupts */
2488 barrier();
2489 if (local_read(&cpu_buffer->committing) == 1)
2490 rb_set_commit_to_write(cpu_buffer);
2491
2492 local_dec(&cpu_buffer->committing);
2493
2494 /* synchronize with interrupts */
2495 barrier();
2496
2497 /*
2498 * Need to account for interrupts coming in between the
2499 * updating of the commit page and the clearing of the
2500 * committing counter.
2501 */
2502 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2503 !local_read(&cpu_buffer->committing)) {
2504 local_inc(&cpu_buffer->committing);
2505 goto again;
2506 }
2507 }
2508
2509 static struct ring_buffer_event *
2510 rb_reserve_next_event(struct ring_buffer *buffer,
2511 struct ring_buffer_per_cpu *cpu_buffer,
2512 unsigned long length)
2513 {
2514 struct ring_buffer_event *event;
2515 u64 ts, delta;
2516 int nr_loops = 0;
2517 int add_timestamp;
2518 u64 diff;
2519
2520 rb_start_commit(cpu_buffer);
2521
2522 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2523 /*
2524 * Due to the ability to swap a cpu buffer from a buffer
2525 * it is possible it was swapped before we committed.
2526 * (committing stops a swap). We check for it here and
2527 * if it happened, we have to fail the write.
2528 */
2529 barrier();
2530 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2531 local_dec(&cpu_buffer->committing);
2532 local_dec(&cpu_buffer->commits);
2533 return NULL;
2534 }
2535 #endif
2536
2537 length = rb_calculate_event_length(length);
2538 again:
2539 add_timestamp = 0;
2540 delta = 0;
2541
2542 /*
2543 * We allow for interrupts to reenter here and do a trace.
2544 * If one does, it will cause this original code to loop
2545 * back here. Even with heavy interrupts happening, this
2546 * should only happen a few times in a row. If this happens
2547 * 1000 times in a row, there must be either an interrupt
2548 * storm or we have something buggy.
2549 * Bail!
2550 */
2551 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2552 goto out_fail;
2553
2554 ts = rb_time_stamp(cpu_buffer->buffer);
2555 diff = ts - cpu_buffer->write_stamp;
2556
2557 /* make sure this diff is calculated here */
2558 barrier();
2559
2560 /* Did the write stamp get updated already? */
2561 if (likely(ts >= cpu_buffer->write_stamp)) {
2562 delta = diff;
2563 if (unlikely(test_time_stamp(delta))) {
2564 int local_clock_stable = 1;
2565 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2566 local_clock_stable = sched_clock_stable;
2567 #endif
2568 WARN_ONCE(delta > (1ULL << 59),
2569 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2570 (unsigned long long)delta,
2571 (unsigned long long)ts,
2572 (unsigned long long)cpu_buffer->write_stamp,
2573 local_clock_stable ? "" :
2574 "If you just came from a suspend/resume,\n"
2575 "please switch to the trace global clock:\n"
2576 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2577 add_timestamp = 1;
2578 }
2579 }
2580
2581 event = __rb_reserve_next(cpu_buffer, length, ts,
2582 delta, add_timestamp);
2583 if (unlikely(PTR_ERR(event) == -EAGAIN))
2584 goto again;
2585
2586 if (!event)
2587 goto out_fail;
2588
2589 return event;
2590
2591 out_fail:
2592 rb_end_commit(cpu_buffer);
2593 return NULL;
2594 }
2595
2596 #ifdef CONFIG_TRACING
2597
2598 /*
2599 * The lock and unlock are done within a preempt disable section.
2600 * The current_context per_cpu variable can only be modified
2601 * by the current task between lock and unlock. But it can
2602 * be modified more than once via an interrupt. To pass this
2603 * information from the lock to the unlock without having to
2604 * access the 'in_interrupt()' functions again (which do show
2605 * a bit of overhead in something as critical as function tracing,
2606 * we use a bitmask trick.
2607 *
2608 * bit 0 = NMI context
2609 * bit 1 = IRQ context
2610 * bit 2 = SoftIRQ context
2611 * bit 3 = normal context.
2612 *
2613 * This works because this is the order of contexts that can
2614 * preempt other contexts. A SoftIRQ never preempts an IRQ
2615 * context.
2616 *
2617 * When the context is determined, the corresponding bit is
2618 * checked and set (if it was set, then a recursion of that context
2619 * happened).
2620 *
2621 * On unlock, we need to clear this bit. To do so, just subtract
2622 * 1 from the current_context and AND it to itself.
2623 *
2624 * (binary)
2625 * 101 - 1 = 100
2626 * 101 & 100 = 100 (clearing bit zero)
2627 *
2628 * 1010 - 1 = 1001
2629 * 1010 & 1001 = 1000 (clearing bit 1)
2630 *
2631 * The least significant bit can be cleared this way, and it
2632 * just so happens that it is the same bit corresponding to
2633 * the current context.
2634 */
2635 static DEFINE_PER_CPU(unsigned int, current_context);
2636
2637 static __always_inline int trace_recursive_lock(void)
2638 {
2639 unsigned int val = this_cpu_read(current_context);
2640 int bit;
2641
2642 if (in_interrupt()) {
2643 if (in_nmi())
2644 bit = 0;
2645 else if (in_irq())
2646 bit = 1;
2647 else
2648 bit = 2;
2649 } else
2650 bit = 3;
2651
2652 if (unlikely(val & (1 << bit)))
2653 return 1;
2654
2655 val |= (1 << bit);
2656 this_cpu_write(current_context, val);
2657
2658 return 0;
2659 }
2660
2661 static __always_inline void trace_recursive_unlock(void)
2662 {
2663 unsigned int val = this_cpu_read(current_context);
2664
2665 val--;
2666 val &= this_cpu_read(current_context);
2667 this_cpu_write(current_context, val);
2668 }
2669
2670 #else
2671
2672 #define trace_recursive_lock() (0)
2673 #define trace_recursive_unlock() do { } while (0)
2674
2675 #endif
2676
2677 /**
2678 * ring_buffer_lock_reserve - reserve a part of the buffer
2679 * @buffer: the ring buffer to reserve from
2680 * @length: the length of the data to reserve (excluding event header)
2681 *
2682 * Returns a reseverd event on the ring buffer to copy directly to.
2683 * The user of this interface will need to get the body to write into
2684 * and can use the ring_buffer_event_data() interface.
2685 *
2686 * The length is the length of the data needed, not the event length
2687 * which also includes the event header.
2688 *
2689 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2690 * If NULL is returned, then nothing has been allocated or locked.
2691 */
2692 struct ring_buffer_event *
2693 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2694 {
2695 struct ring_buffer_per_cpu *cpu_buffer;
2696 struct ring_buffer_event *event;
2697 int cpu;
2698
2699 if (ring_buffer_flags != RB_BUFFERS_ON)
2700 return NULL;
2701
2702 /* If we are tracing schedule, we don't want to recurse */
2703 preempt_disable_notrace();
2704
2705 if (atomic_read(&buffer->record_disabled))
2706 goto out_nocheck;
2707
2708 if (trace_recursive_lock())
2709 goto out_nocheck;
2710
2711 cpu = raw_smp_processor_id();
2712
2713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2714 goto out;
2715
2716 cpu_buffer = buffer->buffers[cpu];
2717
2718 if (atomic_read(&cpu_buffer->record_disabled))
2719 goto out;
2720
2721 if (length > BUF_MAX_DATA_SIZE)
2722 goto out;
2723
2724 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2725 if (!event)
2726 goto out;
2727
2728 return event;
2729
2730 out:
2731 trace_recursive_unlock();
2732
2733 out_nocheck:
2734 preempt_enable_notrace();
2735 return NULL;
2736 }
2737 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2738
2739 static void
2740 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2741 struct ring_buffer_event *event)
2742 {
2743 u64 delta;
2744
2745 /*
2746 * The event first in the commit queue updates the
2747 * time stamp.
2748 */
2749 if (rb_event_is_commit(cpu_buffer, event)) {
2750 /*
2751 * A commit event that is first on a page
2752 * updates the write timestamp with the page stamp
2753 */
2754 if (!rb_event_index(event))
2755 cpu_buffer->write_stamp =
2756 cpu_buffer->commit_page->page->time_stamp;
2757 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2758 delta = event->array[0];
2759 delta <<= TS_SHIFT;
2760 delta += event->time_delta;
2761 cpu_buffer->write_stamp += delta;
2762 } else
2763 cpu_buffer->write_stamp += event->time_delta;
2764 }
2765 }
2766
2767 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2768 struct ring_buffer_event *event)
2769 {
2770 local_inc(&cpu_buffer->entries);
2771 rb_update_write_stamp(cpu_buffer, event);
2772 rb_end_commit(cpu_buffer);
2773 }
2774
2775 static __always_inline void
2776 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2777 {
2778 if (buffer->irq_work.waiters_pending) {
2779 buffer->irq_work.waiters_pending = false;
2780 /* irq_work_queue() supplies it's own memory barriers */
2781 irq_work_queue(&buffer->irq_work.work);
2782 }
2783
2784 if (cpu_buffer->irq_work.waiters_pending) {
2785 cpu_buffer->irq_work.waiters_pending = false;
2786 /* irq_work_queue() supplies it's own memory barriers */
2787 irq_work_queue(&cpu_buffer->irq_work.work);
2788 }
2789 }
2790
2791 /**
2792 * ring_buffer_unlock_commit - commit a reserved
2793 * @buffer: The buffer to commit to
2794 * @event: The event pointer to commit.
