Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 #ifdef CONFIG_MT_PRIO_TRACER
88 # include <linux/prio_tracer.h>
89 #endif
90
91 /*
92 * Protected counters by write_lock_irq(&tasklist_lock)
93 */
94 unsigned long total_forks; /* Handle normal Linux uptimes. */
95 int nr_threads; /* The idle threads do not count.. */
96
97 int max_threads; /* tunable limit on nr_threads */
98
99 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
100
101 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
102
103 #ifdef CONFIG_PROVE_RCU
104 int lockdep_tasklist_lock_is_held(void)
105 {
106 return lockdep_is_held(&tasklist_lock);
107 }
108 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
109 #endif /* #ifdef CONFIG_PROVE_RCU */
110
111 int nr_processes(void)
112 {
113 int cpu;
114 int total = 0;
115
116 for_each_possible_cpu(cpu)
117 total += per_cpu(process_counts, cpu);
118
119 return total;
120 }
121
122 void __weak arch_release_task_struct(struct task_struct *tsk)
123 {
124 }
125
126 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
127 static struct kmem_cache *task_struct_cachep;
128
129 static inline struct task_struct *alloc_task_struct_node(int node)
130 {
131 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
132 }
133
134 static inline void free_task_struct(struct task_struct *tsk)
135 {
136 kmem_cache_free(task_struct_cachep, tsk);
137 }
138 #endif
139
140 void __weak arch_release_thread_info(struct thread_info *ti)
141 {
142 }
143
144 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145
146 /*
147 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
148 * kmemcache based allocator.
149 */
150 # if THREAD_SIZE >= PAGE_SIZE
151 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
152 int node)
153 {
154 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
155 THREAD_SIZE_ORDER);
156
157 return page ? page_address(page) : NULL;
158 }
159
160 static inline void free_thread_info(struct thread_info *ti)
161 {
162 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
163 }
164 # else
165 static struct kmem_cache *thread_info_cache;
166
167 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
168 int node)
169 {
170 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
171 }
172
173 static void free_thread_info(struct thread_info *ti)
174 {
175 kmem_cache_free(thread_info_cache, ti);
176 }
177
178 void thread_info_cache_init(void)
179 {
180 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
181 THREAD_SIZE, 0, NULL);
182 BUG_ON(thread_info_cache == NULL);
183 }
184 # endif
185 #endif
186
187 /* SLAB cache for signal_struct structures (tsk->signal) */
188 static struct kmem_cache *signal_cachep;
189
190 /* SLAB cache for sighand_struct structures (tsk->sighand) */
191 struct kmem_cache *sighand_cachep;
192
193 /* SLAB cache for files_struct structures (tsk->files) */
194 struct kmem_cache *files_cachep;
195
196 /* SLAB cache for fs_struct structures (tsk->fs) */
197 struct kmem_cache *fs_cachep;
198
199 /* SLAB cache for vm_area_struct structures */
200 struct kmem_cache *vm_area_cachep;
201
202 /* SLAB cache for mm_struct structures (tsk->mm) */
203 static struct kmem_cache *mm_cachep;
204
205 /* Notifier list called when a task struct is freed */
206 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
207
208 static void account_kernel_stack(struct thread_info *ti, int account)
209 {
210 struct zone *zone = page_zone(virt_to_page(ti));
211
212 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
213 }
214
215 void free_task(struct task_struct *tsk)
216 {
217 account_kernel_stack(tsk->stack, -1);
218 arch_release_thread_info(tsk->stack);
219 free_thread_info(tsk->stack);
220 rt_mutex_debug_task_free(tsk);
221 ftrace_graph_exit_task(tsk);
222 put_seccomp_filter(tsk);
223 arch_release_task_struct(tsk);
224 free_task_struct(tsk);
225 }
226 EXPORT_SYMBOL(free_task);
227
228 static inline void free_signal_struct(struct signal_struct *sig)
229 {
230 taskstats_tgid_free(sig);
231 sched_autogroup_exit(sig);
232 kmem_cache_free(signal_cachep, sig);
233 }
234
235 static inline void put_signal_struct(struct signal_struct *sig)
236 {
237 if (atomic_dec_and_test(&sig->sigcnt))
238 free_signal_struct(sig);
239 }
240
241 int task_free_register(struct notifier_block *n)
242 {
243 return atomic_notifier_chain_register(&task_free_notifier, n);
244 }
245 EXPORT_SYMBOL(task_free_register);
246
247 int task_free_unregister(struct notifier_block *n)
248 {
249 return atomic_notifier_chain_unregister(&task_free_notifier, n);
250 }
251 EXPORT_SYMBOL(task_free_unregister);
252
253 void __put_task_struct(struct task_struct *tsk)
254 {
255 WARN_ON(!tsk->exit_state);
256 WARN_ON(atomic_read(&tsk->usage));
257 WARN_ON(tsk == current);
258
259 security_task_free(tsk);
260 exit_creds(tsk);
261 delayacct_tsk_free(tsk);
262 put_signal_struct(tsk->signal);
263
264 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
265 if (!profile_handoff_task(tsk))
266 free_task(tsk);
267 }
268 EXPORT_SYMBOL_GPL(__put_task_struct);
269
270 void __init __weak arch_task_cache_init(void) { }
271
272 void __init fork_init(unsigned long mempages)
273 {
274 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
275 #ifndef ARCH_MIN_TASKALIGN
276 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
277 #endif
278 /* create a slab on which task_structs can be allocated */
279 task_struct_cachep =
280 kmem_cache_create("task_struct", sizeof(struct task_struct),
281 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
282 #endif
283
284 /* do the arch specific task caches init */
285 arch_task_cache_init();
286
287 /*
288 * The default maximum number of threads is set to a safe
289 * value: the thread structures can take up at most half
290 * of memory.
291 */
292 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
293
294 /*
295 * we need to allow at least 20 threads to boot a system
296 */
297 if (max_threads < 20)
298 max_threads = 20;
299
300 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
301 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
302 init_task.signal->rlim[RLIMIT_SIGPENDING] =
303 init_task.signal->rlim[RLIMIT_NPROC];
304 }
305
306 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
307 struct task_struct *src)
308 {
309 *dst = *src;
310 return 0;
311 }
312
313 static struct task_struct *dup_task_struct(struct task_struct *orig)
314 {
315 struct task_struct *tsk;
316 struct thread_info *ti;
317 unsigned long *stackend;
318 int node = tsk_fork_get_node(orig);
319 int err;
320
321 tsk = alloc_task_struct_node(node);
322 if (!tsk){
323 printk("[%d:%s] fork fail at alloc_tsk_node, please check kmem_cache_alloc_node()\n", current->pid, current->comm);
324 return NULL;
325 }
326 ti = alloc_thread_info_node(tsk, node);
327 if (!ti) {
328 printk("[%d:%s] fork fail at alloc_t_info_node, please check alloc_pages_node()\n", current->pid, current->comm);
329 goto free_tsk;
330 }
331
332 err = arch_dup_task_struct(tsk, orig);
333 if (err){
334 printk("[%d:%s] fork fail at arch_dup_task_struct, err:%d \n", current->pid, current->comm, err);
335 goto free_ti;
336 }
337 tsk->stack = ti;
338 #ifdef CONFIG_SECCOMP
339 /*
340 * We must handle setting up seccomp filters once we're under
341 * the sighand lock in case orig has changed between now and
342 * then. Until then, filter must be NULL to avoid messing up
343 * the usage counts on the error path calling free_task.
