drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 #ifdef CONFIG_MT_PRIO_TRACER
63 # include <linux/prio_tracer.h>
64 #endif
65
66 static void exit_mm(struct task_struct * tsk);
67
68 static void __unhash_process(struct task_struct *p, bool group_dead)
69 {
70 nr_threads--;
71 detach_pid(p, PIDTYPE_PID);
72 if (group_dead) {
73 detach_pid(p, PIDTYPE_PGID);
74 detach_pid(p, PIDTYPE_SID);
75
76 list_del_rcu(&p->tasks);
77 list_del_init(&p->sibling);
78 __this_cpu_dec(process_counts);
79 }
80 list_del_rcu(&p->thread_group);
81 list_del_rcu(&p->thread_node);
82 }
83
84 /*
85 * This function expects the tasklist_lock write-locked.
86 */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89 struct signal_struct *sig = tsk->signal;
90 bool group_dead = thread_group_leader(tsk);
91 struct sighand_struct *sighand;
92 struct tty_struct *uninitialized_var(tty);
93 cputime_t utime, stime;
94
95 sighand = rcu_dereference_check(tsk->sighand,
96 lockdep_tasklist_lock_is_held());
97 spin_lock(&sighand->siglock);
98
99 posix_cpu_timers_exit(tsk);
100 if (group_dead) {
101 posix_cpu_timers_exit_group(tsk);
102 tty = sig->tty;
103 sig->tty = NULL;
104 } else {
105 /*
106 * This can only happen if the caller is de_thread().
107 * FIXME: this is the temporary hack, we should teach
108 * posix-cpu-timers to handle this case correctly.
109 */
110 if (unlikely(has_group_leader_pid(tsk)))
111 posix_cpu_timers_exit_group(tsk);
112
113 /*
114 * If there is any task waiting for the group exit
115 * then notify it:
116 */
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 /*
123 * Accumulate here the counters for all threads but the
124 * group leader as they die, so they can be added into
125 * the process-wide totals when those are taken.
126 * The group leader stays around as a zombie as long
127 * as there are other threads. When it gets reaped,
128 * the exit.c code will add its counts into these totals.
129 * We won't ever get here for the group leader, since it
130 * will have been the last reference on the signal_struct.
131 */
132 task_cputime(tsk, &utime, &stime);
133 sig->utime += utime;
134 sig->stime += stime;
135 sig->gtime += task_gtime(tsk);
136 sig->min_flt += tsk->min_flt;
137 sig->maj_flt += tsk->maj_flt;
138 sig->nvcsw += tsk->nvcsw;
139 sig->nivcsw += tsk->nivcsw;
140 sig->inblock += task_io_get_inblock(tsk);
141 sig->oublock += task_io_get_oublock(tsk);
142 task_io_accounting_add(&sig->ioac, &tsk->ioac);
143 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
144 }
145
146 sig->nr_threads--;
147 __unhash_process(tsk, group_dead);
148
149 /*
150 * Do this under ->siglock, we can race with another thread
151 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
152 */
153 flush_sigqueue(&tsk->pending);
154 tsk->sighand = NULL;
155 spin_unlock(&sighand->siglock);
156
157 __cleanup_sighand(sighand);
158 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
159 if (group_dead) {
160 flush_sigqueue(&sig->shared_pending);
161 tty_kref_put(tty);
162 }
163 }
164
165 static void delayed_put_task_struct(struct rcu_head *rhp)
166 {
167 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
168
169 perf_event_delayed_put(tsk);
170 trace_sched_process_free(tsk);
171 put_task_struct(tsk);
172 }
173
174
175 void release_task(struct task_struct * p)
176 {
177 struct task_struct *leader;
178 int zap_leader;
179 repeat:
180 /* don't need to get the RCU readlock here - the process is dead and
181 * can't be modifying its own credentials. But shut RCU-lockdep up */
182 rcu_read_lock();
183 atomic_dec(&__task_cred(p)->user->processes);
184 rcu_read_unlock();
185
186 proc_flush_task(p);
187
188 write_lock_irq(&tasklist_lock);
189 ptrace_release_task(p);
190 __exit_signal(p);
191
192 /*
193 * If we are the last non-leader member of the thread
194 * group, and the leader is zombie, then notify the
195 * group leader's parent process. (if it wants notification.)
196 */
197 zap_leader = 0;
198 leader = p->group_leader;
199 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
200 /*
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
204 */
205 zap_leader = do_notify_parent(leader, leader->exit_signal);
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static bool has_stopped_jobs(struct pid *pgrp)
278 {
279 struct task_struct *p;
280
281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 if (p->signal->flags & SIGNAL_STOP_STOPPED)
283 return true;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return false;
287 }
288
289 /*
290 * Check to see if any process groups have become orphaned as
291 * a result of our exiting, and if they have any stopped jobs,
292 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
293 */
294 static void
295 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
296 {
297 struct pid *pgrp = task_pgrp(tsk);
298 struct task_struct *ignored_task = tsk;
299
300 if (!parent)
301 /* exit: our father is in a different pgrp than
302 * we are and we were the only connection outside.
303 */
304 parent = tsk->real_parent;
305 else
306 /* reparent: our child is in a different pgrp than
307 * we are, and it was the only connection outside.
308 */
309 ignored_task = NULL;
310
311 if (task_pgrp(parent) != pgrp &&
312 task_session(parent) == task_session(tsk) &&
313 will_become_orphaned_pgrp(pgrp, ignored_task) &&
314 has_stopped_jobs(pgrp)) {
315 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
316 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
317 }
318 }
319
320 void __set_special_pids(struct pid *pid)
321 {
322 struct task_struct *curr = current->group_leader;
323
324 if (task_session(curr) != pid)
325 change_pid(curr, PIDTYPE_SID, pid);
326
327 if (task_pgrp(curr) != pid)
328 change_pid(curr, PIDTYPE_PGID, pid);
329 }
330
331 /*
332 * Let kernel threads use this to say that they allow a certain signal.
333 * Must not be used if kthread was cloned with CLONE_SIGHAND.
