drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / capability.c
1 /*
2 * linux/kernel/capability.c
3 *
4 * Copyright (C) 1997 Andrew Main <zefram@fysh.org>
5 *
6 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org>
7 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
8 */
9
10 #include <linux/audit.h>
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/export.h>
14 #include <linux/security.h>
15 #include <linux/syscalls.h>
16 #include <linux/pid_namespace.h>
17 #include <linux/user_namespace.h>
18 #include <asm/uaccess.h>
19
20 /*
21 * Leveraged for setting/resetting capabilities
22 */
23
24 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
25
26 EXPORT_SYMBOL(__cap_empty_set);
27
28 int file_caps_enabled = 1;
29
30 static int __init file_caps_disable(char *str)
31 {
32 file_caps_enabled = 0;
33 return 1;
34 }
35 __setup("no_file_caps", file_caps_disable);
36
37 /*
38 * More recent versions of libcap are available from:
39 *
40 * http://www.kernel.org/pub/linux/libs/security/linux-privs/
41 */
42
43 static void warn_legacy_capability_use(void)
44 {
45 static int warned;
46 if (!warned) {
47 char name[sizeof(current->comm)];
48
49 printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
50 " (legacy support in use)\n",
51 get_task_comm(name, current));
52 warned = 1;
53 }
54 }
55
56 /*
57 * Version 2 capabilities worked fine, but the linux/capability.h file
58 * that accompanied their introduction encouraged their use without
59 * the necessary user-space source code changes. As such, we have
60 * created a version 3 with equivalent functionality to version 2, but
61 * with a header change to protect legacy source code from using
62 * version 2 when it wanted to use version 1. If your system has code
63 * that trips the following warning, it is using version 2 specific
64 * capabilities and may be doing so insecurely.
65 *
66 * The remedy is to either upgrade your version of libcap (to 2.10+,
67 * if the application is linked against it), or recompile your
68 * application with modern kernel headers and this warning will go
69 * away.
70 */
71
72 static void warn_deprecated_v2(void)
73 {
74 static int warned;
75
76 if (!warned) {
77 char name[sizeof(current->comm)];
78
79 printk(KERN_INFO "warning: `%s' uses deprecated v2"
80 " capabilities in a way that may be insecure.\n",
81 get_task_comm(name, current));
82 warned = 1;
83 }
84 }
85
86 /*
87 * Version check. Return the number of u32s in each capability flag
88 * array, or a negative value on error.
89 */
90 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
91 {
92 __u32 version;
93
94 if (get_user(version, &header->version))
95 return -EFAULT;
96
97 switch (version) {
98 case _LINUX_CAPABILITY_VERSION_1:
99 warn_legacy_capability_use();
100 *tocopy = _LINUX_CAPABILITY_U32S_1;
101 break;
102 case _LINUX_CAPABILITY_VERSION_2:
103 warn_deprecated_v2();
104 /*
105 * fall through - v3 is otherwise equivalent to v2.
106 */
107 case _LINUX_CAPABILITY_VERSION_3:
108 *tocopy = _LINUX_CAPABILITY_U32S_3;
109 break;
110 default:
111 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
112 return -EFAULT;
113 return -EINVAL;
114 }
115
116 return 0;
117 }
118
119 /*
120 * The only thing that can change the capabilities of the current
121 * process is the current process. As such, we can't be in this code
122 * at the same time as we are in the process of setting capabilities
123 * in this process. The net result is that we can limit our use of
124 * locks to when we are reading the caps of another process.
125 */
126 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
127 kernel_cap_t *pIp, kernel_cap_t *pPp)
128 {
129 int ret;
130
131 if (pid && (pid != task_pid_vnr(current))) {
132 struct task_struct *target;
133
134 rcu_read_lock();
135
136 target = find_task_by_vpid(pid);
137 if (!target)
138 ret = -ESRCH;
139 else
140 ret = security_capget(target, pEp, pIp, pPp);
141
142 rcu_read_unlock();
143 } else
144 ret = security_capget(current, pEp, pIp, pPp);
145
146 return ret;
147 }
148
149 /**
150 * sys_capget - get the capabilities of a given process.
151 * @header: pointer to struct that contains capability version and
152 * target pid data
153 * @dataptr: pointer to struct that contains the effective, permitted,
154 * and inheritable capabilities that are returned
155 *
156 * Returns 0 on success and < 0 on error.
