drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/signal.h>
38
39 #include <asm/param.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/siginfo.h>
43 #include <asm/cacheflush.h>
44 #include "audit.h" /* audit_signal_info() */
45
46 /*
47 * SLAB caches for signal bits.
48 */
49
50 static struct kmem_cache *sigqueue_cachep;
51
52 int print_fatal_signals __read_mostly;
53
54 static void __user *sig_handler(struct task_struct *t, int sig)
55 {
56 return t->sighand->action[sig - 1].sa.sa_handler;
57 }
58
59 static int sig_handler_ignored(void __user *handler, int sig)
60 {
61 /* Is it explicitly or implicitly ignored? */
62 return handler == SIG_IGN ||
63 (handler == SIG_DFL && sig_kernel_ignore(sig));
64 }
65
66 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
67 {
68 void __user *handler;
69
70 handler = sig_handler(t, sig);
71
72 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
73 handler == SIG_DFL && !force)
74 return 1;
75
76 return sig_handler_ignored(handler, sig);
77 }
78
79 static int sig_ignored(struct task_struct *t, int sig, bool force)
80 {
81 /*
82 * Blocked signals are never ignored, since the
83 * signal handler may change by the time it is
84 * unblocked.
85 */
86 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
87 return 0;
88
89 if (!sig_task_ignored(t, sig, force))
90 return 0;
91
92 /*
93 * Tracers may want to know about even ignored signals.
94 */
95 return !t->ptrace;
96 }
97
98 /*
99 * Re-calculate pending state from the set of locally pending
100 * signals, globally pending signals, and blocked signals.
101 */
102 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
103 {
104 unsigned long ready;
105 long i;
106
107 switch (_NSIG_WORDS) {
108 default:
109 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
110 ready |= signal->sig[i] &~ blocked->sig[i];
111 break;
112
113 case 4: ready = signal->sig[3] &~ blocked->sig[3];
114 ready |= signal->sig[2] &~ blocked->sig[2];
115 ready |= signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
118
119 case 2: ready = signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
122
123 case 1: ready = signal->sig[0] &~ blocked->sig[0];
124 }
125 return ready != 0;
126 }
127
128 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
129
130 static int recalc_sigpending_tsk(struct task_struct *t)
131 {
132 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
133 PENDING(&t->pending, &t->blocked) ||
134 PENDING(&t->signal->shared_pending, &t->blocked)) {
135 set_tsk_thread_flag(t, TIF_SIGPENDING);
136 return 1;
137 }
138 /*
139 * We must never clear the flag in another thread, or in current
140 * when it's possible the current syscall is returning -ERESTART*.
141 * So we don't clear it here, and only callers who know they should do.
142 */
143 return 0;
144 }
145
146 /*
147 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
148 * This is superfluous when called on current, the wakeup is a harmless no-op.
149 */
150 void recalc_sigpending_and_wake(struct task_struct *t)
151 {
152 if (recalc_sigpending_tsk(t))
153 signal_wake_up(t, 0);
154 }
155
156 void recalc_sigpending(void)
157 {
158 if (!recalc_sigpending_tsk(current) && !freezing(current))
159 clear_thread_flag(TIF_SIGPENDING);
160
161 }
162
163 /* Given the mask, find the first available signal that should be serviced. */
164
165 #define SYNCHRONOUS_MASK \
166 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
167 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
168
169 int next_signal(struct sigpending *pending, sigset_t *mask)
170 {
171 unsigned long i, *s, *m, x;
172 int sig = 0;
173
174 s = pending->signal.sig;
175 m = mask->sig;
176
177 /*
178 * Handle the first word specially: it contains the
179 * synchronous signals that need to be dequeued first.
180 */
181 x = *s &~ *m;
182 if (x) {
183 if (x & SYNCHRONOUS_MASK)
184 x &= SYNCHRONOUS_MASK;
185 sig = ffz(~x) + 1;
186 return sig;
187 }
188
189 switch (_NSIG_WORDS) {
190 default:
191 for (i = 1; i < _NSIG_WORDS; ++i) {
192 x = *++s &~ *++m;
193 if (!x)
194 continue;
195 sig = ffz(~x) + i*_NSIG_BPW + 1;
196 break;
197 }
198 break;
199
200 case 2:
201 x = s[1] &~ m[1];
202 if (!x)
203 break;
204 sig = ffz(~x) + _NSIG_BPW + 1;
205 break;
206
207 case 1:
208 /* Nothing to do */
209 break;
210 }
211
212 return sig;
213 }
214
215 static inline void print_dropped_signal(int sig)
216 {
217 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
218
219 if (!print_fatal_signals)
220 return;
221
222 if (!__ratelimit(&ratelimit_state))
223 return;
224
225 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
226 current->comm, current->pid, sig);
227 }
228
229 /**
230 * task_set_jobctl_pending - set jobctl pending bits
231 * @task: target task
232 * @mask: pending bits to set
233 *
234 * Clear @mask from @task->jobctl. @mask must be subset of
235 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
236 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
237 * cleared. If @task is already being killed or exiting, this function
238 * becomes noop.
239 *
240 * CONTEXT:
241 * Must be called with @task->sighand->siglock held.
242 *
243 * RETURNS:
244 * %true if @mask is set, %false if made noop because @task was dying.
245 */
246 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
247 {
248 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
249 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
250 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
251
252 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
253 return false;
254
255 if (mask & JOBCTL_STOP_SIGMASK)
256 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
257
258 task->jobctl |= mask;
259 return true;
260 }
261
262 /**
263 * task_clear_jobctl_trapping - clear jobctl trapping bit
264 * @task: target task
265 *
266 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
267 * Clear it and wake up the ptracer. Note that we don't need any further
268 * locking. @task->siglock guarantees that @task->parent points to the
269 * ptracer.
270 *
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
273 */
274 void task_clear_jobctl_trapping(struct task_struct *task)
275 {
276 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
277 task->jobctl &= ~JOBCTL_TRAPPING;
278 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
279 }
280 }
281
282 /**
283 * task_clear_jobctl_pending - clear jobctl pending bits
284 * @task: target task
285 * @mask: pending bits to clear
286 *
287 * Clear @mask from @task->jobctl. @mask must be subset of
288 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
289 * STOP bits are cleared together.
290 *
291 * If clearing of @mask leaves no stop or trap pending, this function calls
292 * task_clear_jobctl_trapping().
293 *
294 * CONTEXT:
295 * Must be called with @task->sighand->siglock held.
296 */
297 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
298 {
299 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
300
301 if (mask & JOBCTL_STOP_PENDING)
302 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
303
304 task->jobctl &= ~mask;
305
306 if (!(task->jobctl & JOBCTL_PENDING_MASK))
307 task_clear_jobctl_trapping(task);
308 }
309
310 /**
311 * task_participate_group_stop - participate in a group stop
312 * @task: task participating in a group stop
313 *
314 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
315 * Group stop states are cleared and the group stop count is consumed if
316 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
317 * stop, the appropriate %SIGNAL_* flags are set.
318 *
319 * CONTEXT:
320 * Must be called with @task->sighand->siglock held.
321 *
322 * RETURNS:
323 * %true if group stop completion should be notified to the parent, %false
324 * otherwise.
325 */
326 static bool task_participate_group_stop(struct task_struct *task)
327 {
328 struct signal_struct *sig = task->signal;
329 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
330
331 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
332
333 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
334
335 if (!consume)
336 return false;
337
338 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
339 sig->group_stop_count--;
340
341 /*
342 * Tell the caller to notify completion iff we are entering into a
343 * fresh group stop. Read comment in do_signal_stop() for details.
344 */
345 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
346 sig->flags = SIGNAL_STOP_STOPPED;
347 return true;
348 }
349 return false;
350 }
351
352 /*
353 * allocate a new signal queue record
354 * - this may be called without locks if and only if t == current, otherwise an
355 * appropriate lock must be held to stop the target task from exiting
356 */
357 static struct sigqueue *
358 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
359 {
360 struct sigqueue *q = NULL;
361 struct user_struct *user;
362
363 /*
364 * Protect access to @t credentials. This can go away when all
365 * callers hold rcu read lock.
366 */
367 rcu_read_lock();
368 user = get_uid(__task_cred(t)->user);
369 atomic_inc(&user->sigpending);
370 rcu_read_unlock();
371
372 if (override_rlimit ||
373 atomic_read(&user->sigpending) <=
374 task_rlimit(t, RLIMIT_SIGPENDING)) {
375 q = kmem_cache_alloc(sigqueue_cachep, flags);
376 } else {
377 print_dropped_signal(sig);
378 }
379
380 if (unlikely(q == NULL)) {
381 atomic_dec(&user->sigpending);
382 free_uid(user);
383 } else {
384 INIT_LIST_HEAD(&q->list);
385 q->flags = 0;
386 q->user = user;
387 }
388
389 return q;
390 }
391
392 static void __sigqueue_free(struct sigqueue *q)
393 {
394 if (q->flags & SIGQUEUE_PREALLOC)
395 return;
396 atomic_dec(&q->user->sigpending);
397 free_uid(q->user);
398 kmem_cache_free(sigqueue_cachep, q);
399 }
400
401 void flush_sigqueue(struct sigpending *queue)
402 {
403 struct sigqueue *q;
404
405 sigemptyset(&queue->signal);
406 while (!list_empty(&queue->list)) {
407 q = list_entry(queue->list.next, struct sigqueue , list);
408 list_del_init(&q->list);
409 __sigqueue_free(q);
410 }
411 }
412
413 /*
414 * Flush all pending signals for a task.
415 */
416 void __flush_signals(struct task_struct *t)
417 {
418 clear_tsk_thread_flag(t, TIF_SIGPENDING);
419 flush_sigqueue(&t->pending);
420 flush_sigqueue(&t->signal->shared_pending);
421 }
422
423 void flush_signals(struct task_struct *t)
424 {
425 unsigned long flags;
426
427 spin_lock_irqsave(&t->sighand->siglock, flags);
428 __flush_signals(t);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
430 }
431
432 static void __flush_itimer_signals(struct sigpending *pending)
433 {
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
436
437 signal = pending->signal;
438 sigemptyset(&retain);
439
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
442
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
449 }
450 }
451
452 sigorsets(&pending->signal, &signal, &retain);
453 }
454
455 void flush_itimer_signals(void)
456 {
457 struct task_struct *tsk = current;
458 unsigned long flags;
459
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
464 }
465
466 void ignore_signals(struct task_struct *t)
467 {
468 int i;
469
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472
473 flush_signals(t);
474 }
475
476 /*
477 * Flush all handlers for a task.
478 */
479
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
482 {
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
494 }
495 }
496
497 int unhandled_signal(struct task_struct *tsk, int sig)
498 {
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
506 }
507
508 /*
509 * Notify the system that a driver wants to block all signals for this
510 * process, and wants to be notified if any signals at all were to be
511 * sent/acted upon. If the notifier routine returns non-zero, then the
512 * signal will be acted upon after all. If the notifier routine returns 0,
513 * then then signal will be blocked. Only one block per process is
514 * allowed. priv is a pointer to private data that the notifier routine
515 * can use to determine if the signal should be blocked or not.
516 */
517 void
518 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
519 {
520 unsigned long flags;
521
522 spin_lock_irqsave(&current->sighand->siglock, flags);
523 current->notifier_mask = mask;
524 current->notifier_data = priv;
525 current->notifier = notifier;
526 spin_unlock_irqrestore(&current->sighand->siglock, flags);
527 }
528
529 /* Notify the system that blocking has ended. */
530
531 void
532 unblock_all_signals(void)
533 {
534 unsigned long flags;
535
536 spin_lock_irqsave(&current->sighand->siglock, flags);
537 current->notifier = NULL;
538 current->notifier_data = NULL;
539 recalc_sigpending();
540 spin_unlock_irqrestore(&current->sighand->siglock, flags);
541 }
542
543 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
544 {
545 struct sigqueue *q, *first = NULL;
546
547 /*
548 * Collect the siginfo appropriate to this signal. Check if
549 * there is another siginfo for the same signal.
550 */
551 list_for_each_entry(q, &list->list, list) {
552 if (q->info.si_signo == sig) {
553 if (first)
554 goto still_pending;
555 first = q;
556 }
557 }
558
559 sigdelset(&list->signal, sig);
560
561 if (first) {
562 still_pending:
563 list_del_init(&first->list);
564 copy_siginfo(info, &first->info);
565 __sigqueue_free(first);
566 } else {
567 /*
568 * Ok, it wasn't in the queue. This must be
569 * a fast-pathed signal or we must have been
570 * out of queue space. So zero out the info.
