Merge tag 'v3.10.101' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .set = param_set_bool_enable_only,
140 .get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156
157 /* Bounds of module allocation, for speeding __module_address.
158 * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160
161 int register_module_notifier(struct notifier_block * nb)
162 {
163 return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166
167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172
173 struct load_info {
174 Elf_Ehdr *hdr;
175 unsigned long len;
176 Elf_Shdr *sechdrs;
177 char *secstrings, *strtab;
178 unsigned long symoffs, stroffs;
179 struct _ddebug *debug;
180 unsigned int num_debug;
181 bool sig_ok;
182 #ifdef CONFIG_KALLSYMS
183 unsigned long mod_kallsyms_init_off;
184 #endif
185 struct {
186 unsigned int sym, str, mod, vers, info, pcpu;
187 } index;
188 };
189
190 /* We require a truly strong try_module_get(): 0 means failure due to
191 ongoing or failed initialization etc. */
192 static inline int strong_try_module_get(struct module *mod)
193 {
194 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
195 if (mod && mod->state == MODULE_STATE_COMING)
196 return -EBUSY;
197 if (try_module_get(mod))
198 return 0;
199 else
200 return -ENOENT;
201 }
202
203 static inline void add_taint_module(struct module *mod, unsigned flag,
204 enum lockdep_ok lockdep_ok)
205 {
206 add_taint(flag, lockdep_ok);
207 mod->taints |= (1U << flag);
208 }
209
210 /*
211 * A thread that wants to hold a reference to a module only while it
212 * is running can call this to safely exit. nfsd and lockd use this.
213 */
214 void __module_put_and_exit(struct module *mod, long code)
215 {
216 module_put(mod);
217 do_exit(code);
218 }
219 EXPORT_SYMBOL(__module_put_and_exit);
220
221 /* Find a module section: 0 means not found. */
222 static unsigned int find_sec(const struct load_info *info, const char *name)
223 {
224 unsigned int i;
225
226 for (i = 1; i < info->hdr->e_shnum; i++) {
227 Elf_Shdr *shdr = &info->sechdrs[i];
228 /* Alloc bit cleared means "ignore it." */
229 if ((shdr->sh_flags & SHF_ALLOC)
230 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
231 return i;
232 }
233 return 0;
234 }
235
236 /* Find a module section, or NULL. */
237 static void *section_addr(const struct load_info *info, const char *name)
238 {
239 /* Section 0 has sh_addr 0. */
240 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
241 }
242
243 /* Find a module section, or NULL. Fill in number of "objects" in section. */
244 static void *section_objs(const struct load_info *info,
245 const char *name,
246 size_t object_size,
247 unsigned int *num)
248 {
249 unsigned int sec = find_sec(info, name);
250
251 /* Section 0 has sh_addr 0 and sh_size 0. */
252 *num = info->sechdrs[sec].sh_size / object_size;
253 return (void *)info->sechdrs[sec].sh_addr;
254 }
255
256 /* Provided by the linker */
257 extern const struct kernel_symbol __start___ksymtab[];
258 extern const struct kernel_symbol __stop___ksymtab[];
259 extern const struct kernel_symbol __start___ksymtab_gpl[];
260 extern const struct kernel_symbol __stop___ksymtab_gpl[];
261 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
262 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
263 extern const unsigned long __start___kcrctab[];
264 extern const unsigned long __start___kcrctab_gpl[];
265 extern const unsigned long __start___kcrctab_gpl_future[];
266 #ifdef CONFIG_UNUSED_SYMBOLS
267 extern const struct kernel_symbol __start___ksymtab_unused[];
268 extern const struct kernel_symbol __stop___ksymtab_unused[];
269 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
270 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
271 extern const unsigned long __start___kcrctab_unused[];
272 extern const unsigned long __start___kcrctab_unused_gpl[];
273 #endif
274
275 #ifndef CONFIG_MODVERSIONS
276 #define symversion(base, idx) NULL
277 #else
278 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
279 #endif
280
281 static bool each_symbol_in_section(const struct symsearch *arr,
282 unsigned int arrsize,
283 struct module *owner,
284 bool (*fn)(const struct symsearch *syms,
285 struct module *owner,
286 void *data),
287 void *data)
288 {
289 unsigned int j;
290
291 for (j = 0; j < arrsize; j++) {
292 if (fn(&arr[j], owner, data))
293 return true;
294 }
295
296 return false;
297 }
298
299 /* Returns true as soon as fn returns true, otherwise false. */
300 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
301 struct module *owner,
302 void *data),
303 void *data)
304 {
305 struct module *mod;
306 static const struct symsearch arr[] = {
307 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
308 NOT_GPL_ONLY, false },
309 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
310 __start___kcrctab_gpl,
311 GPL_ONLY, false },
312 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
313 __start___kcrctab_gpl_future,
314 WILL_BE_GPL_ONLY, false },
315 #ifdef CONFIG_UNUSED_SYMBOLS
316 { __start___ksymtab_unused, __stop___ksymtab_unused,
317 __start___kcrctab_unused,
318 NOT_GPL_ONLY, true },
319 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
320 __start___kcrctab_unused_gpl,
321 GPL_ONLY, true },
322 #endif
323 };
324
325 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
326 return true;
327
328 list_for_each_entry_rcu(mod, &modules, list) {
329 struct symsearch arr[] = {
330 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
331 NOT_GPL_ONLY, false },
332 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
333 mod->gpl_crcs,
334 GPL_ONLY, false },
335 { mod->gpl_future_syms,
336 mod->gpl_future_syms + mod->num_gpl_future_syms,
337 mod->gpl_future_crcs,
338 WILL_BE_GPL_ONLY, false },
339 #ifdef CONFIG_UNUSED_SYMBOLS
340 { mod->unused_syms,
341 mod->unused_syms + mod->num_unused_syms,
342 mod->unused_crcs,
343 NOT_GPL_ONLY, true },
344 { mod->unused_gpl_syms,
345 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
346 mod->unused_gpl_crcs,
347 GPL_ONLY, true },
348 #endif
349 };
350
351 if (mod->state == MODULE_STATE_UNFORMED)
352 continue;
353
354 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
355 return true;
356 }
357 return false;
358 }
359 EXPORT_SYMBOL_GPL(each_symbol_section);
360
361 struct find_symbol_arg {
362 /* Input */
363 const char *name;
364 bool gplok;
365 bool warn;
366
367 /* Output */
368 struct module *owner;
369 const unsigned long *crc;
370 const struct kernel_symbol *sym;
371 };
372
373 static bool check_symbol(const struct symsearch *syms,
374 struct module *owner,
375 unsigned int symnum, void *data)
376 {
377 struct find_symbol_arg *fsa = data;
378
379 if (!fsa->gplok) {
380 if (syms->licence == GPL_ONLY)
381 return false;
382 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
383 printk(KERN_WARNING "Symbol %s is being used "
384 "by a non-GPL module, which will not "
385 "be allowed in the future\n", fsa->name);
386 }
387 }
388
389 #ifdef CONFIG_UNUSED_SYMBOLS
390 if (syms->unused && fsa->warn) {
391 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
392 "however this module is using it.\n", fsa->name);
393 printk(KERN_WARNING
394 "This symbol will go away in the future.\n");
395 printk(KERN_WARNING
396 "Please evalute if this is the right api to use and if "
397 "it really is, submit a report the linux kernel "
398 "mailinglist together with submitting your code for "
399 "inclusion.\n");
400 }
401 #endif
402
403 fsa->owner = owner;
404 fsa->crc = symversion(syms->crcs, symnum);
405 fsa->sym = &syms->start[symnum];
406 return true;
407 }
408
409 static int cmp_name(const void *va, const void *vb)
410 {
411 const char *a;
412 const struct kernel_symbol *b;
413 a = va; b = vb;
414 return strcmp(a, b->name);
415 }
416
417 static bool find_symbol_in_section(const struct symsearch *syms,
418 struct module *owner,
419 void *data)
420 {
421 struct find_symbol_arg *fsa = data;
422 struct kernel_symbol *sym;
423
424 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
425 sizeof(struct kernel_symbol), cmp_name);
426
427 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
428 return true;
429
430 return false;
431 }
432
433 /* Find a symbol and return it, along with, (optional) crc and
434 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
435 const struct kernel_symbol *find_symbol(const char *name,
436 struct module **owner,
437 const unsigned long **crc,
438 bool gplok,
439 bool warn)
440 {
441 struct find_symbol_arg fsa;
442
443 fsa.name = name;
444 fsa.gplok = gplok;
445 fsa.warn = warn;
446
447 if (each_symbol_section(find_symbol_in_section, &fsa)) {
448 if (owner)
449 *owner = fsa.owner;
450 if (crc)
451 *crc = fsa.crc;
452 return fsa.sym;
453 }
454
455 pr_debug("Failed to find symbol %s\n", name);
456 return NULL;
457 }
458 EXPORT_SYMBOL_GPL(find_symbol);
459
460 /* Search for module by name: must hold module_mutex. */
461 static struct module *find_module_all(const char *name,
462 bool even_unformed)
463 {
464 struct module *mod;
465
466 list_for_each_entry(mod, &modules, list) {
467 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
468 continue;
469 if (strcmp(mod->name, name) == 0)
470 return mod;
471 }
472 return NULL;
473 }
474
475 struct module *find_module(const char *name)
476 {
477 return find_module_all(name, false);
478 }
479 EXPORT_SYMBOL_GPL(find_module);
480
481 #ifdef CONFIG_SMP
482
483 static inline void __percpu *mod_percpu(struct module *mod)
484 {
485 return mod->percpu;
486 }
487
488 static int percpu_modalloc(struct module *mod,
489 unsigned long size, unsigned long align)
490 {
491 if (align > PAGE_SIZE) {
492 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
493 mod->name, align, PAGE_SIZE);
494 align = PAGE_SIZE;
495 }
496
497 mod->percpu = __alloc_reserved_percpu(size, align);
498 if (!mod->percpu) {
499 printk(KERN_WARNING
500 "%s: Could not allocate %lu bytes percpu data\n",
501 mod->name, size);
502 return -ENOMEM;
503 }
504 mod->percpu_size = size;
505 return 0;
506 }
507
508 static void percpu_modfree(struct module *mod)
509 {
510 free_percpu(mod->percpu);
511 }
512
513 static unsigned int find_pcpusec(struct load_info *info)
514 {
515 return find_sec(info, ".data..percpu");
516 }
517
518 static void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 int cpu;
522
523 for_each_possible_cpu(cpu)
524 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
525 }
526
527 /**
528 * is_module_percpu_address - test whether address is from module static percpu
529 * @addr: address to test
530 *
531 * Test whether @addr belongs to module static percpu area.
532 *
533 * RETURNS:
534 * %true if @addr is from module static percpu area
535 */
536 bool is_module_percpu_address(unsigned long addr)
537 {
538 struct module *mod;
539 unsigned int cpu;
540
541 preempt_disable();
542
543 list_for_each_entry_rcu(mod, &modules, list) {
544 if (mod->state == MODULE_STATE_UNFORMED)
545 continue;
546 if (!mod->percpu_size)
547 continue;
548 for_each_possible_cpu(cpu) {
549 void *start = per_cpu_ptr(mod->percpu, cpu);
550
551 if ((void *)addr >= start &&
552 (void *)addr < start + mod->percpu_size) {
553 preempt_enable();
554 return true;
555 }
556 }
557 }
558
559 preempt_enable();
560 return false;
561 }
562
563 #else /* ... !CONFIG_SMP */
564
565 static inline void __percpu *mod_percpu(struct module *mod)
566 {
567 return NULL;
568 }
569 static inline int percpu_modalloc(struct module *mod,
570 unsigned long size, unsigned long align)
571 {
572 return -ENOMEM;
573 }
574 static inline void percpu_modfree(struct module *mod)
575 {
576 }
577 static unsigned int find_pcpusec(struct load_info *info)
578 {
579 return 0;
580 }
581 static inline void percpu_modcopy(struct module *mod,
582 const void *from, unsigned long size)
583 {
584 /* pcpusec should be 0, and size of that section should be 0. */
585 BUG_ON(size != 0);
586 }
587 bool is_module_percpu_address(unsigned long addr)
588 {
589 return false;
590 }
591
592 #endif /* CONFIG_SMP */
593
594 #define MODINFO_ATTR(field) \
595 static void setup_modinfo_##field(struct module *mod, const char *s) \
596 { \
597 mod->field = kstrdup(s, GFP_KERNEL); \
598 } \
599 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
600 struct module_kobject *mk, char *buffer) \
601 { \
602 return sprintf(buffer, "%s\n", mk->mod->field); \
603 } \
604 static int modinfo_##field##_exists(struct module *mod) \
605 { \
606 return mod->field != NULL; \
607 } \
608 static void free_modinfo_##field(struct module *mod) \
609 { \
610 kfree(mod->field); \
611 mod->field = NULL; \
612 } \
613 static struct module_attribute modinfo_##field = { \
614 .attr = { .name = __stringify(field), .mode = 0444 }, \
615 .show = show_modinfo_##field, \
616 .setup = setup_modinfo_##field, \
617 .test = modinfo_##field##_exists, \
618 .free = free_modinfo_##field, \
619 };
620
621 MODINFO_ATTR(version);
622 MODINFO_ATTR(srcversion);
623
624 static char last_unloaded_module[MODULE_NAME_LEN+1];
625
626 #ifdef CONFIG_MODULE_UNLOAD
627
628 EXPORT_TRACEPOINT_SYMBOL(module_get);
629
630 /* Init the unload section of the module. */
631 static int module_unload_init(struct module *mod)
632 {
633 mod->refptr = alloc_percpu(struct module_ref);
634 if (!mod->refptr)
635 return -ENOMEM;
636
637 INIT_LIST_HEAD(&mod->source_list);
638 INIT_LIST_HEAD(&mod->target_list);
639
640 /* Hold reference count during initialization. */
641 __this_cpu_write(mod->refptr->incs, 1);
642 /* Backwards compatibility macros put refcount during init. */
643 mod->waiter = current;
644
645 return 0;
646 }
647
648 /* Does a already use b? */
649 static int already_uses(struct module *a, struct module *b)
650 {
651 struct module_use *use;
652
653 list_for_each_entry(use, &b->source_list, source_list) {
654 if (use->source == a) {
655 pr_debug("%s uses %s!\n", a->name, b->name);
656 return 1;
657 }
658 }
659 pr_debug("%s does not use %s!\n", a->name, b->name);
660 return 0;
661 }
662
663 /*
664 * Module a uses b
665 * - we add 'a' as a "source", 'b' as a "target" of module use
666 * - the module_use is added to the list of 'b' sources (so
667 * 'b' can walk the list to see who sourced them), and of 'a'
668 * targets (so 'a' can see what modules it targets).