157 */
158 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
159 {
160 int ret = 0;
161 pid_t pid;
162 unsigned tocopy;
163 kernel_cap_t pE, pI, pP;
164
165 ret = cap_validate_magic(header, &tocopy);
166 if ((dataptr == NULL) || (ret != 0))
167 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
168
169 if (get_user(pid, &header->pid))
170 return -EFAULT;
171
172 if (pid < 0)
173 return -EINVAL;
174
175 ret = cap_get_target_pid(pid, &pE, &pI, &pP);
176 if (!ret) {
177 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
178 unsigned i;
179
180 for (i = 0; i < tocopy; i++) {
181 kdata[i].effective = pE.cap[i];
182 kdata[i].permitted = pP.cap[i];
183 kdata[i].inheritable = pI.cap[i];
184 }
185
186 /*
187 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
188 * we silently drop the upper capabilities here. This
189 * has the effect of making older libcap
190 * implementations implicitly drop upper capability
191 * bits when they perform a: capget/modify/capset
192 * sequence.
193 *
194 * This behavior is considered fail-safe
195 * behavior. Upgrading the application to a newer
196 * version of libcap will enable access to the newer
197 * capabilities.
198 *
199 * An alternative would be to return an error here
200 * (-ERANGE), but that causes legacy applications to
201 * unexpectidly fail; the capget/modify/capset aborts
202 * before modification is attempted and the application
203 * fails.
204 */
205 if (copy_to_user(dataptr, kdata, tocopy
206 * sizeof(struct __user_cap_data_struct))) {
207 return -EFAULT;
208 }
209 }
210
211 return ret;
212 }
213
214 /**
215 * sys_capset - set capabilities for a process or (*) a group of processes
216 * @header: pointer to struct that contains capability version and
217 * target pid data
218 * @data: pointer to struct that contains the effective, permitted,
219 * and inheritable capabilities
220 *
221 * Set capabilities for the current process only. The ability to any other
222 * process(es) has been deprecated and removed.
223 *
224 * The restrictions on setting capabilities are specified as:
225 *
226 * I: any raised capabilities must be a subset of the old permitted
227 * P: any raised capabilities must be a subset of the old permitted
228 * E: must be set to a subset of new permitted
229 *
230 * Returns 0 on success and < 0 on error.
231 */
232 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
233 {
234 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
235 unsigned i, tocopy, copybytes;
236 kernel_cap_t inheritable, permitted, effective;
237 struct cred *new;
238 int ret;
239 pid_t pid;
240
241 ret = cap_validate_magic(header, &tocopy);
242 if (ret != 0)
243 return ret;
244
245 if (get_user(pid, &header->pid))
246 return -EFAULT;
247
248 /* may only affect current now */
249 if (pid != 0 && pid != task_pid_vnr(current))
250 return -EPERM;
251
252 copybytes = tocopy * sizeof(struct __user_cap_data_struct);
253 if (copybytes > sizeof(kdata))
254 return -EFAULT;
255
256 if (copy_from_user(&kdata, data, copybytes))
257 return -EFAULT;
258
259 for (i = 0; i < tocopy; i++) {
260 effective.cap[i] = kdata[i].effective;
261 permitted.cap[i] = kdata[i].permitted;
262 inheritable.cap[i] = kdata[i].inheritable;
263 }
264 while (i < _KERNEL_CAPABILITY_U32S) {
265 effective.cap[i] = 0;
266 permitted.cap[i] = 0;
267 inheritable.cap[i] = 0;
268 i++;
269 }
270
271 effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
272 permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
273 inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
274
275 new = prepare_creds();
276 if (!new)
277 return -ENOMEM;
278
279 ret = security_capset(new, current_cred(),
280 &effective, &inheritable, &permitted);
281 if (ret < 0)
282 goto error;
283
284 audit_log_capset(pid, new, current_cred());
285
286 return commit_creds(new);
287
288 error:
289 abort_creds(new);
290 return ret;
291 }
292
293 /**
294 * has_ns_capability - Does a task have a capability in a specific user ns
295 * @t: The task in question
296 * @ns: target user namespace
297 * @cap: The capability to be tested for
298 *
299 * Return true if the specified task has the given superior capability
300 * currently in effect to the specified user namespace, false if not.
301 *
302 * Note that this does not set PF_SUPERPRIV on the task.
303 */
304 bool has_ns_capability(struct task_struct *t,
305 struct user_namespace *ns, int cap)
306 {
307 int ret;
308
309 rcu_read_lock();
310 ret = security_capable(__task_cred(t), ns, cap);
311 rcu_read_unlock();
312
313 return (ret == 0);
314 }
315
316 /**
317 * has_capability - Does a task have a capability in init_user_ns
318 * @t: The task in question
319 * @cap: The capability to be tested for
320 *
321 * Return true if the specified task has the given superior capability
322 * currently in effect to the initial user namespace, false if not.