571 */
572 info->si_signo = sig;
573 info->si_errno = 0;
574 info->si_code = SI_USER;
575 info->si_pid = 0;
576 info->si_uid = 0;
577 }
578 }
579
580 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
581 siginfo_t *info)
582 {
583 int sig = next_signal(pending, mask);
584
585 if (sig) {
586 if (current->notifier) {
587 if (sigismember(current->notifier_mask, sig)) {
588 if (!(current->notifier)(current->notifier_data)) {
589 clear_thread_flag(TIF_SIGPENDING);
590 return 0;
591 }
592 }
593 }
594
595 collect_signal(sig, pending, info);
596 }
597
598 return sig;
599 }
600
601 /*
602 * Dequeue a signal and return the element to the caller, which is
603 * expected to free it.
604 *
605 * All callers have to hold the siglock.
606 */
607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
608 {
609 int signr;
610
611 /* We only dequeue private signals from ourselves, we don't let
612 * signalfd steal them
613 */
614 signr = __dequeue_signal(&tsk->pending, mask, info);
615 if (!signr) {
616 signr = __dequeue_signal(&tsk->signal->shared_pending,
617 mask, info);
618 /*
619 * itimer signal ?
620 *
621 * itimers are process shared and we restart periodic
622 * itimers in the signal delivery path to prevent DoS
623 * attacks in the high resolution timer case. This is
624 * compliant with the old way of self-restarting
625 * itimers, as the SIGALRM is a legacy signal and only
626 * queued once. Changing the restart behaviour to
627 * restart the timer in the signal dequeue path is
628 * reducing the timer noise on heavy loaded !highres
629 * systems too.
630 */
631 if (unlikely(signr == SIGALRM)) {
632 struct hrtimer *tmr = &tsk->signal->real_timer;
633
634 if (!hrtimer_is_queued(tmr) &&
635 tsk->signal->it_real_incr.tv64 != 0) {
636 hrtimer_forward(tmr, tmr->base->get_time(),
637 tsk->signal->it_real_incr);
638 hrtimer_restart(tmr);
639 }
640 }
641 }
642
643 recalc_sigpending();
644 if (!signr)
645 return 0;
646
647 if (unlikely(sig_kernel_stop(signr))) {
648 /*
649 * Set a marker that we have dequeued a stop signal. Our
650 * caller might release the siglock and then the pending
651 * stop signal it is about to process is no longer in the
652 * pending bitmasks, but must still be cleared by a SIGCONT
653 * (and overruled by a SIGKILL). So those cases clear this
654 * shared flag after we've set it. Note that this flag may
655 * remain set after the signal we return is ignored or
656 * handled. That doesn't matter because its only purpose
657 * is to alert stop-signal processing code when another
658 * processor has come along and cleared the flag.
659 */
660 current->jobctl |= JOBCTL_STOP_DEQUEUED;
661 }
662 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
663 /*
664 * Release the siglock to ensure proper locking order
665 * of timer locks outside of siglocks. Note, we leave
666 * irqs disabled here, since the posix-timers code is
667 * about to disable them again anyway.
668 */
669 spin_unlock(&tsk->sighand->siglock);
670 do_schedule_next_timer(info);
671 spin_lock(&tsk->sighand->siglock);
672 }
673 return signr;
674 }
675
676 /*
677 * Tell a process that it has a new active signal..
678 *
679 * NOTE! we rely on the previous spin_lock to
680 * lock interrupts for us! We can only be called with
681 * "siglock" held, and the local interrupt must
682 * have been disabled when that got acquired!
683 *
684 * No need to set need_resched since signal event passing
685 * goes through ->blocked
686 */
687 void signal_wake_up_state(struct task_struct *t, unsigned int state)
688 {
689 set_tsk_thread_flag(t, TIF_SIGPENDING);
690 /*
691 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
692 * case. We don't check t->state here because there is a race with it
693 * executing another processor and just now entering stopped state.
694 * By using wake_up_state, we ensure the process will wake up and
695 * handle its death signal.
696 */
697 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
698 kick_process(t);
699 }
700
701 /*
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
704 *
705 * All callers must be holding the siglock.
706 *
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
709 */
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 struct sigqueue *q, *n;
713 sigset_t m;
714
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
718
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
724 }
725 }
726 return 1;
727 }
728 /*
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
731 *
732 * All callers must be holding the siglock.
733 */
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 struct sigqueue *q, *n;
737
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
740
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
747 }
748 }
749 return 1;
750 }
751
752 static inline int is_si_special(const struct siginfo *info)
753 {
754 return info <= SEND_SIG_FORCED;
755 }
756
757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
761 }
762
763 /*
764 * called with RCU read lock from check_kill_permission()
765 */
766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
770
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
776
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
779
780 return 0;
781 }
782
783 /*
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
786 */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
789 {
790 struct pid *sid;
791 int error;
792
793 if (!valid_signal(sig))
794 return -EINVAL;
795
796 if (!si_fromuser(info))
797 return 0;
798
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
802
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
808 /*
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
811 */
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
816 }
817 }
818
819 return security_task_kill(t, info, sig, 0);
820 }
821
822 /**
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
825 *
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
829 *
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
835 *
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
838 */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
843
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847
848 /*
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
854 *
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
857 */
858 static bool prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
862
863 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
864 if (signal->flags & SIGNAL_GROUP_COREDUMP) {
865 printk(KERN_DEBUG "[%d:%s] is in the middle of dying so skip sig %d\n",p->pid, p->comm, sig);
866 }
867 return 0;
868 /*
869 * The process is in the middle of dying, nothing to do.
870 */
871 } else if (sig_kernel_stop(sig)) {
872 /*
873 * This is a stop signal. Remove SIGCONT from all queues.
874 */
875 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
876 t = p;
877 do {
878 rm_from_queue(sigmask(SIGCONT), &t->pending);
879 } while_each_thread(p, t);
880 } else if (sig == SIGCONT) {
881 unsigned int why;
882 /*
883 * Remove all stop signals from all queues, wake all threads.
884 */
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
886 t = p;
887 do {
888 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
889 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
890 if (likely(!(t->ptrace & PT_SEIZED)))
891 wake_up_state(t, __TASK_STOPPED);
892 else
893 ptrace_trap_notify(t);
894 } while_each_thread(p, t);
895
896 /*
897 * Notify the parent with CLD_CONTINUED if we were stopped.
898 *
899 * If we were in the middle of a group stop, we pretend it
900 * was already finished, and then continued. Since SIGCHLD
901 * doesn't queue we report only CLD_STOPPED, as if the next
902 * CLD_CONTINUED was dropped.
903 */
904 why = 0;
905 if (signal->flags & SIGNAL_STOP_STOPPED)
906 why |= SIGNAL_CLD_CONTINUED;
907 else if (signal->group_stop_count)
908 why |= SIGNAL_CLD_STOPPED;
909
910 if (why) {
911 /*
912 * The first thread which returns from do_signal_stop()
913 * will take ->siglock, notice SIGNAL_CLD_MASK, and
914 * notify its parent. See get_signal_to_deliver().
915 */
916 signal->flags = why | SIGNAL_STOP_CONTINUED;
917 signal->group_stop_count = 0;
918 signal->group_exit_code = 0;
919 }
920 }
921
922 return !sig_ignored(p, sig, force);
923 }
924
925 /*
926 * Test if P wants to take SIG. After we've checked all threads with this,
927 * it's equivalent to finding no threads not blocking SIG. Any threads not
928 * blocking SIG were ruled out because they are not running and already
929 * have pending signals. Such threads will dequeue from the shared queue
930 * as soon as they're available, so putting the signal on the shared queue
931 * will be equivalent to sending it to one such thread.
932 */
933 static inline int wants_signal(int sig, struct task_struct *p)
934 {
935 if (sigismember(&p->blocked, sig))
936 return 0;
937 if (p->flags & PF_EXITING)
938 return 0;
939 if (sig == SIGKILL)
940 return 1;
941 if (task_is_stopped_or_traced(p))
942 return 0;
943 return task_curr(p) || !signal_pending(p);
944 }
945
946 static void complete_signal(int sig, struct task_struct *p, int group)
947 {
948 struct signal_struct *signal = p->signal;
949 struct task_struct *t;
950
951 /*
952 * Now find a thread we can wake up to take the signal off the queue.
953 *
954 * If the main thread wants the signal, it gets first crack.
955 * Probably the least surprising to the average bear.
956 */
957 if (wants_signal(sig, p))
958 t = p;
959 else if (!group || thread_group_empty(p))
960 /*
961 * There is just one thread and it does not need to be woken.
962 * It will dequeue unblocked signals before it runs again.
963 */
964 return;
965 else {
966 /*
967 * Otherwise try to find a suitable thread.
968 */
969 t = signal->curr_target;
970 while (!wants_signal(sig, t)) {
971 t = next_thread(t);
972 if (t == signal->curr_target)
973 /*
974 * No thread needs to be woken.
975 * Any eligible threads will see
976 * the signal in the queue soon.
977 */
978 return;
979 }
980 signal->curr_target = t;
981 }
982
983 /*
984 * Found a killable thread. If the signal will be fatal,
985 * then start taking the whole group down immediately.
986 */
987 if (sig_fatal(p, sig) &&
988 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
989 !sigismember(&t->real_blocked, sig) &&
990 (sig == SIGKILL || !t->ptrace)) {
991 /*
992 * This signal will be fatal to the whole group.
993 */
994 if (!sig_kernel_coredump(sig)) {
995 /*
996 * Start a group exit and wake everybody up.
997 * This way we don't have other threads
998 * running and doing things after a slower
999 * thread has the fatal signal pending.
1000 */
1001 signal->flags = SIGNAL_GROUP_EXIT;
1002 signal->group_exit_code = sig;
1003 signal->group_stop_count = 0;
1004 t = p;
1005 do {
1006 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007 sigaddset(&t->pending.signal, SIGKILL);
1008 signal_wake_up(t, 1);
1009 } while_each_thread(p, t);
1010 return;
1011 }
1012 }
1013
1014 /*
1015 * The signal is already in the shared-pending queue.
1016 * Tell the chosen thread to wake up and dequeue it.
1017 */
1018 signal_wake_up(t, sig == SIGKILL);
1019 return;
1020 }
1021
1022 static inline int legacy_queue(struct sigpending *signals, int sig)
1023 {
1024 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025 }
1026
1027 #ifdef CONFIG_USER_NS
1028 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029 {
1030 if (current_user_ns() == task_cred_xxx(t, user_ns))
1031 return;
1032
1033 if (SI_FROMKERNEL(info))
1034 return;
1035
1036 rcu_read_lock();
1037 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038 make_kuid(current_user_ns(), info->si_uid));
1039 rcu_read_unlock();
1040 }
1041 #else
1042 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043 {
1044 return;
1045 }
1046 #endif
1047
1048 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
1049
1050 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1051 int group, int from_ancestor_ns)
1052 {
1053 struct sigpending *pending;
1054 struct sigqueue *q;
1055 int override_rlimit;
1056 int ret = 0, result;
1057 unsigned state;
1058
1059 state = t->state ? __ffs(t->state) + 1 : 0;
1060 printk(KERN_DEBUG "[%d:%s] sig %d to [%d:%s] stat=%c\n",
1061 current->pid, current->comm, sig, t->pid, t->comm,
1062 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1063 assert_spin_locked(&t->sighand->siglock);
1064
1065 result = TRACE_SIGNAL_IGNORED;
1066 if (!prepare_signal(sig, t,
1067 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1068 goto ret;
1069
1070 pending = group ? &t->signal->shared_pending : &t->pending;
1071 /*
1072 * Short-circuit ignored signals and support queuing
1073 * exactly one non-rt signal, so that we can get more
1074 * detailed information about the cause of the signal.
1075 */
1076 result = TRACE_SIGNAL_ALREADY_PENDING;
1077 if (legacy_queue(pending, sig))
1078 goto ret;
1079
1080 result = TRACE_SIGNAL_DELIVERED;
1081 /*
1082 * fast-pathed signals for kernel-internal things like SIGSTOP
1083 * or SIGKILL.
1084 */
1085 if (info == SEND_SIG_FORCED)
1086 goto out_set;
1087
1088 /*
1089 * Real-time signals must be queued if sent by sigqueue, or
1090 * some other real-time mechanism. It is implementation
1091 * defined whether kill() does so. We attempt to do so, on
1092 * the principle of least surprise, but since kill is not
1093 * allowed to fail with EAGAIN when low on memory we just
1094 * make sure at least one signal gets delivered and don't
1095 * pass on the info struct.
