Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57 #include <linux/rtpm_prio.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106 extern unsigned long get_cpu_load(int cpu);
107 extern unsigned long long mt_get_thread_cputime(pid_t pid);
108 extern unsigned long long mt_get_cpu_idle(int cpu);
109 extern unsigned long long mt_sched_clock(void);
110 extern void calc_global_load(unsigned long ticks);
111 extern void update_cpu_load_nohz(void);
112
113 /* Notifier for when a task gets migrated to a new CPU */
114 struct task_migration_notifier {
115 struct task_struct *task;
116 int from_cpu;
117 int to_cpu;
118 };
119 extern void register_task_migration_notifier(struct notifier_block *n);
120
121 extern unsigned long get_parent_ip(unsigned long addr);
122
123 extern void dump_cpu_task(int cpu);
124
125 struct seq_file;
126 struct cfs_rq;
127 struct task_group;
128 #ifdef CONFIG_SCHED_DEBUG
129 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
130 extern void proc_sched_set_task(struct task_struct *p);
131 extern void
132 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
133 #endif
134
135 /*
136 * Task state bitmask. NOTE! These bits are also
137 * encoded in fs/proc/array.c: get_task_state().
138 *
139 * We have two separate sets of flags: task->state
140 * is about runnability, while task->exit_state are
141 * about the task exiting. Confusing, but this way
142 * modifying one set can't modify the other one by
143 * mistake.
144 */
145 #define TASK_RUNNING 0
146 #define TASK_INTERRUPTIBLE 1
147 #define TASK_UNINTERRUPTIBLE 2
148 #define __TASK_STOPPED 4
149 #define __TASK_TRACED 8
150 /* in tsk->exit_state */
151 #define EXIT_ZOMBIE 16
152 #define EXIT_DEAD 32
153 /* in tsk->state again */
154 #define TASK_DEAD 64
155 #define TASK_WAKEKILL 128
156 #define TASK_WAKING 256
157 #define TASK_PARKED 512
158 #define TASK_STATE_MAX 1024
159
160 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
161
162 extern char ___assert_task_state[1 - 2*!!(
163 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
164
165 /* Convenience macros for the sake of set_task_state */
166 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
167 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
168 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
169
170 /* Convenience macros for the sake of wake_up */
171 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
172 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
173
174 /* get_task_state() */
175 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
176 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
177 __TASK_TRACED)
178
179 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
180 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
181 #define task_is_dead(task) ((task)->exit_state != 0)
182 #define task_is_stopped_or_traced(task) \
183 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
184 #define task_contributes_to_load(task) \
185 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
186 (task->flags & PF_FROZEN) == 0)
187
188 #define __set_task_state(tsk, state_value) \
189 do { (tsk)->state = (state_value); } while (0)
190 #define set_task_state(tsk, state_value) \
191 set_mb((tsk)->state, (state_value))
192
193 /*
194 * set_current_state() includes a barrier so that the write of current->state
195 * is correctly serialised wrt the caller's subsequent test of whether to
196 * actually sleep:
197 *
198 * set_current_state(TASK_UNINTERRUPTIBLE);
199 * if (do_i_need_to_sleep())
200 * schedule();
201 *
202 * If the caller does not need such serialisation then use __set_current_state()
203 */
204 #define __set_current_state(state_value) \
205 do { current->state = (state_value); } while (0)
206 #define set_current_state(state_value) \
207 set_mb(current->state, (state_value))
208
209 /* Task command name length */
210 #define TASK_COMM_LEN 16
211
212 #include <linux/spinlock.h>
213
214 /*
215 * This serializes "schedule()" and also protects
216 * the run-queue from deletions/modifications (but
217 * _adding_ to the beginning of the run-queue has
218 * a separate lock).
219 */
220 extern rwlock_t tasklist_lock;
221 extern spinlock_t mmlist_lock;
222
223 struct task_struct;
224
225 #ifdef CONFIG_PROVE_RCU
226 extern int lockdep_tasklist_lock_is_held(void);
227 #endif /* #ifdef CONFIG_PROVE_RCU */
228
229 extern void sched_init(void);
230 extern void sched_init_smp(void);
231 extern asmlinkage void schedule_tail(struct task_struct *prev);
232 extern void init_idle(struct task_struct *idle, int cpu);
233 extern void init_idle_bootup_task(struct task_struct *idle);
234
235 extern int runqueue_is_locked(int cpu);
236
237 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
238 extern void nohz_balance_enter_idle(int cpu);
239 extern void set_cpu_sd_state_idle(void);
240 extern int get_nohz_timer_target(void);
241 #else
242 static inline void nohz_balance_enter_idle(int cpu) { }
243 static inline void set_cpu_sd_state_idle(void) { }
244 #endif
245
246 /*
247 * Only dump TASK_* tasks. (0 for all tasks)
248 */
249 extern void show_state_filter(unsigned long state_filter);
250
251 static inline void show_state(void)
252 {
253 show_state_filter(0);
254 }
255
256 extern void show_regs(struct pt_regs *);
257
258 /*
259 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
260 * task), SP is the stack pointer of the first frame that should be shown in the back
261 * trace (or NULL if the entire call-chain of the task should be shown).
262 */
263 extern void show_stack(struct task_struct *task, unsigned long *sp);
264
265 void io_schedule(void);
266 long io_schedule_timeout(long timeout);
267
268 extern void cpu_init (void);
269 extern void trap_init(void);
270 extern void update_process_times(int user);
271 extern void scheduler_tick(void);
272
273 extern void sched_show_task(struct task_struct *p);
274
275 #ifdef CONFIG_LOCKUP_DETECTOR
276 extern void touch_softlockup_watchdog(void);
277 extern void touch_softlockup_watchdog_sync(void);
278 extern void touch_all_softlockup_watchdogs(void);
279 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
280 void __user *buffer,
281 size_t *lenp, loff_t *ppos);
282 extern unsigned int softlockup_panic;
283 void lockup_detector_init(void);
284 #else
285 static inline void touch_softlockup_watchdog(void)
286 {
287 }
288 static inline void touch_softlockup_watchdog_sync(void)
289 {
290 }
291 static inline void touch_all_softlockup_watchdogs(void)
292 {
293 }
294 static inline void lockup_detector_init(void)
295 {
296 }
297 #endif
298
299 /* Attach to any functions which should be ignored in wchan output. */
300 #define __sched __attribute__((__section__(".sched.text")))
301
302 /* Linker adds these: start and end of __sched functions */
303 extern char __sched_text_start[], __sched_text_end[];
304
305 /* Is this address in the __sched functions? */
306 extern int in_sched_functions(unsigned long addr);
307
308 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
309 extern signed long schedule_timeout(signed long timeout);
310 extern signed long schedule_timeout_interruptible(signed long timeout);
311 extern signed long schedule_timeout_killable(signed long timeout);
312 extern signed long schedule_timeout_uninterruptible(signed long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315
316 struct nsproxy;
317 struct user_namespace;
318
319 #ifdef CONFIG_MMU
320 extern void arch_pick_mmap_layout(struct mm_struct *mm);
321 extern unsigned long
322 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
323 unsigned long, unsigned long);
324 extern unsigned long
325 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
326 unsigned long len, unsigned long pgoff,
327 unsigned long flags);
328 extern void arch_unmap_area(struct mm_struct *, unsigned long);
329 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
330 #else
331 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
332 #endif
333
334
335 extern void set_dumpable(struct mm_struct *mm, int value);
336 extern int get_dumpable(struct mm_struct *mm);
337
338 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
339 #define SUID_DUMP_USER 1 /* Dump as user of process */
340 #define SUID_DUMP_ROOT 2 /* Dump as root */
341
342 /* mm flags */
343 /* dumpable bits */
344 #define MMF_DUMPABLE 0 /* core dump is permitted */
345 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
346
347 #define MMF_DUMPABLE_BITS 2
348 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
349
350 /* coredump filter bits */
351 #define MMF_DUMP_ANON_PRIVATE 2
352 #define MMF_DUMP_ANON_SHARED 3
353 #define MMF_DUMP_MAPPED_PRIVATE 4
354 #define MMF_DUMP_MAPPED_SHARED 5
355 #define MMF_DUMP_ELF_HEADERS 6
356 #define MMF_DUMP_HUGETLB_PRIVATE 7
357 #define MMF_DUMP_HUGETLB_SHARED 8
358
359 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
360 #define MMF_DUMP_FILTER_BITS 7
361 #define MMF_DUMP_FILTER_MASK \
362 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
363 #define MMF_DUMP_FILTER_DEFAULT \
364 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
365 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
366
367 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
368 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
369 #else
370 # define MMF_DUMP_MASK_DEFAULT_ELF 0
371 #endif
372 /* leave room for more dump flags */
373 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
374 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
375 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
376
377 #define MMF_HAS_UPROBES 19 /* has uprobes */
378 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
379
380 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
381
382 struct sighand_struct {
383 atomic_t count;
384 struct k_sigaction action[_NSIG];
385 spinlock_t siglock;
386 wait_queue_head_t signalfd_wqh;
387 };
388
389 struct pacct_struct {
390 int ac_flag;
391 long ac_exitcode;
392 unsigned long ac_mem;
393 cputime_t ac_utime, ac_stime;
394 unsigned long ac_minflt, ac_majflt;
395 };
396
397 struct cpu_itimer {
398 cputime_t expires;
399 cputime_t incr;
400 u32 error;
401 u32 incr_error;
402 };
403
404 /**
405 * struct cputime - snaphsot of system and user cputime
406 * @utime: time spent in user mode
407 * @stime: time spent in system mode
408 *
409 * Gathers a generic snapshot of user and system time.
410 */
411 struct cputime {
412 cputime_t utime;
413 cputime_t stime;
414 };
415
416 /**
417 * struct task_cputime - collected CPU time counts
418 * @utime: time spent in user mode, in &cputime_t units
419 * @stime: time spent in kernel mode, in &cputime_t units
420 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
421 *
422 * This is an extension of struct cputime that includes the total runtime
423 * spent by the task from the scheduler point of view.
424 *
425 * As a result, this structure groups together three kinds of CPU time
426 * that are tracked for threads and thread groups. Most things considering
427 * CPU time want to group these counts together and treat all three
428 * of them in parallel.
429 */
430 struct task_cputime {
431 cputime_t utime;
432 cputime_t stime;
433 unsigned long long sum_exec_runtime;
434 };
435 /* Alternate field names when used to cache expirations. */
436 #define prof_exp stime
437 #define virt_exp utime
438 #define sched_exp sum_exec_runtime
439
440 #define INIT_CPUTIME \
441 (struct task_cputime) { \
442 .utime = 0, \
443 .stime = 0, \
444 .sum_exec_runtime = 0, \
445 }
446
447 /*
448 * Disable preemption until the scheduler is running.
449 * Reset by start_kernel()->sched_init()->init_idle().
