Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .set = param_set_bool_enable_only,
140 .get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156
157 /* Bounds of module allocation, for speeding __module_address.
158 * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160
161 int register_module_notifier(struct notifier_block * nb)
162 {
163 return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166
167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172
173 struct load_info {
174 Elf_Ehdr *hdr;
175 unsigned long len;
176 Elf_Shdr *sechdrs;
177 char *secstrings, *strtab;
178 unsigned long symoffs, stroffs;
179 struct _ddebug *debug;
180 unsigned int num_debug;
181 bool sig_ok;
182 #ifdef CONFIG_KALLSYMS
183 unsigned long mod_kallsyms_init_off;
184 #endif
185 struct {
186 unsigned int sym, str, mod, vers, info, pcpu;
187 } index;
188 };
189
190 /* We require a truly strong try_module_get(): 0 means failure due to
191 ongoing or failed initialization etc. */
192 static inline int strong_try_module_get(struct module *mod)
193 {
194 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
195 if (mod && mod->state == MODULE_STATE_COMING)
196 return -EBUSY;
197 if (try_module_get(mod))
198 return 0;
199 else
200 return -ENOENT;
201 }
202
203 static inline void add_taint_module(struct module *mod, unsigned flag,
204 enum lockdep_ok lockdep_ok)
205 {
206 add_taint(flag, lockdep_ok);
207 mod->taints |= (1U << flag);
208 }
209
210 /*
211 * A thread that wants to hold a reference to a module only while it
212 * is running can call this to safely exit. nfsd and lockd use this.
213 */
214 void __module_put_and_exit(struct module *mod, long code)
215 {
216 module_put(mod);
217 do_exit(code);
218 }
219 EXPORT_SYMBOL(__module_put_and_exit);
220
221 /* Find a module section: 0 means not found. */
222 static unsigned int find_sec(const struct load_info *info, const char *name)
223 {
224 unsigned int i;
225
226 for (i = 1; i < info->hdr->e_shnum; i++) {
227 Elf_Shdr *shdr = &info->sechdrs[i];
228 /* Alloc bit cleared means "ignore it." */
229 if ((shdr->sh_flags & SHF_ALLOC)
230 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
231 return i;
232 }
233 return 0;
234 }
235
236 /* Find a module section, or NULL. */
237 static void *section_addr(const struct load_info *info, const char *name)
238 {
239 /* Section 0 has sh_addr 0. */
240 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
241 }
242
243 /* Find a module section, or NULL. Fill in number of "objects" in section. */
244 static void *section_objs(const struct load_info *info,
245 const char *name,
246 size_t object_size,
247 unsigned int *num)
248 {
249 unsigned int sec = find_sec(info, name);
250
251 /* Section 0 has sh_addr 0 and sh_size 0. */
252 *num = info->sechdrs[sec].sh_size / object_size;
253 return (void *)info->sechdrs[sec].sh_addr;
254 }
255
256 /* Provided by the linker */
257 extern const struct kernel_symbol __start___ksymtab[];
258 extern const struct kernel_symbol __stop___ksymtab[];
259 extern const struct kernel_symbol __start___ksymtab_gpl[];
260 extern const struct kernel_symbol __stop___ksymtab_gpl[];
261 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
262 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
263 extern const unsigned long __start___kcrctab[];
264 extern const unsigned long __start___kcrctab_gpl[];
265 extern const unsigned long __start___kcrctab_gpl_future[];
266 #ifdef CONFIG_UNUSED_SYMBOLS
267 extern const struct kernel_symbol __start___ksymtab_unused[];
268 extern const struct kernel_symbol __stop___ksymtab_unused[];
269 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
270 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
271 extern const unsigned long __start___kcrctab_unused[];
272 extern const unsigned long __start___kcrctab_unused_gpl[];
273 #endif
274
275 #ifndef CONFIG_MODVERSIONS
276 #define symversion(base, idx) NULL
277 #else
278 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
279 #endif
280
281 static bool each_symbol_in_section(const struct symsearch *arr,
282 unsigned int arrsize,
283 struct module *owner,
284 bool (*fn)(const struct symsearch *syms,
285 struct module *owner,
286 void *data),
287 void *data)
288 {
289 unsigned int j;
290
291 for (j = 0; j < arrsize; j++) {
292 if (fn(&arr[j], owner, data))
293 return true;
294 }
295
296 return false;
297 }
298
299 /* Returns true as soon as fn returns true, otherwise false. */
300 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
301 struct module *owner,
302 void *data),
303 void *data)
304 {
305 struct module *mod;
306 static const struct symsearch arr[] = {
307 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
308 NOT_GPL_ONLY, false },
309 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
310 __start___kcrctab_gpl,
311 GPL_ONLY, false },
312 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
313 __start___kcrctab_gpl_future,
314 WILL_BE_GPL_ONLY, false },
315 #ifdef CONFIG_UNUSED_SYMBOLS
316 { __start___ksymtab_unused, __stop___ksymtab_unused,
317 __start___kcrctab_unused,
318 NOT_GPL_ONLY, true },
319 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
320 __start___kcrctab_unused_gpl,
321 GPL_ONLY, true },
322 #endif
323 };
324
325 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
326 return true;
327
328 list_for_each_entry_rcu(mod, &modules, list) {
329 struct symsearch arr[] = {
330 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
331 NOT_GPL_ONLY, false },
332 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
333 mod->gpl_crcs,
334 GPL_ONLY, false },
335 { mod->gpl_future_syms,
336 mod->gpl_future_syms + mod->num_gpl_future_syms,
337 mod->gpl_future_crcs,
338 WILL_BE_GPL_ONLY, false },
339 #ifdef CONFIG_UNUSED_SYMBOLS
340 { mod->unused_syms,
341 mod->unused_syms + mod->num_unused_syms,
342 mod->unused_crcs,
343 NOT_GPL_ONLY, true },
344 { mod->unused_gpl_syms,
345 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
346 mod->unused_gpl_crcs,
347 GPL_ONLY, true },
348 #endif
349 };
350
351 if (mod->state == MODULE_STATE_UNFORMED)
352 continue;
353
354 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
355 return true;
356 }
357 return false;
358 }
359 EXPORT_SYMBOL_GPL(each_symbol_section);
360
361 struct find_symbol_arg {
362 /* Input */
363 const char *name;
364 bool gplok;
365 bool warn;
366
367 /* Output */
368 struct module *owner;
369 const unsigned long *crc;
370 const struct kernel_symbol *sym;
371 };
372
373 static bool check_symbol(const struct symsearch *syms,
374 struct module *owner,
375 unsigned int symnum, void *data)
376 {
377 struct find_symbol_arg *fsa = data;
378
379 if (!fsa->gplok) {
380 if (syms->licence == GPL_ONLY)
381 return false;
382 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
383 printk(KERN_WARNING "Symbol %s is being used "
384 "by a non-GPL module, which will not "
385 "be allowed in the future\n", fsa->name);
386 }
387 }
388
389 #ifdef CONFIG_UNUSED_SYMBOLS
390 if (syms->unused && fsa->warn) {
391 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
392 "however this module is using it.\n", fsa->name);
393 printk(KERN_WARNING
394 "This symbol will go away in the future.\n");
395 printk(KERN_WARNING
396 "Please evalute if this is the right api to use and if "
397 "it really is, submit a report the linux kernel "
398 "mailinglist together with submitting your code for "
399 "inclusion.\n");
400 }
401 #endif
402
403 fsa->owner = owner;
404 fsa->crc = symversion(syms->crcs, symnum);
405 fsa->sym = &syms->start[symnum];
406 return true;
407 }
408
409 static int cmp_name(const void *va, const void *vb)
410 {
411 const char *a;
412 const struct kernel_symbol *b;
413 a = va; b = vb;
414 return strcmp(a, b->name);
415 }
416
417 static bool find_symbol_in_section(const struct symsearch *syms,
418 struct module *owner,
419 void *data)
420 {
421 struct find_symbol_arg *fsa = data;
422 struct kernel_symbol *sym;
423
424 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
425 sizeof(struct kernel_symbol), cmp_name);
426
427 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
428 return true;
429
430 return false;
431 }
432
433 /* Find a symbol and return it, along with, (optional) crc and
434 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
435 const struct kernel_symbol *find_symbol(const char *name,
436 struct module **owner,
437 const unsigned long **crc,
438 bool gplok,
439 bool warn)
440 {
441 struct find_symbol_arg fsa;
442
443 fsa.name = name;
444 fsa.gplok = gplok;
445 fsa.warn = warn;
446
447 if (each_symbol_section(find_symbol_in_section, &fsa)) {
448 if (owner)
449 *owner = fsa.owner;
450 if (crc)
451 *crc = fsa.crc;
452 return fsa.sym;
453 }
454
455 pr_debug("Failed to find symbol %s\n", name);
456 return NULL;
457 }
458 EXPORT_SYMBOL_GPL(find_symbol);
459
460 /* Search for module by name: must hold module_mutex. */
461 static struct module *find_module_all(const char *name,
462 bool even_unformed)
463 {
464 struct module *mod;
465
466 list_for_each_entry(mod, &modules, list) {
467 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
468 continue;
469 if (strcmp(mod->name, name) == 0)
470 return mod;
471 }
472 return NULL;
473 }
474
475 struct module *find_module(const char *name)
476 {
477 return find_module_all(name, false);
478 }
479 EXPORT_SYMBOL_GPL(find_module);
480
481 #ifdef CONFIG_SMP
482
483 static inline void __percpu *mod_percpu(struct module *mod)
484 {
485 return mod->percpu;
486 }
487
488 static int percpu_modalloc(struct module *mod,
489 unsigned long size, unsigned long align)
490 {
491 if (align > PAGE_SIZE) {
492 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
493 mod->name, align, PAGE_SIZE);
494 align = PAGE_SIZE;
495 }
496
497 mod->percpu = __alloc_reserved_percpu(size, align);
498 if (!mod->percpu) {
499 printk(KERN_WARNING
500 "%s: Could not allocate %lu bytes percpu data\n",
501 mod->name, size);
502 return -ENOMEM;
503 }
504 mod->percpu_size = size;
505 return 0;
506 }
507
508 static void percpu_modfree(struct module *mod)
509 {
510 free_percpu(mod->percpu);
511 }
512
513 static unsigned int find_pcpusec(struct load_info *info)
514 {
515 return find_sec(info, ".data..percpu");
516 }
517
518 static void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 int cpu;
522
523 for_each_possible_cpu(cpu)
524 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
525 }
526
527 /**
528 * is_module_percpu_address - test whether address is from module static percpu
529 * @addr: address to test
530 *
531 * Test whether @addr belongs to module static percpu area.
532 *
533 * RETURNS:
534 * %true if @addr is from module static percpu area
535 */
536 bool is_module_percpu_address(unsigned long addr)
537 {
538 struct module *mod;
539 unsigned int cpu;
540
541 preempt_disable();
542
543 list_for_each_entry_rcu(mod, &modules, list) {
544 if (mod->state == MODULE_STATE_UNFORMED)
545 continue;
546 if (!mod->percpu_size)
547 continue;
548 for_each_possible_cpu(cpu) {
549 void *start = per_cpu_ptr(mod->percpu, cpu);
550
551 if ((void *)addr >= start &&
552 (void *)addr < start + mod->percpu_size) {
553 preempt_enable();
554 return true;
555 }
556 }
557 }
558
559 preempt_enable();
560 return false;
561 }
562
563 #else /* ... !CONFIG_SMP */
564
565 static inline void __percpu *mod_percpu(struct module *mod)
566 {
567 return NULL;
568 }
569 static inline int percpu_modalloc(struct module *mod,
570 unsigned long size, unsigned long align)
571 {
572 return -ENOMEM;
573 }
574 static inline void percpu_modfree(struct module *mod)
575 {
576 }
577 static unsigned int find_pcpusec(struct load_info *info)
578 {
579 return 0;
580 }
581 static inline void percpu_modcopy(struct module *mod,
582 const void *from, unsigned long size)
583 {
584 /* pcpusec should be 0, and size of that section should be 0. */
585 BUG_ON(size != 0);
586 }
587 bool is_module_percpu_address(unsigned long addr)
588 {
589 return false;
590 }
591
592 #endif /* CONFIG_SMP */
593
594 #define MODINFO_ATTR(field) \
595 static void setup_modinfo_##field(struct module *mod, const char *s) \
596 { \
597 mod->field = kstrdup(s, GFP_KERNEL); \
598 } \
599 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
600 struct module_kobject *mk, char *buffer) \
601 { \
602 return sprintf(buffer, "%s\n", mk->mod->field); \
603 } \
604 static int modinfo_##field##_exists(struct module *mod) \
605 { \
606 return mod->field != NULL; \
607 } \
608 static void free_modinfo_##field(struct module *mod) \
609 { \
610 kfree(mod->field); \
611 mod->field = NULL; \
612 } \
613 static struct module_attribute modinfo_##field = { \
614 .attr = { .name = __stringify(field), .mode = 0444 }, \
615 .show = show_modinfo_##field, \
616 .setup = setup_modinfo_##field, \
617 .test = modinfo_##field##_exists, \
618 .free = free_modinfo_##field, \
619 };
620
621 MODINFO_ATTR(version);
622 MODINFO_ATTR(srcversion);
623
624 static char last_unloaded_module[MODULE_NAME_LEN+1];
625
626 #ifdef CONFIG_MODULE_UNLOAD
627
628 EXPORT_TRACEPOINT_SYMBOL(module_get);
629
630 /* Init the unload section of the module. */
631 static int module_unload_init(struct module *mod)
632 {
633 mod->refptr = alloc_percpu(struct module_ref);
634 if (!mod->refptr)
635 return -ENOMEM;
636
637 INIT_LIST_HEAD(&mod->source_list);
638 INIT_LIST_HEAD(&mod->target_list);
639
640 /* Hold reference count during initialization. */
641 __this_cpu_write(mod->refptr->incs, 1);
642 /* Backwards compatibility macros put refcount during init. */
643 mod->waiter = current;
644
645 return 0;
646 }
647
648 /* Does a already use b? */
649 static int already_uses(struct module *a, struct module *b)
650 {
651 struct module_use *use;
652
653 list_for_each_entry(use, &b->source_list, source_list) {
654 if (use->source == a) {
655 pr_debug("%s uses %s!\n", a->name, b->name);
656 return 1;
657 }
658 }
659 pr_debug("%s does not use %s!\n", a->name, b->name);
660 return 0;
661 }
662
663 /*
664 * Module a uses b
665 * - we add 'a' as a "source", 'b' as a "target" of module use
666 * - the module_use is added to the list of 'b' sources (so
667 * 'b' can walk the list to see who sourced them), and of 'a'
668 * targets (so 'a' can see what modules it targets).
