drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51
52 /*
53 * Management arrays for POSIX timers. Timers are now kept in static hash table
54 * with 512 entries.
55 * Timer ids are allocated by local routine, which selects proper hash head by
56 * key, constructed from current->signal address and per signal struct counter.
57 * This keeps timer ids unique per process, but now they can intersect between
58 * processes.
59 */
60
61 /*
62 * Lets keep our timers in a slab cache :-)
63 */
64 static struct kmem_cache *posix_timers_cache;
65
66 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
67 static DEFINE_SPINLOCK(hash_lock);
68
69 /*
70 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
71 * SIGEV values. Here we put out an error if this assumption fails.
72 */
73 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
74 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
75 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
76 #endif
77
78 /*
79 * parisc wants ENOTSUP instead of EOPNOTSUPP
80 */
81 #ifndef ENOTSUP
82 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
83 #else
84 # define ENANOSLEEP_NOTSUP ENOTSUP
85 #endif
86
87 /*
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
90 *
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
94 */
95
96 /*
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks.
100 *
101 * RESOLUTION: Clock resolution is used to round up timer and interval
102 * times, NOT to report clock times, which are reported with as
103 * much resolution as the system can muster. In some cases this
104 * resolution may depend on the underlying clock hardware and
105 * may not be quantifiable until run time, and only then is the
106 * necessary code is written. The standard says we should say
107 * something about this issue in the documentation...
108 *
109 * FUNCTIONS: The CLOCKs structure defines possible functions to
110 * handle various clock functions.
111 *
112 * The standard POSIX timer management code assumes the
113 * following: 1.) The k_itimer struct (sched.h) is used for
114 * the timer. 2.) The list, it_lock, it_clock, it_id and
115 * it_pid fields are not modified by timer code.
116 *
117 * Permissions: It is assumed that the clock_settime() function defined
118 * for each clock will take care of permission checks. Some
119 * clocks may be set able by any user (i.e. local process
120 * clocks) others not. Currently the only set able clock we
121 * have is CLOCK_REALTIME and its high res counter part, both of
122 * which we beg off on and pass to do_sys_settimeofday().
123 */
124
125 static struct k_clock posix_clocks[MAX_CLOCKS];
126
127 /*
128 * These ones are defined below.
129 */
130 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
131 struct timespec __user *rmtp);
132 static int common_timer_create(struct k_itimer *new_timer);
133 static void common_timer_get(struct k_itimer *, struct itimerspec *);
134 static int common_timer_set(struct k_itimer *, int,
135 struct itimerspec *, struct itimerspec *);
136 static int common_timer_del(struct k_itimer *timer);
137
138 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
139
140 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
141
142 #define lock_timer(tid, flags) \
143 ({ struct k_itimer *__timr; \
144 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
145 __timr; \
146 })
147
148 static int hash(struct signal_struct *sig, unsigned int nr)
149 {
150 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
151 }
152
153 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
154 struct signal_struct *sig,
155 timer_t id)
156 {
157 struct k_itimer *timer;
158
159 hlist_for_each_entry_rcu(timer, head, t_hash) {
160 if ((timer->it_signal == sig) && (timer->it_id == id))
161 return timer;
162 }
163 return NULL;
164 }
165
166 static struct k_itimer *posix_timer_by_id(timer_t id)
167 {
168 struct signal_struct *sig = current->signal;
169 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
170
171 return __posix_timers_find(head, sig, id);
172 }
173