334 */
335 int allow_signal(int sig)
336 {
337 if (!valid_signal(sig) || sig < 1)
338 return -EINVAL;
339
340 spin_lock_irq(&current->sighand->siglock);
341 /* This is only needed for daemonize()'ed kthreads */
342 sigdelset(&current->blocked, sig);
343 /*
344 * Kernel threads handle their own signals. Let the signal code
345 * know it'll be handled, so that they don't get converted to
346 * SIGKILL or just silently dropped.
347 */
348 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
349 recalc_sigpending();
350 spin_unlock_irq(&current->sighand->siglock);
351 return 0;
352 }
353
354 EXPORT_SYMBOL(allow_signal);
355
356 int disallow_signal(int sig)
357 {
358 if (!valid_signal(sig) || sig < 1)
359 return -EINVAL;
360
361 spin_lock_irq(&current->sighand->siglock);
362 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
363 recalc_sigpending();
364 spin_unlock_irq(&current->sighand->siglock);
365 return 0;
366 }
367
368 EXPORT_SYMBOL(disallow_signal);
369
370 #ifdef CONFIG_MM_OWNER
371 /*
372 * A task is exiting. If it owned this mm, find a new owner for the mm.
373 */
374 void mm_update_next_owner(struct mm_struct *mm)
375 {
376 struct task_struct *c, *g, *p = current;
377
378 retry:
379 /*
380 * If the exiting or execing task is not the owner, it's
381 * someone else's problem.
382 */
383 if (mm->owner != p)
384 return;
385 /*
386 * The current owner is exiting/execing and there are no other
387 * candidates. Do not leave the mm pointing to a possibly
388 * freed task structure.
389 */
390 if (atomic_read(&mm->mm_users) <= 1) {
391 mm->owner = NULL;
392 return;
393 }
394
395 read_lock(&tasklist_lock);
396 /*
397 * Search in the children
398 */
399 list_for_each_entry(c, &p->children, sibling) {
400 if (c->mm == mm)
401 goto assign_new_owner;
402 }
403
404 /*
405 * Search in the siblings
406 */
407 list_for_each_entry(c, &p->real_parent->children, sibling) {
408 if (c->mm == mm)
409 goto assign_new_owner;
410 }
411
412 /*
413 * Search through everything else. We should not get
414 * here often
415 */
416 do_each_thread(g, c) {
417 if (c->mm == mm)
418 goto assign_new_owner;
419 } while_each_thread(g, c);
420
421 read_unlock(&tasklist_lock);
422 /*
423 * We found no owner yet mm_users > 1: this implies that we are
424 * most likely racing with swapoff (try_to_unuse()) or /proc or
425 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
426 */
427 mm->owner = NULL;
428 return;
429
430 assign_new_owner:
431 BUG_ON(c == p);
432 get_task_struct(c);
433 /*
434 * The task_lock protects c->mm from changing.
435 * We always want mm->owner->mm == mm
436 */
437 task_lock(c);
438 /*
439 * Delay read_unlock() till we have the task_lock()
440 * to ensure that c does not slip away underneath us
441 */
442 read_unlock(&tasklist_lock);
443 if (c->mm != mm) {
444 task_unlock(c);
445 put_task_struct(c);
446 goto retry;
447 }
448 mm->owner = c;
449 task_unlock(c);
450 put_task_struct(c);
451 }
452 #endif /* CONFIG_MM_OWNER */
453
454 /*
455 * Turn us into a lazy TLB process if we
456 * aren't already..
457 */
458 static void exit_mm(struct task_struct * tsk)
459 {
460 struct mm_struct *mm = tsk->mm;
461 struct core_state *core_state;
462
463 mm_release(tsk, mm);
464 if (!mm)
465 return;
466 sync_mm_rss(mm);
467 /*
468 * Serialize with any possible pending coredump.
469 * We must hold mmap_sem around checking core_state
470 * and clearing tsk->mm. The core-inducing thread
471 * will increment ->nr_threads for each thread in the
472 * group with ->mm != NULL.
473 */
474 down_read(&mm->mmap_sem);
475 core_state = mm->core_state;
476 if (core_state) {
477 struct core_thread self;
478 up_read(&mm->mmap_sem);
479
480 self.task = tsk;
481 self.next = xchg(&core_state->dumper.next, &self);
482 /*
483 * Implies mb(), the result of xchg() must be visible
484 * to core_state->dumper.
485 */
486 if (atomic_dec_and_test(&core_state->nr_threads))
487 complete(&core_state->startup);
488
489 for (;;) {
490 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
491 if (!self.task) /* see coredump_finish() */
492 break;
493 freezable_schedule();
494 }
495 __set_task_state(tsk, TASK_RUNNING);
496 down_read(&mm->mmap_sem);
497 }
498 atomic_inc(&mm->mm_count);
499 BUG_ON(mm != tsk->active_mm);
500 /* more a memory barrier than a real lock */
501 task_lock(tsk);
502 tsk->mm = NULL;
503 up_read(&mm->mmap_sem);
504 enter_lazy_tlb(mm, current);
505 task_unlock(tsk);
506 mm_update_next_owner(mm);
507 mmput(mm);
508 }
509
510 /*
511 * When we die, we re-parent all our children, and try to:
512 * 1. give them to another thread in our thread group, if such a member exists
513 * 2. give it to the first ancestor process which prctl'd itself as a
514 * child_subreaper for its children (like a service manager)
515 * 3. give it to the init process (PID 1) in our pid namespace
516 */
517 static struct task_struct *find_new_reaper(struct task_struct *father)
518 __releases(&tasklist_lock)
519 __acquires(&tasklist_lock)
520 {
521 struct pid_namespace *pid_ns = task_active_pid_ns(father);
522 struct task_struct *thread;
523
524 thread = father;
525 while_each_thread(father, thread) {
526 if (thread->flags & PF_EXITING)
527 continue;
528 if (unlikely(pid_ns->child_reaper == father))
529 pid_ns->child_reaper = thread;
530 return thread;
531 }
532
533 if (unlikely(pid_ns->child_reaper == father)) {
534 write_unlock_irq(&tasklist_lock);
535 if (unlikely(pid_ns == &init_pid_ns)) {
536 panic("Attempted to kill init! exitcode=0x%08x\n",
537 father->signal->group_exit_code ?:
538 father->exit_code);
539 }
540
541 zap_pid_ns_processes(pid_ns);
542 write_lock_irq(&tasklist_lock);
543 } else if (father->signal->has_child_subreaper) {
544 struct task_struct *reaper;
545
546 /*
547 * Find the first ancestor marked as child_subreaper.