2795 *
2796 * This commits the data to the ring buffer, and releases any locks held.
2797 *
2798 * Must be paired with ring_buffer_lock_reserve.
2799 */
2800 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2801 struct ring_buffer_event *event)
2802 {
2803 struct ring_buffer_per_cpu *cpu_buffer;
2804 int cpu = raw_smp_processor_id();
2805
2806 cpu_buffer = buffer->buffers[cpu];
2807
2808 rb_commit(cpu_buffer, event);
2809
2810 rb_wakeups(buffer, cpu_buffer);
2811
2812 trace_recursive_unlock();
2813
2814 preempt_enable_notrace();
2815
2816 return 0;
2817 }
2818 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2819
2820 static inline void rb_event_discard(struct ring_buffer_event *event)
2821 {
2822 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2823 event = skip_time_extend(event);
2824
2825 /* array[0] holds the actual length for the discarded event */
2826 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2827 event->type_len = RINGBUF_TYPE_PADDING;
2828 /* time delta must be non zero */
2829 if (!event->time_delta)
2830 event->time_delta = 1;
2831 }
2832
2833 /*
2834 * Decrement the entries to the page that an event is on.
2835 * The event does not even need to exist, only the pointer
2836 * to the page it is on. This may only be called before the commit
2837 * takes place.
2838 */
2839 static inline void
2840 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2841 struct ring_buffer_event *event)
2842 {
2843 unsigned long addr = (unsigned long)event;
2844 struct buffer_page *bpage = cpu_buffer->commit_page;
2845 struct buffer_page *start;
2846
2847 addr &= PAGE_MASK;
2848
2849 /* Do the likely case first */
2850 if (likely(bpage->page == (void *)addr)) {
2851 local_dec(&bpage->entries);
2852 return;
2853 }
2854
2855 /*
2856 * Because the commit page may be on the reader page we
2857 * start with the next page and check the end loop there.
2858 */
2859 rb_inc_page(cpu_buffer, &bpage);
2860 start = bpage;
2861 do {
2862 if (bpage->page == (void *)addr) {
2863 local_dec(&bpage->entries);
2864 return;
2865 }
2866 rb_inc_page(cpu_buffer, &bpage);
2867 } while (bpage != start);
2868
2869 /* commit not part of this buffer?? */
2870 RB_WARN_ON(cpu_buffer, 1);
2871 }
2872
2873 /**
2874 * ring_buffer_commit_discard - discard an event that has not been committed
2875 * @buffer: the ring buffer
2876 * @event: non committed event to discard
2877 *
2878 * Sometimes an event that is in the ring buffer needs to be ignored.
2879 * This function lets the user discard an event in the ring buffer
2880 * and then that event will not be read later.
2881 *
2882 * This function only works if it is called before the the item has been
2883 * committed. It will try to free the event from the ring buffer
2884 * if another event has not been added behind it.
2885 *
2886 * If another event has been added behind it, it will set the event
2887 * up as discarded, and perform the commit.
2888 *
2889 * If this function is called, do not call ring_buffer_unlock_commit on
2890 * the event.
2891 */
2892 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2893 struct ring_buffer_event *event)
2894 {
2895 struct ring_buffer_per_cpu *cpu_buffer;
2896 int cpu;
2897
2898 /* The event is discarded regardless */
2899 rb_event_discard(event);
2900
2901 cpu = smp_processor_id();
2902 cpu_buffer = buffer->buffers[cpu];
2903
2904 /*
2905 * This must only be called if the event has not been
2906 * committed yet. Thus we can assume that preemption
2907 * is still disabled.
2908 */
2909 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2910
2911 rb_decrement_entry(cpu_buffer, event);
2912 if (rb_try_to_discard(cpu_buffer, event))
2913 goto out;
2914
2915 /*
2916 * The commit is still visible by the reader, so we
2917 * must still update the timestamp.
2918 */
2919 rb_update_write_stamp(cpu_buffer, event);
2920 out:
2921 rb_end_commit(cpu_buffer);
2922
2923 trace_recursive_unlock();
2924
2925 preempt_enable_notrace();
2926
2927 }
2928 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2929
2930 /**
2931 * ring_buffer_write - write data to the buffer without reserving
2932 * @buffer: The ring buffer to write to.
2933 * @length: The length of the data being written (excluding the event header)
2934 * @data: The data to write to the buffer.
2935 *
2936 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2937 * one function. If you already have the data to write to the buffer, it
2938 * may be easier to simply call this function.
2939 *
2940 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2941 * and not the length of the event which would hold the header.
2942 */
2943 int ring_buffer_write(struct ring_buffer *buffer,
2944 unsigned long length,
2945 void *data)
2946 {
2947 struct ring_buffer_per_cpu *cpu_buffer;
2948 struct ring_buffer_event *event;
2949 void *body;
2950 int ret = -EBUSY;
2951 int cpu;
2952
2953 if (ring_buffer_flags != RB_BUFFERS_ON)
2954 return -EBUSY;
2955
2956 preempt_disable_notrace();
2957
2958 if (atomic_read(&buffer->record_disabled))
2959 goto out;
2960
2961 cpu = raw_smp_processor_id();
2962
2963 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2964 goto out;
2965
2966 cpu_buffer = buffer->buffers[cpu];
2967
2968 if (atomic_read(&cpu_buffer->record_disabled))
2969 goto out;
2970
2971 if (length > BUF_MAX_DATA_SIZE)
2972 goto out;
2973
2974 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2975 if (!event)
2976 goto out;
2977
2978 body = rb_event_data(event);
2979
2980 memcpy(body, data, length);
2981
2982 rb_commit(cpu_buffer, event);
2983
2984 rb_wakeups(buffer, cpu_buffer);
2985
2986 ret = 0;
2987 out:
2988 preempt_enable_notrace();
2989
2990 return ret;
2991 }
2992 EXPORT_SYMBOL_GPL(ring_buffer_write);
2993
2994 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2995 {
2996 struct buffer_page *reader = cpu_buffer->reader_page;
2997 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2998 struct buffer_page *commit = cpu_buffer->commit_page;
2999
3000 /* In case of error, head will be NULL */
3001 if (unlikely(!head))
3002 return 1;
3003
3004 return reader->read == rb_page_commit(reader) &&
3005 (commit == reader ||
3006 (commit == head &&
3007 head->read == rb_page_commit(commit)));
3008 }
3009
3010 /**
3011 * ring_buffer_record_disable - stop all writes into the buffer
3012 * @buffer: The ring buffer to stop writes to.
3013 *
3014 * This prevents all writes to the buffer. Any attempt to write
3015 * to the buffer after this will fail and return NULL.
3016 *
3017 * The caller should call synchronize_sched() after this.
3018 */
3019 void ring_buffer_record_disable(struct ring_buffer *buffer)
3020 {
3021 atomic_inc(&buffer->record_disabled);
3022 }
3023 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3024
3025 /**
3026 * ring_buffer_record_enable - enable writes to the buffer
3027 * @buffer: The ring buffer to enable writes
3028 *
3029 * Note, multiple disables will need the same number of enables
3030 * to truly enable the writing (much like preempt_disable).
3031 */
3032 void ring_buffer_record_enable(struct ring_buffer *buffer)
3033 {
3034 atomic_dec(&buffer->record_disabled);
3035 }
3036 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3037
3038 /**
3039 * ring_buffer_record_off - stop all writes into the buffer
3040 * @buffer: The ring buffer to stop writes to.
3041 *
3042 * This prevents all writes to the buffer. Any attempt to write
3043 * to the buffer after this will fail and return NULL.
3044 *
3045 * This is different than ring_buffer_record_disable() as
3046 * it works like an on/off switch, where as the disable() version
3047 * must be paired with a enable().
3048 */
3049 void ring_buffer_record_off(struct ring_buffer *buffer)
3050 {
3051 unsigned int rd;
3052 unsigned int new_rd;
3053
3054 do {
3055 rd = atomic_read(&buffer->record_disabled);
3056 new_rd = rd | RB_BUFFER_OFF;
3057 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3058 }
3059 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3060
3061 /**
3062 * ring_buffer_record_on - restart writes into the buffer
3063 * @buffer: The ring buffer to start writes to.
3064 *
3065 * This enables all writes to the buffer that was disabled by
3066 * ring_buffer_record_off().
3067 *
3068 * This is different than ring_buffer_record_enable() as
3069 * it works like an on/off switch, where as the enable() version
3070 * must be paired with a disable().
3071 */
3072 void ring_buffer_record_on(struct ring_buffer *buffer)
3073 {
3074 unsigned int rd;
3075 unsigned int new_rd;
3076
3077 do {
3078 rd = atomic_read(&buffer->record_disabled);
3079 new_rd = rd & ~RB_BUFFER_OFF;
3080 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3081 }
3082 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3083
3084 /**
3085 * ring_buffer_record_is_on - return true if the ring buffer can write
3086 * @buffer: The ring buffer to see if write is enabled
3087 *
3088 * Returns true if the ring buffer is in a state that it accepts writes.