1096 */
1097 if (sig < SIGRTMIN)
1098 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1099 else
1100 override_rlimit = 0;
1101
1102 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1103 override_rlimit);
1104 if (q) {
1105 list_add_tail(&q->list, &pending->list);
1106 switch ((unsigned long) info) {
1107 case (unsigned long) SEND_SIG_NOINFO:
1108 q->info.si_signo = sig;
1109 q->info.si_errno = 0;
1110 q->info.si_code = SI_USER;
1111 q->info.si_pid = task_tgid_nr_ns(current,
1112 task_active_pid_ns(t));
1113 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1114 break;
1115 case (unsigned long) SEND_SIG_PRIV:
1116 q->info.si_signo = sig;
1117 q->info.si_errno = 0;
1118 q->info.si_code = SI_KERNEL;
1119 q->info.si_pid = 0;
1120 q->info.si_uid = 0;
1121 break;
1122 default:
1123 copy_siginfo(&q->info, info);
1124 if (from_ancestor_ns)
1125 q->info.si_pid = 0;
1126 break;
1127 }
1128
1129 userns_fixup_signal_uid(&q->info, t);
1130
1131 } else if (!is_si_special(info)) {
1132 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1133 /*
1134 * Queue overflow, abort. We may abort if the
1135 * signal was rt and sent by user using something
1136 * other than kill().
1137 */
1138 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1139 ret = -EAGAIN;
1140 goto ret;
1141 } else {
1142 /*
1143 * This is a silent loss of information. We still
1144 * send the signal, but the *info bits are lost.
1145 */
1146 result = TRACE_SIGNAL_LOSE_INFO;
1147 }
1148 }
1149
1150 out_set:
1151 signalfd_notify(t, sig);
1152 sigaddset(&pending->signal, sig);
1153 complete_signal(sig, t, group);
1154 ret:
1155 trace_signal_generate(sig, info, t, group, result);
1156 return ret;
1157 }
1158
1159 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1160 int group)
1161 {
1162 int from_ancestor_ns = 0;
1163
1164 #ifdef CONFIG_PID_NS
1165 from_ancestor_ns = si_fromuser(info) &&
1166 !task_pid_nr_ns(current, task_active_pid_ns(t));
1167 #endif
1168
1169 return __send_signal(sig, info, t, group, from_ancestor_ns);
1170 }
1171
1172 static void print_fatal_signal(int signr)
1173 {
1174 struct pt_regs *regs = signal_pt_regs();
1175 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1176
1177 #if defined(__i386__) && !defined(__arch_um__)
1178 printk(KERN_INFO "code at %08lx: ", regs->ip);
1179 {
1180 int i;
1181 for (i = 0; i < 16; i++) {
1182 unsigned char insn;
1183
1184 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1185 break;
1186 printk(KERN_CONT "%02x ", insn);
1187 }
1188 }
1189 printk(KERN_CONT "\n");
1190 #endif
1191 preempt_disable();
1192 show_regs(regs);
1193 preempt_enable();
1194 }
1195
1196 static int __init setup_print_fatal_signals(char *str)
1197 {
1198 get_option (&str, &print_fatal_signals);
1199
1200 return 1;
1201 }
1202
1203 __setup("print-fatal-signals=", setup_print_fatal_signals);
1204
1205 int
1206 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1207 {
1208 return send_signal(sig, info, p, 1);
1209 }
1210
1211 static int
1212 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1213 {
1214 return send_signal(sig, info, t, 0);
1215 }
1216
1217 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1218 bool group)
1219 {
1220 unsigned long flags;
1221 int ret = -ESRCH;
1222
1223 if (lock_task_sighand(p, &flags)) {
1224 ret = send_signal(sig, info, p, group);
1225 unlock_task_sighand(p, &flags);
1226 }
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * Force a signal that the process can't ignore: if necessary
1233 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1234 *
1235 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1236 * since we do not want to have a signal handler that was blocked
1237 * be invoked when user space had explicitly blocked it.
1238 *
1239 * We don't want to have recursive SIGSEGV's etc, for example,
1240 * that is why we also clear SIGNAL_UNKILLABLE.
1241 */
1242 int
1243 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1244 {
1245 unsigned long int flags;
1246 int ret, blocked, ignored;
1247 struct k_sigaction *action;
1248
1249 spin_lock_irqsave(&t->sighand->siglock, flags);
1250 action = &t->sighand->action[sig-1];
1251 ignored = action->sa.sa_handler == SIG_IGN;
1252 blocked = sigismember(&t->blocked, sig);
1253 if (blocked || ignored) {
1254 action->sa.sa_handler = SIG_DFL;
1255 if (blocked) {
1256 sigdelset(&t->blocked, sig);
1257 recalc_sigpending_and_wake(t);
1258 }
1259 }
1260 if (action->sa.sa_handler == SIG_DFL)
1261 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1262 ret = specific_send_sig_info(sig, info, t);
1263 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1264
1265 return ret;
1266 }
1267
1268 /*
1269 * Nuke all other threads in the group.
1270 */
1271 int zap_other_threads(struct task_struct *p)
1272 {
1273 struct task_struct *t = p;
1274 int count = 0;
1275
1276 p->signal->group_stop_count = 0;
1277
1278 while_each_thread(p, t) {
1279 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1280 count++;
1281
1282 /* Don't bother with already dead threads */
1283 if (t->exit_state)
1284 continue;
1285 sigaddset(&t->pending.signal, SIGKILL);
1286 signal_wake_up(t, 1);
1287 }
1288
1289 return count;
1290 }
1291
1292 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1293 unsigned long *flags)
1294 {
1295 struct sighand_struct *sighand;
1296
1297 for (;;) {
1298 local_irq_save(*flags);
1299 rcu_read_lock();
1300 sighand = rcu_dereference(tsk->sighand);
1301 if (unlikely(sighand == NULL)) {
1302 rcu_read_unlock();
1303 local_irq_restore(*flags);
1304 break;
1305 }
1306
1307 spin_lock(&sighand->siglock);
1308 if (likely(sighand == tsk->sighand)) {
1309 rcu_read_unlock();
1310 break;
1311 }
1312 spin_unlock(&sighand->siglock);
1313 rcu_read_unlock();
1314 local_irq_restore(*flags);
1315 }
1316
1317 return sighand;
1318 }
1319
1320 /*
1321 * send signal info to all the members of a group
1322 */
1323 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1324 {
1325 int ret;
1326
1327 rcu_read_lock();
1328 ret = check_kill_permission(sig, info, p);
1329 rcu_read_unlock();
1330
1331 if (!ret && sig)
1332 ret = do_send_sig_info(sig, info, p, true);
1333
1334 return ret;
1335 }
1336
1337 /*
1338 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1339 * control characters do (^C, ^Z etc)
1340 * - the caller must hold at least a readlock on tasklist_lock
1341 */
1342 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1343 {
1344 struct task_struct *p = NULL;
1345 int retval, success;
1346
1347 success = 0;
1348 retval = -ESRCH;
1349 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1350 int err = group_send_sig_info(sig, info, p);
1351 success |= !err;
1352 retval = err;
1353 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1354 return success ? 0 : retval;
1355 }
1356
1357 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1358 {
1359 int error = -ESRCH;
1360 struct task_struct *p;
1361
1362 rcu_read_lock();
1363 retry:
1364 p = pid_task(pid, PIDTYPE_PID);
1365 if (p) {
1366 error = group_send_sig_info(sig, info, p);
1367 if (unlikely(error == -ESRCH))
1368 /*
1369 * The task was unhashed in between, try again.
1370 * If it is dead, pid_task() will return NULL,
1371 * if we race with de_thread() it will find the
1372 * new leader.
1373 */
1374 goto retry;
1375 }
1376 rcu_read_unlock();
1377
1378 return error;
1379 }
1380
1381 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1382 {
1383 int error;
1384 rcu_read_lock();
1385 error = kill_pid_info(sig, info, find_vpid(pid));
1386 rcu_read_unlock();
1387 return error;
1388 }
1389
1390 static int kill_as_cred_perm(const struct cred *cred,
1391 struct task_struct *target)
1392 {
1393 const struct cred *pcred = __task_cred(target);
1394 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1395 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1396 return 0;
1397 return 1;
1398 }
1399
1400 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1401 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1402 const struct cred *cred, u32 secid)
1403 {
1404 int ret = -EINVAL;
1405 struct task_struct *p;
1406 unsigned long flags;
1407
1408 if (!valid_signal(sig))
1409 return ret;
1410
1411 rcu_read_lock();
1412 p = pid_task(pid, PIDTYPE_PID);
1413 if (!p) {
1414 ret = -ESRCH;
1415 goto out_unlock;
1416 }
1417 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1418 ret = -EPERM;
1419 goto out_unlock;
1420 }
1421 ret = security_task_kill(p, info, sig, secid);
1422 if (ret)
1423 goto out_unlock;
1424
1425 if (sig) {
1426 if (lock_task_sighand(p, &flags)) {
1427 ret = __send_signal(sig, info, p, 1, 0);
1428 unlock_task_sighand(p, &flags);
1429 } else
1430 ret = -ESRCH;
1431 }
1432 out_unlock:
1433 rcu_read_unlock();
1434 return ret;
1435 }
1436 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1437
1438 /*
1439 * kill_something_info() interprets pid in interesting ways just like kill(2).
1440 *
1441 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1442 * is probably wrong. Should make it like BSD or SYSV.
1443 */
1444
1445 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1446 {
1447 int ret;
1448
1449 if (pid > 0) {
1450 rcu_read_lock();
1451 ret = kill_pid_info(sig, info, find_vpid(pid));
1452 rcu_read_unlock();
1453 return ret;
1454 }
1455
1456 read_lock(&tasklist_lock);
1457 if (pid != -1) {
1458 ret = __kill_pgrp_info(sig, info,
1459 pid ? find_vpid(-pid) : task_pgrp(current));
1460 } else {
1461 int retval = 0, count = 0;
1462 struct task_struct * p;
1463
1464 for_each_process(p) {
1465 if (task_pid_vnr(p) > 1 &&
1466 !same_thread_group(p, current)) {
1467 int err = group_send_sig_info(sig, info, p);
1468 ++count;
1469 if (err != -EPERM)
1470 retval = err;
1471 }
1472 }
1473 ret = count ? retval : -ESRCH;
1474 }
1475 read_unlock(&tasklist_lock);
1476
1477 return ret;
1478 }
1479
1480 /*
1481 * These are for backward compatibility with the rest of the kernel source.
1482 */
1483
1484 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1485 {
1486 /*
1487 * Make sure legacy kernel users don't send in bad values
1488 * (normal paths check this in check_kill_permission).
1489 */
1490 if (!valid_signal(sig))
1491 return -EINVAL;
1492
1493 return do_send_sig_info(sig, info, p, false);
1494 }
1495
1496 #define __si_special(priv) \
1497 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1498
1499 int
1500 send_sig(int sig, struct task_struct *p, int priv)
1501 {
1502 return send_sig_info(sig, __si_special(priv), p);
1503 }
1504
1505 void
1506 force_sig(int sig, struct task_struct *p)
1507 {
1508 force_sig_info(sig, SEND_SIG_PRIV, p);
1509 }
1510
1511 /*
1512 * When things go south during signal handling, we
1513 * will force a SIGSEGV. And if the signal that caused
1514 * the problem was already a SIGSEGV, we'll want to
1515 * make sure we don't even try to deliver the signal..
1516 */
1517 int
1518 force_sigsegv(int sig, struct task_struct *p)
1519 {
1520 if (sig == SIGSEGV) {
1521 unsigned long flags;
1522 spin_lock_irqsave(&p->sighand->siglock, flags);
1523 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1524 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1525 }
1526 force_sig(SIGSEGV, p);
1527 return 0;
1528 }
1529
1530 int kill_pgrp(struct pid *pid, int sig, int priv)
1531 {
1532 int ret;
1533
1534 read_lock(&tasklist_lock);
1535 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1536 read_unlock(&tasklist_lock);
1537
1538 return ret;
1539 }
1540 EXPORT_SYMBOL(kill_pgrp);
1541
1542 int kill_pid(struct pid *pid, int sig, int priv)
1543 {
1544 return kill_pid_info(sig, __si_special(priv), pid);
1545 }
1546 EXPORT_SYMBOL(kill_pid);
1547
1548 /*
1549 * These functions support sending signals using preallocated sigqueue
1550 * structures. This is needed "because realtime applications cannot
1551 * afford to lose notifications of asynchronous events, like timer
1552 * expirations or I/O completions". In the case of POSIX Timers
1553 * we allocate the sigqueue structure from the timer_create. If this
1554 * allocation fails we are able to report the failure to the application
1555 * with an EAGAIN error.
1556 */
1557 struct sigqueue *sigqueue_alloc(void)
1558 {
1559 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1560
1561 if (q)
1562 q->flags |= SIGQUEUE_PREALLOC;
1563
1564 return q;
1565 }
1566
1567 void sigqueue_free(struct sigqueue *q)
1568 {
1569 unsigned long flags;
1570 spinlock_t *lock = &current->sighand->siglock;
1571
1572 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1573 /*
1574 * We must hold ->siglock while testing q->list
1575 * to serialize with collect_signal() or with
1576 * __exit_signal()->flush_sigqueue().
1577 */
1578 spin_lock_irqsave(lock, flags);
1579 q->flags &= ~SIGQUEUE_PREALLOC;
1580 /*
1581 * If it is queued it will be freed when dequeued,
1582 * like the "regular" sigqueue.