323 *
324 * Note that this does not set PF_SUPERPRIV on the task.
325 */
326 bool has_capability(struct task_struct *t, int cap)
327 {
328 return has_ns_capability(t, &init_user_ns, cap);
329 }
330
331 /**
332 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
333 * in a specific user ns.
334 * @t: The task in question
335 * @ns: target user namespace
336 * @cap: The capability to be tested for
337 *
338 * Return true if the specified task has the given superior capability
339 * currently in effect to the specified user namespace, false if not.
340 * Do not write an audit message for the check.
341 *
342 * Note that this does not set PF_SUPERPRIV on the task.
343 */
344 bool has_ns_capability_noaudit(struct task_struct *t,
345 struct user_namespace *ns, int cap)
346 {
347 int ret;
348
349 rcu_read_lock();
350 ret = security_capable_noaudit(__task_cred(t), ns, cap);
351 rcu_read_unlock();
352
353 return (ret == 0);
354 }
355
356 /**
357 * has_capability_noaudit - Does a task have a capability (unaudited) in the
358 * initial user ns
359 * @t: The task in question
360 * @cap: The capability to be tested for
361 *
362 * Return true if the specified task has the given superior capability
363 * currently in effect to init_user_ns, false if not. Don't write an
364 * audit message for the check.
365 *
366 * Note that this does not set PF_SUPERPRIV on the task.
367 */
368 bool has_capability_noaudit(struct task_struct *t, int cap)
369 {
370 return has_ns_capability_noaudit(t, &init_user_ns, cap);
371 }
372
373 /**
374 * ns_capable - Determine if the current task has a superior capability in effect
375 * @ns: The usernamespace we want the capability in
376 * @cap: The capability to be tested for
377 *
378 * Return true if the current task has the given superior capability currently
379 * available for use, false if not.
380 *
381 * This sets PF_SUPERPRIV on the task if the capability is available on the
382 * assumption that it's about to be used.
383 */
384 bool ns_capable(struct user_namespace *ns, int cap)
385 {
386 if (unlikely(!cap_valid(cap))) {
387 printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
388 BUG();
389 }
390
391 if (security_capable(current_cred(), ns, cap) == 0) {
392 current->flags |= PF_SUPERPRIV;
393 return true;
394 }
395 return false;
396 }
397 EXPORT_SYMBOL(ns_capable);
398
399 /**
400 * file_ns_capable - Determine if the file's opener had a capability in effect
401 * @file: The file we want to check
402 * @ns: The usernamespace we want the capability in
403 * @cap: The capability to be tested for
404 *
405 * Return true if task that opened the file had a capability in effect
406 * when the file was opened.
407 *
408 * This does not set PF_SUPERPRIV because the caller may not
409 * actually be privileged.
410 */
411 bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap)
412 {
413 if (WARN_ON_ONCE(!cap_valid(cap)))
414 return false;
415
416 if (security_capable(file->f_cred, ns, cap) == 0)
417 return true;
418
419 return false;
420 }
421 EXPORT_SYMBOL(file_ns_capable);
422
423 /**
424 * capable - Determine if the current task has a superior capability in effect
425 * @cap: The capability to be tested for
426 *
427 * Return true if the current task has the given superior capability currently
428 * available for use, false if not.
429 *
430 * This sets PF_SUPERPRIV on the task if the capability is available on the
431 * assumption that it's about to be used.
432 */
433 bool capable(int cap)
434 {
435 return ns_capable(&init_user_ns, cap);
436 }
437 EXPORT_SYMBOL(capable);
438
439 /**
440 * nsown_capable - Check superior capability to one's own user_ns
441 * @cap: The capability in question
442 *
443 * Return true if the current task has the given superior capability
444 * targeted at its own user namespace.
445 */
446 bool nsown_capable(int cap)
447 {
448 return ns_capable(current_user_ns(), cap);
449 }
450
451 /**
452 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
453 * @inode: The inode in question
454 * @cap: The capability in question
455 *
456 * Return true if the current task has the given capability targeted at
457 * its own user namespace and that the given inode's uid and gid are
458 * mapped into the current user namespace.
459 */
460 bool capable_wrt_inode_uidgid(const struct inode *inode, int cap)
461 {
462 struct user_namespace *ns = current_user_ns();
463
464 return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid) &&
465 kgid_has_mapping(ns, inode->i_gid);
466 }