3089 */
3090 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3091 {
3092 return !atomic_read(&buffer->record_disabled);
3093 }
3094
3095 /**
3096 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3097 * @buffer: The ring buffer to stop writes to.
3098 * @cpu: The CPU buffer to stop
3099 *
3100 * This prevents all writes to the buffer. Any attempt to write
3101 * to the buffer after this will fail and return NULL.
3102 *
3103 * The caller should call synchronize_sched() after this.
3104 */
3105 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3106 {
3107 struct ring_buffer_per_cpu *cpu_buffer;
3108
3109 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3110 return;
3111
3112 cpu_buffer = buffer->buffers[cpu];
3113 atomic_inc(&cpu_buffer->record_disabled);
3114 }
3115 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3116
3117 /**
3118 * ring_buffer_record_enable_cpu - enable writes to the buffer
3119 * @buffer: The ring buffer to enable writes
3120 * @cpu: The CPU to enable.
3121 *
3122 * Note, multiple disables will need the same number of enables
3123 * to truly enable the writing (much like preempt_disable).
3124 */
3125 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3126 {
3127 struct ring_buffer_per_cpu *cpu_buffer;
3128
3129 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3130 return;
3131
3132 cpu_buffer = buffer->buffers[cpu];
3133 atomic_dec(&cpu_buffer->record_disabled);
3134 }
3135 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3136
3137 /*
3138 * The total entries in the ring buffer is the running counter
3139 * of entries entered into the ring buffer, minus the sum of
3140 * the entries read from the ring buffer and the number of
3141 * entries that were overwritten.
3142 */
3143 static inline unsigned long
3144 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3145 {
3146 return local_read(&cpu_buffer->entries) -
3147 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3148 }
3149
3150 /**
3151 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3152 * @buffer: The ring buffer
3153 * @cpu: The per CPU buffer to read from.
3154 */
3155 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3156 {
3157 unsigned long flags;
3158 struct ring_buffer_per_cpu *cpu_buffer;
3159 struct buffer_page *bpage;
3160 u64 ret = 0;
3161
3162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3163 return 0;
3164
3165 cpu_buffer = buffer->buffers[cpu];
3166 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3167 /*
3168 * if the tail is on reader_page, oldest time stamp is on the reader
3169 * page
3170 */
3171 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3172 bpage = cpu_buffer->reader_page;
3173 else
3174 bpage = rb_set_head_page(cpu_buffer);
3175 if (bpage)
3176 ret = bpage->page->time_stamp;
3177 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3178
3179 return ret;
3180 }
3181 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3182
3183 /**
3184 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3185 * @buffer: The ring buffer
3186 * @cpu: The per CPU buffer to read from.
3187 */
3188 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3189 {
3190 struct ring_buffer_per_cpu *cpu_buffer;
3191 unsigned long ret;
3192
3193 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3194 return 0;
3195
3196 cpu_buffer = buffer->buffers[cpu];
3197 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3198
3199 return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3202
3203 /**
3204 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3205 * @buffer: The ring buffer
3206 * @cpu: The per CPU buffer to get the entries from.
3207 */
3208 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3209 {
3210 struct ring_buffer_per_cpu *cpu_buffer;
3211
3212 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3213 return 0;
3214
3215 cpu_buffer = buffer->buffers[cpu];
3216
3217 return rb_num_of_entries(cpu_buffer);
3218 }
3219 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3220
3221 /**
3222 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3223 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3224 * @buffer: The ring buffer
3225 * @cpu: The per CPU buffer to get the number of overruns from
3226 */
3227 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3228 {
3229 struct ring_buffer_per_cpu *cpu_buffer;
3230 unsigned long ret;
3231
3232 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3233 return 0;
3234
3235 cpu_buffer = buffer->buffers[cpu];
3236 ret = local_read(&cpu_buffer->overrun);
3237
3238 return ret;
3239 }
3240 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3241
3242 /**
3243 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3244 * commits failing due to the buffer wrapping around while there are uncommitted
3245 * events, such as during an interrupt storm.
3246 * @buffer: The ring buffer
3247 * @cpu: The per CPU buffer to get the number of overruns from
3248 */
3249 unsigned long
3250 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3251 {
3252 struct ring_buffer_per_cpu *cpu_buffer;
3253 unsigned long ret;
3254
3255 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3256 return 0;
3257
3258 cpu_buffer = buffer->buffers[cpu];
3259 ret = local_read(&cpu_buffer->commit_overrun);
3260
3261 return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3264
3265 /**
3266 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3267 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3268 * @buffer: The ring buffer
3269 * @cpu: The per CPU buffer to get the number of overruns from
3270 */
3271 unsigned long
3272 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3273 {
3274 struct ring_buffer_per_cpu *cpu_buffer;
3275 unsigned long ret;
3276
3277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278 return 0;
3279
3280 cpu_buffer = buffer->buffers[cpu];
3281 ret = local_read(&cpu_buffer->dropped_events);
3282
3283 return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3286
3287 /**
3288 * ring_buffer_read_events_cpu - get the number of events successfully read
3289 * @buffer: The ring buffer
3290 * @cpu: The per CPU buffer to get the number of events read
3291 */
3292 unsigned long
3293 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3294 {
3295 struct ring_buffer_per_cpu *cpu_buffer;
3296
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return 0;
3299
3300 cpu_buffer = buffer->buffers[cpu];
3301 return cpu_buffer->read;
3302 }
3303 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3304
3305 /**
3306 * ring_buffer_entries - get the number of entries in a buffer
3307 * @buffer: The ring buffer
3308 *
3309 * Returns the total number of entries in the ring buffer
3310 * (all CPU entries)
3311 */
3312 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3313 {
3314 struct ring_buffer_per_cpu *cpu_buffer;
3315 unsigned long entries = 0;
3316 int cpu;
3317
3318 /* if you care about this being correct, lock the buffer */
3319 for_each_buffer_cpu(buffer, cpu) {
3320 cpu_buffer = buffer->buffers[cpu];
3321 entries += rb_num_of_entries(cpu_buffer);
3322 }
3323
3324 return entries;
3325 }
3326 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3327
3328 /**
3329 * ring_buffer_overruns - get the number of overruns in buffer
3330 * @buffer: The ring buffer
3331 *
3332 * Returns the total number of overruns in the ring buffer
3333 * (all CPU entries)
3334 */
3335 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3336 {
3337 struct ring_buffer_per_cpu *cpu_buffer;
3338 unsigned long overruns = 0;
3339 int cpu;
3340
3341 /* if you care about this being correct, lock the buffer */
3342 for_each_buffer_cpu(buffer, cpu) {
3343 cpu_buffer = buffer->buffers[cpu];
3344 overruns += local_read(&cpu_buffer->overrun);
3345 }
3346
3347 return overruns;
3348 }
3349 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3350
3351 static void rb_iter_reset(struct ring_buffer_iter *iter)
3352 {
3353 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3354
3355 /* Iterator usage is expected to have record disabled */
3356 iter->head_page = cpu_buffer->reader_page;
3357 iter->head = cpu_buffer->reader_page->read;
3358
3359 iter->cache_reader_page = iter->head_page;
3360 iter->cache_read = iter->head;
3361
3362 if (iter->head)
3363 iter->read_stamp = cpu_buffer->read_stamp;
3364 else
3365 iter->read_stamp = iter->head_page->page->time_stamp;
3366 }
3367
3368 /**
3369 * ring_buffer_iter_reset - reset an iterator
3370 * @iter: The iterator to reset
3371 *
3372 * Resets the iterator, so that it will start from the beginning
3373 * again.
3374 */
3375 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3376 {
3377 struct ring_buffer_per_cpu *cpu_buffer;
3378 unsigned long flags;
3379
3380 if (!iter)
3381 return;
3382
3383 cpu_buffer = iter->cpu_buffer;
3384
3385 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3386 rb_iter_reset(iter);
3387 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3390
3391 /**
3392 * ring_buffer_iter_empty - check if an iterator has no more to read
3393 * @iter: The iterator to check
3394 */
3395 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3396 {
3397 struct ring_buffer_per_cpu *cpu_buffer;
3398
3399 cpu_buffer = iter->cpu_buffer;
3400
3401 return iter->head_page == cpu_buffer->commit_page &&
3402 iter->head == rb_commit_index(cpu_buffer);
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3405
3406 static void
3407 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3408 struct ring_buffer_event *event)
3409 {
3410 u64 delta;
3411
3412 switch (event->type_len) {
3413 case RINGBUF_TYPE_PADDING:
3414 return;
3415
3416 case RINGBUF_TYPE_TIME_EXTEND:
3417 delta = event->array[0];
3418 delta <<= TS_SHIFT;
3419 delta += event->time_delta;
3420 cpu_buffer->read_stamp += delta;
3421 return;
3422
3423 case RINGBUF_TYPE_TIME_STAMP:
3424 /* FIXME: not implemented */
3425 return;
3426
3427 case RINGBUF_TYPE_DATA:
3428 cpu_buffer->read_stamp += event->time_delta;
3429 return;
3430
3431 default:
3432 BUG();
3433 }
3434 return;
3435 }
3436
3437 static void
3438 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3439 struct ring_buffer_event *event)
3440 {
3441 u64 delta;
3442
3443 switch (event->type_len) {
3444 case RINGBUF_TYPE_PADDING:
3445 return;
3446
3447 case RINGBUF_TYPE_TIME_EXTEND:
3448 delta = event->array[0];
3449 delta <<= TS_SHIFT;
3450 delta += event->time_delta;
3451 iter->read_stamp += delta;
3452 return;
3453
3454 case RINGBUF_TYPE_TIME_STAMP:
3455 /* FIXME: not implemented */
3456 return;
3457
3458 case RINGBUF_TYPE_DATA:
3459 iter->read_stamp += event->time_delta;
3460 return;
3461
3462 default:
3463 BUG();
3464 }
3465 return;
3466 }
3467
3468 static struct buffer_page *
3469 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3470 {
3471 struct buffer_page *reader = NULL;
3472 unsigned long overwrite;
3473 unsigned long flags;
3474 int nr_loops = 0;
3475 int ret;
3476
3477 local_irq_save(flags);
3478 arch_spin_lock(&cpu_buffer->lock);
3479
3480 again:
3481 /*
3482 * This should normally only loop twice. But because the
3483 * start of the reader inserts an empty page, it causes
3484 * a case where we will loop three times. There should be no
3485 * reason to loop four times (that I know of).