174 static int posix_timer_add(struct k_itimer *timer)
175 {
176 struct signal_struct *sig = current->signal;
177 int first_free_id = sig->posix_timer_id;
178 struct hlist_head *head;
179 int ret = -ENOENT;
180
181 do {
182 spin_lock(&hash_lock);
183 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
184 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
185 hlist_add_head_rcu(&timer->t_hash, head);
186 ret = sig->posix_timer_id;
187 }
188 if (++sig->posix_timer_id < 0)
189 sig->posix_timer_id = 0;
190 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
191 /* Loop over all possible ids completed */
192 ret = -EAGAIN;
193 spin_unlock(&hash_lock);
194 } while (ret == -ENOENT);
195 return ret;
196 }
197
198 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
199 {
200 spin_unlock_irqrestore(&timr->it_lock, flags);
201 }
202
203 /* Get clock_realtime */
204 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
205 {
206 ktime_get_real_ts(tp);
207 return 0;
208 }
209
210 /* Set clock_realtime */
211 static int posix_clock_realtime_set(const clockid_t which_clock,
212 const struct timespec *tp)
213 {
214 return do_sys_settimeofday(tp, NULL);
215 }
216
217 static int posix_clock_realtime_adj(const clockid_t which_clock,
218 struct timex *t)
219 {
220 return do_adjtimex(t);
221 }
222
223 /*
224 * Get monotonic time for posix timers
225 */
226 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
227 {
228 ktime_get_ts(tp);
229 return 0;
230 }
231
232 /*
233 * Get monotonic-raw time for posix timers
234 */
235 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
236 {
237 getrawmonotonic(tp);
238 return 0;
239 }
240
241
242 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
243 {
244 *tp = current_kernel_time();
245 return 0;
246 }
247
248 static int posix_get_monotonic_coarse(clockid_t which_clock,
249 struct timespec *tp)
250 {
251 *tp = get_monotonic_coarse();
252 return 0;
253 }
254
255 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
256 {
257 *tp = ktime_to_timespec(KTIME_LOW_RES);
258 return 0;
259 }
260
261 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
262 {
263 get_monotonic_boottime(tp);
264 return 0;
265 }
266
267 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
268 {
269 timekeeping_clocktai(tp);
270 return 0;
271 }
272
273 /*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276 static __init int init_posix_timers(void)
277 {
278 struct k_clock clock_realtime = {
279 .clock_getres = hrtimer_get_res,
280 .clock_get = posix_clock_realtime_get,
281 .clock_set = posix_clock_realtime_set,
282 .clock_adj = posix_clock_realtime_adj,
283 .nsleep = common_nsleep,
284 .nsleep_restart = hrtimer_nanosleep_restart,
285 .timer_create = common_timer_create,
286 .timer_set = common_timer_set,
287 .timer_get = common_timer_get,
288 .timer_del = common_timer_del,
289 };
290 struct k_clock clock_monotonic = {
291 .clock_getres = hrtimer_get_res,
292 .clock_get = posix_ktime_get_ts,
293 .nsleep = common_nsleep,
294 .nsleep_restart = hrtimer_nanosleep_restart,
295 .timer_create = common_timer_create,
296 .timer_set = common_timer_set,
297 .timer_get = common_timer_get,
298 .timer_del = common_timer_del,
299 };
300 struct k_clock clock_monotonic_raw = {
301 .clock_getres = hrtimer_get_res,
302 .clock_get = posix_get_monotonic_raw,
303 };
304 struct k_clock clock_realtime_coarse = {
305 .clock_getres = posix_get_coarse_res,
306 .clock_get = posix_get_realtime_coarse,
307 };
308 struct k_clock clock_monotonic_coarse = {
309 .clock_getres = posix_get_coarse_res,
310 .clock_get = posix_get_monotonic_coarse,
311 };
312 struct k_clock clock_tai = {
313 .clock_getres = hrtimer_get_res,
314 .clock_get = posix_get_tai,
315 .nsleep = common_nsleep,
316 .nsleep_restart = hrtimer_nanosleep_restart,
317 .timer_create = common_timer_create,
318 .timer_set = common_timer_set,
319 .timer_get = common_timer_get,
320 .timer_del = common_timer_del,
321 };
322 struct k_clock clock_boottime = {
323 .clock_getres = hrtimer_get_res,
324 .clock_get = posix_get_boottime,
325 .nsleep = common_nsleep,