548 * Note that the code below checks same_thread_group(reaper,
549 * pid_ns->child_reaper). This is what we need to DTRT in a
550 * PID namespace. However we still need the check above, see
551 * http://marc.info/?l=linux-kernel&m=131385460420380
552 */
553 for (reaper = father->real_parent;
554 reaper != &init_task;
555 reaper = reaper->real_parent) {
556 if (same_thread_group(reaper, pid_ns->child_reaper))
557 break;
558 if (!reaper->signal->is_child_subreaper)
559 continue;
560 thread = reaper;
561 do {
562 if (!(thread->flags & PF_EXITING))
563 return reaper;
564 } while_each_thread(reaper, thread);
565 }
566 }
567
568 return pid_ns->child_reaper;
569 }
570
571 /*
572 * Any that need to be release_task'd are put on the @dead list.
573 */
574 static void reparent_leader(struct task_struct *father, struct task_struct *p,
575 struct list_head *dead)
576 {
577 list_move_tail(&p->sibling, &p->real_parent->children);
578 /*
579 * If this is a threaded reparent there is no need to
580 * notify anyone anything has happened.
581 */
582 if (same_thread_group(p->real_parent, father))
583 return;
584
585 /*
586 * We don't want people slaying init.
587 *
588 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
589 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
590 * state, do_notify_parent() was already called and ->exit_signal
591 * doesn't matter.
592 */
593 p->exit_signal = SIGCHLD;
594
595 if (p->exit_state == EXIT_DEAD)
596 return;
597
598 /* If it has exited notify the new parent about this child's death. */
599 if (!p->ptrace &&
600 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
601 if (do_notify_parent(p, p->exit_signal)) {
602 p->exit_state = EXIT_DEAD;
603 list_move_tail(&p->sibling, dead);
604 }
605 }
606
607 kill_orphaned_pgrp(p, father);
608 }
609
610 static void forget_original_parent(struct task_struct *father)
611 {
612 struct task_struct *p, *n, *reaper;
613 LIST_HEAD(dead_children);
614
615 write_lock_irq(&tasklist_lock);
616 /*
617 * Note that exit_ptrace() and find_new_reaper() might
618 * drop tasklist_lock and reacquire it.
619 */
620 exit_ptrace(father);
621 reaper = find_new_reaper(father);
622
623 list_for_each_entry_safe(p, n, &father->children, sibling) {
624 struct task_struct *t = p;
625 do {
626 t->real_parent = reaper;
627 if (t->parent == father) {
628 BUG_ON(t->ptrace);
629 t->parent = t->real_parent;
630 }
631 if (t->pdeath_signal)
632 group_send_sig_info(t->pdeath_signal,
633 SEND_SIG_NOINFO, t);
634 } while_each_thread(p, t);
635 reparent_leader(father, p, &dead_children);
636 }
637 write_unlock_irq(&tasklist_lock);
638
639 BUG_ON(!list_empty(&father->children));
640
641 list_for_each_entry_safe(p, n, &dead_children, sibling) {
642 list_del_init(&p->sibling);
643 release_task(p);
644 }
645 }
646
647 /*
648 * Send signals to all our closest relatives so that they know
649 * to properly mourn us..
650 */
651 static void exit_notify(struct task_struct *tsk, int group_dead)
652 {
653 bool autoreap;
654
655 /*
656 * This does two things:
657 *
658 * A. Make init inherit all the child processes
659 * B. Check to see if any process groups have become orphaned
660 * as a result of our exiting, and if they have any stopped
661 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
662 */
663 forget_original_parent(tsk);
664
665 write_lock_irq(&tasklist_lock);
666 if (group_dead)
667 kill_orphaned_pgrp(tsk->group_leader, NULL);
668
669 if (unlikely(tsk->ptrace)) {
670 int sig = thread_group_leader(tsk) &&
671 thread_group_empty(tsk) &&
672 !ptrace_reparented(tsk) ?
673 tsk->exit_signal : SIGCHLD;
674 autoreap = do_notify_parent(tsk, sig);
675 } else if (thread_group_leader(tsk)) {
676 autoreap = thread_group_empty(tsk) &&
677 do_notify_parent(tsk, tsk->exit_signal);
678 } else {
679 autoreap = true;
680 }
681
682 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
683
684 /* mt-exec, de_thread() is waiting for group leader */
685 if (unlikely(tsk->signal->notify_count < 0))
686 wake_up_process(tsk->signal->group_exit_task);
687 write_unlock_irq(&tasklist_lock);
688
689 /* If the process is dead, release it - nobody will wait for it */
690 if (autoreap)
691 release_task(tsk);
692 }
693
694 #ifdef CONFIG_DEBUG_STACK_USAGE
695 static void check_stack_usage(void)
696 {
697 static DEFINE_SPINLOCK(low_water_lock);
698 static int lowest_to_date = THREAD_SIZE;
699 unsigned long free;
700
701 free = stack_not_used(current);
702
703 if (free >= lowest_to_date)
704 return;
705
706 spin_lock(&low_water_lock);
707 if (free < lowest_to_date) {
708 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
709 "%lu bytes left\n",
710 current->comm, task_pid_nr(current), free);
711 lowest_to_date = free;
712 }
713 spin_unlock(&low_water_lock);
714 }
715 #else
716 static inline void check_stack_usage(void) {}
717 #endif
718
719 #ifdef CONFIG_SCHEDSTATS
720 /* mt shceduler profiling*/
721 extern void end_mtproc_info(struct task_struct *p);
722 #endif
723 void do_exit(long code)
724 {
725 struct task_struct *tsk = current;
726 int group_dead;
727
728 profile_task_exit(tsk);
729 #ifdef CONFIG_SCHEDSTATS
730 /* mt shceduler profiling*/
731 printk(KERN_DEBUG "[%d:%s] exit\n", tsk->pid, tsk->comm);
732 end_mtproc_info(tsk);
733 #endif
734
735 #ifdef CONFIG_MT_PRIO_TRACER
736 delete_prio_tracer(tsk->pid);
737 #endif
738
739 WARN_ON(blk_needs_flush_plug(tsk));
740
741 if (unlikely(in_interrupt()))
742 panic("Aiee, killing interrupt handler!");
743 if (unlikely(!tsk->pid))
744 panic("Attempted to kill the idle task!");
745
746 /*
747 * If do_exit is called because this processes oopsed, it's possible
748 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
749 * continuing. Amongst other possible reasons, this is to prevent
750 * mm_release()->clear_child_tid() from writing to a user-controlled
751 * kernel address.