669 */
670 static int add_module_usage(struct module *a, struct module *b)
671 {
672 struct module_use *use;
673
674 pr_debug("Allocating new usage for %s.\n", a->name);
675 use = kmalloc(sizeof(*use), GFP_ATOMIC);
676 if (!use) {
677 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
678 return -ENOMEM;
679 }
680
681 use->source = a;
682 use->target = b;
683 list_add(&use->source_list, &b->source_list);
684 list_add(&use->target_list, &a->target_list);
685 return 0;
686 }
687
688 /* Module a uses b: caller needs module_mutex() */
689 int ref_module(struct module *a, struct module *b)
690 {
691 int err;
692
693 if (b == NULL || already_uses(a, b))
694 return 0;
695
696 /* If module isn't available, we fail. */
697 err = strong_try_module_get(b);
698 if (err)
699 return err;
700
701 err = add_module_usage(a, b);
702 if (err) {
703 module_put(b);
704 return err;
705 }
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(ref_module);
709
710 /* Clear the unload stuff of the module. */
711 static void module_unload_free(struct module *mod)
712 {
713 struct module_use *use, *tmp;
714
715 mutex_lock(&module_mutex);
716 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
717 struct module *i = use->target;
718 pr_debug("%s unusing %s\n", mod->name, i->name);
719 module_put(i);
720 list_del(&use->source_list);
721 list_del(&use->target_list);
722 kfree(use);
723 }
724 mutex_unlock(&module_mutex);
725
726 free_percpu(mod->refptr);
727 }
728
729 #ifdef CONFIG_MODULE_FORCE_UNLOAD
730 static inline int try_force_unload(unsigned int flags)
731 {
732 int ret = (flags & O_TRUNC);
733 if (ret)
734 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
735 return ret;
736 }
737 #else
738 static inline int try_force_unload(unsigned int flags)
739 {
740 return 0;
741 }
742 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
743
744 struct stopref
745 {
746 struct module *mod;
747 int flags;
748 int *forced;
749 };
750
751 /* Whole machine is stopped with interrupts off when this runs. */
752 static int __try_stop_module(void *_sref)
753 {
754 struct stopref *sref = _sref;
755
756 /* If it's not unused, quit unless we're forcing. */
757 if (module_refcount(sref->mod) != 0) {
758 if (!(*sref->forced = try_force_unload(sref->flags)))
759 return -EWOULDBLOCK;
760 }
761
762 /* Mark it as dying. */
763 sref->mod->state = MODULE_STATE_GOING;
764 return 0;
765 }
766
767 static int try_stop_module(struct module *mod, int flags, int *forced)
768 {
769 if (flags & O_NONBLOCK) {
770 struct stopref sref = { mod, flags, forced };
771
772 return stop_machine(__try_stop_module, &sref, NULL);
773 } else {
774 /* We don't need to stop the machine for this. */
775 mod->state = MODULE_STATE_GOING;
776 synchronize_sched();
777 return 0;
778 }
779 }
780
781 unsigned long module_refcount(struct module *mod)
782 {
783 unsigned long incs = 0, decs = 0;
784 int cpu;
785
786 for_each_possible_cpu(cpu)
787 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
788 /*
789 * ensure the incs are added up after the decs.
790 * module_put ensures incs are visible before decs with smp_wmb.
791 *
792 * This 2-count scheme avoids the situation where the refcount
793 * for CPU0 is read, then CPU0 increments the module refcount,
794 * then CPU1 drops that refcount, then the refcount for CPU1 is
795 * read. We would record a decrement but not its corresponding
796 * increment so we would see a low count (disaster).
797 *
798 * Rare situation? But module_refcount can be preempted, and we
799 * might be tallying up 4096+ CPUs. So it is not impossible.
800 */
801 smp_rmb();
802 for_each_possible_cpu(cpu)
803 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
804 return incs - decs;
805 }
806 EXPORT_SYMBOL(module_refcount);
807
808 /* This exists whether we can unload or not */
809 static void free_module(struct module *mod);
810
811 static void wait_for_zero_refcount(struct module *mod)
812 {
813 /* Since we might sleep for some time, release the mutex first */
814 mutex_unlock(&module_mutex);
815 for (;;) {
816 pr_debug("Looking at refcount...\n");
817 set_current_state(TASK_UNINTERRUPTIBLE);
818 if (module_refcount(mod) == 0)
819 break;
820 schedule();
821 }
822 current->state = TASK_RUNNING;
823 mutex_lock(&module_mutex);
824 }
825
826 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
827 unsigned int, flags)
828 {
829 struct module *mod;
830 char name[MODULE_NAME_LEN];
831 int ret, forced = 0;
832
833 if (!capable(CAP_SYS_MODULE) || modules_disabled)
834 return -EPERM;
835
836 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
837 return -EFAULT;
838 name[MODULE_NAME_LEN-1] = '\0';
839
840 if (mutex_lock_interruptible(&module_mutex) != 0)
841 return -EINTR;
842
843 mod = find_module(name);
844 if (!mod) {
845 ret = -ENOENT;
846 goto out;
847 }
848
849 if (!list_empty(&mod->source_list)) {
850 /* Other modules depend on us: get rid of them first. */
851 ret = -EWOULDBLOCK;
852 goto out;
853 }
854
855 /* Doing init or already dying? */
856 if (mod->state != MODULE_STATE_LIVE) {
857 /* FIXME: if (force), slam module count and wake up
858 waiter --RR */
859 pr_debug("%s already dying\n", mod->name);
860 ret = -EBUSY;
861 goto out;
862 }
863
864 /* If it has an init func, it must have an exit func to unload */
865 if (mod->init && !mod->exit) {
866 forced = try_force_unload(flags);
867 if (!forced) {
868 /* This module can't be removed */
869 ret = -EBUSY;
870 goto out;
871 }
872 }
873
874 /* Set this up before setting mod->state */
875 mod->waiter = current;
876
877 /* Stop the machine so refcounts can't move and disable module. */
878 ret = try_stop_module(mod, flags, &forced);
879 if (ret != 0)
880 goto out;
881
882 /* Never wait if forced. */
883 if (!forced && module_refcount(mod) != 0)
884 wait_for_zero_refcount(mod);
885
886 mutex_unlock(&module_mutex);
887 /* Final destruction now no one is using it. */
888 if (mod->exit != NULL)
889 mod->exit();
890 blocking_notifier_call_chain(&module_notify_list,
891 MODULE_STATE_GOING, mod);
892 async_synchronize_full();
893
894 /* Store the name of the last unloaded module for diagnostic purposes */
895 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
896
897 free_module(mod);
898 return 0;
899 out:
900 mutex_unlock(&module_mutex);
901 return ret;
902 }
903
904 static inline void print_unload_info(struct seq_file *m, struct module *mod)
905 {
906 struct module_use *use;
907 int printed_something = 0;
908
909 seq_printf(m, " %lu ", module_refcount(mod));
910
911 /* Always include a trailing , so userspace can differentiate
912 between this and the old multi-field proc format. */
913 list_for_each_entry(use, &mod->source_list, source_list) {
914 printed_something = 1;
915 seq_printf(m, "%s,", use->source->name);
916 }
917
918 if (mod->init != NULL && mod->exit == NULL) {
919 printed_something = 1;
920 seq_printf(m, "[permanent],");
921 }
922
923 if (!printed_something)
924 seq_printf(m, "-");
925 }
926
927 void __symbol_put(const char *symbol)
928 {
929 struct module *owner;
930
931 preempt_disable();
932 if (!find_symbol(symbol, &owner, NULL, true, false))
933 BUG();
934 module_put(owner);
935 preempt_enable();
936 }
937 EXPORT_SYMBOL(__symbol_put);
938
939 /* Note this assumes addr is a function, which it currently always is. */
940 void symbol_put_addr(void *addr)
941 {
942 struct module *modaddr;
943 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
944
945 if (core_kernel_text(a))
946 return;
947
948 /*
949 * Even though we hold a reference on the module; we still need to
950 * disable preemption in order to safely traverse the data structure.
951 */
952 preempt_disable();
953 modaddr = __module_text_address(a);
954 BUG_ON(!modaddr);
955 module_put(modaddr);
956 preempt_enable();
957 }
958 EXPORT_SYMBOL_GPL(symbol_put_addr);
959
960 static ssize_t show_refcnt(struct module_attribute *mattr,
961 struct module_kobject *mk, char *buffer)
962 {
963 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
964 }
965
966 static struct module_attribute modinfo_refcnt =
967 __ATTR(refcnt, 0444, show_refcnt, NULL);
968
969 void __module_get(struct module *module)
970 {
971 if (module) {
972 preempt_disable();
973 __this_cpu_inc(module->refptr->incs);
974 trace_module_get(module, _RET_IP_);
975 preempt_enable();
976 }
977 }
978 EXPORT_SYMBOL(__module_get);
979
980 bool try_module_get(struct module *module)
981 {
982 bool ret = true;
983
984 if (module) {
985 preempt_disable();
986
987 if (likely(module_is_live(module))) {
988 __this_cpu_inc(module->refptr->incs);
989 trace_module_get(module, _RET_IP_);
990 } else
991 ret = false;
992
993 preempt_enable();
994 }
995 return ret;
996 }
997 EXPORT_SYMBOL(try_module_get);
998
999 void module_put(struct module *module)
1000 {
1001 if (module) {
1002 preempt_disable();
1003 smp_wmb(); /* see comment in module_refcount */
1004 __this_cpu_inc(module->refptr->decs);
1005
1006 trace_module_put(module, _RET_IP_);
1007 /* Maybe they're waiting for us to drop reference? */
1008 if (unlikely(!module_is_live(module)))
1009 wake_up_process(module->waiter);
1010 preempt_enable();
1011 }
1012 }
1013 EXPORT_SYMBOL(module_put);
1014
1015 #else /* !CONFIG_MODULE_UNLOAD */
1016 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1017 {
1018 /* We don't know the usage count, or what modules are using. */
1019 seq_printf(m, " - -");
1020 }
1021
1022 static inline void module_unload_free(struct module *mod)
1023 {
1024 }
1025
1026 int ref_module(struct module *a, struct module *b)
1027 {
1028 return strong_try_module_get(b);
1029 }
1030 EXPORT_SYMBOL_GPL(ref_module);
1031
1032 static inline int module_unload_init(struct module *mod)
1033 {
1034 return 0;
1035 }
1036 #endif /* CONFIG_MODULE_UNLOAD */
1037
1038 static size_t module_flags_taint(struct module *mod, char *buf)
1039 {
1040 size_t l = 0;
1041
1042 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1043 buf[l++] = 'P';
1044 if (mod->taints & (1 << TAINT_OOT_MODULE))
1045 buf[l++] = 'O';
1046 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1047 buf[l++] = 'F';
1048 if (mod->taints & (1 << TAINT_CRAP))
1049 buf[l++] = 'C';
1050 /*
1051 * TAINT_FORCED_RMMOD: could be added.
1052 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1053 * apply to modules.