326 .nsleep_restart = hrtimer_nanosleep_restart,
327 .timer_create = common_timer_create,
328 .timer_set = common_timer_set,
329 .timer_get = common_timer_get,
330 .timer_del = common_timer_del,
331 };
332
333 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
334 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
335 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
336 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
337 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
338 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
339 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
340
341 posix_timers_cache = kmem_cache_create("posix_timers_cache",
342 sizeof (struct k_itimer), 0, SLAB_PANIC,
343 NULL);
344 return 0;
345 }
346
347 __initcall(init_posix_timers);
348
349 static void schedule_next_timer(struct k_itimer *timr)
350 {
351 struct hrtimer *timer = &timr->it.real.timer;
352
353 if (timr->it.real.interval.tv64 == 0)
354 return;
355
356 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
357 timer->base->get_time(),
358 timr->it.real.interval);
359
360 timr->it_overrun_last = timr->it_overrun;
361 timr->it_overrun = -1;
362 ++timr->it_requeue_pending;
363 hrtimer_restart(timer);
364 }
365
366 /*
367 * This function is exported for use by the signal deliver code. It is
368 * called just prior to the info block being released and passes that
369 * block to us. It's function is to update the overrun entry AND to
370 * restart the timer. It should only be called if the timer is to be
371 * restarted (i.e. we have flagged this in the sys_private entry of the
372 * info block).
373 *
374 * To protect against the timer going away while the interrupt is queued,
375 * we require that the it_requeue_pending flag be set.
376 */
377 void do_schedule_next_timer(struct siginfo *info)
378 {
379 struct k_itimer *timr;
380 unsigned long flags;
381
382 timr = lock_timer(info->si_tid, &flags);
383
384 if (timr && timr->it_requeue_pending == info->si_sys_private) {
385 if (timr->it_clock < 0)
386 posix_cpu_timer_schedule(timr);
387 else
388 schedule_next_timer(timr);
389
390 info->si_overrun += timr->it_overrun_last;
391 }
392
393 if (timr)
394 unlock_timer(timr, flags);
395 }
396
397 int posix_timer_event(struct k_itimer *timr, int si_private)
398 {
399 struct task_struct *task;
400 int shared, ret = -1;
401 /*
402 * FIXME: if ->sigq is queued we can race with
403 * dequeue_signal()->do_schedule_next_timer().
404 *
405 * If dequeue_signal() sees the "right" value of
406 * si_sys_private it calls do_schedule_next_timer().
407 * We re-queue ->sigq and drop ->it_lock().
408 * do_schedule_next_timer() locks the timer
409 * and re-schedules it while ->sigq is pending.
410 * Not really bad, but not that we want.
411 */
412 timr->sigq->info.si_sys_private = si_private;
413
414 rcu_read_lock();
415 task = pid_task(timr->it_pid, PIDTYPE_PID);
416 if (task) {
417 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
418 ret = send_sigqueue(timr->sigq, task, shared);
419 }
420 rcu_read_unlock();
421 /* If we failed to send the signal the timer stops. */
422 return ret > 0;
423 }
424 EXPORT_SYMBOL_GPL(posix_timer_event);
425
426 /*
427 * This function gets called when a POSIX.1b interval timer expires. It
428 * is used as a callback from the kernel internal timer. The
429 * run_timer_list code ALWAYS calls with interrupts on.
430
431 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
432 */
433 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
434 {
435 struct k_itimer *timr;
436 unsigned long flags;
437 int si_private = 0;
438 enum hrtimer_restart ret = HRTIMER_NORESTART;
439
440 timr = container_of(timer, struct k_itimer, it.real.timer);
441 spin_lock_irqsave(&timr->it_lock, flags);
442
443 if (timr->it.real.interval.tv64 != 0)
444 si_private = ++timr->it_requeue_pending;
445
446 if (posix_timer_event(timr, si_private)) {
447 /*
448 * signal was not sent because of sig_ignor
449 * we will not get a call back to restart it AND
450 * it should be restarted.
