Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
54
55 #include <linux/audit.h>
56
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <net/netlink.h>
64 #include <linux/freezer.h>
65 #include <linux/tty.h>
66 #include <linux/pid_namespace.h>
67
68 #include "audit.h"
69
70 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72 #define AUDIT_DISABLED -1
73 #define AUDIT_UNINITIALIZED 0
74 #define AUDIT_INITIALIZED 1
75 static int audit_initialized;
76
77 #define AUDIT_OFF 0
78 #define AUDIT_ON 1
79 #define AUDIT_LOCKED 2
80 int audit_enabled;
81 int audit_ever_enabled;
82
83 EXPORT_SYMBOL_GPL(audit_enabled);
84
85 /* Default state when kernel boots without any parameters. */
86 static int audit_default;
87
88 /* If auditing cannot proceed, audit_failure selects what happens. */
89 static int audit_failure = AUDIT_FAIL_PRINTK;
90
91 /*
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
95 */
96 int audit_pid;
97 static int audit_nlk_portid;
98
99 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102 static int audit_rate_limit;
103
104 /* Number of outstanding audit_buffers allowed. */
105 static int audit_backlog_limit = 64;
106 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
107 static int audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
108 static int audit_backlog_wait_overflow = 0;
109
110 /* The identity of the user shutting down the audit system. */
111 kuid_t audit_sig_uid = INVALID_UID;
112 pid_t audit_sig_pid = -1;
113 u32 audit_sig_sid = 0;
114
115 /* Records can be lost in several ways:
116 0) [suppressed in audit_alloc]
117 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
118 2) out of memory in audit_log_move [alloc_skb]
119 3) suppressed due to audit_rate_limit
120 4) suppressed due to audit_backlog_limit
121 */
122 static atomic_t audit_lost = ATOMIC_INIT(0);
123
124 /* The netlink socket. */
125 static struct sock *audit_sock;
126
127 /* Hash for inode-based rules */
128 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
129
130 /* The audit_freelist is a list of pre-allocated audit buffers (if more
131 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
132 * being placed on the freelist). */
133 static DEFINE_SPINLOCK(audit_freelist_lock);
134 static int audit_freelist_count;
135 static LIST_HEAD(audit_freelist);
136
137 static struct sk_buff_head audit_skb_queue;
138 /* queue of skbs to send to auditd when/if it comes back */
139 static struct sk_buff_head audit_skb_hold_queue;
140 static struct task_struct *kauditd_task;
141 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
142 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
143
144 /* Serialize requests from userspace. */
145 DEFINE_MUTEX(audit_cmd_mutex);
146
147 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
148 * audit records. Since printk uses a 1024 byte buffer, this buffer
149 * should be at least that large. */
150 #define AUDIT_BUFSIZ 1024
151
152 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
153 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
154 #define AUDIT_MAXFREE (2*NR_CPUS)
155
156 /* The audit_buffer is used when formatting an audit record. The caller
157 * locks briefly to get the record off the freelist or to allocate the
158 * buffer, and locks briefly to send the buffer to the netlink layer or
159 * to place it on a transmit queue. Multiple audit_buffers can be in
160 * use simultaneously. */
161 struct audit_buffer {
162 struct list_head list;
163 struct sk_buff *skb; /* formatted skb ready to send */
164 struct audit_context *ctx; /* NULL or associated context */
165 gfp_t gfp_mask;
166 };
167
168 struct audit_reply {
169 int pid;
170 struct sk_buff *skb;
171 };
172
173 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
174 {
175 if (ab) {
176 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
177 nlh->nlmsg_pid = pid;
178 }
179 }
180
181 void audit_panic(const char *message)
182 {
183 switch (audit_failure)
184 {
185 case AUDIT_FAIL_SILENT:
186 break;
187 case AUDIT_FAIL_PRINTK:
188 if (printk_ratelimit())
189 printk(KERN_ERR "audit: %s\n", message);
190 break;
191 case AUDIT_FAIL_PANIC:
192 /* test audit_pid since printk is always losey, why bother? */
193 if (audit_pid)
194 panic("audit: %s\n", message);
195 break;
196 }
197 }
198
199 static inline int audit_rate_check(void)
200 {
201 static unsigned long last_check = 0;
202 static int messages = 0;
203 static DEFINE_SPINLOCK(lock);
204 unsigned long flags;
205 unsigned long now;
206 unsigned long elapsed;
207 int retval = 0;
208
209 if (!audit_rate_limit) return 1;
210
211 spin_lock_irqsave(&lock, flags);
212 if (++messages < audit_rate_limit) {
213 retval = 1;
214 } else {
215 now = jiffies;
216 elapsed = now - last_check;
217 if (elapsed > HZ) {
218 last_check = now;
219 messages = 0;
220 retval = 1;
221 }
222 }
223 spin_unlock_irqrestore(&lock, flags);
224
225 return retval;
226 }
227
228 /**
229 * audit_log_lost - conditionally log lost audit message event
230 * @message: the message stating reason for lost audit message
231 *
232 * Emit at least 1 message per second, even if audit_rate_check is
233 * throttling.
234 * Always increment the lost messages counter.