1054 */
1055 return l;
1056 }
1057
1058 static ssize_t show_initstate(struct module_attribute *mattr,
1059 struct module_kobject *mk, char *buffer)
1060 {
1061 const char *state = "unknown";
1062
1063 switch (mk->mod->state) {
1064 case MODULE_STATE_LIVE:
1065 state = "live";
1066 break;
1067 case MODULE_STATE_COMING:
1068 state = "coming";
1069 break;
1070 case MODULE_STATE_GOING:
1071 state = "going";
1072 break;
1073 default:
1074 BUG();
1075 }
1076 return sprintf(buffer, "%s\n", state);
1077 }
1078
1079 static struct module_attribute modinfo_initstate =
1080 __ATTR(initstate, 0444, show_initstate, NULL);
1081
1082 static ssize_t store_uevent(struct module_attribute *mattr,
1083 struct module_kobject *mk,
1084 const char *buffer, size_t count)
1085 {
1086 enum kobject_action action;
1087
1088 if (kobject_action_type(buffer, count, &action) == 0)
1089 kobject_uevent(&mk->kobj, action);
1090 return count;
1091 }
1092
1093 struct module_attribute module_uevent =
1094 __ATTR(uevent, 0200, NULL, store_uevent);
1095
1096 static ssize_t show_coresize(struct module_attribute *mattr,
1097 struct module_kobject *mk, char *buffer)
1098 {
1099 return sprintf(buffer, "%u\n", mk->mod->core_size);
1100 }
1101
1102 static struct module_attribute modinfo_coresize =
1103 __ATTR(coresize, 0444, show_coresize, NULL);
1104
1105 static ssize_t show_initsize(struct module_attribute *mattr,
1106 struct module_kobject *mk, char *buffer)
1107 {
1108 return sprintf(buffer, "%u\n", mk->mod->init_size);
1109 }
1110
1111 static struct module_attribute modinfo_initsize =
1112 __ATTR(initsize, 0444, show_initsize, NULL);
1113
1114 static ssize_t show_taint(struct module_attribute *mattr,
1115 struct module_kobject *mk, char *buffer)
1116 {
1117 size_t l;
1118
1119 l = module_flags_taint(mk->mod, buffer);
1120 buffer[l++] = '\n';
1121 return l;
1122 }
1123
1124 static struct module_attribute modinfo_taint =
1125 __ATTR(taint, 0444, show_taint, NULL);
1126
1127 static struct module_attribute *modinfo_attrs[] = {
1128 &module_uevent,
1129 &modinfo_version,
1130 &modinfo_srcversion,
1131 &modinfo_initstate,
1132 &modinfo_coresize,
1133 &modinfo_initsize,
1134 &modinfo_taint,
1135 #ifdef CONFIG_MODULE_UNLOAD
1136 &modinfo_refcnt,
1137 #endif
1138 NULL,
1139 };
1140
1141 static const char vermagic[] = VERMAGIC_STRING;
1142
1143 static int try_to_force_load(struct module *mod, const char *reason)
1144 {
1145 #ifdef CONFIG_MODULE_FORCE_LOAD
1146 if (!test_taint(TAINT_FORCED_MODULE))
1147 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1148 mod->name, reason);
1149 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1150 return 0;
1151 #else
1152 return -ENOEXEC;
1153 #endif
1154 }
1155
1156 #ifdef CONFIG_MODVERSIONS
1157 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1158 static unsigned long maybe_relocated(unsigned long crc,
1159 const struct module *crc_owner)
1160 {
1161 #ifdef ARCH_RELOCATES_KCRCTAB
1162 if (crc_owner == NULL)
1163 return crc - (unsigned long)reloc_start;
1164 #endif
1165 return crc;
1166 }
1167
1168 static int check_version(Elf_Shdr *sechdrs,
1169 unsigned int versindex,
1170 const char *symname,
1171 struct module *mod,
1172 const unsigned long *crc,
1173 const struct module *crc_owner)
1174 {
1175 unsigned int i, num_versions;
1176 struct modversion_info *versions;
1177
1178 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1179 if (!crc)
1180 return 1;
1181
1182 /* No versions at all? modprobe --force does this. */
1183 if (versindex == 0)
1184 return try_to_force_load(mod, symname) == 0;
1185
1186 versions = (void *) sechdrs[versindex].sh_addr;
1187 num_versions = sechdrs[versindex].sh_size
1188 / sizeof(struct modversion_info);
1189
1190 for (i = 0; i < num_versions; i++) {
1191 if (strcmp(versions[i].name, symname) != 0)
1192 continue;
1193
1194 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1195 return 1;
1196 pr_debug("Found checksum %lX vs module %lX\n",
1197 maybe_relocated(*crc, crc_owner), versions[i].crc);
1198 goto bad_version;
1199 }
1200
1201 printk(KERN_WARNING "%s: no symbol version for %s\n",
1202 mod->name, symname);
1203 return 0;
1204
1205 bad_version:
1206 printk("%s: disagrees about version of symbol %s\n",
1207 mod->name, symname);
1208 return 0;
1209 }
1210
1211 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1212 unsigned int versindex,
1213 struct module *mod)
1214 {
1215 const unsigned long *crc;
1216
1217 /* Since this should be found in kernel (which can't be removed),
1218 * no locking is necessary. */
1219 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1220 &crc, true, false))
1221 BUG();
1222 return check_version(sechdrs, versindex,
1223 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1224 NULL);
1225 }
1226
1227 /* First part is kernel version, which we ignore if module has crcs. */
1228 static inline int same_magic(const char *amagic, const char *bmagic,
1229 bool has_crcs)
1230 {
1231 if (has_crcs) {
1232 amagic += strcspn(amagic, " ");
1233 bmagic += strcspn(bmagic, " ");
1234 }
1235 return strcmp(amagic, bmagic) == 0;
1236 }
1237 #else
1238 static inline int check_version(Elf_Shdr *sechdrs,
1239 unsigned int versindex,
1240 const char *symname,
1241 struct module *mod,
1242 const unsigned long *crc,
1243 const struct module *crc_owner)
1244 {
1245 return 1;
1246 }
1247
1248 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1249 unsigned int versindex,
1250 struct module *mod)
1251 {
1252 return 1;
1253 }
1254
1255 static inline int same_magic(const char *amagic, const char *bmagic,
1256 bool has_crcs)
1257 {
1258 return strcmp(amagic, bmagic) == 0;
1259 }
1260 #endif /* CONFIG_MODVERSIONS */
1261
1262 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1263 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1264 const struct load_info *info,
1265 const char *name,
1266 char ownername[])
1267 {
1268 struct module *owner;
1269 const struct kernel_symbol *sym;
1270 const unsigned long *crc;
1271 int err;
1272
1273 mutex_lock(&module_mutex);
1274 sym = find_symbol(name, &owner, &crc,
1275 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1276 if (!sym)
1277 goto unlock;
1278
1279 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1280 owner)) {
1281 sym = ERR_PTR(-EINVAL);
1282 goto getname;
1283 }
1284
1285 err = ref_module(mod, owner);
1286 if (err) {
1287 sym = ERR_PTR(err);
1288 goto getname;
1289 }
1290
1291 getname:
1292 /* We must make copy under the lock if we failed to get ref. */
1293 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1294 unlock:
1295 mutex_unlock(&module_mutex);
1296 return sym;
1297 }
1298
1299 static const struct kernel_symbol *
1300 resolve_symbol_wait(struct module *mod,
1301 const struct load_info *info,
1302 const char *name)
1303 {
1304 const struct kernel_symbol *ksym;
1305 char owner[MODULE_NAME_LEN];
1306
1307 if (wait_event_interruptible_timeout(module_wq,
1308 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1309 || PTR_ERR(ksym) != -EBUSY,
1310 30 * HZ) <= 0) {
1311 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1312 mod->name, owner);
1313 }
1314 return ksym;
1315 }
1316
1317 /*
1318 * /sys/module/foo/sections stuff
1319 * J. Corbet <corbet@lwn.net>
1320 */
1321 #ifdef CONFIG_SYSFS
1322
1323 #ifdef CONFIG_KALLSYMS
1324 static inline bool sect_empty(const Elf_Shdr *sect)
1325 {
1326 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1327 }
1328
1329 struct module_sect_attr
1330 {
1331 struct module_attribute mattr;
1332 char *name;
1333 unsigned long address;
1334 };
1335
1336 struct module_sect_attrs
1337 {
1338 struct attribute_group grp;
1339 unsigned int nsections;
1340 struct module_sect_attr attrs[0];
1341 };
1342
1343 static ssize_t module_sect_show(struct module_attribute *mattr,
1344 struct module_kobject *mk, char *buf)
1345 {
1346 struct module_sect_attr *sattr =
1347 container_of(mattr, struct module_sect_attr, mattr);
1348 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1349 }
1350
1351 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1352 {
1353 unsigned int section;
1354
1355 for (section = 0; section < sect_attrs->nsections; section++)
1356 kfree(sect_attrs->attrs[section].name);
1357 kfree(sect_attrs);
1358 }
1359
1360 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1361 {
1362 unsigned int nloaded = 0, i, size[2];
1363 struct module_sect_attrs *sect_attrs;
1364 struct module_sect_attr *sattr;
1365 struct attribute **gattr;
1366
1367 /* Count loaded sections and allocate structures */
1368 for (i = 0; i < info->hdr->e_shnum; i++)
1369 if (!sect_empty(&info->sechdrs[i]))
1370 nloaded++;
1371 size[0] = ALIGN(sizeof(*sect_attrs)
1372 + nloaded * sizeof(sect_attrs->attrs[0]),
1373 sizeof(sect_attrs->grp.attrs[0]));
1374 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1375 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1376 if (sect_attrs == NULL)
1377 return;
1378
1379 /* Setup section attributes. */
1380 sect_attrs->grp.name = "sections";
1381 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1382
1383 sect_attrs->nsections = 0;
1384 sattr = &sect_attrs->attrs[0];
1385 gattr = &sect_attrs->grp.attrs[0];
1386 for (i = 0; i < info->hdr->e_shnum; i++) {
1387 Elf_Shdr *sec = &info->sechdrs[i];
1388 if (sect_empty(sec))
1389 continue;
1390 sattr->address = sec->sh_addr;
1391 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1392 GFP_KERNEL);
1393 if (sattr->name == NULL)
1394 goto out;
1395 sect_attrs->nsections++;
1396 sysfs_attr_init(&sattr->mattr.attr);
1397 sattr->mattr.show = module_sect_show;
1398 sattr->mattr.store = NULL;
1399 sattr->mattr.attr.name = sattr->name;
1400 sattr->mattr.attr.mode = S_IRUGO;
1401 *(gattr++) = &(sattr++)->mattr.attr;
1402 }
1403 *gattr = NULL;
1404
1405 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1406 goto out;
1407
1408 mod->sect_attrs = sect_attrs;
1409 return;
1410 out:
1411 free_sect_attrs(sect_attrs);
1412 }
1413
1414 static void remove_sect_attrs(struct module *mod)
1415 {
1416 if (mod->sect_attrs) {
1417 sysfs_remove_group(&mod->mkobj.kobj,
1418 &mod->sect_attrs->grp);
1419 /* We are positive that no one is using any sect attrs
1420 * at this point. Deallocate immediately. */
1421 free_sect_attrs(mod->sect_attrs);
1422 mod->sect_attrs = NULL;
1423 }
1424 }
1425
1426 /*
1427 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1428 */
1429
1430 struct module_notes_attrs {
1431 struct kobject *dir;
1432 unsigned int notes;
1433 struct bin_attribute attrs[0];
1434 };
1435
1436 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1437 struct bin_attribute *bin_attr,
1438 char *buf, loff_t pos, size_t count)
1439 {
1440 /*
1441 * The caller checked the pos and count against our size.
1442 */
1443 memcpy(buf, bin_attr->private + pos, count);
1444 return count;
1445 }
1446
1447 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1448 unsigned int i)
1449 {
1450 if (notes_attrs->dir) {
1451 while (i-- > 0)
1452 sysfs_remove_bin_file(notes_attrs->dir,
1453 &notes_attrs->attrs[i]);
1454 kobject_put(notes_attrs->dir);
1455 }
1456 kfree(notes_attrs);
1457 }
1458
1459 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1460 {
1461 unsigned int notes, loaded, i;
1462 struct module_notes_attrs *notes_attrs;
1463 struct bin_attribute *nattr;
1464
1465 /* failed to create section attributes, so can't create notes */
1466 if (!mod->sect_attrs)
1467 return;
1468
1469 /* Count notes sections and allocate structures. */
1470 notes = 0;
1471 for (i = 0; i < info->hdr->e_shnum; i++)
1472 if (!sect_empty(&info->sechdrs[i]) &&
1473 (info->sechdrs[i].sh_type == SHT_NOTE))
1474 ++notes;
1475
1476 if (notes == 0)
1477 return;
1478
1479 notes_attrs = kzalloc(sizeof(*notes_attrs)
1480 + notes * sizeof(notes_attrs->attrs[0]),
1481 GFP_KERNEL);
1482 if (notes_attrs == NULL)
1483 return;
1484
1485 notes_attrs->notes = notes;
1486 nattr = &notes_attrs->attrs[0];
1487 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1488 if (sect_empty(&info->sechdrs[i]))
1489 continue;
1490 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1491 sysfs_bin_attr_init(nattr);
1492 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1493 nattr->attr.mode = S_IRUGO;
1494 nattr->size = info->sechdrs[i].sh_size;
1495 nattr->private = (void *) info->sechdrs[i].sh_addr;
1496 nattr->read = module_notes_read;
1497 ++nattr;
1498 }
1499 ++loaded;
1500 }
1501
1502 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1503 if (!notes_attrs->dir)
1504 goto out;
1505
1506 for (i = 0; i < notes; ++i)
1507 if (sysfs_create_bin_file(notes_attrs->dir,
1508 &notes_attrs->attrs[i]))
1509 goto out;
1510
1511 mod->notes_attrs = notes_attrs;
1512 return;
1513
1514 out:
1515 free_notes_attrs(notes_attrs, i);
1516 }
1517
1518 static void remove_notes_attrs(struct module *mod)
1519 {
1520 if (mod->notes_attrs)
1521 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1522 }
1523
1524 #else
1525
1526 static inline void add_sect_attrs(struct module *mod,
1527 const struct load_info *info)
1528 {
1529 }
1530
1531 static inline void remove_sect_attrs(struct module *mod)
1532 {
1533 }
1534
1535 static inline void add_notes_attrs(struct module *mod,
1536 const struct load_info *info)
1537 {
1538 }
1539
1540 static inline void remove_notes_attrs(struct module *mod)
1541 {
1542 }
1543 #endif /* CONFIG_KALLSYMS */
1544
1545 static void add_usage_links(struct module *mod)
1546 {
1547 #ifdef CONFIG_MODULE_UNLOAD
1548 struct module_use *use;
1549 int nowarn;
1550
1551 mutex_lock(&module_mutex);
1552 list_for_each_entry(use, &mod->target_list, target_list) {
1553 nowarn = sysfs_create_link(use->target->holders_dir,
1554 &mod->mkobj.kobj, mod->name);
1555 }
1556 mutex_unlock(&module_mutex);
1557 #endif
1558 }
1559
1560 static void del_usage_links(struct module *mod)
1561 {
1562 #ifdef CONFIG_MODULE_UNLOAD
1563 struct module_use *use;
1564
1565 mutex_lock(&module_mutex);
1566 list_for_each_entry(use, &mod->target_list, target_list)
1567 sysfs_remove_link(use->target->holders_dir, mod->name);
1568 mutex_unlock(&module_mutex);
1569 #endif
1570 }
1571
1572 static int module_add_modinfo_attrs(struct module *mod)
1573 {
1574 struct module_attribute *attr;
1575 struct module_attribute *temp_attr;
1576 int error = 0;
1577 int i;
1578
1579 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1580 (ARRAY_SIZE(modinfo_attrs) + 1)),
1581 GFP_KERNEL);
1582 if (!mod->modinfo_attrs)
1583 return -ENOMEM;
1584
1585 temp_attr = mod->modinfo_attrs;
1586 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1587 if (!attr->test ||
1588 (attr->test && attr->test(mod))) {
1589 memcpy(temp_attr, attr, sizeof(*temp_attr));
1590 sysfs_attr_init(&temp_attr->attr);
1591 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1592 ++temp_attr;
1593 }
1594 }
1595 return error;
1596 }
1597
1598 static void module_remove_modinfo_attrs(struct module *mod)
1599 {
1600 struct module_attribute *attr;
1601 int i;
1602
1603 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1604 /* pick a field to test for end of list */
1605 if (!attr->attr.name)
1606 break;
1607 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1608 if (attr->free)
1609 attr->free(mod);
1610 }
1611 kfree(mod->modinfo_attrs);
1612 }
1613
1614 static int mod_sysfs_init(struct module *mod)
1615 {
1616 int err;
1617 struct kobject *kobj;
1618
1619 if (!module_sysfs_initialized) {
1620 printk(KERN_ERR "%s: module sysfs not initialized\n",
1621 mod->name);
1622 err = -EINVAL;
1623 goto out;
1624 }
1625
1626 kobj = kset_find_obj(module_kset, mod->name);
1627 if (kobj) {
1628 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1629 kobject_put(kobj);
1630 err = -EINVAL;
1631 goto out;
1632 }
1633
1634 mod->mkobj.mod = mod;
1635
1636 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1637 mod->mkobj.kobj.kset = module_kset;
1638 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1639 "%s", mod->name);
1640 if (err)
1641 kobject_put(&mod->mkobj.kobj);
1642
1643 /* delay uevent until full sysfs population */
1644 out:
1645 return err;
1646 }
1647
1648 static int mod_sysfs_setup(struct module *mod,
1649 const struct load_info *info,
1650 struct kernel_param *kparam,
1651 unsigned int num_params)
1652 {
1653 int err;
1654
1655 err = mod_sysfs_init(mod);
1656 if (err)
1657 goto out;
1658
1659 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1660 if (!mod->holders_dir) {
1661 err = -ENOMEM;
1662 goto out_unreg;
1663 }
1664
1665 err = module_param_sysfs_setup(mod, kparam, num_params);
1666 if (err)
1667 goto out_unreg_holders;
1668
1669 err = module_add_modinfo_attrs(mod);
1670 if (err)
1671 goto out_unreg_param;
1672
1673 add_usage_links(mod);
1674 add_sect_attrs(mod, info);
1675 add_notes_attrs(mod, info);
1676
1677 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1678 return 0;
1679
1680 out_unreg_param:
1681 module_param_sysfs_remove(mod);
1682 out_unreg_holders:
1683 kobject_put(mod->holders_dir);
1684 out_unreg:
1685 kobject_put(&mod->mkobj.kobj);
1686 out:
1687 return err;
1688 }
1689
1690 static void mod_sysfs_fini(struct module *mod)
1691 {
1692 remove_notes_attrs(mod);
1693 remove_sect_attrs(mod);
1694 kobject_put(&mod->mkobj.kobj);
1695 }
1696
1697 #else /* !CONFIG_SYSFS */
1698
1699 static int mod_sysfs_setup(struct module *mod,
1700 const struct load_info *info,
1701 struct kernel_param *kparam,
1702 unsigned int num_params)
1703 {
1704 return 0;
1705 }
1706
1707 static void mod_sysfs_fini(struct module *mod)
1708 {
1709 }
1710
1711 static void module_remove_modinfo_attrs(struct module *mod)
1712 {
1713 }
1714
1715 static void del_usage_links(struct module *mod)
1716 {
1717 }
1718
1719 #endif /* CONFIG_SYSFS */
1720
1721 static void mod_sysfs_teardown(struct module *mod)
1722 {
1723 del_usage_links(mod);
1724 module_remove_modinfo_attrs(mod);
1725 module_param_sysfs_remove(mod);
1726 kobject_put(mod->mkobj.drivers_dir);
1727 kobject_put(mod->holders_dir);
1728 mod_sysfs_fini(mod);
1729 }
1730
1731 /*
1732 * unlink the module with the whole machine is stopped with interrupts off
1733 * - this defends against kallsyms not taking locks
1734 */
1735 static int __unlink_module(void *_mod)
1736 {
1737 struct module *mod = _mod;
1738 list_del(&mod->list);
1739 module_bug_cleanup(mod);
1740 return 0;
1741 }
1742
1743 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1744 /*
1745 * LKM RO/NX protection: protect module's text/ro-data
1746 * from modification and any data from execution.