451 */
452 if (timr->it.real.interval.tv64 != 0) {
453 ktime_t now = hrtimer_cb_get_time(timer);
454
455 /*
456 * FIXME: What we really want, is to stop this
457 * timer completely and restart it in case the
458 * SIG_IGN is removed. This is a non trivial
459 * change which involves sighand locking
460 * (sigh !), which we don't want to do late in
461 * the release cycle.
462 *
463 * For now we just let timers with an interval
464 * less than a jiffie expire every jiffie to
465 * avoid softirq starvation in case of SIG_IGN
466 * and a very small interval, which would put
467 * the timer right back on the softirq pending
468 * list. By moving now ahead of time we trick
469 * hrtimer_forward() to expire the timer
470 * later, while we still maintain the overrun
471 * accuracy, but have some inconsistency in
472 * the timer_gettime() case. This is at least
473 * better than a starved softirq. A more
474 * complex fix which solves also another related
475 * inconsistency is already in the pipeline.
476 */
477 #ifdef CONFIG_HIGH_RES_TIMERS
478 {
479 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
480
481 if (timr->it.real.interval.tv64 < kj.tv64)
482 now = ktime_add(now, kj);
483 }
484 #endif
485 timr->it_overrun += (unsigned int)
486 hrtimer_forward(timer, now,
487 timr->it.real.interval);
488 ret = HRTIMER_RESTART;
489 ++timr->it_requeue_pending;
490 }
491 }
492
493 unlock_timer(timr, flags);
494 return ret;
495 }
496
497 static struct pid *good_sigevent(sigevent_t * event)
498 {
499 struct task_struct *rtn = current->group_leader;
500
501 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
502 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
503 !same_thread_group(rtn, current) ||
504 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
505 return NULL;
506
507 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
508 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
509 return NULL;
510
511 return task_pid(rtn);
512 }
513
514 void posix_timers_register_clock(const clockid_t clock_id,
515 struct k_clock *new_clock)
516 {
517 if ((unsigned) clock_id >= MAX_CLOCKS) {
518 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
519 clock_id);
520 return;
521 }
522
523 if (!new_clock->clock_get) {
524 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
525 clock_id);
526 return;
527 }
528 if (!new_clock->clock_getres) {
529 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
530 clock_id);
531 return;
532 }
533
534 posix_clocks[clock_id] = *new_clock;
535 }
536 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
537
538 static struct k_itimer * alloc_posix_timer(void)
539 {
540 struct k_itimer *tmr;
541 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
542 if (!tmr)
543 return tmr;
544 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
545 kmem_cache_free(posix_timers_cache, tmr);
546 return NULL;
547 }
548 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
549 return tmr;
550 }
551
552 static void k_itimer_rcu_free(struct rcu_head *head)
553 {
554 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
555
556 kmem_cache_free(posix_timers_cache, tmr);
557 }
558
559 #define IT_ID_SET 1
560 #define IT_ID_NOT_SET 0
561 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
562 {
563 if (it_id_set) {
564 unsigned long flags;
565 spin_lock_irqsave(&hash_lock, flags);
566 hlist_del_rcu(&tmr->t_hash);
567 spin_unlock_irqrestore(&hash_lock, flags);
568 }
569 put_pid(tmr->it_pid);
570 sigqueue_free(tmr->sigq);
571 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
572 }
573
574 static struct k_clock *clockid_to_kclock(const clockid_t id)
575 {
576 if (id < 0)
577 return (id & CLOCKFD_MASK) == CLOCKFD ?