450 *
451 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
452 * before the scheduler is active -- see should_resched().
453 */
454 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
455
456 /**
457 * struct thread_group_cputimer - thread group interval timer counts
458 * @cputime: thread group interval timers.
459 * @running: non-zero when there are timers running and
460 * @cputime receives updates.
461 * @lock: lock for fields in this struct.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU timer calculations.
465 */
466 struct thread_group_cputimer {
467 struct task_cputime cputime;
468 int running;
469 raw_spinlock_t lock;
470 };
471
472 #include <linux/rwsem.h>
473 struct autogroup;
474
475 /*
476 * NOTE! "signal_struct" does not have its own
477 * locking, because a shared signal_struct always
478 * implies a shared sighand_struct, so locking
479 * sighand_struct is always a proper superset of
480 * the locking of signal_struct.
481 */
482 struct signal_struct {
483 atomic_t sigcnt;
484 atomic_t live;
485 int nr_threads;
486 struct list_head thread_head;
487
488 wait_queue_head_t wait_chldexit; /* for wait4() */
489
490 /* current thread group signal load-balancing target: */
491 struct task_struct *curr_target;
492
493 /* shared signal handling: */
494 struct sigpending shared_pending;
495
496 /* thread group exit support */
497 int group_exit_code;
498 /* overloaded:
499 * - notify group_exit_task when ->count is equal to notify_count
500 * - everyone except group_exit_task is stopped during signal delivery
501 * of fatal signals, group_exit_task processes the signal.
502 */
503 int notify_count;
504 struct task_struct *group_exit_task;
505
506 /* thread group stop support, overloads group_exit_code too */
507 int group_stop_count;
508 unsigned int flags; /* see SIGNAL_* flags below */
509
510 /*
511 * PR_SET_CHILD_SUBREAPER marks a process, like a service
512 * manager, to re-parent orphan (double-forking) child processes
513 * to this process instead of 'init'. The service manager is
514 * able to receive SIGCHLD signals and is able to investigate
515 * the process until it calls wait(). All children of this
516 * process will inherit a flag if they should look for a
517 * child_subreaper process at exit.
518 */
519 unsigned int is_child_subreaper:1;
520 unsigned int has_child_subreaper:1;
521
522 /* POSIX.1b Interval Timers */
523 int posix_timer_id;
524 struct list_head posix_timers;
525
526 /* ITIMER_REAL timer for the process */
527 struct hrtimer real_timer;
528 struct pid *leader_pid;
529 ktime_t it_real_incr;
530
531 /*
532 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
533 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
534 * values are defined to 0 and 1 respectively
535 */
536 struct cpu_itimer it[2];
537
538 /*
539 * Thread group totals for process CPU timers.
540 * See thread_group_cputimer(), et al, for details.
541 */
542 struct thread_group_cputimer cputimer;
543
544 /* Earliest-expiration cache. */
545 struct task_cputime cputime_expires;
546
547 struct list_head cpu_timers[3];
548
549 struct pid *tty_old_pgrp;
550
551 /* boolean value for session group leader */
552 int leader;
553
554 struct tty_struct *tty; /* NULL if no tty */
555
556 #ifdef CONFIG_SCHED_AUTOGROUP
557 struct autogroup *autogroup;
558 #endif
559 /*
560 * Cumulative resource counters for dead threads in the group,
561 * and for reaped dead child processes forked by this group.
562 * Live threads maintain their own counters and add to these
563 * in __exit_signal, except for the group leader.
564 */
565 cputime_t utime, stime, cutime, cstime;
566 cputime_t gtime;
567 cputime_t cgtime;
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 struct cputime prev_cputime;
570 #endif
571 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
572 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
573 unsigned long inblock, oublock, cinblock, coublock;
574 unsigned long maxrss, cmaxrss;
575 struct task_io_accounting ioac;
576
577 /*
578 * Cumulative ns of schedule CPU time fo dead threads in the
579 * group, not including a zombie group leader, (This only differs
580 * from jiffies_to_ns(utime + stime) if sched_clock uses something
581 * other than jiffies.)
582 */
583 unsigned long long sum_sched_runtime;
584
585 /*
586 * We don't bother to synchronize most readers of this at all,
587 * because there is no reader checking a limit that actually needs
588 * to get both rlim_cur and rlim_max atomically, and either one
589 * alone is a single word that can safely be read normally.
590 * getrlimit/setrlimit use task_lock(current->group_leader) to
591 * protect this instead of the siglock, because they really
592 * have no need to disable irqs.
593 */
594 struct rlimit rlim[RLIM_NLIMITS];
595
596 #ifdef CONFIG_BSD_PROCESS_ACCT
597 struct pacct_struct pacct; /* per-process accounting information */
598 #endif
599 #ifdef CONFIG_TASKSTATS
600 struct taskstats *stats;
601 #endif
602 #ifdef CONFIG_AUDIT
603 unsigned audit_tty;
604 unsigned audit_tty_log_passwd;
605 struct tty_audit_buf *tty_audit_buf;
606 #endif
607 #ifdef CONFIG_CGROUPS
608 /*
609 * group_rwsem prevents new tasks from entering the threadgroup and
610 * member tasks from exiting,a more specifically, setting of
611 * PF_EXITING. fork and exit paths are protected with this rwsem
612 * using threadgroup_change_begin/end(). Users which require
613 * threadgroup to remain stable should use threadgroup_[un]lock()
614 * which also takes care of exec path. Currently, cgroup is the
615 * only user.
616 */
617 struct rw_semaphore group_rwsem;
618 #endif
619
620 oom_flags_t oom_flags;
621 short oom_score_adj; /* OOM kill score adjustment */
622 short oom_score_adj_min; /* OOM kill score adjustment min value.
623 * Only settable by CAP_SYS_RESOURCE. */
624
625 struct mutex cred_guard_mutex; /* guard against foreign influences on
626 * credential calculations
627 * (notably. ptrace) */
628 };
629
630 /*
631 * Bits in flags field of signal_struct.
632 */
633 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
634 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
635 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
636 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
637 /*
638 * Pending notifications to parent.
639 */
640 #define SIGNAL_CLD_STOPPED 0x00000010
641 #define SIGNAL_CLD_CONTINUED 0x00000020
642 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
643
644 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
645
646 /* If true, all threads except ->group_exit_task have pending SIGKILL */
647 static inline int signal_group_exit(const struct signal_struct *sig)
648 {
649 return (sig->flags & SIGNAL_GROUP_EXIT) ||
650 (sig->group_exit_task != NULL);
651 }
652
653 /*
654 * Some day this will be a full-fledged user tracking system..
655 */
656 struct user_struct {
657 atomic_t __count; /* reference count */
658 atomic_t processes; /* How many processes does this user have? */
659 atomic_t files; /* How many open files does this user have? */
660 atomic_t sigpending; /* How many pending signals does this user have? */
661 #ifdef CONFIG_INOTIFY_USER
662 atomic_t inotify_watches; /* How many inotify watches does this user have? */
663 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
664 #endif
665 #ifdef CONFIG_FANOTIFY
666 atomic_t fanotify_listeners;
667 #endif
668 #ifdef CONFIG_EPOLL
669 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 /* protected by mq_lock */
673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
674 #endif
675 unsigned long locked_shm; /* How many pages of mlocked shm ? */
676 unsigned long unix_inflight; /* How many files in flight in unix sockets */
677 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
678
679 #ifdef CONFIG_KEYS
680 struct key *uid_keyring; /* UID specific keyring */
681 struct key *session_keyring; /* UID's default session keyring */
682 #endif
683
684 /* Hash table maintenance information */
685 struct hlist_node uidhash_node;
686 kuid_t uid;
687
688 #ifdef CONFIG_PERF_EVENTS
689 atomic_long_t locked_vm;
690 #endif
691 };
692
693 extern int uids_sysfs_init(void);
694
695 extern struct user_struct *find_user(kuid_t);
696
697 extern struct user_struct root_user;
698 #define INIT_USER (&root_user)
699
700
701 struct backing_dev_info;
702 struct reclaim_state;
703
704 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
705 struct sched_info {
706 /* cumulative counters */
707 unsigned long pcount; /* # of times run on this cpu */
708 unsigned long long run_delay; /* time spent waiting on a runqueue */
709
710 /* timestamps */
711 unsigned long long last_arrival,/* when we last ran on a cpu */
712 last_queued; /* when we were last queued to run */
713 };
714 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
715
716 #ifdef CONFIG_TASK_DELAY_ACCT
717 struct task_delay_info {
718 spinlock_t lock;
719 unsigned int flags; /* Private per-task flags */
720
721 /* For each stat XXX, add following, aligned appropriately
722 *
723 * struct timespec XXX_start, XXX_end;
724 * u64 XXX_delay;
725 * u32 XXX_count;
726 *
727 * Atomicity of updates to XXX_delay, XXX_count protected by
728 * single lock above (split into XXX_lock if contention is an issue).
729 */
730
731 /*
732 * XXX_count is incremented on every XXX operation, the delay
733 * associated with the operation is added to XXX_delay.
734 * XXX_delay contains the accumulated delay time in nanoseconds.