1583 */
1584 if (!list_empty(&q->list))
1585 q = NULL;
1586 spin_unlock_irqrestore(lock, flags);
1587
1588 if (q)
1589 __sigqueue_free(q);
1590 }
1591
1592 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1593 {
1594 int sig = q->info.si_signo;
1595 struct sigpending *pending;
1596 unsigned long flags;
1597 int ret, result;
1598
1599 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1600
1601 ret = -1;
1602 if (!likely(lock_task_sighand(t, &flags)))
1603 goto ret;
1604
1605 ret = 1; /* the signal is ignored */
1606 result = TRACE_SIGNAL_IGNORED;
1607 if (!prepare_signal(sig, t, false))
1608 goto out;
1609
1610 ret = 0;
1611 if (unlikely(!list_empty(&q->list))) {
1612 /*
1613 * If an SI_TIMER entry is already queue just increment
1614 * the overrun count.
1615 */
1616 BUG_ON(q->info.si_code != SI_TIMER);
1617 q->info.si_overrun++;
1618 result = TRACE_SIGNAL_ALREADY_PENDING;
1619 goto out;
1620 }
1621 q->info.si_overrun = 0;
1622
1623 signalfd_notify(t, sig);
1624 pending = group ? &t->signal->shared_pending : &t->pending;
1625 list_add_tail(&q->list, &pending->list);
1626 sigaddset(&pending->signal, sig);
1627 complete_signal(sig, t, group);
1628 result = TRACE_SIGNAL_DELIVERED;
1629 out:
1630 trace_signal_generate(sig, &q->info, t, group, result);
1631 unlock_task_sighand(t, &flags);
1632 ret:
1633 return ret;
1634 }
1635
1636 /*
1637 * Let a parent know about the death of a child.
1638 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1639 *
1640 * Returns true if our parent ignored us and so we've switched to
1641 * self-reaping.
1642 */
1643 bool do_notify_parent(struct task_struct *tsk, int sig)
1644 {
1645 struct siginfo info;
1646 unsigned long flags;
1647 struct sighand_struct *psig;
1648 bool autoreap = false;
1649 cputime_t utime, stime;
1650
1651 BUG_ON(sig == -1);
1652
1653 /* do_notify_parent_cldstop should have been called instead. */
1654 BUG_ON(task_is_stopped_or_traced(tsk));
1655
1656 BUG_ON(!tsk->ptrace &&
1657 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1658
1659 if (sig != SIGCHLD) {
1660 /*
1661 * This is only possible if parent == real_parent.
1662 * Check if it has changed security domain.
1663 */
1664 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1665 sig = SIGCHLD;
1666 }
1667
1668 info.si_signo = sig;
1669 info.si_errno = 0;
1670 /*
1671 * We are under tasklist_lock here so our parent is tied to
1672 * us and cannot change.
1673 *
1674 * task_active_pid_ns will always return the same pid namespace
1675 * until a task passes through release_task.
1676 *
1677 * write_lock() currently calls preempt_disable() which is the
1678 * same as rcu_read_lock(), but according to Oleg, this is not
1679 * correct to rely on this
1680 */
1681 rcu_read_lock();
1682 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1683 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1684 task_uid(tsk));
1685 rcu_read_unlock();
1686
1687 task_cputime(tsk, &utime, &stime);
1688 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1689 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1690
1691 info.si_status = tsk->exit_code & 0x7f;
1692 if (tsk->exit_code & 0x80)
1693 info.si_code = CLD_DUMPED;
1694 else if (tsk->exit_code & 0x7f)
1695 info.si_code = CLD_KILLED;
1696 else {
1697 info.si_code = CLD_EXITED;
1698 info.si_status = tsk->exit_code >> 8;
1699 }
1700
1701 psig = tsk->parent->sighand;
1702 spin_lock_irqsave(&psig->siglock, flags);
1703 if (!tsk->ptrace && sig == SIGCHLD &&
1704 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1705 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1706 /*
1707 * We are exiting and our parent doesn't care. POSIX.1
1708 * defines special semantics for setting SIGCHLD to SIG_IGN
1709 * or setting the SA_NOCLDWAIT flag: we should be reaped
1710 * automatically and not left for our parent's wait4 call.
1711 * Rather than having the parent do it as a magic kind of
1712 * signal handler, we just set this to tell do_exit that we
1713 * can be cleaned up without becoming a zombie. Note that
1714 * we still call __wake_up_parent in this case, because a
1715 * blocked sys_wait4 might now return -ECHILD.
1716 *
1717 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1718 * is implementation-defined: we do (if you don't want
1719 * it, just use SIG_IGN instead).
1720 */
1721 autoreap = true;
1722 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1723 sig = 0;
1724 }
1725 if (valid_signal(sig) && sig)
1726 __group_send_sig_info(sig, &info, tsk->parent);
1727 __wake_up_parent(tsk, tsk->parent);
1728 spin_unlock_irqrestore(&psig->siglock, flags);
1729
1730 return autoreap;
1731 }
1732
1733 /**
1734 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1735 * @tsk: task reporting the state change
1736 * @for_ptracer: the notification is for ptracer
1737 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1738 *
1739 * Notify @tsk's parent that the stopped/continued state has changed. If
1740 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1741 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1742 *
1743 * CONTEXT:
1744 * Must be called with tasklist_lock at least read locked.
1745 */
1746 static void do_notify_parent_cldstop(struct task_struct *tsk,
1747 bool for_ptracer, int why)
1748 {
1749 struct siginfo info;
1750 unsigned long flags;
1751 struct task_struct *parent;
1752 struct sighand_struct *sighand;
1753 cputime_t utime, stime;
1754
1755 if (for_ptracer) {
1756 parent = tsk->parent;
1757 } else {
1758 tsk = tsk->group_leader;
1759 parent = tsk->real_parent;
1760 }
1761
1762 info.si_signo = SIGCHLD;
1763 info.si_errno = 0;
1764 /*
1765 * see comment in do_notify_parent() about the following 4 lines
1766 */
1767 rcu_read_lock();
1768 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1769 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1770 rcu_read_unlock();
1771
1772 task_cputime(tsk, &utime, &stime);
1773 info.si_utime = cputime_to_clock_t(utime);
1774 info.si_stime = cputime_to_clock_t(stime);
1775
1776 info.si_code = why;
1777 switch (why) {
1778 case CLD_CONTINUED:
1779 info.si_status = SIGCONT;
1780 break;
1781 case CLD_STOPPED:
1782 info.si_status = tsk->signal->group_exit_code & 0x7f;
1783 break;
1784 case CLD_TRAPPED:
1785 info.si_status = tsk->exit_code & 0x7f;
1786 break;
1787 default:
1788 BUG();
1789 }
1790
1791 sighand = parent->sighand;
1792 spin_lock_irqsave(&sighand->siglock, flags);
1793 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1794 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1795 __group_send_sig_info(SIGCHLD, &info, parent);
1796 /*
1797 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1798 */
1799 __wake_up_parent(tsk, parent);
1800 spin_unlock_irqrestore(&sighand->siglock, flags);
1801 }
1802
1803 static inline int may_ptrace_stop(void)
1804 {
1805 if (!likely(current->ptrace))
1806 return 0;
1807 /*
1808 * Are we in the middle of do_coredump?
1809 * If so and our tracer is also part of the coredump stopping
1810 * is a deadlock situation, and pointless because our tracer
1811 * is dead so don't allow us to stop.
1812 * If SIGKILL was already sent before the caller unlocked
1813 * ->siglock we must see ->core_state != NULL. Otherwise it
1814 * is safe to enter schedule().
1815 *
1816 * This is almost outdated, a task with the pending SIGKILL can't
1817 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1818 * after SIGKILL was already dequeued.
1819 */
1820 if (unlikely(current->mm->core_state) &&
1821 unlikely(current->mm == current->parent->mm))
1822 return 0;
1823
1824 return 1;
1825 }
1826
1827 /*
1828 * Return non-zero if there is a SIGKILL that should be waking us up.
1829 * Called with the siglock held.
1830 */
1831 static int sigkill_pending(struct task_struct *tsk)
1832 {
1833 return sigismember(&tsk->pending.signal, SIGKILL) ||
1834 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1835 }
1836
1837 /*
1838 * This must be called with current->sighand->siglock held.
1839 *
1840 * This should be the path for all ptrace stops.
1841 * We always set current->last_siginfo while stopped here.
1842 * That makes it a way to test a stopped process for
1843 * being ptrace-stopped vs being job-control-stopped.
1844 *
1845 * If we actually decide not to stop at all because the tracer
1846 * is gone, we keep current->exit_code unless clear_code.
1847 */
1848 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1849 __releases(&current->sighand->siglock)
1850 __acquires(&current->sighand->siglock)
1851 {
1852 bool gstop_done = false;
1853
1854 if (arch_ptrace_stop_needed(exit_code, info)) {
1855 /*
1856 * The arch code has something special to do before a
1857 * ptrace stop. This is allowed to block, e.g. for faults
1858 * on user stack pages. We can't keep the siglock while
1859 * calling arch_ptrace_stop, so we must release it now.
1860 * To preserve proper semantics, we must do this before
1861 * any signal bookkeeping like checking group_stop_count.
1862 * Meanwhile, a SIGKILL could come in before we retake the
1863 * siglock. That must prevent us from sleeping in TASK_TRACED.
1864 * So after regaining the lock, we must check for SIGKILL.
1865 */
1866 spin_unlock_irq(&current->sighand->siglock);
1867 arch_ptrace_stop(exit_code, info);
1868 spin_lock_irq(&current->sighand->siglock);
1869 if (sigkill_pending(current))
1870 return;
1871 }
1872
1873 /*
1874 * We're committing to trapping. TRACED should be visible before
1875 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1876 * Also, transition to TRACED and updates to ->jobctl should be
1877 * atomic with respect to siglock and should be done after the arch
1878 * hook as siglock is released and regrabbed across it.
1879 */
1880 set_current_state(TASK_TRACED);
1881
1882 current->last_siginfo = info;
1883 current->exit_code = exit_code;
1884
1885 /*
1886 * If @why is CLD_STOPPED, we're trapping to participate in a group
1887 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1888 * across siglock relocks since INTERRUPT was scheduled, PENDING
1889 * could be clear now. We act as if SIGCONT is received after
1890 * TASK_TRACED is entered - ignore it.
1891 */
1892 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1893 gstop_done = task_participate_group_stop(current);
1894
1895 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1896 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1897 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1898 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1899
1900 /* entering a trap, clear TRAPPING */
1901 task_clear_jobctl_trapping(current);
1902
1903 spin_unlock_irq(&current->sighand->siglock);
1904 read_lock(&tasklist_lock);
1905 if (may_ptrace_stop()) {
1906 /*
1907 * Notify parents of the stop.
1908 *
1909 * While ptraced, there are two parents - the ptracer and
1910 * the real_parent of the group_leader. The ptracer should
1911 * know about every stop while the real parent is only
1912 * interested in the completion of group stop. The states
1913 * for the two don't interact with each other. Notify
1914 * separately unless they're gonna be duplicates.
1915 */
1916 do_notify_parent_cldstop(current, true, why);
1917 if (gstop_done && ptrace_reparented(current))
1918 do_notify_parent_cldstop(current, false, why);
1919
1920 /*
1921 * Don't want to allow preemption here, because
1922 * sys_ptrace() needs this task to be inactive.
1923 *
1924 * XXX: implement read_unlock_no_resched().
1925 */
1926 preempt_disable();
1927 read_unlock(&tasklist_lock);
1928 preempt_enable_no_resched();
1929 freezable_schedule();
1930 } else {
1931 /*
1932 * By the time we got the lock, our tracer went away.
1933 * Don't drop the lock yet, another tracer may come.
1934 *
1935 * If @gstop_done, the ptracer went away between group stop
1936 * completion and here. During detach, it would have set
1937 * JOBCTL_STOP_PENDING on us and we'll re-enter
1938 * TASK_STOPPED in do_signal_stop() on return, so notifying
1939 * the real parent of the group stop completion is enough.
1940 */
1941 if (gstop_done)
1942 do_notify_parent_cldstop(current, false, why);
1943
1944 /* tasklist protects us from ptrace_freeze_traced() */
1945 __set_current_state(TASK_RUNNING);
1946 if (clear_code)
1947 current->exit_code = 0;
1948 read_unlock(&tasklist_lock);
1949 }
1950
1951 /*
1952 * We are back. Now reacquire the siglock before touching
1953 * last_siginfo, so that we are sure to have synchronized with
1954 * any signal-sending on another CPU that wants to examine it.
1955 */
1956 spin_lock_irq(&current->sighand->siglock);
1957 current->last_siginfo = NULL;
1958
1959 /* LISTENING can be set only during STOP traps, clear it */
1960 current->jobctl &= ~JOBCTL_LISTENING;
1961
1962 /*
1963 * Queued signals ignored us while we were stopped for tracing.