578 &clock_posix_dynamic : &clock_posix_cpu;
579
580 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
581 return NULL;
582 return &posix_clocks[id];
583 }
584
585 static int common_timer_create(struct k_itimer *new_timer)
586 {
587 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
588 return 0;
589 }
590
591 /* Create a POSIX.1b interval timer. */
592
593 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
594 struct sigevent __user *, timer_event_spec,
595 timer_t __user *, created_timer_id)
596 {
597 struct k_clock *kc = clockid_to_kclock(which_clock);
598 struct k_itimer *new_timer;
599 int error, new_timer_id;
600 sigevent_t event;
601 int it_id_set = IT_ID_NOT_SET;
602
603 if (!kc)
604 return -EINVAL;
605 if (!kc->timer_create)
606 return -EOPNOTSUPP;
607
608 new_timer = alloc_posix_timer();
609 if (unlikely(!new_timer))
610 return -EAGAIN;
611
612 spin_lock_init(&new_timer->it_lock);
613 new_timer_id = posix_timer_add(new_timer);
614 if (new_timer_id < 0) {
615 error = new_timer_id;
616 goto out;
617 }
618
619 it_id_set = IT_ID_SET;
620 new_timer->it_id = (timer_t) new_timer_id;
621 new_timer->it_clock = which_clock;
622 new_timer->it_overrun = -1;
623
624 if (timer_event_spec) {
625 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
626 error = -EFAULT;
627 goto out;
628 }
629 rcu_read_lock();
630 new_timer->it_pid = get_pid(good_sigevent(&event));
631 rcu_read_unlock();
632 if (!new_timer->it_pid) {
633 error = -EINVAL;
634 goto out;
635 }
636 } else {
637 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
638 event.sigev_notify = SIGEV_SIGNAL;
639 event.sigev_signo = SIGALRM;
640 event.sigev_value.sival_int = new_timer->it_id;
641 new_timer->it_pid = get_pid(task_tgid(current));
642 }
643
644 new_timer->it_sigev_notify = event.sigev_notify;
645 new_timer->sigq->info.si_signo = event.sigev_signo;
646 new_timer->sigq->info.si_value = event.sigev_value;
647 new_timer->sigq->info.si_tid = new_timer->it_id;
648 new_timer->sigq->info.si_code = SI_TIMER;
649
650 if (copy_to_user(created_timer_id,
651 &new_timer_id, sizeof (new_timer_id))) {
652 error = -EFAULT;
653 goto out;
654 }
655
656 error = kc->timer_create(new_timer);
657 if (error)
658 goto out;
659
660 spin_lock_irq(&current->sighand->siglock);
661 new_timer->it_signal = current->signal;
662 list_add(&new_timer->list, &current->signal->posix_timers);
663 spin_unlock_irq(&current->sighand->siglock);
664
665 return 0;
666 /*
667 * In the case of the timer belonging to another task, after
668 * the task is unlocked, the timer is owned by the other task
669 * and may cease to exist at any time. Don't use or modify
670 * new_timer after the unlock call.
671 */
672 out:
673 release_posix_timer(new_timer, it_id_set);
674 return error;
675 }
676
677 /*
678 * Locking issues: We need to protect the result of the id look up until
679 * we get the timer locked down so it is not deleted under us. The
680 * removal is done under the idr spinlock so we use that here to bridge
681 * the find to the timer lock. To avoid a dead lock, the timer id MUST
682 * be release with out holding the timer lock.
683 */
684 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
685 {
686 struct k_itimer *timr;
687
688 /*
689 * timer_t could be any type >= int and we want to make sure any
690 * @timer_id outside positive int range fails lookup.
691 */
692 if ((unsigned long long)timer_id > INT_MAX)
693 return NULL;
694
695 rcu_read_lock();
696 timr = posix_timer_by_id(timer_id);
697 if (timr) {
698 spin_lock_irqsave(&timr->it_lock, *flags);
699 if (timr->it_signal == current->signal) {
700 rcu_read_unlock();
701 return timr;
702 }
703 spin_unlock_irqrestore(&timr->it_lock, *flags);
704 }
705 rcu_read_unlock();
706
707 return NULL;
708 }
709
710 /*
711 * Get the time remaining on a POSIX.1b interval timer. This function
712 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
713 * mess with irq.