1747 */
1748 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1749 {
1750 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1751 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1752
1753 if (end_pfn > begin_pfn)
1754 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1755 }
1756
1757 static void set_section_ro_nx(void *base,
1758 unsigned long text_size,
1759 unsigned long ro_size,
1760 unsigned long total_size)
1761 {
1762 /* begin and end PFNs of the current subsection */
1763 unsigned long begin_pfn;
1764 unsigned long end_pfn;
1765
1766 /*
1767 * Set RO for module text and RO-data:
1768 * - Always protect first page.
1769 * - Do not protect last partial page.
1770 */
1771 if (ro_size > 0)
1772 set_page_attributes(base, base + ro_size, set_memory_ro);
1773
1774 /*
1775 * Set NX permissions for module data:
1776 * - Do not protect first partial page.
1777 * - Always protect last page.
1778 */
1779 if (total_size > text_size) {
1780 begin_pfn = PFN_UP((unsigned long)base + text_size);
1781 end_pfn = PFN_UP((unsigned long)base + total_size);
1782 if (end_pfn > begin_pfn)
1783 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1784 }
1785 }
1786
1787 static void unset_module_core_ro_nx(struct module *mod)
1788 {
1789 set_page_attributes(mod->module_core + mod->core_text_size,
1790 mod->module_core + mod->core_size,
1791 set_memory_x);
1792 set_page_attributes(mod->module_core,
1793 mod->module_core + mod->core_ro_size,
1794 set_memory_rw);
1795 }
1796
1797 static void unset_module_init_ro_nx(struct module *mod)
1798 {
1799 set_page_attributes(mod->module_init + mod->init_text_size,
1800 mod->module_init + mod->init_size,
1801 set_memory_x);
1802 set_page_attributes(mod->module_init,
1803 mod->module_init + mod->init_ro_size,
1804 set_memory_rw);
1805 }
1806
1807 /* Iterate through all modules and set each module's text as RW */
1808 void set_all_modules_text_rw(void)
1809 {
1810 struct module *mod;
1811
1812 mutex_lock(&module_mutex);
1813 list_for_each_entry_rcu(mod, &modules, list) {
1814 if (mod->state == MODULE_STATE_UNFORMED)
1815 continue;
1816 if ((mod->module_core) && (mod->core_text_size)) {
1817 set_page_attributes(mod->module_core,
1818 mod->module_core + mod->core_text_size,
1819 set_memory_rw);
1820 }
1821 if ((mod->module_init) && (mod->init_text_size)) {
1822 set_page_attributes(mod->module_init,
1823 mod->module_init + mod->init_text_size,
1824 set_memory_rw);
1825 }
1826 }
1827 mutex_unlock(&module_mutex);
1828 }
1829
1830 /* Iterate through all modules and set each module's text as RO */
1831 void set_all_modules_text_ro(void)
1832 {
1833 struct module *mod;
1834
1835 mutex_lock(&module_mutex);
1836 list_for_each_entry_rcu(mod, &modules, list) {
1837 if (mod->state == MODULE_STATE_UNFORMED)
1838 continue;
1839 if ((mod->module_core) && (mod->core_text_size)) {
1840 set_page_attributes(mod->module_core,
1841 mod->module_core + mod->core_text_size,
1842 set_memory_ro);
1843 }
1844 if ((mod->module_init) && (mod->init_text_size)) {
1845 set_page_attributes(mod->module_init,
1846 mod->module_init + mod->init_text_size,
1847 set_memory_ro);
1848 }
1849 }
1850 mutex_unlock(&module_mutex);
1851 }
1852 #else
1853 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1854 static void unset_module_core_ro_nx(struct module *mod) { }
1855 static void unset_module_init_ro_nx(struct module *mod) { }
1856 #endif
1857
1858 void __weak module_free(struct module *mod, void *module_region)
1859 {
1860 vfree(module_region);
1861 }
1862
1863 void __weak module_arch_cleanup(struct module *mod)
1864 {
1865 }
1866
1867 /* Free a module, remove from lists, etc. */
1868 static void free_module(struct module *mod)
1869 {
1870 trace_module_free(mod);
1871
1872 mod_sysfs_teardown(mod);
1873
1874 /* We leave it in list to prevent duplicate loads, but make sure
1875 * that noone uses it while it's being deconstructed. */
1876 mutex_lock(&module_mutex);
1877 mod->state = MODULE_STATE_UNFORMED;
1878 mutex_unlock(&module_mutex);
1879
1880 /* Remove dynamic debug info */
1881 ddebug_remove_module(mod->name);
1882
1883 /* Arch-specific cleanup. */
1884 module_arch_cleanup(mod);
1885
1886 /* Module unload stuff */
1887 module_unload_free(mod);
1888
1889 /* Free any allocated parameters. */
1890 destroy_params(mod->kp, mod->num_kp);
1891
1892 /* Now we can delete it from the lists */
1893 mutex_lock(&module_mutex);
1894 stop_machine(__unlink_module, mod, NULL);
1895 mutex_unlock(&module_mutex);
1896
1897 /* This may be NULL, but that's OK */
1898 unset_module_init_ro_nx(mod);
1899 module_free(mod, mod->module_init);
1900 kfree(mod->args);
1901 percpu_modfree(mod);
1902
1903 /* Free lock-classes: */
1904 lockdep_free_key_range(mod->module_core, mod->core_size);
1905
1906 /* Finally, free the core (containing the module structure) */
1907 unset_module_core_ro_nx(mod);
1908 module_free(mod, mod->module_core);
1909
1910 #ifdef CONFIG_MPU
1911 update_protections(current->mm);
1912 #endif
1913 }
1914
1915 void *__symbol_get(const char *symbol)
1916 {
1917 struct module *owner;
1918 const struct kernel_symbol *sym;
1919
1920 preempt_disable();
1921 sym = find_symbol(symbol, &owner, NULL, true, true);
1922 if (sym && strong_try_module_get(owner))
1923 sym = NULL;
1924 preempt_enable();
1925
1926 return sym ? (void *)sym->value : NULL;
1927 }
1928 EXPORT_SYMBOL_GPL(__symbol_get);
1929
1930 /*
1931 * Ensure that an exported symbol [global namespace] does not already exist
1932 * in the kernel or in some other module's exported symbol table.
1933 *
1934 * You must hold the module_mutex.