1964 * So check for any that we should take before resuming user mode.
1965 * This sets TIF_SIGPENDING, but never clears it.
1966 */
1967 recalc_sigpending_tsk(current);
1968 }
1969
1970 static void ptrace_do_notify(int signr, int exit_code, int why)
1971 {
1972 siginfo_t info;
1973
1974 memset(&info, 0, sizeof info);
1975 info.si_signo = signr;
1976 info.si_code = exit_code;
1977 info.si_pid = task_pid_vnr(current);
1978 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1979
1980 /* Let the debugger run. */
1981 ptrace_stop(exit_code, why, 1, &info);
1982 }
1983
1984 void ptrace_notify(int exit_code)
1985 {
1986 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1987 if (unlikely(current->task_works))
1988 task_work_run();
1989
1990 spin_lock_irq(&current->sighand->siglock);
1991 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1992 spin_unlock_irq(&current->sighand->siglock);
1993 }
1994
1995 /**
1996 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1997 * @signr: signr causing group stop if initiating
1998 *
1999 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2000 * and participate in it. If already set, participate in the existing
2001 * group stop. If participated in a group stop (and thus slept), %true is
2002 * returned with siglock released.
2003 *
2004 * If ptraced, this function doesn't handle stop itself. Instead,
2005 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2006 * untouched. The caller must ensure that INTERRUPT trap handling takes
2007 * places afterwards.
2008 *
2009 * CONTEXT:
2010 * Must be called with @current->sighand->siglock held, which is released
2011 * on %true return.
2012 *
2013 * RETURNS:
2014 * %false if group stop is already cancelled or ptrace trap is scheduled.
2015 * %true if participated in group stop.
2016 */
2017 static bool do_signal_stop(int signr)
2018 __releases(&current->sighand->siglock)
2019 {
2020 struct signal_struct *sig = current->signal;
2021
2022 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2023 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2024 struct task_struct *t;
2025
2026 /* signr will be recorded in task->jobctl for retries */
2027 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2028
2029 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2030 unlikely(signal_group_exit(sig)))
2031 return false;
2032 /*
2033 * There is no group stop already in progress. We must
2034 * initiate one now.
2035 *
2036 * While ptraced, a task may be resumed while group stop is
2037 * still in effect and then receive a stop signal and
2038 * initiate another group stop. This deviates from the
2039 * usual behavior as two consecutive stop signals can't
2040 * cause two group stops when !ptraced. That is why we
2041 * also check !task_is_stopped(t) below.
2042 *
2043 * The condition can be distinguished by testing whether
2044 * SIGNAL_STOP_STOPPED is already set. Don't generate
2045 * group_exit_code in such case.
2046 *
2047 * This is not necessary for SIGNAL_STOP_CONTINUED because
2048 * an intervening stop signal is required to cause two
2049 * continued events regardless of ptrace.
2050 */
2051 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2052 sig->group_exit_code = signr;
2053
2054 sig->group_stop_count = 0;
2055
2056 if (task_set_jobctl_pending(current, signr | gstop))
2057 sig->group_stop_count++;
2058
2059 for (t = next_thread(current); t != current;
2060 t = next_thread(t)) {
2061 /*
2062 * Setting state to TASK_STOPPED for a group
2063 * stop is always done with the siglock held,
2064 * so this check has no races.
2065 */
2066 if (!task_is_stopped(t) &&
2067 task_set_jobctl_pending(t, signr | gstop)) {
2068 sig->group_stop_count++;
2069 if (likely(!(t->ptrace & PT_SEIZED)))
2070 signal_wake_up(t, 0);
2071 else
2072 ptrace_trap_notify(t);
2073 }
2074 }
2075 }
2076
2077 if (likely(!current->ptrace)) {
2078 int notify = 0;
2079
2080 /*
2081 * If there are no other threads in the group, or if there
2082 * is a group stop in progress and we are the last to stop,
2083 * report to the parent.
2084 */
2085 if (task_participate_group_stop(current))
2086 notify = CLD_STOPPED;
2087
2088 __set_current_state(TASK_STOPPED);
2089 spin_unlock_irq(&current->sighand->siglock);
2090
2091 /*
2092 * Notify the parent of the group stop completion. Because
2093 * we're not holding either the siglock or tasklist_lock
2094 * here, ptracer may attach inbetween; however, this is for
2095 * group stop and should always be delivered to the real
2096 * parent of the group leader. The new ptracer will get
2097 * its notification when this task transitions into
2098 * TASK_TRACED.
2099 */
2100 if (notify) {
2101 read_lock(&tasklist_lock);
2102 do_notify_parent_cldstop(current, false, notify);
2103 read_unlock(&tasklist_lock);
2104 }
2105
2106 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2107 freezable_schedule();
2108 return true;
2109 } else {
2110 /*
2111 * While ptraced, group stop is handled by STOP trap.
2112 * Schedule it and let the caller deal with it.
2113 */
2114 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2115 return false;
2116 }
2117 }
2118
2119 /**
2120 * do_jobctl_trap - take care of ptrace jobctl traps
2121 *
2122 * When PT_SEIZED, it's used for both group stop and explicit
2123 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2124 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2125 * the stop signal; otherwise, %SIGTRAP.
2126 *
2127 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2128 * number as exit_code and no siginfo.
2129 *
2130 * CONTEXT:
2131 * Must be called with @current->sighand->siglock held, which may be
2132 * released and re-acquired before returning with intervening sleep.
2133 */
2134 static void do_jobctl_trap(void)
2135 {
2136 struct signal_struct *signal = current->signal;
2137 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2138
2139 if (current->ptrace & PT_SEIZED) {
2140 if (!signal->group_stop_count &&
2141 !(signal->flags & SIGNAL_STOP_STOPPED))
2142 signr = SIGTRAP;
2143 WARN_ON_ONCE(!signr);
2144 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2145 CLD_STOPPED);
2146 } else {
2147 WARN_ON_ONCE(!signr);
2148 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2149 current->exit_code = 0;
2150 }
2151 }
2152
2153 static int ptrace_signal(int signr, siginfo_t *info)
2154 {
2155 ptrace_signal_deliver();
2156 /*
2157 * We do not check sig_kernel_stop(signr) but set this marker
2158 * unconditionally because we do not know whether debugger will
2159 * change signr. This flag has no meaning unless we are going
2160 * to stop after return from ptrace_stop(). In this case it will
2161 * be checked in do_signal_stop(), we should only stop if it was
2162 * not cleared by SIGCONT while we were sleeping. See also the
2163 * comment in dequeue_signal().
2164 */
2165 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2166 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2167
2168 /* We're back. Did the debugger cancel the sig? */
2169 signr = current->exit_code;
2170 if (signr == 0)
2171 return signr;
2172
2173 current->exit_code = 0;
2174
2175 /*
2176 * Update the siginfo structure if the signal has
2177 * changed. If the debugger wanted something
2178 * specific in the siginfo structure then it should
2179 * have updated *info via PTRACE_SETSIGINFO.
2180 */
2181 if (signr != info->si_signo) {
2182 info->si_signo = signr;
2183 info->si_errno = 0;
2184 info->si_code = SI_USER;
2185 rcu_read_lock();
2186 info->si_pid = task_pid_vnr(current->parent);
2187 info->si_uid = from_kuid_munged(current_user_ns(),
2188 task_uid(current->parent));
2189 rcu_read_unlock();
2190 }
2191
2192 /* If the (new) signal is now blocked, requeue it. */
2193 if (sigismember(&current->blocked, signr)) {
2194 specific_send_sig_info(signr, info, current);
2195 signr = 0;
2196 }
2197
2198 return signr;
2199 }
2200
2201 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2202 struct pt_regs *regs, void *cookie)
2203 {
2204 struct sighand_struct *sighand = current->sighand;
2205 struct signal_struct *signal = current->signal;
2206 int signr;
2207
2208 if (unlikely(current->task_works))
2209 task_work_run();
2210
2211 if (unlikely(uprobe_deny_signal()))
2212 return 0;
2213
2214 /*
2215 * Do this once, we can't return to user-mode if freezing() == T.
2216 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2217 * thus do not need another check after return.
2218 */
2219 try_to_freeze();
2220
2221 relock:
2222 spin_lock_irq(&sighand->siglock);
2223 /*
2224 * Every stopped thread goes here after wakeup. Check to see if
2225 * we should notify the parent, prepare_signal(SIGCONT) encodes
2226 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2227 */
2228 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2229 int why;
2230
2231 if (signal->flags & SIGNAL_CLD_CONTINUED)
2232 why = CLD_CONTINUED;
2233 else
2234 why = CLD_STOPPED;
2235
2236 signal->flags &= ~SIGNAL_CLD_MASK;
2237
2238 spin_unlock_irq(&sighand->siglock);
2239
2240 /*
2241 * Notify the parent that we're continuing. This event is
2242 * always per-process and doesn't make whole lot of sense
2243 * for ptracers, who shouldn't consume the state via
2244 * wait(2) either, but, for backward compatibility, notify
2245 * the ptracer of the group leader too unless it's gonna be
2246 * a duplicate.
2247 */
2248 read_lock(&tasklist_lock);
2249 do_notify_parent_cldstop(current, false, why);
2250
2251 if (ptrace_reparented(current->group_leader))
2252 do_notify_parent_cldstop(current->group_leader,
2253 true, why);
2254 read_unlock(&tasklist_lock);
2255
2256 goto relock;
2257 }
2258
2259 for (;;) {
2260 struct k_sigaction *ka;
2261
2262 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2263 do_signal_stop(0))
2264 goto relock;
2265
2266 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2267 do_jobctl_trap();
2268 spin_unlock_irq(&sighand->siglock);
2269 goto relock;
2270 }
2271
2272 signr = dequeue_signal(current, &current->blocked, info);
2273
2274 if (!signr)
2275 break; /* will return 0 */
2276
2277 if (unlikely(current->ptrace) && signr != SIGKILL) {
2278 signr = ptrace_signal(signr, info);
2279 if (!signr)
2280 continue;
2281 }
2282
2283 ka = &sighand->action[signr-1];
2284
2285 /* Trace actually delivered signals. */
2286 trace_signal_deliver(signr, info, ka);
2287
2288 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2289 continue;
2290 if (ka->sa.sa_handler != SIG_DFL) {
2291 /* Run the handler. */
2292 *return_ka = *ka;
2293
2294 if (ka->sa.sa_flags & SA_ONESHOT)
2295 ka->sa.sa_handler = SIG_DFL;
2296
2297 break; /* will return non-zero "signr" value */
2298 }
2299
2300 /*
2301 * Now we are doing the default action for this signal.
2302 */
2303 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2304 continue;
2305
2306 /*
2307 * Global init gets no signals it doesn't want.
2308 * Container-init gets no signals it doesn't want from same
2309 * container.
2310 *
2311 * Note that if global/container-init sees a sig_kernel_only()
2312 * signal here, the signal must have been generated internally
2313 * or must have come from an ancestor namespace. In either
2314 * case, the signal cannot be dropped.
2315 */
2316 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2317 !sig_kernel_only(signr))
2318 continue;
2319
2320 if (sig_kernel_stop(signr)) {
2321 /*
2322 * The default action is to stop all threads in
2323 * the thread group. The job control signals
2324 * do nothing in an orphaned pgrp, but SIGSTOP
2325 * always works. Note that siglock needs to be
2326 * dropped during the call to is_orphaned_pgrp()
2327 * because of lock ordering with tasklist_lock.
2328 * This allows an intervening SIGCONT to be posted.
2329 * We need to check for that and bail out if necessary.
2330 */
2331 if (signr != SIGSTOP) {
2332 spin_unlock_irq(&sighand->siglock);
2333
2334 /* signals can be posted during this window */
2335
2336 if (is_current_pgrp_orphaned())
2337 goto relock;
2338
2339 spin_lock_irq(&sighand->siglock);
2340 }
2341
2342 if (likely(do_signal_stop(info->si_signo))) {
2343 /* It released the siglock. */
2344 goto relock;
2345 }
2346
2347 /*
2348 * We didn't actually stop, due to a race
2349 * with SIGCONT or something like that.
2350 */
2351 continue;
2352 }
2353
2354 spin_unlock_irq(&sighand->siglock);
2355
2356 /*
2357 * Anything else is fatal, maybe with a core dump.
2358 */
2359 current->flags |= PF_SIGNALED;
2360
2361 if (sig_kernel_coredump(signr)) {
2362 if (print_fatal_signals)
2363 print_fatal_signal(info->si_signo);
2364 proc_coredump_connector(current);
2365 /*
2366 * If it was able to dump core, this kills all
2367 * other threads in the group and synchronizes with
2368 * their demise. If we lost the race with another
2369 * thread getting here, it set group_exit_code
2370 * first and our do_group_exit call below will use
2371 * that value and ignore the one we pass it.