714 *
715 * We have a couple of messes to clean up here. First there is the case
716 * of a timer that has a requeue pending. These timers should appear to
717 * be in the timer list with an expiry as if we were to requeue them
718 * now.
719 *
720 * The second issue is the SIGEV_NONE timer which may be active but is
721 * not really ever put in the timer list (to save system resources).
722 * This timer may be expired, and if so, we will do it here. Otherwise
723 * it is the same as a requeue pending timer WRT to what we should
724 * report.
725 */
726 static void
727 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
728 {
729 ktime_t now, remaining, iv;
730 struct hrtimer *timer = &timr->it.real.timer;
731
732 memset(cur_setting, 0, sizeof(struct itimerspec));
733
734 iv = timr->it.real.interval;
735
736 /* interval timer ? */
737 if (iv.tv64)
738 cur_setting->it_interval = ktime_to_timespec(iv);
739 else if (!hrtimer_active(timer) &&
740 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
741 return;
742
743 now = timer->base->get_time();
744
745 /*
746 * When a requeue is pending or this is a SIGEV_NONE
747 * timer move the expiry time forward by intervals, so
748 * expiry is > now.
749 */
750 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
751 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
752 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
753
754 remaining = ktime_sub(hrtimer_get_expires(timer), now);
755 /* Return 0 only, when the timer is expired and not pending */
756 if (remaining.tv64 <= 0) {
757 /*
758 * A single shot SIGEV_NONE timer must return 0, when
759 * it is expired !
760 */
761 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
762 cur_setting->it_value.tv_nsec = 1;
763 } else
764 cur_setting->it_value = ktime_to_timespec(remaining);
765 }
766
767 /* Get the time remaining on a POSIX.1b interval timer. */
768 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
769 struct itimerspec __user *, setting)
770 {
771 struct itimerspec cur_setting;
772 struct k_itimer *timr;
773 struct k_clock *kc;
774 unsigned long flags;
775 int ret = 0;
776
777 timr = lock_timer(timer_id, &flags);
778 if (!timr)
779 return -EINVAL;
780
781 kc = clockid_to_kclock(timr->it_clock);
782 if (WARN_ON_ONCE(!kc || !kc->timer_get))
783 ret = -EINVAL;
784 else
785 kc->timer_get(timr, &cur_setting);
786
787 unlock_timer(timr, flags);
788
789 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
790 return -EFAULT;
791
792 return ret;
793 }
794
795 /*
796 * Get the number of overruns of a POSIX.1b interval timer. This is to
797 * be the overrun of the timer last delivered. At the same time we are
798 * accumulating overruns on the next timer. The overrun is frozen when
799 * the signal is delivered, either at the notify time (if the info block
800 * is not queued) or at the actual delivery time (as we are informed by
801 * the call back to do_schedule_next_timer(). So all we need to do is
802 * to pick up the frozen overrun.
803 */
804 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
805 {
806 struct k_itimer *timr;
807 int overrun;
808 unsigned long flags;
809
810 timr = lock_timer(timer_id, &flags);
811 if (!timr)
812 return -EINVAL;
813
814 overrun = timr->it_overrun_last;
815 unlock_timer(timr, flags);
816
817 return overrun;
818 }
819
820 /* Set a POSIX.1b interval timer. */
821 /* timr->it_lock is taken. */
822 static int
823 common_timer_set(struct k_itimer *timr, int flags,
824 struct itimerspec *new_setting, struct itimerspec *old_setting)
825 {
826 struct hrtimer *timer = &timr->it.real.timer;
827 enum hrtimer_mode mode;
828
829 if (old_setting)
830 common_timer_get(timr, old_setting);
831
832 /* disable the timer */
833 timr->it.real.interval.tv64 = 0;
834 /*
835 * careful here. If smp we could be in the "fire" routine which will
836 * be spinning as we hold the lock. But this is ONLY an SMP issue.