344 */
345 tsk->seccomp.filter = NULL;
346 #endif
347
348 setup_thread_stack(tsk, orig);
349 clear_user_return_notifier(tsk);
350 clear_tsk_need_resched(tsk);
351 stackend = end_of_stack(tsk);
352 *stackend = STACK_END_MAGIC; /* for overflow detection */
353
354 #ifdef CONFIG_CC_STACKPROTECTOR
355 tsk->stack_canary = get_random_int();
356 #endif
357
358 /*
359 * One for us, one for whoever does the "release_task()" (usually
360 * parent)
361 */
362 atomic_set(&tsk->usage, 2);
363 #ifdef CONFIG_BLK_DEV_IO_TRACE
364 tsk->btrace_seq = 0;
365 #endif
366 tsk->splice_pipe = NULL;
367 tsk->task_frag.page = NULL;
368
369 account_kernel_stack(ti, 1);
370
371 return tsk;
372
373 free_ti:
374 free_thread_info(ti);
375 free_tsk:
376 free_task_struct(tsk);
377 return NULL;
378 }
379
380 #ifdef CONFIG_MMU
381 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
382 {
383 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
384 struct rb_node **rb_link, *rb_parent;
385 int retval;
386 unsigned long charge;
387 struct mempolicy *pol;
388
389 uprobe_start_dup_mmap();
390 down_write(&oldmm->mmap_sem);
391 flush_cache_dup_mm(oldmm);
392 uprobe_dup_mmap(oldmm, mm);
393 /*
394 * Not linked in yet - no deadlock potential:
395 */
396 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
397
398 mm->locked_vm = 0;
399 mm->mmap = NULL;
400 mm->mmap_cache = NULL;
401 mm->free_area_cache = oldmm->mmap_base;
402 mm->cached_hole_size = ~0UL;
403 mm->map_count = 0;
404 cpumask_clear(mm_cpumask(mm));
405 mm->mm_rb = RB_ROOT;
406 rb_link = &mm->mm_rb.rb_node;
407 rb_parent = NULL;
408 pprev = &mm->mmap;
409 retval = ksm_fork(mm, oldmm);
410 if (retval)
411 goto out;
412 retval = khugepaged_fork(mm, oldmm);
413 if (retval)
414 goto out;
415
416 prev = NULL;
417 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
418 struct file *file;
419
420 if (mpnt->vm_flags & VM_DONTCOPY) {
421 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
422 -vma_pages(mpnt));
423 continue;
424 }
425 charge = 0;
426 if (mpnt->vm_flags & VM_ACCOUNT) {
427 unsigned long len = vma_pages(mpnt);
428
429 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
430 goto fail_nomem;
431 charge = len;
432 }
433 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
434 if (!tmp)
435 goto fail_nomem;
436 *tmp = *mpnt;
437 INIT_LIST_HEAD(&tmp->anon_vma_chain);
438 pol = mpol_dup(vma_policy(mpnt));
439 retval = PTR_ERR(pol);
440 if (IS_ERR(pol))
441 goto fail_nomem_policy;
442 vma_set_policy(tmp, pol);
443 tmp->vm_mm = mm;
444 if (anon_vma_fork(tmp, mpnt))
445 goto fail_nomem_anon_vma_fork;
446 tmp->vm_flags &= ~VM_LOCKED;
447 tmp->vm_next = tmp->vm_prev = NULL;
448 file = tmp->vm_file;
449 if (file) {
450 struct inode *inode = file_inode(file);
451 struct address_space *mapping = file->f_mapping;
452
453 get_file(file);
454 if (tmp->vm_flags & VM_DENYWRITE)
455 atomic_dec(&inode->i_writecount);
456 mutex_lock(&mapping->i_mmap_mutex);
457 if (tmp->vm_flags & VM_SHARED)
458 mapping->i_mmap_writable++;
459 flush_dcache_mmap_lock(mapping);
460 /* insert tmp into the share list, just after mpnt */
461 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
462 vma_nonlinear_insert(tmp,
463 &mapping->i_mmap_nonlinear);
464 else
465 vma_interval_tree_insert_after(tmp, mpnt,
466 &mapping->i_mmap);
467 flush_dcache_mmap_unlock(mapping);
468 mutex_unlock(&mapping->i_mmap_mutex);
469 }
470
471 /*
472 * Clear hugetlb-related page reserves for children. This only
473 * affects MAP_PRIVATE mappings. Faults generated by the child
474 * are not guaranteed to succeed, even if read-only
475 */
476 if (is_vm_hugetlb_page(tmp))
477 reset_vma_resv_huge_pages(tmp);
478
479 /*
480 * Link in the new vma and copy the page table entries.
481 */
482 *pprev = tmp;
483 pprev = &tmp->vm_next;
484 tmp->vm_prev = prev;
485 prev = tmp;
486
487 __vma_link_rb(mm, tmp, rb_link, rb_parent);
488 rb_link = &tmp->vm_rb.rb_right;
489 rb_parent = &tmp->vm_rb;
490
491 mm->map_count++;
492 retval = copy_page_range(mm, oldmm, mpnt);
493
494 if (tmp->vm_ops && tmp->vm_ops->open)
495 tmp->vm_ops->open(tmp);
496
497 if (retval)
498 goto out;
499 }
500 /* a new mm has just been created */
501 arch_dup_mmap(oldmm, mm);
502 retval = 0;
503 out:
504 up_write(&mm->mmap_sem);
505 flush_tlb_mm(oldmm);
506 up_write(&oldmm->mmap_sem);
507 uprobe_end_dup_mmap();
508 return retval;
509 fail_nomem_anon_vma_fork:
510 mpol_put(pol);
511 fail_nomem_policy:
512 kmem_cache_free(vm_area_cachep, tmp);
513 fail_nomem:
514 retval = -ENOMEM;
515 vm_unacct_memory(charge);
516 goto out;
517 }
518
519 static inline int mm_alloc_pgd(struct mm_struct *mm)
520 {
521 mm->pgd = pgd_alloc(mm);
522 if (unlikely(!mm->pgd))
523 return -ENOMEM;
524 return 0;
525 }
526
527 static inline void mm_free_pgd(struct mm_struct *mm)
528 {
529 pgd_free(mm, mm->pgd);
530 }
531 #else
532 #define dup_mmap(mm, oldmm) (0)
533 #define mm_alloc_pgd(mm) (0)
534 #define mm_free_pgd(mm)
535 #endif /* CONFIG_MMU */
536
537 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
538
539 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
540 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
541
542 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
543
544 static int __init coredump_filter_setup(char *s)
545 {
546 default_dump_filter =
547 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
548 MMF_DUMP_FILTER_MASK;
549 return 1;
550 }
551
552 __setup("coredump_filter=", coredump_filter_setup);
553
554 #include <linux/init_task.h>
555
556 static void mm_init_aio(struct mm_struct *mm)
557 {
558 #ifdef CONFIG_AIO
559 spin_lock_init(&mm->ioctx_lock);
560 INIT_HLIST_HEAD(&mm->ioctx_list);
561 #endif
562 }
563
564 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
565 {
566 atomic_set(&mm->mm_users, 1);
567 atomic_set(&mm->mm_count, 1);
568 init_rwsem(&mm->mmap_sem);
569 INIT_LIST_HEAD(&mm->mmlist);
570 mm->flags = (current->mm) ?
571 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
572 mm->core_state = NULL;
573 mm->nr_ptes = 0;
574 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
575 spin_lock_init(&mm->page_table_lock);
576 mm->free_area_cache = TASK_UNMAPPED_BASE;
577 mm->cached_hole_size = ~0UL;
578 mm_init_aio(mm);
579 mm_init_owner(mm, p);
580 clear_tlb_flush_pending(mm);
581
582 if (likely(!mm_alloc_pgd(mm))) {
583 mm->def_flags = 0;
584 mmu_notifier_mm_init(mm);
585 return mm;
586 }
587
588 free_mm(mm);
589 return NULL;
590 }
591
592 static void check_mm(struct mm_struct *mm)
593 {
594 int i;
595
596 for (i = 0; i < NR_MM_COUNTERS; i++) {
597 long x = atomic_long_read(&mm->rss_stat.count[i]);
598
599 if (unlikely(x))
600 printk(KERN_ALERT "BUG: Bad rss-counter state "
601 "mm:%p idx:%d val:%ld\n", mm, i, x);
602 }
603
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 VM_BUG_ON(mm->pmd_huge_pte);
606 #endif
607 }
608
609 /*
610 * Allocate and initialize an mm_struct.