1935 */
1936 static int verify_export_symbols(struct module *mod)
1937 {
1938 unsigned int i;
1939 struct module *owner;
1940 const struct kernel_symbol *s;
1941 struct {
1942 const struct kernel_symbol *sym;
1943 unsigned int num;
1944 } arr[] = {
1945 { mod->syms, mod->num_syms },
1946 { mod->gpl_syms, mod->num_gpl_syms },
1947 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1948 #ifdef CONFIG_UNUSED_SYMBOLS
1949 { mod->unused_syms, mod->num_unused_syms },
1950 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1951 #endif
1952 };
1953
1954 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1955 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1956 if (find_symbol(s->name, &owner, NULL, true, false)) {
1957 printk(KERN_ERR
1958 "%s: exports duplicate symbol %s"
1959 " (owned by %s)\n",
1960 mod->name, s->name, module_name(owner));
1961 return -ENOEXEC;
1962 }
1963 }
1964 }
1965 return 0;
1966 }
1967
1968 /* Change all symbols so that st_value encodes the pointer directly. */
1969 static int simplify_symbols(struct module *mod, const struct load_info *info)
1970 {
1971 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1972 Elf_Sym *sym = (void *)symsec->sh_addr;
1973 unsigned long secbase;
1974 unsigned int i;
1975 int ret = 0;
1976 const struct kernel_symbol *ksym;
1977
1978 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1979 const char *name = info->strtab + sym[i].st_name;
1980
1981 switch (sym[i].st_shndx) {
1982 case SHN_COMMON:
1983 /* We compiled with -fno-common. These are not
1984 supposed to happen. */
1985 pr_debug("Common symbol: %s\n", name);
1986 printk("%s: please compile with -fno-common\n",
1987 mod->name);
1988 ret = -ENOEXEC;
1989 break;
1990
1991 case SHN_ABS:
1992 /* Don't need to do anything */
1993 pr_debug("Absolute symbol: 0x%08lx\n",
1994 (long)sym[i].st_value);
1995 break;
1996
1997 case SHN_UNDEF:
1998 ksym = resolve_symbol_wait(mod, info, name);
1999 /* Ok if resolved. */
2000 if (ksym && !IS_ERR(ksym)) {
2001 sym[i].st_value = ksym->value;
2002 break;
2003 }
2004
2005 /* Ok if weak. */
2006 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2007 break;
2008
2009 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
2010 mod->name, name, PTR_ERR(ksym));
2011 ret = PTR_ERR(ksym) ?: -ENOENT;
2012 break;
2013
2014 default:
2015 /* Divert to percpu allocation if a percpu var. */
2016 if (sym[i].st_shndx == info->index.pcpu)
2017 secbase = (unsigned long)mod_percpu(mod);
2018 else
2019 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2020 sym[i].st_value += secbase;
2021 break;
2022 }
2023 }
2024
2025 return ret;
2026 }
2027
2028 static int apply_relocations(struct module *mod, const struct load_info *info)
2029 {
2030 unsigned int i;
2031 int err = 0;
2032
2033 /* Now do relocations. */
2034 for (i = 1; i < info->hdr->e_shnum; i++) {
2035 unsigned int infosec = info->sechdrs[i].sh_info;
2036
2037 /* Not a valid relocation section? */
2038 if (infosec >= info->hdr->e_shnum)
2039 continue;
2040
2041 /* Don't bother with non-allocated sections */
2042 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2043 continue;
2044
2045 if (info->sechdrs[i].sh_type == SHT_REL)
2046 err = apply_relocate(info->sechdrs, info->strtab,
2047 info->index.sym, i, mod);
2048 else if (info->sechdrs[i].sh_type == SHT_RELA)
2049 err = apply_relocate_add(info->sechdrs, info->strtab,
2050 info->index.sym, i, mod);
2051 if (err < 0)
2052 break;
2053 }
2054 return err;
2055 }
2056
2057 /* Additional bytes needed by arch in front of individual sections */
2058 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2059 unsigned int section)
2060 {
2061 /* default implementation just returns zero */
2062 return 0;
2063 }
2064
2065 /* Update size with this section: return offset. */
2066 static long get_offset(struct module *mod, unsigned int *size,
2067 Elf_Shdr *sechdr, unsigned int section)
2068 {
2069 long ret;
2070
2071 *size += arch_mod_section_prepend(mod, section);
2072 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2073 *size = ret + sechdr->sh_size;
2074 return ret;
2075 }
2076
2077 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2078 might -- code, read-only data, read-write data, small data. Tally
2079 sizes, and place the offsets into sh_entsize fields: high bit means it
2080 belongs in init. */
2081 static void layout_sections(struct module *mod, struct load_info *info)
2082 {
2083 static unsigned long const masks[][2] = {
2084 /* NOTE: all executable code must be the first section
2085 * in this array; otherwise modify the text_size
2086 * finder in the two loops below */
2087 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2088 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2089 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2090 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2091 };
2092 unsigned int m, i;
2093
2094 for (i = 0; i < info->hdr->e_shnum; i++)
2095 info->sechdrs[i].sh_entsize = ~0UL;
2096
2097 pr_debug("Core section allocation order:\n");
2098 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2099 for (i = 0; i < info->hdr->e_shnum; ++i) {
2100 Elf_Shdr *s = &info->sechdrs[i];
2101 const char *sname = info->secstrings + s->sh_name;
2102
2103 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2104 || (s->sh_flags & masks[m][1])
2105 || s->sh_entsize != ~0UL
2106 || strstarts(sname, ".init"))
2107 continue;
2108 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2109 pr_debug("\t%s\n", sname);
2110 }
2111 switch (m) {
2112 case 0: /* executable */
2113 mod->core_size = debug_align(mod->core_size);
2114 mod->core_text_size = mod->core_size;
2115 break;
2116 case 1: /* RO: text and ro-data */
2117 mod->core_size = debug_align(mod->core_size);
2118 mod->core_ro_size = mod->core_size;
2119 break;
2120 case 3: /* whole core */
2121 mod->core_size = debug_align(mod->core_size);
2122 break;
2123 }
2124 }
2125
2126 pr_debug("Init section allocation order:\n");
2127 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2128 for (i = 0; i < info->hdr->e_shnum; ++i) {
2129 Elf_Shdr *s = &info->sechdrs[i];
2130 const char *sname = info->secstrings + s->sh_name;
2131
2132 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2133 || (s->sh_flags & masks[m][1])
2134 || s->sh_entsize != ~0UL
2135 || !strstarts(sname, ".init"))
2136 continue;
2137 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2138 | INIT_OFFSET_MASK);
2139 pr_debug("\t%s\n", sname);
2140 }
2141 switch (m) {
2142 case 0: /* executable */
2143 mod->init_size = debug_align(mod->init_size);
2144 mod->init_text_size = mod->init_size;
2145 break;
2146 case 1: /* RO: text and ro-data */
2147 mod->init_size = debug_align(mod->init_size);
2148 mod->init_ro_size = mod->init_size;
2149 break;
2150 case 3: /* whole init */
2151 mod->init_size = debug_align(mod->init_size);
2152 break;
2153 }
2154 }
2155 }
2156
2157 static void set_license(struct module *mod, const char *license)
2158 {
2159 if (!license)
2160 license = "unspecified";
2161
2162 if (!license_is_gpl_compatible(license)) {
2163 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2164 printk(KERN_WARNING "%s: module license '%s' taints "
2165 "kernel.\n", mod->name, license);
2166 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2167 LOCKDEP_NOW_UNRELIABLE);
2168 }
2169 }
2170
2171 /* Parse tag=value strings from .modinfo section */
2172 static char *next_string(char *string, unsigned long *secsize)
2173 {
2174 /* Skip non-zero chars */
2175 while (string[0]) {
2176 string++;
2177 if ((*secsize)-- <= 1)
2178 return NULL;
2179 }
2180
2181 /* Skip any zero padding. */
2182 while (!string[0]) {
2183 string++;
2184 if ((*secsize)-- <= 1)
2185 return NULL;
2186 }
2187 return string;
2188 }
2189
2190 static char *get_modinfo(struct load_info *info, const char *tag)
2191 {
2192 char *p;
2193 unsigned int taglen = strlen(tag);
2194 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2195 unsigned long size = infosec->sh_size;
2196
2197 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2198 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2199 return p + taglen + 1;
2200 }
2201 return NULL;
2202 }
2203
2204 static void setup_modinfo(struct module *mod, struct load_info *info)
2205 {
2206 struct module_attribute *attr;
2207 int i;
2208
2209 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2210 if (attr->setup)
2211 attr->setup(mod, get_modinfo(info, attr->attr.name));
2212 }
2213 }
2214
2215 static void free_modinfo(struct module *mod)
2216 {
2217 struct module_attribute *attr;
2218 int i;
2219
2220 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2221 if (attr->free)
2222 attr->free(mod);
2223 }
2224 }
2225
2226 #ifdef CONFIG_KALLSYMS
2227
2228 /* lookup symbol in given range of kernel_symbols */
2229 static const struct kernel_symbol *lookup_symbol(const char *name,
2230 const struct kernel_symbol *start,
2231 const struct kernel_symbol *stop)
2232 {
2233 return bsearch(name, start, stop - start,
2234 sizeof(struct kernel_symbol), cmp_name);
2235 }
2236
2237 static int is_exported(const char *name, unsigned long value,
2238 const struct module *mod)
2239 {
2240 const struct kernel_symbol *ks;
2241 if (!mod)
2242 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2243 else
2244 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2245 return ks != NULL && ks->value == value;
2246 }
2247
2248 /* As per nm */
2249 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2250 {
2251 const Elf_Shdr *sechdrs = info->sechdrs;
2252
2253 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2254 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2255 return 'v';
2256 else
2257 return 'w';
2258 }
2259 if (sym->st_shndx == SHN_UNDEF)
2260 return 'U';
2261 if (sym->st_shndx == SHN_ABS)
2262 return 'a';
2263 if (sym->st_shndx >= SHN_LORESERVE)
2264 return '?';
2265 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2266 return 't';
2267 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2268 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2269 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2270 return 'r';
2271 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2272 return 'g';
2273 else
2274 return 'd';
2275 }
2276 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2277 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2278 return 's';
2279 else
2280 return 'b';
2281 }
2282 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2283 ".debug")) {
2284 return 'n';
2285 }
2286 return '?';
2287 }
2288
2289 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2290 unsigned int shnum)
2291 {
2292 const Elf_Shdr *sec;
2293
2294 if (src->st_shndx == SHN_UNDEF
2295 || src->st_shndx >= shnum
2296 || !src->st_name)
2297 return false;
2298
2299 sec = sechdrs + src->st_shndx;
2300 if (!(sec->sh_flags & SHF_ALLOC)
2301 #ifndef CONFIG_KALLSYMS_ALL
2302 || !(sec->sh_flags & SHF_EXECINSTR)
2303 #endif
2304 || (sec->sh_entsize & INIT_OFFSET_MASK))
2305 return false;
2306
2307 return true;
2308 }
2309
2310 /*
2311 * We only allocate and copy the strings needed by the parts of symtab
2312 * we keep. This is simple, but has the effect of making multiple
2313 * copies of duplicates. We could be more sophisticated, see
2314 * linux-kernel thread starting with
2315 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2316 */
2317 static void layout_symtab(struct module *mod, struct load_info *info)
2318 {
2319 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2320 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2321 const Elf_Sym *src;
2322 unsigned int i, nsrc, ndst, strtab_size = 0;
2323
2324 /* Put symbol section at end of init part of module. */
2325 symsect->sh_flags |= SHF_ALLOC;
2326 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2327 info->index.sym) | INIT_OFFSET_MASK;
2328 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2329
2330 src = (void *)info->hdr + symsect->sh_offset;
2331 nsrc = symsect->sh_size / sizeof(*src);
2332
2333 /* Compute total space required for the core symbols' strtab. */
2334 for (ndst = i = 0; i < nsrc; i++) {
2335 if (i == 0 ||
2336 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2337 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2338 ndst++;
2339 }
2340 }
2341
2342 /* Append room for core symbols at end of core part. */
2343 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2344 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2345 mod->core_size += strtab_size;
2346
2347 /* Put string table section at end of init part of module. */
2348 strsect->sh_flags |= SHF_ALLOC;
2349 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2350 info->index.str) | INIT_OFFSET_MASK;
2351 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2352
2353 /* We'll tack temporary mod_kallsyms on the end. */
2354 mod->init_size = ALIGN(mod->init_size,
2355 __alignof__(struct mod_kallsyms));
2356 info->mod_kallsyms_init_off = mod->init_size;
2357 mod->init_size += sizeof(struct mod_kallsyms);
2358 mod->init_size = debug_align(mod->init_size);
2359 }
2360
2361 /*
2362 * We use the full symtab and strtab which layout_symtab arranged to
2363 * be appended to the init section. Later we switch to the cut-down
2364 * core-only ones.
2365 */
2366 static void add_kallsyms(struct module *mod, const struct load_info *info)
2367 {
2368 unsigned int i, ndst;
2369 const Elf_Sym *src;
2370 Elf_Sym *dst;
2371 char *s;
2372 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2373
2374 /* Set up to point into init section. */
2375 mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2376
2377 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2378 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2379 /* Make sure we get permanent strtab: don't use info->strtab. */
2380 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2381
2382 /* Set types up while we still have access to sections. */
2383 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2384 mod->kallsyms->symtab[i].st_info
2385 = elf_type(&mod->kallsyms->symtab[i], info);
2386
2387 /* Now populate the cut down core kallsyms for after init. */
2388 mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2389 mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2390 src = mod->kallsyms->symtab;
2391 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2392 if (i == 0 ||
2393 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2394 dst[ndst] = src[i];
2395 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2396 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2397 KSYM_NAME_LEN) + 1;
2398 }
2399 }
2400 mod->core_kallsyms.num_symtab = ndst;
2401 }
2402 #else
2403 static inline void layout_symtab(struct module *mod, struct load_info *info)
2404 {
2405 }
2406
2407 static void add_kallsyms(struct module *mod, const struct load_info *info)
2408 {
2409 }
2410 #endif /* CONFIG_KALLSYMS */
2411
2412 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2413 {
2414 if (!debug)
2415 return;
2416 #ifdef CONFIG_DYNAMIC_DEBUG
2417 if (ddebug_add_module(debug, num, debug->modname))
2418 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2419 debug->modname);
2420 #endif
2421 }
2422
2423 static void dynamic_debug_remove(struct _ddebug *debug)
2424 {
2425 if (debug)
2426 ddebug_remove_module(debug->modname);
2427 }
2428
2429 void * __weak module_alloc(unsigned long size)
2430 {
2431 return vmalloc_exec(size);
2432 }
2433
2434 static void *module_alloc_update_bounds(unsigned long size)
2435 {
2436 void *ret = module_alloc(size);
2437
2438 if (ret) {
2439 mutex_lock(&module_mutex);
2440 /* Update module bounds. */
2441 if ((unsigned long)ret < module_addr_min)
2442 module_addr_min = (unsigned long)ret;
2443 if ((unsigned long)ret + size > module_addr_max)
2444 module_addr_max = (unsigned long)ret + size;
2445 mutex_unlock(&module_mutex);
2446 }
2447 return ret;
2448 }
2449
2450 #ifdef CONFIG_DEBUG_KMEMLEAK
2451 static void kmemleak_load_module(const struct module *mod,
2452 const struct load_info *info)
2453 {
2454 unsigned int i;
2455
2456 /* only scan the sections containing data */
2457 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2458
2459 for (i = 1; i < info->hdr->e_shnum; i++) {
2460 /* Scan all writable sections that's not executable */
2461 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2462 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2463 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2464 continue;
2465
2466 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2467 info->sechdrs[i].sh_size, GFP_KERNEL);
2468 }
2469 }
2470 #else
2471 static inline void kmemleak_load_module(const struct module *mod,
2472 const struct load_info *info)
2473 {
2474 }
2475 #endif
2476
2477 #ifdef CONFIG_MODULE_SIG
2478 static int module_sig_check(struct load_info *info, int flags)
2479 {
2480 int err = -ENOKEY;
2481 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2482 const void *mod = info->hdr;
2483
2484 /*
2485 * Require flags == 0, as a module with version information
2486 * removed is no longer the module that was signed
2487 */
2488 if (flags == 0 &&
2489 info->len > markerlen &&
2490 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2491 /* We truncate the module to discard the signature */
2492 info->len -= markerlen;
2493 err = mod_verify_sig(mod, &info->len);
2494 }
2495
2496 if (!err) {
2497 info->sig_ok = true;
2498 return 0;
2499 }
2500
2501 /* Not having a signature is only an error if we're strict. */
2502 if (err < 0 && fips_enabled)
2503 panic("Module verification failed with error %d in FIPS mode\n",
2504 err);
2505 if (err == -ENOKEY && !sig_enforce)
2506 err = 0;
2507
2508 return err;
2509 }
2510 #else /* !CONFIG_MODULE_SIG */
2511 static int module_sig_check(struct load_info *info, int flags)
2512 {
2513 return 0;
2514 }
2515 #endif /* !CONFIG_MODULE_SIG */
2516
2517 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2518 static int elf_header_check(struct load_info *info)
2519 {
2520 if (info->len < sizeof(*(info->hdr)))
2521 return -ENOEXEC;
2522
2523 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2524 || info->hdr->e_type != ET_REL
2525 || !elf_check_arch(info->hdr)
2526 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2527 return -ENOEXEC;
2528
2529 if (info->hdr->e_shoff >= info->len
2530 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2531 info->len - info->hdr->e_shoff))
2532 return -ENOEXEC;
2533
2534 return 0;
2535 }
2536
2537 /* Sets info->hdr and info->len. */
2538 static int copy_module_from_user(const void __user *umod, unsigned long len,
2539 struct load_info *info)
2540 {
2541 int err;
2542
2543 info->len = len;
2544 if (info->len < sizeof(*(info->hdr)))
2545 return -ENOEXEC;
2546
2547 err = security_kernel_module_from_file(NULL);
2548 if (err)
2549 return err;
2550
2551 /* Suck in entire file: we'll want most of it. */
2552 info->hdr = vmalloc(info->len);
2553 if (!info->hdr)
2554 return -ENOMEM;
2555
2556 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2557 vfree(info->hdr);
2558 return -EFAULT;
2559 }
2560
2561 return 0;
2562 }
2563
2564 /* Sets info->hdr and info->len. */
2565 static int copy_module_from_fd(int fd, struct load_info *info)
2566 {
2567 struct file *file;
2568 int err;
2569 struct kstat stat;
2570 loff_t pos;
2571 ssize_t bytes = 0;
2572
2573 file = fget(fd);
2574 if (!file)
2575 return -ENOEXEC;
2576
2577 err = security_kernel_module_from_file(file);
2578 if (err)
2579 goto out;
2580
2581 err = vfs_getattr(&file->f_path, &stat);
2582 if (err)
2583 goto out;
2584
2585 if (stat.size > INT_MAX) {
2586 err = -EFBIG;
2587 goto out;
2588 }
2589
2590 /* Don't hand 0 to vmalloc, it whines. */
2591 if (stat.size == 0) {
2592 err = -EINVAL;
2593 goto out;
2594 }
2595
2596 info->hdr = vmalloc(stat.size);
2597 if (!info->hdr) {
2598 err = -ENOMEM;
2599 goto out;
2600 }
2601
2602 pos = 0;
2603 while (pos < stat.size) {
2604 bytes = kernel_read(file, pos, (char *)(info->hdr) + pos,
2605 stat.size - pos);
2606 if (bytes < 0) {
2607 vfree(info->hdr);
2608 err = bytes;
2609 goto out;
2610 }
2611 if (bytes == 0)
2612 break;
2613 pos += bytes;
2614 }
2615 info->len = pos;
2616
2617 out:
2618 fput(file);
2619 return err;
2620 }
2621
2622 static void free_copy(struct load_info *info)
2623 {
2624 vfree(info->hdr);
2625 }
2626
2627 static int rewrite_section_headers(struct load_info *info, int flags)
2628 {
2629 unsigned int i;
2630
2631 /* This should always be true, but let's be sure. */
2632 info->sechdrs[0].sh_addr = 0;
2633
2634 for (i = 1; i < info->hdr->e_shnum; i++) {
2635 Elf_Shdr *shdr = &info->sechdrs[i];
2636 if (shdr->sh_type != SHT_NOBITS
2637 && info->len < shdr->sh_offset + shdr->sh_size) {
2638 printk(KERN_ERR "Module len %lu truncated\n",
2639 info->len);
2640 return -ENOEXEC;
2641 }
2642
2643 /* Mark all sections sh_addr with their address in the
2644 temporary image. */
2645 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2646
2647 #ifndef CONFIG_MODULE_UNLOAD
2648 /* Don't load .exit sections */
2649 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2650 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2651 #endif
2652 }
2653
2654 /* Track but don't keep modinfo and version sections. */
2655 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2656 info->index.vers = 0; /* Pretend no __versions section! */
2657 else
2658 info->index.vers = find_sec(info, "__versions");
2659 info->index.info = find_sec(info, ".modinfo");
2660 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2661 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2662 return 0;
2663 }
2664
2665 /*
2666 * Set up our basic convenience variables (pointers to section headers,
2667 * search for module section index etc), and do some basic section
2668 * verification.