669 */
670 static int add_module_usage(struct module *a, struct module *b)
671 {
672 struct module_use *use;
673
674 pr_debug("Allocating new usage for %s.\n", a->name);
675 use = kmalloc(sizeof(*use), GFP_ATOMIC);
676 if (!use) {
677 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
678 return -ENOMEM;
679 }
680
681 use->source = a;
682 use->target = b;
683 list_add(&use->source_list, &b->source_list);
684 list_add(&use->target_list, &a->target_list);
685 return 0;
686 }
687
688 /* Module a uses b: caller needs module_mutex() */
689 int ref_module(struct module *a, struct module *b)
690 {
691 int err;
692
693 if (b == NULL || already_uses(a, b))
694 return 0;
695
696 /* If module isn't available, we fail. */
697 err = strong_try_module_get(b);
698 if (err)
699 return err;
700
701 err = add_module_usage(a, b);
702 if (err) {
703 module_put(b);
704 return err;
705 }
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(ref_module);
709
710 /* Clear the unload stuff of the module. */
711 static void module_unload_free(struct module *mod)
712 {
713 struct module_use *use, *tmp;
714
715 mutex_lock(&module_mutex);
716 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
717 struct module *i = use->target;
718 pr_debug("%s unusing %s\n", mod->name, i->name);
719 module_put(i);
720 list_del(&use->source_list);
721 list_del(&use->target_list);
722 kfree(use);
723 }
724 mutex_unlock(&module_mutex);
725
726 free_percpu(mod->refptr);
727 }
728
729 #ifdef CONFIG_MODULE_FORCE_UNLOAD
730 static inline int try_force_unload(unsigned int flags)
731 {
732 int ret = (flags & O_TRUNC);
733 if (ret)
734 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
735 return ret;
736 }
737 #else
738 static inline int try_force_unload(unsigned int flags)
739 {
740 return 0;
741 }
742 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
743
744 struct stopref
745 {
746 struct module *mod;
747 int flags;
748 int *forced;
749 };
750
751 /* Whole machine is stopped with interrupts off when this runs. */
752 static int __try_stop_module(void *_sref)
753 {
754 struct stopref *sref = _sref;
755
756 /* If it's not unused, quit unless we're forcing. */
757 if (module_refcount(sref->mod) != 0) {
758 if (!(*sref->forced = try_force_unload(sref->flags)))
759 return -EWOULDBLOCK;
760 }
761
762 /* Mark it as dying. */
763 sref->mod->state = MODULE_STATE_GOING;
764 return 0;
765 }
766
767 static int try_stop_module(struct module *mod, int flags, int *forced)
768 {
769 if (flags & O_NONBLOCK) {
770 struct stopref sref = { mod, flags, forced };
771
772 return stop_machine(__try_stop_module, &sref, NULL);
773 } else {
774 /* We don't need to stop the machine for this. */
775 mod->state = MODULE_STATE_GOING;
776 synchronize_sched();
777 return 0;
778 }
779 }
780
781 unsigned long module_refcount(struct module *mod)
782 {
783 unsigned long incs = 0, decs = 0;
784 int cpu;
785
786 for_each_possible_cpu(cpu)
787 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
788 /*
789 * ensure the incs are added up after the decs.
790 * module_put ensures incs are visible before decs with smp_wmb.
791 *
792 * This 2-count scheme avoids the situation where the refcount
793 * for CPU0 is read, then CPU0 increments the module refcount,
794 * then CPU1 drops that refcount, then the refcount for CPU1 is
795 * read. We would record a decrement but not its corresponding
796 * increment so we would see a low count (disaster).
797 *
798 * Rare situation? But module_refcount can be preempted, and we
799 * might be tallying up 4096+ CPUs. So it is not impossible.
800 */
801 smp_rmb();
802 for_each_possible_cpu(cpu)
803 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
804 return incs - decs;
805 }
806 EXPORT_SYMBOL(module_refcount);
807
808 /* This exists whether we can unload or not */
809 static void free_module(struct module *mod);
810
811 static void wait_for_zero_refcount(struct module *mod)
812 {
813 /* Since we might sleep for some time, release the mutex first */
814 mutex_unlock(&module_mutex);
815 for (;;) {
816 pr_debug("Looking at refcount...\n");
817 set_current_state(TASK_UNINTERRUPTIBLE);
818 if (module_refcount(mod) == 0)
819 break;
820 schedule();
821 }
822 current->state = TASK_RUNNING;
823 mutex_lock(&module_mutex);
824 }
825
826 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
827 unsigned int, flags)
828 {
829 struct module *mod;
830 char name[MODULE_NAME_LEN];
831 int ret, forced = 0;
832
833 if (!capable(CAP_SYS_MODULE) || modules_disabled)
834 return -EPERM;
835
836 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
837 return -EFAULT;
838 name[MODULE_NAME_LEN-1] = '\0';
839
840 if (mutex_lock_interruptible(&module_mutex) != 0)
841 return -EINTR;
842
843 mod = find_module(name);
844 if (!mod) {
845 ret = -ENOENT;
846 goto out;
847 }
848
849 if (!list_empty(&mod->source_list)) {
850 /* Other modules depend on us: get rid of them first. */
851 ret = -EWOULDBLOCK;
852 goto out;
853 }
854
855 /* Doing init or already dying? */
856 if (mod->state != MODULE_STATE_LIVE) {
857 /* FIXME: if (force), slam module count and wake up
858 waiter --RR */
859 pr_debug("%s already dying\n", mod->name);
860 ret = -EBUSY;
861 goto out;
862 }
863
864 /* If it has an init func, it must have an exit func to unload */
865 if (mod->init && !mod->exit) {
866 forced = try_force_unload(flags);
867 if (!forced) {
868 /* This module can't be removed */
869 ret = -EBUSY;
870 goto out;
871 }
872 }
873
874 /* Set this up before setting mod->state */
875 mod->waiter = current;
876
877 /* Stop the machine so refcounts can't move and disable module. */
878 ret = try_stop_module(mod, flags, &forced);
879 if (ret != 0)
880 goto out;
881
882 /* Never wait if forced. */
883 if (!forced && module_refcount(mod) != 0)
884 wait_for_zero_refcount(mod);
885
886 mutex_unlock(&module_mutex);
887 /* Final destruction now no one is using it. */
888 if (mod->exit != NULL)
889 mod->exit();
890 blocking_notifier_call_chain(&module_notify_list,
891 MODULE_STATE_GOING, mod);
892 async_synchronize_full();
893
894 /* Store the name of the last unloaded module for diagnostic purposes */
895 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
896
897 free_module(mod);
898 return 0;
899 out:
900 mutex_unlock(&module_mutex);
901 return ret;
902 }
903
904 static inline void print_unload_info(struct seq_file *m, struct module *mod)
905 {
906 struct module_use *use;
907 int printed_something = 0;
908
909 seq_printf(m, " %lu ", module_refcount(mod));
910
911 /* Always include a trailing , so userspace can differentiate
912 between this and the old multi-field proc format. */
913 list_for_each_entry(use, &mod->source_list, source_list) {
914 printed_something = 1;
915 seq_printf(m, "%s,", use->source->name);
916 }
917
918 if (mod->init != NULL && mod->exit == NULL) {
919 printed_something = 1;
920 seq_printf(m, "[permanent],");
921 }
922
923 if (!printed_something)
924 seq_printf(m, "-");
925 }
926
927 void __symbol_put(const char *symbol)
928 {
929 struct module *owner;
930
931 preempt_disable();
932 if (!find_symbol(symbol, &owner, NULL, true, false))
933 BUG();
934 module_put(owner);
935 preempt_enable();
936 }
937 EXPORT_SYMBOL(__symbol_put);
938
939 /* Note this assumes addr is a function, which it currently always is. */
940 void symbol_put_addr(void *addr)
941 {
942 struct module *modaddr;
943 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
944
945 if (core_kernel_text(a))
946 return;
947
948 /*
949 * Even though we hold a reference on the module; we still need to
950 * disable preemption in order to safely traverse the data structure.
951 */
952 preempt_disable();
953 modaddr = __module_text_address(a);
954 BUG_ON(!modaddr);
955 module_put(modaddr);
956 preempt_enable();
957 }
958 EXPORT_SYMBOL_GPL(symbol_put_addr);
959
960 static ssize_t show_refcnt(struct module_attribute *mattr,
961 struct module_kobject *mk, char *buffer)
962 {
963 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
964 }
965
966 static struct module_attribute modinfo_refcnt =
967 __ATTR(refcnt, 0444, show_refcnt, NULL);
968
969 void __module_get(struct module *module)
970 {
971 if (module) {
972 preempt_disable();
973 __this_cpu_inc(module->refptr->incs);
974 trace_module_get(module, _RET_IP_);
975 preempt_enable();
976 }
977 }
978 EXPORT_SYMBOL(__module_get);
979
980 bool try_module_get(struct module *module)
981 {
982 bool ret = true;
983
984 if (module) {
985 preempt_disable();
986
987 if (likely(module_is_live(module))) {
988 __this_cpu_inc(module->refptr->incs);
989 trace_module_get(module, _RET_IP_);
990 } else
991 ret = false;
992
993 preempt_enable();
994 }
995 return ret;
996 }
997 EXPORT_SYMBOL(try_module_get);
998
999 void module_put(struct module *module)
1000 {
1001 if (module) {
1002 preempt_disable();
1003 smp_wmb(); /* see comment in module_refcount */
1004 __this_cpu_inc(module->refptr->decs);
1005
1006 trace_module_put(module, _RET_IP_);
1007 /* Maybe they're waiting for us to drop reference? */
1008 if (unlikely(!module_is_live(module)))
1009 wake_up_process(module->waiter);
1010 preempt_enable();
1011 }
1012 }
1013 EXPORT_SYMBOL(module_put);
1014
1015 #else /* !CONFIG_MODULE_UNLOAD */
1016 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1017 {
1018 /* We don't know the usage count, or what modules are using. */
1019 seq_printf(m, " - -");
1020 }
1021
1022 static inline void module_unload_free(struct module *mod)
1023 {
1024 }
1025
1026 int ref_module(struct module *a, struct module *b)
1027 {
1028 return strong_try_module_get(b);
1029 }
1030 EXPORT_SYMBOL_GPL(ref_module);
1031
1032 static inline int module_unload_init(struct module *mod)
1033 {
1034 return 0;
1035 }
1036 #endif /* CONFIG_MODULE_UNLOAD */
1037
1038 static size_t module_flags_taint(struct module *mod, char *buf)
1039 {
1040 size_t l = 0;
1041
1042 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1043 buf[l++] = 'P';
1044 if (mod->taints & (1 << TAINT_OOT_MODULE))
1045 buf[l++] = 'O';
1046 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1047 buf[l++] = 'F';
1048 if (mod->taints & (1 << TAINT_CRAP))
1049 buf[l++] = 'C';
1050 /*
1051 * TAINT_FORCED_RMMOD: could be added.
1052 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1053 * apply to modules.