3486 */
3487 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3488 reader = NULL;
3489 goto out;
3490 }
3491
3492 reader = cpu_buffer->reader_page;
3493
3494 /* If there's more to read, return this page */
3495 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3496 goto out;
3497
3498 /* Never should we have an index greater than the size */
3499 if (RB_WARN_ON(cpu_buffer,
3500 cpu_buffer->reader_page->read > rb_page_size(reader)))
3501 goto out;
3502
3503 /* check if we caught up to the tail */
3504 reader = NULL;
3505 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3506 goto out;
3507
3508 /* Don't bother swapping if the ring buffer is empty */
3509 if (rb_num_of_entries(cpu_buffer) == 0)
3510 goto out;
3511
3512 /*
3513 * Reset the reader page to size zero.
3514 */
3515 local_set(&cpu_buffer->reader_page->write, 0);
3516 local_set(&cpu_buffer->reader_page->entries, 0);
3517 local_set(&cpu_buffer->reader_page->page->commit, 0);
3518 cpu_buffer->reader_page->real_end = 0;
3519
3520 spin:
3521 /*
3522 * Splice the empty reader page into the list around the head.
3523 */
3524 reader = rb_set_head_page(cpu_buffer);
3525 if (!reader)
3526 goto out;
3527 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3528 cpu_buffer->reader_page->list.prev = reader->list.prev;
3529
3530 /*
3531 * cpu_buffer->pages just needs to point to the buffer, it
3532 * has no specific buffer page to point to. Lets move it out
3533 * of our way so we don't accidentally swap it.
3534 */
3535 cpu_buffer->pages = reader->list.prev;
3536
3537 /* The reader page will be pointing to the new head */
3538 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3539
3540 /*
3541 * We want to make sure we read the overruns after we set up our
3542 * pointers to the next object. The writer side does a
3543 * cmpxchg to cross pages which acts as the mb on the writer
3544 * side. Note, the reader will constantly fail the swap
3545 * while the writer is updating the pointers, so this
3546 * guarantees that the overwrite recorded here is the one we
3547 * want to compare with the last_overrun.
3548 */
3549 smp_mb();
3550 overwrite = local_read(&(cpu_buffer->overrun));
3551
3552 /*
3553 * Here's the tricky part.
3554 *
3555 * We need to move the pointer past the header page.
3556 * But we can only do that if a writer is not currently
3557 * moving it. The page before the header page has the
3558 * flag bit '1' set if it is pointing to the page we want.
3559 * but if the writer is in the process of moving it
3560 * than it will be '2' or already moved '0'.
3561 */
3562
3563 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3564
3565 /*
3566 * If we did not convert it, then we must try again.
3567 */
3568 if (!ret)
3569 goto spin;
3570
3571 /*
3572 * Yeah! We succeeded in replacing the page.
3573 *
3574 * Now make the new head point back to the reader page.
3575 */
3576 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3577 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3578
3579 /* Finally update the reader page to the new head */
3580 cpu_buffer->reader_page = reader;
3581 rb_reset_reader_page(cpu_buffer);
3582
3583 if (overwrite != cpu_buffer->last_overrun) {
3584 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3585 cpu_buffer->last_overrun = overwrite;
3586 }
3587
3588 goto again;
3589
3590 out:
3591 arch_spin_unlock(&cpu_buffer->lock);
3592 local_irq_restore(flags);
3593
3594 return reader;
3595 }
3596
3597 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3598 {
3599 struct ring_buffer_event *event;
3600 struct buffer_page *reader;
3601 unsigned length;
3602
3603 reader = rb_get_reader_page(cpu_buffer);
3604
3605 /* This function should not be called when buffer is empty */
3606 if (RB_WARN_ON(cpu_buffer, !reader))
3607 return;
3608
3609 event = rb_reader_event(cpu_buffer);
3610
3611 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3612 cpu_buffer->read++;
3613
3614 rb_update_read_stamp(cpu_buffer, event);
3615
3616 length = rb_event_length(event);
3617 cpu_buffer->reader_page->read += length;
3618 }
3619
3620 static void rb_advance_iter(struct ring_buffer_iter *iter)
3621 {
3622 struct ring_buffer_per_cpu *cpu_buffer;
3623 struct ring_buffer_event *event;
3624 unsigned length;
3625
3626 cpu_buffer = iter->cpu_buffer;
3627
3628 /*
3629 * Check if we are at the end of the buffer.
3630 */
3631 if (iter->head >= rb_page_size(iter->head_page)) {
3632 /* discarded commits can make the page empty */
3633 if (iter->head_page == cpu_buffer->commit_page)
3634 return;
3635 rb_inc_iter(iter);
3636 return;
3637 }
3638
3639 event = rb_iter_head_event(iter);
3640
3641 length = rb_event_length(event);
3642
3643 /*
3644 * This should not be called to advance the header if we are
3645 * at the tail of the buffer.
3646 */
3647 if (RB_WARN_ON(cpu_buffer,
3648 (iter->head_page == cpu_buffer->commit_page) &&
3649 (iter->head + length > rb_commit_index(cpu_buffer))))
3650 return;
3651
3652 rb_update_iter_read_stamp(iter, event);
3653
3654 iter->head += length;
3655
3656 /* check for end of page padding */
3657 if ((iter->head >= rb_page_size(iter->head_page)) &&
3658 (iter->head_page != cpu_buffer->commit_page))
3659 rb_inc_iter(iter);
3660 }
3661
3662 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3663 {
3664 return cpu_buffer->lost_events;
3665 }
3666
3667 static struct ring_buffer_event *
3668 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3669 unsigned long *lost_events)
3670 {
3671 struct ring_buffer_event *event;
3672 struct buffer_page *reader;
3673 int nr_loops = 0;
3674
3675 again:
3676 /*
3677 * We repeat when a time extend is encountered.
3678 * Since the time extend is always attached to a data event,
3679 * we should never loop more than once.
3680 * (We never hit the following condition more than twice).
3681 */
3682 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3683 return NULL;
3684
3685 reader = rb_get_reader_page(cpu_buffer);
3686 if (!reader)
3687 return NULL;
3688
3689 event = rb_reader_event(cpu_buffer);
3690
3691 switch (event->type_len) {
3692 case RINGBUF_TYPE_PADDING:
3693 if (rb_null_event(event))
3694 RB_WARN_ON(cpu_buffer, 1);
3695 /*
3696 * Because the writer could be discarding every
3697 * event it creates (which would probably be bad)
3698 * if we were to go back to "again" then we may never
3699 * catch up, and will trigger the warn on, or lock
3700 * the box. Return the padding, and we will release
3701 * the current locks, and try again.
3702 */
3703 return event;
3704
3705 case RINGBUF_TYPE_TIME_EXTEND:
3706 /* Internal data, OK to advance */
3707 rb_advance_reader(cpu_buffer);
3708 goto again;
3709
3710 case RINGBUF_TYPE_TIME_STAMP:
3711 /* FIXME: not implemented */
3712 rb_advance_reader(cpu_buffer);
3713 goto again;
3714
3715 case RINGBUF_TYPE_DATA:
3716 if (ts) {
3717 *ts = cpu_buffer->read_stamp + event->time_delta;
3718 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3719 cpu_buffer->cpu, ts);
3720 }
3721 if (lost_events)
3722 *lost_events = rb_lost_events(cpu_buffer);
3723 return event;
3724
3725 default:
3726 BUG();
3727 }
3728
3729 return NULL;
3730 }
3731 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3732
3733 static struct ring_buffer_event *
3734 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3735 {
3736 struct ring_buffer *buffer;
3737 struct ring_buffer_per_cpu *cpu_buffer;
3738 struct ring_buffer_event *event;
3739 int nr_loops = 0;
3740
3741 cpu_buffer = iter->cpu_buffer;
3742 buffer = cpu_buffer->buffer;
3743
3744 /*
3745 * Check if someone performed a consuming read to
3746 * the buffer. A consuming read invalidates the iterator
3747 * and we need to reset the iterator in this case.