837 */
838 if (hrtimer_try_to_cancel(timer) < 0)
839 return TIMER_RETRY;
840
841 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
842 ~REQUEUE_PENDING;
843 timr->it_overrun_last = 0;
844
845 /* switch off the timer when it_value is zero */
846 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
847 return 0;
848
849 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
850 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
851 timr->it.real.timer.function = posix_timer_fn;
852
853 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
854
855 /* Convert interval */
856 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
857
858 /* SIGEV_NONE timers are not queued ! See common_timer_get */
859 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
860 /* Setup correct expiry time for relative timers */
861 if (mode == HRTIMER_MODE_REL) {
862 hrtimer_add_expires(timer, timer->base->get_time());
863 }
864 return 0;
865 }
866
867 hrtimer_start_expires(timer, mode);
868 return 0;
869 }
870
871 /* Set a POSIX.1b interval timer */
872 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
873 const struct itimerspec __user *, new_setting,
874 struct itimerspec __user *, old_setting)
875 {
876 struct k_itimer *timr;
877 struct itimerspec new_spec, old_spec;
878 int error = 0;
879 unsigned long flag;
880 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
881 struct k_clock *kc;
882
883 if (!new_setting)
884 return -EINVAL;
885
886 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
887 return -EFAULT;
888
889 if (!timespec_valid(&new_spec.it_interval) ||
890 !timespec_valid(&new_spec.it_value))
891 return -EINVAL;
892 retry:
893 timr = lock_timer(timer_id, &flag);
894 if (!timr)
895 return -EINVAL;
896
897 kc = clockid_to_kclock(timr->it_clock);
898 if (WARN_ON_ONCE(!kc || !kc->timer_set))
899 error = -EINVAL;
900 else
901 error = kc->timer_set(timr, flags, &new_spec, rtn);
902
903 unlock_timer(timr, flag);
904 if (error == TIMER_RETRY) {
905 rtn = NULL; // We already got the old time...
906 goto retry;
907 }
908
909 if (old_setting && !error &&
910 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
911 error = -EFAULT;
912
913 return error;
914 }
915
916 static int common_timer_del(struct k_itimer *timer)
917 {
918 timer->it.real.interval.tv64 = 0;
919
920 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
921 return TIMER_RETRY;
922 return 0;
923 }
924
925 static inline int timer_delete_hook(struct k_itimer *timer)
926 {
927 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
928
929 if (WARN_ON_ONCE(!kc || !kc->timer_del))
930 return -EINVAL;
931 return kc->timer_del(timer);
932 }
933
934 /* Delete a POSIX.1b interval timer. */
935 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
936 {
937 struct k_itimer *timer;
938 unsigned long flags;
939
940 retry_delete:
941 timer = lock_timer(timer_id, &flags);
942 if (!timer)
943 return -EINVAL;
944
945 if (timer_delete_hook(timer) == TIMER_RETRY) {
946 unlock_timer(timer, flags);
947 goto retry_delete;
948 }
949
950 spin_lock(&current->sighand->siglock);
951 list_del(&timer->list);
952 spin_unlock(&current->sighand->siglock);
953 /*
954 * This keeps any tasks waiting on the spin lock from thinking
955 * they got something (see the lock code above).
956 */
957 timer->it_signal = NULL;
958
959 unlock_timer(timer, flags);
960 release_posix_timer(timer, IT_ID_SET);
961 return 0;
962 }
963
964 /*
965 * return timer owned by the process, used by exit_itimers
966 */
967 static void itimer_delete(struct k_itimer *timer)
968 {
969 unsigned long flags;
970
971 retry_delete:
972 spin_lock_irqsave(&timer->it_lock, flags);
973
974 if (timer_delete_hook(timer) == TIMER_RETRY) {
975 unlock_timer(timer, flags);
976 goto retry_delete;
977 }
978 list_del(&timer->list);
979 /*
980 * This keeps any tasks waiting on the spin lock from thinking
981 * they got something (see the lock code above).