235 */
236 void audit_log_lost(const char *message)
237 {
238 static unsigned long last_msg = 0;
239 static DEFINE_SPINLOCK(lock);
240 unsigned long flags;
241 unsigned long now;
242 int print;
243
244 atomic_inc(&audit_lost);
245
246 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
247
248 if (!print) {
249 spin_lock_irqsave(&lock, flags);
250 now = jiffies;
251 if (now - last_msg > HZ) {
252 print = 1;
253 last_msg = now;
254 }
255 spin_unlock_irqrestore(&lock, flags);
256 }
257
258 if (print) {
259 if (printk_ratelimit())
260 printk(KERN_WARNING
261 "audit: audit_lost=%d audit_rate_limit=%d "
262 "audit_backlog_limit=%d\n",
263 atomic_read(&audit_lost),
264 audit_rate_limit,
265 audit_backlog_limit);
266 audit_panic(message);
267 }
268 }
269
270 static int audit_log_config_change(char *function_name, int new, int old,
271 int allow_changes)
272 {
273 struct audit_buffer *ab;
274 int rc = 0;
275
276 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
277 if (unlikely(!ab))
278 return rc;
279 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
280 audit_log_session_info(ab);
281 rc = audit_log_task_context(ab);
282 if (rc)
283 allow_changes = 0; /* Something weird, deny request */
284 audit_log_format(ab, " res=%d", allow_changes);
285 audit_log_end(ab);
286 return rc;
287 }
288
289 static int audit_do_config_change(char *function_name, int *to_change, int new)
290 {
291 int allow_changes, rc = 0, old = *to_change;
292
293 /* check if we are locked */
294 if (audit_enabled == AUDIT_LOCKED)
295 allow_changes = 0;
296 else
297 allow_changes = 1;
298
299 if (audit_enabled != AUDIT_OFF) {
300 rc = audit_log_config_change(function_name, new, old, allow_changes);
301 if (rc)
302 allow_changes = 0;
303 }
304
305 /* If we are allowed, make the change */
306 if (allow_changes == 1)
307 *to_change = new;
308 /* Not allowed, update reason */
309 else if (rc == 0)
310 rc = -EPERM;
311 return rc;
312 }
313
314 static int audit_set_rate_limit(int limit)
315 {
316 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
317 }
318
319 static int audit_set_backlog_limit(int limit)
320 {
321 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
322 }
323
324 static int audit_set_enabled(int state)
325 {
326 int rc;
327 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
328 return -EINVAL;
329
330 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
331 if (!rc)
332 audit_ever_enabled |= !!state;
333
334 return rc;
335 }
336
337 static int audit_set_failure(int state)
338 {
339 if (state != AUDIT_FAIL_SILENT
340 && state != AUDIT_FAIL_PRINTK
341 && state != AUDIT_FAIL_PANIC)
342 return -EINVAL;
343
344 return audit_do_config_change("audit_failure", &audit_failure, state);
345 }
346
347 /*
348 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
349 * already have been sent via prink/syslog and so if these messages are dropped
350 * it is not a huge concern since we already passed the audit_log_lost()
351 * notification and stuff. This is just nice to get audit messages during
352 * boot before auditd is running or messages generated while auditd is stopped.
353 * This only holds messages is audit_default is set, aka booting with audit=1
354 * or building your kernel that way.
355 */
356 static void audit_hold_skb(struct sk_buff *skb)
357 {
358 if (audit_default &&
359 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
360 skb_queue_tail(&audit_skb_hold_queue, skb);
361 else
362 kfree_skb(skb);
363 }
364
365 /*
366 * For one reason or another this nlh isn't getting delivered to the userspace
367 * audit daemon, just send it to printk.
368 */
369 static void audit_printk_skb(struct sk_buff *skb)
370 {
371 struct nlmsghdr *nlh = nlmsg_hdr(skb);
372 char *data = nlmsg_data(nlh);
373
374 if (nlh->nlmsg_type != AUDIT_EOE) {
375 if (printk_ratelimit()){
376 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
377 }
378 else
379 audit_log_lost("printk limit exceeded\n");
380 }
381
382 audit_hold_skb(skb);
383 }
384
385 static void kauditd_send_skb(struct sk_buff *skb)
386 {
387 int err;
388 /* take a reference in case we can't send it and we want to hold it */
389 skb_get(skb);
390 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
391 if (err < 0) {
392 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
393 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
394 audit_log_lost("auditd disappeared\n");
395 audit_pid = 0;
396 /* we might get lucky and get this in the next auditd */
397 audit_hold_skb(skb);
398 } else
399 /* drop the extra reference if sent ok */
400 consume_skb(skb);
401 }
402
403 /*
404 * flush_hold_queue - empty the hold queue if auditd appears
405 *
406 * If auditd just started, drain the queue of messages already
407 * sent to syslog/printk. Remember loss here is ok. We already
408 * called audit_log_lost() if it didn't go out normally. so the
409 * race between the skb_dequeue and the next check for audit_pid
410 * doesn't matter.
411 *
412 * If you ever find kauditd to be too slow we can get a perf win
413 * by doing our own locking and keeping better track if there
414 * are messages in this queue. I don't see the need now, but
415 * in 5 years when I want to play with this again I'll see this
416 * note and still have no friggin idea what i'm thinking today.
417 */
418 static void flush_hold_queue(void)
419 {
420 struct sk_buff *skb;
421
422 if (!audit_default || !audit_pid)
423 return;
424
425 skb = skb_dequeue(&audit_skb_hold_queue);
426 if (likely(!skb))
427 return;
428
429 while (skb && audit_pid) {
430 kauditd_send_skb(skb);
431 skb = skb_dequeue(&audit_skb_hold_queue);
432 }
433
434 /*
435 * if auditd just disappeared but we
436 * dequeued an skb we need to drop ref
437 */
438 if (skb)
439 consume_skb(skb);
440 }
441
442 static int kauditd_thread(void *dummy)
443 {
444 set_freezable();
445 while (!kthread_should_stop()) {
446 struct sk_buff *skb;
447 DECLARE_WAITQUEUE(wait, current);
448
449 flush_hold_queue();
450
451 skb = skb_dequeue(&audit_skb_queue);
452 wake_up(&audit_backlog_wait);
453 if (skb) {
454 if (audit_pid)
455 kauditd_send_skb(skb);
456 else
457 audit_printk_skb(skb);
458 continue;
459 }
460 set_current_state(TASK_INTERRUPTIBLE);
461 add_wait_queue(&kauditd_wait, &wait);
462
463 if (!skb_queue_len(&audit_skb_queue)) {
464 try_to_freeze();
465 schedule();
466 }
467
468 __set_current_state(TASK_RUNNING);
469 remove_wait_queue(&kauditd_wait, &wait);
470 }
471 return 0;
472 }
473
474 int audit_send_list(void *_dest)
475 {
476 struct audit_netlink_list *dest = _dest;
477 int pid = dest->pid;
478 struct sk_buff *skb;
479
480 /* wait for parent to finish and send an ACK */
481 mutex_lock(&audit_cmd_mutex);
482 mutex_unlock(&audit_cmd_mutex);
483
484 while ((skb = __skb_dequeue(&dest->q)) != NULL)
485 netlink_unicast(audit_sock, skb, pid, 0);
486
487 kfree(dest);
488
489 return 0;
490 }
491
492 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
493 int multi, const void *payload, int size)
494 {
495 struct sk_buff *skb;
496 struct nlmsghdr *nlh;
497 void *data;
498 int flags = multi ? NLM_F_MULTI : 0;
499 int t = done ? NLMSG_DONE : type;
500
501 skb = nlmsg_new(size, GFP_KERNEL);
502 if (!skb)
503 return NULL;
504
505 nlh = nlmsg_put(skb, pid, seq, t, size, flags);
506 if (!nlh)
507 goto out_kfree_skb;
508 data = nlmsg_data(nlh);
509 memcpy(data, payload, size);
510 return skb;
511
512 out_kfree_skb:
513 kfree_skb(skb);
514 return NULL;
515 }
516
517 static int audit_send_reply_thread(void *arg)
518 {
519 struct audit_reply *reply = (struct audit_reply *)arg;
520
521 mutex_lock(&audit_cmd_mutex);
522 mutex_unlock(&audit_cmd_mutex);
523
524 /* Ignore failure. It'll only happen if the sender goes away,
525 because our timeout is set to infinite. */
526 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
527 kfree(reply);
528 return 0;
529 }
530 /**
531 * audit_send_reply - send an audit reply message via netlink
532 * @pid: process id to send reply to
533 * @seq: sequence number
534 * @type: audit message type
535 * @done: done (last) flag
536 * @multi: multi-part message flag
537 * @payload: payload data
538 * @size: payload size
539 *
540 * Allocates an skb, builds the netlink message, and sends it to the pid.