752 */
753 set_fs(USER_DS);
754
755 ptrace_event(PTRACE_EVENT_EXIT, code);
756
757 validate_creds_for_do_exit(tsk);
758
759 /*
760 * We're taking recursive faults here in do_exit. Safest is to just
761 * leave this task alone and wait for reboot.
762 */
763 if (unlikely(tsk->flags & PF_EXITING)) {
764 printk(KERN_ALERT
765 "Fixing recursive fault but reboot is needed!\n");
766 /*
767 * We can do this unlocked here. The futex code uses
768 * this flag just to verify whether the pi state
769 * cleanup has been done or not. In the worst case it
770 * loops once more. We pretend that the cleanup was
771 * done as there is no way to return. Either the
772 * OWNER_DIED bit is set by now or we push the blocked
773 * task into the wait for ever nirwana as well.
774 */
775 tsk->flags |= PF_EXITPIDONE;
776 set_current_state(TASK_UNINTERRUPTIBLE);
777 schedule();
778 }
779
780 exit_signals(tsk); /* sets PF_EXITING */
781
782 if (tsk->flags & PF_SU) {
783 su_exit();
784 }
785
786 /*
787 * tsk->flags are checked in the futex code to protect against
788 * an exiting task cleaning up the robust pi futexes.
789 */
790 smp_mb();
791 raw_spin_unlock_wait(&tsk->pi_lock);
792
793 if (unlikely(in_atomic()))
794 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
795 current->comm, task_pid_nr(current),
796 preempt_count());
797
798 acct_update_integrals(tsk);
799 /* sync mm's RSS info before statistics gathering */
800 if (tsk->mm)
801 sync_mm_rss(tsk->mm);
802 group_dead = atomic_dec_and_test(&tsk->signal->live);
803 if (group_dead) {
804 hrtimer_cancel(&tsk->signal->real_timer);
805 exit_itimers(tsk->signal);
806 if (tsk->mm)
807 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
808 }
809 acct_collect(code, group_dead);
810 if (group_dead)
811 tty_audit_exit();
812 audit_free(tsk);
813
814 tsk->exit_code = code;
815 taskstats_exit(tsk, group_dead);
816
817 exit_mm(tsk);
818
819 if (group_dead)
820 acct_process();
821 trace_sched_process_exit(tsk);
822
823 exit_sem(tsk);
824 exit_shm(tsk);
825 exit_files(tsk);
826 exit_fs(tsk);
827 if (group_dead)
828 disassociate_ctty(1);
829 exit_task_namespaces(tsk);
830 exit_task_work(tsk);
831 check_stack_usage();
832 exit_thread();
833
834 /*
835 * Flush inherited counters to the parent - before the parent
836 * gets woken up by child-exit notifications.
837 *
838 * because of cgroup mode, must be called before cgroup_exit()
839 */
840 perf_event_exit_task(tsk);
841
842 cgroup_exit(tsk, 1);
843
844 module_put(task_thread_info(tsk)->exec_domain->module);
845
846 proc_exit_connector(tsk);
847 /*
848 * FIXME: do that only when needed, using sched_exit tracepoint
849 */
850 ptrace_put_breakpoints(tsk);
851
852 exit_notify(tsk, group_dead);
853 #ifdef CONFIG_NUMA
854 task_lock(tsk);
855 mpol_put(tsk->mempolicy);
856 tsk->mempolicy = NULL;
857 task_unlock(tsk);
858 #endif
859 #ifdef CONFIG_FUTEX
860 if (unlikely(current->pi_state_cache))
861 kfree(current->pi_state_cache);
862 #endif
863 /*
864 * Make sure we are holding no locks:
865 */
866 debug_check_no_locks_held();
867 /*
868 * We can do this unlocked here. The futex code uses this flag
869 * just to verify whether the pi state cleanup has been done
870 * or not. In the worst case it loops once more.
871 */
872 tsk->flags |= PF_EXITPIDONE;
873
874 if (tsk->io_context)
875 exit_io_context(tsk);
876
877 if (tsk->splice_pipe)
878 free_pipe_info(tsk->splice_pipe);
879
880 if (tsk->task_frag.page)
881 put_page(tsk->task_frag.page);
882
883 validate_creds_for_do_exit(tsk);
884
885 preempt_disable();
886 if (tsk->nr_dirtied)
887 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
888 exit_rcu();
889
890 /*
891 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
892 * when the following two conditions become true.
893 * - There is race condition of mmap_sem (It is acquired by
894 * exit_mm()), and
895 * - SMI occurs before setting TASK_RUNINNG.
896 * (or hypervisor of virtual machine switches to other guest)
897 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
898 *
899 * To avoid it, we have to wait for releasing tsk->pi_lock which
900 * is held by try_to_wake_up()
901 */
902 smp_mb();
903 raw_spin_unlock_wait(&tsk->pi_lock);
904
905 /* causes final put_task_struct in finish_task_switch(). */
906 tsk->state = TASK_DEAD;
907 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
908 schedule();
909 BUG();
910 /* Avoid "noreturn function does return". */
911 for (;;)
912 cpu_relax(); /* For when BUG is null */
913 }
914
915 EXPORT_SYMBOL_GPL(do_exit);
916
917 void complete_and_exit(struct completion *comp, long code)
918 {
919 if (comp)
920 complete(comp);
921
922 do_exit(code);
923 }
924
925 EXPORT_SYMBOL(complete_and_exit);
926
927 SYSCALL_DEFINE1(exit, int, error_code)
928 {
929 do_exit((error_code&0xff)<<8);
930 }
931
932 /*
933 * Take down every thread in the group. This is called by fatal signals
934 * as well as by sys_exit_group (below).