2372 */
2373 do_coredump(info);
2374 }
2375
2376 /*
2377 * Death signals, no core dump.
2378 */
2379 do_group_exit(info->si_signo);
2380 /* NOTREACHED */
2381 }
2382 spin_unlock_irq(&sighand->siglock);
2383 return signr;
2384 }
2385
2386 /**
2387 * signal_delivered -
2388 * @sig: number of signal being delivered
2389 * @info: siginfo_t of signal being delivered
2390 * @ka: sigaction setting that chose the handler
2391 * @regs: user register state
2392 * @stepping: nonzero if debugger single-step or block-step in use
2393 *
2394 * This function should be called when a signal has succesfully been
2395 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2396 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2397 * is set in @ka->sa.sa_flags. Tracing is notified.
2398 */
2399 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2400 struct pt_regs *regs, int stepping)
2401 {
2402 sigset_t blocked;
2403
2404 /* A signal was successfully delivered, and the
2405 saved sigmask was stored on the signal frame,
2406 and will be restored by sigreturn. So we can
2407 simply clear the restore sigmask flag. */
2408 clear_restore_sigmask();
2409
2410 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2411 if (!(ka->sa.sa_flags & SA_NODEFER))
2412 sigaddset(&blocked, sig);
2413 set_current_blocked(&blocked);
2414 tracehook_signal_handler(sig, info, ka, regs, stepping);
2415 }
2416
2417 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2418 {
2419 if (failed)
2420 force_sigsegv(ksig->sig, current);
2421 else
2422 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2423 signal_pt_regs(), stepping);
2424 }
2425
2426 /*
2427 * It could be that complete_signal() picked us to notify about the
2428 * group-wide signal. Other threads should be notified now to take
2429 * the shared signals in @which since we will not.
2430 */
2431 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2432 {
2433 sigset_t retarget;
2434 struct task_struct *t;
2435
2436 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2437 if (sigisemptyset(&retarget))
2438 return;
2439
2440 t = tsk;
2441 while_each_thread(tsk, t) {
2442 if (t->flags & PF_EXITING)
2443 continue;
2444
2445 if (!has_pending_signals(&retarget, &t->blocked))
2446 continue;
2447 /* Remove the signals this thread can handle. */
2448 sigandsets(&retarget, &retarget, &t->blocked);
2449
2450 if (!signal_pending(t))
2451 signal_wake_up(t, 0);
2452
2453 if (sigisemptyset(&retarget))
2454 break;
2455 }
2456 }
2457
2458 void exit_signals(struct task_struct *tsk)
2459 {
2460 int group_stop = 0;
2461 sigset_t unblocked;
2462
2463 /*
2464 * @tsk is about to have PF_EXITING set - lock out users which
2465 * expect stable threadgroup.
2466 */
2467 threadgroup_change_begin(tsk);
2468
2469 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2470 tsk->flags |= PF_EXITING;
2471 threadgroup_change_end(tsk);
2472 return;
2473 }
2474
2475 spin_lock_irq(&tsk->sighand->siglock);
2476 /*
2477 * From now this task is not visible for group-wide signals,
2478 * see wants_signal(), do_signal_stop().
2479 */
2480 tsk->flags |= PF_EXITING;
2481
2482 threadgroup_change_end(tsk);
2483
2484 if (!signal_pending(tsk))
2485 goto out;
2486
2487 unblocked = tsk->blocked;
2488 signotset(&unblocked);
2489 retarget_shared_pending(tsk, &unblocked);
2490
2491 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2492 task_participate_group_stop(tsk))
2493 group_stop = CLD_STOPPED;
2494 out:
2495 spin_unlock_irq(&tsk->sighand->siglock);
2496
2497 /*
2498 * If group stop has completed, deliver the notification. This
2499 * should always go to the real parent of the group leader.
2500 */
2501 if (unlikely(group_stop)) {
2502 read_lock(&tasklist_lock);
2503 do_notify_parent_cldstop(tsk, false, group_stop);
2504 read_unlock(&tasklist_lock);
2505 }
2506 }
2507
2508 EXPORT_SYMBOL(recalc_sigpending);
2509 EXPORT_SYMBOL_GPL(dequeue_signal);
2510 EXPORT_SYMBOL(flush_signals);
2511 EXPORT_SYMBOL(force_sig);
2512 EXPORT_SYMBOL(send_sig);
2513 EXPORT_SYMBOL(send_sig_info);
2514 EXPORT_SYMBOL(sigprocmask);
2515 EXPORT_SYMBOL(block_all_signals);
2516 EXPORT_SYMBOL(unblock_all_signals);
2517
2518
2519 /*
2520 * System call entry points.
2521 */
2522
2523 /**
2524 * sys_restart_syscall - restart a system call
2525 */
2526 SYSCALL_DEFINE0(restart_syscall)
2527 {
2528 struct restart_block *restart = &current_thread_info()->restart_block;
2529 return restart->fn(restart);
2530 }
2531
2532 long do_no_restart_syscall(struct restart_block *param)
2533 {
2534 return -EINTR;
2535 }
2536
2537 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2538 {
2539 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2540 sigset_t newblocked;
2541 /* A set of now blocked but previously unblocked signals. */
2542 sigandnsets(&newblocked, newset, &current->blocked);
2543 retarget_shared_pending(tsk, &newblocked);
2544 }
2545 tsk->blocked = *newset;
2546 recalc_sigpending();
2547 }
2548
2549 /**
2550 * set_current_blocked - change current->blocked mask
2551 * @newset: new mask
2552 *
2553 * It is wrong to change ->blocked directly, this helper should be used
2554 * to ensure the process can't miss a shared signal we are going to block.
2555 */
2556 void set_current_blocked(sigset_t *newset)
2557 {
2558 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2559 __set_current_blocked(newset);
2560 }
2561
2562 void __set_current_blocked(const sigset_t *newset)
2563 {
2564 struct task_struct *tsk = current;
2565
2566 spin_lock_irq(&tsk->sighand->siglock);
2567 __set_task_blocked(tsk, newset);
2568 spin_unlock_irq(&tsk->sighand->siglock);
2569 }
2570
2571 /*
2572 * This is also useful for kernel threads that want to temporarily
2573 * (or permanently) block certain signals.
2574 *
2575 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2576 * interface happily blocks "unblockable" signals like SIGKILL
2577 * and friends.
2578 */
2579 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2580 {
2581 struct task_struct *tsk = current;
2582 sigset_t newset;
2583
2584 /* Lockless, only current can change ->blocked, never from irq */
2585 if (oldset)
2586 *oldset = tsk->blocked;
2587
2588 switch (how) {
2589 case SIG_BLOCK:
2590 sigorsets(&newset, &tsk->blocked, set);
2591 break;
2592 case SIG_UNBLOCK:
2593 sigandnsets(&newset, &tsk->blocked, set);
2594 break;
2595 case SIG_SETMASK:
2596 newset = *set;
2597 break;
2598 default:
2599 return -EINVAL;
2600 }
2601
2602 __set_current_blocked(&newset);
2603 return 0;
2604 }
2605
2606 /**
2607 * sys_rt_sigprocmask - change the list of currently blocked signals
2608 * @how: whether to add, remove, or set signals
2609 * @nset: stores pending signals
2610 * @oset: previous value of signal mask if non-null
2611 * @sigsetsize: size of sigset_t type
2612 */
2613 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2614 sigset_t __user *, oset, size_t, sigsetsize)
2615 {
2616 sigset_t old_set, new_set;
2617 int error;
2618
2619 /* XXX: Don't preclude handling different sized sigset_t's. */
2620 if (sigsetsize != sizeof(sigset_t))
2621 return -EINVAL;
2622
2623 old_set = current->blocked;
2624
2625 if (nset) {
2626 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2627 return -EFAULT;
2628 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2629
2630 error = sigprocmask(how, &new_set, NULL);
2631 if (error)
2632 return error;
2633 }
2634
2635 if (oset) {
2636 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2637 return -EFAULT;
2638 }
2639
2640 return 0;
2641 }
2642
2643 #ifdef CONFIG_COMPAT
2644 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2645 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2646 {
2647 #ifdef __BIG_ENDIAN
2648 sigset_t old_set = current->blocked;
2649
2650 /* XXX: Don't preclude handling different sized sigset_t's. */
2651 if (sigsetsize != sizeof(sigset_t))
2652 return -EINVAL;
2653
2654 if (nset) {
2655 compat_sigset_t new32;
2656 sigset_t new_set;
2657 int error;
2658 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2659 return -EFAULT;
2660
2661 sigset_from_compat(&new_set, &new32);
2662 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2663
2664 error = sigprocmask(how, &new_set, NULL);
2665 if (error)
2666 return error;
2667 }
2668 if (oset) {
2669 compat_sigset_t old32;
2670 sigset_to_compat(&old32, &old_set);
2671 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2672 return -EFAULT;
2673 }
2674 return 0;
2675 #else
2676 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2677 (sigset_t __user *)oset, sigsetsize);
2678 #endif
2679 }
2680 #endif
2681
2682 static int do_sigpending(void *set, unsigned long sigsetsize)
2683 {
2684 if (sigsetsize > sizeof(sigset_t))
2685 return -EINVAL;
2686
2687 spin_lock_irq(&current->sighand->siglock);
2688 sigorsets(set, &current->pending.signal,
2689 &current->signal->shared_pending.signal);
2690 spin_unlock_irq(&current->sighand->siglock);
2691
2692 /* Outside the lock because only this thread touches it. */
2693 sigandsets(set, &current->blocked, set);
2694 return 0;
2695 }
2696
2697 /**
2698 * sys_rt_sigpending - examine a pending signal that has been raised
2699 * while blocked
2700 * @uset: stores pending signals
2701 * @sigsetsize: size of sigset_t type or larger
2702 */
2703 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2704 {
2705 sigset_t set;
2706 int err = do_sigpending(&set, sigsetsize);
2707 if (!err && copy_to_user(uset, &set, sigsetsize))
2708 err = -EFAULT;
2709 return err;
2710 }
2711
2712 #ifdef CONFIG_COMPAT
2713 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2714 compat_size_t, sigsetsize)
2715 {
2716 #ifdef __BIG_ENDIAN
2717 sigset_t set;
2718 int err = do_sigpending(&set, sigsetsize);
2719 if (!err) {
2720 compat_sigset_t set32;
2721 sigset_to_compat(&set32, &set);
2722 /* we can get here only if sigsetsize <= sizeof(set) */
2723 if (copy_to_user(uset, &set32, sigsetsize))
2724 err = -EFAULT;
2725 }
2726 return err;
2727 #else
2728 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2729 #endif
2730 }
2731 #endif
2732
2733 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2734
2735 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2736 {
2737 int err;
2738
2739 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2740 return -EFAULT;
2741 if (from->si_code < 0)
2742 return __copy_to_user(to, from, sizeof(siginfo_t))
2743 ? -EFAULT : 0;
2744 /*
2745 * If you change siginfo_t structure, please be sure
2746 * this code is fixed accordingly.
2747 * Please remember to update the signalfd_copyinfo() function
2748 * inside fs/signalfd.c too, in case siginfo_t changes.
2749 * It should never copy any pad contained in the structure
2750 * to avoid security leaks, but must copy the generic
2751 * 3 ints plus the relevant union member.
2752 */
2753 err = __put_user(from->si_signo, &to->si_signo);
2754 err |= __put_user(from->si_errno, &to->si_errno);
2755 err |= __put_user((short)from->si_code, &to->si_code);
2756 switch (from->si_code & __SI_MASK) {
2757 case __SI_KILL:
2758 err |= __put_user(from->si_pid, &to->si_pid);
2759 err |= __put_user(from->si_uid, &to->si_uid);
2760 break;
2761 case __SI_TIMER:
2762 err |= __put_user(from->si_tid, &to->si_tid);
2763 err |= __put_user(from->si_overrun, &to->si_overrun);
2764 err |= __put_user(from->si_ptr, &to->si_ptr);
2765 break;
2766 case __SI_POLL:
2767 err |= __put_user(from->si_band, &to->si_band);
2768 err |= __put_user(from->si_fd, &to->si_fd);
2769 break;
2770 case __SI_FAULT:
2771 err |= __put_user(from->si_addr, &to->si_addr);
2772 #ifdef __ARCH_SI_TRAPNO
2773 err |= __put_user(from->si_trapno, &to->si_trapno);
2774 #endif
2775 #ifdef BUS_MCEERR_AO
2776 /*
2777 * Other callers might not initialize the si_lsb field,
2778 * so check explicitly for the right codes here.