1054 */
1055 return l;
1056 }
1057
1058 static ssize_t show_initstate(struct module_attribute *mattr,
1059 struct module_kobject *mk, char *buffer)
1060 {
1061 const char *state = "unknown";
1062
1063 switch (mk->mod->state) {
1064 case MODULE_STATE_LIVE:
1065 state = "live";
1066 break;
1067 case MODULE_STATE_COMING:
1068 state = "coming";
1069 break;
1070 case MODULE_STATE_GOING:
1071 state = "going";
1072 break;
1073 default:
1074 BUG();
1075 }
1076 return sprintf(buffer, "%s\n", state);
1077 }
1078
1079 static struct module_attribute modinfo_initstate =
1080 __ATTR(initstate, 0444, show_initstate, NULL);
1081
1082 static ssize_t store_uevent(struct module_attribute *mattr,
1083 struct module_kobject *mk,
1084 const char *buffer, size_t count)
1085 {
1086 enum kobject_action action;
1087
1088 if (kobject_action_type(buffer, count, &action) == 0)
1089 kobject_uevent(&mk->kobj, action);
1090 return count;
1091 }
1092
1093 struct module_attribute module_uevent =
1094 __ATTR(uevent, 0200, NULL, store_uevent);
1095
1096 static ssize_t show_coresize(struct module_attribute *mattr,
1097 struct module_kobject *mk, char *buffer)
1098 {
1099 return sprintf(buffer, "%u\n", mk->mod->core_size);
1100 }
1101
1102 static struct module_attribute modinfo_coresize =
1103 __ATTR(coresize, 0444, show_coresize, NULL);
1104
1105 static ssize_t show_initsize(struct module_attribute *mattr,
1106 struct module_kobject *mk, char *buffer)
1107 {
1108 return sprintf(buffer, "%u\n", mk->mod->init_size);
1109 }
1110
1111 static struct module_attribute modinfo_initsize =
1112 __ATTR(initsize, 0444, show_initsize, NULL);
1113
1114 static ssize_t show_taint(struct module_attribute *mattr,
1115 struct module_kobject *mk, char *buffer)
1116 {
1117 size_t l;
1118
1119 l = module_flags_taint(mk->mod, buffer);
1120 buffer[l++] = '\n';
1121 return l;
1122 }
1123
1124 static struct module_attribute modinfo_taint =
1125 __ATTR(taint, 0444, show_taint, NULL);
1126
1127 static struct module_attribute *modinfo_attrs[] = {
1128 &module_uevent,
1129 &modinfo_version,
1130 &modinfo_srcversion,
1131 &modinfo_initstate,
1132 &modinfo_coresize,
1133 &modinfo_initsize,
1134 &modinfo_taint,
1135 #ifdef CONFIG_MODULE_UNLOAD
1136 &modinfo_refcnt,
1137 #endif
1138 NULL,
1139 };
1140
1141 static const char vermagic[] = VERMAGIC_STRING;
1142
1143 static int try_to_force_load(struct module *mod, const char *reason)
1144 {
1145 #ifdef CONFIG_MODULE_FORCE_LOAD
1146 if (!test_taint(TAINT_FORCED_MODULE))
1147 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1148 mod->name, reason);
1149 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1150 return 0;
1151 #else
1152 return -ENOEXEC;
1153 #endif
1154 }
1155
1156 #ifdef CONFIG_MODVERSIONS
1157 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1158 static unsigned long maybe_relocated(unsigned long crc,
1159 const struct module *crc_owner)
1160 {
1161 #ifdef ARCH_RELOCATES_KCRCTAB
1162 if (crc_owner == NULL)
1163 return crc - (unsigned long)reloc_start;
1164 #endif
1165 return crc;
1166 }
1167
1168 static int check_version(Elf_Shdr *sechdrs,
1169 unsigned int versindex,
1170 const char *symname,
1171 struct module *mod,
1172 const unsigned long *crc,
1173 const struct module *crc_owner)
1174 {
1175 unsigned int i, num_versions;
1176 struct modversion_info *versions;
1177
1178 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1179 if (!crc)
1180 return 1;
1181
1182 /* No versions at all? modprobe --force does this. */
1183 if (versindex == 0)
1184 return try_to_force_load(mod, symname) == 0;
1185
1186 versions = (void *) sechdrs[versindex].sh_addr;
1187 num_versions = sechdrs[versindex].sh_size
1188 / sizeof(struct modversion_info);
1189
1190 for (i = 0; i < num_versions; i++) {
1191 if (strcmp(versions[i].name, symname) != 0)
1192 continue;
1193
1194 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1195 return 1;
1196 pr_debug("Found checksum %lX vs module %lX\n",
1197 maybe_relocated(*crc, crc_owner), versions[i].crc);
1198 goto bad_version;
1199 }
1200
1201 printk(KERN_WARNING "%s: no symbol version for %s\n",
1202 mod->name, symname);
1203 return 0;
1204
1205 bad_version:
1206 printk("%s: disagrees about version of symbol %s\n",
1207 mod->name, symname);
1208 return 0;
1209 }
1210
1211 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1212 unsigned int versindex,
1213 struct module *mod)
1214 {
1215 const unsigned long *crc;
1216
1217 /* Since this should be found in kernel (which can't be removed),
1218 * no locking is necessary. */
1219 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1220 &crc, true, false))
1221 BUG();
1222 return check_version(sechdrs, versindex,
1223 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1224 NULL);
1225 }
1226
1227 /* First part is kernel version, which we ignore if module has crcs. */
1228 static inline int same_magic(const char *amagic, const char *bmagic,
1229 bool has_crcs)
1230 {
1231 if (has_crcs) {
1232 amagic += strcspn(amagic, " ");
1233 bmagic += strcspn(bmagic, " ");
1234 }
1235 return strcmp(amagic, bmagic) == 0;
1236 }
1237 #else
1238 static inline int check_version(Elf_Shdr *sechdrs,
1239 unsigned int versindex,
1240 const char *symname,
1241 struct module *mod,
1242 const unsigned long *crc,
1243 const struct module *crc_owner)
1244 {
1245 return 1;
1246 }
1247
1248 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1249 unsigned int versindex,
1250 struct module *mod)
1251 {
1252 return 1;
1253 }
1254
1255 static inline int same_magic(const char *amagic, const char *bmagic,
1256 bool has_crcs)
1257 {
1258 return strcmp(amagic, bmagic) == 0;
1259 }
1260 #endif /* CONFIG_MODVERSIONS */
1261
1262 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1263 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1264 const struct load_info *info,
1265 const char *name,
1266 char ownername[])
1267 {
1268 struct module *owner;
1269 const struct kernel_symbol *sym;
1270 const unsigned long *crc;
1271 int err;
1272
1273 mutex_lock(&module_mutex);
1274 sym = find_symbol(name, &owner, &crc,
1275 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1276 if (!sym)
1277 goto unlock;
1278
1279 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1280 owner)) {
1281 sym = ERR_PTR(-EINVAL);
1282 goto getname;
1283 }
1284
1285 err = ref_module(mod, owner);
1286 if (err) {
1287 sym = ERR_PTR(err);
1288 goto getname;
1289 }
1290
1291 getname:
1292 /* We must make copy under the lock if we failed to get ref. */
1293 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1294 unlock:
1295 mutex_unlock(&module_mutex);
1296 return sym;
1297 }
1298
1299 static const struct kernel_symbol *
1300 resolve_symbol_wait(struct module *mod,
1301 const struct load_info *info,
1302 const char *name)
1303 {
1304 const struct kernel_symbol *ksym;
1305 char owner[MODULE_NAME_LEN];
1306
1307 if (wait_event_interruptible_timeout(module_wq,
1308 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1309 || PTR_ERR(ksym) != -EBUSY,
1310 30 * HZ) <= 0) {
1311 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1312 mod->name, owner);
1313 }
1314 return ksym;
1315 }
1316
1317 /*
1318 * /sys/module/foo/sections stuff
1319 * J. Corbet <corbet@lwn.net>
1320 */
1321 #ifdef CONFIG_SYSFS
1322
1323 #ifdef CONFIG_KALLSYMS
1324 static inline bool sect_empty(const Elf_Shdr *sect)
1325 {
1326 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1327 }
1328
1329 struct module_sect_attr
1330 {
1331 struct module_attribute mattr;
1332 char *name;
1333 unsigned long address;
1334 };
1335
1336 struct module_sect_attrs
1337 {
1338 struct attribute_group grp;
1339 unsigned int nsections;
1340 struct module_sect_attr attrs[0];
1341 };
1342
1343 static ssize_t module_sect_show(struct module_attribute *mattr,
1344 struct module_kobject *mk, char *buf)
1345 {
1346 struct module_sect_attr *sattr =
1347 container_of(mattr, struct module_sect_attr, mattr);
1348 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1349 }
1350
1351 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1352 {
1353 unsigned int section;
1354
1355 for (section = 0; section < sect_attrs->nsections; section++)
1356 kfree(sect_attrs->attrs[section].name);
1357 kfree(sect_attrs);
1358 }
1359
1360 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1361 {
1362 unsigned int nloaded = 0, i, size[2];
1363 struct module_sect_attrs *sect_attrs;
1364 struct module_sect_attr *sattr;
1365 struct attribute **gattr;
1366
1367 /* Count loaded sections and allocate structures */
1368 for (i = 0; i < info->hdr->e_shnum; i++)
1369 if (!sect_empty(&info->sechdrs[i]))
1370 nloaded++;
1371 size[0] = ALIGN(sizeof(*sect_attrs)
1372 + nloaded * sizeof(sect_attrs->attrs[0]),
1373 sizeof(sect_attrs->grp.attrs[0]));
1374 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1375 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1376 if (sect_attrs == NULL)
1377 return;
1378
1379 /* Setup section attributes. */
1380 sect_attrs->grp.name = "sections";
1381 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1382
1383 sect_attrs->nsections = 0;
1384 sattr = &sect_attrs->attrs[0];
1385 gattr = &sect_attrs->grp.attrs[0];
1386 for (i = 0; i < info->hdr->e_shnum; i++) {
1387 Elf_Shdr *sec = &info->sechdrs[i];
1388 if (sect_empty(sec))
1389 continue;
1390 sattr->address = sec->sh_addr;
1391 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1392 GFP_KERNEL);
1393 if (sattr->name == NULL)
1394 goto out;
1395 sect_attrs->nsections++;
1396 sysfs_attr_init(&sattr->mattr.attr);
1397 sattr->mattr.show = module_sect_show;
1398 sattr->mattr.store = NULL;
1399 sattr->mattr.attr.name = sattr->name;
1400 sattr->mattr.attr.mode = S_IRUGO;
1401 *(gattr++) = &(sattr++)->mattr.attr;
1402 }
1403 *gattr = NULL;
1404
1405 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1406 goto out;
1407
1408 mod->sect_attrs = sect_attrs;
1409 return;
1410 out:
1411 free_sect_attrs(sect_attrs);
1412 }
1413
1414 static void remove_sect_attrs(struct module *mod)
1415 {
1416 if (mod->sect_attrs) {
1417 sysfs_remove_group(&mod->mkobj.kobj,
1418 &mod->sect_attrs->grp);
1419 /* We are positive that no one is using any sect attrs
1420 * at this point. Deallocate immediately. */
1421 free_sect_attrs(mod->sect_attrs);
1422 mod->sect_attrs = NULL;
1423 }
1424 }
1425
1426 /*
1427 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1428 */
1429
1430 struct module_notes_attrs {
1431 struct kobject *dir;
1432 unsigned int notes;
1433 struct bin_attribute attrs[0];
1434 };
1435
1436 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1437 struct bin_attribute *bin_attr,
1438 char *buf, loff_t pos, size_t count)
1439 {
1440 /*
1441 * The caller checked the pos and count against our size.
1442 */
1443 memcpy(buf, bin_attr->private + pos, count);
1444 return count;
1445 }
1446
1447 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1448 unsigned int i)
1449 {
1450 if (notes_attrs->dir) {
1451 while (i-- > 0)
1452 sysfs_remove_bin_file(notes_attrs->dir,
1453 &notes_attrs->attrs[i]);
1454 kobject_put(notes_attrs->dir);
1455 }
1456 kfree(notes_attrs);
1457 }
1458
1459 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1460 {
1461 unsigned int notes, loaded, i;
1462 struct module_notes_attrs *notes_attrs;
1463 struct bin_attribute *nattr;
1464
1465 /* failed to create section attributes, so can't create notes */
1466 if (!mod->sect_attrs)
1467 return;
1468
1469 /* Count notes sections and allocate structures. */
1470 notes = 0;
1471 for (i = 0; i < info->hdr->e_shnum; i++)
1472 if (!sect_empty(&info->sechdrs[i]) &&
1473 (info->sechdrs[i].sh_type == SHT_NOTE))
1474 ++notes;
1475
1476 if (notes == 0)
1477 return;
1478
1479 notes_attrs = kzalloc(sizeof(*notes_attrs)
1480 + notes * sizeof(notes_attrs->attrs[0]),
1481 GFP_KERNEL);
1482 if (notes_attrs == NULL)
1483 return;
1484
1485 notes_attrs->notes = notes;
1486 nattr = &notes_attrs->attrs[0];
1487 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1488 if (sect_empty(&info->sechdrs[i]))
1489 continue;