935 */
936 void
937 do_group_exit(int exit_code)
938 {
939 struct signal_struct *sig = current->signal;
940
941 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
942
943 if (signal_group_exit(sig))
944 exit_code = sig->group_exit_code;
945 else if (!thread_group_empty(current)) {
946 struct sighand_struct *const sighand = current->sighand;
947 spin_lock_irq(&sighand->siglock);
948 if (signal_group_exit(sig))
949 /* Another thread got here before we took the lock. */
950 exit_code = sig->group_exit_code;
951 else {
952 sig->group_exit_code = exit_code;
953 sig->flags = SIGNAL_GROUP_EXIT;
954 zap_other_threads(current);
955 }
956 spin_unlock_irq(&sighand->siglock);
957 }
958
959 do_exit(exit_code);
960 /* NOTREACHED */
961 }
962
963 /*
964 * this kills every thread in the thread group. Note that any externally
965 * wait4()-ing process will get the correct exit code - even if this
966 * thread is not the thread group leader.
967 */
968 SYSCALL_DEFINE1(exit_group, int, error_code)
969 {
970 do_group_exit((error_code & 0xff) << 8);
971 /* NOTREACHED */
972 return 0;
973 }
974
975 struct wait_opts {
976 enum pid_type wo_type;
977 int wo_flags;
978 struct pid *wo_pid;
979
980 struct siginfo __user *wo_info;
981 int __user *wo_stat;
982 struct rusage __user *wo_rusage;
983
984 wait_queue_t child_wait;
985 int notask_error;
986 };
987
988 static inline
989 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
990 {
991 if (type != PIDTYPE_PID)
992 task = task->group_leader;
993 return task->pids[type].pid;
994 }
995
996 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
997 {
998 return wo->wo_type == PIDTYPE_MAX ||
999 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1000 }
1001
1002 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1003 {
1004 if (!eligible_pid(wo, p))
1005 return 0;
1006 /* Wait for all children (clone and not) if __WALL is set;
1007 * otherwise, wait for clone children *only* if __WCLONE is
1008 * set; otherwise, wait for non-clone children *only*. (Note:
1009 * A "clone" child here is one that reports to its parent
1010 * using a signal other than SIGCHLD.) */
1011 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1012 && !(wo->wo_flags & __WALL))
1013 return 0;
1014
1015 return 1;
1016 }
1017
1018 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1019 pid_t pid, uid_t uid, int why, int status)
1020 {
1021 struct siginfo __user *infop;
1022 int retval = wo->wo_rusage
1023 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1024
1025 put_task_struct(p);
1026 infop = wo->wo_info;
1027 if (infop) {
1028 if (!retval)
1029 retval = put_user(SIGCHLD, &infop->si_signo);
1030 if (!retval)
1031 retval = put_user(0, &infop->si_errno);
1032 if (!retval)
1033 retval = put_user((short)why, &infop->si_code);
1034 if (!retval)
1035 retval = put_user(pid, &infop->si_pid);
1036 if (!retval)
1037 retval = put_user(uid, &infop->si_uid);
1038 if (!retval)
1039 retval = put_user(status, &infop->si_status);
1040 }
1041 if (!retval)
1042 retval = pid;
1043 return retval;
1044 }
1045
1046 /*
1047 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1048 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1049 * the lock and this task is uninteresting. If we return nonzero, we have
1050 * released the lock and the system call should return.
1051 */
1052 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1053 {
1054 unsigned long state;
1055 int retval, status, traced;
1056 pid_t pid = task_pid_vnr(p);
1057 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1058 struct siginfo __user *infop;
1059
1060 if (!likely(wo->wo_flags & WEXITED))
1061 return 0;
1062
1063 if (unlikely(wo->wo_flags & WNOWAIT)) {
1064 int exit_code = p->exit_code;
1065 int why;
1066
1067 get_task_struct(p);
1068 read_unlock(&tasklist_lock);
1069 if ((exit_code & 0x7f) == 0) {
1070 why = CLD_EXITED;
1071 status = exit_code >> 8;
1072 } else {
1073 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1074 status = exit_code & 0x7f;
1075 }
1076 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1077 }
1078
1079 /*
1080 * Try to move the task's state to DEAD
1081 * only one thread is allowed to do this:
1082 */
1083 state = xchg(&p->exit_state, EXIT_DEAD);
1084 if (state != EXIT_ZOMBIE) {
1085 BUG_ON(state != EXIT_DEAD);
1086 return 0;
1087 }
1088
1089 traced = ptrace_reparented(p);
1090 /*
1091 * It can be ptraced but not reparented, check
1092 * thread_group_leader() to filter out sub-threads.
1093 */
1094 if (likely(!traced) && thread_group_leader(p)) {
1095 struct signal_struct *psig;
1096 struct signal_struct *sig;
1097 unsigned long maxrss;
1098 cputime_t tgutime, tgstime;
1099
1100 /*
1101 * The resource counters for the group leader are in its
1102 * own task_struct. Those for dead threads in the group
1103 * are in its signal_struct, as are those for the child
1104 * processes it has previously reaped. All these
1105 * accumulate in the parent's signal_struct c* fields.
1106 *
1107 * We don't bother to take a lock here to protect these
1108 * p->signal fields, because they are only touched by
1109 * __exit_signal, which runs with tasklist_lock
1110 * write-locked anyway, and so is excluded here. We do
1111 * need to protect the access to parent->signal fields,
1112 * as other threads in the parent group can be right
1113 * here reaping other children at the same time.
1114 *
1115 * We use thread_group_cputime_adjusted() to get times for the thread
1116 * group, which consolidates times for all threads in the
1117 * group including the group leader.