2669 *
2670 * Return the temporary module pointer (we'll replace it with the final
2671 * one when we move the module sections around).
2672 */
2673 static struct module *setup_load_info(struct load_info *info, int flags)
2674 {
2675 unsigned int i;
2676 int err;
2677 struct module *mod;
2678
2679 /* Set up the convenience variables */
2680 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2681 info->secstrings = (void *)info->hdr
2682 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2683
2684 err = rewrite_section_headers(info, flags);
2685 if (err)
2686 return ERR_PTR(err);
2687
2688 /* Find internal symbols and strings. */
2689 for (i = 1; i < info->hdr->e_shnum; i++) {
2690 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2691 info->index.sym = i;
2692 info->index.str = info->sechdrs[i].sh_link;
2693 info->strtab = (char *)info->hdr
2694 + info->sechdrs[info->index.str].sh_offset;
2695 break;
2696 }
2697 }
2698
2699 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2700 if (!info->index.mod) {
2701 printk(KERN_WARNING "No module found in object\n");
2702 return ERR_PTR(-ENOEXEC);
2703 }
2704 /* This is temporary: point mod into copy of data. */
2705 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2706
2707 if (info->index.sym == 0) {
2708 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2709 mod->name);
2710 return ERR_PTR(-ENOEXEC);
2711 }
2712
2713 info->index.pcpu = find_pcpusec(info);
2714
2715 /* Check module struct version now, before we try to use module. */
2716 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2717 return ERR_PTR(-ENOEXEC);
2718
2719 return mod;
2720 }
2721
2722 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2723 {
2724 const char *modmagic = get_modinfo(info, "vermagic");
2725 int err;
2726
2727 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2728 modmagic = NULL;
2729
2730 /* This is allowed: modprobe --force will invalidate it. */
2731 if (!modmagic) {
2732 err = try_to_force_load(mod, "bad vermagic");
2733 if (err)
2734 return err;
2735 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2736 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2737 mod->name, modmagic, vermagic);
2738 return -ENOEXEC;
2739 }
2740
2741 if (!get_modinfo(info, "intree"))
2742 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2743
2744 if (get_modinfo(info, "staging")) {
2745 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2746 printk(KERN_WARNING "%s: module is from the staging directory,"
2747 " the quality is unknown, you have been warned.\n",
2748 mod->name);
2749 }
2750
2751 /* Set up license info based on the info section */
2752 set_license(mod, get_modinfo(info, "license"));
2753
2754 return 0;
2755 }
2756
2757 static void find_module_sections(struct module *mod, struct load_info *info)
2758 {
2759 mod->kp = section_objs(info, "__param",
2760 sizeof(*mod->kp), &mod->num_kp);
2761 mod->syms = section_objs(info, "__ksymtab",
2762 sizeof(*mod->syms), &mod->num_syms);
2763 mod->crcs = section_addr(info, "__kcrctab");
2764 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2765 sizeof(*mod->gpl_syms),
2766 &mod->num_gpl_syms);
2767 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2768 mod->gpl_future_syms = section_objs(info,
2769 "__ksymtab_gpl_future",
2770 sizeof(*mod->gpl_future_syms),
2771 &mod->num_gpl_future_syms);
2772 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2773
2774 #ifdef CONFIG_UNUSED_SYMBOLS
2775 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2776 sizeof(*mod->unused_syms),
2777 &mod->num_unused_syms);
2778 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2779 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2780 sizeof(*mod->unused_gpl_syms),
2781 &mod->num_unused_gpl_syms);
2782 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2783 #endif
2784 #ifdef CONFIG_CONSTRUCTORS
2785 mod->ctors = section_objs(info, ".ctors",
2786 sizeof(*mod->ctors), &mod->num_ctors);
2787 #endif
2788
2789 #ifdef CONFIG_TRACEPOINTS
2790 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2791 sizeof(*mod->tracepoints_ptrs),
2792 &mod->num_tracepoints);
2793 #endif
2794 #ifdef HAVE_JUMP_LABEL
2795 mod->jump_entries = section_objs(info, "__jump_table",
2796 sizeof(*mod->jump_entries),
2797 &mod->num_jump_entries);
2798 #endif
2799 #ifdef CONFIG_EVENT_TRACING
2800 mod->trace_events = section_objs(info, "_ftrace_events",
2801 sizeof(*mod->trace_events),
2802 &mod->num_trace_events);
2803 #endif
2804 #ifdef CONFIG_TRACING
2805 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2806 sizeof(*mod->trace_bprintk_fmt_start),
2807 &mod->num_trace_bprintk_fmt);
2808 #endif
2809 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2810 /* sechdrs[0].sh_size is always zero */
2811 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2812 sizeof(*mod->ftrace_callsites),
2813 &mod->num_ftrace_callsites);
2814 #endif
2815
2816 mod->extable = section_objs(info, "__ex_table",
2817 sizeof(*mod->extable), &mod->num_exentries);
2818
2819 if (section_addr(info, "__obsparm"))
2820 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2821 mod->name);
2822
2823 info->debug = section_objs(info, "__verbose",
2824 sizeof(*info->debug), &info->num_debug);
2825 }
2826
2827 static int move_module(struct module *mod, struct load_info *info)
2828 {
2829 int i;
2830 void *ptr;
2831
2832 /* Do the allocs. */
2833 ptr = module_alloc_update_bounds(mod->core_size);
2834 /*
2835 * The pointer to this block is stored in the module structure
2836 * which is inside the block. Just mark it as not being a
2837 * leak.
2838 */
2839 kmemleak_not_leak(ptr);
2840 if (!ptr)
2841 return -ENOMEM;
2842
2843 memset(ptr, 0, mod->core_size);
2844 mod->module_core = ptr;
2845
2846 if (mod->init_size) {
2847 ptr = module_alloc_update_bounds(mod->init_size);
2848 /*
2849 * The pointer to this block is stored in the module structure
2850 * which is inside the block. This block doesn't need to be
2851 * scanned as it contains data and code that will be freed
2852 * after the module is initialized.
2853 */
2854 kmemleak_ignore(ptr);
2855 if (!ptr) {
2856 module_free(mod, mod->module_core);
2857 return -ENOMEM;
2858 }
2859 memset(ptr, 0, mod->init_size);
2860 mod->module_init = ptr;
2861 } else
2862 mod->module_init = NULL;
2863
2864 /* Transfer each section which specifies SHF_ALLOC */
2865 pr_debug("final section addresses:\n");
2866 for (i = 0; i < info->hdr->e_shnum; i++) {
2867 void *dest;
2868 Elf_Shdr *shdr = &info->sechdrs[i];
2869
2870 if (!(shdr->sh_flags & SHF_ALLOC))
2871 continue;
2872
2873 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2874 dest = mod->module_init
2875 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2876 else
2877 dest = mod->module_core + shdr->sh_entsize;
2878
2879 if (shdr->sh_type != SHT_NOBITS)
2880 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2881 /* Update sh_addr to point to copy in image. */
2882 shdr->sh_addr = (unsigned long)dest;
2883 pr_debug("\t0x%lx %s\n",
2884 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2885 }
2886
2887 return 0;
2888 }
2889
2890 static int check_module_license_and_versions(struct module *mod)
2891 {
2892 /*
2893 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2894 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2895 * using GPL-only symbols it needs.
2896 */
2897 if (strcmp(mod->name, "ndiswrapper") == 0)
2898 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2899
2900 /* driverloader was caught wrongly pretending to be under GPL */
2901 if (strcmp(mod->name, "driverloader") == 0)
2902 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2903 LOCKDEP_NOW_UNRELIABLE);
2904
2905 /* lve claims to be GPL but upstream won't provide source */
2906 if (strcmp(mod->name, "lve") == 0)
2907 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2908 LOCKDEP_NOW_UNRELIABLE);
2909
2910 #ifdef CONFIG_MODVERSIONS
2911 if ((mod->num_syms && !mod->crcs)
2912 || (mod->num_gpl_syms && !mod->gpl_crcs)
2913 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2914 #ifdef CONFIG_UNUSED_SYMBOLS
2915 || (mod->num_unused_syms && !mod->unused_crcs)
2916 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2917 #endif
2918 ) {
2919 return try_to_force_load(mod,
2920 "no versions for exported symbols");
2921 }
2922 #endif
2923 return 0;
2924 }
2925
2926 static void flush_module_icache(const struct module *mod)
2927 {
2928 mm_segment_t old_fs;
2929
2930 /* flush the icache in correct context */
2931 old_fs = get_fs();
2932 set_fs(KERNEL_DS);
2933
2934 /*
2935 * Flush the instruction cache, since we've played with text.
2936 * Do it before processing of module parameters, so the module
2937 * can provide parameter accessor functions of its own.