1490 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1491 sysfs_bin_attr_init(nattr);
1492 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1493 nattr->attr.mode = S_IRUGO;
1494 nattr->size = info->sechdrs[i].sh_size;
1495 nattr->private = (void *) info->sechdrs[i].sh_addr;
1496 nattr->read = module_notes_read;
1497 ++nattr;
1498 }
1499 ++loaded;
1500 }
1501
1502 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1503 if (!notes_attrs->dir)
1504 goto out;
1505
1506 for (i = 0; i < notes; ++i)
1507 if (sysfs_create_bin_file(notes_attrs->dir,
1508 &notes_attrs->attrs[i]))
1509 goto out;
1510
1511 mod->notes_attrs = notes_attrs;
1512 return;
1513
1514 out:
1515 free_notes_attrs(notes_attrs, i);
1516 }
1517
1518 static void remove_notes_attrs(struct module *mod)
1519 {
1520 if (mod->notes_attrs)
1521 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1522 }
1523
1524 #else
1525
1526 static inline void add_sect_attrs(struct module *mod,
1527 const struct load_info *info)
1528 {
1529 }
1530
1531 static inline void remove_sect_attrs(struct module *mod)
1532 {
1533 }
1534
1535 static inline void add_notes_attrs(struct module *mod,
1536 const struct load_info *info)
1537 {
1538 }
1539
1540 static inline void remove_notes_attrs(struct module *mod)
1541 {
1542 }
1543 #endif /* CONFIG_KALLSYMS */
1544
1545 static void add_usage_links(struct module *mod)
1546 {
1547 #ifdef CONFIG_MODULE_UNLOAD
1548 struct module_use *use;
1549 int nowarn;
1550
1551 mutex_lock(&module_mutex);
1552 list_for_each_entry(use, &mod->target_list, target_list) {
1553 nowarn = sysfs_create_link(use->target->holders_dir,
1554 &mod->mkobj.kobj, mod->name);
1555 }
1556 mutex_unlock(&module_mutex);
1557 #endif
1558 }
1559
1560 static void del_usage_links(struct module *mod)
1561 {
1562 #ifdef CONFIG_MODULE_UNLOAD
1563 struct module_use *use;
1564
1565 mutex_lock(&module_mutex);
1566 list_for_each_entry(use, &mod->target_list, target_list)
1567 sysfs_remove_link(use->target->holders_dir, mod->name);
1568 mutex_unlock(&module_mutex);
1569 #endif
1570 }
1571
1572 static int module_add_modinfo_attrs(struct module *mod)
1573 {
1574 struct module_attribute *attr;
1575 struct module_attribute *temp_attr;
1576 int error = 0;
1577 int i;
1578
1579 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1580 (ARRAY_SIZE(modinfo_attrs) + 1)),
1581 GFP_KERNEL);
1582 if (!mod->modinfo_attrs)
1583 return -ENOMEM;
1584
1585 temp_attr = mod->modinfo_attrs;
1586 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1587 if (!attr->test ||
1588 (attr->test && attr->test(mod))) {
1589 memcpy(temp_attr, attr, sizeof(*temp_attr));
1590 sysfs_attr_init(&temp_attr->attr);
1591 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1592 ++temp_attr;
1593 }
1594 }
1595 return error;
1596 }
1597
1598 static void module_remove_modinfo_attrs(struct module *mod)
1599 {
1600 struct module_attribute *attr;
1601 int i;
1602
1603 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1604 /* pick a field to test for end of list */
1605 if (!attr->attr.name)
1606 break;
1607 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1608 if (attr->free)
1609 attr->free(mod);
1610 }
1611 kfree(mod->modinfo_attrs);
1612 }
1613
1614 static int mod_sysfs_init(struct module *mod)
1615 {
1616 int err;
1617 struct kobject *kobj;
1618
1619 if (!module_sysfs_initialized) {
1620 printk(KERN_ERR "%s: module sysfs not initialized\n",
1621 mod->name);
1622 err = -EINVAL;
1623 goto out;
1624 }
1625
1626 kobj = kset_find_obj(module_kset, mod->name);
1627 if (kobj) {
1628 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1629 kobject_put(kobj);
1630 err = -EINVAL;
1631 goto out;
1632 }
1633
1634 mod->mkobj.mod = mod;
1635
1636 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1637 mod->mkobj.kobj.kset = module_kset;
1638 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1639 "%s", mod->name);
1640 if (err)
1641 kobject_put(&mod->mkobj.kobj);
1642
1643 /* delay uevent until full sysfs population */
1644 out:
1645 return err;
1646 }
1647
1648 static int mod_sysfs_setup(struct module *mod,
1649 const struct load_info *info,
1650 struct kernel_param *kparam,
1651 unsigned int num_params)
1652 {
1653 int err;
1654
1655 err = mod_sysfs_init(mod);
1656 if (err)
1657 goto out;
1658
1659 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1660 if (!mod->holders_dir) {
1661 err = -ENOMEM;
1662 goto out_unreg;
1663 }
1664
1665 err = module_param_sysfs_setup(mod, kparam, num_params);
1666 if (err)
1667 goto out_unreg_holders;
1668
1669 err = module_add_modinfo_attrs(mod);
1670 if (err)
1671 goto out_unreg_param;
1672
1673 add_usage_links(mod);
1674 add_sect_attrs(mod, info);
1675 add_notes_attrs(mod, info);
1676
1677 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1678 return 0;
1679
1680 out_unreg_param:
1681 module_param_sysfs_remove(mod);
1682 out_unreg_holders:
1683 kobject_put(mod->holders_dir);
1684 out_unreg:
1685 kobject_put(&mod->mkobj.kobj);
1686 out:
1687 return err;
1688 }
1689
1690 static void mod_sysfs_fini(struct module *mod)
1691 {
1692 remove_notes_attrs(mod);
1693 remove_sect_attrs(mod);
1694 kobject_put(&mod->mkobj.kobj);
1695 }
1696
1697 #else /* !CONFIG_SYSFS */
1698
1699 static int mod_sysfs_setup(struct module *mod,
1700 const struct load_info *info,
1701 struct kernel_param *kparam,
1702 unsigned int num_params)
1703 {
1704 return 0;
1705 }
1706
1707 static void mod_sysfs_fini(struct module *mod)
1708 {
1709 }
1710
1711 static void module_remove_modinfo_attrs(struct module *mod)
1712 {
1713 }
1714
1715 static void del_usage_links(struct module *mod)
1716 {
1717 }
1718
1719 #endif /* CONFIG_SYSFS */
1720
1721 static void mod_sysfs_teardown(struct module *mod)
1722 {
1723 del_usage_links(mod);
1724 module_remove_modinfo_attrs(mod);
1725 module_param_sysfs_remove(mod);
1726 kobject_put(mod->mkobj.drivers_dir);
1727 kobject_put(mod->holders_dir);
1728 mod_sysfs_fini(mod);
1729 }
1730
1731 /*
1732 * unlink the module with the whole machine is stopped with interrupts off
1733 * - this defends against kallsyms not taking locks
1734 */
1735 static int __unlink_module(void *_mod)
1736 {
1737 struct module *mod = _mod;
1738 list_del(&mod->list);
1739 module_bug_cleanup(mod);
1740 return 0;
1741 }
1742
1743 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1744 /*
1745 * LKM RO/NX protection: protect module's text/ro-data
1746 * from modification and any data from execution.
1747 */
1748 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1749 {
1750 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1751 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1752
1753 if (end_pfn > begin_pfn)
1754 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1755 }
1756
1757 static void set_section_ro_nx(void *base,
1758 unsigned long text_size,
1759 unsigned long ro_size,
1760 unsigned long total_size)
1761 {
1762 /* begin and end PFNs of the current subsection */
1763 unsigned long begin_pfn;
1764 unsigned long end_pfn;
1765
1766 /*
1767 * Set RO for module text and RO-data:
1768 * - Always protect first page.
1769 * - Do not protect last partial page.
1770 */
1771 if (ro_size > 0)
1772 set_page_attributes(base, base + ro_size, set_memory_ro);
1773
1774 /*
1775 * Set NX permissions for module data:
1776 * - Do not protect first partial page.
1777 * - Always protect last page.
1778 */
1779 if (total_size > text_size) {
1780 begin_pfn = PFN_UP((unsigned long)base + text_size);
1781 end_pfn = PFN_UP((unsigned long)base + total_size);
1782 if (end_pfn > begin_pfn)
1783 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1784 }
1785 }
1786
1787 static void unset_module_core_ro_nx(struct module *mod)
1788 {
1789 set_page_attributes(mod->module_core + mod->core_text_size,
1790 mod->module_core + mod->core_size,
1791 set_memory_x);
1792 set_page_attributes(mod->module_core,
1793 mod->module_core + mod->core_ro_size,
1794 set_memory_rw);
1795 }
1796
1797 static void unset_module_init_ro_nx(struct module *mod)
1798 {
1799 set_page_attributes(mod->module_init + mod->init_text_size,
1800 mod->module_init + mod->init_size,
1801 set_memory_x);
1802 set_page_attributes(mod->module_init,
1803 mod->module_init + mod->init_ro_size,
1804 set_memory_rw);
1805 }
1806
1807 /* Iterate through all modules and set each module's text as RW */
1808 void set_all_modules_text_rw(void)
1809 {
1810 struct module *mod;
1811
1812 mutex_lock(&module_mutex);
1813 list_for_each_entry_rcu(mod, &modules, list) {
1814 if (mod->state == MODULE_STATE_UNFORMED)
1815 continue;
1816 if ((mod->module_core) && (mod->core_text_size)) {
1817 set_page_attributes(mod->module_core,
1818 mod->module_core + mod->core_text_size,
1819 set_memory_rw);
1820 }
1821 if ((mod->module_init) && (mod->init_text_size)) {
1822 set_page_attributes(mod->module_init,
1823 mod->module_init + mod->init_text_size,
1824 set_memory_rw);
1825 }
1826 }
1827 mutex_unlock(&module_mutex);
1828 }
1829
1830 /* Iterate through all modules and set each module's text as RO */
1831 void set_all_modules_text_ro(void)
1832 {
1833 struct module *mod;
1834
1835 mutex_lock(&module_mutex);
1836 list_for_each_entry_rcu(mod, &modules, list) {
1837 if (mod->state == MODULE_STATE_UNFORMED)
1838 continue;
1839 if ((mod->module_core) && (mod->core_text_size)) {
1840 set_page_attributes(mod->module_core,
1841 mod->module_core + mod->core_text_size,
1842 set_memory_ro);
1843 }
1844 if ((mod->module_init) && (mod->init_text_size)) {
1845 set_page_attributes(mod->module_init,
1846 mod->module_init + mod->init_text_size,
1847 set_memory_ro);
1848 }
1849 }
1850 mutex_unlock(&module_mutex);
1851 }
1852 #else
1853 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1854 static void unset_module_core_ro_nx(struct module *mod) { }
1855 static void unset_module_init_ro_nx(struct module *mod) { }
1856 #endif
1857
1858 void __weak module_free(struct module *mod, void *module_region)
1859 {
1860 vfree(module_region);
1861 }
1862
1863 void __weak module_arch_cleanup(struct module *mod)
1864 {
1865 }
1866
1867 /* Free a module, remove from lists, etc. */
1868 static void free_module(struct module *mod)
1869 {
1870 trace_module_free(mod);
1871
1872 mod_sysfs_teardown(mod);
1873
1874 /* We leave it in list to prevent duplicate loads, but make sure
1875 * that noone uses it while it's being deconstructed. */
1876 mutex_lock(&module_mutex);
1877 mod->state = MODULE_STATE_UNFORMED;
1878 mutex_unlock(&module_mutex);
1879
1880 /* Remove dynamic debug info */
1881 ddebug_remove_module(mod->name);
1882
1883 /* Arch-specific cleanup. */
1884 module_arch_cleanup(mod);
1885
1886 /* Module unload stuff */
1887 module_unload_free(mod);
1888
1889 /* Free any allocated parameters. */
1890 destroy_params(mod->kp, mod->num_kp);
1891
1892 /* Now we can delete it from the lists */
1893 mutex_lock(&module_mutex);
1894 stop_machine(__unlink_module, mod, NULL);
1895 mutex_unlock(&module_mutex);
1896
1897 /* This may be NULL, but that's OK */
1898 unset_module_init_ro_nx(mod);
1899 module_free(mod, mod->module_init);
1900 kfree(mod->args);
1901 percpu_modfree(mod);
1902
1903 /* Free lock-classes: */
1904 lockdep_free_key_range(mod->module_core, mod->core_size);
1905
1906 /* Finally, free the core (containing the module structure) */
1907 unset_module_core_ro_nx(mod);
1908 module_free(mod, mod->module_core);
1909
1910 #ifdef CONFIG_MPU
1911 update_protections(current->mm);
1912 #endif
1913 }
1914
1915 void *__symbol_get(const char *symbol)
1916 {
1917 struct module *owner;
1918 const struct kernel_symbol *sym;
1919
1920 preempt_disable();
1921 sym = find_symbol(symbol, &owner, NULL, true, true);
1922 if (sym && strong_try_module_get(owner))
1923 sym = NULL;
1924 preempt_enable();
1925
1926 return sym ? (void *)sym->value : NULL;
1927 }
1928 EXPORT_SYMBOL_GPL(__symbol_get);
1929
1930 /*
1931 * Ensure that an exported symbol [global namespace] does not already exist
1932 * in the kernel or in some other module's exported symbol table.
1933 *
1934 * You must hold the module_mutex.