1118 */
1119 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1120 spin_lock_irq(&p->real_parent->sighand->siglock);
1121 psig = p->real_parent->signal;
1122 sig = p->signal;
1123 psig->cutime += tgutime + sig->cutime;
1124 psig->cstime += tgstime + sig->cstime;
1125 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1126 psig->cmin_flt +=
1127 p->min_flt + sig->min_flt + sig->cmin_flt;
1128 psig->cmaj_flt +=
1129 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1130 psig->cnvcsw +=
1131 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1132 psig->cnivcsw +=
1133 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1134 psig->cinblock +=
1135 task_io_get_inblock(p) +
1136 sig->inblock + sig->cinblock;
1137 psig->coublock +=
1138 task_io_get_oublock(p) +
1139 sig->oublock + sig->coublock;
1140 maxrss = max(sig->maxrss, sig->cmaxrss);
1141 if (psig->cmaxrss < maxrss)
1142 psig->cmaxrss = maxrss;
1143 task_io_accounting_add(&psig->ioac, &p->ioac);
1144 task_io_accounting_add(&psig->ioac, &sig->ioac);
1145 spin_unlock_irq(&p->real_parent->sighand->siglock);
1146 }
1147
1148 /*
1149 * Now we are sure this task is interesting, and no other
1150 * thread can reap it because we set its state to EXIT_DEAD.
1151 */
1152 read_unlock(&tasklist_lock);
1153
1154 retval = wo->wo_rusage
1155 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1156 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1157 ? p->signal->group_exit_code : p->exit_code;
1158 if (!retval && wo->wo_stat)
1159 retval = put_user(status, wo->wo_stat);
1160
1161 infop = wo->wo_info;
1162 if (!retval && infop)
1163 retval = put_user(SIGCHLD, &infop->si_signo);
1164 if (!retval && infop)
1165 retval = put_user(0, &infop->si_errno);
1166 if (!retval && infop) {
1167 int why;
1168
1169 if ((status & 0x7f) == 0) {
1170 why = CLD_EXITED;
1171 status >>= 8;
1172 } else {
1173 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 status &= 0x7f;
1175 }
1176 retval = put_user((short)why, &infop->si_code);
1177 if (!retval)
1178 retval = put_user(status, &infop->si_status);
1179 }
1180 if (!retval && infop)
1181 retval = put_user(pid, &infop->si_pid);
1182 if (!retval && infop)
1183 retval = put_user(uid, &infop->si_uid);
1184 if (!retval)
1185 retval = pid;
1186
1187 if (traced) {
1188 write_lock_irq(&tasklist_lock);
1189 /* We dropped tasklist, ptracer could die and untrace */
1190 ptrace_unlink(p);
1191 /*
1192 * If this is not a sub-thread, notify the parent.
1193 * If parent wants a zombie, don't release it now.
1194 */
1195 if (thread_group_leader(p) &&
1196 !do_notify_parent(p, p->exit_signal)) {
1197 p->exit_state = EXIT_ZOMBIE;
1198 p = NULL;
1199 }
1200 write_unlock_irq(&tasklist_lock);
1201 }
1202 if (p != NULL)
1203 release_task(p);
1204
1205 return retval;
1206 }
1207
1208 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1209 {
1210 if (ptrace) {
1211 if (task_is_stopped_or_traced(p) &&
1212 !(p->jobctl & JOBCTL_LISTENING))
1213 return &p->exit_code;
1214 } else {
1215 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1216 return &p->signal->group_exit_code;
1217 }
1218 return NULL;
1219 }
1220
1221 /**
1222 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1223 * @wo: wait options
1224 * @ptrace: is the wait for ptrace
1225 * @p: task to wait for
1226 *
1227 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1228 *
1229 * CONTEXT:
1230 * read_lock(&tasklist_lock), which is released if return value is
1231 * non-zero. Also, grabs and releases @p->sighand->siglock.
1232 *
1233 * RETURNS:
1234 * 0 if wait condition didn't exist and search for other wait conditions
1235 * should continue. Non-zero return, -errno on failure and @p's pid on
1236 * success, implies that tasklist_lock is released and wait condition
1237 * search should terminate.
1238 */
1239 static int wait_task_stopped(struct wait_opts *wo,
1240 int ptrace, struct task_struct *p)
1241 {
1242 struct siginfo __user *infop;
1243 int retval, exit_code, *p_code, why;
1244 uid_t uid = 0; /* unneeded, required by compiler */
1245 pid_t pid;
1246
1247 /*
1248 * Traditionally we see ptrace'd stopped tasks regardless of options.
1249 */
1250 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1251 return 0;
1252
1253 if (!task_stopped_code(p, ptrace))
1254 return 0;
1255
1256 exit_code = 0;
1257 spin_lock_irq(&p->sighand->siglock);
1258
1259 p_code = task_stopped_code(p, ptrace);
1260 if (unlikely(!p_code))
1261 goto unlock_sig;
1262
1263 exit_code = *p_code;
1264 if (!exit_code)
1265 goto unlock_sig;
1266
1267 if (!unlikely(wo->wo_flags & WNOWAIT))
1268 *p_code = 0;
1269
1270 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1271 unlock_sig:
1272 spin_unlock_irq(&p->sighand->siglock);
1273 if (!exit_code)
1274 return 0;
1275
1276 /*
1277 * Now we are pretty sure this task is interesting.
1278 * Make sure it doesn't get reaped out from under us while we
1279 * give up the lock and then examine it below. We don't want to
1280 * keep holding onto the tasklist_lock while we call getrusage and
1281 * possibly take page faults for user memory.
1282 */
1283 get_task_struct(p);
1284 pid = task_pid_vnr(p);
1285 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1286 read_unlock(&tasklist_lock);
1287
1288 if (unlikely(wo->wo_flags & WNOWAIT))
1289 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1290
1291 retval = wo->wo_rusage
1292 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1293 if (!retval && wo->wo_stat)
1294 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1295
1296 infop = wo->wo_info;
1297 if (!retval && infop)
1298 retval = put_user(SIGCHLD, &infop->si_signo);
1299 if (!retval && infop)
1300 retval = put_user(0, &infop->si_errno);
1301 if (!retval && infop)
1302 retval = put_user((short)why, &infop->si_code);
1303 if (!retval && infop)
1304 retval = put_user(exit_code, &infop->si_status);
1305 if (!retval && infop)
1306 retval = put_user(pid, &infop->si_pid);
1307 if (!retval && infop)
1308 retval = put_user(uid, &infop->si_uid);
1309 if (!retval)
1310 retval = pid;
1311 put_task_struct(p);
1312
1313 BUG_ON(!retval);
1314 return retval;
1315 }
1316
1317 /*
1318 * Handle do_wait work for one task in a live, non-stopped state.