541 * No failure notifications.
542 */
543 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
544 const void *payload, int size)
545 {
546 struct sk_buff *skb;
547 struct task_struct *tsk;
548 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
549 GFP_KERNEL);
550
551 if (!reply)
552 return;
553
554 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
555 if (!skb)
556 goto out;
557
558 reply->pid = pid;
559 reply->skb = skb;
560
561 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
562 if (!IS_ERR(tsk))
563 return;
564 kfree_skb(skb);
565 out:
566 kfree(reply);
567 }
568
569 /*
570 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
571 * control messages.
572 */
573 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
574 {
575 int err = 0;
576
577 /* Only support the initial namespaces for now. */
578 if ((current_user_ns() != &init_user_ns) ||
579 (task_active_pid_ns(current) != &init_pid_ns))
580 return -EPERM;
581
582 switch (msg_type) {
583 case AUDIT_LIST:
584 case AUDIT_ADD:
585 case AUDIT_DEL:
586 return -EOPNOTSUPP;
587 case AUDIT_GET:
588 case AUDIT_SET:
589 case AUDIT_LIST_RULES:
590 case AUDIT_ADD_RULE:
591 case AUDIT_DEL_RULE:
592 case AUDIT_SIGNAL_INFO:
593 case AUDIT_TTY_GET:
594 case AUDIT_TTY_SET:
595 case AUDIT_TRIM:
596 case AUDIT_MAKE_EQUIV:
597 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
598 err = -EPERM;
599 break;
600 case AUDIT_USER:
601 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
602 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
603 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
604 err = -EPERM;
605 break;
606 default: /* bad msg */
607 err = -EINVAL;
608 }
609
610 return err;
611 }
612
613 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
614 {
615 int rc = 0;
616 uid_t uid = from_kuid(&init_user_ns, current_uid());
617
618 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
619 *ab = NULL;
620 return rc;
621 }
622
623 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
624 if (unlikely(!*ab))
625 return rc;
626 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
627 audit_log_session_info(*ab);
628 audit_log_task_context(*ab);
629
630 return rc;
631 }
632
633 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
634 {
635 u32 seq;
636 void *data;
637 struct audit_status *status_get, status_set;
638 int err;
639 struct audit_buffer *ab;
640 u16 msg_type = nlh->nlmsg_type;
641 struct audit_sig_info *sig_data;
642 char *ctx = NULL;
643 u32 len;
644
645 err = audit_netlink_ok(skb, msg_type);
646 if (err)
647 return err;
648
649 /* As soon as there's any sign of userspace auditd,
650 * start kauditd to talk to it */
651 if (!kauditd_task) {
652 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
653 if (IS_ERR(kauditd_task)) {
654 err = PTR_ERR(kauditd_task);
655 kauditd_task = NULL;
656 return err;
657 }
658 }
659 seq = nlh->nlmsg_seq;
660 data = nlmsg_data(nlh);
661
662 switch (msg_type) {
663 case AUDIT_GET:
664 status_set.mask = 0;
665 status_set.enabled = audit_enabled;
666 status_set.failure = audit_failure;
667 status_set.pid = audit_pid;
668 status_set.rate_limit = audit_rate_limit;
669 status_set.backlog_limit = audit_backlog_limit;
670 status_set.lost = atomic_read(&audit_lost);
671 status_set.backlog = skb_queue_len(&audit_skb_queue);
672 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
673 &status_set, sizeof(status_set));
674 break;
675 case AUDIT_SET:
676 if (nlmsg_len(nlh) < sizeof(struct audit_status))
677 return -EINVAL;
678 status_get = (struct audit_status *)data;
679 if (status_get->mask & AUDIT_STATUS_ENABLED) {
680 err = audit_set_enabled(status_get->enabled);
681 if (err < 0)
682 return err;
683 }
684 if (status_get->mask & AUDIT_STATUS_FAILURE) {
685 err = audit_set_failure(status_get->failure);
686 if (err < 0)
687 return err;
688 }
689 if (status_get->mask & AUDIT_STATUS_PID) {
690 int new_pid = status_get->pid;
691
692 if (audit_enabled != AUDIT_OFF)
693 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
694 audit_pid = new_pid;
695 audit_nlk_portid = NETLINK_CB(skb).portid;
696 }
697 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
698 err = audit_set_rate_limit(status_get->rate_limit);
699 if (err < 0)
700 return err;
701 }
702 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
703 err = audit_set_backlog_limit(status_get->backlog_limit);
704 break;
705 case AUDIT_USER:
706 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
707 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
709 return 0;
710
711 err = audit_filter_user(msg_type);
712 if (err == 1) {
713 err = 0;
714 if (msg_type == AUDIT_USER_TTY) {
715 err = tty_audit_push_current();
716 if (err)
717 break;
718 }
719 audit_log_common_recv_msg(&ab, msg_type);
720 if (msg_type != AUDIT_USER_TTY)
721 audit_log_format(ab, " msg='%.1024s'",
722 (char *)data);
723 else {
724 int size;
725
726 audit_log_format(ab, " data=");
727 size = nlmsg_len(nlh);
728 if (size > 0 &&
729 ((unsigned char *)data)[size - 1] == '\0')
730 size--;
731 audit_log_n_untrustedstring(ab, data, size);
732 }
733 audit_set_pid(ab, NETLINK_CB(skb).portid);
734 audit_log_end(ab);
735 }
736 break;
737 case AUDIT_ADD_RULE:
738 case AUDIT_DEL_RULE:
739 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
740 return -EINVAL;
741 if (audit_enabled == AUDIT_LOCKED) {
742 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
743 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
744 audit_log_end(ab);
745 return -EPERM;
746 }
747 /* fallthrough */
748 case AUDIT_LIST_RULES:
749 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
750 seq, data, nlmsg_len(nlh));
751 break;
752 case AUDIT_TRIM:
753 audit_trim_trees();
754 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
755 audit_log_format(ab, " op=trim res=1");
756 audit_log_end(ab);
757 break;