3748 */
3749 if (unlikely(iter->cache_read != cpu_buffer->read ||
3750 iter->cache_reader_page != cpu_buffer->reader_page))
3751 rb_iter_reset(iter);
3752
3753 again:
3754 if (ring_buffer_iter_empty(iter))
3755 return NULL;
3756
3757 /*
3758 * We repeat when a time extend is encountered or we hit
3759 * the end of the page. Since the time extend is always attached
3760 * to a data event, we should never loop more than three times.
3761 * Once for going to next page, once on time extend, and
3762 * finally once to get the event.
3763 * (We never hit the following condition more than thrice).
3764 */
3765 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3766 return NULL;
3767
3768 if (rb_per_cpu_empty(cpu_buffer))
3769 return NULL;
3770
3771 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3772 rb_inc_iter(iter);
3773 goto again;
3774 }
3775
3776 event = rb_iter_head_event(iter);
3777
3778 switch (event->type_len) {
3779 case RINGBUF_TYPE_PADDING:
3780 if (rb_null_event(event)) {
3781 rb_inc_iter(iter);
3782 goto again;
3783 }
3784 rb_advance_iter(iter);
3785 return event;
3786
3787 case RINGBUF_TYPE_TIME_EXTEND:
3788 /* Internal data, OK to advance */
3789 rb_advance_iter(iter);
3790 goto again;
3791
3792 case RINGBUF_TYPE_TIME_STAMP:
3793 /* FIXME: not implemented */
3794 rb_advance_iter(iter);
3795 goto again;
3796
3797 case RINGBUF_TYPE_DATA:
3798 if (ts) {
3799 *ts = iter->read_stamp + event->time_delta;
3800 ring_buffer_normalize_time_stamp(buffer,
3801 cpu_buffer->cpu, ts);
3802 }
3803 return event;
3804
3805 default:
3806 BUG();
3807 }
3808
3809 return NULL;
3810 }
3811 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3812
3813 static inline int rb_ok_to_lock(void)
3814 {
3815 /*
3816 * If an NMI die dumps out the content of the ring buffer
3817 * do not grab locks. We also permanently disable the ring
3818 * buffer too. A one time deal is all you get from reading
3819 * the ring buffer from an NMI.
3820 */
3821 if (likely(!in_nmi()))
3822 return 1;
3823
3824 tracing_off_permanent();
3825 return 0;
3826 }
3827
3828 /**
3829 * ring_buffer_peek - peek at the next event to be read
3830 * @buffer: The ring buffer to read
3831 * @cpu: The cpu to peak at
3832 * @ts: The timestamp counter of this event.
3833 * @lost_events: a variable to store if events were lost (may be NULL)
3834 *
3835 * This will return the event that will be read next, but does
3836 * not consume the data.
3837 */
3838 struct ring_buffer_event *
3839 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3840 unsigned long *lost_events)
3841 {
3842 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3843 struct ring_buffer_event *event;
3844 unsigned long flags;
3845 int dolock;
3846
3847 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3848 return NULL;
3849
3850 dolock = rb_ok_to_lock();
3851 again:
3852 local_irq_save(flags);
3853 if (dolock)
3854 raw_spin_lock(&cpu_buffer->reader_lock);
3855 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3856 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3857 rb_advance_reader(cpu_buffer);
3858 if (dolock)
3859 raw_spin_unlock(&cpu_buffer->reader_lock);
3860 local_irq_restore(flags);
3861
3862 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3863 goto again;
3864
3865 return event;
3866 }
3867
3868 /**
3869 * ring_buffer_iter_peek - peek at the next event to be read
3870 * @iter: The ring buffer iterator
3871 * @ts: The timestamp counter of this event.
3872 *
3873 * This will return the event that will be read next, but does
3874 * not increment the iterator.
3875 */
3876 struct ring_buffer_event *
3877 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3878 {
3879 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3880 struct ring_buffer_event *event;
3881 unsigned long flags;
3882
3883 again:
3884 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3885 event = rb_iter_peek(iter, ts);
3886 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3887
3888 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3889 goto again;
3890
3891 return event;
3892 }
3893
3894 /**
3895 * ring_buffer_consume - return an event and consume it
3896 * @buffer: The ring buffer to get the next event from
3897 * @cpu: the cpu to read the buffer from
3898 * @ts: a variable to store the timestamp (may be NULL)
3899 * @lost_events: a variable to store if events were lost (may be NULL)
3900 *
3901 * Returns the next event in the ring buffer, and that event is consumed.
3902 * Meaning, that sequential reads will keep returning a different event,
3903 * and eventually empty the ring buffer if the producer is slower.
3904 */
3905 struct ring_buffer_event *
3906 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3907 unsigned long *lost_events)
3908 {
3909 struct ring_buffer_per_cpu *cpu_buffer;
3910 struct ring_buffer_event *event = NULL;
3911 unsigned long flags;
3912 int dolock;
3913
3914 dolock = rb_ok_to_lock();
3915
3916 again:
3917 /* might be called in atomic */
3918 preempt_disable();
3919
3920 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3921 goto out;
3922
3923 cpu_buffer = buffer->buffers[cpu];
3924 local_irq_save(flags);
3925 if (dolock)
3926 raw_spin_lock(&cpu_buffer->reader_lock);
3927
3928 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3929 if (event) {
3930 cpu_buffer->lost_events = 0;
3931 rb_advance_reader(cpu_buffer);
3932 }
3933
3934 if (dolock)
3935 raw_spin_unlock(&cpu_buffer->reader_lock);
3936 local_irq_restore(flags);
3937
3938 out:
3939 preempt_enable();
3940
3941 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3942 goto again;
3943
3944 return event;
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3947
3948 /**
3949 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3950 * @buffer: The ring buffer to read from
3951 * @cpu: The cpu buffer to iterate over
3952 *
3953 * This performs the initial preparations necessary to iterate
3954 * through the buffer. Memory is allocated, buffer recording
3955 * is disabled, and the iterator pointer is returned to the caller.
3956 *
3957 * Disabling buffer recordng prevents the reading from being
3958 * corrupted. This is not a consuming read, so a producer is not
3959 * expected.
3960 *
3961 * After a sequence of ring_buffer_read_prepare calls, the user is
3962 * expected to make at least one call to ring_buffer_prepare_sync.
3963 * Afterwards, ring_buffer_read_start is invoked to get things going
3964 * for real.
3965 *
3966 * This overall must be paired with ring_buffer_finish.
3967 */
3968 struct ring_buffer_iter *
3969 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3970 {
3971 struct ring_buffer_per_cpu *cpu_buffer;
3972 struct ring_buffer_iter *iter;
3973
3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975 return NULL;
3976
3977 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3978 if (!iter)
3979 return NULL;
3980
3981 cpu_buffer = buffer->buffers[cpu];
3982
3983 iter->cpu_buffer = cpu_buffer;
3984
3985 atomic_inc(&buffer->resize_disabled);
3986 atomic_inc(&cpu_buffer->record_disabled);
3987
3988 return iter;
3989 }
3990 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3991
3992 /**
3993 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3994 *
3995 * All previously invoked ring_buffer_read_prepare calls to prepare
3996 * iterators will be synchronized. Afterwards, read_buffer_read_start
3997 * calls on those iterators are allowed.
3998 */
3999 void
4000 ring_buffer_read_prepare_sync(void)
4001 {
4002 synchronize_sched();
4003 }
4004 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4005
4006 /**
4007 * ring_buffer_read_start - start a non consuming read of the buffer
4008 * @iter: The iterator returned by ring_buffer_read_prepare
4009 *
4010 * This finalizes the startup of an iteration through the buffer.
4011 * The iterator comes from a call to ring_buffer_read_prepare and
4012 * an intervening ring_buffer_read_prepare_sync must have been
4013 * performed.
4014 *
4015 * Must be paired with ring_buffer_finish.
4016 */
4017 void
4018 ring_buffer_read_start(struct ring_buffer_iter *iter)
4019 {
4020 struct ring_buffer_per_cpu *cpu_buffer;
4021 unsigned long flags;
4022
4023 if (!iter)
4024 return;
4025
4026 cpu_buffer = iter->cpu_buffer;
4027
4028 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4029 arch_spin_lock(&cpu_buffer->lock);
4030 rb_iter_reset(iter);
4031 arch_spin_unlock(&cpu_buffer->lock);
4032 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4033 }
4034 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4035
4036 /**
4037 * ring_buffer_finish - finish reading the iterator of the buffer
4038 * @iter: The iterator retrieved by ring_buffer_start
4039 *
4040 * This re-enables the recording to the buffer, and frees the
4041 * iterator.
4042 */
4043 void
4044 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4045 {
4046 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4047 unsigned long flags;
4048
4049 /*
4050 * Ring buffer is disabled from recording, here's a good place
4051 * to check the integrity of the ring buffer.
4052 * Must prevent readers from trying to read, as the check
4053 * clears the HEAD page and readers require it.
4054 */
4055 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4056 rb_check_pages(cpu_buffer);
4057 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4058
4059 atomic_dec(&cpu_buffer->record_disabled);
4060 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4061 kfree(iter);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4064
4065 /**
4066 * ring_buffer_read - read the next item in the ring buffer by the iterator
4067 * @iter: The ring buffer iterator
4068 * @ts: The time stamp of the event read.