1319 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1320 * the lock and this task is uninteresting. If we return nonzero, we have
1321 * released the lock and the system call should return.
1322 */
1323 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1324 {
1325 int retval;
1326 pid_t pid;
1327 uid_t uid;
1328
1329 if (!unlikely(wo->wo_flags & WCONTINUED))
1330 return 0;
1331
1332 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1333 return 0;
1334
1335 spin_lock_irq(&p->sighand->siglock);
1336 /* Re-check with the lock held. */
1337 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1338 spin_unlock_irq(&p->sighand->siglock);
1339 return 0;
1340 }
1341 if (!unlikely(wo->wo_flags & WNOWAIT))
1342 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1343 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1344 spin_unlock_irq(&p->sighand->siglock);
1345
1346 pid = task_pid_vnr(p);
1347 get_task_struct(p);
1348 read_unlock(&tasklist_lock);
1349
1350 if (!wo->wo_info) {
1351 retval = wo->wo_rusage
1352 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1353 put_task_struct(p);
1354 if (!retval && wo->wo_stat)
1355 retval = put_user(0xffff, wo->wo_stat);
1356 if (!retval)
1357 retval = pid;
1358 } else {
1359 retval = wait_noreap_copyout(wo, p, pid, uid,
1360 CLD_CONTINUED, SIGCONT);
1361 BUG_ON(retval == 0);
1362 }
1363
1364 return retval;
1365 }
1366
1367 /*
1368 * Consider @p for a wait by @parent.
1369 *
1370 * -ECHILD should be in ->notask_error before the first call.
1371 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1372 * Returns zero if the search for a child should continue;
1373 * then ->notask_error is 0 if @p is an eligible child,
1374 * or another error from security_task_wait(), or still -ECHILD.
1375 */
1376 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1377 struct task_struct *p)
1378 {
1379 int ret = eligible_child(wo, p);
1380 if (!ret)
1381 return ret;
1382
1383 ret = security_task_wait(p);
1384 if (unlikely(ret < 0)) {
1385 /*
1386 * If we have not yet seen any eligible child,
1387 * then let this error code replace -ECHILD.
1388 * A permission error will give the user a clue
1389 * to look for security policy problems, rather
1390 * than for mysterious wait bugs.
1391 */
1392 if (wo->notask_error)
1393 wo->notask_error = ret;
1394 return 0;
1395 }
1396
1397 /* dead body doesn't have much to contribute */
1398 if (unlikely(p->exit_state == EXIT_DEAD)) {
1399 /*
1400 * But do not ignore this task until the tracer does
1401 * wait_task_zombie()->do_notify_parent().
1402 */
1403 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1404 wo->notask_error = 0;
1405 return 0;
1406 }
1407
1408 /* slay zombie? */
1409 if (p->exit_state == EXIT_ZOMBIE) {
1410 /*
1411 * A zombie ptracee is only visible to its ptracer.
1412 * Notification and reaping will be cascaded to the real
1413 * parent when the ptracer detaches.
1414 */
1415 if (likely(!ptrace) && unlikely(p->ptrace)) {
1416 /* it will become visible, clear notask_error */
1417 wo->notask_error = 0;
1418 return 0;
1419 }
1420
1421 /* we don't reap group leaders with subthreads */
1422 if (!delay_group_leader(p))
1423 return wait_task_zombie(wo, p);
1424
1425 /*
1426 * Allow access to stopped/continued state via zombie by
1427 * falling through. Clearing of notask_error is complex.
1428 *
1429 * When !@ptrace:
1430 *
1431 * If WEXITED is set, notask_error should naturally be
1432 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1433 * so, if there are live subthreads, there are events to
1434 * wait for. If all subthreads are dead, it's still safe
1435 * to clear - this function will be called again in finite
1436 * amount time once all the subthreads are released and
1437 * will then return without clearing.
1438 *
1439 * When @ptrace:
1440 *
1441 * Stopped state is per-task and thus can't change once the
1442 * target task dies. Only continued and exited can happen.
1443 * Clear notask_error if WCONTINUED | WEXITED.
1444 */
1445 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1446 wo->notask_error = 0;
1447 } else {
1448 /*
1449 * If @p is ptraced by a task in its real parent's group,
1450 * hide group stop/continued state when looking at @p as
1451 * the real parent; otherwise, a single stop can be
1452 * reported twice as group and ptrace stops.
1453 *
1454 * If a ptracer wants to distinguish the two events for its
1455 * own children, it should create a separate process which
1456 * takes the role of real parent.
1457 */
1458 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1459 return 0;
1460
1461 /*
1462 * @p is alive and it's gonna stop, continue or exit, so
1463 * there always is something to wait for.
1464 */
1465 wo->notask_error = 0;
1466 }
1467
1468 /*
1469 * Wait for stopped. Depending on @ptrace, different stopped state
1470 * is used and the two don't interact with each other.
1471 */
1472 ret = wait_task_stopped(wo, ptrace, p);
1473 if (ret)
1474 return ret;
1475
1476 /*
1477 * Wait for continued. There's only one continued state and the
1478 * ptracer can consume it which can confuse the real parent. Don't
1479 * use WCONTINUED from ptracer. You don't need or want it.
1480 */
1481 return wait_task_continued(wo, p);
1482 }
1483
1484 /*
1485 * Do the work of do_wait() for one thread in the group, @tsk.
1486 *
1487 * -ECHILD should be in ->notask_error before the first call.
1488 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1489 * Returns zero if the search for a child should continue; then
1490 * ->notask_error is 0 if there were any eligible children,
1491 * or another error from security_task_wait(), or still -ECHILD.