735 */
736 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
737 u64 blkio_delay; /* wait for sync block io completion */
738 u64 swapin_delay; /* wait for swapin block io completion */
739 u32 blkio_count; /* total count of the number of sync block */
740 /* io operations performed */
741 u32 swapin_count; /* total count of the number of swapin block */
742 /* io operations performed */
743
744 struct timespec freepages_start, freepages_end;
745 u64 freepages_delay; /* wait for memory reclaim */
746 u32 freepages_count; /* total count of memory reclaim */
747 };
748 #endif /* CONFIG_TASK_DELAY_ACCT */
749
750 static inline int sched_info_on(void)
751 {
752 #ifdef CONFIG_SCHEDSTATS
753 return 1;
754 #elif defined(CONFIG_TASK_DELAY_ACCT)
755 extern int delayacct_on;
756 return delayacct_on;
757 #else
758 return 0;
759 #endif
760 }
761
762 enum cpu_idle_type {
763 CPU_IDLE,
764 CPU_NOT_IDLE,
765 CPU_NEWLY_IDLE,
766 CPU_MAX_IDLE_TYPES
767 };
768
769 /*
770 * Increase resolution of cpu_power calculations
771 */
772 #define SCHED_POWER_SHIFT 10
773 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
774
775 /*
776 * sched-domains (multiprocessor balancing) declarations:
777 */
778 #ifdef CONFIG_SMP
779 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
780 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
781 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
782 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
783 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
784 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
785 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
786
787 #ifdef CONFIG_HMP_PACK_SMALL_TASK
788 #define SD_SHARE_POWERLINE 0x0100 /* Domain members share power domain */
789 #endif /* CONFIG_HMP_PACK_SMALL_TASK */
790
791 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
792 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
793 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
794 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
795 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
796 #ifdef CONFIG_MTK_SCHED_CMP_TGS
797 #define SD_BALANCE_TG 0x4000 /* Balance for thread group */
798 #endif
799 #ifdef CONFIG_MTK_SCHED_CMP_PACK_SMALL_TASK
800 #define SD_SHARE_POWERLINE 0x8000 /* Domain members share power domain */
801 #endif
802
803 extern int __weak arch_sd_sibiling_asym_packing(void);
804
805 struct sched_domain_attr {
806 int relax_domain_level;
807 };
808
809 #define SD_ATTR_INIT (struct sched_domain_attr) { \
810 .relax_domain_level = -1, \
811 }
812
813 extern int sched_domain_level_max;
814
815 struct sched_group;
816
817 struct sched_domain {
818 /* These fields must be setup */
819 struct sched_domain *parent; /* top domain must be null terminated */
820 struct sched_domain *child; /* bottom domain must be null terminated */
821 struct sched_group *groups; /* the balancing groups of the domain */
822 unsigned long min_interval; /* Minimum balance interval ms */
823 unsigned long max_interval; /* Maximum balance interval ms */
824 unsigned int busy_factor; /* less balancing by factor if busy */
825 unsigned int imbalance_pct; /* No balance until over watermark */
826 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
827 unsigned int busy_idx;
828 unsigned int idle_idx;
829 unsigned int newidle_idx;
830 unsigned int wake_idx;
831 unsigned int forkexec_idx;
832 unsigned int smt_gain;
833
834 int nohz_idle; /* NOHZ IDLE status */
835 int flags; /* See SD_* */
836 int level;
837
838 /* Runtime fields. */
839 unsigned long last_balance; /* init to jiffies. units in jiffies */
840 unsigned int balance_interval; /* initialise to 1. units in ms. */
841 unsigned int nr_balance_failed; /* initialise to 0 */
842 #ifdef CONFIG_MT_LOAD_BALANCE_PROFILER
843 unsigned int mt_lbprof_nr_balance_failed; /* initialise to 0 */
844 #endif
845
846 u64 last_update;
847
848 #ifdef CONFIG_SCHEDSTATS
849 /* load_balance() stats */
850 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
851 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
852 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
853 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
854 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
855 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
856 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
857 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
858
859 /* Active load balancing */
860 unsigned int alb_count;
861 unsigned int alb_failed;
862 unsigned int alb_pushed;
863
864 /* SD_BALANCE_EXEC stats */
865 unsigned int sbe_count;
866 unsigned int sbe_balanced;
867 unsigned int sbe_pushed;
868
869 /* SD_BALANCE_FORK stats */
870 unsigned int sbf_count;
871 unsigned int sbf_balanced;
872 unsigned int sbf_pushed;
873
874 /* try_to_wake_up() stats */
875 unsigned int ttwu_wake_remote;
876 unsigned int ttwu_move_affine;
877 unsigned int ttwu_move_balance;
878 #endif
879 #ifdef CONFIG_SCHED_DEBUG
880 char *name;
881 #endif
882 union {
883 void *private; /* used during construction */
884 struct rcu_head rcu; /* used during destruction */
885 };
886
887 unsigned int span_weight;
888 /*
889 * Span of all CPUs in this domain.
890 *
891 * NOTE: this field is variable length. (Allocated dynamically
892 * by attaching extra space to the end of the structure,
893 * depending on how many CPUs the kernel has booted up with)
894 */
895 unsigned long span[0];
896 };
897
898 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
899 {
900 return to_cpumask(sd->span);
901 }
902
903 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
904 struct sched_domain_attr *dattr_new);
905
906 /* Allocate an array of sched domains, for partition_sched_domains(). */
907 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
908 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
909
910 bool cpus_share_cache(int this_cpu, int that_cpu);
911
912 struct clb_stats {
913 int ncpu; /* The number of CPU */
914 int ntask; /* The number of tasks */
915 int load_avg; /* Arithmetic average of task load ratio */
916 int cpu_capacity; /* Current CPU capacity */
917 int cpu_power; /* Max CPU capacity */
918 int acap; /* Available CPU capacity */
919 int scaled_acap; /* Scaled available CPU capacity */
920 int scaled_atask; /* Scaled available task */
921 int threshold; /* Dynamic threshold */
922 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
923 int nr_normal_prio_task; /* The number of normal-prio tasks */
924 int nr_dequeuing_low_prio; /* The number of dequeuing low-prio tasks */
925 #endif
926 };
927
928 #ifdef CONFIG_SCHED_HMP
929 struct hmp_domain {
930 struct cpumask cpus;
931 struct cpumask possible_cpus;
932 struct list_head hmp_domains;
933 };
934
935 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
936 #ifdef CONFIG_HMP_TRACER
937 struct hmp_statisic {
938 unsigned int nr_force_up; /* The number of task force up-migration */
939 unsigned int nr_force_down; /* The number of task force down-migration */
940 };
941 #endif /* CONFIG_HMP_TRACER */
942 #endif /* CONFIG_SCHED_HMP_ENHANCEMENT */
943 #endif /* CONFIG_SCHED_HMP */
944 #else /* CONFIG_SMP */
945
946 struct sched_domain_attr;
947
948 static inline void
949 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
950 struct sched_domain_attr *dattr_new)
951 {
952 }
953
954 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
955 {
956 return true;
957 }
958
959 #endif /* !CONFIG_SMP */
960
961
962 struct io_context; /* See blkdev.h */
963
964
965 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
966 extern void prefetch_stack(struct task_struct *t);
967 #else
968 static inline void prefetch_stack(struct task_struct *t) { }
969 #endif
970
971 struct audit_context; /* See audit.c */
972 struct mempolicy;
973 struct pipe_inode_info;
974 struct uts_namespace;
975
976 struct load_weight {
977 unsigned long weight, inv_weight;
978 };
979
980 struct sched_avg {
981 /*
982 * These sums represent an infinite geometric series and so are bound
983 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
984 * choices of y < 1-2^(-32)*1024.
985 */
986 u32 runnable_avg_sum, runnable_avg_period;
987 u64 last_runnable_update;
988 s64 decay_count;
989 unsigned long load_avg_contrib;
990 unsigned long load_avg_ratio;
991 #ifdef CONFIG_SCHED_HMP
992 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
993 unsigned long pending_load;
994 u32 nr_pending;
995 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
996 u32 nr_dequeuing_low_prio;
997 u32 nr_normal_prio;
998 #endif
999 #endif
1000 u64 hmp_last_up_migration;
1001 u64 hmp_last_down_migration;
1002 #endif /* CONFIG_SCHED_HMP */
1003 u32 usage_avg_sum;
1004 };
1005
1006 #ifdef CONFIG_SCHEDSTATS
1007 struct sched_statistics {
1008 u64 wait_start;
1009 u64 wait_max;
1010 u64 wait_count;
1011 u64 wait_sum;
1012 u64 iowait_count;
1013 u64 iowait_sum;
1014
1015 u64 sleep_start;
1016 u64 sleep_max;
1017 s64 sum_sleep_runtime;
1018
1019 u64 block_start;
1020 u64 block_max;
1021 u64 exec_max;
1022 u64 slice_max;
1023
1024 u64 nr_migrations_cold;
1025 u64 nr_failed_migrations_affine;
1026 u64 nr_failed_migrations_running;
1027 u64 nr_failed_migrations_hot;
1028 u64 nr_forced_migrations;
1029
1030 u64 nr_wakeups;
1031 u64 nr_wakeups_sync;
1032 u64 nr_wakeups_migrate;
1033 u64 nr_wakeups_local;
1034 u64 nr_wakeups_remote;
1035 u64 nr_wakeups_affine;
1036 u64 nr_wakeups_affine_attempts;
1037 u64 nr_wakeups_passive;
1038 u64 nr_wakeups_idle;
1039 };
1040 #endif
1041
1042 #ifdef CONFIG_MTPROF_CPUTIME
1043 struct mtk_isr_info{
1044 int isr_num;
1045 int isr_count;
1046 u64 isr_time;
1047 char *isr_name;
1048 struct mtk_isr_info *next;
1049 } ;
1050 #endif
1051 struct sched_entity {
1052 struct load_weight load; /* for load-balancing */
1053 struct rb_node run_node;
1054 struct list_head group_node;
1055 unsigned int on_rq;
1056
1057 u64 exec_start;
1058 u64 sum_exec_runtime;
1059 u64 vruntime;
1060 u64 prev_sum_exec_runtime;
1061
1062 u64 nr_migrations;
1063
1064 #ifdef CONFIG_SCHEDSTATS
1065 struct sched_statistics statistics;
1066 #endif
1067
1068 #ifdef CONFIG_FAIR_GROUP_SCHED
1069 struct sched_entity *parent;
1070 /* rq on which this entity is (to be) queued: */
1071 struct cfs_rq *cfs_rq;
1072 /* rq "owned" by this entity/group: */
1073 struct cfs_rq *my_q;
1074 #endif
1075
1076 #ifdef CONFIG_SMP
1077 /* Per-entity load-tracking */
1078 struct sched_avg avg;
1079 #endif
1080 #ifdef CONFIG_MTPROF_CPUTIME
1081 u64 mtk_isr_time;
1082 int mtk_isr_count;
1083 struct mtk_isr_info *mtk_isr;
1084 #endif
1085 };
1086
1087 struct sched_rt_entity {
1088 struct list_head run_list;
1089 unsigned long timeout;
1090 unsigned long watchdog_stamp;
1091 unsigned int time_slice;
1092
1093 struct sched_rt_entity *back;
1094 #ifdef CONFIG_RT_GROUP_SCHED
1095 struct sched_rt_entity *parent;
1096 /* rq on which this entity is (to be) queued: */
1097 struct rt_rq *rt_rq;
1098 /* rq "owned" by this entity/group: */
1099 struct rt_rq *my_q;
1100 #endif
1101 };
1102
1103
1104 struct rcu_node;
1105
1106 enum perf_event_task_context {
1107 perf_invalid_context = -1,
1108 perf_hw_context = 0,
1109 perf_sw_context,
1110 perf_nr_task_contexts,
1111 };
1112
1113 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1114 #define NUM_CLUSTER 2
1115 struct thread_group_info_t {
1116 /* # of cfs threas in the thread group per cluster*/
1117 unsigned long cfs_nr_running;
1118 /* # of threads in the thread group per cluster */
1119 unsigned long nr_running;
1120 /* runnable load of the thread group per cluster */
1121 unsigned long load_avg_ratio;
1122 };
1123
1124 #endif
1125
1126 #ifdef CONFIG_MT_SCHED_NOTICE