2938 */
2939 if (mod->module_init)
2940 flush_icache_range((unsigned long)mod->module_init,
2941 (unsigned long)mod->module_init
2942 + mod->init_size);
2943 flush_icache_range((unsigned long)mod->module_core,
2944 (unsigned long)mod->module_core + mod->core_size);
2945
2946 set_fs(old_fs);
2947 }
2948
2949 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2950 Elf_Shdr *sechdrs,
2951 char *secstrings,
2952 struct module *mod)
2953 {
2954 return 0;
2955 }
2956
2957 static struct module *layout_and_allocate(struct load_info *info, int flags)
2958 {
2959 /* Module within temporary copy. */
2960 struct module *mod;
2961 int err;
2962
2963 mod = setup_load_info(info, flags);
2964 if (IS_ERR(mod))
2965 return mod;
2966
2967 err = check_modinfo(mod, info, flags);
2968 if (err)
2969 return ERR_PTR(err);
2970
2971 /* Allow arches to frob section contents and sizes. */
2972 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2973 info->secstrings, mod);
2974 if (err < 0)
2975 return ERR_PTR(err);
2976
2977 /* We will do a special allocation for per-cpu sections later. */
2978 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2979
2980 /* Determine total sizes, and put offsets in sh_entsize. For now
2981 this is done generically; there doesn't appear to be any
2982 special cases for the architectures. */
2983 layout_sections(mod, info);
2984 layout_symtab(mod, info);
2985
2986 /* Allocate and move to the final place */
2987 err = move_module(mod, info);
2988 if (err)
2989 return ERR_PTR(err);
2990
2991 /* Module has been copied to its final place now: return it. */
2992 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2993 kmemleak_load_module(mod, info);
2994 return mod;
2995 }
2996
2997 static int alloc_module_percpu(struct module *mod, struct load_info *info)
2998 {
2999 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
3000 if (!pcpusec->sh_size)
3001 return 0;
3002
3003 /* We have a special allocation for this section. */
3004 return percpu_modalloc(mod, pcpusec->sh_size, pcpusec->sh_addralign);
3005 }
3006
3007 /* mod is no longer valid after this! */
3008 static void module_deallocate(struct module *mod, struct load_info *info)
3009 {
3010 percpu_modfree(mod);
3011 module_free(mod, mod->module_init);
3012 module_free(mod, mod->module_core);
3013 }
3014
3015 int __weak module_finalize(const Elf_Ehdr *hdr,
3016 const Elf_Shdr *sechdrs,
3017 struct module *me)
3018 {
3019 return 0;
3020 }
3021
3022 static int post_relocation(struct module *mod, const struct load_info *info)
3023 {
3024 /* Sort exception table now relocations are done. */
3025 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3026
3027 /* Copy relocated percpu area over. */
3028 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3029 info->sechdrs[info->index.pcpu].sh_size);
3030
3031 /* Setup kallsyms-specific fields. */
3032 add_kallsyms(mod, info);
3033
3034 /* Arch-specific module finalizing. */
3035 return module_finalize(info->hdr, info->sechdrs, mod);
3036 }
3037
3038 /* Is this module of this name done loading? No locks held. */
3039 static bool finished_loading(const char *name)
3040 {
3041 struct module *mod;
3042 bool ret;
3043
3044 mutex_lock(&module_mutex);
3045 mod = find_module_all(name, true);
3046 ret = !mod || mod->state == MODULE_STATE_LIVE
3047 || mod->state == MODULE_STATE_GOING;
3048 mutex_unlock(&module_mutex);
3049
3050 return ret;
3051 }
3052
3053 /* Call module constructors. */
3054 static void do_mod_ctors(struct module *mod)
3055 {
3056 #ifdef CONFIG_CONSTRUCTORS
3057 unsigned long i;
3058
3059 for (i = 0; i < mod->num_ctors; i++)
3060 mod->ctors[i]();
3061 #endif
3062 }
3063
3064 /* This is where the real work happens */
3065 static int do_init_module(struct module *mod)
3066 {
3067 int ret = 0;
3068
3069 /*
3070 * We want to find out whether @mod uses async during init. Clear
3071 * PF_USED_ASYNC. async_schedule*() will set it.
3072 */
3073 current->flags &= ~PF_USED_ASYNC;
3074
3075 blocking_notifier_call_chain(&module_notify_list,
3076 MODULE_STATE_COMING, mod);
3077
3078 /* Set RO and NX regions for core */
3079 set_section_ro_nx(mod->module_core,
3080 mod->core_text_size,
3081 mod->core_ro_size,
3082 mod->core_size);
3083
3084 /* Set RO and NX regions for init */
3085 set_section_ro_nx(mod->module_init,
3086 mod->init_text_size,
3087 mod->init_ro_size,
3088 mod->init_size);
3089
3090 do_mod_ctors(mod);
3091 /* Start the module */
3092 if (mod->init != NULL)
3093 ret = do_one_initcall(mod->init);
3094 if (ret < 0) {
3095 /* Init routine failed: abort. Try to protect us from
3096 buggy refcounters. */
3097 mod->state = MODULE_STATE_GOING;
3098 synchronize_sched();
3099 module_put(mod);
3100 blocking_notifier_call_chain(&module_notify_list,
3101 MODULE_STATE_GOING, mod);
3102 free_module(mod);
3103 wake_up_all(&module_wq);
3104 return ret;
3105 }
3106 if (ret > 0) {
3107 printk(KERN_WARNING
3108 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3109 "%s: loading module anyway...\n",
3110 __func__, mod->name, ret,
3111 __func__);
3112 dump_stack();
3113 }
3114
3115 /* Now it's a first class citizen! */
3116 mod->state = MODULE_STATE_LIVE;
3117 blocking_notifier_call_chain(&module_notify_list,
3118 MODULE_STATE_LIVE, mod);
3119
3120 /*
3121 * We need to finish all async code before the module init sequence
3122 * is done. This has potential to deadlock. For example, a newly
3123 * detected block device can trigger request_module() of the
3124 * default iosched from async probing task. Once userland helper
3125 * reaches here, async_synchronize_full() will wait on the async
3126 * task waiting on request_module() and deadlock.
3127 *
3128 * This deadlock is avoided by perfomring async_synchronize_full()
3129 * iff module init queued any async jobs. This isn't a full
3130 * solution as it will deadlock the same if module loading from
3131 * async jobs nests more than once; however, due to the various
3132 * constraints, this hack seems to be the best option for now.
3133 * Please refer to the following thread for details.
3134 *
3135 * http://thread.gmane.org/gmane.linux.kernel/1420814
3136 */
3137 if (current->flags & PF_USED_ASYNC)
3138 async_synchronize_full();
3139
3140 mutex_lock(&module_mutex);
3141 /* Drop initial reference. */
3142 module_put(mod);
3143 trim_init_extable(mod);
3144 #ifdef CONFIG_KALLSYMS
3145 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3146 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3147 #endif
3148 unset_module_init_ro_nx(mod);
3149 module_free(mod, mod->module_init);
3150 mod->module_init = NULL;
3151 mod->init_size = 0;
3152 mod->init_ro_size = 0;
3153 mod->init_text_size = 0;
3154 mutex_unlock(&module_mutex);
3155 wake_up_all(&module_wq);
3156
3157 return 0;
3158 }
3159
3160 static int may_init_module(void)
3161 {
3162 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3163 return -EPERM;
3164
3165 return 0;
3166 }
3167
3168 /*
3169 * We try to place it in the list now to make sure it's unique before
3170 * we dedicate too many resources. In particular, temporary percpu
3171 * memory exhaustion.
3172 */
3173 static int add_unformed_module(struct module *mod)
3174 {
3175 int err;
3176 struct module *old;
3177
3178 mod->state = MODULE_STATE_UNFORMED;
3179
3180 again:
3181 mutex_lock(&module_mutex);
3182 if ((old = find_module_all(mod->name, true)) != NULL) {
3183 if (old->state == MODULE_STATE_COMING
3184 || old->state == MODULE_STATE_UNFORMED) {
3185 /* Wait in case it fails to load. */
3186 mutex_unlock(&module_mutex);
3187 err = wait_event_interruptible(module_wq,
3188 finished_loading(mod->name));
3189 if (err)
3190 goto out_unlocked;
3191 goto again;
3192 }
3193 err = -EEXIST;
3194 goto out;
3195 }
3196 list_add_rcu(&mod->list, &modules);
3197 err = 0;
3198
3199 out:
3200 mutex_unlock(&module_mutex);
3201 out_unlocked:
3202 return err;
3203 }
3204
3205 static int complete_formation(struct module *mod, struct load_info *info)
3206 {
3207 int err;
3208
3209 mutex_lock(&module_mutex);
3210
3211 /* Find duplicate symbols (must be called under lock). */
3212 err = verify_export_symbols(mod);
3213 if (err < 0)
3214 goto out;
3215
3216 /* This relies on module_mutex for list integrity. */
3217 module_bug_finalize(info->hdr, info->sechdrs, mod);
3218
3219 /* Mark state as coming so strong_try_module_get() ignores us,
3220 * but kallsyms etc. can see us. */
3221 mod->state = MODULE_STATE_COMING;
3222
3223 out:
3224 mutex_unlock(&module_mutex);
3225 return err;
3226 }
3227
3228 /* Allocate and load the module: note that size of section 0 is always
3229 zero, and we rely on this for optional sections. */
3230 static int load_module(struct load_info *info, const char __user *uargs,
3231 int flags)
3232 {
3233 struct module *mod;
3234 long err;
3235
3236 err = module_sig_check(info, flags);
3237 if (err)
3238 goto free_copy;
3239
3240 err = elf_header_check(info);
3241 if (err)
3242 goto free_copy;
3243
3244 /* Figure out module layout, and allocate all the memory. */
3245 mod = layout_and_allocate(info, flags);
3246 if (IS_ERR(mod)) {
3247 err = PTR_ERR(mod);
3248 goto free_copy;
3249 }
3250
3251 /* Reserve our place in the list. */
3252 err = add_unformed_module(mod);
3253 if (err)
3254 goto free_module;
3255
3256 #ifdef CONFIG_MODULE_SIG
3257 mod->sig_ok = info->sig_ok;
3258 if (!mod->sig_ok) {
3259 printk_once(KERN_NOTICE
3260 "%s: module verification failed: signature and/or"
3261 " required key missing - tainting kernel\n",
3262 mod->name);
3263 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3264 }
3265 #endif
3266
3267 /* To avoid stressing percpu allocator, do this once we're unique. */
3268 err = alloc_module_percpu(mod, info);
3269 if (err)
3270 goto unlink_mod;
3271
3272 /* Now module is in final location, initialize linked lists, etc. */
3273 err = module_unload_init(mod);
3274 if (err)
3275 goto unlink_mod;
3276
3277 /* Now we've got everything in the final locations, we can
3278 * find optional sections. */
3279 find_module_sections(mod, info);
3280
3281 err = check_module_license_and_versions(mod);
3282 if (err)
3283 goto free_unload;
3284
3285 /* Set up MODINFO_ATTR fields */
3286 setup_modinfo(mod, info);
3287
3288 /* Fix up syms, so that st_value is a pointer to location. */
3289 err = simplify_symbols(mod, info);
3290 if (err < 0)
3291 goto free_modinfo;
3292
3293 err = apply_relocations(mod, info);
3294 if (err < 0)
3295 goto free_modinfo;
3296
3297 err = post_relocation(mod, info);
3298 if (err < 0)
3299 goto free_modinfo;
3300
3301 flush_module_icache(mod);
3302
3303 /* Now copy in args */
3304 mod->args = strndup_user(uargs, ~0UL >> 1);
3305 if (IS_ERR(mod->args)) {
3306 err = PTR_ERR(mod->args);
3307 goto free_arch_cleanup;
3308 }
3309
3310 dynamic_debug_setup(info->debug, info->num_debug);
3311
3312 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3313 ftrace_module_init(mod);
3314
3315 /* Finally it's fully formed, ready to start executing. */
3316 err = complete_formation(mod, info);
3317 if (err)
3318 goto ddebug_cleanup;
3319
3320 /* Module is ready to execute: parsing args may do that. */
3321 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3322 -32768, 32767, &ddebug_dyndbg_module_param_cb);
3323 if (err < 0)
3324 goto bug_cleanup;
3325
3326 /* Link in to syfs. */
3327 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3328 if (err < 0)
3329 goto bug_cleanup;
3330
3331 /* Get rid of temporary copy. */
3332 free_copy(info);
3333
3334 /* Done! */
3335 trace_module_load(mod);
3336
3337 return do_init_module(mod);
3338
3339 bug_cleanup:
3340 /* module_bug_cleanup needs module_mutex protection */
3341 mutex_lock(&module_mutex);
3342 module_bug_cleanup(mod);
3343 mutex_unlock(&module_mutex);
3344 ddebug_cleanup:
3345 dynamic_debug_remove(info->debug);
3346 synchronize_sched();
3347 kfree(mod->args);
3348 free_arch_cleanup:
3349 module_arch_cleanup(mod);
3350 free_modinfo:
3351 free_modinfo(mod);
3352 free_unload:
3353 module_unload_free(mod);
3354 unlink_mod:
3355 mutex_lock(&module_mutex);
3356 /* Unlink carefully: kallsyms could be walking list. */
3357 list_del_rcu(&mod->list);
3358 wake_up_all(&module_wq);
3359 mutex_unlock(&module_mutex);
3360 free_module:
3361 module_deallocate(mod, info);
3362 free_copy:
3363 free_copy(info);
3364 return err;
3365 }
3366
3367 SYSCALL_DEFINE3(init_module, void __user *, umod,
3368 unsigned long, len, const char __user *, uargs)
3369 {
3370 int err;
3371 struct load_info info = { };
3372
3373 err = may_init_module();
3374 if (err)
3375 return err;
3376
3377 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3378 umod, len, uargs);
3379
3380 err = copy_module_from_user(umod, len, &info);
3381 if (err)
3382 return err;
3383
3384 return load_module(&info, uargs, 0);
3385 }
3386
3387 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3388 {
3389 int err;
3390 struct load_info info = { };
3391
3392 err = may_init_module();
3393 if (err)
3394 return err;
3395
3396 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3397
3398 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3399 |MODULE_INIT_IGNORE_VERMAGIC))
3400 return -EINVAL;
3401
3402 err = copy_module_from_fd(fd, &info);
3403 if (err)
3404 return err;
3405
3406 return load_module(&info, uargs, flags);
3407 }
3408
3409 static inline int within(unsigned long addr, void *start, unsigned long size)
3410 {
3411 return ((void *)addr >= start && (void *)addr < start + size);
3412 }
3413
3414 #ifdef CONFIG_KALLSYMS
3415 /*
3416 * This ignores the intensely annoying "mapping symbols" found
3417 * in ARM ELF files: $a, $t and $d.