758 case AUDIT_MAKE_EQUIV: {
759 void *bufp = data;
760 u32 sizes[2];
761 size_t msglen = nlmsg_len(nlh);
762 char *old, *new;
763
764 err = -EINVAL;
765 if (msglen < 2 * sizeof(u32))
766 break;
767 memcpy(sizes, bufp, 2 * sizeof(u32));
768 bufp += 2 * sizeof(u32);
769 msglen -= 2 * sizeof(u32);
770 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
771 if (IS_ERR(old)) {
772 err = PTR_ERR(old);
773 break;
774 }
775 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
776 if (IS_ERR(new)) {
777 err = PTR_ERR(new);
778 kfree(old);
779 break;
780 }
781 /* OK, here comes... */
782 err = audit_tag_tree(old, new);
783
784 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
785
786 audit_log_format(ab, " op=make_equiv old=");
787 audit_log_untrustedstring(ab, old);
788 audit_log_format(ab, " new=");
789 audit_log_untrustedstring(ab, new);
790 audit_log_format(ab, " res=%d", !err);
791 audit_log_end(ab);
792 kfree(old);
793 kfree(new);
794 break;
795 }
796 case AUDIT_SIGNAL_INFO:
797 len = 0;
798 if (audit_sig_sid) {
799 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
800 if (err)
801 return err;
802 }
803 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
804 if (!sig_data) {
805 if (audit_sig_sid)
806 security_release_secctx(ctx, len);
807 return -ENOMEM;
808 }
809 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
810 sig_data->pid = audit_sig_pid;
811 if (audit_sig_sid) {
812 memcpy(sig_data->ctx, ctx, len);
813 security_release_secctx(ctx, len);
814 }
815 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
816 0, 0, sig_data, sizeof(*sig_data) + len);
817 kfree(sig_data);
818 break;
819 case AUDIT_TTY_GET: {
820 struct audit_tty_status s;
821 struct task_struct *tsk = current;
822
823 spin_lock(&tsk->sighand->siglock);
824 s.enabled = tsk->signal->audit_tty != 0;
825 s.log_passwd = tsk->signal->audit_tty_log_passwd;
826 spin_unlock(&tsk->sighand->siglock);
827
828 audit_send_reply(NETLINK_CB(skb).portid, seq,
829 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
830 break;
831 }
832 case AUDIT_TTY_SET: {
833 struct audit_tty_status s;
834 struct task_struct *tsk = current;
835
836 memset(&s, 0, sizeof(s));
837 /* guard against past and future API changes */
838 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
839 if ((s.enabled != 0 && s.enabled != 1) ||
840 (s.log_passwd != 0 && s.log_passwd != 1))
841 return -EINVAL;
842
843 spin_lock(&tsk->sighand->siglock);
844 tsk->signal->audit_tty = s.enabled;
845 tsk->signal->audit_tty_log_passwd = s.log_passwd;
846 spin_unlock(&tsk->sighand->siglock);
847 break;
848 }
849 default:
850 err = -EINVAL;
851 break;
852 }
853
854 return err < 0 ? err : 0;
855 }
856
857 /*
858 * Get message from skb. Each message is processed by audit_receive_msg.
859 * Malformed skbs with wrong length are discarded silently.
860 */
861 static void audit_receive_skb(struct sk_buff *skb)
862 {
863 struct nlmsghdr *nlh;
864 /*
865 * len MUST be signed for nlmsg_next to be able to dec it below 0
866 * if the nlmsg_len was not aligned
867 */
868 int len;
869 int err;
870
871 nlh = nlmsg_hdr(skb);
872 len = skb->len;
873
874 while (nlmsg_ok(nlh, len)) {
875 err = audit_receive_msg(skb, nlh);
876 /* if err or if this message says it wants a response */
877 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
878 netlink_ack(skb, nlh, err);
879
880 nlh = nlmsg_next(nlh, &len);
881 }
882 }
883
884 /* Receive messages from netlink socket. */
885 static void audit_receive(struct sk_buff *skb)
886 {
887 mutex_lock(&audit_cmd_mutex);
888 audit_receive_skb(skb);
889 mutex_unlock(&audit_cmd_mutex);
890 }
891
892 /* Initialize audit support at boot time. */
893 static int __init audit_init(void)
894 {
895 int i;
896 struct netlink_kernel_cfg cfg = {
897 .input = audit_receive,
898 };
899
900 if (audit_initialized == AUDIT_DISABLED)
901 return 0;
902
903 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
904 audit_default ? "enabled" : "disabled");
905 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg);
906 if (!audit_sock)
907 audit_panic("cannot initialize netlink socket");
908 else
909 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
910
911 skb_queue_head_init(&audit_skb_queue);
912 skb_queue_head_init(&audit_skb_hold_queue);
913 audit_initialized = AUDIT_INITIALIZED;
914 audit_enabled = audit_default;
915 audit_ever_enabled |= !!audit_default;
916
917 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
918
919 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
920 INIT_LIST_HEAD(&audit_inode_hash[i]);
921
922 return 0;
923 }
924 __initcall(audit_init);
925
926 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
927 static int __init audit_enable(char *str)
928 {
929 audit_default = !!simple_strtol(str, NULL, 0);
930 if (!audit_default)
931 audit_initialized = AUDIT_DISABLED;
932
933 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
934
935 if (audit_initialized == AUDIT_INITIALIZED) {
936 audit_enabled = audit_default;
937 audit_ever_enabled |= !!audit_default;
938 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
939 printk(" (after initialization)");
940 } else {
941 printk(" (until reboot)");
942 }
943 printk("\n");
944
945 return 1;
946 }
947
948 __setup("audit=", audit_enable);
949
950 static void audit_buffer_free(struct audit_buffer *ab)
951 {
952 unsigned long flags;
953
954 if (!ab)
955 return;
956
957 if (ab->skb)
958 kfree_skb(ab->skb);
959
960 spin_lock_irqsave(&audit_freelist_lock, flags);
961 if (audit_freelist_count > AUDIT_MAXFREE)
962 kfree(ab);
963 else {
964 audit_freelist_count++;
965 list_add(&ab->list, &audit_freelist);
966 }
967 spin_unlock_irqrestore(&audit_freelist_lock, flags);
968 }
969
970 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
971 gfp_t gfp_mask, int type)
972 {
973 unsigned long flags;
974 struct audit_buffer *ab = NULL;