611 */
612 struct mm_struct *mm_alloc(void)
613 {
614 struct mm_struct *mm;
615
616 mm = allocate_mm();
617 if (!mm)
618 return NULL;
619
620 memset(mm, 0, sizeof(*mm));
621 mm_init_cpumask(mm);
622 return mm_init(mm, current);
623 }
624
625 /*
626 * Called when the last reference to the mm
627 * is dropped: either by a lazy thread or by
628 * mmput. Free the page directory and the mm.
629 */
630 void __mmdrop(struct mm_struct *mm)
631 {
632 BUG_ON(mm == &init_mm);
633 mm_free_pgd(mm);
634 destroy_context(mm);
635 mmu_notifier_mm_destroy(mm);
636 check_mm(mm);
637 free_mm(mm);
638 }
639 EXPORT_SYMBOL_GPL(__mmdrop);
640
641 /*
642 * Decrement the use count and release all resources for an mm.
643 */
644 void mmput(struct mm_struct *mm)
645 {
646 might_sleep();
647
648 if (atomic_dec_and_test(&mm->mm_users)) {
649 uprobe_clear_state(mm);
650 exit_aio(mm);
651 ksm_exit(mm);
652 khugepaged_exit(mm); /* must run before exit_mmap */
653 exit_mmap(mm);
654 set_mm_exe_file(mm, NULL);
655 if (!list_empty(&mm->mmlist)) {
656 spin_lock(&mmlist_lock);
657 list_del(&mm->mmlist);
658 spin_unlock(&mmlist_lock);
659 }
660 if (mm->binfmt)
661 module_put(mm->binfmt->module);
662 mmdrop(mm);
663 }
664 }
665 EXPORT_SYMBOL_GPL(mmput);
666
667 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
668 {
669 if (new_exe_file)
670 get_file(new_exe_file);
671 if (mm->exe_file)
672 fput(mm->exe_file);
673 mm->exe_file = new_exe_file;
674 }
675
676 struct file *get_mm_exe_file(struct mm_struct *mm)
677 {
678 struct file *exe_file;
679
680 /* We need mmap_sem to protect against races with removal of exe_file */
681 down_read(&mm->mmap_sem);
682 exe_file = mm->exe_file;
683 if (exe_file)
684 get_file(exe_file);
685 up_read(&mm->mmap_sem);
686 return exe_file;
687 }
688
689 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
690 {
691 /* It's safe to write the exe_file pointer without exe_file_lock because
692 * this is called during fork when the task is not yet in /proc */
693 newmm->exe_file = get_mm_exe_file(oldmm);
694 }
695
696 /**
697 * get_task_mm - acquire a reference to the task's mm
698 *
699 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
700 * this kernel workthread has transiently adopted a user mm with use_mm,
701 * to do its AIO) is not set and if so returns a reference to it, after
702 * bumping up the use count. User must release the mm via mmput()
703 * after use. Typically used by /proc and ptrace.
704 */
705 struct mm_struct *get_task_mm(struct task_struct *task)
706 {
707 struct mm_struct *mm;
708
709 task_lock(task);
710 mm = task->mm;
711 if (mm) {
712 if (task->flags & PF_KTHREAD)
713 mm = NULL;
714 else
715 atomic_inc(&mm->mm_users);
716 }
717 task_unlock(task);
718 return mm;
719 }
720 EXPORT_SYMBOL_GPL(get_task_mm);
721
722 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
723 {
724 struct mm_struct *mm;
725 int err;
726
727 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
728 if (err)
729 return ERR_PTR(err);
730
731 mm = get_task_mm(task);
732 if (mm && mm != current->mm &&
733 !ptrace_may_access(task, mode) &&
734 !capable(CAP_SYS_RESOURCE)) {
735 mmput(mm);
736 mm = ERR_PTR(-EACCES);
737 }
738 mutex_unlock(&task->signal->cred_guard_mutex);
739
740 return mm;
741 }
742
743 static void complete_vfork_done(struct task_struct *tsk)
744 {
745 struct completion *vfork;
746
747 task_lock(tsk);
748 vfork = tsk->vfork_done;
749 if (likely(vfork)) {
750 tsk->vfork_done = NULL;
751 complete(vfork);
752 }
753 task_unlock(tsk);
754 }
755
756 static int wait_for_vfork_done(struct task_struct *child,
757 struct completion *vfork)
758 {
759 int killed;
760
761 freezer_do_not_count();
762 killed = wait_for_completion_killable(vfork);
763 freezer_count();
764
765 if (killed) {
766 task_lock(child);
767 child->vfork_done = NULL;
768 task_unlock(child);
769 }
770
771 put_task_struct(child);
772 return killed;
773 }
774
775 /* Please note the differences between mmput and mm_release.
776 * mmput is called whenever we stop holding onto a mm_struct,
777 * error success whatever.
778 *
779 * mm_release is called after a mm_struct has been removed
780 * from the current process.
781 *
782 * This difference is important for error handling, when we
783 * only half set up a mm_struct for a new process and need to restore
784 * the old one. Because we mmput the new mm_struct before
785 * restoring the old one. . .
786 * Eric Biederman 10 January 1998
787 */
788 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
789 {
790 /* Get rid of any futexes when releasing the mm */
791 #ifdef CONFIG_FUTEX
792 if (unlikely(tsk->robust_list)) {
793 exit_robust_list(tsk);
794 tsk->robust_list = NULL;
795 }
796 #ifdef CONFIG_COMPAT
797 if (unlikely(tsk->compat_robust_list)) {
798 compat_exit_robust_list(tsk);
799 tsk->compat_robust_list = NULL;
800 }
801 #endif
802 if (unlikely(!list_empty(&tsk->pi_state_list)))
803 exit_pi_state_list(tsk);
804 #endif
805
806 uprobe_free_utask(tsk);
807
808 /* Get rid of any cached register state */
809 deactivate_mm(tsk, mm);
810
811 /*
812 * If we're exiting normally, clear a user-space tid field if
813 * requested. We leave this alone when dying by signal, to leave
814 * the value intact in a core dump, and to save the unnecessary
815 * trouble, say, a killed vfork parent shouldn't touch this mm.
816 * Userland only wants this done for a sys_exit.
817 */
818 if (tsk->clear_child_tid) {
819 if (!(tsk->flags & PF_SIGNALED) &&
820 atomic_read(&mm->mm_users) > 1) {
821 /*
822 * We don't check the error code - if userspace has
823 * not set up a proper pointer then tough luck.
824 */
825 put_user(0, tsk->clear_child_tid);
826 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
827 1, NULL, NULL, 0);
828 }
829 tsk->clear_child_tid = NULL;
830 }
831
832 /*
833 * All done, finally we can wake up parent and return this mm to him.
834 * Also kthread_stop() uses this completion for synchronization.
835 */
836 if (tsk->vfork_done)
837 complete_vfork_done(tsk);
838 }
839
840 /*
841 * Allocate a new mm structure and copy contents from the
842 * mm structure of the passed in task structure.