1127 #ifdef CONFIG_MT_SCHED_DEBUG
1128 #define mt_sched_printf(x...) \
1129 do{ \
1130 char strings[128]=""; \
1131 snprintf(strings, 128, x); \
1132 printk(KERN_NOTICE x); \
1133 trace_sched_log(strings); \
1134 }while (0)
1135 #else
1136 #define mt_sched_printf(x...) \
1137 do{ \
1138 char strings[128]=""; \
1139 snprintf(strings, 128, x); \
1140 trace_sched_log(strings); \
1141 }while (0)
1142 #endif
1143
1144 #else
1145 #define mt_sched_printf(x...) do {} while (0)
1146 #endif
1147
1148 struct task_struct {
1149 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1150 void *stack;
1151 atomic_t usage;
1152 unsigned int flags; /* per process flags, defined below */
1153 unsigned int ptrace;
1154
1155 #ifdef CONFIG_SMP
1156 struct llist_node wake_entry;
1157 int on_cpu;
1158 #endif
1159 int on_rq;
1160
1161 int prio, static_prio, normal_prio;
1162 unsigned int rt_priority;
1163 const struct sched_class *sched_class;
1164 struct sched_entity se;
1165 struct sched_rt_entity rt;
1166 #ifdef CONFIG_CGROUP_SCHED
1167 struct task_group *sched_task_group;
1168 #endif
1169
1170 #ifdef CONFIG_PREEMPT_NOTIFIERS
1171 /* list of struct preempt_notifier: */
1172 struct hlist_head preempt_notifiers;
1173 #endif
1174
1175 /*
1176 * fpu_counter contains the number of consecutive context switches
1177 * that the FPU is used. If this is over a threshold, the lazy fpu
1178 * saving becomes unlazy to save the trap. This is an unsigned char
1179 * so that after 256 times the counter wraps and the behavior turns
1180 * lazy again; this to deal with bursty apps that only use FPU for
1181 * a short time
1182 */
1183 unsigned char fpu_counter;
1184 #ifdef CONFIG_BLK_DEV_IO_TRACE
1185 unsigned int btrace_seq;
1186 #endif
1187
1188 unsigned int policy;
1189 int nr_cpus_allowed;
1190 cpumask_t cpus_allowed;
1191
1192 #ifdef CONFIG_PREEMPT_RCU
1193 int rcu_read_lock_nesting;
1194 char rcu_read_unlock_special;
1195 struct list_head rcu_node_entry;
1196 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1197 #ifdef CONFIG_TREE_PREEMPT_RCU
1198 struct rcu_node *rcu_blocked_node;
1199 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1200 #ifdef CONFIG_RCU_BOOST
1201 struct rt_mutex *rcu_boost_mutex;
1202 #endif /* #ifdef CONFIG_RCU_BOOST */
1203
1204 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1205 struct sched_info sched_info;
1206 #endif
1207
1208 struct list_head tasks;
1209 #ifdef CONFIG_SMP
1210 struct plist_node pushable_tasks;
1211 #endif
1212
1213 struct mm_struct *mm, *active_mm;
1214 #ifdef CONFIG_COMPAT_BRK
1215 unsigned brk_randomized:1;
1216 #endif
1217 #if defined(SPLIT_RSS_COUNTING)
1218 struct task_rss_stat rss_stat;
1219 #endif
1220 /* task state */
1221 int exit_state;
1222 int exit_code, exit_signal;
1223 int pdeath_signal; /* The signal sent when the parent dies */
1224 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1225
1226 /* Used for emulating ABI behavior of previous Linux versions */
1227 unsigned int personality;
1228
1229 unsigned did_exec:1;
1230 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1231 * execve */
1232 unsigned in_iowait:1;
1233
1234 /* Revert to default priority/policy when forking */
1235 unsigned sched_reset_on_fork:1;
1236 unsigned sched_contributes_to_load:1;
1237
1238 unsigned long atomic_flags; /* Flags needing atomic access. */
1239
1240 pid_t pid;
1241 pid_t tgid;
1242
1243 #ifdef CONFIG_CC_STACKPROTECTOR
1244 /* Canary value for the -fstack-protector gcc feature */
1245 unsigned long stack_canary;
1246 #endif
1247 /*
1248 * pointers to (original) parent process, youngest child, younger sibling,
1249 * older sibling, respectively. (p->father can be replaced with
1250 * p->real_parent->pid)
1251 */
1252 struct task_struct __rcu *real_parent; /* real parent process */
1253 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1254 /*
1255 * children/sibling forms the list of my natural children
1256 */
1257 struct list_head children; /* list of my children */
1258 struct list_head sibling; /* linkage in my parent's children list */
1259 struct task_struct *group_leader; /* threadgroup leader */
1260
1261 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1262 raw_spinlock_t thread_group_info_lock;
1263 struct thread_group_info_t thread_group_info[NUM_CLUSTER];
1264 #endif
1265
1266 /*
1267 * ptraced is the list of tasks this task is using ptrace on.
1268 * This includes both natural children and PTRACE_ATTACH targets.
1269 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1270 */
1271 struct list_head ptraced;
1272 struct list_head ptrace_entry;
1273
1274 /* PID/PID hash table linkage. */
1275 struct pid_link pids[PIDTYPE_MAX];
1276 struct list_head thread_group;
1277 struct list_head thread_node;
1278
1279 struct completion *vfork_done; /* for vfork() */
1280 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1281 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1282
1283 cputime_t utime, stime, utimescaled, stimescaled;
1284 cputime_t gtime;
1285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1286 struct cputime prev_cputime;
1287 #endif
1288 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1289 seqlock_t vtime_seqlock;
1290 unsigned long long vtime_snap;
1291 enum {
1292 VTIME_SLEEPING = 0,
1293 VTIME_USER,
1294 VTIME_SYS,
1295 } vtime_snap_whence;
1296 #endif
1297 unsigned long nvcsw, nivcsw; /* context switch counts */
1298 struct timespec start_time; /* monotonic time */
1299 struct timespec real_start_time; /* boot based time */
1300 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1301 unsigned long min_flt, maj_flt;
1302 /* for thrashing accounting */
1303 #ifdef CONFIG_ZRAM
1304 unsigned long fm_flt, swap_in, swap_out;
1305 #endif
1306
1307 struct task_cputime cputime_expires;
1308 struct list_head cpu_timers[3];
1309
1310 /* process credentials */
1311 const struct cred __rcu *real_cred; /* objective and real subjective task
1312 * credentials (COW) */
1313 const struct cred __rcu *cred; /* effective (overridable) subjective task
1314 * credentials (COW) */
1315 char comm[TASK_COMM_LEN]; /* executable name excluding path
1316 - access with [gs]et_task_comm (which lock
1317 it with task_lock())
1318 - initialized normally by setup_new_exec */
1319 /* file system info */
1320 int link_count, total_link_count;
1321 #ifdef CONFIG_SYSVIPC
1322 /* ipc stuff */
1323 struct sysv_sem sysvsem;
1324 #endif
1325 #ifdef CONFIG_DETECT_HUNG_TASK
1326 /* hung task detection */
1327 unsigned long last_switch_count;
1328 #endif
1329 /* CPU-specific state of this task */
1330 struct thread_struct thread;
1331 /* filesystem information */
1332 struct fs_struct *fs;
1333 /* open file information */
1334 struct files_struct *files;
1335 /* namespaces */
1336 struct nsproxy *nsproxy;
1337 /* signal handlers */
1338 struct signal_struct *signal;
1339 struct sighand_struct *sighand;
1340
1341 sigset_t blocked, real_blocked;
1342 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1343 struct sigpending pending;
1344
1345 unsigned long sas_ss_sp;
1346 size_t sas_ss_size;
1347 int (*notifier)(void *priv);
1348 void *notifier_data;
1349 sigset_t *notifier_mask;
1350 struct callback_head *task_works;
1351
1352 struct audit_context *audit_context;
1353 #ifdef CONFIG_AUDITSYSCALL
1354 kuid_t loginuid;
1355 unsigned int sessionid;
1356 #endif
1357 struct seccomp seccomp;
1358
1359 /* Thread group tracking */
1360 u32 parent_exec_id;
1361 u32 self_exec_id;
1362 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1363 * mempolicy */
1364 spinlock_t alloc_lock;
1365
1366 /* Protection of the PI data structures: */
1367 raw_spinlock_t pi_lock;
1368
1369 #ifdef CONFIG_RT_MUTEXES
1370 /* PI waiters blocked on a rt_mutex held by this task */
1371 struct plist_head pi_waiters;
1372 /* Deadlock detection and priority inheritance handling */
1373 struct rt_mutex_waiter *pi_blocked_on;
1374 #endif
1375
1376 #ifdef CONFIG_DEBUG_MUTEXES
1377 /* mutex deadlock detection */
1378 struct mutex_waiter *blocked_on;
1379 #endif
1380 #ifdef CONFIG_TRACE_IRQFLAGS
1381 unsigned int irq_events;
1382 unsigned long hardirq_enable_ip;
1383 unsigned long hardirq_disable_ip;
1384 unsigned int hardirq_enable_event;
1385 unsigned int hardirq_disable_event;
1386 int hardirqs_enabled;
1387 int hardirq_context;
1388 unsigned long softirq_disable_ip;
1389 unsigned long softirq_enable_ip;
1390 unsigned int softirq_disable_event;
1391 unsigned int softirq_enable_event;
1392 int softirqs_enabled;
1393 int softirq_context;
1394 #endif
1395 #ifdef CONFIG_LOCKDEP
1396 # define MAX_LOCK_DEPTH 48UL
1397 u64 curr_chain_key;
1398 int lockdep_depth;
1399 unsigned int lockdep_recursion;
1400 struct held_lock held_locks[MAX_LOCK_DEPTH];
1401 gfp_t lockdep_reclaim_gfp;
1402 #endif
1403
1404 /* journalling filesystem info */
1405 void *journal_info;
1406
1407 /* stacked block device info */
1408 struct bio_list *bio_list;
1409
1410 #ifdef CONFIG_BLOCK
1411 /* stack plugging */
1412 struct blk_plug *plug;
1413 #endif
1414
1415 /* VM state */
1416 struct reclaim_state *reclaim_state;
1417
1418 struct backing_dev_info *backing_dev_info;
1419
1420 struct io_context *io_context;
1421
1422 unsigned long ptrace_message;
1423 siginfo_t *last_siginfo; /* For ptrace use. */
1424 struct task_io_accounting ioac;
1425 #if defined(CONFIG_TASK_XACCT)
1426 u64 acct_rss_mem1; /* accumulated rss usage */
1427 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1428 cputime_t acct_timexpd; /* stime + utime since last update */
1429 #endif
1430 #ifdef CONFIG_CPUSETS
1431 nodemask_t mems_allowed; /* Protected by alloc_lock */
1432 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1433 int cpuset_mem_spread_rotor;
1434 int cpuset_slab_spread_rotor;
1435 #endif
1436 #ifdef CONFIG_CGROUPS
1437 /* Control Group info protected by css_set_lock */
1438 struct css_set __rcu *cgroups;
1439 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1440 struct list_head cg_list;
1441 #endif
1442 #ifdef CONFIG_FUTEX
1443 struct robust_list_head __user *robust_list;
1444 #ifdef CONFIG_COMPAT
1445 struct compat_robust_list_head __user *compat_robust_list;
1446 #endif
1447 struct list_head pi_state_list;
1448 struct futex_pi_state *pi_state_cache;
1449 #endif
1450 #ifdef CONFIG_PERF_EVENTS
1451 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1452 struct mutex perf_event_mutex;
1453 struct list_head perf_event_list;
1454 #endif
1455 #ifdef CONFIG_NUMA
1456 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1457 short il_next;
1458 short pref_node_fork;
1459 #endif
1460 #ifdef CONFIG_NUMA_BALANCING
1461 int numa_scan_seq;
1462 int numa_migrate_seq;
1463 unsigned int numa_scan_period;
1464 u64 node_stamp; /* migration stamp */
1465 struct callback_head numa_work;
1466 #endif /* CONFIG_NUMA_BALANCING */
1467
1468 struct rcu_head rcu;
1469
1470 /*
1471 * cache last used pipe for splice
1472 */
1473 struct pipe_inode_info *splice_pipe;
1474
1475 struct page_frag task_frag;
1476
1477 #ifdef CONFIG_TASK_DELAY_ACCT
1478 struct task_delay_info *delays;
1479 #endif
1480 #ifdef CONFIG_FAULT_INJECTION
1481 int make_it_fail;
1482 #endif
1483 /*
1484 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1485 * balance_dirty_pages() for some dirty throttling pause
1486 */
1487 int nr_dirtied;
1488 int nr_dirtied_pause;
1489 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1490
1491 #ifdef CONFIG_LATENCYTOP
1492 int latency_record_count;
1493 struct latency_record latency_record[LT_SAVECOUNT];
1494 #endif
1495 /*
1496 * time slack values; these are used to round up poll() and
1497 * select() etc timeout values. These are in nanoseconds.