975 struct nlmsghdr *nlh;
976
977 spin_lock_irqsave(&audit_freelist_lock, flags);
978 if (!list_empty(&audit_freelist)) {
979 ab = list_entry(audit_freelist.next,
980 struct audit_buffer, list);
981 list_del(&ab->list);
982 --audit_freelist_count;
983 }
984 spin_unlock_irqrestore(&audit_freelist_lock, flags);
985
986 if (!ab) {
987 ab = kmalloc(sizeof(*ab), gfp_mask);
988 if (!ab)
989 goto err;
990 }
991
992 ab->ctx = ctx;
993 ab->gfp_mask = gfp_mask;
994
995 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
996 if (!ab->skb)
997 goto err;
998
999 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1000 if (!nlh)
1001 goto out_kfree_skb;
1002
1003 return ab;
1004
1005 out_kfree_skb:
1006 kfree_skb(ab->skb);
1007 ab->skb = NULL;
1008 err:
1009 audit_buffer_free(ab);
1010 return NULL;
1011 }
1012
1013 /**
1014 * audit_serial - compute a serial number for the audit record
1015 *
1016 * Compute a serial number for the audit record. Audit records are
1017 * written to user-space as soon as they are generated, so a complete
1018 * audit record may be written in several pieces. The timestamp of the
1019 * record and this serial number are used by the user-space tools to
1020 * determine which pieces belong to the same audit record. The
1021 * (timestamp,serial) tuple is unique for each syscall and is live from
1022 * syscall entry to syscall exit.
1023 *
1024 * NOTE: Another possibility is to store the formatted records off the
1025 * audit context (for those records that have a context), and emit them
1026 * all at syscall exit. However, this could delay the reporting of
1027 * significant errors until syscall exit (or never, if the system
1028 * halts).
1029 */
1030 unsigned int audit_serial(void)
1031 {
1032 static DEFINE_SPINLOCK(serial_lock);
1033 static unsigned int serial = 0;
1034
1035 unsigned long flags;
1036 unsigned int ret;
1037
1038 spin_lock_irqsave(&serial_lock, flags);
1039 do {
1040 ret = ++serial;
1041 } while (unlikely(!ret));
1042 spin_unlock_irqrestore(&serial_lock, flags);
1043
1044 return ret;
1045 }
1046
1047 static inline void audit_get_stamp(struct audit_context *ctx,
1048 struct timespec *t, unsigned int *serial)
1049 {
1050 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1051 *t = CURRENT_TIME;
1052 *serial = audit_serial();
1053 }
1054 }
1055
1056 /*
1057 * Wait for auditd to drain the queue a little
1058 */
1059 static void wait_for_auditd(unsigned long sleep_time)
1060 {
1061 DECLARE_WAITQUEUE(wait, current);
1062 set_current_state(TASK_UNINTERRUPTIBLE);
1063 add_wait_queue(&audit_backlog_wait, &wait);
1064
1065 if (audit_backlog_limit &&
1066 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1067 schedule_timeout(sleep_time);
1068
1069 __set_current_state(TASK_RUNNING);
1070 remove_wait_queue(&audit_backlog_wait, &wait);
1071 }
1072
1073 /* Obtain an audit buffer. This routine does locking to obtain the
1074 * audit buffer, but then no locking is required for calls to
1075 * audit_log_*format. If the tsk is a task that is currently in a
1076 * syscall, then the syscall is marked as auditable and an audit record
1077 * will be written at syscall exit. If there is no associated task, tsk
1078 * should be NULL. */
1079
1080 /**
1081 * audit_log_start - obtain an audit buffer
1082 * @ctx: audit_context (may be NULL)
1083 * @gfp_mask: type of allocation
1084 * @type: audit message type
1085 *
1086 * Returns audit_buffer pointer on success or NULL on error.
1087 *
1088 * Obtain an audit buffer. This routine does locking to obtain the
1089 * audit buffer, but then no locking is required for calls to
1090 * audit_log_*format. If the task (ctx) is a task that is currently in a
1091 * syscall, then the syscall is marked as auditable and an audit record
1092 * will be written at syscall exit. If there is no associated task, then
1093 * task context (ctx) should be NULL.
1094 */
1095 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1096 int type)
1097 {
1098 struct audit_buffer *ab = NULL;
1099 struct timespec t;
1100 unsigned int uninitialized_var(serial);
1101 int reserve;
1102 unsigned long timeout_start = jiffies;
1103
1104 if (audit_initialized != AUDIT_INITIALIZED)
1105 return NULL;
1106
1107 if (unlikely(audit_filter_type(type)))
1108 return NULL;
1109
1110 if (gfp_mask & __GFP_WAIT)
1111 reserve = 0;
1112 else
1113 reserve = 5; /* Allow atomic callers to go up to five
1114 entries over the normal backlog limit */
1115
1116 while (audit_backlog_limit
1117 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1118 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1119 unsigned long sleep_time;
1120
1121 sleep_time = timeout_start + audit_backlog_wait_time -
1122 jiffies;
1123 if ((long)sleep_time > 0) {
1124 wait_for_auditd(sleep_time);
1125 continue;
1126 }
1127 }
1128 if (audit_rate_check() && printk_ratelimit())
1129 printk(KERN_WARNING
1130 "audit: audit_backlog=%d > "
1131 "audit_backlog_limit=%d\n",
1132 skb_queue_len(&audit_skb_queue),
1133 audit_backlog_limit);
1134 audit_log_lost("backlog limit exceeded");
1135 audit_backlog_wait_time = audit_backlog_wait_overflow;
1136 wake_up(&audit_backlog_wait);
1137 return NULL;
1138 }
1139
1140 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1141
1142 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1143 if (!ab) {
1144 audit_log_lost("out of memory in audit_log_start");
1145 return NULL;
1146 }
1147
1148 audit_get_stamp(ab->ctx, &t, &serial);
1149
1150 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1151 t.tv_sec, t.tv_nsec/1000000, serial);
1152 return ab;
1153 }
1154
1155 /**
1156 * audit_expand - expand skb in the audit buffer
1157 * @ab: audit_buffer
1158 * @extra: space to add at tail of the skb
1159 *
1160 * Returns 0 (no space) on failed expansion, or available space if
1161 * successful.