843 */
844 struct mm_struct *dup_mm(struct task_struct *tsk)
845 {
846 struct mm_struct *mm, *oldmm = current->mm;
847 int err;
848
849 if (!oldmm)
850 return NULL;
851
852 mm = allocate_mm();
853 if (!mm)
854 goto fail_nomem;
855
856 memcpy(mm, oldmm, sizeof(*mm));
857 mm_init_cpumask(mm);
858
859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
860 mm->pmd_huge_pte = NULL;
861 #endif
862 #ifdef CONFIG_NUMA_BALANCING
863 mm->first_nid = NUMA_PTE_SCAN_INIT;
864 #endif
865 if (!mm_init(mm, tsk))
866 goto fail_nomem;
867
868 if (init_new_context(tsk, mm))
869 goto fail_nocontext;
870
871 dup_mm_exe_file(oldmm, mm);
872
873 err = dup_mmap(mm, oldmm);
874 if (err)
875 goto free_pt;
876
877 mm->hiwater_rss = get_mm_rss(mm);
878 mm->hiwater_vm = mm->total_vm;
879
880 if (mm->binfmt && !try_module_get(mm->binfmt->module))
881 goto free_pt;
882
883 return mm;
884
885 free_pt:
886 /* don't put binfmt in mmput, we haven't got module yet */
887 mm->binfmt = NULL;
888 mmput(mm);
889
890 fail_nomem:
891 return NULL;
892
893 fail_nocontext:
894 /*
895 * If init_new_context() failed, we cannot use mmput() to free the mm
896 * because it calls destroy_context()
897 */
898 mm_free_pgd(mm);
899 free_mm(mm);
900 return NULL;
901 }
902
903 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
904 {
905 struct mm_struct *mm, *oldmm;
906 int retval;
907
908 tsk->min_flt = tsk->maj_flt = 0;
909 #ifdef CONFIG_ZRAM
910 tsk->fm_flt = tsk->swap_in = tsk->swap_out = 0;
911 #endif
912 tsk->nvcsw = tsk->nivcsw = 0;
913 #ifdef CONFIG_DETECT_HUNG_TASK
914 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
915 #endif
916
917 tsk->mm = NULL;
918 tsk->active_mm = NULL;
919
920 /*
921 * Are we cloning a kernel thread?
922 *
923 * We need to steal a active VM for that..
924 */
925 oldmm = current->mm;
926 if (!oldmm)
927 return 0;
928
929 if (clone_flags & CLONE_VM) {
930 atomic_inc(&oldmm->mm_users);
931 mm = oldmm;
932 goto good_mm;
933 }
934
935 retval = -ENOMEM;
936 mm = dup_mm(tsk);
937 if (!mm)
938 goto fail_nomem;
939
940 good_mm:
941 tsk->mm = mm;
942 tsk->active_mm = mm;
943 return 0;
944
945 fail_nomem:
946 return retval;
947 }
948
949 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 struct fs_struct *fs = current->fs;
952 if (clone_flags & CLONE_FS) {
953 /* tsk->fs is already what we want */
954 spin_lock(&fs->lock);
955 if (fs->in_exec) {
956 spin_unlock(&fs->lock);
957 return -EAGAIN;
958 }
959 fs->users++;
960 spin_unlock(&fs->lock);
961 return 0;
962 }
963 tsk->fs = copy_fs_struct(fs);
964 if (!tsk->fs)
965 return -ENOMEM;
966 return 0;
967 }
968
969 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
970 {
971 struct files_struct *oldf, *newf;
972 int error = 0;
973
974 /*
975 * A background process may not have any files ...
976 */
977 oldf = current->files;
978 if (!oldf)
979 goto out;
980
981 if (clone_flags & CLONE_FILES) {
982 atomic_inc(&oldf->count);
983 goto out;
984 }
985
986 newf = dup_fd(oldf, &error);
987 if (!newf)
988 goto out;
989
990 tsk->files = newf;
991 error = 0;
992 out:
993 return error;
994 }
995
996 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
997 {
998 #ifdef CONFIG_BLOCK
999 struct io_context *ioc = current->io_context;
1000 struct io_context *new_ioc;
1001
1002 if (!ioc)
1003 return 0;
1004 /*
1005 * Share io context with parent, if CLONE_IO is set
1006 */
1007 if (clone_flags & CLONE_IO) {
1008 ioc_task_link(ioc);
1009 tsk->io_context = ioc;
1010 } else if (ioprio_valid(ioc->ioprio)) {
1011 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1012 if (unlikely(!new_ioc))
1013 return -ENOMEM;
1014
1015 new_ioc->ioprio = ioc->ioprio;
1016 put_io_context(new_ioc);
1017 }
1018 #endif
1019 return 0;
1020 }
1021
1022 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1023 {
1024 struct sighand_struct *sig;
1025
1026 if (clone_flags & CLONE_SIGHAND) {
1027 atomic_inc(&current->sighand->count);
1028 return 0;
1029 }
1030 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1031 rcu_assign_pointer(tsk->sighand, sig);
1032 if (!sig)
1033 return -ENOMEM;
1034 atomic_set(&sig->count, 1);
1035 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1036 return 0;
1037 }
1038
1039 void __cleanup_sighand(struct sighand_struct *sighand)
1040 {
1041 if (atomic_dec_and_test(&sighand->count)) {
1042 signalfd_cleanup(sighand);
1043 kmem_cache_free(sighand_cachep, sighand);
1044 }
1045 }
1046
1047
1048 /*
1049 * Initialize POSIX timer handling for a thread group.
1050 */
1051 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1052 {
1053 unsigned long cpu_limit;
1054
1055 /* Thread group counters. */
1056 thread_group_cputime_init(sig);
1057
1058 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1059 if (cpu_limit != RLIM_INFINITY) {
1060 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1061 sig->cputimer.running = 1;
1062 }
1063
1064 /* The timer lists. */
1065 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1066 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1067 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1068 }
1069
1070 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1071 {
1072 struct signal_struct *sig;
1073
1074 if (clone_flags & CLONE_THREAD)
1075 return 0;
1076
1077 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1078 tsk->signal = sig;
1079 if (!sig)
1080 return -ENOMEM;
1081
1082 sig->nr_threads = 1;
1083 atomic_set(&sig->live, 1);
1084 atomic_set(&sig->sigcnt, 1);
1085
1086 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1087 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1088 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1089
1090 init_waitqueue_head(&sig->wait_chldexit);
1091 sig->curr_target = tsk;
1092 init_sigpending(&sig->shared_pending);
1093 INIT_LIST_HEAD(&sig->posix_timers);
1094
1095 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1096 sig->real_timer.function = it_real_fn;
1097
1098 task_lock(current->group_leader);
1099 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1100 task_unlock(current->group_leader);
1101
1102 posix_cpu_timers_init_group(sig);
1103
1104 tty_audit_fork(sig);
1105 sched_autogroup_fork(sig);
1106
1107 #ifdef CONFIG_CGROUPS
1108 init_rwsem(&sig->group_rwsem);
1109 #endif
1110
1111 sig->oom_score_adj = current->signal->oom_score_adj;
1112 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1113
1114 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1115 current->signal->is_child_subreaper;
1116
1117 mutex_init(&sig->cred_guard_mutex);
1118
1119 return 0;
1120 }
1121
1122 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1123 {
1124 unsigned long new_flags = p->flags;
1125
1126 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1127 new_flags |= PF_FORKNOEXEC;
1128 p->flags = new_flags;
1129 }
1130
1131 static void copy_seccomp(struct task_struct *p)
1132 {
1133 #ifdef CONFIG_SECCOMP
1134 /*
1135 * Must be called with sighand->lock held, which is common to
1136 * all threads in the group. Holding cred_guard_mutex is not
1137 * needed because this new task is not yet running and cannot
1138 * be racing exec.
1139 */
1140 assert_spin_locked(&current->sighand->siglock);
1141
1142 /* Ref-count the new filter user, and assign it. */
1143 get_seccomp_filter(current);
1144 p->seccomp = current->seccomp;
1145
1146 /*
1147 * Explicitly enable no_new_privs here in case it got set
1148 * between the task_struct being duplicated and holding the
1149 * sighand lock. The seccomp state and nnp must be in sync.
1150 */
1151 if (task_no_new_privs(current))
1152 task_set_no_new_privs(p);
1153
1154 /*
1155 * If the parent gained a seccomp mode after copying thread
1156 * flags and between before we held the sighand lock, we have
1157 * to manually enable the seccomp thread flag here.