1498 */
1499 unsigned long timer_slack_ns;
1500 unsigned long default_timer_slack_ns;
1501
1502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1503 /* Index of current stored address in ret_stack */
1504 int curr_ret_stack;
1505 /* Stack of return addresses for return function tracing */
1506 struct ftrace_ret_stack *ret_stack;
1507 /* time stamp for last schedule */
1508 unsigned long long ftrace_timestamp;
1509 /*
1510 * Number of functions that haven't been traced
1511 * because of depth overrun.
1512 */
1513 atomic_t trace_overrun;
1514 /* Pause for the tracing */
1515 atomic_t tracing_graph_pause;
1516 #endif
1517 #ifdef CONFIG_TRACING
1518 /* state flags for use by tracers */
1519 unsigned long trace;
1520 /* bitmask and counter of trace recursion */
1521 unsigned long trace_recursion;
1522 #endif /* CONFIG_TRACING */
1523 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1524 struct memcg_batch_info {
1525 int do_batch; /* incremented when batch uncharge started */
1526 struct mem_cgroup *memcg; /* target memcg of uncharge */
1527 unsigned long nr_pages; /* uncharged usage */
1528 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1529 } memcg_batch;
1530 unsigned int memcg_kmem_skip_account;
1531 struct memcg_oom_info {
1532 struct mem_cgroup *memcg;
1533 gfp_t gfp_mask;
1534 int order;
1535 unsigned int may_oom:1;
1536 } memcg_oom;
1537 #endif
1538 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1539 atomic_t ptrace_bp_refcnt;
1540 #endif
1541 #ifdef CONFIG_UPROBES
1542 struct uprobe_task *utask;
1543 #endif
1544 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1545 unsigned int sequential_io;
1546 unsigned int sequential_io_avg;
1547 #endif
1548 };
1549
1550 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1551 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1552
1553 #ifdef CONFIG_NUMA_BALANCING
1554 extern void task_numa_fault(int node, int pages, bool migrated);
1555 extern void set_numabalancing_state(bool enabled);
1556 #else
1557 static inline void task_numa_fault(int node, int pages, bool migrated)
1558 {
1559 }
1560 static inline void set_numabalancing_state(bool enabled)
1561 {
1562 }
1563 #endif
1564
1565 static inline struct pid *task_pid(struct task_struct *task)
1566 {
1567 return task->pids[PIDTYPE_PID].pid;
1568 }
1569
1570 static inline struct pid *task_tgid(struct task_struct *task)
1571 {
1572 return task->group_leader->pids[PIDTYPE_PID].pid;
1573 }
1574
1575 /*
1576 * Without tasklist or rcu lock it is not safe to dereference
1577 * the result of task_pgrp/task_session even if task == current,
1578 * we can race with another thread doing sys_setsid/sys_setpgid.
1579 */
1580 static inline struct pid *task_pgrp(struct task_struct *task)
1581 {
1582 return task->group_leader->pids[PIDTYPE_PGID].pid;
1583 }
1584
1585 static inline struct pid *task_session(struct task_struct *task)
1586 {
1587 return task->group_leader->pids[PIDTYPE_SID].pid;
1588 }
1589
1590 struct pid_namespace;
1591
1592 /*
1593 * the helpers to get the task's different pids as they are seen
1594 * from various namespaces
1595 *
1596 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1597 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1598 * current.
1599 * task_xid_nr_ns() : id seen from the ns specified;
1600 *
1601 * set_task_vxid() : assigns a virtual id to a task;
1602 *
1603 * see also pid_nr() etc in include/linux/pid.h
1604 */
1605 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1606 struct pid_namespace *ns);
1607
1608 static inline pid_t task_pid_nr(struct task_struct *tsk)
1609 {
1610 return tsk->pid;
1611 }
1612
1613 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1614 struct pid_namespace *ns)
1615 {
1616 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1617 }
1618
1619 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1620 {
1621 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1622 }
1623
1624
1625 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1626 {
1627 return tsk->tgid;
1628 }
1629
1630 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1631
1632 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1633 {
1634 return pid_vnr(task_tgid(tsk));
1635 }
1636
1637
1638 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1639 struct pid_namespace *ns)
1640 {
1641 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1642 }
1643
1644 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1645 {
1646 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1647 }
1648
1649
1650 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1651 struct pid_namespace *ns)
1652 {
1653 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1654 }
1655
1656 static inline pid_t task_session_vnr(struct task_struct *tsk)
1657 {
1658 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1659 }
1660
1661 /* obsolete, do not use */
1662 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1663 {
1664 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1665 }
1666
1667 /**
1668 * pid_alive - check that a task structure is not stale
1669 * @p: Task structure to be checked.
1670 *
1671 * Test if a process is not yet dead (at most zombie state)
1672 * If pid_alive fails, then pointers within the task structure
1673 * can be stale and must not be dereferenced.
1674 */
1675 static inline int pid_alive(struct task_struct *p)
1676 {
1677 return p->pids[PIDTYPE_PID].pid != NULL;
1678 }
1679
1680 /**
1681 * is_global_init - check if a task structure is init
1682 * @tsk: Task structure to be checked.
1683 *
1684 * Check if a task structure is the first user space task the kernel created.
1685 */
1686 static inline int is_global_init(struct task_struct *tsk)
1687 {
1688 return tsk->pid == 1;
1689 }
1690
1691 extern struct pid *cad_pid;
1692
1693 extern void free_task(struct task_struct *tsk);
1694 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1695
1696 extern void __put_task_struct(struct task_struct *t);
1697
1698 static inline void put_task_struct(struct task_struct *t)
1699 {
1700 if (atomic_dec_and_test(&t->usage))
1701 __put_task_struct(t);
1702 }
1703
1704 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1705 extern void task_cputime(struct task_struct *t,
1706 cputime_t *utime, cputime_t *stime);
1707 extern void task_cputime_scaled(struct task_struct *t,
1708 cputime_t *utimescaled, cputime_t *stimescaled);
1709 extern cputime_t task_gtime(struct task_struct *t);
1710 #else
1711 static inline void task_cputime(struct task_struct *t,
1712 cputime_t *utime, cputime_t *stime)
1713 {
1714 if (utime)
1715 *utime = t->utime;
1716 if (stime)
1717 *stime = t->stime;
1718 }
1719
1720 static inline void task_cputime_scaled(struct task_struct *t,
1721 cputime_t *utimescaled,
1722 cputime_t *stimescaled)
1723 {
1724 if (utimescaled)
1725 *utimescaled = t->utimescaled;
1726 if (stimescaled)
1727 *stimescaled = t->stimescaled;
1728 }
1729
1730 static inline cputime_t task_gtime(struct task_struct *t)
1731 {
1732 return t->gtime;
1733 }
1734 #endif
1735 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1736 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1737
1738 extern int task_free_register(struct notifier_block *n);
1739 extern int task_free_unregister(struct notifier_block *n);
1740
1741 /*
1742 * Per process flags
1743 */
1744 #define PF_EXITING 0x00000004 /* getting shut down */
1745 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1746 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1747 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1748 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1749 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1750 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1751 #define PF_DUMPCORE 0x00000200 /* dumped core */
1752 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1753 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1754 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1755 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1756 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1757 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1758 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1759 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1760 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1761 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1762 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1763 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1764 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1765 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1766 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1767 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1768 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1769 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1770 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1771 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1772 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1773 #define PF_MTKPASR 0x80000000 /* I am in MTKPASR process */
1774
1775 #define task_in_mtkpasr(task) unlikely(task->flags & PF_MTKPASR)
1776
1777 /*
1778 * Only the _current_ task can read/write to tsk->flags, but other
1779 * tasks can access tsk->flags in readonly mode for example
1780 * with tsk_used_math (like during threaded core dumping).
1781 * There is however an exception to this rule during ptrace
1782 * or during fork: the ptracer task is allowed to write to the
1783 * child->flags of its traced child (same goes for fork, the parent
1784 * can write to the child->flags), because we're guaranteed the
1785 * child is not running and in turn not changing child->flags
1786 * at the same time the parent does it.
1787 */
1788 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1789 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1790 #define clear_used_math() clear_stopped_child_used_math(current)
1791 #define set_used_math() set_stopped_child_used_math(current)
1792 #define conditional_stopped_child_used_math(condition, child) \
1793 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1794 #define conditional_used_math(condition) \
1795 conditional_stopped_child_used_math(condition, current)
1796 #define copy_to_stopped_child_used_math(child) \
1797 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1798 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1799 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1800 #define used_math() tsk_used_math(current)
1801
1802 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1803 * __GFP_FS is also cleared as it implies __GFP_IO.