1162 */
1163 static inline int audit_expand(struct audit_buffer *ab, int extra)
1164 {
1165 struct sk_buff *skb = ab->skb;
1166 int oldtail = skb_tailroom(skb);
1167 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1168 int newtail = skb_tailroom(skb);
1169
1170 if (ret < 0) {
1171 audit_log_lost("out of memory in audit_expand");
1172 return 0;
1173 }
1174
1175 skb->truesize += newtail - oldtail;
1176 return newtail;
1177 }
1178
1179 /*
1180 * Format an audit message into the audit buffer. If there isn't enough
1181 * room in the audit buffer, more room will be allocated and vsnprint
1182 * will be called a second time. Currently, we assume that a printk
1183 * can't format message larger than 1024 bytes, so we don't either.
1184 */
1185 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1186 va_list args)
1187 {
1188 int len, avail;
1189 struct sk_buff *skb;
1190 va_list args2;
1191
1192 if (!ab)
1193 return;
1194
1195 BUG_ON(!ab->skb);
1196 skb = ab->skb;
1197 avail = skb_tailroom(skb);
1198 if (avail == 0) {
1199 avail = audit_expand(ab, AUDIT_BUFSIZ);
1200 if (!avail)
1201 goto out;
1202 }
1203 va_copy(args2, args);
1204 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1205 if (len >= avail) {
1206 /* The printk buffer is 1024 bytes long, so if we get
1207 * here and AUDIT_BUFSIZ is at least 1024, then we can
1208 * log everything that printk could have logged. */
1209 avail = audit_expand(ab,
1210 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1211 if (!avail)
1212 goto out_va_end;
1213 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1214 }
1215 if (len > 0)
1216 skb_put(skb, len);
1217 out_va_end:
1218 va_end(args2);
1219 out:
1220 return;
1221 }
1222
1223 /**
1224 * audit_log_format - format a message into the audit buffer.
1225 * @ab: audit_buffer
1226 * @fmt: format string
1227 * @...: optional parameters matching @fmt string
1228 *
1229 * All the work is done in audit_log_vformat.
1230 */
1231 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1232 {
1233 va_list args;
1234
1235 if (!ab)
1236 return;
1237 va_start(args, fmt);
1238 audit_log_vformat(ab, fmt, args);
1239 va_end(args);
1240 }
1241
1242 /**
1243 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1244 * @ab: the audit_buffer
1245 * @buf: buffer to convert to hex
1246 * @len: length of @buf to be converted
1247 *
1248 * No return value; failure to expand is silently ignored.
1249 *
1250 * This function will take the passed buf and convert it into a string of
1251 * ascii hex digits. The new string is placed onto the skb.
1252 */
1253 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1254 size_t len)
1255 {
1256 int i, avail, new_len;
1257 unsigned char *ptr;
1258 struct sk_buff *skb;
1259 static const unsigned char *hex = "0123456789ABCDEF";
1260
1261 if (!ab)
1262 return;
1263
1264 BUG_ON(!ab->skb);
1265 skb = ab->skb;
1266 avail = skb_tailroom(skb);
1267 new_len = len<<1;
1268 if (new_len >= avail) {
1269 /* Round the buffer request up to the next multiple */
1270 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1271 avail = audit_expand(ab, new_len);
1272 if (!avail)
1273 return;
1274 }
1275
1276 ptr = skb_tail_pointer(skb);
1277 for (i=0; i<len; i++) {
1278 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1279 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1280 }
1281 *ptr = 0;
1282 skb_put(skb, len << 1); /* new string is twice the old string */
1283 }
1284
1285 /*
1286 * Format a string of no more than slen characters into the audit buffer,
1287 * enclosed in quote marks.
1288 */
1289 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1290 size_t slen)
1291 {
1292 int avail, new_len;
1293 unsigned char *ptr;
1294 struct sk_buff *skb;
1295
1296 if (!ab)
1297 return;
1298
1299 BUG_ON(!ab->skb);
1300 skb = ab->skb;
1301 avail = skb_tailroom(skb);
1302 new_len = slen + 3; /* enclosing quotes + null terminator */
1303 if (new_len > avail) {
1304 avail = audit_expand(ab, new_len);
1305 if (!avail)
1306 return;
1307 }
1308 ptr = skb_tail_pointer(skb);
1309 *ptr++ = '"';
1310 memcpy(ptr, string, slen);
1311 ptr += slen;
1312 *ptr++ = '"';
1313 *ptr = 0;
1314 skb_put(skb, slen + 2); /* don't include null terminator */
1315 }
1316
1317 /**
1318 * audit_string_contains_control - does a string need to be logged in hex
1319 * @string: string to be checked
1320 * @len: max length of the string to check
1321 */
1322 int audit_string_contains_control(const char *string, size_t len)
1323 {
1324 const unsigned char *p;
1325 for (p = string; p < (const unsigned char *)string + len; p++) {
1326 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1327 return 1;
1328 }
1329 return 0;
1330 }
1331
1332 /**
1333 * audit_log_n_untrustedstring - log a string that may contain random characters
1334 * @ab: audit_buffer
1335 * @len: length of string (not including trailing null)
1336 * @string: string to be logged
1337 *
1338 * This code will escape a string that is passed to it if the string
1339 * contains a control character, unprintable character, double quote mark,
1340 * or a space. Unescaped strings will start and end with a double quote mark.
1341 * Strings that are escaped are printed in hex (2 digits per char).
1342 *
1343 * The caller specifies the number of characters in the string to log, which may
1344 * or may not be the entire string.
1345 */
1346 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1347 size_t len)
1348 {
1349 if (audit_string_contains_control(string, len))
1350 audit_log_n_hex(ab, string, len);
1351 else
1352 audit_log_n_string(ab, string, len);
1353 }
1354
1355 /**
1356 * audit_log_untrustedstring - log a string that may contain random characters
1357 * @ab: audit_buffer
1358 * @string: string to be logged
1359 *
1360 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1361 * determine string length.