1158 */
1159 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1160 set_tsk_thread_flag(p, TIF_SECCOMP);
1161 #endif
1162 }
1163
1164 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1165 {
1166 current->clear_child_tid = tidptr;
1167
1168 return task_pid_vnr(current);
1169 }
1170
1171 static void rt_mutex_init_task(struct task_struct *p)
1172 {
1173 raw_spin_lock_init(&p->pi_lock);
1174 #ifdef CONFIG_RT_MUTEXES
1175 plist_head_init(&p->pi_waiters);
1176 p->pi_blocked_on = NULL;
1177 #endif
1178 }
1179
1180 #ifdef CONFIG_MM_OWNER
1181 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1182 {
1183 mm->owner = p;
1184 }
1185 #endif /* CONFIG_MM_OWNER */
1186
1187 /*
1188 * Initialize POSIX timer handling for a single task.
1189 */
1190 static void posix_cpu_timers_init(struct task_struct *tsk)
1191 {
1192 tsk->cputime_expires.prof_exp = 0;
1193 tsk->cputime_expires.virt_exp = 0;
1194 tsk->cputime_expires.sched_exp = 0;
1195 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1196 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1197 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1198 }
1199
1200 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1201 static void mt_init_thread_group(struct task_struct *p){
1202 #ifdef CONFIG_MT_SCHED_INFO
1203 struct task_struct *tg = p->group_leader;
1204 #endif
1205
1206 p->thread_group_info[0].cfs_nr_running = 0;
1207 p->thread_group_info[0].nr_running = 0 ;
1208 p->thread_group_info[0].load_avg_ratio = 0;
1209 p->thread_group_info[1].cfs_nr_running = 0;
1210 p->thread_group_info[1].nr_running = 0;
1211 p->thread_group_info[1].load_avg_ratio = 0;
1212
1213 #ifdef CONFIG_MT_SCHED_INFO
1214 mt_sched_printf("fork %d:%s %d:%s %lu %lu %lu, %lu %lu %lu",
1215 tg->pid, tg->comm, p->pid, p->comm,
1216 tg->thread_group_info[0].nr_running,
1217 tg->thread_group_info[0].cfs_nr_running,
1218 tg->thread_group_info[0].load_avg_ratio,
1219 tg->thread_group_info[1].cfs_nr_running,
1220 tg->thread_group_info[1].nr_running,
1221 tg->thread_group_info[1].load_avg_ratio);
1222 #endif
1223 }
1224 #endif
1225
1226 /*
1227 * This creates a new process as a copy of the old one,
1228 * but does not actually start it yet.
1229 *
1230 * It copies the registers, and all the appropriate
1231 * parts of the process environment (as per the clone
1232 * flags). The actual kick-off is left to the caller.
1233 */
1234 static struct task_struct *copy_process(unsigned long clone_flags,
1235 unsigned long stack_start,
1236 unsigned long stack_size,
1237 int __user *child_tidptr,
1238 struct pid *pid,
1239 int trace)
1240 {
1241 int retval;
1242 struct task_struct *p;
1243
1244 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)){
1245 printk("[%d:%s] fork fail at cpp 1, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1246 return ERR_PTR(-EINVAL);
1247 }
1248 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1249 return ERR_PTR(-EINVAL);
1250
1251 /*
1252 * Thread groups must share signals as well, and detached threads
1253 * can only be started up within the thread group.
1254 */
1255 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)){
1256 printk("[%d:%s] fork fail at cpp 2, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1257 return ERR_PTR(-EINVAL);
1258 }
1259 /*
1260 * Shared signal handlers imply shared VM. By way of the above,
1261 * thread groups also imply shared VM. Blocking this case allows
1262 * for various simplifications in other code.
1263 */
1264 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)){
1265 printk("[%d:%s] fork fail at cpp 3, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1266 return ERR_PTR(-EINVAL);
1267 }
1268 /*
1269 * Siblings of global init remain as zombies on exit since they are
1270 * not reaped by their parent (swapper). To solve this and to avoid
1271 * multi-rooted process trees, prevent global and container-inits
1272 * from creating siblings.
1273 */
1274 if ((clone_flags & CLONE_PARENT) &&
1275 current->signal->flags & SIGNAL_UNKILLABLE){
1276 printk("[%d:%s] fork fail at cpp 4, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1277 return ERR_PTR(-EINVAL);
1278 }
1279 /*
1280 * If the new process will be in a different pid namespace don't
1281 * allow it to share a thread group or signal handlers with the
1282 * forking task.
1283 */
1284 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1285 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1286 return ERR_PTR(-EINVAL);
1287
1288 retval = security_task_create(clone_flags);
1289 if (retval)
1290 goto fork_out;
1291
1292 retval = -ENOMEM;
1293 p = dup_task_struct(current);
1294 if (!p){
1295 printk("[%d:%s] fork fail at dup_task_struc, p=%p\n", current->pid, current->comm, p);
1296 goto fork_out;
1297 }
1298
1299 ftrace_graph_init_task(p);
1300
1301 rt_mutex_init_task(p);
1302 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1303 raw_spin_lock_init(&p->thread_group_info_lock);
1304 #endif
1305
1306 #ifdef CONFIG_PROVE_LOCKING
1307 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1308 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1309 #endif
1310 retval = -EAGAIN;
1311 if (atomic_read(&p->real_cred->user->processes) >=
1312 task_rlimit(p, RLIMIT_NPROC)) {
1313 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1314 p->real_cred->user != INIT_USER)
1315 goto bad_fork_free;
1316 }
1317 current->flags &= ~PF_NPROC_EXCEEDED;
1318
1319 retval = copy_creds(p, clone_flags);
1320 if (retval < 0)
1321 goto bad_fork_free;
1322
1323 /*
1324 * If multiple threads are within copy_process(), then this check
1325 * triggers too late. This doesn't hurt, the check is only there
1326 * to stop root fork bombs.