2779 */
2780 if (from->si_signo == SIGBUS &&
2781 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2782 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2783 #endif
2784 break;
2785 case __SI_CHLD:
2786 err |= __put_user(from->si_pid, &to->si_pid);
2787 err |= __put_user(from->si_uid, &to->si_uid);
2788 err |= __put_user(from->si_status, &to->si_status);
2789 err |= __put_user(from->si_utime, &to->si_utime);
2790 err |= __put_user(from->si_stime, &to->si_stime);
2791 break;
2792 case __SI_RT: /* This is not generated by the kernel as of now. */
2793 case __SI_MESGQ: /* But this is */
2794 err |= __put_user(from->si_pid, &to->si_pid);
2795 err |= __put_user(from->si_uid, &to->si_uid);
2796 err |= __put_user(from->si_ptr, &to->si_ptr);
2797 break;
2798 #ifdef __ARCH_SIGSYS
2799 case __SI_SYS:
2800 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2801 err |= __put_user(from->si_syscall, &to->si_syscall);
2802 err |= __put_user(from->si_arch, &to->si_arch);
2803 break;
2804 #endif
2805 default: /* this is just in case for now ... */
2806 err |= __put_user(from->si_pid, &to->si_pid);
2807 err |= __put_user(from->si_uid, &to->si_uid);
2808 break;
2809 }
2810 return err;
2811 }
2812
2813 #endif
2814
2815 /**
2816 * do_sigtimedwait - wait for queued signals specified in @which
2817 * @which: queued signals to wait for
2818 * @info: if non-null, the signal's siginfo is returned here
2819 * @ts: upper bound on process time suspension
2820 */
2821 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2822 const struct timespec *ts)
2823 {
2824 struct task_struct *tsk = current;
2825 long timeout = MAX_SCHEDULE_TIMEOUT;
2826 sigset_t mask = *which;
2827 int sig;
2828
2829 if (ts) {
2830 if (!timespec_valid(ts))
2831 return -EINVAL;
2832 timeout = timespec_to_jiffies(ts);
2833 /*
2834 * We can be close to the next tick, add another one
2835 * to ensure we will wait at least the time asked for.
2836 */
2837 if (ts->tv_sec || ts->tv_nsec)
2838 timeout++;
2839 }
2840
2841 /*
2842 * Invert the set of allowed signals to get those we want to block.
2843 */
2844 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2845 signotset(&mask);
2846
2847 spin_lock_irq(&tsk->sighand->siglock);
2848 sig = dequeue_signal(tsk, &mask, info);
2849 if (!sig && timeout) {
2850 /*
2851 * None ready, temporarily unblock those we're interested
2852 * while we are sleeping in so that we'll be awakened when
2853 * they arrive. Unblocking is always fine, we can avoid
2854 * set_current_blocked().
2855 */
2856 tsk->real_blocked = tsk->blocked;
2857 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2858 recalc_sigpending();
2859 spin_unlock_irq(&tsk->sighand->siglock);
2860
2861 timeout = freezable_schedule_timeout_interruptible(timeout);
2862
2863 spin_lock_irq(&tsk->sighand->siglock);
2864 __set_task_blocked(tsk, &tsk->real_blocked);
2865 siginitset(&tsk->real_blocked, 0);
2866 sig = dequeue_signal(tsk, &mask, info);
2867 }
2868 spin_unlock_irq(&tsk->sighand->siglock);
2869
2870 if (sig)
2871 return sig;
2872 return timeout ? -EINTR : -EAGAIN;
2873 }
2874
2875 /**
2876 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2877 * in @uthese
2878 * @uthese: queued signals to wait for
2879 * @uinfo: if non-null, the signal's siginfo is returned here
2880 * @uts: upper bound on process time suspension
2881 * @sigsetsize: size of sigset_t type
2882 */
2883 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2884 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2885 size_t, sigsetsize)
2886 {
2887 sigset_t these;
2888 struct timespec ts;
2889 siginfo_t info;
2890 int ret;
2891
2892 /* XXX: Don't preclude handling different sized sigset_t's. */
2893 if (sigsetsize != sizeof(sigset_t))
2894 return -EINVAL;
2895
2896 if (copy_from_user(&these, uthese, sizeof(these)))
2897 return -EFAULT;
2898
2899 if (uts) {
2900 if (copy_from_user(&ts, uts, sizeof(ts)))
2901 return -EFAULT;
2902 }
2903
2904 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2905
2906 if (ret > 0 && uinfo) {
2907 if (copy_siginfo_to_user(uinfo, &info))
2908 ret = -EFAULT;
2909 }
2910
2911 return ret;
2912 }
2913
2914 /**
2915 * sys_kill - send a signal to a process
2916 * @pid: the PID of the process
2917 * @sig: signal to be sent
2918 */
2919 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2920 {
2921 struct siginfo info;
2922
2923 info.si_signo = sig;
2924 info.si_errno = 0;
2925 info.si_code = SI_USER;
2926 info.si_pid = task_tgid_vnr(current);
2927 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2928
2929 return kill_something_info(sig, &info, pid);
2930 }
2931
2932 static int
2933 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2934 {
2935 struct task_struct *p;
2936 int error = -ESRCH;
2937
2938 rcu_read_lock();
2939 p = find_task_by_vpid(pid);
2940 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2941 error = check_kill_permission(sig, info, p);
2942 /*
2943 * The null signal is a permissions and process existence
2944 * probe. No signal is actually delivered.
2945 */
2946 if (!error && sig) {
2947 error = do_send_sig_info(sig, info, p, false);
2948 /*
2949 * If lock_task_sighand() failed we pretend the task
2950 * dies after receiving the signal. The window is tiny,
2951 * and the signal is private anyway.
2952 */
2953 if (unlikely(error == -ESRCH))
2954 error = 0;
2955 }
2956 }
2957 rcu_read_unlock();
2958
2959 return error;
2960 }
2961
2962 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2963 {
2964 struct siginfo info = {};
2965
2966 info.si_signo = sig;
2967 info.si_errno = 0;
2968 info.si_code = SI_TKILL;
2969 info.si_pid = task_tgid_vnr(current);
2970 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2971
2972 return do_send_specific(tgid, pid, sig, &info);
2973 }
2974
2975 /**
2976 * sys_tgkill - send signal to one specific thread
2977 * @tgid: the thread group ID of the thread
2978 * @pid: the PID of the thread
2979 * @sig: signal to be sent
2980 *
2981 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2982 * exists but it's not belonging to the target process anymore. This
2983 * method solves the problem of threads exiting and PIDs getting reused.
2984 */
2985 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2986 {
2987 /* This is only valid for single tasks */
2988 if (pid <= 0 || tgid <= 0)
2989 return -EINVAL;
2990
2991 return do_tkill(tgid, pid, sig);
2992 }
2993
2994 /**
2995 * sys_tkill - send signal to one specific task
2996 * @pid: the PID of the task
2997 * @sig: signal to be sent
2998 *
2999 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3000 */
3001 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3002 {
3003 /* This is only valid for single tasks */
3004 if (pid <= 0)
3005 return -EINVAL;
3006
3007 return do_tkill(0, pid, sig);
3008 }
3009
3010 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3011 {
3012 /* Not even root can pretend to send signals from the kernel.
3013 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3014 */
3015 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3016 (task_pid_vnr(current) != pid))
3017 return -EPERM;
3018
3019 info->si_signo = sig;
3020
3021 /* POSIX.1b doesn't mention process groups. */
3022 return kill_proc_info(sig, info, pid);
3023 }
3024
3025 /**
3026 * sys_rt_sigqueueinfo - send signal information to a signal
3027 * @pid: the PID of the thread
3028 * @sig: signal to be sent
3029 * @uinfo: signal info to be sent
3030 */
3031 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3032 siginfo_t __user *, uinfo)
3033 {
3034 siginfo_t info;
3035 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3036 return -EFAULT;
3037 return do_rt_sigqueueinfo(pid, sig, &info);
3038 }
3039
3040 #ifdef CONFIG_COMPAT
3041 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3042 compat_pid_t, pid,
3043 int, sig,
3044 struct compat_siginfo __user *, uinfo)
3045 {
3046 siginfo_t info = {};
3047 int ret = copy_siginfo_from_user32(&info, uinfo);
3048 if (unlikely(ret))
3049 return ret;
3050 return do_rt_sigqueueinfo(pid, sig, &info);
3051 }
3052 #endif
3053
3054 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3055 {
3056 /* This is only valid for single tasks */
3057 if (pid <= 0 || tgid <= 0)
3058 return -EINVAL;
3059
3060 /* Not even root can pretend to send signals from the kernel.
3061 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3062 */
3063 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3064 (task_pid_vnr(current) != pid))
3065 return -EPERM;
3066
3067 info->si_signo = sig;
3068
3069 return do_send_specific(tgid, pid, sig, info);
3070 }
3071
3072 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3073 siginfo_t __user *, uinfo)
3074 {
3075 siginfo_t info;
3076
3077 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3078 return -EFAULT;
3079
3080 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3081 }
3082
3083 #ifdef CONFIG_COMPAT
3084 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3085 compat_pid_t, tgid,
3086 compat_pid_t, pid,
3087 int, sig,
3088 struct compat_siginfo __user *, uinfo)
3089 {
3090 siginfo_t info = {};
3091
3092 if (copy_siginfo_from_user32(&info, uinfo))
3093 return -EFAULT;
3094 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3095 }
3096 #endif
3097
3098 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3099 {
3100 struct task_struct *t = current;
3101 struct k_sigaction *k;
3102 sigset_t mask;
3103
3104 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3105 return -EINVAL;
3106
3107 k = &t->sighand->action[sig-1];
3108
3109 spin_lock_irq(&current->sighand->siglock);
3110 if (oact)
3111 *oact = *k;
3112
3113 if (act) {
3114 sigdelsetmask(&act->sa.sa_mask,
3115 sigmask(SIGKILL) | sigmask(SIGSTOP));
3116 *k = *act;
3117 /*
3118 * POSIX 3.3.1.3:
3119 * "Setting a signal action to SIG_IGN for a signal that is
3120 * pending shall cause the pending signal to be discarded,
3121 * whether or not it is blocked."
3122 *
3123 * "Setting a signal action to SIG_DFL for a signal that is
3124 * pending and whose default action is to ignore the signal
3125 * (for example, SIGCHLD), shall cause the pending signal to
3126 * be discarded, whether or not it is blocked"
3127 */
3128 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3129 sigemptyset(&mask);
3130 sigaddset(&mask, sig);
3131 rm_from_queue_full(&mask, &t->signal->shared_pending);
3132 do {
3133 rm_from_queue_full(&mask, &t->pending);
3134 t = next_thread(t);
3135 } while (t != current);
3136 }
3137 }
3138
3139 spin_unlock_irq(&current->sighand->siglock);
3140 return 0;
3141 }
3142
3143 static int
3144 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3145 {
3146 stack_t oss;
3147 int error;
3148
3149 oss.ss_sp = (void __user *) current->sas_ss_sp;
3150 oss.ss_size = current->sas_ss_size;
3151 oss.ss_flags = sas_ss_flags(sp);
3152
3153 if (uss) {
3154 void __user *ss_sp;
3155 size_t ss_size;
3156 int ss_flags;
3157
3158 error = -EFAULT;
3159 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3160 goto out;
3161 error = __get_user(ss_sp, &uss->ss_sp) |
3162 __get_user(ss_flags, &uss->ss_flags) |
3163 __get_user(ss_size, &uss->ss_size);
3164 if (error)
3165 goto out;
3166
3167 error = -EPERM;
3168 if (on_sig_stack(sp))
3169 goto out;
3170
3171 error = -EINVAL;
3172 /*
3173 * Note - this code used to test ss_flags incorrectly:
3174 * old code may have been written using ss_flags==0
3175 * to mean ss_flags==SS_ONSTACK (as this was the only
3176 * way that worked) - this fix preserves that older
3177 * mechanism.