1362 */
1363 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1364 {
1365 audit_log_n_untrustedstring(ab, string, strlen(string));
1366 }
1367
1368 /* This is a helper-function to print the escaped d_path */
1369 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1370 const struct path *path)
1371 {
1372 char *p, *pathname;
1373
1374 if (prefix)
1375 audit_log_format(ab, "%s", prefix);
1376
1377 /* We will allow 11 spaces for ' (deleted)' to be appended */
1378 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1379 if (!pathname) {
1380 audit_log_string(ab, "<no_memory>");
1381 return;
1382 }
1383 p = d_path(path, pathname, PATH_MAX+11);
1384 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1385 /* FIXME: can we save some information here? */
1386 audit_log_string(ab, "<too_long>");
1387 } else
1388 audit_log_untrustedstring(ab, p);
1389 kfree(pathname);
1390 }
1391
1392 void audit_log_session_info(struct audit_buffer *ab)
1393 {
1394 u32 sessionid = audit_get_sessionid(current);
1395 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1396
1397 audit_log_format(ab, " auid=%u ses=%u\n", auid, sessionid);
1398 }
1399
1400 void audit_log_key(struct audit_buffer *ab, char *key)
1401 {
1402 audit_log_format(ab, " key=");
1403 if (key)
1404 audit_log_untrustedstring(ab, key);
1405 else
1406 audit_log_format(ab, "(null)");
1407 }
1408
1409 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1410 {
1411 int i;
1412
1413 audit_log_format(ab, " %s=", prefix);
1414 CAP_FOR_EACH_U32(i) {
1415 audit_log_format(ab, "%08x",
1416 cap->cap[CAP_LAST_U32 - i]);
1417 }
1418 }
1419
1420 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1421 {
1422 kernel_cap_t *perm = &name->fcap.permitted;
1423 kernel_cap_t *inh = &name->fcap.inheritable;
1424 int log = 0;
1425
1426 if (!cap_isclear(*perm)) {
1427 audit_log_cap(ab, "cap_fp", perm);
1428 log = 1;
1429 }
1430 if (!cap_isclear(*inh)) {
1431 audit_log_cap(ab, "cap_fi", inh);
1432 log = 1;
1433 }
1434
1435 if (log)
1436 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1437 name->fcap.fE, name->fcap_ver);
1438 }
1439
1440 static inline int audit_copy_fcaps(struct audit_names *name,
1441 const struct dentry *dentry)
1442 {
1443 struct cpu_vfs_cap_data caps;
1444 int rc;
1445
1446 if (!dentry)
1447 return 0;
1448
1449 rc = get_vfs_caps_from_disk(dentry, &caps);
1450 if (rc)
1451 return rc;
1452
1453 name->fcap.permitted = caps.permitted;
1454 name->fcap.inheritable = caps.inheritable;
1455 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1456 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1457 VFS_CAP_REVISION_SHIFT;
1458
1459 return 0;
1460 }
1461
1462 /* Copy inode data into an audit_names. */
1463 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1464 const struct inode *inode)
1465 {
1466 name->ino = inode->i_ino;
1467 name->dev = inode->i_sb->s_dev;
1468 name->mode = inode->i_mode;
1469 name->uid = inode->i_uid;
1470 name->gid = inode->i_gid;
1471 name->rdev = inode->i_rdev;
1472 security_inode_getsecid(inode, &name->osid);
1473 audit_copy_fcaps(name, dentry);
1474 }
1475
1476 /**
1477 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1478 * @context: audit_context for the task
1479 * @n: audit_names structure with reportable details
1480 * @path: optional path to report instead of audit_names->name
1481 * @record_num: record number to report when handling a list of names
1482 * @call_panic: optional pointer to int that will be updated if secid fails
1483 */
1484 void audit_log_name(struct audit_context *context, struct audit_names *n,
1485 struct path *path, int record_num, int *call_panic)
1486 {
1487 struct audit_buffer *ab;
1488 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1489 if (!ab)
1490 return;
1491
1492 audit_log_format(ab, "item=%d", record_num);
1493
1494 if (path)
1495 audit_log_d_path(ab, " name=", path);
1496 else if (n->name) {
1497 switch (n->name_len) {
1498 case AUDIT_NAME_FULL:
1499 /* log the full path */
1500 audit_log_format(ab, " name=");
1501 audit_log_untrustedstring(ab, n->name->name);
1502 break;
1503 case 0:
1504 /* name was specified as a relative path and the
1505 * directory component is the cwd */
1506 audit_log_d_path(ab, " name=", &context->pwd);
1507 break;
1508 default:
1509 /* log the name's directory component */
1510 audit_log_format(ab, " name=");
1511 audit_log_n_untrustedstring(ab, n->name->name,
1512 n->name_len);
1513 }
1514 } else
1515 audit_log_format(ab, " name=(null)");
1516
1517 if (n->ino != (unsigned long)-1) {
1518 audit_log_format(ab, " inode=%lu"
1519 " dev=%02x:%02x mode=%#ho"
1520 " ouid=%u ogid=%u rdev=%02x:%02x",
1521 n->ino,
1522 MAJOR(n->dev),
1523 MINOR(n->dev),
1524 n->mode,
1525 from_kuid(&init_user_ns, n->uid),
1526 from_kgid(&init_user_ns, n->gid),
1527 MAJOR(n->rdev),
1528 MINOR(n->rdev));
1529 }
1530 if (n->osid != 0) {
1531 char *ctx = NULL;
1532 u32 len;
1533 if (security_secid_to_secctx(
1534 n->osid, &ctx, &len)) {
1535 audit_log_format(ab, " osid=%u", n->osid);
1536 if (call_panic)
1537 *call_panic = 2;
1538 } else {
1539 audit_log_format(ab, " obj=%s", ctx);
1540 security_release_secctx(ctx, len);
1541 }
1542 }
1543
1544 /* log the audit_names record type */
1545 audit_log_format(ab, " nametype=");
1546 switch(n->type) {
1547 case AUDIT_TYPE_NORMAL:
1548 audit_log_format(ab, "NORMAL");
1549 break;
1550 case AUDIT_TYPE_PARENT:
1551 audit_log_format(ab, "PARENT");
1552 break;
1553 case AUDIT_TYPE_CHILD_DELETE:
1554 audit_log_format(ab, "DELETE");
1555 break;
1556 case AUDIT_TYPE_CHILD_CREATE:
1557 audit_log_format(ab, "CREATE");
1558 break;
1559 default:
1560 audit_log_format(ab, "UNKNOWN");
1561 break;
1562 }
1563
1564 audit_log_fcaps(ab, n);
1565 audit_log_end(ab);
1566 }
1567