1492 */
1493 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1494 {
1495 struct task_struct *p;
1496
1497 list_for_each_entry(p, &tsk->children, sibling) {
1498 int ret = wait_consider_task(wo, 0, p);
1499 if (ret)
1500 return ret;
1501 }
1502
1503 return 0;
1504 }
1505
1506 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508 struct task_struct *p;
1509
1510 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1511 int ret = wait_consider_task(wo, 1, p);
1512 if (ret)
1513 return ret;
1514 }
1515
1516 return 0;
1517 }
1518
1519 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1520 int sync, void *key)
1521 {
1522 struct wait_opts *wo = container_of(wait, struct wait_opts,
1523 child_wait);
1524 struct task_struct *p = key;
1525
1526 if (!eligible_pid(wo, p))
1527 return 0;
1528
1529 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1530 return 0;
1531
1532 return default_wake_function(wait, mode, sync, key);
1533 }
1534
1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1536 {
1537 __wake_up_sync_key(&parent->signal->wait_chldexit,
1538 TASK_INTERRUPTIBLE, 1, p);
1539 }
1540
1541 static long do_wait(struct wait_opts *wo)
1542 {
1543 struct task_struct *tsk;
1544 int retval;
1545
1546 trace_sched_process_wait(wo->wo_pid);
1547
1548 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1549 wo->child_wait.private = current;
1550 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551 repeat:
1552 /*
1553 * If there is nothing that can match our critiera just get out.
1554 * We will clear ->notask_error to zero if we see any child that
1555 * might later match our criteria, even if we are not able to reap
1556 * it yet.
1557 */
1558 wo->notask_error = -ECHILD;
1559 if ((wo->wo_type < PIDTYPE_MAX) &&
1560 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1561 goto notask;
1562
1563 set_current_state(TASK_INTERRUPTIBLE);
1564 read_lock(&tasklist_lock);
1565 tsk = current;
1566 do {
1567 retval = do_wait_thread(wo, tsk);
1568 if (retval)
1569 goto end;
1570
1571 retval = ptrace_do_wait(wo, tsk);
1572 if (retval)
1573 goto end;
1574
1575 if (wo->wo_flags & __WNOTHREAD)
1576 break;
1577 } while_each_thread(current, tsk);
1578 read_unlock(&tasklist_lock);
1579
1580 notask:
1581 retval = wo->notask_error;
1582 if (!retval && !(wo->wo_flags & WNOHANG)) {
1583 retval = -ERESTARTSYS;
1584 if (!signal_pending(current)) {
1585 schedule();
1586 goto repeat;
1587 }
1588 }
1589 end:
1590 __set_current_state(TASK_RUNNING);
1591 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1592 return retval;
1593 }
1594
1595 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1596 infop, int, options, struct rusage __user *, ru)
1597 {
1598 struct wait_opts wo;
1599 struct pid *pid = NULL;
1600 enum pid_type type;
1601 long ret;
1602
1603 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1604 return -EINVAL;
1605 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1606 return -EINVAL;
1607
1608 switch (which) {
1609 case P_ALL:
1610 type = PIDTYPE_MAX;
1611 break;
1612 case P_PID:
1613 type = PIDTYPE_PID;
1614 if (upid <= 0)
1615 return -EINVAL;
1616 break;
1617 case P_PGID:
1618 type = PIDTYPE_PGID;
1619 if (upid <= 0)
1620 return -EINVAL;
1621 break;
1622 default:
1623 return -EINVAL;
1624 }
1625
1626 if (type < PIDTYPE_MAX)
1627 pid = find_get_pid(upid);
1628
1629 wo.wo_type = type;
1630 wo.wo_pid = pid;
1631 wo.wo_flags = options;
1632 wo.wo_info = infop;
1633 wo.wo_stat = NULL;
1634 wo.wo_rusage = ru;
1635 ret = do_wait(&wo);
1636
1637 if (ret > 0) {
1638 ret = 0;
1639 } else if (infop) {
1640 /*
1641 * For a WNOHANG return, clear out all the fields
1642 * we would set so the user can easily tell the
1643 * difference.
1644 */
1645 if (!ret)
1646 ret = put_user(0, &infop->si_signo);
1647 if (!ret)
1648 ret = put_user(0, &infop->si_errno);
1649 if (!ret)
1650 ret = put_user(0, &infop->si_code);
1651 if (!ret)
1652 ret = put_user(0, &infop->si_pid);
1653 if (!ret)
1654 ret = put_user(0, &infop->si_uid);
1655 if (!ret)
1656 ret = put_user(0, &infop->si_status);
1657 }
1658
1659 put_pid(pid);
1660 return ret;
1661 }
1662
1663 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1664 int, options, struct rusage __user *, ru)
1665 {
1666 struct wait_opts wo;
1667 struct pid *pid = NULL;
1668 enum pid_type type;
1669 long ret;
1670
1671 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1672 __WNOTHREAD|__WCLONE|__WALL))
1673 return -EINVAL;
1674
1675 if (upid == -1)
1676 type = PIDTYPE_MAX;
1677 else if (upid < 0) {
1678 type = PIDTYPE_PGID;
1679 pid = find_get_pid(-upid);
1680 } else if (upid == 0) {
1681 type = PIDTYPE_PGID;
1682 pid = get_task_pid(current, PIDTYPE_PGID);
1683 } else /* upid > 0 */ {
1684 type = PIDTYPE_PID;
1685 pid = find_get_pid(upid);
1686 }
1687
1688 wo.wo_type = type;
1689 wo.wo_pid = pid;
1690 wo.wo_flags = options | WEXITED;
1691 wo.wo_info = NULL;
1692 wo.wo_stat = stat_addr;
1693 wo.wo_rusage = ru;
1694 ret = do_wait(&wo);
1695 put_pid(pid);
1696
1697 return ret;
1698 }
1699
1700 #ifdef __ARCH_WANT_SYS_WAITPID
1701
1702 /*
1703 * sys_waitpid() remains for compatibility. waitpid() should be
1704 * implemented by calling sys_wait4() from libc.a.
1705 */
1706 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1707 {
1708 return sys_wait4(pid, stat_addr, options, NULL);
1709 }
1710
1711 #endif