1804 */
1805 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1806 {
1807 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1808 flags &= ~(__GFP_IO | __GFP_FS);
1809 return flags;
1810 }
1811
1812 static inline unsigned int memalloc_noio_save(void)
1813 {
1814 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1815 current->flags |= PF_MEMALLOC_NOIO;
1816 return flags;
1817 }
1818
1819 static inline void memalloc_noio_restore(unsigned int flags)
1820 {
1821 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1822 }
1823
1824 /* Per-process atomic flags. */
1825 #define PFA_NO_NEW_PRIVS 0x00000001 /* May not gain new privileges. */
1826
1827 static inline bool task_no_new_privs(struct task_struct *p)
1828 {
1829 return test_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1830 }
1831
1832 static inline void task_set_no_new_privs(struct task_struct *p)
1833 {
1834 set_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1835 }
1836
1837 /*
1838 * task->jobctl flags
1839 */
1840 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1841
1842 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1843 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1844 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1845 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1846 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1847 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1848 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1849
1850 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1851 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1852 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1853 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1854 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1855 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1856 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1857
1858 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1859 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1860
1861 extern bool task_set_jobctl_pending(struct task_struct *task,
1862 unsigned int mask);
1863 extern void task_clear_jobctl_trapping(struct task_struct *task);
1864 extern void task_clear_jobctl_pending(struct task_struct *task,
1865 unsigned int mask);
1866
1867 #ifdef CONFIG_PREEMPT_RCU
1868
1869 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1870 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1871
1872 static inline void rcu_copy_process(struct task_struct *p)
1873 {
1874 p->rcu_read_lock_nesting = 0;
1875 p->rcu_read_unlock_special = 0;
1876 #ifdef CONFIG_TREE_PREEMPT_RCU
1877 p->rcu_blocked_node = NULL;
1878 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1879 #ifdef CONFIG_RCU_BOOST
1880 p->rcu_boost_mutex = NULL;
1881 #endif /* #ifdef CONFIG_RCU_BOOST */
1882 INIT_LIST_HEAD(&p->rcu_node_entry);
1883 }
1884
1885 #else
1886
1887 static inline void rcu_copy_process(struct task_struct *p)
1888 {
1889 }
1890
1891 #endif
1892
1893 static inline void tsk_restore_flags(struct task_struct *task,
1894 unsigned long orig_flags, unsigned long flags)
1895 {
1896 task->flags &= ~flags;
1897 task->flags |= orig_flags & flags;
1898 }
1899
1900 #ifdef CONFIG_SMP
1901 extern void do_set_cpus_allowed(struct task_struct *p,
1902 const struct cpumask *new_mask);
1903
1904 extern int set_cpus_allowed_ptr(struct task_struct *p,
1905 const struct cpumask *new_mask);
1906 #else
1907 static inline void do_set_cpus_allowed(struct task_struct *p,
1908 const struct cpumask *new_mask)
1909 {
1910 }
1911 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1912 const struct cpumask *new_mask)
1913 {
1914 if (!cpumask_test_cpu(0, new_mask))
1915 return -EINVAL;
1916 return 0;
1917 }
1918 #endif
1919
1920 #ifdef CONFIG_NO_HZ_COMMON
1921 void calc_load_enter_idle(void);
1922 void calc_load_exit_idle(void);
1923 #else
1924 static inline void calc_load_enter_idle(void) { }
1925 static inline void calc_load_exit_idle(void) { }
1926 #endif /* CONFIG_NO_HZ_COMMON */
1927
1928 #ifndef CONFIG_CPUMASK_OFFSTACK
1929 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1930 {
1931 return set_cpus_allowed_ptr(p, &new_mask);
1932 }
1933 #endif
1934
1935 /*
1936 * Do not use outside of architecture code which knows its limitations.
1937 *
1938 * sched_clock() has no promise of monotonicity or bounded drift between
1939 * CPUs, use (which you should not) requires disabling IRQs.
1940 *
1941 * Please use one of the three interfaces below.
1942 */
1943 extern unsigned long long notrace sched_clock(void);
1944 /*
1945 * See the comment in kernel/sched/clock.c
1946 */
1947 extern u64 cpu_clock(int cpu);
1948 extern u64 local_clock(void);
1949 extern u64 sched_clock_cpu(int cpu);
1950
1951
1952 extern void sched_clock_init(void);
1953
1954 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1955 static inline void sched_clock_tick(void)
1956 {
1957 }
1958
1959 static inline void sched_clock_idle_sleep_event(void)
1960 {
1961 }
1962
1963 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1964 {
1965 }
1966 #else
1967 /*
1968 * Architectures can set this to 1 if they have specified
1969 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1970 * but then during bootup it turns out that sched_clock()
1971 * is reliable after all:
1972 */
1973 extern int sched_clock_stable;
1974
1975 extern void sched_clock_tick(void);
1976 extern void sched_clock_idle_sleep_event(void);
1977 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1978 #endif
1979
1980 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1981 /*
1982 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1983 * The reason for this explicit opt-in is not to have perf penalty with
1984 * slow sched_clocks.
1985 */
1986 extern void enable_sched_clock_irqtime(void);
1987 extern void disable_sched_clock_irqtime(void);
1988 #else
1989 static inline void enable_sched_clock_irqtime(void) {}
1990 static inline void disable_sched_clock_irqtime(void) {}
1991 #endif
1992
1993 extern unsigned long long
1994 task_sched_runtime(struct task_struct *task);
1995
1996 /* sched_exec is called by processes performing an exec */
1997 #ifdef CONFIG_SMP
1998 extern void sched_exec(void);
1999 #else
2000 #define sched_exec() {}
2001 #endif
2002
2003 extern void sched_clock_idle_sleep_event(void);
2004 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2005
2006 #ifdef CONFIG_HOTPLUG_CPU
2007 extern void idle_task_exit(void);
2008 #else
2009 static inline void idle_task_exit(void) {}
2010 #endif
2011
2012 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2013 extern void wake_up_nohz_cpu(int cpu);
2014 #else
2015 static inline void wake_up_nohz_cpu(int cpu) { }
2016 #endif
2017
2018 #ifdef CONFIG_NO_HZ_FULL
2019 extern bool sched_can_stop_tick(void);
2020 extern u64 scheduler_tick_max_deferment(void);
2021 #else
2022 static inline bool sched_can_stop_tick(void) { return false; }
2023 #endif
2024
2025 #ifdef CONFIG_SCHED_AUTOGROUP
2026 extern void sched_autogroup_create_attach(struct task_struct *p);
2027 extern void sched_autogroup_detach(struct task_struct *p);
2028 extern void sched_autogroup_fork(struct signal_struct *sig);
2029 extern void sched_autogroup_exit(struct signal_struct *sig);
2030 #ifdef CONFIG_PROC_FS
2031 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2032 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2033 #endif
2034 #else
2035 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2036 static inline void sched_autogroup_detach(struct task_struct *p) { }
2037 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2038 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2039 #endif
2040
2041 extern bool yield_to(struct task_struct *p, bool preempt);
2042 extern void set_user_nice(struct task_struct *p, long nice);
2043 extern int task_prio(const struct task_struct *p);
2044 extern int task_nice(const struct task_struct *p);
2045 extern int can_nice(const struct task_struct *p, const int nice);
2046 extern int task_curr(const struct task_struct *p);
2047 extern int idle_cpu(int cpu);
2048 extern int sched_setscheduler(struct task_struct *, int,
2049 const struct sched_param *);
2050 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2051 const struct sched_param *);
2052
2053 #ifdef CONFIG_MT_PRIO_TRACER
2054 extern void set_user_nice_core(struct task_struct *p, long nice);
2055 extern int sched_setscheduler_core(struct task_struct *, int,
2056 const struct sched_param *);
2057 extern int sched_setscheduler_nocheck_core(struct task_struct *, int,
2058 const struct sched_param *);
2059 #endif
2060
2061 extern struct task_struct *idle_task(int cpu);
2062 /**
2063 * is_idle_task - is the specified task an idle task?
2064 * @p: the task in question.
2065 */
2066 static inline bool is_idle_task(const struct task_struct *p)
2067 {
2068 return p->pid == 0;
2069 }
2070 extern struct task_struct *curr_task(int cpu);
2071 extern void set_curr_task(int cpu, struct task_struct *p);
2072
2073 void yield(void);
2074
2075 /*
2076 * The default (Linux) execution domain.
2077 */
2078 extern struct exec_domain default_exec_domain;
2079
2080 union thread_union {
2081 struct thread_info thread_info;
2082 unsigned long stack[THREAD_SIZE/sizeof(long)];
2083 };
2084
2085 #ifndef __HAVE_ARCH_KSTACK_END
2086 static inline int kstack_end(void *addr)
2087 {
2088 /* Reliable end of stack detection:
2089 * Some APM bios versions misalign the stack
2090 */
2091 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2092 }
2093 #endif
2094
2095 extern union thread_union init_thread_union;
2096 extern struct task_struct init_task;
2097
2098 extern struct mm_struct init_mm;
2099
2100 extern struct pid_namespace init_pid_ns;
2101
2102 /*
2103 * find a task by one of its numerical ids
2104 *
2105 * find_task_by_pid_ns():
2106 * finds a task by its pid in the specified namespace
2107 * find_task_by_vpid():
2108 * finds a task by its virtual pid
2109 *
2110 * see also find_vpid() etc in include/linux/pid.h
2111 */
2112
2113 extern struct task_struct *find_task_by_vpid(pid_t nr);
2114 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2115 struct pid_namespace *ns);
2116
2117 extern void __set_special_pids(struct pid *pid);
2118
2119 /* per-UID process charging. */
2120 extern struct user_struct * alloc_uid(kuid_t);
2121 static inline struct user_struct *get_uid(struct user_struct *u)
2122 {
2123 atomic_inc(&u->__count);
2124 return u;
2125 }
2126 extern void free_uid(struct user_struct *);
2127
2128 #include <asm/current.h>
2129
2130 extern void xtime_update(unsigned long ticks);
2131
2132 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2133 extern int wake_up_process(struct task_struct *tsk);
2134 extern void wake_up_new_task(struct task_struct *tsk);
2135 #ifdef CONFIG_SMP
2136 extern void kick_process(struct task_struct *tsk);
2137 #else
2138 static inline void kick_process(struct task_struct *tsk) { }
2139 #endif
2140 extern void sched_fork(struct task_struct *p);
2141 extern void sched_dead(struct task_struct *p);
2142
2143 extern void proc_caches_init(void);
2144 extern void flush_signals(struct task_struct *);
2145 extern void __flush_signals(struct task_struct *);
2146 extern void ignore_signals(struct task_struct *);
2147 extern void flush_signal_handlers(struct task_struct *, int force_default);
2148 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2149
2150 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2151 {
2152 unsigned long flags;
2153 int ret;
2154
2155 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2156 ret = dequeue_signal(tsk, mask, info);
2157 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2158
2159 return ret;
2160 }
2161
2162 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2163 sigset_t *mask);
2164 extern void unblock_all_signals(void);
2165 extern void release_task(struct task_struct * p);
2166 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2167 extern int force_sigsegv(int, struct task_struct *);
2168 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2169 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2170 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2171 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2172 const struct cred *, u32);
2173 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2174 extern int kill_pid(struct pid *pid, int sig, int priv);
2175 extern int kill_proc_info(int, struct siginfo *, pid_t);
2176 extern __must_check bool do_notify_parent(struct task_struct *, int);
2177 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2178 extern void force_sig(int, struct task_struct *);
2179 extern int send_sig(int, struct task_struct *, int);
2180 extern int zap_other_threads(struct task_struct *p);
2181 extern struct sigqueue *sigqueue_alloc(void);
2182 extern void sigqueue_free(struct sigqueue *);
2183 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2184 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2185
2186 static inline void restore_saved_sigmask(void)
2187 {
2188 if (test_and_clear_restore_sigmask())
2189 __set_current_blocked(&current->saved_sigmask);
2190 }
2191
2192 static inline sigset_t *sigmask_to_save(void)
2193 {
2194 sigset_t *res = &current->blocked;
2195 if (unlikely(test_restore_sigmask()))
2196 res = &current->saved_sigmask;
2197 return res;
2198 }
2199
2200 static inline int kill_cad_pid(int sig, int priv)
2201 {
2202 return kill_pid(cad_pid, sig, priv);
2203 }
2204
2205 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2206 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2207 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2208 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2209
2210 /*
2211 * True if we are on the alternate signal stack.