1935 */
1936 static int verify_export_symbols(struct module *mod)
1937 {
1938 unsigned int i;
1939 struct module *owner;
1940 const struct kernel_symbol *s;
1941 struct {
1942 const struct kernel_symbol *sym;
1943 unsigned int num;
1944 } arr[] = {
1945 { mod->syms, mod->num_syms },
1946 { mod->gpl_syms, mod->num_gpl_syms },
1947 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1948 #ifdef CONFIG_UNUSED_SYMBOLS
1949 { mod->unused_syms, mod->num_unused_syms },
1950 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1951 #endif
1952 };
1953
1954 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1955 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1956 if (find_symbol(s->name, &owner, NULL, true, false)) {
1957 printk(KERN_ERR
1958 "%s: exports duplicate symbol %s"
1959 " (owned by %s)\n",
1960 mod->name, s->name, module_name(owner));
1961 return -ENOEXEC;
1962 }
1963 }
1964 }
1965 return 0;
1966 }
1967
1968 /* Change all symbols so that st_value encodes the pointer directly. */
1969 static int simplify_symbols(struct module *mod, const struct load_info *info)
1970 {
1971 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1972 Elf_Sym *sym = (void *)symsec->sh_addr;
1973 unsigned long secbase;
1974 unsigned int i;
1975 int ret = 0;
1976 const struct kernel_symbol *ksym;
1977
1978 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1979 const char *name = info->strtab + sym[i].st_name;
1980
1981 switch (sym[i].st_shndx) {
1982 case SHN_COMMON:
1983 /* We compiled with -fno-common. These are not
1984 supposed to happen. */
1985 pr_debug("Common symbol: %s\n", name);
1986 printk("%s: please compile with -fno-common\n",
1987 mod->name);
1988 ret = -ENOEXEC;
1989 break;
1990
1991 case SHN_ABS:
1992 /* Don't need to do anything */
1993 pr_debug("Absolute symbol: 0x%08lx\n",
1994 (long)sym[i].st_value);
1995 break;
1996
1997 case SHN_UNDEF:
1998 ksym = resolve_symbol_wait(mod, info, name);
1999 /* Ok if resolved. */
2000 if (ksym && !IS_ERR(ksym)) {
2001 sym[i].st_value = ksym->value;
2002 break;
2003 }
2004
2005 /* Ok if weak. */
2006 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2007 break;
2008
2009 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
2010 mod->name, name, PTR_ERR(ksym));
2011 ret = PTR_ERR(ksym) ?: -ENOENT;
2012 break;
2013
2014 default:
2015 /* Divert to percpu allocation if a percpu var. */
2016 if (sym[i].st_shndx == info->index.pcpu)
2017 secbase = (unsigned long)mod_percpu(mod);
2018 else
2019 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2020 sym[i].st_value += secbase;
2021 break;
2022 }
2023 }
2024
2025 return ret;
2026 }
2027
2028 static int apply_relocations(struct module *mod, const struct load_info *info)
2029 {
2030 unsigned int i;
2031 int err = 0;
2032
2033 /* Now do relocations. */
2034 for (i = 1; i < info->hdr->e_shnum; i++) {
2035 unsigned int infosec = info->sechdrs[i].sh_info;
2036
2037 /* Not a valid relocation section? */
2038 if (infosec >= info->hdr->e_shnum)
2039 continue;
2040
2041 /* Don't bother with non-allocated sections */
2042 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2043 continue;
2044
2045 if (info->sechdrs[i].sh_type == SHT_REL)
2046 err = apply_relocate(info->sechdrs, info->strtab,
2047 info->index.sym, i, mod);
2048 else if (info->sechdrs[i].sh_type == SHT_RELA)
2049 err = apply_relocate_add(info->sechdrs, info->strtab,
2050 info->index.sym, i, mod);
2051 if (err < 0)
2052 break;
2053 }
2054 return err;
2055 }
2056
2057 /* Additional bytes needed by arch in front of individual sections */
2058 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2059 unsigned int section)
2060 {
2061 /* default implementation just returns zero */
2062 return 0;
2063 }
2064
2065 /* Update size with this section: return offset. */
2066 static long get_offset(struct module *mod, unsigned int *size,
2067 Elf_Shdr *sechdr, unsigned int section)
2068 {
2069 long ret;
2070
2071 *size += arch_mod_section_prepend(mod, section);
2072 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2073 *size = ret + sechdr->sh_size;
2074 return ret;
2075 }
2076
2077 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2078 might -- code, read-only data, read-write data, small data. Tally
2079 sizes, and place the offsets into sh_entsize fields: high bit means it
2080 belongs in init. */
2081 static void layout_sections(struct module *mod, struct load_info *info)
2082 {
2083 static unsigned long const masks[][2] = {
2084 /* NOTE: all executable code must be the first section
2085 * in this array; otherwise modify the text_size
2086 * finder in the two loops below */
2087 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2088 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2089 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2090 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2091 };
2092 unsigned int m, i;
2093
2094 for (i = 0; i < info->hdr->e_shnum; i++)
2095 info->sechdrs[i].sh_entsize = ~0UL;
2096
2097 pr_debug("Core section allocation order:\n");
2098 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2099 for (i = 0; i < info->hdr->e_shnum; ++i) {
2100 Elf_Shdr *s = &info->sechdrs[i];
2101 const char *sname = info->secstrings + s->sh_name;
2102
2103 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2104 || (s->sh_flags & masks[m][1])
2105 || s->sh_entsize != ~0UL
2106 || strstarts(sname, ".init"))
2107 continue;
2108 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2109 pr_debug("\t%s\n", sname);
2110 }
2111 switch (m) {
2112 case 0: /* executable */
2113 mod->core_size = debug_align(mod->core_size);
2114 mod->core_text_size = mod->core_size;
2115 break;
2116 case 1: /* RO: text and ro-data */
2117 mod->core_size = debug_align(mod->core_size);
2118 mod->core_ro_size = mod->core_size;
2119 break;
2120 case 3: /* whole core */
2121 mod->core_size = debug_align(mod->core_size);
2122 break;
2123 }
2124 }
2125
2126 pr_debug("Init section allocation order:\n");
2127 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2128 for (i = 0; i < info->hdr->e_shnum; ++i) {
2129 Elf_Shdr *s = &info->sechdrs[i];
2130 const char *sname = info->secstrings + s->sh_name;
2131
2132 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2133 || (s->sh_flags & masks[m][1])
2134 || s->sh_entsize != ~0UL
2135 || !strstarts(sname, ".init"))
2136 continue;
2137 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2138 | INIT_OFFSET_MASK);
2139 pr_debug("\t%s\n", sname);
2140 }
2141 switch (m) {
2142 case 0: /* executable */
2143 mod->init_size = debug_align(mod->init_size);
2144 mod->init_text_size = mod->init_size;
2145 break;
2146 case 1: /* RO: text and ro-data */
2147 mod->init_size = debug_align(mod->init_size);
2148 mod->init_ro_size = mod->init_size;
2149 break;
2150 case 3: /* whole init */
2151 mod->init_size = debug_align(mod->init_size);
2152 break;
2153 }
2154 }
2155 }
2156
2157 static void set_license(struct module *mod, const char *license)
2158 {
2159 if (!license)
2160 license = "unspecified";
2161
2162 if (!license_is_gpl_compatible(license)) {
2163 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2164 printk(KERN_WARNING "%s: module license '%s' taints "
2165 "kernel.\n", mod->name, license);
2166 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2167 LOCKDEP_NOW_UNRELIABLE);
2168 }
2169 }
2170
2171 /* Parse tag=value strings from .modinfo section */
2172 static char *next_string(char *string, unsigned long *secsize)
2173 {
2174 /* Skip non-zero chars */
2175 while (string[0]) {
2176 string++;
2177 if ((*secsize)-- <= 1)
2178 return NULL;
2179 }
2180
2181 /* Skip any zero padding. */
2182 while (!string[0]) {
2183 string++;
2184 if ((*secsize)-- <= 1)
2185 return NULL;
2186 }
2187 return string;
2188 }
2189
2190 static char *get_modinfo(struct load_info *info, const char *tag)
2191 {
2192 char *p;
2193 unsigned int taglen = strlen(tag);
2194 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2195 unsigned long size = infosec->sh_size;
2196
2197 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2198 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2199 return p + taglen + 1;
2200 }
2201 return NULL;
2202 }
2203
2204 static void setup_modinfo(struct module *mod, struct load_info *info)
2205 {
2206 struct module_attribute *attr;
2207 int i;
2208
2209 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2210 if (attr->setup)
2211 attr->setup(mod, get_modinfo(info, attr->attr.name));
2212 }
2213 }
2214
2215 static void free_modinfo(struct module *mod)
2216 {
2217 struct module_attribute *attr;
2218 int i;
2219
2220 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2221 if (attr->free)
2222 attr->free(mod);
2223 }
2224 }
2225
2226 #ifdef CONFIG_KALLSYMS
2227
2228 /* lookup symbol in given range of kernel_symbols */
2229 static const struct kernel_symbol *lookup_symbol(const char *name,
2230 const struct kernel_symbol *start,
2231 const struct kernel_symbol *stop)
2232 {
2233 return bsearch(name, start, stop - start,
2234 sizeof(struct kernel_symbol), cmp_name);
2235 }
2236
2237 static int is_exported(const char *name, unsigned long value,
2238 const struct module *mod)
2239 {
2240 const struct kernel_symbol *ks;
2241 if (!mod)
2242 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2243 else
2244 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2245 return ks != NULL && ks->value == value;
2246 }
2247
2248 /* As per nm */
2249 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2250 {
2251 const Elf_Shdr *sechdrs = info->sechdrs;
2252
2253 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2254 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2255 return 'v';
2256 else
2257 return 'w';
2258 }
2259 if (sym->st_shndx == SHN_UNDEF)
2260 return 'U';
2261 if (sym->st_shndx == SHN_ABS)
2262 return 'a';
2263 if (sym->st_shndx >= SHN_LORESERVE)
2264 return '?';
2265 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2266 return 't';
2267 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2268 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2269 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2270 return 'r';
2271 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2272 return 'g';
2273 else
2274 return 'd';
2275 }
2276 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2277 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2278 return 's';
2279 else
2280 return 'b';
2281 }
2282 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2283 ".debug")) {
2284 return 'n';
2285 }
2286 return '?';
2287 }
2288
2289 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2290 unsigned int shnum)
2291 {
2292 const Elf_Shdr *sec;
2293
2294 if (src->st_shndx == SHN_UNDEF
2295 || src->st_shndx >= shnum
2296 || !src->st_name)
2297 return false;
2298
2299 sec = sechdrs + src->st_shndx;
2300 if (!(sec->sh_flags & SHF_ALLOC)
2301 #ifndef CONFIG_KALLSYMS_ALL
2302 || !(sec->sh_flags & SHF_EXECINSTR)
2303 #endif
2304 || (sec->sh_entsize & INIT_OFFSET_MASK))
2305 return false;
2306
2307 return true;
2308 }
2309
2310 /*
2311 * We only allocate and copy the strings needed by the parts of symtab
2312 * we keep. This is simple, but has the effect of making multiple
2313 * copies of duplicates. We could be more sophisticated, see
2314 * linux-kernel thread starting with
2315 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2316 */
2317 static void layout_symtab(struct module *mod, struct load_info *info)
2318 {
2319 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2320 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2321 const Elf_Sym *src;
2322 unsigned int i, nsrc, ndst, strtab_size = 0;
2323
2324 /* Put symbol section at end of init part of module. */
2325 symsect->sh_flags |= SHF_ALLOC;
2326 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2327 info->index.sym) | INIT_OFFSET_MASK;
2328 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2329
2330 src = (void *)info->hdr + symsect->sh_offset;
2331 nsrc = symsect->sh_size / sizeof(*src);
2332
2333 /* Compute total space required for the core symbols' strtab. */
2334 for (ndst = i = 0; i < nsrc; i++) {
2335 if (i == 0 ||
2336 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2337 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2338 ndst++;
2339 }
2340 }
2341
2342 /* Append room for core symbols at end of core part. */
2343 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2344 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2345 mod->core_size += strtab_size;
2346
2347 /* Put string table section at end of init part of module. */
2348 strsect->sh_flags |= SHF_ALLOC;
2349 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2350 info->index.str) | INIT_OFFSET_MASK;
2351 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2352
2353 /* We'll tack temporary mod_kallsyms on the end. */
2354 mod->init_size = ALIGN(mod->init_size,
2355 __alignof__(struct mod_kallsyms));
2356 info->mod_kallsyms_init_off = mod->init_size;
2357 mod->init_size += sizeof(struct mod_kallsyms);
2358 mod->init_size = debug_align(mod->init_size);
2359 }
2360
2361 /*
2362 * We use the full symtab and strtab which layout_symtab arranged to
2363 * be appended to the init section. Later we switch to the cut-down
2364 * core-only ones.
2365 */
2366 static void add_kallsyms(struct module *mod, const struct load_info *info)
2367 {
2368 unsigned int i, ndst;
2369 const Elf_Sym *src;
2370 Elf_Sym *dst;
2371 char *s;
2372 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2373
2374 /* Set up to point into init section. */
2375 mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2376
2377 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2378 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2379 /* Make sure we get permanent strtab: don't use info->strtab. */
2380 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2381
2382 /* Set types up while we still have access to sections. */
2383 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2384 mod->kallsyms->symtab[i].st_info
2385 = elf_type(&mod->kallsyms->symtab[i], info);
2386
2387 /* Now populate the cut down core kallsyms for after init. */
2388 mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2389 mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2390 src = mod->kallsyms->symtab;
2391 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2392 if (i == 0 ||
2393 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2394 dst[ndst] = src[i];
2395 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2396 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2397 KSYM_NAME_LEN) + 1;
2398 }
2399 }
2400 mod->core_kallsyms.num_symtab = ndst;
2401 }
2402 #else
2403 static inline void layout_symtab(struct module *mod, struct load_info *info)
2404 {
2405 }
2406
2407 static void add_kallsyms(struct module *mod, const struct load_info *info)
2408 {
2409 }
2410 #endif /* CONFIG_KALLSYMS */
2411
2412 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2413 {
2414 if (!debug)
2415 return;
2416 #ifdef CONFIG_DYNAMIC_DEBUG
2417 if (ddebug_add_module(debug, num, debug->modname))
2418 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2419 debug->modname);
2420 #endif
2421 }
2422
2423 static void dynamic_debug_remove(struct _ddebug *debug)
2424 {
2425 if (debug)
2426 ddebug_remove_module(debug->modname);
2427 }
2428
2429 void * __weak module_alloc(unsigned long size)
2430 {
2431 return vmalloc_exec(size);
2432 }
2433
2434 static void *module_alloc_update_bounds(unsigned long size)
2435 {
2436 void *ret = module_alloc(size);
2437
2438 if (ret) {
2439 mutex_lock(&module_mutex);
2440 /* Update module bounds. */
2441 if ((unsigned long)ret < module_addr_min)
2442 module_addr_min = (unsigned long)ret;
2443 if ((unsigned long)ret + size > module_addr_max)
2444 module_addr_max = (unsigned long)ret + size;
2445 mutex_unlock(&module_mutex);
2446 }
2447 return ret;
2448 }
2449
2450 #ifdef CONFIG_DEBUG_KMEMLEAK
2451 static void kmemleak_load_module(const struct module *mod,
2452 const struct load_info *info)
2453 {
2454 unsigned int i;
2455
2456 /* only scan the sections containing data */
2457 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2458
2459 for (i = 1; i < info->hdr->e_shnum; i++) {
2460 /* Scan all writable sections that's not executable */
2461 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2462 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2463 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2464 continue;
2465
2466 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2467 info->sechdrs[i].sh_size, GFP_KERNEL);
2468 }
2469 }
2470 #else
2471 static inline void kmemleak_load_module(const struct module *mod,
2472 const struct load_info *info)
2473 {
2474 }
2475 #endif
2476
2477 #ifdef CONFIG_MODULE_SIG
2478 static int module_sig_check(struct load_info *info)
2479 {
2480 int err = -ENOKEY;
2481 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2482 const void *mod = info->hdr;
2483
2484 if (info->len > markerlen &&
2485 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2486 /* We truncate the module to discard the signature */
2487 info->len -= markerlen;
2488 err = mod_verify_sig(mod, &info->len);
2489 }
2490
2491 if (!err) {
2492 info->sig_ok = true;
2493 return 0;
2494 }
2495
2496 /* Not having a signature is only an error if we're strict. */
2497 if (err < 0 && fips_enabled)
2498 panic("Module verification failed with error %d in FIPS mode\n",
2499 err);
2500 if (err == -ENOKEY && !sig_enforce)
2501 err = 0;
2502
2503 return err;
2504 }
2505 #else /* !CONFIG_MODULE_SIG */
2506 static int module_sig_check(struct load_info *info)
2507 {
2508 return 0;
2509 }
2510 #endif /* !CONFIG_MODULE_SIG */
2511
2512 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2513 static int elf_header_check(struct load_info *info)
2514 {
2515 if (info->len < sizeof(*(info->hdr)))
2516 return -ENOEXEC;
2517
2518 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2519 || info->hdr->e_type != ET_REL
2520 || !elf_check_arch(info->hdr)
2521 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2522 return -ENOEXEC;
2523
2524 if (info->hdr->e_shoff >= info->len
2525 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2526 info->len - info->hdr->e_shoff))
2527 return -ENOEXEC;
2528
2529 return 0;
2530 }
2531
2532 /* Sets info->hdr and info->len. */
2533 static int copy_module_from_user(const void __user *umod, unsigned long len,
2534 struct load_info *info)
2535 {
2536 int err;
2537
2538 info->len = len;
2539 if (info->len < sizeof(*(info->hdr)))
2540 return -ENOEXEC;
2541
2542 err = security_kernel_module_from_file(NULL);
2543 if (err)
2544 return err;
2545
2546 /* Suck in entire file: we'll want most of it. */
2547 info->hdr = vmalloc(info->len);
2548 if (!info->hdr)
2549 return -ENOMEM;
2550
2551 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2552 vfree(info->hdr);
2553 return -EFAULT;
2554 }
2555
2556 return 0;
2557 }
2558
2559 /* Sets info->hdr and info->len. */
2560 static int copy_module_from_fd(int fd, struct load_info *info)
2561 {
2562 struct file *file;
2563 int err;
2564 struct kstat stat;
2565 loff_t pos;
2566 ssize_t bytes = 0;
2567
2568 file = fget(fd);
2569 if (!file)
2570 return -ENOEXEC;
2571
2572 err = security_kernel_module_from_file(file);
2573 if (err)
2574 goto out;
2575
2576 err = vfs_getattr(&file->f_path, &stat);
2577 if (err)
2578 goto out;
2579
2580 if (stat.size > INT_MAX) {
2581 err = -EFBIG;
2582 goto out;
2583 }
2584
2585 /* Don't hand 0 to vmalloc, it whines. */
2586 if (stat.size == 0) {
2587 err = -EINVAL;
2588 goto out;
2589 }
2590
2591 info->hdr = vmalloc(stat.size);
2592 if (!info->hdr) {
2593 err = -ENOMEM;
2594 goto out;
2595 }
2596
2597 pos = 0;
2598 while (pos < stat.size) {
2599 bytes = kernel_read(file, pos, (char *)(info->hdr) + pos,
2600 stat.size - pos);
2601 if (bytes < 0) {
2602 vfree(info->hdr);
2603 err = bytes;
2604 goto out;
2605 }
2606 if (bytes == 0)
2607 break;
2608 pos += bytes;
2609 }
2610 info->len = pos;
2611
2612 out:
2613 fput(file);
2614 return err;
2615 }
2616
2617 static void free_copy(struct load_info *info)
2618 {
2619 vfree(info->hdr);
2620 }
2621
2622 static int rewrite_section_headers(struct load_info *info, int flags)
2623 {
2624 unsigned int i;
2625
2626 /* This should always be true, but let's be sure. */
2627 info->sechdrs[0].sh_addr = 0;
2628
2629 for (i = 1; i < info->hdr->e_shnum; i++) {
2630 Elf_Shdr *shdr = &info->sechdrs[i];
2631 if (shdr->sh_type != SHT_NOBITS
2632 && info->len < shdr->sh_offset + shdr->sh_size) {
2633 printk(KERN_ERR "Module len %lu truncated\n",
2634 info->len);
2635 return -ENOEXEC;
2636 }
2637
2638 /* Mark all sections sh_addr with their address in the
2639 temporary image. */
2640 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2641
2642 #ifndef CONFIG_MODULE_UNLOAD
2643 /* Don't load .exit sections */
2644 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2645 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2646 #endif
2647 }
2648
2649 /* Track but don't keep modinfo and version sections. */
2650 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2651 info->index.vers = 0; /* Pretend no __versions section! */
2652 else
2653 info->index.vers = find_sec(info, "__versions");
2654 info->index.info = find_sec(info, ".modinfo");
2655 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2656 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2657 return 0;
2658 }
2659
2660 /*
2661 * Set up our basic convenience variables (pointers to section headers,
2662 * search for module section index etc), and do some basic section
2663 * verification.