3418 */
3419 static inline int is_arm_mapping_symbol(const char *str)
3420 {
3421 return str[0] == '$' && strchr("atd", str[1])
3422 && (str[2] == '\0' || str[2] == '.');
3423 }
3424
3425 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3426 {
3427 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3428 }
3429
3430 static const char *get_ksymbol(struct module *mod,
3431 unsigned long addr,
3432 unsigned long *size,
3433 unsigned long *offset)
3434 {
3435 unsigned int i, best = 0;
3436 unsigned long nextval;
3437 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3438
3439 /* At worse, next value is at end of module */
3440 if (within_module_init(addr, mod))
3441 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3442 else
3443 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3444
3445 /* Scan for closest preceding symbol, and next symbol. (ELF
3446 starts real symbols at 1). */
3447 for (i = 1; i < kallsyms->num_symtab; i++) {
3448 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3449 continue;
3450
3451 /* We ignore unnamed symbols: they're uninformative
3452 * and inserted at a whim. */
3453 if (*symname(kallsyms, i) == '\0'
3454 || is_arm_mapping_symbol(symname(kallsyms, i)))
3455 continue;
3456
3457 if (kallsyms->symtab[i].st_value <= addr
3458 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3459 best = i;
3460 if (kallsyms->symtab[i].st_value > addr
3461 && kallsyms->symtab[i].st_value < nextval)
3462 nextval = kallsyms->symtab[i].st_value;
3463 }
3464
3465 if (!best)
3466 return NULL;
3467
3468 if (size)
3469 *size = nextval - kallsyms->symtab[best].st_value;
3470 if (offset)
3471 *offset = addr - kallsyms->symtab[best].st_value;
3472 return symname(kallsyms, best);
3473 }
3474
3475 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3476 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3477 const char *module_address_lookup(unsigned long addr,
3478 unsigned long *size,
3479 unsigned long *offset,
3480 char **modname,
3481 char *namebuf)
3482 {
3483 struct module *mod;
3484 const char *ret = NULL;
3485
3486 preempt_disable();
3487 list_for_each_entry_rcu(mod, &modules, list) {
3488 if (mod->state == MODULE_STATE_UNFORMED)
3489 continue;
3490 if (within_module_init(addr, mod) ||
3491 within_module_core(addr, mod)) {
3492 if (modname)
3493 *modname = mod->name;
3494 ret = get_ksymbol(mod, addr, size, offset);
3495 break;
3496 }
3497 }
3498 /* Make a copy in here where it's safe */
3499 if (ret) {
3500 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3501 ret = namebuf;
3502 }
3503 preempt_enable();
3504 return ret;
3505 }
3506
3507 int lookup_module_symbol_name(unsigned long addr, char *symname)
3508 {
3509 struct module *mod;
3510
3511 preempt_disable();
3512 list_for_each_entry_rcu(mod, &modules, list) {
3513 if (mod->state == MODULE_STATE_UNFORMED)
3514 continue;
3515 if (within_module_init(addr, mod) ||
3516 within_module_core(addr, mod)) {
3517 const char *sym;
3518
3519 sym = get_ksymbol(mod, addr, NULL, NULL);
3520 if (!sym)
3521 goto out;
3522 strlcpy(symname, sym, KSYM_NAME_LEN);
3523 preempt_enable();
3524 return 0;
3525 }
3526 }
3527 out:
3528 preempt_enable();
3529 return -ERANGE;
3530 }
3531
3532 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3533 unsigned long *offset, char *modname, char *name)
3534 {
3535 struct module *mod;
3536
3537 preempt_disable();
3538 list_for_each_entry_rcu(mod, &modules, list) {
3539 if (mod->state == MODULE_STATE_UNFORMED)
3540 continue;
3541 if (within_module_init(addr, mod) ||
3542 within_module_core(addr, mod)) {
3543 const char *sym;
3544
3545 sym = get_ksymbol(mod, addr, size, offset);
3546 if (!sym)
3547 goto out;
3548 if (modname)
3549 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3550 if (name)
3551 strlcpy(name, sym, KSYM_NAME_LEN);
3552 preempt_enable();
3553 return 0;
3554 }
3555 }
3556 out:
3557 preempt_enable();
3558 return -ERANGE;
3559 }
3560
3561 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3562 char *name, char *module_name, int *exported)
3563 {
3564 struct module *mod;
3565
3566 preempt_disable();
3567 list_for_each_entry_rcu(mod, &modules, list) {
3568 struct mod_kallsyms *kallsyms;
3569
3570 if (mod->state == MODULE_STATE_UNFORMED)
3571 continue;
3572 kallsyms = rcu_dereference_sched(mod->kallsyms);
3573 if (symnum < kallsyms->num_symtab) {
3574 *value = kallsyms->symtab[symnum].st_value;
3575 *type = kallsyms->symtab[symnum].st_info;
3576 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3577 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3578 *exported = is_exported(name, *value, mod);
3579 preempt_enable();
3580 return 0;
3581 }
3582 symnum -= kallsyms->num_symtab;
3583 }
3584 preempt_enable();
3585 return -ERANGE;
3586 }
3587
3588 static unsigned long mod_find_symname(struct module *mod, const char *name)
3589 {
3590 unsigned int i;
3591 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3592
3593 for (i = 0; i < kallsyms->num_symtab; i++)
3594 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3595 kallsyms->symtab[i].st_info != 'U')
3596 return kallsyms->symtab[i].st_value;
3597 return 0;
3598 }
3599
3600 /* Look for this name: can be of form module:name. */
3601 unsigned long module_kallsyms_lookup_name(const char *name)
3602 {
3603 struct module *mod;
3604 char *colon;
3605 unsigned long ret = 0;
3606
3607 /* Don't lock: we're in enough trouble already. */
3608 preempt_disable();
3609 if ((colon = strchr(name, ':')) != NULL) {
3610 *colon = '\0';
3611 if ((mod = find_module(name)) != NULL)
3612 ret = mod_find_symname(mod, colon+1);
3613 *colon = ':';
3614 } else {
3615 list_for_each_entry_rcu(mod, &modules, list) {
3616 if (mod->state == MODULE_STATE_UNFORMED)
3617 continue;
3618 if ((ret = mod_find_symname(mod, name)) != 0)
3619 break;
3620 }
3621 }
3622 preempt_enable();
3623 return ret;
3624 }
3625
3626 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3627 struct module *, unsigned long),
3628 void *data)
3629 {
3630 struct module *mod;
3631 unsigned int i;
3632 int ret;
3633
3634 list_for_each_entry(mod, &modules, list) {
3635 /* We hold module_mutex: no need for rcu_dereference_sched */
3636 struct mod_kallsyms *kallsyms = mod->kallsyms;
3637
3638 if (mod->state == MODULE_STATE_UNFORMED)
3639 continue;
3640 for (i = 0; i < kallsyms->num_symtab; i++) {
3641 ret = fn(data, symname(kallsyms, i),
3642 mod, kallsyms->symtab[i].st_value);
3643 if (ret != 0)
3644 return ret;
3645 }
3646 }
3647 return 0;
3648 }
3649 #endif /* CONFIG_KALLSYMS */
3650
3651 static char *module_flags(struct module *mod, char *buf)
3652 {
3653 int bx = 0;
3654
3655 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3656 if (mod->taints ||
3657 mod->state == MODULE_STATE_GOING ||
3658 mod->state == MODULE_STATE_COMING) {
3659 buf[bx++] = '(';
3660 bx += module_flags_taint(mod, buf + bx);
3661 /* Show a - for module-is-being-unloaded */
3662 if (mod->state == MODULE_STATE_GOING)
3663 buf[bx++] = '-';
3664 /* Show a + for module-is-being-loaded */
3665 if (mod->state == MODULE_STATE_COMING)
3666 buf[bx++] = '+';
3667 buf[bx++] = ')';
3668 }
3669 buf[bx] = '\0';
3670
3671 return buf;
3672 }
3673
3674 #ifdef CONFIG_PROC_FS
3675 /* Called by the /proc file system to return a list of modules. */
3676 static void *m_start(struct seq_file *m, loff_t *pos)
3677 {
3678 mutex_lock(&module_mutex);
3679 return seq_list_start(&modules, *pos);
3680 }
3681
3682 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3683 {
3684 return seq_list_next(p, &modules, pos);
3685 }
3686
3687 static void m_stop(struct seq_file *m, void *p)
3688 {
3689 mutex_unlock(&module_mutex);
3690 }
3691
3692 static int m_show(struct seq_file *m, void *p)
3693 {
3694 struct module *mod = list_entry(p, struct module, list);
3695 char buf[8];
3696
3697 /* We always ignore unformed modules. */
3698 if (mod->state == MODULE_STATE_UNFORMED)
3699 return 0;
3700
3701 seq_printf(m, "%s %u",
3702 mod->name, mod->init_size + mod->core_size);
3703 print_unload_info(m, mod);
3704
3705 /* Informative for users. */
3706 seq_printf(m, " %s",
3707 mod->state == MODULE_STATE_GOING ? "Unloading":
3708 mod->state == MODULE_STATE_COMING ? "Loading":
3709 "Live");
3710 /* Used by oprofile and other similar tools. */
3711 seq_printf(m, " 0x%pK", mod->module_core);
3712
3713 /* Taints info */
3714 if (mod->taints)
3715 seq_printf(m, " %s", module_flags(mod, buf));
3716
3717 seq_printf(m, "\n");
3718 return 0;
3719 }
3720
3721 /* Format: modulename size refcount deps address
3722
3723 Where refcount is a number or -, and deps is a comma-separated list
3724 of depends or -.
3725 */
3726 static const struct seq_operations modules_op = {
3727 .start = m_start,
3728 .next = m_next,
3729 .stop = m_stop,
3730 .show = m_show
3731 };
3732
3733 static int modules_open(struct inode *inode, struct file *file)
3734 {
3735 return seq_open(file, &modules_op);
3736 }
3737
3738 static const struct file_operations proc_modules_operations = {
3739 .open = modules_open,
3740 .read = seq_read,
3741 .llseek = seq_lseek,
3742 .release = seq_release,
3743 };
3744
3745 static int __init proc_modules_init(void)
3746 {
3747 proc_create("modules", 0, NULL, &proc_modules_operations);
3748 return 0;
3749 }
3750 module_init(proc_modules_init);
3751 #endif
3752
3753 /* Given an address, look for it in the module exception tables. */
3754 const struct exception_table_entry *search_module_extables(unsigned long addr)
3755 {
3756 const struct exception_table_entry *e = NULL;
3757 struct module *mod;
3758
3759 preempt_disable();
3760 list_for_each_entry_rcu(mod, &modules, list) {
3761 if (mod->state == MODULE_STATE_UNFORMED)
3762 continue;
3763 if (mod->num_exentries == 0)
3764 continue;
3765
3766 e = search_extable(mod->extable,
3767 mod->extable + mod->num_exentries - 1,
3768 addr);
3769 if (e)
3770 break;
3771 }
3772 preempt_enable();
3773
3774 /* Now, if we found one, we are running inside it now, hence
3775 we cannot unload the module, hence no refcnt needed. */
3776 return e;
3777 }
3778
3779 /*
3780 * is_module_address - is this address inside a module?
3781 * @addr: the address to check.
3782 *
3783 * See is_module_text_address() if you simply want to see if the address
3784 * is code (not data).
3785 */
3786 bool is_module_address(unsigned long addr)
3787 {
3788 bool ret;
3789
3790 preempt_disable();
3791 ret = __module_address(addr) != NULL;
3792 preempt_enable();
3793
3794 return ret;
3795 }
3796
3797 /*
3798 * __module_address - get the module which contains an address.
3799 * @addr: the address.
3800 *
3801 * Must be called with preempt disabled or module mutex held so that
3802 * module doesn't get freed during this.
3803 */
3804 struct module *__module_address(unsigned long addr)
3805 {
3806 struct module *mod;
3807
3808 if (addr < module_addr_min || addr > module_addr_max)
3809 return NULL;
3810
3811 list_for_each_entry_rcu(mod, &modules, list) {
3812 if (mod->state == MODULE_STATE_UNFORMED)
3813 continue;
3814 if (within_module_core(addr, mod)
3815 || within_module_init(addr, mod))
3816 return mod;
3817 }
3818 return NULL;
3819 }
3820 EXPORT_SYMBOL_GPL(__module_address);
3821
3822 /*
3823 * is_module_text_address - is this address inside module code?
3824 * @addr: the address to check.
3825 *
3826 * See is_module_address() if you simply want to see if the address is
3827 * anywhere in a module. See kernel_text_address() for testing if an
3828 * address corresponds to kernel or module code.
3829 */
3830 bool is_module_text_address(unsigned long addr)
3831 {
3832 bool ret;
3833
3834 preempt_disable();
3835 ret = __module_text_address(addr) != NULL;
3836 preempt_enable();
3837
3838 return ret;
3839 }
3840
3841 /*
3842 * __module_text_address - get the module whose code contains an address.
3843 * @addr: the address.
3844 *
3845 * Must be called with preempt disabled or module mutex held so that
3846 * module doesn't get freed during this.
3847 */
3848 struct module *__module_text_address(unsigned long addr)
3849 {
3850 struct module *mod = __module_address(addr);
3851 if (mod) {
3852 /* Make sure it's within the text section. */
3853 if (!within(addr, mod->module_init, mod->init_text_size)
3854 && !within(addr, mod->module_core, mod->core_text_size))
3855 mod = NULL;
3856 }
3857 return mod;
3858 }
3859 EXPORT_SYMBOL_GPL(__module_text_address);
3860
3861 /* Don't grab lock, we're oopsing. */
3862 void print_modules(void)
3863 {
3864 struct module *mod;
3865 char buf[8];
3866
3867 printk(KERN_DEFAULT "Modules linked in:");
3868 /* Most callers should already have preempt disabled, but make sure */
3869 preempt_disable();
3870 list_for_each_entry_rcu(mod, &modules, list) {
3871 if (mod->state == MODULE_STATE_UNFORMED)
3872 continue;
3873 printk(" %s %p %s", mod->name, mod->module_core, module_flags(mod, buf));
3874 }
3875 preempt_enable();
3876 if (last_unloaded_module[0])
3877 printk(" [last unloaded: %s]", last_unloaded_module);
3878 printk("\n");
3879 }
3880
3881 #ifdef CONFIG_MODVERSIONS
3882 /* Generate the signature for all relevant module structures here.
3883 * If these change, we don't want to try to parse the module. */
3884 void module_layout(struct module *mod,
3885 struct modversion_info *ver,
3886 struct kernel_param *kp,
3887 struct kernel_symbol *ks,
3888 struct tracepoint * const *tp)
3889 {
3890 }
3891 EXPORT_SYMBOL(module_layout);
3892 #endif