982 */
983 timer->it_signal = NULL;
984
985 unlock_timer(timer, flags);
986 release_posix_timer(timer, IT_ID_SET);
987 }
988
989 /*
990 * This is called by do_exit or de_thread, only when there are no more
991 * references to the shared signal_struct.
992 */
993 void exit_itimers(struct signal_struct *sig)
994 {
995 struct k_itimer *tmr;
996
997 while (!list_empty(&sig->posix_timers)) {
998 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
999 itimer_delete(tmr);
1000 }
1001 }
1002
1003 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1004 const struct timespec __user *, tp)
1005 {
1006 struct k_clock *kc = clockid_to_kclock(which_clock);
1007 struct timespec new_tp;
1008
1009 if (!kc || !kc->clock_set)
1010 return -EINVAL;
1011
1012 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1013 return -EFAULT;
1014
1015 return kc->clock_set(which_clock, &new_tp);
1016 }
1017
1018 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1019 struct timespec __user *,tp)
1020 {
1021 struct k_clock *kc = clockid_to_kclock(which_clock);
1022 struct timespec kernel_tp;
1023 int error;
1024
1025 if (!kc)
1026 return -EINVAL;
1027
1028 error = kc->clock_get(which_clock, &kernel_tp);
1029
1030 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1031 error = -EFAULT;
1032
1033 return error;
1034 }
1035
1036 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1037 struct timex __user *, utx)
1038 {
1039 struct k_clock *kc = clockid_to_kclock(which_clock);
1040 struct timex ktx;
1041 int err;
1042
1043 if (!kc)
1044 return -EINVAL;
1045 if (!kc->clock_adj)
1046 return -EOPNOTSUPP;
1047
1048 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1049 return -EFAULT;
1050
1051 err = kc->clock_adj(which_clock, &ktx);
1052
1053 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1054 return -EFAULT;
1055
1056 return err;
1057 }
1058
1059 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1060 struct timespec __user *, tp)
1061 {
1062 struct k_clock *kc = clockid_to_kclock(which_clock);
1063 struct timespec rtn_tp;
1064 int error;
1065
1066 if (!kc)
1067 return -EINVAL;
1068
1069 error = kc->clock_getres(which_clock, &rtn_tp);
1070
1071 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1072 error = -EFAULT;
1073
1074 return error;
1075 }
1076
1077 /*
1078 * nanosleep for monotonic and realtime clocks
1079 */
1080 static int common_nsleep(const clockid_t which_clock, int flags,
1081 struct timespec *tsave, struct timespec __user *rmtp)
1082 {
1083 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1084 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1085 which_clock);
1086 }
1087
1088 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1089 const struct timespec __user *, rqtp,
1090 struct timespec __user *, rmtp)
1091 {
1092 struct k_clock *kc = clockid_to_kclock(which_clock);
1093 struct timespec t;
1094
1095 if (!kc)
1096 return -EINVAL;
1097 if (!kc->nsleep)
1098 return -ENANOSLEEP_NOTSUP;
1099
1100 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1101 return -EFAULT;
1102
1103 if (!timespec_valid(&t))
1104 return -EINVAL;
1105
1106 return kc->nsleep(which_clock, flags, &t, rmtp);
1107 }
1108
1109 /*
1110 * This will restart clock_nanosleep. This is required only by
1111 * compat_clock_nanosleep_restart for now.
1112 */
1113 long clock_nanosleep_restart(struct restart_block *restart_block)
1114 {
1115 clockid_t which_clock = restart_block->nanosleep.clockid;
1116 struct k_clock *kc = clockid_to_kclock(which_clock);
1117
1118 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1119 return -EINVAL;
1120
1121 return kc->nsleep_restart(restart_block);
1122 }