1327 */
1328 retval = -EAGAIN;
1329 if (nr_threads >= max_threads)
1330 goto bad_fork_cleanup_count;
1331
1332 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1333 goto bad_fork_cleanup_count;
1334
1335 p->did_exec = 0;
1336 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1337 copy_flags(clone_flags, p);
1338 INIT_LIST_HEAD(&p->children);
1339 INIT_LIST_HEAD(&p->sibling);
1340 rcu_copy_process(p);
1341 p->vfork_done = NULL;
1342 spin_lock_init(&p->alloc_lock);
1343
1344 init_sigpending(&p->pending);
1345
1346 p->utime = p->stime = p->gtime = 0;
1347 p->utimescaled = p->stimescaled = 0;
1348 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1349 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1350 #endif
1351 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1352 seqlock_init(&p->vtime_seqlock);
1353 p->vtime_snap = 0;
1354 p->vtime_snap_whence = VTIME_SLEEPING;
1355 #endif
1356
1357 #if defined(SPLIT_RSS_COUNTING)
1358 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1359 #endif
1360
1361 p->default_timer_slack_ns = current->timer_slack_ns;
1362
1363 task_io_accounting_init(&p->ioac);
1364 acct_clear_integrals(p);
1365
1366 posix_cpu_timers_init(p);
1367
1368 do_posix_clock_monotonic_gettime(&p->start_time);
1369 p->real_start_time = p->start_time;
1370 monotonic_to_bootbased(&p->real_start_time);
1371 p->io_context = NULL;
1372 p->audit_context = NULL;
1373 if (clone_flags & CLONE_THREAD)
1374 threadgroup_change_begin(current);
1375 cgroup_fork(p);
1376 #ifdef CONFIG_NUMA
1377 p->mempolicy = mpol_dup(p->mempolicy);
1378 if (IS_ERR(p->mempolicy)) {
1379 retval = PTR_ERR(p->mempolicy);
1380 p->mempolicy = NULL;
1381 goto bad_fork_cleanup_cgroup;
1382 }
1383 mpol_fix_fork_child_flag(p);
1384 #endif
1385 #ifdef CONFIG_CPUSETS
1386 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1387 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1388 seqcount_init(&p->mems_allowed_seq);
1389 #endif
1390 #ifdef CONFIG_TRACE_IRQFLAGS
1391 p->irq_events = 0;
1392 p->hardirqs_enabled = 0;
1393 p->hardirq_enable_ip = 0;
1394 p->hardirq_enable_event = 0;
1395 p->hardirq_disable_ip = _THIS_IP_;
1396 p->hardirq_disable_event = 0;
1397 p->softirqs_enabled = 1;
1398 p->softirq_enable_ip = _THIS_IP_;
1399 p->softirq_enable_event = 0;
1400 p->softirq_disable_ip = 0;
1401 p->softirq_disable_event = 0;
1402 p->hardirq_context = 0;
1403 p->softirq_context = 0;
1404 #endif
1405 #ifdef CONFIG_LOCKDEP
1406 p->lockdep_depth = 0; /* no locks held yet */
1407 p->curr_chain_key = 0;
1408 p->lockdep_recursion = 0;
1409 #endif
1410
1411 #ifdef CONFIG_DEBUG_MUTEXES
1412 p->blocked_on = NULL; /* not blocked yet */
1413 #endif
1414 #ifdef CONFIG_MEMCG
1415 p->memcg_batch.do_batch = 0;
1416 p->memcg_batch.memcg = NULL;
1417 #endif
1418 #ifdef CONFIG_BCACHE
1419 p->sequential_io = 0;
1420 p->sequential_io_avg = 0;
1421 #endif
1422
1423 /* Perform scheduler related setup. Assign this task to a CPU. */
1424 sched_fork(p);
1425
1426 retval = perf_event_init_task(p);
1427 if (retval)
1428 goto bad_fork_cleanup_policy;
1429 retval = audit_alloc(p);
1430 if (retval)
1431 goto bad_fork_cleanup_policy;
1432 /* copy all the process information */
1433 retval = copy_semundo(clone_flags, p);
1434 if (retval)
1435 goto bad_fork_cleanup_audit;
1436 retval = copy_files(clone_flags, p);
1437 if (retval)
1438 goto bad_fork_cleanup_semundo;
1439 retval = copy_fs(clone_flags, p);
1440 if (retval)
1441 goto bad_fork_cleanup_files;
1442 retval = copy_sighand(clone_flags, p);
1443 if (retval)
1444 goto bad_fork_cleanup_fs;
1445 retval = copy_signal(clone_flags, p);
1446 if (retval)
1447 goto bad_fork_cleanup_sighand;
1448 retval = copy_mm(clone_flags, p);
1449 if (retval)
1450 goto bad_fork_cleanup_signal;
1451 retval = copy_namespaces(clone_flags, p);
1452 if (retval)
1453 goto bad_fork_cleanup_mm;
1454 retval = copy_io(clone_flags, p);
1455 if (retval)
1456 goto bad_fork_cleanup_namespaces;
1457 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1458 if (retval)
1459 goto bad_fork_cleanup_io;
1460
1461 if (pid != &init_struct_pid) {
1462 retval = -ENOMEM;
1463 pid = alloc_pid(p->nsproxy->pid_ns);
1464 if (!pid)
1465 goto bad_fork_cleanup_io;
1466 }
1467
1468 p->pid = pid_nr(pid);
1469 p->tgid = p->pid;
1470 if (clone_flags & CLONE_THREAD)
1471 p->tgid = current->tgid;
1472
1473 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1474 /*
1475 * Clear TID on mm_release()?
1476 */
1477 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1478 #ifdef CONFIG_BLOCK
1479 p->plug = NULL;
1480 #endif
1481 #ifdef CONFIG_FUTEX
1482 p->robust_list = NULL;
1483 #ifdef CONFIG_COMPAT
1484 p->compat_robust_list = NULL;
1485 #endif
1486 INIT_LIST_HEAD(&p->pi_state_list);
1487 p->pi_state_cache = NULL;
1488 #endif
1489 uprobe_copy_process(p);
1490 /*
1491 * sigaltstack should be cleared when sharing the same VM
1492 */
1493 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1494 p->sas_ss_sp = p->sas_ss_size = 0;
1495
1496 /*
1497 * Syscall tracing and stepping should be turned off in the
1498 * child regardless of CLONE_PTRACE.
1499 */
1500 user_disable_single_step(p);
1501 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1502 #ifdef TIF_SYSCALL_EMU
1503 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1504 #endif
1505 clear_all_latency_tracing(p);
1506
1507 /* ok, now we should be set up.. */
1508 if (clone_flags & CLONE_THREAD)
1509 p->exit_signal = -1;
1510 else if (clone_flags & CLONE_PARENT)
1511 p->exit_signal = current->group_leader->exit_signal;
1512 else
1513 p->exit_signal = (clone_flags & CSIGNAL);
1514
1515 p->pdeath_signal = 0;
1516 p->exit_state = 0;
1517
1518 p->nr_dirtied = 0;
1519 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1520 p->dirty_paused_when = 0;
1521
1522 /*
1523 * Ok, make it visible to the rest of the system.
1524 * We dont wake it up yet.
1525 */
1526 p->group_leader = p;
1527 INIT_LIST_HEAD(&p->thread_group);
1528 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1529 mt_init_thread_group(p);
1530 #endif
1531 p->task_works = NULL;
1532
1533 /* Need tasklist lock for parent etc handling! */
1534 write_lock_irq(&tasklist_lock);
1535
1536 /* CLONE_PARENT re-uses the old parent */
1537 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1538 p->real_parent = current->real_parent;
1539 p->parent_exec_id = current->parent_exec_id;
1540 } else {
1541 p->real_parent = current;
1542 p->parent_exec_id = current->self_exec_id;
1543 }
1544
1545 spin_lock(&current->sighand->siglock);
1546
1547 /*
1548 * Copy seccomp details explicitly here, in case they were changed
1549 * before holding sighand lock.
1550 */
1551 copy_seccomp(p);
1552
1553 /*
1554 * Process group and session signals need to be delivered to just the
1555 * parent before the fork or both the parent and the child after the
1556 * fork. Restart if a signal comes in before we add the new process to
1557 * it's process group.
1558 * A fatal signal pending means that current will exit, so the new
1559 * thread can't slip out of an OOM kill (or normal SIGKILL).