1568 int audit_log_task_context(struct audit_buffer *ab)
1569 {
1570 char *ctx = NULL;
1571 unsigned len;
1572 int error;
1573 u32 sid;
1574
1575 security_task_getsecid(current, &sid);
1576 if (!sid)
1577 return 0;
1578
1579 error = security_secid_to_secctx(sid, &ctx, &len);
1580 if (error) {
1581 if (error != -EINVAL)
1582 goto error_path;
1583 return 0;
1584 }
1585
1586 audit_log_format(ab, " subj=%s", ctx);
1587 security_release_secctx(ctx, len);
1588 return 0;
1589
1590 error_path:
1591 audit_panic("error in audit_log_task_context");
1592 return error;
1593 }
1594 EXPORT_SYMBOL(audit_log_task_context);
1595
1596 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1597 {
1598 const struct cred *cred;
1599 char name[sizeof(tsk->comm)];
1600 struct mm_struct *mm = tsk->mm;
1601 char *tty;
1602
1603 if (!ab)
1604 return;
1605
1606 /* tsk == current */
1607 cred = current_cred();
1608
1609 spin_lock_irq(&tsk->sighand->siglock);
1610 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1611 tty = tsk->signal->tty->name;
1612 else
1613 tty = "(none)";
1614 spin_unlock_irq(&tsk->sighand->siglock);
1615
1616 audit_log_format(ab,
1617 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1618 " euid=%u suid=%u fsuid=%u"
1619 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1620 sys_getppid(),
1621 tsk->pid,
1622 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1623 from_kuid(&init_user_ns, cred->uid),
1624 from_kgid(&init_user_ns, cred->gid),
1625 from_kuid(&init_user_ns, cred->euid),
1626 from_kuid(&init_user_ns, cred->suid),
1627 from_kuid(&init_user_ns, cred->fsuid),
1628 from_kgid(&init_user_ns, cred->egid),
1629 from_kgid(&init_user_ns, cred->sgid),
1630 from_kgid(&init_user_ns, cred->fsgid),
1631 audit_get_sessionid(tsk), tty);
1632
1633 get_task_comm(name, tsk);
1634 audit_log_format(ab, " comm=");
1635 audit_log_untrustedstring(ab, name);
1636
1637 if (mm) {
1638 down_read(&mm->mmap_sem);
1639 if (mm->exe_file)
1640 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1641 up_read(&mm->mmap_sem);
1642 }
1643 audit_log_task_context(ab);
1644 }
1645 EXPORT_SYMBOL(audit_log_task_info);
1646
1647 /**
1648 * audit_log_link_denied - report a link restriction denial
1649 * @operation: specific link opreation
1650 * @link: the path that triggered the restriction
1651 */
1652 void audit_log_link_denied(const char *operation, struct path *link)
1653 {
1654 struct audit_buffer *ab;
1655 struct audit_names *name;
1656
1657 name = kzalloc(sizeof(*name), GFP_NOFS);
1658 if (!name)
1659 return;
1660
1661 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1662 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1663 AUDIT_ANOM_LINK);
1664 if (!ab)
1665 goto out;
1666 audit_log_format(ab, "op=%s", operation);
1667 audit_log_task_info(ab, current);
1668 audit_log_format(ab, " res=0");
1669 audit_log_end(ab);
1670
1671 /* Generate AUDIT_PATH record with object. */
1672 name->type = AUDIT_TYPE_NORMAL;
1673 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1674 audit_log_name(current->audit_context, name, link, 0, NULL);
1675 out:
1676 kfree(name);
1677 }
1678
1679 /**
1680 * audit_log_end - end one audit record
1681 * @ab: the audit_buffer
1682 *
1683 * The netlink_* functions cannot be called inside an irq context, so
1684 * the audit buffer is placed on a queue and a tasklet is scheduled to
1685 * remove them from the queue outside the irq context. May be called in
1686 * any context.
1687 */
1688 void audit_log_end(struct audit_buffer *ab)
1689 {
1690 if (!ab)
1691 return;
1692 if (!audit_rate_check()) {
1693 audit_log_lost("rate limit exceeded");
1694 } else {
1695 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1696 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1697
1698 if (audit_pid) {
1699 skb_queue_tail(&audit_skb_queue, ab->skb);
1700 wake_up_interruptible(&kauditd_wait);
1701 } else {
1702 audit_printk_skb(ab->skb);
1703 }
1704 ab->skb = NULL;
1705 }
1706 audit_buffer_free(ab);
1707 }
1708
1709 /**
1710 * audit_log - Log an audit record
1711 * @ctx: audit context
1712 * @gfp_mask: type of allocation
1713 * @type: audit message type
1714 * @fmt: format string to use
1715 * @...: variable parameters matching the format string
1716 *
1717 * This is a convenience function that calls audit_log_start,
1718 * audit_log_vformat, and audit_log_end. It may be called
1719 * in any context.
1720 */
1721 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1722 const char *fmt, ...)
1723 {
1724 struct audit_buffer *ab;
1725 va_list args;
1726
1727 ab = audit_log_start(ctx, gfp_mask, type);
1728 if (ab) {
1729 va_start(args, fmt);
1730 audit_log_vformat(ab, fmt, args);
1731 va_end(args);
1732 audit_log_end(ab);
1733 }
1734 }
1735
1736 #ifdef CONFIG_SECURITY
1737 /**
1738 * audit_log_secctx - Converts and logs SELinux context
1739 * @ab: audit_buffer
1740 * @secid: security number
1741 *
1742 * This is a helper function that calls security_secid_to_secctx to convert
1743 * secid to secctx and then adds the (converted) SELinux context to the audit
1744 * log by calling audit_log_format, thus also preventing leak of internal secid
1745 * to userspace. If secid cannot be converted audit_panic is called.
1746 */
1747 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1748 {
1749 u32 len;
1750 char *secctx;
1751
1752 if (security_secid_to_secctx(secid, &secctx, &len)) {
1753 audit_panic("Cannot convert secid to context");
1754 } else {
1755 audit_log_format(ab, " obj=%s", secctx);
1756 security_release_secctx(secctx, len);
1757 }
1758 }
1759 EXPORT_SYMBOL(audit_log_secctx);
1760 #endif
1761
1762 EXPORT_SYMBOL(audit_log_start);
1763 EXPORT_SYMBOL(audit_log_end);
1764 EXPORT_SYMBOL(audit_log_format);
1765 EXPORT_SYMBOL(audit_log);