2664 *
2665 * Return the temporary module pointer (we'll replace it with the final
2666 * one when we move the module sections around).
2667 */
2668 static struct module *setup_load_info(struct load_info *info, int flags)
2669 {
2670 unsigned int i;
2671 int err;
2672 struct module *mod;
2673
2674 /* Set up the convenience variables */
2675 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2676 info->secstrings = (void *)info->hdr
2677 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2678
2679 err = rewrite_section_headers(info, flags);
2680 if (err)
2681 return ERR_PTR(err);
2682
2683 /* Find internal symbols and strings. */
2684 for (i = 1; i < info->hdr->e_shnum; i++) {
2685 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2686 info->index.sym = i;
2687 info->index.str = info->sechdrs[i].sh_link;
2688 info->strtab = (char *)info->hdr
2689 + info->sechdrs[info->index.str].sh_offset;
2690 break;
2691 }
2692 }
2693
2694 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2695 if (!info->index.mod) {
2696 printk(KERN_WARNING "No module found in object\n");
2697 return ERR_PTR(-ENOEXEC);
2698 }
2699 /* This is temporary: point mod into copy of data. */
2700 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2701
2702 if (info->index.sym == 0) {
2703 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2704 mod->name);
2705 return ERR_PTR(-ENOEXEC);
2706 }
2707
2708 info->index.pcpu = find_pcpusec(info);
2709
2710 /* Check module struct version now, before we try to use module. */
2711 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2712 return ERR_PTR(-ENOEXEC);
2713
2714 return mod;
2715 }
2716
2717 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2718 {
2719 const char *modmagic = get_modinfo(info, "vermagic");
2720 int err;
2721
2722 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2723 modmagic = NULL;
2724
2725 /* This is allowed: modprobe --force will invalidate it. */
2726 if (!modmagic) {
2727 err = try_to_force_load(mod, "bad vermagic");
2728 if (err)
2729 return err;
2730 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2731 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2732 mod->name, modmagic, vermagic);
2733 return -ENOEXEC;
2734 }
2735
2736 if (!get_modinfo(info, "intree"))
2737 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2738
2739 if (get_modinfo(info, "staging")) {
2740 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2741 printk(KERN_WARNING "%s: module is from the staging directory,"
2742 " the quality is unknown, you have been warned.\n",
2743 mod->name);
2744 }
2745
2746 /* Set up license info based on the info section */
2747 set_license(mod, get_modinfo(info, "license"));
2748
2749 return 0;
2750 }
2751
2752 static void find_module_sections(struct module *mod, struct load_info *info)
2753 {
2754 mod->kp = section_objs(info, "__param",
2755 sizeof(*mod->kp), &mod->num_kp);
2756 mod->syms = section_objs(info, "__ksymtab",
2757 sizeof(*mod->syms), &mod->num_syms);
2758 mod->crcs = section_addr(info, "__kcrctab");
2759 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2760 sizeof(*mod->gpl_syms),
2761 &mod->num_gpl_syms);
2762 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2763 mod->gpl_future_syms = section_objs(info,
2764 "__ksymtab_gpl_future",
2765 sizeof(*mod->gpl_future_syms),
2766 &mod->num_gpl_future_syms);
2767 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2768
2769 #ifdef CONFIG_UNUSED_SYMBOLS
2770 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2771 sizeof(*mod->unused_syms),
2772 &mod->num_unused_syms);
2773 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2774 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2775 sizeof(*mod->unused_gpl_syms),
2776 &mod->num_unused_gpl_syms);
2777 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2778 #endif
2779 #ifdef CONFIG_CONSTRUCTORS
2780 mod->ctors = section_objs(info, ".ctors",
2781 sizeof(*mod->ctors), &mod->num_ctors);
2782 #endif
2783
2784 #ifdef CONFIG_TRACEPOINTS
2785 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2786 sizeof(*mod->tracepoints_ptrs),
2787 &mod->num_tracepoints);
2788 #endif
2789 #ifdef HAVE_JUMP_LABEL
2790 mod->jump_entries = section_objs(info, "__jump_table",
2791 sizeof(*mod->jump_entries),
2792 &mod->num_jump_entries);
2793 #endif
2794 #ifdef CONFIG_EVENT_TRACING
2795 mod->trace_events = section_objs(info, "_ftrace_events",
2796 sizeof(*mod->trace_events),
2797 &mod->num_trace_events);
2798 #endif
2799 #ifdef CONFIG_TRACING
2800 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2801 sizeof(*mod->trace_bprintk_fmt_start),
2802 &mod->num_trace_bprintk_fmt);
2803 #endif
2804 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2805 /* sechdrs[0].sh_size is always zero */
2806 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2807 sizeof(*mod->ftrace_callsites),
2808 &mod->num_ftrace_callsites);
2809 #endif
2810
2811 mod->extable = section_objs(info, "__ex_table",
2812 sizeof(*mod->extable), &mod->num_exentries);
2813
2814 if (section_addr(info, "__obsparm"))
2815 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2816 mod->name);
2817
2818 info->debug = section_objs(info, "__verbose",
2819 sizeof(*info->debug), &info->num_debug);
2820 }
2821
2822 static int move_module(struct module *mod, struct load_info *info)
2823 {
2824 int i;
2825 void *ptr;
2826
2827 /* Do the allocs. */
2828 ptr = module_alloc_update_bounds(mod->core_size);
2829 /*
2830 * The pointer to this block is stored in the module structure
2831 * which is inside the block. Just mark it as not being a
2832 * leak.
2833 */
2834 kmemleak_not_leak(ptr);
2835 if (!ptr)
2836 return -ENOMEM;
2837
2838 memset(ptr, 0, mod->core_size);
2839 mod->module_core = ptr;
2840
2841 if (mod->init_size) {
2842 ptr = module_alloc_update_bounds(mod->init_size);
2843 /*
2844 * The pointer to this block is stored in the module structure
2845 * which is inside the block. This block doesn't need to be
2846 * scanned as it contains data and code that will be freed
2847 * after the module is initialized.
2848 */
2849 kmemleak_ignore(ptr);
2850 if (!ptr) {
2851 module_free(mod, mod->module_core);
2852 return -ENOMEM;
2853 }
2854 memset(ptr, 0, mod->init_size);
2855 mod->module_init = ptr;
2856 } else
2857 mod->module_init = NULL;
2858
2859 /* Transfer each section which specifies SHF_ALLOC */
2860 pr_debug("final section addresses:\n");
2861 for (i = 0; i < info->hdr->e_shnum; i++) {
2862 void *dest;
2863 Elf_Shdr *shdr = &info->sechdrs[i];
2864
2865 if (!(shdr->sh_flags & SHF_ALLOC))
2866 continue;
2867
2868 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2869 dest = mod->module_init
2870 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2871 else
2872 dest = mod->module_core + shdr->sh_entsize;
2873
2874 if (shdr->sh_type != SHT_NOBITS)
2875 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2876 /* Update sh_addr to point to copy in image. */
2877 shdr->sh_addr = (unsigned long)dest;
2878 pr_debug("\t0x%lx %s\n",
2879 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2880 }
2881
2882 return 0;
2883 }
2884
2885 static int check_module_license_and_versions(struct module *mod)
2886 {
2887 /*
2888 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2889 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2890 * using GPL-only symbols it needs.
2891 */
2892 if (strcmp(mod->name, "ndiswrapper") == 0)
2893 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2894
2895 /* driverloader was caught wrongly pretending to be under GPL */
2896 if (strcmp(mod->name, "driverloader") == 0)
2897 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2898 LOCKDEP_NOW_UNRELIABLE);
2899
2900 /* lve claims to be GPL but upstream won't provide source */
2901 if (strcmp(mod->name, "lve") == 0)
2902 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2903 LOCKDEP_NOW_UNRELIABLE);
2904
2905 #ifdef CONFIG_MODVERSIONS
2906 if ((mod->num_syms && !mod->crcs)
2907 || (mod->num_gpl_syms && !mod->gpl_crcs)
2908 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2909 #ifdef CONFIG_UNUSED_SYMBOLS
2910 || (mod->num_unused_syms && !mod->unused_crcs)
2911 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2912 #endif
2913 ) {
2914 return try_to_force_load(mod,
2915 "no versions for exported symbols");
2916 }
2917 #endif
2918 return 0;
2919 }
2920
2921 static void flush_module_icache(const struct module *mod)
2922 {
2923 mm_segment_t old_fs;
2924
2925 /* flush the icache in correct context */
2926 old_fs = get_fs();
2927 set_fs(KERNEL_DS);
2928
2929 /*
2930 * Flush the instruction cache, since we've played with text.
2931 * Do it before processing of module parameters, so the module
2932 * can provide parameter accessor functions of its own.