1560 */
1561 recalc_sigpending();
1562 if (signal_pending(current)) {
1563 spin_unlock(&current->sighand->siglock);
1564 write_unlock_irq(&tasklist_lock);
1565 retval = -ERESTARTNOINTR;
1566 goto bad_fork_free_pid;
1567 }
1568
1569 if (likely(p->pid)) {
1570 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1571
1572 if (thread_group_leader(p)) {
1573 if (is_child_reaper(pid)) {
1574 ns_of_pid(pid)->child_reaper = p;
1575 p->signal->flags |= SIGNAL_UNKILLABLE;
1576 }
1577
1578 p->signal->leader_pid = pid;
1579 p->signal->tty = tty_kref_get(current->signal->tty);
1580 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1581 attach_pid(p, PIDTYPE_SID, task_session(current));
1582 list_add_tail(&p->sibling, &p->real_parent->children);
1583 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1584 __this_cpu_inc(process_counts);
1585 } else {
1586 current->signal->nr_threads++;
1587 atomic_inc(&current->signal->live);
1588 atomic_inc(&current->signal->sigcnt);
1589 p->group_leader = current->group_leader;
1590 list_add_tail_rcu(&p->thread_group,
1591 &p->group_leader->thread_group);
1592 list_add_tail_rcu(&p->thread_node,
1593 &p->signal->thread_head);
1594 }
1595 attach_pid(p, PIDTYPE_PID, pid);
1596 nr_threads++;
1597 }
1598
1599 total_forks++;
1600 spin_unlock(&current->sighand->siglock);
1601 syscall_tracepoint_update(p);
1602 write_unlock_irq(&tasklist_lock);
1603
1604 proc_fork_connector(p);
1605 cgroup_post_fork(p);
1606 if (clone_flags & CLONE_THREAD)
1607 threadgroup_change_end(current);
1608 perf_event_fork(p);
1609
1610 trace_task_newtask(p, clone_flags);
1611
1612 return p;
1613
1614 bad_fork_free_pid:
1615 if (pid != &init_struct_pid)
1616 free_pid(pid);
1617 bad_fork_cleanup_io:
1618 if (p->io_context)
1619 exit_io_context(p);
1620 bad_fork_cleanup_namespaces:
1621 exit_task_namespaces(p);
1622 bad_fork_cleanup_mm:
1623 if (p->mm)
1624 mmput(p->mm);
1625 bad_fork_cleanup_signal:
1626 if (!(clone_flags & CLONE_THREAD))
1627 free_signal_struct(p->signal);
1628 bad_fork_cleanup_sighand:
1629 __cleanup_sighand(p->sighand);
1630 bad_fork_cleanup_fs:
1631 exit_fs(p); /* blocking */
1632 bad_fork_cleanup_files:
1633 exit_files(p); /* blocking */
1634 bad_fork_cleanup_semundo:
1635 exit_sem(p);
1636 bad_fork_cleanup_audit:
1637 audit_free(p);
1638 bad_fork_cleanup_policy:
1639 perf_event_free_task(p);
1640 #ifdef CONFIG_NUMA
1641 mpol_put(p->mempolicy);
1642 bad_fork_cleanup_cgroup:
1643 #endif
1644 if (clone_flags & CLONE_THREAD)
1645 threadgroup_change_end(current);
1646 cgroup_exit(p, 0);
1647 delayacct_tsk_free(p);
1648 module_put(task_thread_info(p)->exec_domain->module);
1649 bad_fork_cleanup_count:
1650 atomic_dec(&p->cred->user->processes);
1651 exit_creds(p);
1652 bad_fork_free:
1653 free_task(p);
1654 fork_out:
1655 printk("[%d:%s] fork fail retval:0x%x\n", current->pid, current->comm, retval);
1656 return ERR_PTR(retval);
1657 }
1658
1659 static inline void init_idle_pids(struct pid_link *links)
1660 {
1661 enum pid_type type;
1662
1663 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1664 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1665 links[type].pid = &init_struct_pid;
1666 }
1667 }
1668
1669 struct task_struct * __cpuinit fork_idle(int cpu)
1670 {
1671 struct task_struct *task;
1672 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1673 if (!IS_ERR(task)) {
1674 init_idle_pids(task->pids);
1675 init_idle(task, cpu);
1676 }
1677
1678 return task;
1679 }
1680
1681 /*
1682 * Ok, this is the main fork-routine.
1683 *
1684 * It copies the process, and if successful kick-starts
1685 * it and waits for it to finish using the VM if required.
1686 */
1687 #ifdef CONFIG_SCHEDSTATS
1688 /* mt shceduler profiling*/
1689 extern void save_mtproc_info(struct task_struct *p, unsigned long long ts);
1690 #endif
1691 long do_fork(unsigned long clone_flags,
1692 unsigned long stack_start,
1693 unsigned long stack_size,
1694 int __user *parent_tidptr,
1695 int __user *child_tidptr)
1696 {
1697 struct task_struct *p;
1698 int trace = 0;
1699 long nr;
1700
1701 /*
1702 * Do some preliminary argument and permissions checking before we
1703 * actually start allocating stuff
1704 */
1705 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1706 if (clone_flags & (CLONE_THREAD|CLONE_PARENT)) {
1707 printk("[%d:%s] fork fail at clone_thread, flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1708 return -EINVAL;
1709 }
1710 }
1711
1712 /*
1713 * Determine whether and which event to report to ptracer. When
1714 * called from kernel_thread or CLONE_UNTRACED is explicitly
1715 * requested, no event is reported; otherwise, report if the event
1716 * for the type of forking is enabled.
1717 */
1718 if (!(clone_flags & CLONE_UNTRACED)) {
1719 if (clone_flags & CLONE_VFORK)
1720 trace = PTRACE_EVENT_VFORK;
1721 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1722 trace = PTRACE_EVENT_CLONE;
1723 else
1724 trace = PTRACE_EVENT_FORK;
1725
1726 if (likely(!ptrace_event_enabled(current, trace)))
1727 trace = 0;
1728 }
1729
1730 p = copy_process(clone_flags, stack_start, stack_size,
1731 child_tidptr, NULL, trace);
1732 /*
1733 * Do this prior waking up the new thread - the thread pointer
1734 * might get invalid after that point, if the thread exits quickly.
1735 */
1736 if (!IS_ERR(p)) {
1737 struct completion vfork;
1738 struct pid *pid;
1739
1740 trace_sched_process_fork(current, p);
1741
1742 pid = get_task_pid(p, PIDTYPE_PID);
1743 nr = pid_vnr(pid);
1744
1745 if (clone_flags & CLONE_PARENT_SETTID)
1746 put_user(nr, parent_tidptr);
1747
1748 if (clone_flags & CLONE_VFORK) {
1749 p->vfork_done = &vfork;
1750 init_completion(&vfork);
1751 get_task_struct(p);
1752 }
1753
1754 #ifdef CONFIG_SCHEDSTATS
1755 /* mt shceduler profiling*/
1756 save_mtproc_info(p, sched_clock());
1757 printk(KERN_DEBUG "[%d:%s] fork [%d:%s]\n", current->pid, current->comm, p->pid, p->comm);
1758 #endif
1759 wake_up_new_task(p);
1760
1761 /* forking complete and child started to run, tell ptracer */
1762 if (unlikely(trace))
1763 ptrace_event_pid(trace, pid);
1764
1765 if (clone_flags & CLONE_VFORK) {
1766 if (!wait_for_vfork_done(p, &vfork))
1767 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1768 }
1769
1770 put_pid(pid);
1771 #ifdef CONFIG_MT_PRIO_TRACER
1772 create_prio_tracer(task_pid_nr(p));
1773 update_prio_tracer(task_pid_nr(p), p->prio, p->policy, PTS_KRNL);
1774 #endif
1775 } else {
1776 nr = PTR_ERR(p);
1777 printk("[%d:%s] fork fail:[%p, %d]\n", current->pid, current->comm, p,(int) nr);
1778 }
1779 return nr;
1780 }
1781
1782 /*
1783 * Create a kernel thread.