2212 */
2213 static inline int on_sig_stack(unsigned long sp)
2214 {
2215 #ifdef CONFIG_STACK_GROWSUP
2216 return sp >= current->sas_ss_sp &&
2217 sp - current->sas_ss_sp < current->sas_ss_size;
2218 #else
2219 return sp > current->sas_ss_sp &&
2220 sp - current->sas_ss_sp <= current->sas_ss_size;
2221 #endif
2222 }
2223
2224 static inline int sas_ss_flags(unsigned long sp)
2225 {
2226 return (current->sas_ss_size == 0 ? SS_DISABLE
2227 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2228 }
2229
2230 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2231 {
2232 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2233 #ifdef CONFIG_STACK_GROWSUP
2234 return current->sas_ss_sp;
2235 #else
2236 return current->sas_ss_sp + current->sas_ss_size;
2237 #endif
2238 return sp;
2239 }
2240
2241 /*
2242 * Routines for handling mm_structs
2243 */
2244 extern struct mm_struct * mm_alloc(void);
2245
2246 /* mmdrop drops the mm and the page tables */
2247 extern void __mmdrop(struct mm_struct *);
2248 static inline void mmdrop(struct mm_struct * mm)
2249 {
2250 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2251 __mmdrop(mm);
2252 }
2253
2254 /* mmput gets rid of the mappings and all user-space */
2255 extern void mmput(struct mm_struct *);
2256 /* Grab a reference to a task's mm, if it is not already going away */
2257 extern struct mm_struct *get_task_mm(struct task_struct *task);
2258 /*
2259 * Grab a reference to a task's mm, if it is not already going away
2260 * and ptrace_may_access with the mode parameter passed to it
2261 * succeeds.
2262 */
2263 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2264 /* Remove the current tasks stale references to the old mm_struct */
2265 extern void mm_release(struct task_struct *, struct mm_struct *);
2266 /* Allocate a new mm structure and copy contents from tsk->mm */
2267 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2268
2269 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2270 struct task_struct *);
2271 extern void flush_thread(void);
2272 extern void exit_thread(void);
2273
2274 extern void exit_files(struct task_struct *);
2275 extern void __cleanup_sighand(struct sighand_struct *);
2276
2277 extern void exit_itimers(struct signal_struct *);
2278 extern void flush_itimer_signals(void);
2279
2280 extern void do_group_exit(int);
2281
2282 extern int allow_signal(int);
2283 extern int disallow_signal(int);
2284
2285 extern int do_execve(const char *,
2286 const char __user * const __user *,
2287 const char __user * const __user *);
2288 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2289 struct task_struct *fork_idle(int);
2290 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2291
2292 extern void set_task_comm(struct task_struct *tsk, char *from);
2293 extern char *get_task_comm(char *to, struct task_struct *tsk);
2294
2295 #ifdef CONFIG_SMP
2296 void scheduler_ipi(void);
2297 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2298 #else
2299 static inline void scheduler_ipi(void) { }
2300 static inline unsigned long wait_task_inactive(struct task_struct *p,
2301 long match_state)
2302 {
2303 return 1;
2304 }
2305 #endif
2306
2307 #define next_task(p) \
2308 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2309
2310 #define for_each_process(p) \
2311 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2312
2313 extern bool current_is_single_threaded(void);
2314
2315 /*
2316 * Careful: do_each_thread/while_each_thread is a double loop so
2317 * 'break' will not work as expected - use goto instead.
2318 */
2319 #define do_each_thread(g, t) \
2320 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2321
2322 #define while_each_thread(g, t) \
2323 while ((t = next_thread(t)) != g)
2324
2325 #define __for_each_thread(signal, t) \
2326 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2327
2328 #define for_each_thread(p, t) \
2329 __for_each_thread((p)->signal, t)
2330
2331 /* Careful: this is a double loop, 'break' won't work as expected. */
2332 #define for_each_process_thread(p, t) \
2333 for_each_process(p) for_each_thread(p, t)
2334
2335 static inline int get_nr_threads(struct task_struct *tsk)
2336 {
2337 return tsk->signal->nr_threads;
2338 }
2339
2340 static inline bool thread_group_leader(struct task_struct *p)
2341 {
2342 return p->exit_signal >= 0;
2343 }
2344
2345 /* Do to the insanities of de_thread it is possible for a process
2346 * to have the pid of the thread group leader without actually being
2347 * the thread group leader. For iteration through the pids in proc
2348 * all we care about is that we have a task with the appropriate
2349 * pid, we don't actually care if we have the right task.
2350 */
2351 static inline bool has_group_leader_pid(struct task_struct *p)
2352 {
2353 return task_pid(p) == p->signal->leader_pid;
2354 }
2355
2356 static inline
2357 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2358 {
2359 return p1->signal == p2->signal;
2360 }
2361
2362 static inline struct task_struct *next_thread(const struct task_struct *p)
2363 {
2364 return list_entry_rcu(p->thread_group.next,
2365 struct task_struct, thread_group);
2366 }
2367
2368 static inline int thread_group_empty(struct task_struct *p)
2369 {
2370 return list_empty(&p->thread_group);
2371 }
2372
2373 #define delay_group_leader(p) \
2374 (thread_group_leader(p) && !thread_group_empty(p))
2375
2376 /*
2377 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2378 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2379 * pins the final release of task.io_context. Also protects ->cpuset and
2380 * ->cgroup.subsys[]. And ->vfork_done.
2381 *
2382 * Nests both inside and outside of read_lock(&tasklist_lock).
2383 * It must not be nested with write_lock_irq(&tasklist_lock),
2384 * neither inside nor outside.
2385 */
2386 static inline void task_lock(struct task_struct *p)
2387 {
2388 spin_lock(&p->alloc_lock);
2389 }
2390
2391 static inline void task_unlock(struct task_struct *p)
2392 {
2393 spin_unlock(&p->alloc_lock);
2394 }
2395
2396 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2397 unsigned long *flags);
2398
2399 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2400 unsigned long *flags)
2401 {
2402 struct sighand_struct *ret;
2403
2404 ret = __lock_task_sighand(tsk, flags);
2405 (void)__cond_lock(&tsk->sighand->siglock, ret);
2406 return ret;
2407 }
2408
2409 static inline void unlock_task_sighand(struct task_struct *tsk,
2410 unsigned long *flags)
2411 {
2412 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2413 }
2414
2415 #ifdef CONFIG_CGROUPS
2416 static inline void threadgroup_change_begin(struct task_struct *tsk)
2417 {
2418 down_read(&tsk->signal->group_rwsem);
2419 }
2420 static inline void threadgroup_change_end(struct task_struct *tsk)
2421 {
2422 up_read(&tsk->signal->group_rwsem);
2423 }
2424
2425 /**
2426 * threadgroup_lock - lock threadgroup
2427 * @tsk: member task of the threadgroup to lock
2428 *
2429 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2430 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2431 * change ->group_leader/pid. This is useful for cases where the threadgroup
2432 * needs to stay stable across blockable operations.
2433 *
2434 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2435 * synchronization. While held, no new task will be added to threadgroup
2436 * and no existing live task will have its PF_EXITING set.
2437 *
2438 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2439 * sub-thread becomes a new leader.
2440 */
2441 static inline void threadgroup_lock(struct task_struct *tsk)
2442 {
2443 down_write(&tsk->signal->group_rwsem);
2444 }
2445
2446 /**
2447 * threadgroup_unlock - unlock threadgroup
2448 * @tsk: member task of the threadgroup to unlock
2449 *
2450 * Reverse threadgroup_lock().
2451 */
2452 static inline void threadgroup_unlock(struct task_struct *tsk)
2453 {
2454 up_write(&tsk->signal->group_rwsem);
2455 }
2456 #else
2457 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2458 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2459 static inline void threadgroup_lock(struct task_struct *tsk) {}
2460 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2461 #endif
2462
2463 #ifndef __HAVE_THREAD_FUNCTIONS
2464
2465 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2466 #define task_stack_page(task) ((task)->stack)
2467
2468 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2469 {
2470 *task_thread_info(p) = *task_thread_info(org);
2471 task_thread_info(p)->task = p;
2472 }
2473
2474 static inline unsigned long *end_of_stack(struct task_struct *p)
2475 {
2476 return (unsigned long *)(task_thread_info(p) + 1);
2477 }
2478
2479 #endif
2480
2481 static inline int object_is_on_stack(void *obj)
2482 {
2483 void *stack = task_stack_page(current);
2484
2485 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2486 }
2487
2488 extern void thread_info_cache_init(void);
2489
2490 #ifdef CONFIG_DEBUG_STACK_USAGE
2491 static inline unsigned long stack_not_used(struct task_struct *p)
2492 {
2493 unsigned long *n = end_of_stack(p);
2494
2495 do { /* Skip over canary */
2496 n++;
2497 } while (!*n);
2498
2499 return (unsigned long)n - (unsigned long)end_of_stack(p);
2500 }
2501 #endif
2502
2503 /* set thread flags in other task's structures
2504 * - see asm/thread_info.h for TIF_xxxx flags available
2505 */
2506 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2507 {
2508 set_ti_thread_flag(task_thread_info(tsk), flag);
2509 }
2510
2511 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2512 {
2513 clear_ti_thread_flag(task_thread_info(tsk), flag);
2514 }
2515
2516 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2517 {
2518 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2519 }
2520
2521 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2522 {
2523 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2524 }
2525
2526 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2527 {
2528 return test_ti_thread_flag(task_thread_info(tsk), flag);
2529 }
2530
2531 static inline void set_tsk_need_resched(struct task_struct *tsk)
2532 {
2533 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2534 }
2535
2536 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2537 {
2538 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2539 }
2540
2541 static inline int test_tsk_need_resched(struct task_struct *tsk)
2542 {
2543 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2544 }
2545
2546 #if defined(CONFIG_MT_RT_SCHED) || defined(CONFIG_MT_RT_SCHED_LOG)
2547 static inline void set_tsk_need_released(struct task_struct *tsk)
2548 {
2549 set_tsk_thread_flag(tsk, TIF_NEED_RELEASED);
2550 }
2551
2552 static inline void clear_tsk_need_released(struct task_struct *tsk)
2553 {
2554 clear_tsk_thread_flag(tsk,TIF_NEED_RELEASED);
2555 }
2556
2557 static inline int test_tsk_need_released(struct task_struct *tsk)
2558 {
2559 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RELEASED));
2560 }
2561 #endif
2562
2563 static inline int restart_syscall(void)
2564 {
2565 set_tsk_thread_flag(current, TIF_SIGPENDING);
2566 return -ERESTARTNOINTR;
2567 }
2568
2569 static inline int signal_pending(struct task_struct *p)
2570 {
2571 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2572 }
2573
2574 static inline int __fatal_signal_pending(struct task_struct *p)
2575 {
2576 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2577 }
2578
2579 static inline int fatal_signal_pending(struct task_struct *p)
2580 {
2581 return signal_pending(p) && __fatal_signal_pending(p);
2582 }
2583
2584 static inline int signal_pending_state(long state, struct task_struct *p)
2585 {
2586 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2587 return 0;
2588 if (!signal_pending(p))
2589 return 0;
2590
2591 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2592 }
2593
2594 static inline int need_resched(void)
2595 {
2596 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2597 }
2598
2599 /*
2600 * cond_resched() and cond_resched_lock(): latency reduction via
2601 * explicit rescheduling in places that are safe. The return
2602 * value indicates whether a reschedule was done in fact.