2933 */
2934 if (mod->module_init)
2935 flush_icache_range((unsigned long)mod->module_init,
2936 (unsigned long)mod->module_init
2937 + mod->init_size);
2938 flush_icache_range((unsigned long)mod->module_core,
2939 (unsigned long)mod->module_core + mod->core_size);
2940
2941 set_fs(old_fs);
2942 }
2943
2944 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2945 Elf_Shdr *sechdrs,
2946 char *secstrings,
2947 struct module *mod)
2948 {
2949 return 0;
2950 }
2951
2952 static struct module *layout_and_allocate(struct load_info *info, int flags)
2953 {
2954 /* Module within temporary copy. */
2955 struct module *mod;
2956 int err;
2957
2958 mod = setup_load_info(info, flags);
2959 if (IS_ERR(mod))
2960 return mod;
2961
2962 err = check_modinfo(mod, info, flags);
2963 if (err)
2964 return ERR_PTR(err);
2965
2966 /* Allow arches to frob section contents and sizes. */
2967 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2968 info->secstrings, mod);
2969 if (err < 0)
2970 return ERR_PTR(err);
2971
2972 /* We will do a special allocation for per-cpu sections later. */
2973 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2974
2975 /* Determine total sizes, and put offsets in sh_entsize. For now
2976 this is done generically; there doesn't appear to be any
2977 special cases for the architectures. */
2978 layout_sections(mod, info);
2979 layout_symtab(mod, info);
2980
2981 /* Allocate and move to the final place */
2982 err = move_module(mod, info);
2983 if (err)
2984 return ERR_PTR(err);
2985
2986 /* Module has been copied to its final place now: return it. */
2987 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2988 kmemleak_load_module(mod, info);
2989 return mod;
2990 }
2991
2992 static int alloc_module_percpu(struct module *mod, struct load_info *info)
2993 {
2994 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
2995 if (!pcpusec->sh_size)
2996 return 0;
2997
2998 /* We have a special allocation for this section. */
2999 return percpu_modalloc(mod, pcpusec->sh_size, pcpusec->sh_addralign);
3000 }
3001
3002 /* mod is no longer valid after this! */
3003 static void module_deallocate(struct module *mod, struct load_info *info)
3004 {
3005 percpu_modfree(mod);
3006 module_free(mod, mod->module_init);
3007 module_free(mod, mod->module_core);
3008 }
3009
3010 int __weak module_finalize(const Elf_Ehdr *hdr,
3011 const Elf_Shdr *sechdrs,
3012 struct module *me)
3013 {
3014 return 0;
3015 }
3016
3017 static int post_relocation(struct module *mod, const struct load_info *info)
3018 {
3019 /* Sort exception table now relocations are done. */
3020 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3021
3022 /* Copy relocated percpu area over. */
3023 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3024 info->sechdrs[info->index.pcpu].sh_size);
3025
3026 /* Setup kallsyms-specific fields. */
3027 add_kallsyms(mod, info);
3028
3029 /* Arch-specific module finalizing. */
3030 return module_finalize(info->hdr, info->sechdrs, mod);
3031 }
3032
3033 /* Is this module of this name done loading? No locks held. */
3034 static bool finished_loading(const char *name)
3035 {
3036 struct module *mod;
3037 bool ret;
3038
3039 mutex_lock(&module_mutex);
3040 mod = find_module_all(name, true);
3041 ret = !mod || mod->state == MODULE_STATE_LIVE
3042 || mod->state == MODULE_STATE_GOING;
3043 mutex_unlock(&module_mutex);
3044
3045 return ret;
3046 }
3047
3048 /* Call module constructors. */
3049 static void do_mod_ctors(struct module *mod)
3050 {
3051 #ifdef CONFIG_CONSTRUCTORS
3052 unsigned long i;
3053
3054 for (i = 0; i < mod->num_ctors; i++)
3055 mod->ctors[i]();
3056 #endif
3057 }
3058
3059 /* This is where the real work happens */
3060 static int do_init_module(struct module *mod)
3061 {
3062 int ret = 0;
3063
3064 /*
3065 * We want to find out whether @mod uses async during init. Clear
3066 * PF_USED_ASYNC. async_schedule*() will set it.
3067 */
3068 current->flags &= ~PF_USED_ASYNC;
3069
3070 blocking_notifier_call_chain(&module_notify_list,
3071 MODULE_STATE_COMING, mod);
3072
3073 /* Set RO and NX regions for core */
3074 set_section_ro_nx(mod->module_core,
3075 mod->core_text_size,
3076 mod->core_ro_size,
3077 mod->core_size);
3078
3079 /* Set RO and NX regions for init */
3080 set_section_ro_nx(mod->module_init,
3081 mod->init_text_size,
3082 mod->init_ro_size,
3083 mod->init_size);
3084
3085 do_mod_ctors(mod);
3086 /* Start the module */
3087 if (mod->init != NULL)
3088 ret = do_one_initcall(mod->init);
3089 if (ret < 0) {
3090 /* Init routine failed: abort. Try to protect us from
3091 buggy refcounters. */
3092 mod->state = MODULE_STATE_GOING;
3093 synchronize_sched();
3094 module_put(mod);
3095 blocking_notifier_call_chain(&module_notify_list,
3096 MODULE_STATE_GOING, mod);
3097 free_module(mod);
3098 wake_up_all(&module_wq);
3099 return ret;
3100 }
3101 if (ret > 0) {
3102 printk(KERN_WARNING
3103 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3104 "%s: loading module anyway...\n",
3105 __func__, mod->name, ret,
3106 __func__);
3107 dump_stack();
3108 }
3109
3110 /* Now it's a first class citizen! */
3111 mod->state = MODULE_STATE_LIVE;
3112 blocking_notifier_call_chain(&module_notify_list,
3113 MODULE_STATE_LIVE, mod);
3114
3115 /*
3116 * We need to finish all async code before the module init sequence
3117 * is done. This has potential to deadlock. For example, a newly
3118 * detected block device can trigger request_module() of the
3119 * default iosched from async probing task. Once userland helper
3120 * reaches here, async_synchronize_full() will wait on the async
3121 * task waiting on request_module() and deadlock.
3122 *
3123 * This deadlock is avoided by perfomring async_synchronize_full()
3124 * iff module init queued any async jobs. This isn't a full
3125 * solution as it will deadlock the same if module loading from
3126 * async jobs nests more than once; however, due to the various
3127 * constraints, this hack seems to be the best option for now.
3128 * Please refer to the following thread for details.
3129 *
3130 * http://thread.gmane.org/gmane.linux.kernel/1420814
3131 */
3132 if (current->flags & PF_USED_ASYNC)
3133 async_synchronize_full();
3134
3135 mutex_lock(&module_mutex);
3136 /* Drop initial reference. */
3137 module_put(mod);
3138 trim_init_extable(mod);
3139 #ifdef CONFIG_KALLSYMS
3140 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3141 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3142 #endif
3143 unset_module_init_ro_nx(mod);
3144 module_free(mod, mod->module_init);
3145 mod->module_init = NULL;
3146 mod->init_size = 0;
3147 mod->init_ro_size = 0;
3148 mod->init_text_size = 0;
3149 mutex_unlock(&module_mutex);
3150 wake_up_all(&module_wq);
3151
3152 return 0;
3153 }
3154
3155 static int may_init_module(void)
3156 {
3157 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3158 return -EPERM;
3159
3160 return 0;
3161 }
3162
3163 /*
3164 * We try to place it in the list now to make sure it's unique before
3165 * we dedicate too many resources. In particular, temporary percpu
3166 * memory exhaustion.
3167 */
3168 static int add_unformed_module(struct module *mod)
3169 {
3170 int err;
3171 struct module *old;
3172
3173 mod->state = MODULE_STATE_UNFORMED;
3174
3175 again:
3176 mutex_lock(&module_mutex);
3177 if ((old = find_module_all(mod->name, true)) != NULL) {
3178 if (old->state == MODULE_STATE_COMING
3179 || old->state == MODULE_STATE_UNFORMED) {
3180 /* Wait in case it fails to load. */
3181 mutex_unlock(&module_mutex);
3182 err = wait_event_interruptible(module_wq,
3183 finished_loading(mod->name));
3184 if (err)
3185 goto out_unlocked;
3186 goto again;
3187 }
3188 err = -EEXIST;
3189 goto out;
3190 }
3191 list_add_rcu(&mod->list, &modules);
3192 err = 0;
3193
3194 out:
3195 mutex_unlock(&module_mutex);
3196 out_unlocked:
3197 return err;
3198 }
3199
3200 static int complete_formation(struct module *mod, struct load_info *info)
3201 {
3202 int err;
3203
3204 mutex_lock(&module_mutex);
3205
3206 /* Find duplicate symbols (must be called under lock). */
3207 err = verify_export_symbols(mod);
3208 if (err < 0)
3209 goto out;
3210
3211 /* This relies on module_mutex for list integrity. */
3212 module_bug_finalize(info->hdr, info->sechdrs, mod);
3213
3214 /* Mark state as coming so strong_try_module_get() ignores us,
3215 * but kallsyms etc. can see us. */
3216 mod->state = MODULE_STATE_COMING;
3217
3218 out:
3219 mutex_unlock(&module_mutex);
3220 return err;
3221 }
3222
3223 /* Allocate and load the module: note that size of section 0 is always
3224 zero, and we rely on this for optional sections. */
3225 static int load_module(struct load_info *info, const char __user *uargs,
3226 int flags)
3227 {
3228 struct module *mod;
3229 long err;
3230
3231 err = module_sig_check(info);
3232 if (err)
3233 goto free_copy;
3234
3235 err = elf_header_check(info);
3236 if (err)
3237 goto free_copy;
3238
3239 /* Figure out module layout, and allocate all the memory. */
3240 mod = layout_and_allocate(info, flags);
3241 if (IS_ERR(mod)) {
3242 err = PTR_ERR(mod);
3243 goto free_copy;
3244 }
3245
3246 /* Reserve our place in the list. */
3247 err = add_unformed_module(mod);
3248 if (err)
3249 goto free_module;
3250
3251 #ifdef CONFIG_MODULE_SIG
3252 mod->sig_ok = info->sig_ok;
3253 if (!mod->sig_ok) {
3254 printk_once(KERN_NOTICE
3255 "%s: module verification failed: signature and/or"
3256 " required key missing - tainting kernel\n",
3257 mod->name);
3258 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3259 }
3260 #endif
3261
3262 /* To avoid stressing percpu allocator, do this once we're unique. */
3263 err = alloc_module_percpu(mod, info);
3264 if (err)
3265 goto unlink_mod;
3266
3267 /* Now module is in final location, initialize linked lists, etc. */
3268 err = module_unload_init(mod);
3269 if (err)
3270 goto unlink_mod;
3271
3272 /* Now we've got everything in the final locations, we can
3273 * find optional sections. */
3274 find_module_sections(mod, info);
3275
3276 err = check_module_license_and_versions(mod);
3277 if (err)
3278 goto free_unload;
3279
3280 /* Set up MODINFO_ATTR fields */
3281 setup_modinfo(mod, info);
3282
3283 /* Fix up syms, so that st_value is a pointer to location. */
3284 err = simplify_symbols(mod, info);
3285 if (err < 0)
3286 goto free_modinfo;
3287
3288 err = apply_relocations(mod, info);
3289 if (err < 0)
3290 goto free_modinfo;
3291
3292 err = post_relocation(mod, info);
3293 if (err < 0)
3294 goto free_modinfo;
3295
3296 flush_module_icache(mod);
3297
3298 /* Now copy in args */
3299 mod->args = strndup_user(uargs, ~0UL >> 1);
3300 if (IS_ERR(mod->args)) {
3301 err = PTR_ERR(mod->args);
3302 goto free_arch_cleanup;
3303 }
3304
3305 dynamic_debug_setup(info->debug, info->num_debug);
3306
3307 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3308 ftrace_module_init(mod);
3309
3310 /* Finally it's fully formed, ready to start executing. */
3311 err = complete_formation(mod, info);
3312 if (err)
3313 goto ddebug_cleanup;
3314
3315 /* Module is ready to execute: parsing args may do that. */
3316 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3317 -32768, 32767, &ddebug_dyndbg_module_param_cb);
3318 if (err < 0)
3319 goto bug_cleanup;
3320
3321 /* Link in to syfs. */
3322 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3323 if (err < 0)
3324 goto bug_cleanup;
3325
3326 /* Get rid of temporary copy. */
3327 free_copy(info);
3328
3329 /* Done! */
3330 trace_module_load(mod);
3331
3332 return do_init_module(mod);
3333
3334 bug_cleanup:
3335 /* module_bug_cleanup needs module_mutex protection */
3336 mutex_lock(&module_mutex);
3337 module_bug_cleanup(mod);
3338 mutex_unlock(&module_mutex);
3339 ddebug_cleanup:
3340 dynamic_debug_remove(info->debug);
3341 synchronize_sched();
3342 kfree(mod->args);
3343 free_arch_cleanup:
3344 module_arch_cleanup(mod);
3345 free_modinfo:
3346 free_modinfo(mod);
3347 free_unload:
3348 module_unload_free(mod);
3349 unlink_mod:
3350 mutex_lock(&module_mutex);
3351 /* Unlink carefully: kallsyms could be walking list. */
3352 list_del_rcu(&mod->list);
3353 wake_up_all(&module_wq);
3354 mutex_unlock(&module_mutex);
3355 free_module:
3356 module_deallocate(mod, info);
3357 free_copy:
3358 free_copy(info);
3359 return err;
3360 }
3361
3362 SYSCALL_DEFINE3(init_module, void __user *, umod,
3363 unsigned long, len, const char __user *, uargs)
3364 {
3365 int err;
3366 struct load_info info = { };
3367
3368 err = may_init_module();
3369 if (err)
3370 return err;
3371
3372 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3373 umod, len, uargs);
3374
3375 err = copy_module_from_user(umod, len, &info);
3376 if (err)
3377 return err;
3378
3379 return load_module(&info, uargs, 0);
3380 }
3381
3382 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3383 {
3384 int err;
3385 struct load_info info = { };
3386
3387 err = may_init_module();
3388 if (err)
3389 return err;
3390
3391 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3392
3393 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3394 |MODULE_INIT_IGNORE_VERMAGIC))
3395 return -EINVAL;
3396
3397 err = copy_module_from_fd(fd, &info);
3398 if (err)
3399 return err;
3400
3401 return load_module(&info, uargs, flags);
3402 }
3403
3404 static inline int within(unsigned long addr, void *start, unsigned long size)
3405 {
3406 return ((void *)addr >= start && (void *)addr < start + size);
3407 }
3408
3409 #ifdef CONFIG_KALLSYMS
3410 /*
3411 * This ignores the intensely annoying "mapping symbols" found
3412 * in ARM ELF files: $a, $t and $d.