1784 */
1785 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1786 {
1787 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1788 (unsigned long)arg, NULL, NULL);
1789 }
1790
1791 #ifdef __ARCH_WANT_SYS_FORK
1792 SYSCALL_DEFINE0(fork)
1793 {
1794 #ifdef CONFIG_MMU
1795 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1796 #else
1797 /* can not support in nommu mode */
1798 return(-EINVAL);
1799 #endif
1800 }
1801 #endif
1802
1803 #ifdef __ARCH_WANT_SYS_VFORK
1804 SYSCALL_DEFINE0(vfork)
1805 {
1806 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1807 0, NULL, NULL);
1808 }
1809 #endif
1810
1811 #ifdef __ARCH_WANT_SYS_CLONE
1812 #ifdef CONFIG_CLONE_BACKWARDS
1813 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1814 int __user *, parent_tidptr,
1815 int, tls_val,
1816 int __user *, child_tidptr)
1817 #elif defined(CONFIG_CLONE_BACKWARDS2)
1818 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1819 int __user *, parent_tidptr,
1820 int __user *, child_tidptr,
1821 int, tls_val)
1822 #elif defined(CONFIG_CLONE_BACKWARDS3)
1823 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1824 int, stack_size,
1825 int __user *, parent_tidptr,
1826 int __user *, child_tidptr,
1827 int, tls_val)
1828 #else
1829 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1830 int __user *, parent_tidptr,
1831 int __user *, child_tidptr,
1832 int, tls_val)
1833 #endif
1834 {
1835 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1836 }
1837 #endif
1838
1839 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1840 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1841 #endif
1842
1843 static void sighand_ctor(void *data)
1844 {
1845 struct sighand_struct *sighand = data;
1846
1847 spin_lock_init(&sighand->siglock);
1848 init_waitqueue_head(&sighand->signalfd_wqh);
1849 }
1850
1851 void __init proc_caches_init(void)
1852 {
1853 sighand_cachep = kmem_cache_create("sighand_cache",
1854 sizeof(struct sighand_struct), 0,
1855 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1856 SLAB_NOTRACK, sighand_ctor);
1857 signal_cachep = kmem_cache_create("signal_cache",
1858 sizeof(struct signal_struct), 0,
1859 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860 files_cachep = kmem_cache_create("files_cache",
1861 sizeof(struct files_struct), 0,
1862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863 fs_cachep = kmem_cache_create("fs_cache",
1864 sizeof(struct fs_struct), 0,
1865 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1866 /*
1867 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1868 * whole struct cpumask for the OFFSTACK case. We could change
1869 * this to *only* allocate as much of it as required by the
1870 * maximum number of CPU's we can ever have. The cpumask_allocation
1871 * is at the end of the structure, exactly for that reason.
1872 */
1873 mm_cachep = kmem_cache_create("mm_struct",
1874 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1875 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1876 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1877 mmap_init();
1878 nsproxy_cache_init();
1879 }
1880
1881 /*
1882 * Check constraints on flags passed to the unshare system call.
1883 */
1884 static int check_unshare_flags(unsigned long unshare_flags)
1885 {
1886 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1887 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1888 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1889 CLONE_NEWUSER|CLONE_NEWPID))
1890 return -EINVAL;
1891 /*
1892 * Not implemented, but pretend it works if there is nothing to
1893 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1894 * needs to unshare vm.
1895 */
1896 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1897 /* FIXME: get_task_mm() increments ->mm_users */
1898 if (atomic_read(&current->mm->mm_users) > 1)
1899 return -EINVAL;
1900 }
1901
1902 return 0;
1903 }
1904
1905 /*
1906 * Unshare the filesystem structure if it is being shared
1907 */
1908 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1909 {
1910 struct fs_struct *fs = current->fs;
1911
1912 if (!(unshare_flags & CLONE_FS) || !fs)
1913 return 0;
1914
1915 /* don't need lock here; in the worst case we'll do useless copy */
1916 if (fs->users == 1)
1917 return 0;
1918
1919 *new_fsp = copy_fs_struct(fs);
1920 if (!*new_fsp)
1921 return -ENOMEM;
1922
1923 return 0;
1924 }
1925
1926 /*
1927 * Unshare file descriptor table if it is being shared
1928 */
1929 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1930 {
1931 struct files_struct *fd = current->files;
1932 int error = 0;
1933
1934 if ((unshare_flags & CLONE_FILES) &&
1935 (fd && atomic_read(&fd->count) > 1)) {
1936 *new_fdp = dup_fd(fd, &error);
1937 if (!*new_fdp)
1938 return error;
1939 }
1940
1941 return 0;
1942 }
1943
1944 /*
1945 * unshare allows a process to 'unshare' part of the process
1946 * context which was originally shared using clone. copy_*
1947 * functions used by do_fork() cannot be used here directly
1948 * because they modify an inactive task_struct that is being
1949 * constructed. Here we are modifying the current, active,
1950 * task_struct.
1951 */
1952 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1953 {
1954 struct fs_struct *fs, *new_fs = NULL;
1955 struct files_struct *fd, *new_fd = NULL;
1956 struct cred *new_cred = NULL;
1957 struct nsproxy *new_nsproxy = NULL;
1958 int do_sysvsem = 0;
1959 int err;
1960
1961 /*
1962 * If unsharing a user namespace must also unshare the thread.
1963 */
1964 if (unshare_flags & CLONE_NEWUSER)
1965 unshare_flags |= CLONE_THREAD | CLONE_FS;
1966 /*
1967 * If unsharing a pid namespace must also unshare the thread.
1968 */
1969 if (unshare_flags & CLONE_NEWPID)
1970 unshare_flags |= CLONE_THREAD;
1971 /*
1972 * If unsharing a thread from a thread group, must also unshare vm.
1973 */
1974 if (unshare_flags & CLONE_THREAD)
1975 unshare_flags |= CLONE_VM;
1976 /*
1977 * If unsharing vm, must also unshare signal handlers.
1978 */
1979 if (unshare_flags & CLONE_VM)
1980 unshare_flags |= CLONE_SIGHAND;
1981 /*
1982 * If unsharing namespace, must also unshare filesystem information.
1983 */
1984 if (unshare_flags & CLONE_NEWNS)
1985 unshare_flags |= CLONE_FS;
1986
1987 err = check_unshare_flags(unshare_flags);
1988 if (err)
1989 goto bad_unshare_out;
1990 /*
1991 * CLONE_NEWIPC must also detach from the undolist: after switching
1992 * to a new ipc namespace, the semaphore arrays from the old
1993 * namespace are unreachable.
1994 */
1995 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1996 do_sysvsem = 1;
1997 err = unshare_fs(unshare_flags, &new_fs);
1998 if (err)
1999 goto bad_unshare_out;
2000 err = unshare_fd(unshare_flags, &new_fd);
2001 if (err)
2002 goto bad_unshare_cleanup_fs;
2003 err = unshare_userns(unshare_flags, &new_cred);
2004 if (err)
2005 goto bad_unshare_cleanup_fd;
2006 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2007 new_cred, new_fs);
2008 if (err)
2009 goto bad_unshare_cleanup_cred;
2010
2011 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2012 if (do_sysvsem) {
2013 /*
2014 * CLONE_SYSVSEM is equivalent to sys_exit().
2015 */
2016 exit_sem(current);
2017 }
2018
2019 if (new_nsproxy)
2020 switch_task_namespaces(current, new_nsproxy);
2021
2022 task_lock(current);
2023
2024 if (new_fs) {
2025 fs = current->fs;
2026 spin_lock(&fs->lock);
2027 current->fs = new_fs;
2028 if (--fs->users)
2029 new_fs = NULL;
2030 else
2031 new_fs = fs;
2032 spin_unlock(&fs->lock);
2033 }
2034
2035 if (new_fd) {
2036 fd = current->files;
2037 current->files = new_fd;
2038 new_fd = fd;
2039 }
2040
2041 task_unlock(current);
2042
2043 if (new_cred) {
2044 /* Install the new user namespace */
2045 commit_creds(new_cred);
2046 new_cred = NULL;
2047 }
2048 }
2049
2050 bad_unshare_cleanup_cred:
2051 if (new_cred)
2052 put_cred(new_cred);
2053 bad_unshare_cleanup_fd:
2054 if (new_fd)
2055 put_files_struct(new_fd);
2056
2057 bad_unshare_cleanup_fs:
2058 if (new_fs)
2059 free_fs_struct(new_fs);
2060
2061 bad_unshare_out:
2062 return err;
2063 }
2064
2065 /*
2066 * Helper to unshare the files of the current task.
2067 * We don't want to expose copy_files internals to
2068 * the exec layer of the kernel.
2069 */
2070
2071 int unshare_files(struct files_struct **displaced)
2072 {
2073 struct task_struct *task = current;
2074 struct files_struct *copy = NULL;
2075 int error;
2076
2077 error = unshare_fd(CLONE_FILES, &copy);
2078 if (error || !copy) {
2079 *displaced = NULL;
2080 return error;
2081 }
2082 *displaced = task->files;
2083 task_lock(task);
2084 task->files = copy;
2085 task_unlock(task);
2086 return 0;
2087 }