4069 *
4070 * This reads the next event in the ring buffer and increments the iterator.
4071 */
4072 struct ring_buffer_event *
4073 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4074 {
4075 struct ring_buffer_event *event;
4076 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4077 unsigned long flags;
4078
4079 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080 again:
4081 event = rb_iter_peek(iter, ts);
4082 if (!event)
4083 goto out;
4084
4085 if (event->type_len == RINGBUF_TYPE_PADDING)
4086 goto again;
4087
4088 rb_advance_iter(iter);
4089 out:
4090 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4091
4092 return event;
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_read);
4095
4096 /**
4097 * ring_buffer_size - return the size of the ring buffer (in bytes)
4098 * @buffer: The ring buffer.
4099 */
4100 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4101 {
4102 /*
4103 * Earlier, this method returned
4104 * BUF_PAGE_SIZE * buffer->nr_pages
4105 * Since the nr_pages field is now removed, we have converted this to
4106 * return the per cpu buffer value.
4107 */
4108 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4109 return 0;
4110
4111 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_size);
4114
4115 static void
4116 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4117 {
4118 rb_head_page_deactivate(cpu_buffer);
4119
4120 cpu_buffer->head_page
4121 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4122 local_set(&cpu_buffer->head_page->write, 0);
4123 local_set(&cpu_buffer->head_page->entries, 0);
4124 local_set(&cpu_buffer->head_page->page->commit, 0);
4125
4126 cpu_buffer->head_page->read = 0;
4127
4128 cpu_buffer->tail_page = cpu_buffer->head_page;
4129 cpu_buffer->commit_page = cpu_buffer->head_page;
4130
4131 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4132 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4133 local_set(&cpu_buffer->reader_page->write, 0);
4134 local_set(&cpu_buffer->reader_page->entries, 0);
4135 local_set(&cpu_buffer->reader_page->page->commit, 0);
4136 cpu_buffer->reader_page->read = 0;
4137
4138 local_set(&cpu_buffer->entries_bytes, 0);
4139 local_set(&cpu_buffer->overrun, 0);
4140 local_set(&cpu_buffer->commit_overrun, 0);
4141 local_set(&cpu_buffer->dropped_events, 0);
4142 local_set(&cpu_buffer->entries, 0);
4143 local_set(&cpu_buffer->committing, 0);
4144 local_set(&cpu_buffer->commits, 0);
4145 cpu_buffer->read = 0;
4146 cpu_buffer->read_bytes = 0;
4147
4148 cpu_buffer->write_stamp = 0;
4149 cpu_buffer->read_stamp = 0;
4150
4151 cpu_buffer->lost_events = 0;
4152 cpu_buffer->last_overrun = 0;
4153
4154 rb_head_page_activate(cpu_buffer);
4155 }
4156
4157 /**
4158 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4159 * @buffer: The ring buffer to reset a per cpu buffer of
4160 * @cpu: The CPU buffer to be reset
4161 */
4162 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4163 {
4164 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4165 unsigned long flags;
4166
4167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 return;
4169
4170 atomic_inc(&buffer->resize_disabled);
4171 atomic_inc(&cpu_buffer->record_disabled);
4172
4173 /* Make sure all commits have finished */
4174 synchronize_sched();
4175
4176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4177
4178 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4179 goto out;
4180
4181 arch_spin_lock(&cpu_buffer->lock);
4182
4183 rb_reset_cpu(cpu_buffer);
4184
4185 arch_spin_unlock(&cpu_buffer->lock);
4186
4187 out:
4188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4189
4190 atomic_dec(&cpu_buffer->record_disabled);
4191 atomic_dec(&buffer->resize_disabled);
4192 }
4193 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4194
4195 /**
4196 * ring_buffer_reset - reset a ring buffer
4197 * @buffer: The ring buffer to reset all cpu buffers
4198 */
4199 void ring_buffer_reset(struct ring_buffer *buffer)
4200 {
4201 int cpu;
4202
4203 for_each_buffer_cpu(buffer, cpu)
4204 ring_buffer_reset_cpu(buffer, cpu);
4205 }
4206 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4207
4208 /**
4209 * rind_buffer_empty - is the ring buffer empty?
4210 * @buffer: The ring buffer to test
4211 */
4212 int ring_buffer_empty(struct ring_buffer *buffer)
4213 {
4214 struct ring_buffer_per_cpu *cpu_buffer;
4215 unsigned long flags;
4216 int dolock;
4217 int cpu;
4218 int ret;
4219
4220 dolock = rb_ok_to_lock();
4221
4222 /* yes this is racy, but if you don't like the race, lock the buffer */
4223 for_each_buffer_cpu(buffer, cpu) {
4224 cpu_buffer = buffer->buffers[cpu];
4225 local_irq_save(flags);
4226 if (dolock)
4227 raw_spin_lock(&cpu_buffer->reader_lock);
4228 ret = rb_per_cpu_empty(cpu_buffer);
4229 if (dolock)
4230 raw_spin_unlock(&cpu_buffer->reader_lock);
4231 local_irq_restore(flags);
4232
4233 if (!ret)
4234 return 0;
4235 }
4236
4237 return 1;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4240
4241 /**
4242 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4243 * @buffer: The ring buffer
4244 * @cpu: The CPU buffer to test
4245 */
4246 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4247 {
4248 struct ring_buffer_per_cpu *cpu_buffer;
4249 unsigned long flags;
4250 int dolock;
4251 int ret;
4252
4253 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4254 return 1;
4255
4256 dolock = rb_ok_to_lock();
4257
4258 cpu_buffer = buffer->buffers[cpu];
4259 local_irq_save(flags);
4260 if (dolock)
4261 raw_spin_lock(&cpu_buffer->reader_lock);
4262 ret = rb_per_cpu_empty(cpu_buffer);
4263 if (dolock)
4264 raw_spin_unlock(&cpu_buffer->reader_lock);
4265 local_irq_restore(flags);
4266
4267 return ret;
4268 }
4269 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4270
4271 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4272 /**
4273 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4274 * @buffer_a: One buffer to swap with
4275 * @buffer_b: The other buffer to swap with
4276 *
4277 * This function is useful for tracers that want to take a "snapshot"
4278 * of a CPU buffer and has another back up buffer lying around.
4279 * it is expected that the tracer handles the cpu buffer not being
4280 * used at the moment.
4281 */
4282 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4283 struct ring_buffer *buffer_b, int cpu)
4284 {
4285 struct ring_buffer_per_cpu *cpu_buffer_a;
4286 struct ring_buffer_per_cpu *cpu_buffer_b;
4287 int ret = -EINVAL;
4288
4289 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4290 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4291 goto out;
4292
4293 cpu_buffer_a = buffer_a->buffers[cpu];
4294 cpu_buffer_b = buffer_b->buffers[cpu];
4295
4296 /* At least make sure the two buffers are somewhat the same */
4297 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4298 goto out;
4299
4300 ret = -EAGAIN;
4301
4302 if (ring_buffer_flags != RB_BUFFERS_ON)
4303 goto out;
4304
4305 if (atomic_read(&buffer_a->record_disabled))
4306 goto out;
4307
4308 if (atomic_read(&buffer_b->record_disabled))
4309 goto out;
4310
4311 if (atomic_read(&cpu_buffer_a->record_disabled))
4312 goto out;
4313
4314 if (atomic_read(&cpu_buffer_b->record_disabled))
4315 goto out;
4316
4317 /*
4318 * We can't do a synchronize_sched here because this
4319 * function can be called in atomic context.
4320 * Normally this will be called from the same CPU as cpu.
4321 * If not it's up to the caller to protect this.
4322 */
4323 atomic_inc(&cpu_buffer_a->record_disabled);
4324 atomic_inc(&cpu_buffer_b->record_disabled);
4325
4326 ret = -EBUSY;
4327 if (local_read(&cpu_buffer_a->committing))
4328 goto out_dec;
4329 if (local_read(&cpu_buffer_b->committing))
4330 goto out_dec;
4331
4332 buffer_a->buffers[cpu] = cpu_buffer_b;
4333 buffer_b->buffers[cpu] = cpu_buffer_a;
4334
4335 cpu_buffer_b->buffer = buffer_a;
4336 cpu_buffer_a->buffer = buffer_b;
4337
4338 ret = 0;
4339
4340 out_dec:
4341 atomic_dec(&cpu_buffer_a->record_disabled);
4342 atomic_dec(&cpu_buffer_b->record_disabled);
4343 out:
4344 return ret;
4345 }
4346 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4347 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4348
4349 /**
4350 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4351 * @buffer: the buffer to allocate for.
4352 *
4353 * This function is used in conjunction with ring_buffer_read_page.
4354 * When reading a full page from the ring buffer, these functions
4355 * can be used to speed up the process. The calling function should
4356 * allocate a few pages first with this function. Then when it
4357 * needs to get pages from the ring buffer, it passes the result
4358 * of this function into ring_buffer_read_page, which will swap
4359 * the page that was allocated, with the read page of the buffer.
4360 *
4361 * Returns:
4362 * The page allocated, or NULL on error.