2603 * cond_resched_lock() will drop the spinlock before scheduling,
2604 * cond_resched_softirq() will enable bhs before scheduling.
2605 */
2606 extern int _cond_resched(void);
2607
2608 #define cond_resched() ({ \
2609 __might_sleep(__FILE__, __LINE__, 0); \
2610 _cond_resched(); \
2611 })
2612
2613 extern int __cond_resched_lock(spinlock_t *lock);
2614
2615 #ifdef CONFIG_PREEMPT_COUNT
2616 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2617 #else
2618 #define PREEMPT_LOCK_OFFSET 0
2619 #endif
2620
2621 #define cond_resched_lock(lock) ({ \
2622 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2623 __cond_resched_lock(lock); \
2624 })
2625
2626 extern int __cond_resched_softirq(void);
2627
2628 #define cond_resched_softirq() ({ \
2629 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2630 __cond_resched_softirq(); \
2631 })
2632
2633 /*
2634 * Does a critical section need to be broken due to another
2635 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2636 * but a general need for low latency)
2637 */
2638 static inline int spin_needbreak(spinlock_t *lock)
2639 {
2640 #ifdef CONFIG_PREEMPT
2641 return spin_is_contended(lock);
2642 #else
2643 return 0;
2644 #endif
2645 }
2646
2647 /*
2648 * Idle thread specific functions to determine the need_resched
2649 * polling state. We have two versions, one based on TS_POLLING in
2650 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2651 * thread_info.flags
2652 */
2653 #ifdef TS_POLLING
2654 static inline int tsk_is_polling(struct task_struct *p)
2655 {
2656 return task_thread_info(p)->status & TS_POLLING;
2657 }
2658 static inline void __current_set_polling(void)
2659 {
2660 current_thread_info()->status |= TS_POLLING;
2661 }
2662
2663 static inline bool __must_check current_set_polling_and_test(void)
2664 {
2665 __current_set_polling();
2666
2667 /*
2668 * Polling state must be visible before we test NEED_RESCHED,
2669 * paired by resched_task()
2670 */
2671 smp_mb();
2672
2673 return unlikely(tif_need_resched());
2674 }
2675
2676 static inline void __current_clr_polling(void)
2677 {
2678 current_thread_info()->status &= ~TS_POLLING;
2679 }
2680
2681 static inline bool __must_check current_clr_polling_and_test(void)
2682 {
2683 __current_clr_polling();
2684
2685 /*
2686 * Polling state must be visible before we test NEED_RESCHED,
2687 * paired by resched_task()
2688 */
2689 smp_mb();
2690
2691 return unlikely(tif_need_resched());
2692 }
2693 #elif defined(TIF_POLLING_NRFLAG)
2694 static inline int tsk_is_polling(struct task_struct *p)
2695 {
2696 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2697 }
2698
2699 static inline void __current_set_polling(void)
2700 {
2701 set_thread_flag(TIF_POLLING_NRFLAG);
2702 }
2703
2704 static inline bool __must_check current_set_polling_and_test(void)
2705 {
2706 __current_set_polling();
2707
2708 /*
2709 * Polling state must be visible before we test NEED_RESCHED,
2710 * paired by resched_task()
2711 *
2712 * XXX: assumes set/clear bit are identical barrier wise.
2713 */
2714 smp_mb__after_clear_bit();
2715
2716 return unlikely(tif_need_resched());
2717 }
2718
2719 static inline void __current_clr_polling(void)
2720 {
2721 clear_thread_flag(TIF_POLLING_NRFLAG);
2722 }
2723
2724 static inline bool __must_check current_clr_polling_and_test(void)
2725 {
2726 __current_clr_polling();
2727
2728 /*
2729 * Polling state must be visible before we test NEED_RESCHED,
2730 * paired by resched_task()
2731 */
2732 smp_mb__after_clear_bit();
2733
2734 return unlikely(tif_need_resched());
2735 }
2736
2737 #else
2738 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2739 static inline void __current_set_polling(void) { }
2740 static inline void __current_clr_polling(void) { }
2741
2742 static inline bool __must_check current_set_polling_and_test(void)
2743 {
2744 return unlikely(tif_need_resched());
2745 }
2746 static inline bool __must_check current_clr_polling_and_test(void)
2747 {
2748 return unlikely(tif_need_resched());
2749 }
2750 #endif
2751
2752 /*
2753 * Thread group CPU time accounting.
2754 */
2755 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2756 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2757
2758 static inline void thread_group_cputime_init(struct signal_struct *sig)
2759 {
2760 raw_spin_lock_init(&sig->cputimer.lock);
2761 }
2762
2763 /*
2764 * Reevaluate whether the task has signals pending delivery.
2765 * Wake the task if so.
2766 * This is required every time the blocked sigset_t changes.
2767 * callers must hold sighand->siglock.
2768 */
2769 extern void recalc_sigpending_and_wake(struct task_struct *t);
2770 extern void recalc_sigpending(void);
2771
2772 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2773
2774 static inline void signal_wake_up(struct task_struct *t, bool resume)
2775 {
2776 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2777 }
2778 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2779 {
2780 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2781 }
2782
2783 /*
2784 * Wrappers for p->thread_info->cpu access. No-op on UP.
2785 */
2786 #ifdef CONFIG_SMP
2787
2788 static inline unsigned int task_cpu(const struct task_struct *p)
2789 {
2790 return task_thread_info(p)->cpu;
2791 }
2792
2793 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2794
2795 #else
2796
2797 static inline unsigned int task_cpu(const struct task_struct *p)
2798 {
2799 return 0;
2800 }
2801
2802 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2803 {
2804 }
2805
2806 #endif /* CONFIG_SMP */
2807
2808 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2809 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2810
2811 #ifdef CONFIG_CGROUP_SCHED
2812 extern struct task_group root_task_group;
2813 #endif /* CONFIG_CGROUP_SCHED */
2814
2815 extern int task_can_switch_user(struct user_struct *up,
2816 struct task_struct *tsk);
2817
2818 #ifdef CONFIG_TASK_XACCT
2819 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2820 {
2821 tsk->ioac.rchar += amt;
2822 }
2823
2824 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2825 {
2826 tsk->ioac.wchar += amt;
2827 }
2828
2829 static inline void inc_syscr(struct task_struct *tsk)
2830 {
2831 tsk->ioac.syscr++;
2832 }
2833
2834 static inline void inc_syscw(struct task_struct *tsk)
2835 {
2836 tsk->ioac.syscw++;
2837 }
2838 #else
2839 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2840 {
2841 }
2842
2843 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2844 {
2845 }
2846
2847 static inline void inc_syscr(struct task_struct *tsk)
2848 {
2849 }
2850
2851 static inline void inc_syscw(struct task_struct *tsk)
2852 {
2853 }
2854 #endif
2855
2856 #ifndef TASK_SIZE_OF
2857 #define TASK_SIZE_OF(tsk) TASK_SIZE
2858 #endif
2859
2860 #ifdef CONFIG_MM_OWNER
2861 extern void mm_update_next_owner(struct mm_struct *mm);
2862 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2863 #else
2864 static inline void mm_update_next_owner(struct mm_struct *mm)
2865 {
2866 }
2867
2868 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2869 {
2870 }
2871 #endif /* CONFIG_MM_OWNER */
2872
2873 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2874 unsigned int limit)
2875 {
2876 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2877 }
2878
2879 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2880 unsigned int limit)
2881 {
2882 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2883 }
2884
2885 static inline unsigned long rlimit(unsigned int limit)
2886 {
2887 return task_rlimit(current, limit);
2888 }
2889
2890 static inline unsigned long rlimit_max(unsigned int limit)
2891 {
2892 return task_rlimit_max(current, limit);
2893 }
2894
2895 #ifdef CONFIG_MTK_SCHED_RQAVG_US
2896 /*
2897 * @cpu: cpu id
2898 * @reset: reset the statistic start time after this time query
2899 * @use_maxfreq: caculate cpu loading with max cpu max frequency
2900 * return: cpu loading as percentage (0~100)
2901 */
2902 extern unsigned int sched_get_percpu_load(int cpu, bool reset, bool use_maxfreq);
2903
2904 /*
2905 * return: heavy task(loading>90%) number in the system
2906 */
2907 extern unsigned int sched_get_nr_heavy_task(void);
2908
2909 /*
2910 * @threshold: heavy task loading threshold (0~1023)
2911 * return: heavy task(loading>threshold) number in the system
2912 */
2913 extern unsigned int sched_get_nr_heavy_task_by_threshold(unsigned int threshold);
2914 #endif /* CONFIG_MTK_SCHED_RQAVG_US */
2915
2916 #ifdef CONFIG_MTK_SCHED_RQAVG_KS
2917 extern void sched_update_nr_prod(int cpu, unsigned long nr, bool inc);
2918 extern void sched_get_nr_running_avg(int *avg, int *iowait_avg);
2919 #endif /* CONFIG_MTK_SCHED_RQAVG_KS */
2920
2921 extern void sched_get_big_little_cpus(struct cpumask *big, struct cpumask *little);
2922
2923 #endif