3413 */
3414 static inline int is_arm_mapping_symbol(const char *str)
3415 {
3416 return str[0] == '$' && strchr("atd", str[1])
3417 && (str[2] == '\0' || str[2] == '.');
3418 }
3419
3420 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3421 {
3422 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3423 }
3424
3425 static const char *get_ksymbol(struct module *mod,
3426 unsigned long addr,
3427 unsigned long *size,
3428 unsigned long *offset)
3429 {
3430 unsigned int i, best = 0;
3431 unsigned long nextval;
3432 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3433
3434 /* At worse, next value is at end of module */
3435 if (within_module_init(addr, mod))
3436 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3437 else
3438 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3439
3440 /* Scan for closest preceding symbol, and next symbol. (ELF
3441 starts real symbols at 1). */
3442 for (i = 1; i < kallsyms->num_symtab; i++) {
3443 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3444 continue;
3445
3446 /* We ignore unnamed symbols: they're uninformative
3447 * and inserted at a whim. */
3448 if (*symname(kallsyms, i) == '\0'
3449 || is_arm_mapping_symbol(symname(kallsyms, i)))
3450 continue;
3451
3452 if (kallsyms->symtab[i].st_value <= addr
3453 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3454 best = i;
3455 if (kallsyms->symtab[i].st_value > addr
3456 && kallsyms->symtab[i].st_value < nextval)
3457 nextval = kallsyms->symtab[i].st_value;
3458 }
3459
3460 if (!best)
3461 return NULL;
3462
3463 if (size)
3464 *size = nextval - kallsyms->symtab[best].st_value;
3465 if (offset)
3466 *offset = addr - kallsyms->symtab[best].st_value;
3467 return symname(kallsyms, best);
3468 }
3469
3470 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3471 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3472 const char *module_address_lookup(unsigned long addr,
3473 unsigned long *size,
3474 unsigned long *offset,
3475 char **modname,
3476 char *namebuf)
3477 {
3478 struct module *mod;
3479 const char *ret = NULL;
3480
3481 preempt_disable();
3482 list_for_each_entry_rcu(mod, &modules, list) {
3483 if (mod->state == MODULE_STATE_UNFORMED)
3484 continue;
3485 if (within_module_init(addr, mod) ||
3486 within_module_core(addr, mod)) {
3487 if (modname)
3488 *modname = mod->name;
3489 ret = get_ksymbol(mod, addr, size, offset);
3490 break;
3491 }
3492 }
3493 /* Make a copy in here where it's safe */
3494 if (ret) {
3495 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3496 ret = namebuf;
3497 }
3498 preempt_enable();
3499 return ret;
3500 }
3501
3502 int lookup_module_symbol_name(unsigned long addr, char *symname)
3503 {
3504 struct module *mod;
3505
3506 preempt_disable();
3507 list_for_each_entry_rcu(mod, &modules, list) {
3508 if (mod->state == MODULE_STATE_UNFORMED)
3509 continue;
3510 if (within_module_init(addr, mod) ||
3511 within_module_core(addr, mod)) {
3512 const char *sym;
3513
3514 sym = get_ksymbol(mod, addr, NULL, NULL);
3515 if (!sym)
3516 goto out;
3517 strlcpy(symname, sym, KSYM_NAME_LEN);
3518 preempt_enable();
3519 return 0;
3520 }
3521 }
3522 out:
3523 preempt_enable();
3524 return -ERANGE;
3525 }
3526
3527 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3528 unsigned long *offset, char *modname, char *name)
3529 {
3530 struct module *mod;
3531
3532 preempt_disable();
3533 list_for_each_entry_rcu(mod, &modules, list) {
3534 if (mod->state == MODULE_STATE_UNFORMED)
3535 continue;
3536 if (within_module_init(addr, mod) ||
3537 within_module_core(addr, mod)) {
3538 const char *sym;
3539
3540 sym = get_ksymbol(mod, addr, size, offset);
3541 if (!sym)
3542 goto out;
3543 if (modname)
3544 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3545 if (name)
3546 strlcpy(name, sym, KSYM_NAME_LEN);
3547 preempt_enable();
3548 return 0;
3549 }
3550 }
3551 out:
3552 preempt_enable();
3553 return -ERANGE;
3554 }
3555
3556 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3557 char *name, char *module_name, int *exported)
3558 {
3559 struct module *mod;
3560
3561 preempt_disable();
3562 list_for_each_entry_rcu(mod, &modules, list) {
3563 struct mod_kallsyms *kallsyms;
3564
3565 if (mod->state == MODULE_STATE_UNFORMED)
3566 continue;
3567 kallsyms = rcu_dereference_sched(mod->kallsyms);
3568 if (symnum < kallsyms->num_symtab) {
3569 *value = kallsyms->symtab[symnum].st_value;
3570 *type = kallsyms->symtab[symnum].st_info;
3571 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3572 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3573 *exported = is_exported(name, *value, mod);
3574 preempt_enable();
3575 return 0;
3576 }
3577 symnum -= kallsyms->num_symtab;
3578 }
3579 preempt_enable();
3580 return -ERANGE;
3581 }
3582
3583 static unsigned long mod_find_symname(struct module *mod, const char *name)
3584 {
3585 unsigned int i;
3586 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3587
3588 for (i = 0; i < kallsyms->num_symtab; i++)
3589 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3590 kallsyms->symtab[i].st_info != 'U')
3591 return kallsyms->symtab[i].st_value;
3592 return 0;
3593 }
3594
3595 /* Look for this name: can be of form module:name. */
3596 unsigned long module_kallsyms_lookup_name(const char *name)
3597 {
3598 struct module *mod;
3599 char *colon;
3600 unsigned long ret = 0;
3601
3602 /* Don't lock: we're in enough trouble already. */
3603 preempt_disable();
3604 if ((colon = strchr(name, ':')) != NULL) {
3605 *colon = '\0';
3606 if ((mod = find_module(name)) != NULL)
3607 ret = mod_find_symname(mod, colon+1);
3608 *colon = ':';
3609 } else {
3610 list_for_each_entry_rcu(mod, &modules, list) {
3611 if (mod->state == MODULE_STATE_UNFORMED)
3612 continue;
3613 if ((ret = mod_find_symname(mod, name)) != 0)
3614 break;
3615 }
3616 }
3617 preempt_enable();
3618 return ret;
3619 }
3620
3621 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3622 struct module *, unsigned long),
3623 void *data)
3624 {
3625 struct module *mod;
3626 unsigned int i;
3627 int ret;
3628
3629 list_for_each_entry(mod, &modules, list) {
3630 /* We hold module_mutex: no need for rcu_dereference_sched */
3631 struct mod_kallsyms *kallsyms = mod->kallsyms;
3632
3633 if (mod->state == MODULE_STATE_UNFORMED)
3634 continue;
3635 for (i = 0; i < kallsyms->num_symtab; i++) {
3636 ret = fn(data, symname(kallsyms, i),
3637 mod, kallsyms->symtab[i].st_value);
3638 if (ret != 0)
3639 return ret;
3640 }
3641 }
3642 return 0;
3643 }
3644 #endif /* CONFIG_KALLSYMS */
3645
3646 static char *module_flags(struct module *mod, char *buf)
3647 {
3648 int bx = 0;
3649
3650 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3651 if (mod->taints ||
3652 mod->state == MODULE_STATE_GOING ||
3653 mod->state == MODULE_STATE_COMING) {
3654 buf[bx++] = '(';
3655 bx += module_flags_taint(mod, buf + bx);
3656 /* Show a - for module-is-being-unloaded */
3657 if (mod->state == MODULE_STATE_GOING)
3658 buf[bx++] = '-';
3659 /* Show a + for module-is-being-loaded */
3660 if (mod->state == MODULE_STATE_COMING)
3661 buf[bx++] = '+';
3662 buf[bx++] = ')';
3663 }
3664 buf[bx] = '\0';
3665
3666 return buf;
3667 }
3668
3669 #ifdef CONFIG_PROC_FS
3670 /* Called by the /proc file system to return a list of modules. */
3671 static void *m_start(struct seq_file *m, loff_t *pos)
3672 {
3673 mutex_lock(&module_mutex);
3674 return seq_list_start(&modules, *pos);
3675 }
3676
3677 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3678 {
3679 return seq_list_next(p, &modules, pos);
3680 }
3681
3682 static void m_stop(struct seq_file *m, void *p)
3683 {
3684 mutex_unlock(&module_mutex);
3685 }
3686
3687 static int m_show(struct seq_file *m, void *p)
3688 {
3689 struct module *mod = list_entry(p, struct module, list);
3690 char buf[8];
3691
3692 /* We always ignore unformed modules. */
3693 if (mod->state == MODULE_STATE_UNFORMED)
3694 return 0;
3695
3696 seq_printf(m, "%s %u",
3697 mod->name, mod->init_size + mod->core_size);
3698 print_unload_info(m, mod);
3699
3700 /* Informative for users. */
3701 seq_printf(m, " %s",
3702 mod->state == MODULE_STATE_GOING ? "Unloading":
3703 mod->state == MODULE_STATE_COMING ? "Loading":
3704 "Live");
3705 /* Used by oprofile and other similar tools. */
3706 seq_printf(m, " 0x%pK", mod->module_core);
3707
3708 /* Taints info */
3709 if (mod->taints)
3710 seq_printf(m, " %s", module_flags(mod, buf));
3711
3712 seq_printf(m, "\n");
3713 return 0;
3714 }
3715
3716 /* Format: modulename size refcount deps address
3717
3718 Where refcount is a number or -, and deps is a comma-separated list
3719 of depends or -.
3720 */
3721 static const struct seq_operations modules_op = {
3722 .start = m_start,
3723 .next = m_next,
3724 .stop = m_stop,
3725 .show = m_show
3726 };
3727
3728 static int modules_open(struct inode *inode, struct file *file)
3729 {
3730 return seq_open(file, &modules_op);
3731 }
3732
3733 static const struct file_operations proc_modules_operations = {
3734 .open = modules_open,
3735 .read = seq_read,
3736 .llseek = seq_lseek,
3737 .release = seq_release,
3738 };
3739
3740 static int __init proc_modules_init(void)
3741 {
3742 proc_create("modules", 0, NULL, &proc_modules_operations);
3743 return 0;
3744 }
3745 module_init(proc_modules_init);
3746 #endif
3747
3748 /* Given an address, look for it in the module exception tables. */
3749 const struct exception_table_entry *search_module_extables(unsigned long addr)
3750 {
3751 const struct exception_table_entry *e = NULL;
3752 struct module *mod;
3753
3754 preempt_disable();
3755 list_for_each_entry_rcu(mod, &modules, list) {
3756 if (mod->state == MODULE_STATE_UNFORMED)
3757 continue;
3758 if (mod->num_exentries == 0)
3759 continue;
3760
3761 e = search_extable(mod->extable,
3762 mod->extable + mod->num_exentries - 1,
3763 addr);
3764 if (e)
3765 break;
3766 }
3767 preempt_enable();
3768
3769 /* Now, if we found one, we are running inside it now, hence
3770 we cannot unload the module, hence no refcnt needed. */
3771 return e;
3772 }
3773
3774 /*
3775 * is_module_address - is this address inside a module?
3776 * @addr: the address to check.
3777 *
3778 * See is_module_text_address() if you simply want to see if the address
3779 * is code (not data).
3780 */
3781 bool is_module_address(unsigned long addr)
3782 {
3783 bool ret;
3784
3785 preempt_disable();
3786 ret = __module_address(addr) != NULL;
3787 preempt_enable();
3788
3789 return ret;
3790 }
3791
3792 /*
3793 * __module_address - get the module which contains an address.
3794 * @addr: the address.
3795 *
3796 * Must be called with preempt disabled or module mutex held so that
3797 * module doesn't get freed during this.
3798 */
3799 struct module *__module_address(unsigned long addr)
3800 {
3801 struct module *mod;
3802
3803 if (addr < module_addr_min || addr > module_addr_max)
3804 return NULL;
3805
3806 list_for_each_entry_rcu(mod, &modules, list) {
3807 if (mod->state == MODULE_STATE_UNFORMED)
3808 continue;
3809 if (within_module_core(addr, mod)
3810 || within_module_init(addr, mod))
3811 return mod;
3812 }
3813 return NULL;
3814 }
3815 EXPORT_SYMBOL_GPL(__module_address);
3816
3817 /*
3818 * is_module_text_address - is this address inside module code?
3819 * @addr: the address to check.
3820 *
3821 * See is_module_address() if you simply want to see if the address is
3822 * anywhere in a module. See kernel_text_address() for testing if an
3823 * address corresponds to kernel or module code.
3824 */
3825 bool is_module_text_address(unsigned long addr)
3826 {
3827 bool ret;
3828
3829 preempt_disable();
3830 ret = __module_text_address(addr) != NULL;
3831 preempt_enable();
3832
3833 return ret;
3834 }
3835
3836 /*
3837 * __module_text_address - get the module whose code contains an address.
3838 * @addr: the address.
3839 *
3840 * Must be called with preempt disabled or module mutex held so that
3841 * module doesn't get freed during this.
3842 */
3843 struct module *__module_text_address(unsigned long addr)
3844 {
3845 struct module *mod = __module_address(addr);
3846 if (mod) {
3847 /* Make sure it's within the text section. */
3848 if (!within(addr, mod->module_init, mod->init_text_size)
3849 && !within(addr, mod->module_core, mod->core_text_size))
3850 mod = NULL;
3851 }
3852 return mod;
3853 }
3854 EXPORT_SYMBOL_GPL(__module_text_address);
3855
3856 /* Don't grab lock, we're oopsing. */
3857 void print_modules(void)
3858 {
3859 struct module *mod;
3860 char buf[8];
3861
3862 printk(KERN_DEFAULT "Modules linked in:");
3863 /* Most callers should already have preempt disabled, but make sure */
3864 preempt_disable();
3865 list_for_each_entry_rcu(mod, &modules, list) {
3866 if (mod->state == MODULE_STATE_UNFORMED)
3867 continue;
3868 printk(" %s %p %s", mod->name, mod->module_core, module_flags(mod, buf));
3869 }
3870 preempt_enable();
3871 if (last_unloaded_module[0])
3872 printk(" [last unloaded: %s]", last_unloaded_module);
3873 printk("\n");
3874 }
3875
3876 #ifdef CONFIG_MODVERSIONS
3877 /* Generate the signature for all relevant module structures here.
3878 * If these change, we don't want to try to parse the module. */
3879 void module_layout(struct module *mod,
3880 struct modversion_info *ver,
3881 struct kernel_param *kp,
3882 struct kernel_symbol *ks,
3883 struct tracepoint * const *tp)
3884 {
3885 }
3886 EXPORT_SYMBOL(module_layout);
3887 #endif