4363 */
4364 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4365 {
4366 struct buffer_data_page *bpage;
4367 struct page *page;
4368
4369 page = alloc_pages_node(cpu_to_node(cpu),
4370 GFP_KERNEL | __GFP_NORETRY, 0);
4371 if (!page)
4372 return NULL;
4373
4374 bpage = page_address(page);
4375
4376 rb_init_page(bpage);
4377
4378 return bpage;
4379 }
4380 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4381
4382 /**
4383 * ring_buffer_free_read_page - free an allocated read page
4384 * @buffer: the buffer the page was allocate for
4385 * @data: the page to free
4386 *
4387 * Free a page allocated from ring_buffer_alloc_read_page.
4388 */
4389 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4390 {
4391 free_page((unsigned long)data);
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4394
4395 /**
4396 * ring_buffer_read_page - extract a page from the ring buffer
4397 * @buffer: buffer to extract from
4398 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4399 * @len: amount to extract
4400 * @cpu: the cpu of the buffer to extract
4401 * @full: should the extraction only happen when the page is full.
4402 *
4403 * This function will pull out a page from the ring buffer and consume it.
4404 * @data_page must be the address of the variable that was returned
4405 * from ring_buffer_alloc_read_page. This is because the page might be used
4406 * to swap with a page in the ring buffer.
4407 *
4408 * for example:
4409 * rpage = ring_buffer_alloc_read_page(buffer);
4410 * if (!rpage)
4411 * return error;
4412 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4413 * if (ret >= 0)
4414 * process_page(rpage, ret);
4415 *
4416 * When @full is set, the function will not return true unless
4417 * the writer is off the reader page.
4418 *
4419 * Note: it is up to the calling functions to handle sleeps and wakeups.
4420 * The ring buffer can be used anywhere in the kernel and can not
4421 * blindly call wake_up. The layer that uses the ring buffer must be
4422 * responsible for that.
4423 *
4424 * Returns:
4425 * >=0 if data has been transferred, returns the offset of consumed data.
4426 * <0 if no data has been transferred.
4427 */
4428 int ring_buffer_read_page(struct ring_buffer *buffer,
4429 void **data_page, size_t len, int cpu, int full)
4430 {
4431 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4432 struct ring_buffer_event *event;
4433 struct buffer_data_page *bpage;
4434 struct buffer_page *reader;
4435 unsigned long missed_events;
4436 unsigned long flags;
4437 unsigned int commit;
4438 unsigned int read;
4439 u64 save_timestamp;
4440 int ret = -1;
4441
4442 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4443 goto out;
4444
4445 /*
4446 * If len is not big enough to hold the page header, then
4447 * we can not copy anything.
4448 */
4449 if (len <= BUF_PAGE_HDR_SIZE)
4450 goto out;
4451
4452 len -= BUF_PAGE_HDR_SIZE;
4453
4454 if (!data_page)
4455 goto out;
4456
4457 bpage = *data_page;
4458 if (!bpage)
4459 goto out;
4460
4461 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4462
4463 reader = rb_get_reader_page(cpu_buffer);
4464 if (!reader)
4465 goto out_unlock;
4466
4467 event = rb_reader_event(cpu_buffer);
4468
4469 read = reader->read;
4470 commit = rb_page_commit(reader);
4471
4472 /* Check if any events were dropped */
4473 missed_events = cpu_buffer->lost_events;
4474
4475 /*
4476 * If this page has been partially read or
4477 * if len is not big enough to read the rest of the page or
4478 * a writer is still on the page, then
4479 * we must copy the data from the page to the buffer.
4480 * Otherwise, we can simply swap the page with the one passed in.
4481 */
4482 if (read || (len < (commit - read)) ||
4483 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4484 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4485 unsigned int rpos = read;
4486 unsigned int pos = 0;
4487 unsigned int size;
4488
4489 if (full)
4490 goto out_unlock;
4491
4492 if (len > (commit - read))
4493 len = (commit - read);
4494
4495 /* Always keep the time extend and data together */
4496 size = rb_event_ts_length(event);
4497
4498 if (len < size)
4499 goto out_unlock;
4500
4501 /* save the current timestamp, since the user will need it */
4502 save_timestamp = cpu_buffer->read_stamp;
4503
4504 /* Need to copy one event at a time */
4505 do {
4506 /* We need the size of one event, because
4507 * rb_advance_reader only advances by one event,
4508 * whereas rb_event_ts_length may include the size of
4509 * one or two events.
4510 * We have already ensured there's enough space if this
4511 * is a time extend. */
4512 size = rb_event_length(event);
4513 memcpy(bpage->data + pos, rpage->data + rpos, size);
4514
4515 len -= size;
4516
4517 rb_advance_reader(cpu_buffer);
4518 rpos = reader->read;
4519 pos += size;
4520
4521 if (rpos >= commit)
4522 break;
4523
4524 event = rb_reader_event(cpu_buffer);
4525 /* Always keep the time extend and data together */
4526 size = rb_event_ts_length(event);
4527 } while (len >= size);
4528
4529 /* update bpage */
4530 local_set(&bpage->commit, pos);
4531 bpage->time_stamp = save_timestamp;
4532
4533 /* we copied everything to the beginning */
4534 read = 0;
4535 } else {
4536 /* update the entry counter */
4537 cpu_buffer->read += rb_page_entries(reader);
4538 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4539
4540 /* swap the pages */
4541 rb_init_page(bpage);
4542 bpage = reader->page;
4543 reader->page = *data_page;
4544 local_set(&reader->write, 0);
4545 local_set(&reader->entries, 0);
4546 reader->read = 0;
4547 *data_page = bpage;
4548
4549 /*
4550 * Use the real_end for the data size,
4551 * This gives us a chance to store the lost events
4552 * on the page.
4553 */
4554 if (reader->real_end)
4555 local_set(&bpage->commit, reader->real_end);
4556 }
4557 ret = read;
4558
4559 cpu_buffer->lost_events = 0;
4560
4561 commit = local_read(&bpage->commit);
4562 /*
4563 * Set a flag in the commit field if we lost events
4564 */
4565 if (missed_events) {
4566 /* If there is room at the end of the page to save the
4567 * missed events, then record it there.
4568 */
4569 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4570 memcpy(&bpage->data[commit], &missed_events,
4571 sizeof(missed_events));
4572 local_add(RB_MISSED_STORED, &bpage->commit);
4573 commit += sizeof(missed_events);
4574 }
4575 local_add(RB_MISSED_EVENTS, &bpage->commit);
4576 }
4577
4578 /*
4579 * This page may be off to user land. Zero it out here.
4580 */
4581 if (commit < BUF_PAGE_SIZE)
4582 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4583
4584 out_unlock:
4585 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4586
4587 out:
4588 return ret;
4589 }
4590 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4591
4592 #ifdef CONFIG_HOTPLUG_CPU
4593 static int rb_cpu_notify(struct notifier_block *self,
4594 unsigned long action, void *hcpu)
4595 {
4596 struct ring_buffer *buffer =
4597 container_of(self, struct ring_buffer, cpu_notify);
4598 long cpu = (long)hcpu;
4599 int cpu_i, nr_pages_same;
4600 unsigned int nr_pages;
4601
4602 switch (action) {
4603 case CPU_UP_PREPARE:
4604 case CPU_UP_PREPARE_FROZEN:
4605 if (cpumask_test_cpu(cpu, buffer->cpumask))
4606 return NOTIFY_OK;
4607
4608 nr_pages = 0;
4609 nr_pages_same = 1;
4610 /* check if all cpu sizes are same */
4611 for_each_buffer_cpu(buffer, cpu_i) {
4612 /* fill in the size from first enabled cpu */
4613 if (nr_pages == 0)
4614 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4615 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4616 nr_pages_same = 0;
4617 break;
4618 }
4619 }
4620 /* allocate minimum pages, user can later expand it */
4621 if (!nr_pages_same)
4622 nr_pages = 2;
4623 buffer->buffers[cpu] =
4624 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4625 if (!buffer->buffers[cpu]) {
4626 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4627 cpu);
4628 return NOTIFY_OK;
4629 }
4630 smp_wmb();
4631 cpumask_set_cpu(cpu, buffer->cpumask);
4632 break;
4633 case CPU_DOWN_PREPARE:
4634 case CPU_DOWN_PREPARE_FROZEN:
4635 /*
4636 * Do nothing.
4637 * If we were to free the buffer, then the user would
4638 * lose any trace that was in the buffer.
4639 */
4640 break;
4641 default:
4642 break;
4643 }
4644 return NOTIFY_OK;
4645 }
4646 #endif
4647
4648 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4649 /*
4650 * This is a basic integrity check of the ring buffer.
4651 * Late in the boot cycle this test will run when configured in.
4652 * It will kick off a thread per CPU that will go into a loop
4653 * writing to the per cpu ring buffer various sizes of data.
4654 * Some of the data will be large items, some small.
4655 *
4656 * Another thread is created that goes into a spin, sending out
4657 * IPIs to the other CPUs to also write into the ring buffer.
4658 * this is to test the nesting ability of the buffer.
4659 *
4660 * Basic stats are recorded and reported. If something in the
4661 * ring buffer should happen that's not expected, a big warning
4662 * is displayed and all ring buffers are disabled.