3178 */
3179 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3180 goto out;
3181
3182 if (ss_flags == SS_DISABLE) {
3183 ss_size = 0;
3184 ss_sp = NULL;
3185 } else {
3186 error = -ENOMEM;
3187 if (ss_size < MINSIGSTKSZ)
3188 goto out;
3189 }
3190
3191 current->sas_ss_sp = (unsigned long) ss_sp;
3192 current->sas_ss_size = ss_size;
3193 }
3194
3195 error = 0;
3196 if (uoss) {
3197 error = -EFAULT;
3198 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3199 goto out;
3200 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3201 __put_user(oss.ss_size, &uoss->ss_size) |
3202 __put_user(oss.ss_flags, &uoss->ss_flags);
3203 }
3204
3205 out:
3206 return error;
3207 }
3208 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3209 {
3210 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3211 }
3212
3213 int restore_altstack(const stack_t __user *uss)
3214 {
3215 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3216 /* squash all but EFAULT for now */
3217 return err == -EFAULT ? err : 0;
3218 }
3219
3220 int __save_altstack(stack_t __user *uss, unsigned long sp)
3221 {
3222 struct task_struct *t = current;
3223 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3224 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3225 __put_user(t->sas_ss_size, &uss->ss_size);
3226 }
3227
3228 #ifdef CONFIG_COMPAT
3229 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3230 const compat_stack_t __user *, uss_ptr,
3231 compat_stack_t __user *, uoss_ptr)
3232 {
3233 stack_t uss, uoss;
3234 int ret;
3235 mm_segment_t seg;
3236
3237 if (uss_ptr) {
3238 compat_stack_t uss32;
3239
3240 memset(&uss, 0, sizeof(stack_t));
3241 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3242 return -EFAULT;
3243 uss.ss_sp = compat_ptr(uss32.ss_sp);
3244 uss.ss_flags = uss32.ss_flags;
3245 uss.ss_size = uss32.ss_size;
3246 }
3247 seg = get_fs();
3248 set_fs(KERNEL_DS);
3249 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3250 (stack_t __force __user *) &uoss,
3251 compat_user_stack_pointer());
3252 set_fs(seg);
3253 if (ret >= 0 && uoss_ptr) {
3254 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3255 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3256 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3257 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3258 ret = -EFAULT;
3259 }
3260 return ret;
3261 }
3262
3263 int compat_restore_altstack(const compat_stack_t __user *uss)
3264 {
3265 int err = compat_sys_sigaltstack(uss, NULL);
3266 /* squash all but -EFAULT for now */
3267 return err == -EFAULT ? err : 0;
3268 }
3269
3270 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3271 {
3272 struct task_struct *t = current;
3273 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3274 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3275 __put_user(t->sas_ss_size, &uss->ss_size);
3276 }
3277 #endif
3278
3279 #ifdef __ARCH_WANT_SYS_SIGPENDING
3280
3281 /**
3282 * sys_sigpending - examine pending signals
3283 * @set: where mask of pending signal is returned
3284 */
3285 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3286 {
3287 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3288 }
3289
3290 #endif
3291
3292 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3293 /**
3294 * sys_sigprocmask - examine and change blocked signals
3295 * @how: whether to add, remove, or set signals
3296 * @nset: signals to add or remove (if non-null)
3297 * @oset: previous value of signal mask if non-null
3298 *
3299 * Some platforms have their own version with special arguments;
3300 * others support only sys_rt_sigprocmask.
3301 */
3302
3303 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3304 old_sigset_t __user *, oset)
3305 {
3306 old_sigset_t old_set, new_set;
3307 sigset_t new_blocked;
3308
3309 old_set = current->blocked.sig[0];
3310
3311 if (nset) {
3312 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3313 return -EFAULT;
3314
3315 new_blocked = current->blocked;
3316
3317 switch (how) {
3318 case SIG_BLOCK:
3319 sigaddsetmask(&new_blocked, new_set);
3320 break;
3321 case SIG_UNBLOCK:
3322 sigdelsetmask(&new_blocked, new_set);
3323 break;
3324 case SIG_SETMASK:
3325 new_blocked.sig[0] = new_set;
3326 break;
3327 default:
3328 return -EINVAL;
3329 }
3330
3331 set_current_blocked(&new_blocked);
3332 }
3333
3334 if (oset) {
3335 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3336 return -EFAULT;
3337 }
3338
3339 return 0;
3340 }
3341 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3342
3343 #ifndef CONFIG_ODD_RT_SIGACTION
3344 /**
3345 * sys_rt_sigaction - alter an action taken by a process
3346 * @sig: signal to be sent
3347 * @act: new sigaction
3348 * @oact: used to save the previous sigaction
3349 * @sigsetsize: size of sigset_t type
3350 */
3351 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3352 const struct sigaction __user *, act,
3353 struct sigaction __user *, oact,
3354 size_t, sigsetsize)
3355 {
3356 struct k_sigaction new_sa, old_sa;
3357 int ret = -EINVAL;
3358
3359 /* XXX: Don't preclude handling different sized sigset_t's. */
3360 if (sigsetsize != sizeof(sigset_t))
3361 goto out;
3362
3363 if (act) {
3364 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3365 return -EFAULT;
3366 }
3367
3368 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3369
3370 if (!ret && oact) {
3371 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3372 return -EFAULT;
3373 }
3374 out:
3375 return ret;
3376 }
3377 #ifdef CONFIG_COMPAT
3378 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3379 const struct compat_sigaction __user *, act,
3380 struct compat_sigaction __user *, oact,
3381 compat_size_t, sigsetsize)
3382 {
3383 struct k_sigaction new_ka, old_ka;
3384 compat_sigset_t mask;
3385 #ifdef __ARCH_HAS_SA_RESTORER
3386 compat_uptr_t restorer;
3387 #endif
3388 int ret;
3389
3390 /* XXX: Don't preclude handling different sized sigset_t's. */
3391 if (sigsetsize != sizeof(compat_sigset_t))
3392 return -EINVAL;
3393
3394 if (act) {
3395 compat_uptr_t handler;
3396 ret = get_user(handler, &act->sa_handler);
3397 new_ka.sa.sa_handler = compat_ptr(handler);
3398 #ifdef __ARCH_HAS_SA_RESTORER
3399 ret |= get_user(restorer, &act->sa_restorer);
3400 new_ka.sa.sa_restorer = compat_ptr(restorer);
3401 #endif
3402 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3403 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3404 if (ret)
3405 return -EFAULT;
3406 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3407 }
3408
3409 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3410 if (!ret && oact) {
3411 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3412 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3413 &oact->sa_handler);
3414 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3415 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3416 #ifdef __ARCH_HAS_SA_RESTORER
3417 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3418 &oact->sa_restorer);
3419 #endif
3420 }
3421 return ret;
3422 }
3423 #endif
3424 #endif /* !CONFIG_ODD_RT_SIGACTION */
3425
3426 #ifdef CONFIG_OLD_SIGACTION
3427 SYSCALL_DEFINE3(sigaction, int, sig,
3428 const struct old_sigaction __user *, act,
3429 struct old_sigaction __user *, oact)
3430 {
3431 struct k_sigaction new_ka, old_ka;
3432 int ret;
3433
3434 if (act) {
3435 old_sigset_t mask;
3436 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3437 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3438 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3439 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3440 __get_user(mask, &act->sa_mask))
3441 return -EFAULT;
3442 #ifdef __ARCH_HAS_KA_RESTORER
3443 new_ka.ka_restorer = NULL;
3444 #endif
3445 siginitset(&new_ka.sa.sa_mask, mask);
3446 }
3447
3448 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3449
3450 if (!ret && oact) {
3451 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3452 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3453 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3454 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3455 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3456 return -EFAULT;
3457 }
3458
3459 return ret;
3460 }
3461 #endif
3462 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3463 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3464 const struct compat_old_sigaction __user *, act,
3465 struct compat_old_sigaction __user *, oact)
3466 {
3467 struct k_sigaction new_ka, old_ka;
3468 int ret;
3469 compat_old_sigset_t mask;
3470 compat_uptr_t handler, restorer;
3471
3472 if (act) {
3473 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3474 __get_user(handler, &act->sa_handler) ||
3475 __get_user(restorer, &act->sa_restorer) ||
3476 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3477 __get_user(mask, &act->sa_mask))
3478 return -EFAULT;
3479
3480 #ifdef __ARCH_HAS_KA_RESTORER
3481 new_ka.ka_restorer = NULL;
3482 #endif
3483 new_ka.sa.sa_handler = compat_ptr(handler);
3484 new_ka.sa.sa_restorer = compat_ptr(restorer);
3485 siginitset(&new_ka.sa.sa_mask, mask);
3486 }
3487
3488 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3489
3490 if (!ret && oact) {
3491 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3492 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3493 &oact->sa_handler) ||
3494 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3495 &oact->sa_restorer) ||
3496 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3497 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3498 return -EFAULT;
3499 }
3500 return ret;
3501 }
3502 #endif
3503
3504 #ifdef __ARCH_WANT_SYS_SGETMASK
3505
3506 /*
3507 * For backwards compatibility. Functionality superseded by sigprocmask.
3508 */
3509 SYSCALL_DEFINE0(sgetmask)
3510 {
3511 /* SMP safe */
3512 return current->blocked.sig[0];
3513 }
3514
3515 SYSCALL_DEFINE1(ssetmask, int, newmask)
3516 {
3517 int old = current->blocked.sig[0];
3518 sigset_t newset;
3519
3520 siginitset(&newset, newmask);
3521 set_current_blocked(&newset);
3522
3523 return old;
3524 }
3525 #endif /* __ARCH_WANT_SGETMASK */
3526
3527 #ifdef __ARCH_WANT_SYS_SIGNAL
3528 /*
3529 * For backwards compatibility. Functionality superseded by sigaction.
3530 */
3531 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3532 {
3533 struct k_sigaction new_sa, old_sa;
3534 int ret;
3535
3536 new_sa.sa.sa_handler = handler;
3537 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3538 sigemptyset(&new_sa.sa.sa_mask);
3539
3540 ret = do_sigaction(sig, &new_sa, &old_sa);
3541
3542 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3543 }
3544 #endif /* __ARCH_WANT_SYS_SIGNAL */
3545
3546 #ifdef __ARCH_WANT_SYS_PAUSE
3547
3548 SYSCALL_DEFINE0(pause)
3549 {
3550 while (!signal_pending(current)) {
3551 current->state = TASK_INTERRUPTIBLE;
3552 schedule();
3553 }
3554 return -ERESTARTNOHAND;
3555 }
3556
3557 #endif
3558
3559 static int sigsuspend(sigset_t *set)
3560 {
3561 current->saved_sigmask = current->blocked;
3562 set_current_blocked(set);
3563
3564 current->state = TASK_INTERRUPTIBLE;
3565 schedule();
3566 set_restore_sigmask();
3567 return -ERESTARTNOHAND;
3568 }
3569
3570 /**
3571 * sys_rt_sigsuspend - replace the signal mask for a value with the
3572 * @unewset value until a signal is received
3573 * @unewset: new signal mask value
3574 * @sigsetsize: size of sigset_t type
3575 */
3576 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3577 {
3578 sigset_t newset;
3579
3580 /* XXX: Don't preclude handling different sized sigset_t's. */
3581 if (sigsetsize != sizeof(sigset_t))
3582 return -EINVAL;
3583
3584 if (copy_from_user(&newset, unewset, sizeof(newset)))
3585 return -EFAULT;
3586 return sigsuspend(&newset);
3587 }
3588
3589 #ifdef CONFIG_COMPAT
3590 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3591 {
3592 #ifdef __BIG_ENDIAN
3593 sigset_t newset;
3594 compat_sigset_t newset32;
3595
3596 /* XXX: Don't preclude handling different sized sigset_t's. */
3597 if (sigsetsize != sizeof(sigset_t))
3598 return -EINVAL;
3599
3600 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3601 return -EFAULT;
3602 sigset_from_compat(&newset, &newset32);
3603 return sigsuspend(&newset);
3604 #else
3605 /* on little-endian bitmaps don't care about granularity */
3606 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3607 #endif
3608 }
3609 #endif
3610
3611 #ifdef CONFIG_OLD_SIGSUSPEND
3612 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3613 {
3614 sigset_t blocked;
3615 siginitset(&blocked, mask);
3616 return sigsuspend(&blocked);
3617 }
3618 #endif
3619 #ifdef CONFIG_OLD_SIGSUSPEND3
3620 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3621 {
3622 sigset_t blocked;
3623 siginitset(&blocked, mask);
3624 return sigsuspend(&blocked);
3625 }
3626 #endif
3627
3628 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3629 {
3630 return NULL;
3631 }
3632
3633 void __init signals_init(void)
3634 {
3635 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3636 }
3637
3638 #ifdef CONFIG_KGDB_KDB
3639 #include <linux/kdb.h>
3640 /*
3641 * kdb_send_sig_info - Allows kdb to send signals without exposing
3642 * signal internals. This function checks if the required locks are
3643 * available before calling the main signal code, to avoid kdb
3644 * deadlocks.
3645 */
3646 void
3647 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3648 {
3649 static struct task_struct *kdb_prev_t;
3650 int sig, new_t;
3651 if (!spin_trylock(&t->sighand->siglock)) {
3652 kdb_printf("Can't do kill command now.\n"
3653 "The sigmask lock is held somewhere else in "
3654 "kernel, try again later\n");
3655 return;
3656 }
3657 spin_unlock(&t->sighand->siglock);
3658 new_t = kdb_prev_t != t;
3659 kdb_prev_t = t;
3660 if (t->state != TASK_RUNNING && new_t) {
3661 kdb_printf("Process is not RUNNING, sending a signal from "
3662 "kdb risks deadlock\n"
3663 "on the run queue locks. "
3664 "The signal has _not_ been sent.\n"
3665 "Reissue the kill command if you want to risk "
3666 "the deadlock.\n");
3667 return;
3668 }
3669 sig = info->si_signo;
3670 if (send_sig_info(sig, info, t))
3671 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3672 sig, t->pid);
3673 else
3674 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3675 }
3676 #endif /* CONFIG_KGDB_KDB */