4663 */
4664 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4665
4666 struct rb_test_data {
4667 struct ring_buffer *buffer;
4668 unsigned long events;
4669 unsigned long bytes_written;
4670 unsigned long bytes_alloc;
4671 unsigned long bytes_dropped;
4672 unsigned long events_nested;
4673 unsigned long bytes_written_nested;
4674 unsigned long bytes_alloc_nested;
4675 unsigned long bytes_dropped_nested;
4676 int min_size_nested;
4677 int max_size_nested;
4678 int max_size;
4679 int min_size;
4680 int cpu;
4681 int cnt;
4682 };
4683
4684 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4685
4686 /* 1 meg per cpu */
4687 #define RB_TEST_BUFFER_SIZE 1048576
4688
4689 static char rb_string[] __initdata =
4690 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4691 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4692 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4693
4694 static bool rb_test_started __initdata;
4695
4696 struct rb_item {
4697 int size;
4698 char str[];
4699 };
4700
4701 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4702 {
4703 struct ring_buffer_event *event;
4704 struct rb_item *item;
4705 bool started;
4706 int event_len;
4707 int size;
4708 int len;
4709 int cnt;
4710
4711 /* Have nested writes different that what is written */
4712 cnt = data->cnt + (nested ? 27 : 0);
4713
4714 /* Multiply cnt by ~e, to make some unique increment */
4715 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4716
4717 len = size + sizeof(struct rb_item);
4718
4719 started = rb_test_started;
4720 /* read rb_test_started before checking buffer enabled */
4721 smp_rmb();
4722
4723 event = ring_buffer_lock_reserve(data->buffer, len);
4724 if (!event) {
4725 /* Ignore dropped events before test starts. */
4726 if (started) {
4727 if (nested)
4728 data->bytes_dropped += len;
4729 else
4730 data->bytes_dropped_nested += len;
4731 }
4732 return len;
4733 }
4734
4735 event_len = ring_buffer_event_length(event);
4736
4737 if (RB_WARN_ON(data->buffer, event_len < len))
4738 goto out;
4739
4740 item = ring_buffer_event_data(event);
4741 item->size = size;
4742 memcpy(item->str, rb_string, size);
4743
4744 if (nested) {
4745 data->bytes_alloc_nested += event_len;
4746 data->bytes_written_nested += len;
4747 data->events_nested++;
4748 if (!data->min_size_nested || len < data->min_size_nested)
4749 data->min_size_nested = len;
4750 if (len > data->max_size_nested)
4751 data->max_size_nested = len;
4752 } else {
4753 data->bytes_alloc += event_len;
4754 data->bytes_written += len;
4755 data->events++;
4756 if (!data->min_size || len < data->min_size)
4757 data->max_size = len;
4758 if (len > data->max_size)
4759 data->max_size = len;
4760 }
4761
4762 out:
4763 ring_buffer_unlock_commit(data->buffer, event);
4764
4765 return 0;
4766 }
4767
4768 static __init int rb_test(void *arg)
4769 {
4770 struct rb_test_data *data = arg;
4771
4772 while (!kthread_should_stop()) {
4773 rb_write_something(data, false);
4774 data->cnt++;
4775
4776 set_current_state(TASK_INTERRUPTIBLE);
4777 /* Now sleep between a min of 100-300us and a max of 1ms */
4778 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4779 }
4780
4781 return 0;
4782 }
4783
4784 static __init void rb_ipi(void *ignore)
4785 {
4786 struct rb_test_data *data;
4787 int cpu = smp_processor_id();
4788
4789 data = &rb_data[cpu];
4790 rb_write_something(data, true);
4791 }
4792
4793 static __init int rb_hammer_test(void *arg)
4794 {
4795 while (!kthread_should_stop()) {
4796
4797 /* Send an IPI to all cpus to write data! */
4798 smp_call_function(rb_ipi, NULL, 1);
4799 /* No sleep, but for non preempt, let others run */
4800 schedule();
4801 }
4802
4803 return 0;
4804 }
4805
4806 static __init int test_ringbuffer(void)
4807 {
4808 struct task_struct *rb_hammer;
4809 struct ring_buffer *buffer;
4810 int cpu;
4811 int ret = 0;
4812
4813 pr_info("Running ring buffer tests...\n");
4814
4815 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4816 if (WARN_ON(!buffer))
4817 return 0;
4818
4819 /* Disable buffer so that threads can't write to it yet */
4820 ring_buffer_record_off(buffer);
4821
4822 for_each_online_cpu(cpu) {
4823 rb_data[cpu].buffer = buffer;
4824 rb_data[cpu].cpu = cpu;
4825 rb_data[cpu].cnt = cpu;
4826 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4827 "rbtester/%d", cpu);
4828 if (WARN_ON(!rb_threads[cpu])) {
4829 pr_cont("FAILED\n");
4830 ret = -1;
4831 goto out_free;
4832 }
4833
4834 kthread_bind(rb_threads[cpu], cpu);
4835 wake_up_process(rb_threads[cpu]);
4836 }
4837
4838 /* Now create the rb hammer! */
4839 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4840 if (WARN_ON(!rb_hammer)) {
4841 pr_cont("FAILED\n");
4842 ret = -1;
4843 goto out_free;
4844 }
4845
4846 ring_buffer_record_on(buffer);
4847 /*
4848 * Show buffer is enabled before setting rb_test_started.
4849 * Yes there's a small race window where events could be
4850 * dropped and the thread wont catch it. But when a ring
4851 * buffer gets enabled, there will always be some kind of
4852 * delay before other CPUs see it. Thus, we don't care about
4853 * those dropped events. We care about events dropped after
4854 * the threads see that the buffer is active.
4855 */
4856 smp_wmb();
4857 rb_test_started = true;
4858
4859 set_current_state(TASK_INTERRUPTIBLE);
4860 /* Just run for 10 seconds */;
4861 schedule_timeout(10 * HZ);
4862
4863 kthread_stop(rb_hammer);
4864
4865 out_free:
4866 for_each_online_cpu(cpu) {
4867 if (!rb_threads[cpu])
4868 break;
4869 kthread_stop(rb_threads[cpu]);
4870 }
4871 if (ret) {
4872 ring_buffer_free(buffer);
4873 return ret;
4874 }
4875
4876 /* Report! */
4877 pr_info("finished\n");
4878 for_each_online_cpu(cpu) {
4879 struct ring_buffer_event *event;
4880 struct rb_test_data *data = &rb_data[cpu];
4881 struct rb_item *item;
4882 unsigned long total_events;
4883 unsigned long total_dropped;
4884 unsigned long total_written;
4885 unsigned long total_alloc;
4886 unsigned long total_read = 0;
4887 unsigned long total_size = 0;
4888 unsigned long total_len = 0;
4889 unsigned long total_lost = 0;
4890 unsigned long lost;
4891 int big_event_size;
4892 int small_event_size;
4893
4894 ret = -1;
4895
4896 total_events = data->events + data->events_nested;
4897 total_written = data->bytes_written + data->bytes_written_nested;
4898 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4899 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4900
4901 big_event_size = data->max_size + data->max_size_nested;
4902 small_event_size = data->min_size + data->min_size_nested;
4903
4904 pr_info("CPU %d:\n", cpu);
4905 pr_info(" events: %ld\n", total_events);
4906 pr_info(" dropped bytes: %ld\n", total_dropped);
4907 pr_info(" alloced bytes: %ld\n", total_alloc);
4908 pr_info(" written bytes: %ld\n", total_written);
4909 pr_info(" biggest event: %d\n", big_event_size);
4910 pr_info(" smallest event: %d\n", small_event_size);
4911
4912 if (RB_WARN_ON(buffer, total_dropped))
4913 break;
4914
4915 ret = 0;
4916
4917 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4918 total_lost += lost;
4919 item = ring_buffer_event_data(event);
4920 total_len += ring_buffer_event_length(event);
4921 total_size += item->size + sizeof(struct rb_item);
4922 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4923 pr_info("FAILED!\n");
4924 pr_info("buffer had: %.*s\n", item->size, item->str);
4925 pr_info("expected: %.*s\n", item->size, rb_string);
4926 RB_WARN_ON(buffer, 1);
4927 ret = -1;
4928 break;
4929 }
4930 total_read++;
4931 }
4932 if (ret)
4933 break;
4934
4935 ret = -1;
4936
4937 pr_info(" read events: %ld\n", total_read);
4938 pr_info(" lost events: %ld\n", total_lost);
4939 pr_info(" total events: %ld\n", total_lost + total_read);
4940 pr_info(" recorded len bytes: %ld\n", total_len);
4941 pr_info(" recorded size bytes: %ld\n", total_size);
4942 if (total_lost)
4943 pr_info(" With dropped events, record len and size may not match\n"
4944 " alloced and written from above\n");
4945 if (!total_lost) {
4946 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4947 total_size != total_written))
4948 break;
4949 }
4950 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4951 break;
4952
4953 ret = 0;
4954 }
4955 if (!ret)
4956 pr_info("Ring buffer PASSED!\n");
4957
4958 ring_buffer_free(buffer);
4959 return 0;
4960 }
4961
4962 late_initcall(test_ringbuffer);
4963 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */