Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC)) {
404 if (EXT4_SB(sb)->s_journal &&
405 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
406 return;
407 panic("EXT4-fs (device %s): panic forced after error\n",
408 sb->s_id);
409 }
410 }
411
412 void __ext4_error(struct super_block *sb, const char *function,
413 unsigned int line, const char *fmt, ...)
414 {
415 struct va_format vaf;
416 va_list args;
417
418 va_start(args, fmt);
419 vaf.fmt = fmt;
420 vaf.va = &args;
421 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
422 sb->s_id, function, line, current->comm, &vaf);
423 va_end(args);
424 save_error_info(sb, function, line);
425
426 ext4_handle_error(sb);
427 }
428
429 void ext4_error_inode(struct inode *inode, const char *function,
430 unsigned int line, ext4_fsblk_t block,
431 const char *fmt, ...)
432 {
433 va_list args;
434 struct va_format vaf;
435 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
436
437 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
438 es->s_last_error_block = cpu_to_le64(block);
439 save_error_info(inode->i_sb, function, line);
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 if (block)
444 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
445 "inode #%lu: block %llu: comm %s: %pV\n",
446 inode->i_sb->s_id, function, line, inode->i_ino,
447 block, current->comm, &vaf);
448 else
449 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
450 "inode #%lu: comm %s: %pV\n",
451 inode->i_sb->s_id, function, line, inode->i_ino,
452 current->comm, &vaf);
453 va_end(args);
454
455 ext4_handle_error(inode->i_sb);
456 }
457
458 void ext4_error_file(struct file *file, const char *function,
459 unsigned int line, ext4_fsblk_t block,
460 const char *fmt, ...)
461 {
462 va_list args;
463 struct va_format vaf;
464 struct ext4_super_block *es;
465 struct inode *inode = file_inode(file);
466 char pathname[80], *path;
467
468 es = EXT4_SB(inode->i_sb)->s_es;
469 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
470 save_error_info(inode->i_sb, function, line);
471 path = d_path(&(file->f_path), pathname, sizeof(pathname));
472 if (IS_ERR(path))
473 path = "(unknown)";
474 va_start(args, fmt);
475 vaf.fmt = fmt;
476 vaf.va = &args;
477 if (block)
478 printk(KERN_CRIT
479 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
480 "block %llu: comm %s: path %s: %pV\n",
481 inode->i_sb->s_id, function, line, inode->i_ino,
482 block, current->comm, path, &vaf);
483 else
484 printk(KERN_CRIT
485 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
486 "comm %s: path %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, path, &vaf);
489 va_end(args);
490
491 ext4_handle_error(inode->i_sb);
492 }
493
494 const char *ext4_decode_error(struct super_block *sb, int errno,
495 char nbuf[16])
496 {
497 char *errstr = NULL;
498
499 switch (errno) {
500 case -EIO:
501 errstr = "IO failure";
502 break;
503 case -ENOMEM:
504 errstr = "Out of memory";
505 break;
506 case -EROFS:
507 if (!sb || (EXT4_SB(sb)->s_journal &&
508 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
509 errstr = "Journal has aborted";
510 else
511 errstr = "Readonly filesystem";
512 break;
513 default:
514 /* If the caller passed in an extra buffer for unknown
515 * errors, textualise them now. Else we just return
516 * NULL. */
517 if (nbuf) {
518 /* Check for truncated error codes... */
519 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
520 errstr = nbuf;
521 }
522 break;
523 }
524
525 return errstr;
526 }
527
528 /* __ext4_std_error decodes expected errors from journaling functions
529 * automatically and invokes the appropriate error response. */
530
531 void __ext4_std_error(struct super_block *sb, const char *function,
532 unsigned int line, int errno)
533 {
534 char nbuf[16];
535 const char *errstr;
536
537 /* Special case: if the error is EROFS, and we're not already
538 * inside a transaction, then there's really no point in logging
539 * an error. */
540 if (errno == -EROFS && journal_current_handle() == NULL &&
541 (sb->s_flags & MS_RDONLY))
542 return;
543
544 errstr = ext4_decode_error(sb, errno, nbuf);
545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
546 sb->s_id, function, line, errstr);
547 save_error_info(sb, function, line);
548
549 ext4_handle_error(sb);
550 }
551
552 /*
553 * ext4_abort is a much stronger failure handler than ext4_error. The
554 * abort function may be used to deal with unrecoverable failures such
555 * as journal IO errors or ENOMEM at a critical moment in log management.
556 *
557 * We unconditionally force the filesystem into an ABORT|READONLY state,
558 * unless the error response on the fs has been set to panic in which
559 * case we take the easy way out and panic immediately.
560 */
561
562 void __ext4_abort(struct super_block *sb, const char *function,
563 unsigned int line, const char *fmt, ...)
564 {
565 va_list args;
566
567 save_error_info(sb, function, line);
568 va_start(args, fmt);
569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
570 function, line);
571 vprintk(fmt, args);
572 printk("\n");
573 va_end(args);
574
575 if ((sb->s_flags & MS_RDONLY) == 0) {
576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
577 sb->s_flags |= MS_RDONLY;
578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
579 if (EXT4_SB(sb)->s_journal)
580 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
581 save_error_info(sb, function, line);
582 }
583 if (test_opt(sb, ERRORS_PANIC)) {
584 if (EXT4_SB(sb)->s_journal &&
585 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
586 return;
587 panic("EXT4-fs panic from previous error\n");
588 }
589 }
590
591 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
592 {
593 struct va_format vaf;
594 va_list args;
595
596 va_start(args, fmt);
597 vaf.fmt = fmt;
598 vaf.va = &args;
599 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
600 va_end(args);
601 }
602
603 void __ext4_warning(struct super_block *sb, const char *function,
604 unsigned int line, const char *fmt, ...)
605 {
606 struct va_format vaf;
607 va_list args;
608
609 va_start(args, fmt);
610 vaf.fmt = fmt;
611 vaf.va = &args;
612 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
613 sb->s_id, function, line, &vaf);
614 va_end(args);
615 }
616
617 void __ext4_grp_locked_error(const char *function, unsigned int line,
618 struct super_block *sb, ext4_group_t grp,
619 unsigned long ino, ext4_fsblk_t block,
620 const char *fmt, ...)
621 __releases(bitlock)
622 __acquires(bitlock)
623 {
624 struct va_format vaf;
625 va_list args;
626 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
627
628 es->s_last_error_ino = cpu_to_le32(ino);
629 es->s_last_error_block = cpu_to_le64(block);
630 __save_error_info(sb, function, line);
631
632 va_start(args, fmt);
633
634 vaf.fmt = fmt;
635 vaf.va = &args;
636 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
637 sb->s_id, function, line, grp);
638 if (ino)
639 printk(KERN_CONT "inode %lu: ", ino);
640 if (block)
641 printk(KERN_CONT "block %llu:", (unsigned long long) block);
642 printk(KERN_CONT "%pV\n", &vaf);
643 va_end(args);
644
645 if (test_opt(sb, ERRORS_CONT)) {
646 ext4_commit_super(sb, 0);
647 return;
648 }
649
650 ext4_unlock_group(sb, grp);
651 ext4_handle_error(sb);
652 /*
653 * We only get here in the ERRORS_RO case; relocking the group
654 * may be dangerous, but nothing bad will happen since the
655 * filesystem will have already been marked read/only and the
656 * journal has been aborted. We return 1 as a hint to callers
657 * who might what to use the return value from
658 * ext4_grp_locked_error() to distinguish between the
659 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
660 * aggressively from the ext4 function in question, with a
661 * more appropriate error code.
662 */
663 ext4_lock_group(sb, grp);
664 return;
665 }
666
667 void ext4_update_dynamic_rev(struct super_block *sb)
668 {
669 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
670
671 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
672 return;
673
674 ext4_warning(sb,
675 "updating to rev %d because of new feature flag, "
676 "running e2fsck is recommended",
677 EXT4_DYNAMIC_REV);
678
679 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
680 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
681 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
682 /* leave es->s_feature_*compat flags alone */
683 /* es->s_uuid will be set by e2fsck if empty */
684
685 /*
686 * The rest of the superblock fields should be zero, and if not it
687 * means they are likely already in use, so leave them alone. We
688 * can leave it up to e2fsck to clean up any inconsistencies there.
689 */
690 }
691
692 /*
693 * Open the external journal device
694 */
695 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
696 {
697 struct block_device *bdev;
698 char b[BDEVNAME_SIZE];
699
700 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
701 if (IS_ERR(bdev))
702 goto fail;
703 return bdev;
704
705 fail:
706 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
707 __bdevname(dev, b), PTR_ERR(bdev));
708 return NULL;
709 }
710
711 /*
712 * Release the journal device
713 */
714 static void ext4_blkdev_put(struct block_device *bdev)
715 {
716 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
717 }
718
719 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
720 {
721 struct block_device *bdev;
722 bdev = sbi->journal_bdev;
723 if (bdev) {
724 ext4_blkdev_put(bdev);
725 sbi->journal_bdev = NULL;
726 }
727 }
728
729 static inline struct inode *orphan_list_entry(struct list_head *l)
730 {
731 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
732 }
733
734 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
735 {
736 struct list_head *l;
737
738 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
739 le32_to_cpu(sbi->s_es->s_last_orphan));
740
741 printk(KERN_ERR "sb_info orphan list:\n");
742 list_for_each(l, &sbi->s_orphan) {
743 struct inode *inode = orphan_list_entry(l);
744 printk(KERN_ERR " "
745 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
746 inode->i_sb->s_id, inode->i_ino, inode,
747 inode->i_mode, inode->i_nlink,
748 NEXT_ORPHAN(inode));
749 }
750 }
751
752 static void ext4_put_super(struct super_block *sb)
753 {
754 struct ext4_sb_info *sbi = EXT4_SB(sb);
755 struct ext4_super_block *es = sbi->s_es;
756 int i, err;
757
758 ext4_unregister_li_request(sb);
759 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
760
761 flush_workqueue(sbi->dio_unwritten_wq);
762 destroy_workqueue(sbi->dio_unwritten_wq);
763
764 if (sbi->s_journal) {
765 err = jbd2_journal_destroy(sbi->s_journal);
766 sbi->s_journal = NULL;
767 if (err < 0)
768 ext4_abort(sb, "Couldn't clean up the journal");
769 }
770
771 ext4_es_unregister_shrinker(sb);
772 del_timer(&sbi->s_err_report);
773 ext4_release_system_zone(sb);
774 ext4_mb_release(sb);
775 ext4_ext_release(sb);
776 ext4_xattr_put_super(sb);
777
778 if (!(sb->s_flags & MS_RDONLY)) {
779 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
780 es->s_state = cpu_to_le16(sbi->s_mount_state);
781 }
782 if (!(sb->s_flags & MS_RDONLY))
783 ext4_commit_super(sb, 1);
784
785 if (sbi->s_proc) {
786 remove_proc_entry("options", sbi->s_proc);
787 remove_proc_entry(sb->s_id, ext4_proc_root);
788 }
789 kobject_del(&sbi->s_kobj);
790
791 for (i = 0; i < sbi->s_gdb_count; i++)
792 brelse(sbi->s_group_desc[i]);
793 ext4_kvfree(sbi->s_group_desc);
794 ext4_kvfree(sbi->s_flex_groups);
795 percpu_counter_destroy(&sbi->s_freeclusters_counter);
796 percpu_counter_destroy(&sbi->s_freeinodes_counter);
797 percpu_counter_destroy(&sbi->s_dirs_counter);
798 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
799 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
800 brelse(sbi->s_sbh);
801 #ifdef CONFIG_QUOTA
802 for (i = 0; i < MAXQUOTAS; i++)
803 kfree(sbi->s_qf_names[i]);
804 #endif
805
806 /* Debugging code just in case the in-memory inode orphan list
807 * isn't empty. The on-disk one can be non-empty if we've
808 * detected an error and taken the fs readonly, but the
809 * in-memory list had better be clean by this point. */
810 if (!list_empty(&sbi->s_orphan))
811 dump_orphan_list(sb, sbi);
812 J_ASSERT(list_empty(&sbi->s_orphan));
813
814 sync_blockdev(sb->s_bdev);
815 invalidate_bdev(sb->s_bdev);
816 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
817 /*
818 * Invalidate the journal device's buffers. We don't want them
819 * floating about in memory - the physical journal device may
820 * hotswapped, and it breaks the `ro-after' testing code.
821 */
822 sync_blockdev(sbi->journal_bdev);
823 invalidate_bdev(sbi->journal_bdev);
824 ext4_blkdev_remove(sbi);
825 }
826 if (sbi->s_mmp_tsk)
827 kthread_stop(sbi->s_mmp_tsk);
828 sb->s_fs_info = NULL;
829 /*
830 * Now that we are completely done shutting down the
831 * superblock, we need to actually destroy the kobject.
832 */
833 kobject_put(&sbi->s_kobj);
834 wait_for_completion(&sbi->s_kobj_unregister);
835 if (sbi->s_chksum_driver)
836 crypto_free_shash(sbi->s_chksum_driver);
837 kfree(sbi->s_blockgroup_lock);
838 kfree(sbi);
839 }
840
841 static struct kmem_cache *ext4_inode_cachep;
842
843 /*
844 * Called inside transaction, so use GFP_NOFS
845 */
846 static struct inode *ext4_alloc_inode(struct super_block *sb)
847 {
848 struct ext4_inode_info *ei;
849
850 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
851 if (!ei)
852 return NULL;
853
854 ei->vfs_inode.i_version = 1;
855 INIT_LIST_HEAD(&ei->i_prealloc_list);
856 spin_lock_init(&ei->i_prealloc_lock);
857 ext4_es_init_tree(&ei->i_es_tree);
858 rwlock_init(&ei->i_es_lock);
859 INIT_LIST_HEAD(&ei->i_es_lru);
860 ei->i_es_lru_nr = 0;
861 ei->i_reserved_data_blocks = 0;
862 ei->i_reserved_meta_blocks = 0;
863 ei->i_allocated_meta_blocks = 0;
864 ei->i_da_metadata_calc_len = 0;
865 ei->i_da_metadata_calc_last_lblock = 0;
866 spin_lock_init(&(ei->i_block_reservation_lock));
867 #ifdef CONFIG_QUOTA
868 ei->i_reserved_quota = 0;
869 #endif
870 ei->jinode = NULL;
871 INIT_LIST_HEAD(&ei->i_completed_io_list);
872 spin_lock_init(&ei->i_completed_io_lock);
873 ei->i_sync_tid = 0;
874 ei->i_datasync_tid = 0;
875 atomic_set(&ei->i_ioend_count, 0);
876 atomic_set(&ei->i_unwritten, 0);
877 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
878
879 return &ei->vfs_inode;
880 }
881
882 static int ext4_drop_inode(struct inode *inode)
883 {
884 int drop = generic_drop_inode(inode);
885
886 trace_ext4_drop_inode(inode, drop);
887 return drop;
888 }
889
890 static void ext4_i_callback(struct rcu_head *head)
891 {
892 struct inode *inode = container_of(head, struct inode, i_rcu);
893 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
894 }
895
896 static void ext4_destroy_inode(struct inode *inode)
897 {
898 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
899 ext4_msg(inode->i_sb, KERN_ERR,
900 "Inode %lu (%p): orphan list check failed!",
901 inode->i_ino, EXT4_I(inode));
902 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
903 EXT4_I(inode), sizeof(struct ext4_inode_info),
904 true);
905 dump_stack();
906 }
907 call_rcu(&inode->i_rcu, ext4_i_callback);
908 }
909
910 static void init_once(void *foo)
911 {
912 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
913
914 INIT_LIST_HEAD(&ei->i_orphan);
915 init_rwsem(&ei->xattr_sem);
916 init_rwsem(&ei->i_data_sem);
917 inode_init_once(&ei->vfs_inode);
918 }
919
920 static int init_inodecache(void)
921 {
922 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
923 sizeof(struct ext4_inode_info),
924 0, (SLAB_RECLAIM_ACCOUNT|
925 SLAB_MEM_SPREAD),
926 init_once);
927 if (ext4_inode_cachep == NULL)
928 return -ENOMEM;
929 return 0;
930 }
931
932 static void destroy_inodecache(void)
933 {
934 /*
935 * Make sure all delayed rcu free inodes are flushed before we
936 * destroy cache.
937 */
938 rcu_barrier();
939 kmem_cache_destroy(ext4_inode_cachep);
940 }
941
942 void ext4_clear_inode(struct inode *inode)
943 {
944 invalidate_inode_buffers(inode);
945 clear_inode(inode);
946 dquot_drop(inode);
947 ext4_discard_preallocations(inode);
948 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
949 ext4_es_lru_del(inode);
950 if (EXT4_I(inode)->jinode) {
951 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
952 EXT4_I(inode)->jinode);
953 jbd2_free_inode(EXT4_I(inode)->jinode);
954 EXT4_I(inode)->jinode = NULL;
955 }
956 }
957
958 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
959 u64 ino, u32 generation)
960 {
961 struct inode *inode;
962
963 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
964 return ERR_PTR(-ESTALE);
965 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
966 return ERR_PTR(-ESTALE);
967
968 /* iget isn't really right if the inode is currently unallocated!!
969 *
970 * ext4_read_inode will return a bad_inode if the inode had been
971 * deleted, so we should be safe.
972 *
973 * Currently we don't know the generation for parent directory, so
974 * a generation of 0 means "accept any"
975 */
976 inode = ext4_iget_normal(sb, ino);
977 if (IS_ERR(inode))
978 return ERR_CAST(inode);
979 if (generation && inode->i_generation != generation) {
980 iput(inode);
981 return ERR_PTR(-ESTALE);
982 }
983
984 return inode;
985 }
986
987 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
988 int fh_len, int fh_type)
989 {
990 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
991 ext4_nfs_get_inode);
992 }
993
994 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
995 int fh_len, int fh_type)
996 {
997 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
998 ext4_nfs_get_inode);
999 }
1000
1001 /*
1002 * Try to release metadata pages (indirect blocks, directories) which are
1003 * mapped via the block device. Since these pages could have journal heads
1004 * which would prevent try_to_free_buffers() from freeing them, we must use
1005 * jbd2 layer's try_to_free_buffers() function to release them.
1006 */
1007 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1008 gfp_t wait)
1009 {
1010 journal_t *journal = EXT4_SB(sb)->s_journal;
1011
1012 WARN_ON(PageChecked(page));
1013 if (!page_has_buffers(page))
1014 return 0;
1015 if (journal)
1016 return jbd2_journal_try_to_free_buffers(journal, page,
1017 wait & ~__GFP_WAIT);
1018 return try_to_free_buffers(page);
1019 }
1020
1021 #ifdef CONFIG_QUOTA
1022 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1023 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1024
1025 static int ext4_write_dquot(struct dquot *dquot);
1026 static int ext4_acquire_dquot(struct dquot *dquot);
1027 static int ext4_release_dquot(struct dquot *dquot);
1028 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1029 static int ext4_write_info(struct super_block *sb, int type);
1030 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1031 struct path *path);
1032 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1033 int format_id);
1034 static int ext4_quota_off(struct super_block *sb, int type);
1035 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1036 static int ext4_quota_on_mount(struct super_block *sb, int type);
1037 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1038 size_t len, loff_t off);
1039 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1040 const char *data, size_t len, loff_t off);
1041 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1042 unsigned int flags);
1043 static int ext4_enable_quotas(struct super_block *sb);
1044
1045 static const struct dquot_operations ext4_quota_operations = {
1046 .get_reserved_space = ext4_get_reserved_space,
1047 .write_dquot = ext4_write_dquot,
1048 .acquire_dquot = ext4_acquire_dquot,
1049 .release_dquot = ext4_release_dquot,
1050 .mark_dirty = ext4_mark_dquot_dirty,
1051 .write_info = ext4_write_info,
1052 .alloc_dquot = dquot_alloc,
1053 .destroy_dquot = dquot_destroy,
1054 };
1055
1056 static const struct quotactl_ops ext4_qctl_operations = {
1057 .quota_on = ext4_quota_on,
1058 .quota_off = ext4_quota_off,
1059 .quota_sync = dquot_quota_sync,
1060 .get_info = dquot_get_dqinfo,
1061 .set_info = dquot_set_dqinfo,
1062 .get_dqblk = dquot_get_dqblk,
1063 .set_dqblk = dquot_set_dqblk
1064 };
1065
1066 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1067 .quota_on_meta = ext4_quota_on_sysfile,
1068 .quota_off = ext4_quota_off_sysfile,
1069 .quota_sync = dquot_quota_sync,
1070 .get_info = dquot_get_dqinfo,
1071 .set_info = dquot_set_dqinfo,
1072 .get_dqblk = dquot_get_dqblk,
1073 .set_dqblk = dquot_set_dqblk
1074 };
1075 #endif
1076
1077 static const struct super_operations ext4_sops = {
1078 .alloc_inode = ext4_alloc_inode,
1079 .destroy_inode = ext4_destroy_inode,
1080 .write_inode = ext4_write_inode,
1081 .dirty_inode = ext4_dirty_inode,
1082 .drop_inode = ext4_drop_inode,
1083 .evict_inode = ext4_evict_inode,
1084 .put_super = ext4_put_super,
1085 .sync_fs = ext4_sync_fs,
1086 .freeze_fs = ext4_freeze,
1087 .unfreeze_fs = ext4_unfreeze,
1088 .statfs = ext4_statfs,
1089 .remount_fs = ext4_remount,
1090 .show_options = ext4_show_options,
1091 #ifdef CONFIG_QUOTA
1092 .quota_read = ext4_quota_read,
1093 .quota_write = ext4_quota_write,
1094 #endif
1095 .bdev_try_to_free_page = bdev_try_to_free_page,
1096 };
1097
1098 static const struct super_operations ext4_nojournal_sops = {
1099 .alloc_inode = ext4_alloc_inode,
1100 .destroy_inode = ext4_destroy_inode,
1101 .write_inode = ext4_write_inode,
1102 .dirty_inode = ext4_dirty_inode,
1103 .drop_inode = ext4_drop_inode,
1104 .evict_inode = ext4_evict_inode,
1105 .put_super = ext4_put_super,
1106 .statfs = ext4_statfs,
1107 .remount_fs = ext4_remount,
1108 .show_options = ext4_show_options,
1109 #ifdef CONFIG_QUOTA
1110 .quota_read = ext4_quota_read,
1111 .quota_write = ext4_quota_write,
1112 #endif
1113 .bdev_try_to_free_page = bdev_try_to_free_page,
1114 };
1115
1116 static const struct export_operations ext4_export_ops = {
1117 .fh_to_dentry = ext4_fh_to_dentry,
1118 .fh_to_parent = ext4_fh_to_parent,
1119 .get_parent = ext4_get_parent,
1120 };
1121
1122 enum {
1123 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1124 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1125 Opt_nouid32, Opt_debug, Opt_removed,
1126 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1127 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1128 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1129 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1130 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1131 Opt_data_err_abort, Opt_data_err_ignore,
1132 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1133 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1134 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1135 Opt_usrquota, Opt_grpquota, Opt_i_version,
1136 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1137 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1138 Opt_inode_readahead_blks, Opt_journal_ioprio,
1139 Opt_dioread_nolock, Opt_dioread_lock,
1140 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1141 Opt_max_dir_size_kb,
1142 };
1143
1144 static const match_table_t tokens = {
1145 {Opt_bsd_df, "bsddf"},
1146 {Opt_minix_df, "minixdf"},
1147 {Opt_grpid, "grpid"},
1148 {Opt_grpid, "bsdgroups"},
1149 {Opt_nogrpid, "nogrpid"},
1150 {Opt_nogrpid, "sysvgroups"},
1151 {Opt_resgid, "resgid=%u"},
1152 {Opt_resuid, "resuid=%u"},
1153 {Opt_sb, "sb=%u"},
1154 {Opt_err_cont, "errors=continue"},
1155 {Opt_err_panic, "errors=panic"},
1156 {Opt_err_ro, "errors=remount-ro"},
1157 {Opt_nouid32, "nouid32"},
1158 {Opt_debug, "debug"},
1159 {Opt_removed, "oldalloc"},
1160 {Opt_removed, "orlov"},
1161 {Opt_user_xattr, "user_xattr"},
1162 {Opt_nouser_xattr, "nouser_xattr"},
1163 {Opt_acl, "acl"},
1164 {Opt_noacl, "noacl"},
1165 {Opt_noload, "norecovery"},
1166 {Opt_noload, "noload"},
1167 {Opt_removed, "nobh"},
1168 {Opt_removed, "bh"},
1169 {Opt_commit, "commit=%u"},
1170 {Opt_min_batch_time, "min_batch_time=%u"},
1171 {Opt_max_batch_time, "max_batch_time=%u"},
1172 {Opt_journal_dev, "journal_dev=%u"},
1173 {Opt_journal_checksum, "journal_checksum"},
1174 {Opt_journal_async_commit, "journal_async_commit"},
1175 {Opt_abort, "abort"},
1176 {Opt_data_journal, "data=journal"},
1177 {Opt_data_ordered, "data=ordered"},
1178 {Opt_data_writeback, "data=writeback"},
1179 {Opt_data_err_abort, "data_err=abort"},
1180 {Opt_data_err_ignore, "data_err=ignore"},
1181 {Opt_offusrjquota, "usrjquota="},
1182 {Opt_usrjquota, "usrjquota=%s"},
1183 {Opt_offgrpjquota, "grpjquota="},
1184 {Opt_grpjquota, "grpjquota=%s"},
1185 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1186 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1187 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1188 {Opt_grpquota, "grpquota"},
1189 {Opt_noquota, "noquota"},
1190 {Opt_quota, "quota"},
1191 {Opt_usrquota, "usrquota"},
1192 {Opt_barrier, "barrier=%u"},
1193 {Opt_barrier, "barrier"},
1194 {Opt_nobarrier, "nobarrier"},
1195 {Opt_i_version, "i_version"},
1196 {Opt_stripe, "stripe=%u"},
1197 {Opt_delalloc, "delalloc"},
1198 {Opt_nodelalloc, "nodelalloc"},
1199 {Opt_removed, "mblk_io_submit"},
1200 {Opt_removed, "nomblk_io_submit"},
1201 {Opt_block_validity, "block_validity"},
1202 {Opt_noblock_validity, "noblock_validity"},
1203 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1204 {Opt_journal_ioprio, "journal_ioprio=%u"},
1205 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1206 {Opt_auto_da_alloc, "auto_da_alloc"},
1207 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1208 {Opt_dioread_nolock, "dioread_nolock"},
1209 {Opt_dioread_lock, "dioread_lock"},
1210 {Opt_discard, "discard"},
1211 {Opt_nodiscard, "nodiscard"},
1212 {Opt_init_itable, "init_itable=%u"},
1213 {Opt_init_itable, "init_itable"},
1214 {Opt_noinit_itable, "noinit_itable"},
1215 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1216 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1217 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1218 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1219 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1220 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1221 {Opt_err, NULL},
1222 };
1223
1224 static ext4_fsblk_t get_sb_block(void **data)
1225 {
1226 ext4_fsblk_t sb_block;
1227 char *options = (char *) *data;
1228
1229 if (!options || strncmp(options, "sb=", 3) != 0)
1230 return 1; /* Default location */
1231
1232 options += 3;
1233 /* TODO: use simple_strtoll with >32bit ext4 */
1234 sb_block = simple_strtoul(options, &options, 0);
1235 if (*options && *options != ',') {
1236 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1237 (char *) *data);
1238 return 1;
1239 }
1240 if (*options == ',')
1241 options++;
1242 *data = (void *) options;
1243
1244 return sb_block;
1245 }
1246
1247 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1248 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1249 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1250
1251 #ifdef CONFIG_QUOTA
1252 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1253 {
1254 struct ext4_sb_info *sbi = EXT4_SB(sb);
1255 char *qname;
1256 int ret = -1;
1257
1258 if (sb_any_quota_loaded(sb) &&
1259 !sbi->s_qf_names[qtype]) {
1260 ext4_msg(sb, KERN_ERR,
1261 "Cannot change journaled "
1262 "quota options when quota turned on");
1263 return -1;
1264 }
1265 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1266 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1267 "when QUOTA feature is enabled");
1268 return -1;
1269 }
1270 qname = match_strdup(args);
1271 if (!qname) {
1272 ext4_msg(sb, KERN_ERR,
1273 "Not enough memory for storing quotafile name");
1274 return -1;
1275 }
1276 if (sbi->s_qf_names[qtype]) {
1277 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1278 ret = 1;
1279 else
1280 ext4_msg(sb, KERN_ERR,
1281 "%s quota file already specified",
1282 QTYPE2NAME(qtype));
1283 goto errout;
1284 }
1285 if (strchr(qname, '/')) {
1286 ext4_msg(sb, KERN_ERR,
1287 "quotafile must be on filesystem root");
1288 goto errout;
1289 }
1290 sbi->s_qf_names[qtype] = qname;
1291 set_opt(sb, QUOTA);
1292 return 1;
1293 errout:
1294 kfree(qname);
1295 return ret;
1296 }
1297
1298 static int clear_qf_name(struct super_block *sb, int qtype)
1299 {
1300
1301 struct ext4_sb_info *sbi = EXT4_SB(sb);
1302
1303 if (sb_any_quota_loaded(sb) &&
1304 sbi->s_qf_names[qtype]) {
1305 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1306 " when quota turned on");
1307 return -1;
1308 }
1309 kfree(sbi->s_qf_names[qtype]);
1310 sbi->s_qf_names[qtype] = NULL;
1311 return 1;
1312 }
1313 #endif
1314
1315 #define MOPT_SET 0x0001
1316 #define MOPT_CLEAR 0x0002
1317 #define MOPT_NOSUPPORT 0x0004
1318 #define MOPT_EXPLICIT 0x0008
1319 #define MOPT_CLEAR_ERR 0x0010
1320 #define MOPT_GTE0 0x0020
1321 #ifdef CONFIG_QUOTA
1322 #define MOPT_Q 0
1323 #define MOPT_QFMT 0x0040
1324 #else
1325 #define MOPT_Q MOPT_NOSUPPORT
1326 #define MOPT_QFMT MOPT_NOSUPPORT
1327 #endif
1328 #define MOPT_DATAJ 0x0080
1329 #define MOPT_NO_EXT2 0x0100
1330 #define MOPT_NO_EXT3 0x0200
1331 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1332
1333 static const struct mount_opts {
1334 int token;
1335 int mount_opt;
1336 int flags;
1337 } ext4_mount_opts[] = {
1338 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1339 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1340 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1341 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1342 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1343 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1344 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1345 MOPT_EXT4_ONLY | MOPT_SET},
1346 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1347 MOPT_EXT4_ONLY | MOPT_CLEAR},
1348 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1349 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1350 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1351 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1352 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1353 MOPT_EXT4_ONLY | MOPT_CLEAR},
1354 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1355 MOPT_EXT4_ONLY | MOPT_SET},
1356 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1357 EXT4_MOUNT_JOURNAL_CHECKSUM),
1358 MOPT_EXT4_ONLY | MOPT_SET},
1359 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1360 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1361 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1362 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1363 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1364 MOPT_NO_EXT2 | MOPT_SET},
1365 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1366 MOPT_NO_EXT2 | MOPT_CLEAR},
1367 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1368 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1369 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1370 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1371 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1372 {Opt_commit, 0, MOPT_GTE0},
1373 {Opt_max_batch_time, 0, MOPT_GTE0},
1374 {Opt_min_batch_time, 0, MOPT_GTE0},
1375 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1376 {Opt_init_itable, 0, MOPT_GTE0},
1377 {Opt_stripe, 0, MOPT_GTE0},
1378 {Opt_resuid, 0, MOPT_GTE0},
1379 {Opt_resgid, 0, MOPT_GTE0},
1380 {Opt_journal_dev, 0, MOPT_GTE0},
1381 {Opt_journal_ioprio, 0, MOPT_GTE0},
1382 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1383 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1384 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1385 MOPT_NO_EXT2 | MOPT_DATAJ},
1386 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1387 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1388 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1389 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1390 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1391 #else
1392 {Opt_acl, 0, MOPT_NOSUPPORT},
1393 {Opt_noacl, 0, MOPT_NOSUPPORT},
1394 #endif
1395 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1396 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1397 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1398 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1399 MOPT_SET | MOPT_Q},
1400 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1401 MOPT_SET | MOPT_Q},
1402 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1403 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1404 {Opt_usrjquota, 0, MOPT_Q},
1405 {Opt_grpjquota, 0, MOPT_Q},
1406 {Opt_offusrjquota, 0, MOPT_Q},
1407 {Opt_offgrpjquota, 0, MOPT_Q},
1408 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1409 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1410 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1411 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1412 {Opt_err, 0, 0}
1413 };
1414
1415 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1416 substring_t *args, unsigned long *journal_devnum,
1417 unsigned int *journal_ioprio, int is_remount)
1418 {
1419 struct ext4_sb_info *sbi = EXT4_SB(sb);
1420 const struct mount_opts *m;
1421 kuid_t uid;
1422 kgid_t gid;
1423 int arg = 0;
1424
1425 #ifdef CONFIG_QUOTA
1426 if (token == Opt_usrjquota)
1427 return set_qf_name(sb, USRQUOTA, &args[0]);
1428 else if (token == Opt_grpjquota)
1429 return set_qf_name(sb, GRPQUOTA, &args[0]);
1430 else if (token == Opt_offusrjquota)
1431 return clear_qf_name(sb, USRQUOTA);
1432 else if (token == Opt_offgrpjquota)
1433 return clear_qf_name(sb, GRPQUOTA);
1434 #endif
1435 switch (token) {
1436 case Opt_noacl:
1437 case Opt_nouser_xattr:
1438 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1439 break;
1440 case Opt_sb:
1441 return 1; /* handled by get_sb_block() */
1442 case Opt_removed:
1443 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1444 return 1;
1445 case Opt_abort:
1446 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1447 return 1;
1448 case Opt_i_version:
1449 sb->s_flags |= MS_I_VERSION;
1450 return 1;
1451 }
1452
1453 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1454 if (token == m->token)
1455 break;
1456
1457 if (m->token == Opt_err) {
1458 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1459 "or missing value", opt);
1460 return -1;
1461 }
1462
1463 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1464 ext4_msg(sb, KERN_ERR,
1465 "Mount option \"%s\" incompatible with ext2", opt);
1466 return -1;
1467 }
1468 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1469 ext4_msg(sb, KERN_ERR,
1470 "Mount option \"%s\" incompatible with ext3", opt);
1471 return -1;
1472 }
1473
1474 if (args->from && match_int(args, &arg))
1475 return -1;
1476 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1477 return -1;
1478 if (m->flags & MOPT_EXPLICIT)
1479 set_opt2(sb, EXPLICIT_DELALLOC);
1480 if (m->flags & MOPT_CLEAR_ERR)
1481 clear_opt(sb, ERRORS_MASK);
1482 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1483 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1484 "options when quota turned on");
1485 return -1;
1486 }
1487
1488 if (m->flags & MOPT_NOSUPPORT) {
1489 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1490 } else if (token == Opt_commit) {
1491 if (arg == 0)
1492 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1493 sbi->s_commit_interval = HZ * arg;
1494 } else if (token == Opt_max_batch_time) {
1495 sbi->s_max_batch_time = arg;
1496 } else if (token == Opt_min_batch_time) {
1497 sbi->s_min_batch_time = arg;
1498 } else if (token == Opt_inode_readahead_blks) {
1499 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1500 ext4_msg(sb, KERN_ERR,
1501 "EXT4-fs: inode_readahead_blks must be "
1502 "0 or a power of 2 smaller than 2^31");
1503 return -1;
1504 }
1505 sbi->s_inode_readahead_blks = arg;
1506 } else if (token == Opt_init_itable) {
1507 set_opt(sb, INIT_INODE_TABLE);
1508 if (!args->from)
1509 arg = EXT4_DEF_LI_WAIT_MULT;
1510 sbi->s_li_wait_mult = arg;
1511 } else if (token == Opt_max_dir_size_kb) {
1512 sbi->s_max_dir_size_kb = arg;
1513 } else if (token == Opt_stripe) {
1514 sbi->s_stripe = arg;
1515 } else if (token == Opt_resuid) {
1516 uid = make_kuid(current_user_ns(), arg);
1517 if (!uid_valid(uid)) {
1518 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1519 return -1;
1520 }
1521 sbi->s_resuid = uid;
1522 } else if (token == Opt_resgid) {
1523 gid = make_kgid(current_user_ns(), arg);
1524 if (!gid_valid(gid)) {
1525 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1526 return -1;
1527 }
1528 sbi->s_resgid = gid;
1529 } else if (token == Opt_journal_dev) {
1530 if (is_remount) {
1531 ext4_msg(sb, KERN_ERR,
1532 "Cannot specify journal on remount");
1533 return -1;
1534 }
1535 *journal_devnum = arg;
1536 } else if (token == Opt_journal_ioprio) {
1537 if (arg > 7) {
1538 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1539 " (must be 0-7)");
1540 return -1;
1541 }
1542 *journal_ioprio =
1543 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1544 } else if (m->flags & MOPT_DATAJ) {
1545 if (is_remount) {
1546 if (!sbi->s_journal)
1547 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1548 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1549 ext4_msg(sb, KERN_ERR,
1550 "Cannot change data mode on remount");
1551 return -1;
1552 }
1553 } else {
1554 clear_opt(sb, DATA_FLAGS);
1555 sbi->s_mount_opt |= m->mount_opt;
1556 }
1557 #ifdef CONFIG_QUOTA
1558 } else if (m->flags & MOPT_QFMT) {
1559 if (sb_any_quota_loaded(sb) &&
1560 sbi->s_jquota_fmt != m->mount_opt) {
1561 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1562 "quota options when quota turned on");
1563 return -1;
1564 }
1565 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1566 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1567 ext4_msg(sb, KERN_ERR,
1568 "Cannot set journaled quota options "
1569 "when QUOTA feature is enabled");
1570 return -1;
1571 }
1572 sbi->s_jquota_fmt = m->mount_opt;
1573 #endif
1574 } else {
1575 if (!args->from)
1576 arg = 1;
1577 if (m->flags & MOPT_CLEAR)
1578 arg = !arg;
1579 else if (unlikely(!(m->flags & MOPT_SET))) {
1580 ext4_msg(sb, KERN_WARNING,
1581 "buggy handling of option %s", opt);
1582 WARN_ON(1);
1583 return -1;
1584 }
1585 if (arg != 0)
1586 sbi->s_mount_opt |= m->mount_opt;
1587 else
1588 sbi->s_mount_opt &= ~m->mount_opt;
1589 }
1590 return 1;
1591 }
1592
1593 static int parse_options(char *options, struct super_block *sb,
1594 unsigned long *journal_devnum,
1595 unsigned int *journal_ioprio,
1596 int is_remount)
1597 {
1598 struct ext4_sb_info *sbi = EXT4_SB(sb);
1599 char *p;
1600 substring_t args[MAX_OPT_ARGS];
1601 int token;
1602
1603 if (!options)
1604 return 1;
1605
1606 while ((p = strsep(&options, ",")) != NULL) {
1607 if (!*p)
1608 continue;
1609 /*
1610 * Initialize args struct so we know whether arg was
1611 * found; some options take optional arguments.
1612 */
1613 args[0].to = args[0].from = NULL;
1614 token = match_token(p, tokens, args);
1615 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1616 journal_ioprio, is_remount) < 0)
1617 return 0;
1618 }
1619 #ifdef CONFIG_QUOTA
1620 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1621 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1622 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1623 "feature is enabled");
1624 return 0;
1625 }
1626 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1627 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1628 clear_opt(sb, USRQUOTA);
1629
1630 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1631 clear_opt(sb, GRPQUOTA);
1632
1633 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1634 ext4_msg(sb, KERN_ERR, "old and new quota "
1635 "format mixing");
1636 return 0;
1637 }
1638
1639 if (!sbi->s_jquota_fmt) {
1640 ext4_msg(sb, KERN_ERR, "journaled quota format "
1641 "not specified");
1642 return 0;
1643 }
1644 }
1645 #endif
1646 if (test_opt(sb, DIOREAD_NOLOCK)) {
1647 int blocksize =
1648 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1649
1650 if (blocksize < PAGE_CACHE_SIZE) {
1651 ext4_msg(sb, KERN_ERR, "can't mount with "
1652 "dioread_nolock if block size != PAGE_SIZE");
1653 return 0;
1654 }
1655 }
1656 return 1;
1657 }
1658
1659 static inline void ext4_show_quota_options(struct seq_file *seq,
1660 struct super_block *sb)
1661 {
1662 #if defined(CONFIG_QUOTA)
1663 struct ext4_sb_info *sbi = EXT4_SB(sb);
1664
1665 if (sbi->s_jquota_fmt) {
1666 char *fmtname = "";
1667
1668 switch (sbi->s_jquota_fmt) {
1669 case QFMT_VFS_OLD:
1670 fmtname = "vfsold";
1671 break;
1672 case QFMT_VFS_V0:
1673 fmtname = "vfsv0";
1674 break;
1675 case QFMT_VFS_V1:
1676 fmtname = "vfsv1";
1677 break;
1678 }
1679 seq_printf(seq, ",jqfmt=%s", fmtname);
1680 }
1681
1682 if (sbi->s_qf_names[USRQUOTA])
1683 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1684
1685 if (sbi->s_qf_names[GRPQUOTA])
1686 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1687 #endif
1688 }
1689
1690 static const char *token2str(int token)
1691 {
1692 const struct match_token *t;
1693
1694 for (t = tokens; t->token != Opt_err; t++)
1695 if (t->token == token && !strchr(t->pattern, '='))
1696 break;
1697 return t->pattern;
1698 }
1699
1700 /*
1701 * Show an option if
1702 * - it's set to a non-default value OR
1703 * - if the per-sb default is different from the global default
1704 */
1705 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1706 int nodefs)
1707 {
1708 struct ext4_sb_info *sbi = EXT4_SB(sb);
1709 struct ext4_super_block *es = sbi->s_es;
1710 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1711 const struct mount_opts *m;
1712 char sep = nodefs ? '\n' : ',';
1713
1714 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1715 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1716
1717 if (sbi->s_sb_block != 1)
1718 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1719
1720 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1721 int want_set = m->flags & MOPT_SET;
1722 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1723 (m->flags & MOPT_CLEAR_ERR))
1724 continue;
1725 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1726 continue; /* skip if same as the default */
1727 if ((want_set &&
1728 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1729 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1730 continue; /* select Opt_noFoo vs Opt_Foo */
1731 SEQ_OPTS_PRINT("%s", token2str(m->token));
1732 }
1733
1734 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1735 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1736 SEQ_OPTS_PRINT("resuid=%u",
1737 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1738 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1739 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1740 SEQ_OPTS_PRINT("resgid=%u",
1741 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1742 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1743 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1744 SEQ_OPTS_PUTS("errors=remount-ro");
1745 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1746 SEQ_OPTS_PUTS("errors=continue");
1747 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1748 SEQ_OPTS_PUTS("errors=panic");
1749 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1750 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1751 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1752 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1753 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1754 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1755 if (sb->s_flags & MS_I_VERSION)
1756 SEQ_OPTS_PUTS("i_version");
1757 if (nodefs || sbi->s_stripe)
1758 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1759 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1760 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1761 SEQ_OPTS_PUTS("data=journal");
1762 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1763 SEQ_OPTS_PUTS("data=ordered");
1764 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1765 SEQ_OPTS_PUTS("data=writeback");
1766 }
1767 if (nodefs ||
1768 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1769 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1770 sbi->s_inode_readahead_blks);
1771
1772 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1773 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1774 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1775 if (nodefs || sbi->s_max_dir_size_kb)
1776 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1777
1778 ext4_show_quota_options(seq, sb);
1779 return 0;
1780 }
1781
1782 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1783 {
1784 return _ext4_show_options(seq, root->d_sb, 0);
1785 }
1786
1787 static int options_seq_show(struct seq_file *seq, void *offset)
1788 {
1789 struct super_block *sb = seq->private;
1790 int rc;
1791
1792 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1793 rc = _ext4_show_options(seq, sb, 1);
1794 seq_puts(seq, "\n");
1795 return rc;
1796 }
1797
1798 static int options_open_fs(struct inode *inode, struct file *file)
1799 {
1800 return single_open(file, options_seq_show, PDE_DATA(inode));
1801 }
1802
1803 static const struct file_operations ext4_seq_options_fops = {
1804 .owner = THIS_MODULE,
1805 .open = options_open_fs,
1806 .read = seq_read,
1807 .llseek = seq_lseek,
1808 .release = single_release,
1809 };
1810
1811 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1812 int read_only)
1813 {
1814 struct ext4_sb_info *sbi = EXT4_SB(sb);
1815 int res = 0;
1816
1817 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1818 ext4_msg(sb, KERN_ERR, "revision level too high, "
1819 "forcing read-only mode");
1820 res = MS_RDONLY;
1821 }
1822 if (read_only)
1823 goto done;
1824 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1825 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1826 "running e2fsck is recommended");
1827 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1828 ext4_msg(sb, KERN_WARNING,
1829 "warning: mounting fs with errors, "
1830 "running e2fsck is recommended");
1831 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1832 le16_to_cpu(es->s_mnt_count) >=
1833 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1834 ext4_msg(sb, KERN_WARNING,
1835 "warning: maximal mount count reached, "
1836 "running e2fsck is recommended");
1837 else if (le32_to_cpu(es->s_checkinterval) &&
1838 (le32_to_cpu(es->s_lastcheck) +
1839 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1840 ext4_msg(sb, KERN_WARNING,
1841 "warning: checktime reached, "
1842 "running e2fsck is recommended");
1843 if (!sbi->s_journal)
1844 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1845 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1846 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1847 le16_add_cpu(&es->s_mnt_count, 1);
1848 es->s_mtime = cpu_to_le32(get_seconds());
1849 ext4_update_dynamic_rev(sb);
1850 if (sbi->s_journal)
1851 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1852
1853 ext4_commit_super(sb, 1);
1854 done:
1855 if (test_opt(sb, DEBUG))
1856 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1857 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1858 sb->s_blocksize,
1859 sbi->s_groups_count,
1860 EXT4_BLOCKS_PER_GROUP(sb),
1861 EXT4_INODES_PER_GROUP(sb),
1862 sbi->s_mount_opt, sbi->s_mount_opt2);
1863
1864 cleancache_init_fs(sb);
1865 return res;
1866 }
1867
1868 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1869 {
1870 struct ext4_sb_info *sbi = EXT4_SB(sb);
1871 struct flex_groups *new_groups;
1872 int size;
1873
1874 if (!sbi->s_log_groups_per_flex)
1875 return 0;
1876
1877 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1878 if (size <= sbi->s_flex_groups_allocated)
1879 return 0;
1880
1881 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1882 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1883 if (!new_groups) {
1884 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1885 size / (int) sizeof(struct flex_groups));
1886 return -ENOMEM;
1887 }
1888
1889 if (sbi->s_flex_groups) {
1890 memcpy(new_groups, sbi->s_flex_groups,
1891 (sbi->s_flex_groups_allocated *
1892 sizeof(struct flex_groups)));
1893 ext4_kvfree(sbi->s_flex_groups);
1894 }
1895 sbi->s_flex_groups = new_groups;
1896 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1897 return 0;
1898 }
1899
1900 static int ext4_fill_flex_info(struct super_block *sb)
1901 {
1902 struct ext4_sb_info *sbi = EXT4_SB(sb);
1903 struct ext4_group_desc *gdp = NULL;
1904 ext4_group_t flex_group;
1905 unsigned int groups_per_flex = 0;
1906 int i, err;
1907
1908 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1909 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1910 sbi->s_log_groups_per_flex = 0;
1911 return 1;
1912 }
1913 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1914
1915 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1916 if (err)
1917 goto failed;
1918
1919 for (i = 0; i < sbi->s_groups_count; i++) {
1920 gdp = ext4_get_group_desc(sb, i, NULL);
1921
1922 flex_group = ext4_flex_group(sbi, i);
1923 atomic_add(ext4_free_inodes_count(sb, gdp),
1924 &sbi->s_flex_groups[flex_group].free_inodes);
1925 atomic64_add(ext4_free_group_clusters(sb, gdp),
1926 &sbi->s_flex_groups[flex_group].free_clusters);
1927 atomic_add(ext4_used_dirs_count(sb, gdp),
1928 &sbi->s_flex_groups[flex_group].used_dirs);
1929 }
1930
1931 return 1;
1932 failed:
1933 return 0;
1934 }
1935
1936 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1937 struct ext4_group_desc *gdp)
1938 {
1939 int offset;
1940 __u16 crc = 0;
1941 __le32 le_group = cpu_to_le32(block_group);
1942
1943 if ((sbi->s_es->s_feature_ro_compat &
1944 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1945 /* Use new metadata_csum algorithm */
1946 __le16 save_csum;
1947 __u32 csum32;
1948
1949 save_csum = gdp->bg_checksum;
1950 gdp->bg_checksum = 0;
1951 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1952 sizeof(le_group));
1953 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1954 sbi->s_desc_size);
1955 gdp->bg_checksum = save_csum;
1956
1957 crc = csum32 & 0xFFFF;
1958 goto out;
1959 }
1960
1961 /* old crc16 code */
1962 if (!(sbi->s_es->s_feature_ro_compat &
1963 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
1964 return 0;
1965
1966 offset = offsetof(struct ext4_group_desc, bg_checksum);
1967
1968 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1969 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1970 crc = crc16(crc, (__u8 *)gdp, offset);
1971 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1972 /* for checksum of struct ext4_group_desc do the rest...*/
1973 if ((sbi->s_es->s_feature_incompat &
1974 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1975 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1976 crc = crc16(crc, (__u8 *)gdp + offset,
1977 le16_to_cpu(sbi->s_es->s_desc_size) -
1978 offset);
1979
1980 out:
1981 return cpu_to_le16(crc);
1982 }
1983
1984 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1985 struct ext4_group_desc *gdp)
1986 {
1987 if (ext4_has_group_desc_csum(sb) &&
1988 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1989 block_group, gdp)))
1990 return 0;
1991
1992 return 1;
1993 }
1994
1995 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1996 struct ext4_group_desc *gdp)
1997 {
1998 if (!ext4_has_group_desc_csum(sb))
1999 return;
2000 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2001 }
2002
2003 /* Called at mount-time, super-block is locked */
2004 static int ext4_check_descriptors(struct super_block *sb,
2005 ext4_group_t *first_not_zeroed)
2006 {
2007 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2009 ext4_fsblk_t last_block;
2010 ext4_fsblk_t block_bitmap;
2011 ext4_fsblk_t inode_bitmap;
2012 ext4_fsblk_t inode_table;
2013 int flexbg_flag = 0;
2014 ext4_group_t i, grp = sbi->s_groups_count;
2015
2016 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2017 flexbg_flag = 1;
2018
2019 ext4_debug("Checking group descriptors");
2020
2021 for (i = 0; i < sbi->s_groups_count; i++) {
2022 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2023
2024 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2025 last_block = ext4_blocks_count(sbi->s_es) - 1;
2026 else
2027 last_block = first_block +
2028 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2029
2030 if ((grp == sbi->s_groups_count) &&
2031 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2032 grp = i;
2033
2034 block_bitmap = ext4_block_bitmap(sb, gdp);
2035 if (block_bitmap < first_block || block_bitmap > last_block) {
2036 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2037 "Block bitmap for group %u not in group "
2038 "(block %llu)!", i, block_bitmap);
2039 return 0;
2040 }
2041 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2042 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2043 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2044 "Inode bitmap for group %u not in group "
2045 "(block %llu)!", i, inode_bitmap);
2046 return 0;
2047 }
2048 inode_table = ext4_inode_table(sb, gdp);
2049 if (inode_table < first_block ||
2050 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2051 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2052 "Inode table for group %u not in group "
2053 "(block %llu)!", i, inode_table);
2054 return 0;
2055 }
2056 ext4_lock_group(sb, i);
2057 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2058 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2059 "Checksum for group %u failed (%u!=%u)",
2060 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2061 gdp)), le16_to_cpu(gdp->bg_checksum));
2062 if (!(sb->s_flags & MS_RDONLY)) {
2063 ext4_unlock_group(sb, i);
2064 return 0;
2065 }
2066 }
2067 ext4_unlock_group(sb, i);
2068 if (!flexbg_flag)
2069 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2070 }
2071 if (NULL != first_not_zeroed)
2072 *first_not_zeroed = grp;
2073
2074 ext4_free_blocks_count_set(sbi->s_es,
2075 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2076 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2077 return 1;
2078 }
2079
2080 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2081 * the superblock) which were deleted from all directories, but held open by
2082 * a process at the time of a crash. We walk the list and try to delete these
2083 * inodes at recovery time (only with a read-write filesystem).
2084 *
2085 * In order to keep the orphan inode chain consistent during traversal (in
2086 * case of crash during recovery), we link each inode into the superblock
2087 * orphan list_head and handle it the same way as an inode deletion during
2088 * normal operation (which journals the operations for us).
2089 *
2090 * We only do an iget() and an iput() on each inode, which is very safe if we
2091 * accidentally point at an in-use or already deleted inode. The worst that
2092 * can happen in this case is that we get a "bit already cleared" message from
2093 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2094 * e2fsck was run on this filesystem, and it must have already done the orphan
2095 * inode cleanup for us, so we can safely abort without any further action.
2096 */
2097 static void ext4_orphan_cleanup(struct super_block *sb,
2098 struct ext4_super_block *es)
2099 {
2100 unsigned int s_flags = sb->s_flags;
2101 int nr_orphans = 0, nr_truncates = 0;
2102 #ifdef CONFIG_QUOTA
2103 int i;
2104 #endif
2105 if (!es->s_last_orphan) {
2106 jbd_debug(4, "no orphan inodes to clean up\n");
2107 return;
2108 }
2109
2110 if (bdev_read_only(sb->s_bdev)) {
2111 ext4_msg(sb, KERN_ERR, "write access "
2112 "unavailable, skipping orphan cleanup");
2113 return;
2114 }
2115
2116 /* Check if feature set would not allow a r/w mount */
2117 if (!ext4_feature_set_ok(sb, 0)) {
2118 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2119 "unknown ROCOMPAT features");
2120 return;
2121 }
2122
2123 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2124 /* don't clear list on RO mount w/ errors */
2125 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2126 jbd_debug(1, "Errors on filesystem, "
2127 "clearing orphan list.\n");
2128 es->s_last_orphan = 0;
2129 }
2130 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2131 return;
2132 }
2133
2134 if (s_flags & MS_RDONLY) {
2135 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2136 sb->s_flags &= ~MS_RDONLY;
2137 }
2138 #ifdef CONFIG_QUOTA
2139 /* Needed for iput() to work correctly and not trash data */
2140 sb->s_flags |= MS_ACTIVE;
2141 /* Turn on quotas so that they are updated correctly */
2142 for (i = 0; i < MAXQUOTAS; i++) {
2143 if (EXT4_SB(sb)->s_qf_names[i]) {
2144 int ret = ext4_quota_on_mount(sb, i);
2145 if (ret < 0)
2146 ext4_msg(sb, KERN_ERR,
2147 "Cannot turn on journaled "
2148 "quota: error %d", ret);
2149 }
2150 }
2151 #endif
2152
2153 while (es->s_last_orphan) {
2154 struct inode *inode;
2155
2156 /*
2157 * We may have encountered an error during cleanup; if
2158 * so, skip the rest.
2159 */
2160 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2161 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2162 es->s_last_orphan = 0;
2163 break;
2164 }
2165
2166 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2167 if (IS_ERR(inode)) {
2168 es->s_last_orphan = 0;
2169 break;
2170 }
2171
2172 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2173 dquot_initialize(inode);
2174 if (inode->i_nlink) {
2175 ext4_msg(sb, KERN_DEBUG,
2176 "%s: truncating inode %lu to %lld bytes",
2177 __func__, inode->i_ino, inode->i_size);
2178 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2179 inode->i_ino, inode->i_size);
2180 mutex_lock(&inode->i_mutex);
2181 ext4_truncate(inode);
2182 mutex_unlock(&inode->i_mutex);
2183 nr_truncates++;
2184 } else {
2185 ext4_msg(sb, KERN_DEBUG,
2186 "%s: deleting unreferenced inode %lu",
2187 __func__, inode->i_ino);
2188 jbd_debug(2, "deleting unreferenced inode %lu\n",
2189 inode->i_ino);
2190 nr_orphans++;
2191 }
2192 iput(inode); /* The delete magic happens here! */
2193 }
2194
2195 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2196
2197 if (nr_orphans)
2198 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2199 PLURAL(nr_orphans));
2200 if (nr_truncates)
2201 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2202 PLURAL(nr_truncates));
2203 #ifdef CONFIG_QUOTA
2204 /* Turn quotas off */
2205 for (i = 0; i < MAXQUOTAS; i++) {
2206 if (sb_dqopt(sb)->files[i])
2207 dquot_quota_off(sb, i);
2208 }
2209 #endif
2210 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2211 }
2212
2213 /*
2214 * Maximal extent format file size.
2215 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2216 * extent format containers, within a sector_t, and within i_blocks
2217 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2218 * so that won't be a limiting factor.
2219 *
2220 * However there is other limiting factor. We do store extents in the form
2221 * of starting block and length, hence the resulting length of the extent
2222 * covering maximum file size must fit into on-disk format containers as
2223 * well. Given that length is always by 1 unit bigger than max unit (because
2224 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2225 *
2226 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2227 */
2228 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2229 {
2230 loff_t res;
2231 loff_t upper_limit = MAX_LFS_FILESIZE;
2232
2233 /* small i_blocks in vfs inode? */
2234 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2235 /*
2236 * CONFIG_LBDAF is not enabled implies the inode
2237 * i_block represent total blocks in 512 bytes
2238 * 32 == size of vfs inode i_blocks * 8
2239 */
2240 upper_limit = (1LL << 32) - 1;
2241
2242 /* total blocks in file system block size */
2243 upper_limit >>= (blkbits - 9);
2244 upper_limit <<= blkbits;
2245 }
2246
2247 /*
2248 * 32-bit extent-start container, ee_block. We lower the maxbytes
2249 * by one fs block, so ee_len can cover the extent of maximum file
2250 * size
2251 */
2252 res = (1LL << 32) - 1;
2253 res <<= blkbits;
2254
2255 /* Sanity check against vm- & vfs- imposed limits */
2256 if (res > upper_limit)
2257 res = upper_limit;
2258
2259 return res;
2260 }
2261
2262 /*
2263 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2264 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2265 * We need to be 1 filesystem block less than the 2^48 sector limit.
2266 */
2267 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2268 {
2269 loff_t res = EXT4_NDIR_BLOCKS;
2270 int meta_blocks;
2271 loff_t upper_limit;
2272 /* This is calculated to be the largest file size for a dense, block
2273 * mapped file such that the file's total number of 512-byte sectors,
2274 * including data and all indirect blocks, does not exceed (2^48 - 1).
2275 *
2276 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2277 * number of 512-byte sectors of the file.
2278 */
2279
2280 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2281 /*
2282 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2283 * the inode i_block field represents total file blocks in
2284 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2285 */
2286 upper_limit = (1LL << 32) - 1;
2287
2288 /* total blocks in file system block size */
2289 upper_limit >>= (bits - 9);
2290
2291 } else {
2292 /*
2293 * We use 48 bit ext4_inode i_blocks
2294 * With EXT4_HUGE_FILE_FL set the i_blocks
2295 * represent total number of blocks in
2296 * file system block size
2297 */
2298 upper_limit = (1LL << 48) - 1;
2299
2300 }
2301
2302 /* indirect blocks */
2303 meta_blocks = 1;
2304 /* double indirect blocks */
2305 meta_blocks += 1 + (1LL << (bits-2));
2306 /* tripple indirect blocks */
2307 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2308
2309 upper_limit -= meta_blocks;
2310 upper_limit <<= bits;
2311
2312 res += 1LL << (bits-2);
2313 res += 1LL << (2*(bits-2));
2314 res += 1LL << (3*(bits-2));
2315 res <<= bits;
2316 if (res > upper_limit)
2317 res = upper_limit;
2318
2319 if (res > MAX_LFS_FILESIZE)
2320 res = MAX_LFS_FILESIZE;
2321
2322 return res;
2323 }
2324
2325 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2326 ext4_fsblk_t logical_sb_block, int nr)
2327 {
2328 struct ext4_sb_info *sbi = EXT4_SB(sb);
2329 ext4_group_t bg, first_meta_bg;
2330 int has_super = 0;
2331
2332 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2333
2334 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2335 nr < first_meta_bg)
2336 return logical_sb_block + nr + 1;
2337 bg = sbi->s_desc_per_block * nr;
2338 if (ext4_bg_has_super(sb, bg))
2339 has_super = 1;
2340
2341 return (has_super + ext4_group_first_block_no(sb, bg));
2342 }
2343
2344 /**
2345 * ext4_get_stripe_size: Get the stripe size.
2346 * @sbi: In memory super block info
2347 *
2348 * If we have specified it via mount option, then
2349 * use the mount option value. If the value specified at mount time is
2350 * greater than the blocks per group use the super block value.
2351 * If the super block value is greater than blocks per group return 0.
2352 * Allocator needs it be less than blocks per group.
2353 *
2354 */
2355 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2356 {
2357 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2358 unsigned long stripe_width =
2359 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2360 int ret;
2361
2362 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2363 ret = sbi->s_stripe;
2364 else if (stripe_width <= sbi->s_blocks_per_group)
2365 ret = stripe_width;
2366 else if (stride <= sbi->s_blocks_per_group)
2367 ret = stride;
2368 else
2369 ret = 0;
2370
2371 /*
2372 * If the stripe width is 1, this makes no sense and
2373 * we set it to 0 to turn off stripe handling code.
2374 */
2375 if (ret <= 1)
2376 ret = 0;
2377
2378 return ret;
2379 }
2380
2381 /* sysfs supprt */
2382
2383 struct ext4_attr {
2384 struct attribute attr;
2385 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2386 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2387 const char *, size_t);
2388 int offset;
2389 };
2390
2391 static int parse_strtoull(const char *buf,
2392 unsigned long long max, unsigned long long *value)
2393 {
2394 int ret;
2395
2396 ret = kstrtoull(skip_spaces(buf), 0, value);
2397 if (!ret && *value > max)
2398 ret = -EINVAL;
2399 return ret;
2400 }
2401
2402 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2403 struct ext4_sb_info *sbi,
2404 char *buf)
2405 {
2406 return snprintf(buf, PAGE_SIZE, "%llu\n",
2407 (s64) EXT4_C2B(sbi,
2408 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2409 }
2410
2411 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2412 struct ext4_sb_info *sbi, char *buf)
2413 {
2414 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2415
2416 if (!sb->s_bdev->bd_part)
2417 return snprintf(buf, PAGE_SIZE, "0\n");
2418 return snprintf(buf, PAGE_SIZE, "%lu\n",
2419 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2420 sbi->s_sectors_written_start) >> 1);
2421 }
2422
2423 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2424 struct ext4_sb_info *sbi, char *buf)
2425 {
2426 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2427
2428 if (!sb->s_bdev->bd_part)
2429 return snprintf(buf, PAGE_SIZE, "0\n");
2430 return snprintf(buf, PAGE_SIZE, "%llu\n",
2431 (unsigned long long)(sbi->s_kbytes_written +
2432 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2433 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2434 }
2435
2436 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2437 struct ext4_sb_info *sbi,
2438 const char *buf, size_t count)
2439 {
2440 unsigned long t;
2441 int ret;
2442
2443 ret = kstrtoul(skip_spaces(buf), 0, &t);
2444 if (ret)
2445 return ret;
2446
2447 if (t && (!is_power_of_2(t) || t > 0x40000000))
2448 return -EINVAL;
2449
2450 sbi->s_inode_readahead_blks = t;
2451 return count;
2452 }
2453
2454 static ssize_t sbi_ui_show(struct ext4_attr *a,
2455 struct ext4_sb_info *sbi, char *buf)
2456 {
2457 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2458
2459 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2460 }
2461
2462 static ssize_t sbi_ui_store(struct ext4_attr *a,
2463 struct ext4_sb_info *sbi,
2464 const char *buf, size_t count)
2465 {
2466 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2467 unsigned long t;
2468 int ret;
2469
2470 ret = kstrtoul(skip_spaces(buf), 0, &t);
2471 if (ret)
2472 return ret;
2473 *ui = t;
2474 return count;
2475 }
2476
2477 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2478 struct ext4_sb_info *sbi, char *buf)
2479 {
2480 return snprintf(buf, PAGE_SIZE, "%llu\n",
2481 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2482 }
2483
2484 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi,
2486 const char *buf, size_t count)
2487 {
2488 unsigned long long val;
2489 int ret;
2490
2491 if (parse_strtoull(buf, -1ULL, &val))
2492 return -EINVAL;
2493 ret = ext4_reserve_clusters(sbi, val);
2494
2495 return ret ? ret : count;
2496 }
2497
2498 static ssize_t trigger_test_error(struct ext4_attr *a,
2499 struct ext4_sb_info *sbi,
2500 const char *buf, size_t count)
2501 {
2502 int len = count;
2503
2504 if (!capable(CAP_SYS_ADMIN))
2505 return -EPERM;
2506
2507 if (len && buf[len-1] == '\n')
2508 len--;
2509
2510 if (len)
2511 ext4_error(sbi->s_sb, "%.*s", len, buf);
2512 return count;
2513 }
2514
2515 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2516 static struct ext4_attr ext4_attr_##_name = { \
2517 .attr = {.name = __stringify(_name), .mode = _mode }, \
2518 .show = _show, \
2519 .store = _store, \
2520 .offset = offsetof(struct ext4_sb_info, _elname), \
2521 }
2522 #define EXT4_ATTR(name, mode, show, store) \
2523 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2524
2525 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2526 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2527 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2528 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2529 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2530 #define ATTR_LIST(name) &ext4_attr_##name.attr
2531
2532 EXT4_RO_ATTR(delayed_allocation_blocks);
2533 EXT4_RO_ATTR(session_write_kbytes);
2534 EXT4_RO_ATTR(lifetime_write_kbytes);
2535 EXT4_RW_ATTR(reserved_clusters);
2536 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2537 inode_readahead_blks_store, s_inode_readahead_blks);
2538 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2539 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2540 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2541 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2542 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2543 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2544 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2545 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2546 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2547 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2548
2549 static struct attribute *ext4_attrs[] = {
2550 ATTR_LIST(delayed_allocation_blocks),
2551 ATTR_LIST(session_write_kbytes),
2552 ATTR_LIST(lifetime_write_kbytes),
2553 ATTR_LIST(reserved_clusters),
2554 ATTR_LIST(inode_readahead_blks),
2555 ATTR_LIST(inode_goal),
2556 ATTR_LIST(mb_stats),
2557 ATTR_LIST(mb_max_to_scan),
2558 ATTR_LIST(mb_min_to_scan),
2559 ATTR_LIST(mb_order2_req),
2560 ATTR_LIST(mb_stream_req),
2561 ATTR_LIST(mb_group_prealloc),
2562 ATTR_LIST(max_writeback_mb_bump),
2563 ATTR_LIST(extent_max_zeroout_kb),
2564 ATTR_LIST(trigger_fs_error),
2565 NULL,
2566 };
2567
2568 /* Features this copy of ext4 supports */
2569 EXT4_INFO_ATTR(lazy_itable_init);
2570 EXT4_INFO_ATTR(batched_discard);
2571 EXT4_INFO_ATTR(meta_bg_resize);
2572
2573 static struct attribute *ext4_feat_attrs[] = {
2574 ATTR_LIST(lazy_itable_init),
2575 ATTR_LIST(batched_discard),
2576 ATTR_LIST(meta_bg_resize),
2577 NULL,
2578 };
2579
2580 static ssize_t ext4_attr_show(struct kobject *kobj,
2581 struct attribute *attr, char *buf)
2582 {
2583 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2584 s_kobj);
2585 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2586
2587 return a->show ? a->show(a, sbi, buf) : 0;
2588 }
2589
2590 static ssize_t ext4_attr_store(struct kobject *kobj,
2591 struct attribute *attr,
2592 const char *buf, size_t len)
2593 {
2594 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2595 s_kobj);
2596 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2597
2598 return a->store ? a->store(a, sbi, buf, len) : 0;
2599 }
2600
2601 static void ext4_sb_release(struct kobject *kobj)
2602 {
2603 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2604 s_kobj);
2605 complete(&sbi->s_kobj_unregister);
2606 }
2607
2608 static const struct sysfs_ops ext4_attr_ops = {
2609 .show = ext4_attr_show,
2610 .store = ext4_attr_store,
2611 };
2612
2613 static struct kobj_type ext4_ktype = {
2614 .default_attrs = ext4_attrs,
2615 .sysfs_ops = &ext4_attr_ops,
2616 .release = ext4_sb_release,
2617 };
2618
2619 static void ext4_feat_release(struct kobject *kobj)
2620 {
2621 complete(&ext4_feat->f_kobj_unregister);
2622 }
2623
2624 static struct kobj_type ext4_feat_ktype = {
2625 .default_attrs = ext4_feat_attrs,
2626 .sysfs_ops = &ext4_attr_ops,
2627 .release = ext4_feat_release,
2628 };
2629
2630 /*
2631 * Check whether this filesystem can be mounted based on
2632 * the features present and the RDONLY/RDWR mount requested.
2633 * Returns 1 if this filesystem can be mounted as requested,
2634 * 0 if it cannot be.
2635 */
2636 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2637 {
2638 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2639 ext4_msg(sb, KERN_ERR,
2640 "Couldn't mount because of "
2641 "unsupported optional features (%x)",
2642 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2643 ~EXT4_FEATURE_INCOMPAT_SUPP));
2644 return 0;
2645 }
2646
2647 if (readonly)
2648 return 1;
2649
2650 /* Check that feature set is OK for a read-write mount */
2651 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2652 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2653 "unsupported optional features (%x)",
2654 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2655 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2656 return 0;
2657 }
2658 /*
2659 * Large file size enabled file system can only be mounted
2660 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2661 */
2662 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2663 if (sizeof(blkcnt_t) < sizeof(u64)) {
2664 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2665 "cannot be mounted RDWR without "
2666 "CONFIG_LBDAF");
2667 return 0;
2668 }
2669 }
2670 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2671 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2672 ext4_msg(sb, KERN_ERR,
2673 "Can't support bigalloc feature without "
2674 "extents feature\n");
2675 return 0;
2676 }
2677
2678 #ifndef CONFIG_QUOTA
2679 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2680 !readonly) {
2681 ext4_msg(sb, KERN_ERR,
2682 "Filesystem with quota feature cannot be mounted RDWR "
2683 "without CONFIG_QUOTA");
2684 return 0;
2685 }
2686 #endif /* CONFIG_QUOTA */
2687 return 1;
2688 }
2689
2690 /*
2691 * This function is called once a day if we have errors logged
2692 * on the file system
2693 */
2694 static void print_daily_error_info(unsigned long arg)
2695 {
2696 struct super_block *sb = (struct super_block *) arg;
2697 struct ext4_sb_info *sbi;
2698 struct ext4_super_block *es;
2699
2700 sbi = EXT4_SB(sb);
2701 es = sbi->s_es;
2702
2703 if (es->s_error_count)
2704 /* fsck newer than v1.41.13 is needed to clean this condition. */
2705 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2706 le32_to_cpu(es->s_error_count));
2707 if (es->s_first_error_time) {
2708 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2709 sb->s_id, le32_to_cpu(es->s_first_error_time),
2710 (int) sizeof(es->s_first_error_func),
2711 es->s_first_error_func,
2712 le32_to_cpu(es->s_first_error_line));
2713 if (es->s_first_error_ino)
2714 printk(": inode %u",
2715 le32_to_cpu(es->s_first_error_ino));
2716 if (es->s_first_error_block)
2717 printk(": block %llu", (unsigned long long)
2718 le64_to_cpu(es->s_first_error_block));
2719 printk("\n");
2720 }
2721 if (es->s_last_error_time) {
2722 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2723 sb->s_id, le32_to_cpu(es->s_last_error_time),
2724 (int) sizeof(es->s_last_error_func),
2725 es->s_last_error_func,
2726 le32_to_cpu(es->s_last_error_line));
2727 if (es->s_last_error_ino)
2728 printk(": inode %u",
2729 le32_to_cpu(es->s_last_error_ino));
2730 if (es->s_last_error_block)
2731 printk(": block %llu", (unsigned long long)
2732 le64_to_cpu(es->s_last_error_block));
2733 printk("\n");
2734 }
2735 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2736 }
2737
2738 /* Find next suitable group and run ext4_init_inode_table */
2739 static int ext4_run_li_request(struct ext4_li_request *elr)
2740 {
2741 struct ext4_group_desc *gdp = NULL;
2742 ext4_group_t group, ngroups;
2743 struct super_block *sb;
2744 unsigned long timeout = 0;
2745 int ret = 0;
2746
2747 sb = elr->lr_super;
2748 ngroups = EXT4_SB(sb)->s_groups_count;
2749
2750 sb_start_write(sb);
2751 for (group = elr->lr_next_group; group < ngroups; group++) {
2752 gdp = ext4_get_group_desc(sb, group, NULL);
2753 if (!gdp) {
2754 ret = 1;
2755 break;
2756 }
2757
2758 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2759 break;
2760 }
2761
2762 if (group >= ngroups)
2763 ret = 1;
2764
2765 if (!ret) {
2766 timeout = jiffies;
2767 ret = ext4_init_inode_table(sb, group,
2768 elr->lr_timeout ? 0 : 1);
2769 if (elr->lr_timeout == 0) {
2770 timeout = (jiffies - timeout) *
2771 elr->lr_sbi->s_li_wait_mult;
2772 elr->lr_timeout = timeout;
2773 }
2774 elr->lr_next_sched = jiffies + elr->lr_timeout;
2775 elr->lr_next_group = group + 1;
2776 }
2777 sb_end_write(sb);
2778
2779 return ret;
2780 }
2781
2782 /*
2783 * Remove lr_request from the list_request and free the
2784 * request structure. Should be called with li_list_mtx held
2785 */
2786 static void ext4_remove_li_request(struct ext4_li_request *elr)
2787 {
2788 struct ext4_sb_info *sbi;
2789
2790 if (!elr)
2791 return;
2792
2793 sbi = elr->lr_sbi;
2794
2795 list_del(&elr->lr_request);
2796 sbi->s_li_request = NULL;
2797 kfree(elr);
2798 }
2799
2800 static void ext4_unregister_li_request(struct super_block *sb)
2801 {
2802 mutex_lock(&ext4_li_mtx);
2803 if (!ext4_li_info) {
2804 mutex_unlock(&ext4_li_mtx);
2805 return;
2806 }
2807
2808 mutex_lock(&ext4_li_info->li_list_mtx);
2809 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2810 mutex_unlock(&ext4_li_info->li_list_mtx);
2811 mutex_unlock(&ext4_li_mtx);
2812 }
2813
2814 static struct task_struct *ext4_lazyinit_task;
2815
2816 /*
2817 * This is the function where ext4lazyinit thread lives. It walks
2818 * through the request list searching for next scheduled filesystem.
2819 * When such a fs is found, run the lazy initialization request
2820 * (ext4_rn_li_request) and keep track of the time spend in this
2821 * function. Based on that time we compute next schedule time of
2822 * the request. When walking through the list is complete, compute
2823 * next waking time and put itself into sleep.
2824 */
2825 static int ext4_lazyinit_thread(void *arg)
2826 {
2827 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2828 struct list_head *pos, *n;
2829 struct ext4_li_request *elr;
2830 unsigned long next_wakeup, cur;
2831
2832 BUG_ON(NULL == eli);
2833 set_freezable();
2834
2835 cont_thread:
2836 while (true) {
2837 next_wakeup = MAX_JIFFY_OFFSET;
2838
2839 mutex_lock(&eli->li_list_mtx);
2840 if (list_empty(&eli->li_request_list)) {
2841 mutex_unlock(&eli->li_list_mtx);
2842 goto exit_thread;
2843 }
2844
2845 list_for_each_safe(pos, n, &eli->li_request_list) {
2846 elr = list_entry(pos, struct ext4_li_request,
2847 lr_request);
2848
2849 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2850 if (ext4_run_li_request(elr) != 0) {
2851 /* error, remove the lazy_init job */
2852 ext4_remove_li_request(elr);
2853 continue;
2854 }
2855 }
2856
2857 if (time_before(elr->lr_next_sched, next_wakeup))
2858 next_wakeup = elr->lr_next_sched;
2859 }
2860 mutex_unlock(&eli->li_list_mtx);
2861
2862 try_to_freeze();
2863
2864 cur = jiffies;
2865 if ((time_after_eq(cur, next_wakeup)) ||
2866 (MAX_JIFFY_OFFSET == next_wakeup)) {
2867 cond_resched();
2868 continue;
2869 }
2870
2871 schedule_timeout_interruptible(next_wakeup - cur);
2872
2873 if (kthread_freezable_should_stop(NULL)) {
2874 ext4_clear_request_list();
2875 goto exit_thread;
2876 }
2877 }
2878
2879 exit_thread:
2880 /*
2881 * It looks like the request list is empty, but we need
2882 * to check it under the li_list_mtx lock, to prevent any
2883 * additions into it, and of course we should lock ext4_li_mtx
2884 * to atomically free the list and ext4_li_info, because at
2885 * this point another ext4 filesystem could be registering
2886 * new one.
2887 */
2888 mutex_lock(&ext4_li_mtx);
2889 mutex_lock(&eli->li_list_mtx);
2890 if (!list_empty(&eli->li_request_list)) {
2891 mutex_unlock(&eli->li_list_mtx);
2892 mutex_unlock(&ext4_li_mtx);
2893 goto cont_thread;
2894 }
2895 mutex_unlock(&eli->li_list_mtx);
2896 kfree(ext4_li_info);
2897 ext4_li_info = NULL;
2898 mutex_unlock(&ext4_li_mtx);
2899
2900 return 0;
2901 }
2902
2903 static void ext4_clear_request_list(void)
2904 {
2905 struct list_head *pos, *n;
2906 struct ext4_li_request *elr;
2907
2908 mutex_lock(&ext4_li_info->li_list_mtx);
2909 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2910 elr = list_entry(pos, struct ext4_li_request,
2911 lr_request);
2912 ext4_remove_li_request(elr);
2913 }
2914 mutex_unlock(&ext4_li_info->li_list_mtx);
2915 }
2916
2917 static int ext4_run_lazyinit_thread(void)
2918 {
2919 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2920 ext4_li_info, "ext4lazyinit");
2921 if (IS_ERR(ext4_lazyinit_task)) {
2922 int err = PTR_ERR(ext4_lazyinit_task);
2923 ext4_clear_request_list();
2924 kfree(ext4_li_info);
2925 ext4_li_info = NULL;
2926 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2927 "initialization thread\n",
2928 err);
2929 return err;
2930 }
2931 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2932 return 0;
2933 }
2934
2935 /*
2936 * Check whether it make sense to run itable init. thread or not.
2937 * If there is at least one uninitialized inode table, return
2938 * corresponding group number, else the loop goes through all
2939 * groups and return total number of groups.
2940 */
2941 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2942 {
2943 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2944 struct ext4_group_desc *gdp = NULL;
2945
2946 for (group = 0; group < ngroups; group++) {
2947 gdp = ext4_get_group_desc(sb, group, NULL);
2948 if (!gdp)
2949 continue;
2950
2951 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2952 break;
2953 }
2954
2955 return group;
2956 }
2957
2958 static int ext4_li_info_new(void)
2959 {
2960 struct ext4_lazy_init *eli = NULL;
2961
2962 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2963 if (!eli)
2964 return -ENOMEM;
2965
2966 INIT_LIST_HEAD(&eli->li_request_list);
2967 mutex_init(&eli->li_list_mtx);
2968
2969 eli->li_state |= EXT4_LAZYINIT_QUIT;
2970
2971 ext4_li_info = eli;
2972
2973 return 0;
2974 }
2975
2976 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2977 ext4_group_t start)
2978 {
2979 struct ext4_sb_info *sbi = EXT4_SB(sb);
2980 struct ext4_li_request *elr;
2981 unsigned long rnd;
2982
2983 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2984 if (!elr)
2985 return NULL;
2986
2987 elr->lr_super = sb;
2988 elr->lr_sbi = sbi;
2989 elr->lr_next_group = start;
2990
2991 /*
2992 * Randomize first schedule time of the request to
2993 * spread the inode table initialization requests
2994 * better.
2995 */
2996 get_random_bytes(&rnd, sizeof(rnd));
2997 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2998 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2999
3000 return elr;
3001 }
3002
3003 int ext4_register_li_request(struct super_block *sb,
3004 ext4_group_t first_not_zeroed)
3005 {
3006 struct ext4_sb_info *sbi = EXT4_SB(sb);
3007 struct ext4_li_request *elr = NULL;
3008 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3009 int ret = 0;
3010
3011 mutex_lock(&ext4_li_mtx);
3012 if (sbi->s_li_request != NULL) {
3013 /*
3014 * Reset timeout so it can be computed again, because
3015 * s_li_wait_mult might have changed.
3016 */
3017 sbi->s_li_request->lr_timeout = 0;
3018 goto out;
3019 }
3020
3021 if (first_not_zeroed == ngroups ||
3022 (sb->s_flags & MS_RDONLY) ||
3023 !test_opt(sb, INIT_INODE_TABLE))
3024 goto out;
3025
3026 elr = ext4_li_request_new(sb, first_not_zeroed);
3027 if (!elr) {
3028 ret = -ENOMEM;
3029 goto out;
3030 }
3031
3032 if (NULL == ext4_li_info) {
3033 ret = ext4_li_info_new();
3034 if (ret)
3035 goto out;
3036 }
3037
3038 mutex_lock(&ext4_li_info->li_list_mtx);
3039 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3040 mutex_unlock(&ext4_li_info->li_list_mtx);
3041
3042 sbi->s_li_request = elr;
3043 /*
3044 * set elr to NULL here since it has been inserted to
3045 * the request_list and the removal and free of it is
3046 * handled by ext4_clear_request_list from now on.
3047 */
3048 elr = NULL;
3049
3050 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3051 ret = ext4_run_lazyinit_thread();
3052 if (ret)
3053 goto out;
3054 }
3055 out:
3056 mutex_unlock(&ext4_li_mtx);
3057 if (ret)
3058 kfree(elr);
3059 return ret;
3060 }
3061
3062 /*
3063 * We do not need to lock anything since this is called on
3064 * module unload.
3065 */
3066 static void ext4_destroy_lazyinit_thread(void)
3067 {
3068 /*
3069 * If thread exited earlier
3070 * there's nothing to be done.
3071 */
3072 if (!ext4_li_info || !ext4_lazyinit_task)
3073 return;
3074
3075 kthread_stop(ext4_lazyinit_task);
3076 }
3077
3078 static int set_journal_csum_feature_set(struct super_block *sb)
3079 {
3080 int ret = 1;
3081 int compat, incompat;
3082 struct ext4_sb_info *sbi = EXT4_SB(sb);
3083
3084 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3085 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3086 /* journal checksum v2 */
3087 compat = 0;
3088 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3089 } else {
3090 /* journal checksum v1 */
3091 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3092 incompat = 0;
3093 }
3094
3095 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3096 ret = jbd2_journal_set_features(sbi->s_journal,
3097 compat, 0,
3098 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3099 incompat);
3100 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3101 ret = jbd2_journal_set_features(sbi->s_journal,
3102 compat, 0,
3103 incompat);
3104 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3105 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3106 } else {
3107 jbd2_journal_clear_features(sbi->s_journal,
3108 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3109 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3110 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3111 }
3112
3113 return ret;
3114 }
3115
3116 /*
3117 * Note: calculating the overhead so we can be compatible with
3118 * historical BSD practice is quite difficult in the face of
3119 * clusters/bigalloc. This is because multiple metadata blocks from
3120 * different block group can end up in the same allocation cluster.
3121 * Calculating the exact overhead in the face of clustered allocation
3122 * requires either O(all block bitmaps) in memory or O(number of block
3123 * groups**2) in time. We will still calculate the superblock for
3124 * older file systems --- and if we come across with a bigalloc file
3125 * system with zero in s_overhead_clusters the estimate will be close to
3126 * correct especially for very large cluster sizes --- but for newer
3127 * file systems, it's better to calculate this figure once at mkfs
3128 * time, and store it in the superblock. If the superblock value is
3129 * present (even for non-bigalloc file systems), we will use it.
3130 */
3131 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3132 char *buf)
3133 {
3134 struct ext4_sb_info *sbi = EXT4_SB(sb);
3135 struct ext4_group_desc *gdp;
3136 ext4_fsblk_t first_block, last_block, b;
3137 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3138 int s, j, count = 0;
3139
3140 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3141 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3142 sbi->s_itb_per_group + 2);
3143
3144 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3145 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3146 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3147 for (i = 0; i < ngroups; i++) {
3148 gdp = ext4_get_group_desc(sb, i, NULL);
3149 b = ext4_block_bitmap(sb, gdp);
3150 if (b >= first_block && b <= last_block) {
3151 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3152 count++;
3153 }
3154 b = ext4_inode_bitmap(sb, gdp);
3155 if (b >= first_block && b <= last_block) {
3156 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3157 count++;
3158 }
3159 b = ext4_inode_table(sb, gdp);
3160 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3161 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3162 int c = EXT4_B2C(sbi, b - first_block);
3163 ext4_set_bit(c, buf);
3164 count++;
3165 }
3166 if (i != grp)
3167 continue;
3168 s = 0;
3169 if (ext4_bg_has_super(sb, grp)) {
3170 ext4_set_bit(s++, buf);
3171 count++;
3172 }
3173 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3174 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3175 count++;
3176 }
3177 }
3178 if (!count)
3179 return 0;
3180 return EXT4_CLUSTERS_PER_GROUP(sb) -
3181 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3182 }
3183
3184 /*
3185 * Compute the overhead and stash it in sbi->s_overhead
3186 */
3187 int ext4_calculate_overhead(struct super_block *sb)
3188 {
3189 struct ext4_sb_info *sbi = EXT4_SB(sb);
3190 struct ext4_super_block *es = sbi->s_es;
3191 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3192 ext4_fsblk_t overhead = 0;
3193 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3194
3195 if (!buf)
3196 return -ENOMEM;
3197
3198 /*
3199 * Compute the overhead (FS structures). This is constant
3200 * for a given filesystem unless the number of block groups
3201 * changes so we cache the previous value until it does.
3202 */
3203
3204 /*
3205 * All of the blocks before first_data_block are overhead
3206 */
3207 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3208
3209 /*
3210 * Add the overhead found in each block group
3211 */
3212 for (i = 0; i < ngroups; i++) {
3213 int blks;
3214
3215 blks = count_overhead(sb, i, buf);
3216 overhead += blks;
3217 if (blks)
3218 memset(buf, 0, PAGE_SIZE);
3219 cond_resched();
3220 }
3221 /* Add the journal blocks as well */
3222 if (sbi->s_journal)
3223 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3224
3225 sbi->s_overhead = overhead;
3226 smp_wmb();
3227 free_page((unsigned long) buf);
3228 return 0;
3229 }
3230
3231
3232 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3233 {
3234 ext4_fsblk_t resv_clusters;
3235
3236 /*
3237 * There's no need to reserve anything when we aren't using extents.
3238 * The space estimates are exact, there are no unwritten extents,
3239 * hole punching doesn't need new metadata... This is needed especially
3240 * to keep ext2/3 backward compatibility.
3241 */
3242 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3243 return 0;
3244 /*
3245 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3246 * This should cover the situations where we can not afford to run
3247 * out of space like for example punch hole, or converting
3248 * uninitialized extents in delalloc path. In most cases such
3249 * allocation would require 1, or 2 blocks, higher numbers are
3250 * very rare.
3251 */
3252 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3253 EXT4_SB(sb)->s_cluster_bits;
3254
3255 do_div(resv_clusters, 50);
3256 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3257
3258 return resv_clusters;
3259 }
3260
3261
3262 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3263 {
3264 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3265 sbi->s_cluster_bits;
3266
3267 if (count >= clusters)
3268 return -EINVAL;
3269
3270 atomic64_set(&sbi->s_resv_clusters, count);
3271 return 0;
3272 }
3273
3274 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3275 {
3276 char *orig_data = kstrdup(data, GFP_KERNEL);
3277 struct buffer_head *bh;
3278 struct ext4_super_block *es = NULL;
3279 struct ext4_sb_info *sbi;
3280 ext4_fsblk_t block;
3281 ext4_fsblk_t sb_block = get_sb_block(&data);
3282 ext4_fsblk_t logical_sb_block;
3283 unsigned long offset = 0;
3284 unsigned long journal_devnum = 0;
3285 unsigned long def_mount_opts;
3286 struct inode *root;
3287 char *cp;
3288 const char *descr;
3289 int ret = -ENOMEM;
3290 int blocksize, clustersize;
3291 unsigned int db_count;
3292 unsigned int i;
3293 int needs_recovery, has_huge_files, has_bigalloc;
3294 __u64 blocks_count;
3295 int err = 0;
3296 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3297 ext4_group_t first_not_zeroed;
3298
3299 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3300 if (!sbi)
3301 goto out_free_orig;
3302
3303 sbi->s_blockgroup_lock =
3304 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3305 if (!sbi->s_blockgroup_lock) {
3306 kfree(sbi);
3307 goto out_free_orig;
3308 }
3309 sb->s_fs_info = sbi;
3310 sbi->s_sb = sb;
3311 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3312 sbi->s_sb_block = sb_block;
3313 if (sb->s_bdev->bd_part)
3314 sbi->s_sectors_written_start =
3315 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3316
3317 /* Cleanup superblock name */
3318 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3319 *cp = '!';
3320
3321 /* -EINVAL is default */
3322 ret = -EINVAL;
3323 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3324 if (!blocksize) {
3325 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3326 goto out_fail;
3327 }
3328
3329 /*
3330 * The ext4 superblock will not be buffer aligned for other than 1kB
3331 * block sizes. We need to calculate the offset from buffer start.
3332 */
3333 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3334 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3335 offset = do_div(logical_sb_block, blocksize);
3336 } else {
3337 logical_sb_block = sb_block;
3338 }
3339
3340 if (!(bh = sb_bread(sb, logical_sb_block))) {
3341 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3342 goto out_fail;
3343 }
3344 /*
3345 * Note: s_es must be initialized as soon as possible because
3346 * some ext4 macro-instructions depend on its value
3347 */
3348 es = (struct ext4_super_block *) (bh->b_data + offset);
3349 sbi->s_es = es;
3350 sb->s_magic = le16_to_cpu(es->s_magic);
3351 if (sb->s_magic != EXT4_SUPER_MAGIC)
3352 goto cantfind_ext4;
3353 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3354
3355 /* Warn if metadata_csum and gdt_csum are both set. */
3356 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3357 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3358 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3359 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3360 "redundant flags; please run fsck.");
3361
3362 /* Check for a known checksum algorithm */
3363 if (!ext4_verify_csum_type(sb, es)) {
3364 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3365 "unknown checksum algorithm.");
3366 silent = 1;
3367 goto cantfind_ext4;
3368 }
3369
3370 /* Load the checksum driver */
3371 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3373 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3374 if (IS_ERR(sbi->s_chksum_driver)) {
3375 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3376 ret = PTR_ERR(sbi->s_chksum_driver);
3377 sbi->s_chksum_driver = NULL;
3378 goto failed_mount;
3379 }
3380 }
3381
3382 /* Check superblock checksum */
3383 if (!ext4_superblock_csum_verify(sb, es)) {
3384 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3385 "invalid superblock checksum. Run e2fsck?");
3386 silent = 1;
3387 goto cantfind_ext4;
3388 }
3389
3390 /* Precompute checksum seed for all metadata */
3391 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3392 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3393 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3394 sizeof(es->s_uuid));
3395
3396 /* Set defaults before we parse the mount options */
3397 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3398 set_opt(sb, INIT_INODE_TABLE);
3399 if (def_mount_opts & EXT4_DEFM_DEBUG)
3400 set_opt(sb, DEBUG);
3401 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3402 set_opt(sb, GRPID);
3403 if (def_mount_opts & EXT4_DEFM_UID16)
3404 set_opt(sb, NO_UID32);
3405 /* xattr user namespace & acls are now defaulted on */
3406 set_opt(sb, XATTR_USER);
3407 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3408 set_opt(sb, POSIX_ACL);
3409 #endif
3410 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3411 set_opt(sb, JOURNAL_DATA);
3412 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3413 set_opt(sb, ORDERED_DATA);
3414 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3415 set_opt(sb, WRITEBACK_DATA);
3416
3417 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3418 set_opt(sb, ERRORS_PANIC);
3419 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3420 set_opt(sb, ERRORS_CONT);
3421 else
3422 set_opt(sb, ERRORS_RO);
3423 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3424 set_opt(sb, BLOCK_VALIDITY);
3425 if (def_mount_opts & EXT4_DEFM_DISCARD)
3426 set_opt(sb, DISCARD);
3427
3428 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3429 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3430 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3431 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3432 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3433
3434 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3435 set_opt(sb, BARRIER);
3436
3437 /*
3438 * enable delayed allocation by default
3439 * Use -o nodelalloc to turn it off
3440 */
3441 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3442 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3443 set_opt(sb, DELALLOC);
3444
3445 /*
3446 * set default s_li_wait_mult for lazyinit, for the case there is
3447 * no mount option specified.
3448 */
3449 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3450
3451 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3452 &journal_devnum, &journal_ioprio, 0)) {
3453 ext4_msg(sb, KERN_WARNING,
3454 "failed to parse options in superblock: %s",
3455 sbi->s_es->s_mount_opts);
3456 }
3457 sbi->s_def_mount_opt = sbi->s_mount_opt;
3458 if (!parse_options((char *) data, sb, &journal_devnum,
3459 &journal_ioprio, 0))
3460 goto failed_mount;
3461
3462 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3463 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3464 "with data=journal disables delayed "
3465 "allocation and O_DIRECT support!\n");
3466 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3467 ext4_msg(sb, KERN_ERR, "can't mount with "
3468 "both data=journal and delalloc");
3469 goto failed_mount;
3470 }
3471 if (test_opt(sb, DIOREAD_NOLOCK)) {
3472 ext4_msg(sb, KERN_ERR, "can't mount with "
3473 "both data=journal and dioread_nolock");
3474 goto failed_mount;
3475 }
3476 if (test_opt(sb, DELALLOC))
3477 clear_opt(sb, DELALLOC);
3478 }
3479
3480 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3481 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3482
3483 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3484 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3485 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3486 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3487 ext4_msg(sb, KERN_WARNING,
3488 "feature flags set on rev 0 fs, "
3489 "running e2fsck is recommended");
3490
3491 if (IS_EXT2_SB(sb)) {
3492 if (ext2_feature_set_ok(sb))
3493 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3494 "using the ext4 subsystem");
3495 else {
3496 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3497 "to feature incompatibilities");
3498 goto failed_mount;
3499 }
3500 }
3501
3502 if (IS_EXT3_SB(sb)) {
3503 if (ext3_feature_set_ok(sb))
3504 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3505 "using the ext4 subsystem");
3506 else {
3507 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3508 "to feature incompatibilities");
3509 goto failed_mount;
3510 }
3511 }
3512
3513 /*
3514 * Check feature flags regardless of the revision level, since we
3515 * previously didn't change the revision level when setting the flags,
3516 * so there is a chance incompat flags are set on a rev 0 filesystem.
3517 */
3518 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3519 goto failed_mount;
3520
3521 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3522 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3523 blocksize > EXT4_MAX_BLOCK_SIZE) {
3524 ext4_msg(sb, KERN_ERR,
3525 "Unsupported filesystem blocksize %d", blocksize);
3526 goto failed_mount;
3527 }
3528
3529 if (sb->s_blocksize != blocksize) {
3530 /* Validate the filesystem blocksize */
3531 if (!sb_set_blocksize(sb, blocksize)) {
3532 ext4_msg(sb, KERN_ERR, "bad block size %d",
3533 blocksize);
3534 goto failed_mount;
3535 }
3536
3537 brelse(bh);
3538 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3539 offset = do_div(logical_sb_block, blocksize);
3540 bh = sb_bread(sb, logical_sb_block);
3541 if (!bh) {
3542 ext4_msg(sb, KERN_ERR,
3543 "Can't read superblock on 2nd try");
3544 goto failed_mount;
3545 }
3546 es = (struct ext4_super_block *)(bh->b_data + offset);
3547 sbi->s_es = es;
3548 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3549 ext4_msg(sb, KERN_ERR,
3550 "Magic mismatch, very weird!");
3551 goto failed_mount;
3552 }
3553 }
3554
3555 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3556 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3557 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3558 has_huge_files);
3559 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3560
3561 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3562 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3563 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3564 } else {
3565 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3566 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3567 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3568 (!is_power_of_2(sbi->s_inode_size)) ||
3569 (sbi->s_inode_size > blocksize)) {
3570 ext4_msg(sb, KERN_ERR,
3571 "unsupported inode size: %d",
3572 sbi->s_inode_size);
3573 goto failed_mount;
3574 }
3575 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3576 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3577 }
3578
3579 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3580 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3581 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3582 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3583 !is_power_of_2(sbi->s_desc_size)) {
3584 ext4_msg(sb, KERN_ERR,
3585 "unsupported descriptor size %lu",
3586 sbi->s_desc_size);
3587 goto failed_mount;
3588 }
3589 } else
3590 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3591
3592 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3593 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3594 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3595 goto cantfind_ext4;
3596
3597 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3598 if (sbi->s_inodes_per_block == 0)
3599 goto cantfind_ext4;
3600 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3601 sbi->s_inodes_per_block;
3602 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3603 sbi->s_sbh = bh;
3604 sbi->s_mount_state = le16_to_cpu(es->s_state);
3605 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3606 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3607
3608 for (i = 0; i < 4; i++)
3609 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3610 sbi->s_def_hash_version = es->s_def_hash_version;
3611 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3612 i = le32_to_cpu(es->s_flags);
3613 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3614 sbi->s_hash_unsigned = 3;
3615 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3616 #ifdef __CHAR_UNSIGNED__
3617 if (!(sb->s_flags & MS_RDONLY))
3618 es->s_flags |=
3619 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3620 sbi->s_hash_unsigned = 3;
3621 #else
3622 if (!(sb->s_flags & MS_RDONLY))
3623 es->s_flags |=
3624 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3625 #endif
3626 }
3627 }
3628
3629 /* Handle clustersize */
3630 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3631 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3632 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3633 if (has_bigalloc) {
3634 if (clustersize < blocksize) {
3635 ext4_msg(sb, KERN_ERR,
3636 "cluster size (%d) smaller than "
3637 "block size (%d)", clustersize, blocksize);
3638 goto failed_mount;
3639 }
3640 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3641 le32_to_cpu(es->s_log_block_size);
3642 sbi->s_clusters_per_group =
3643 le32_to_cpu(es->s_clusters_per_group);
3644 if (sbi->s_clusters_per_group > blocksize * 8) {
3645 ext4_msg(sb, KERN_ERR,
3646 "#clusters per group too big: %lu",
3647 sbi->s_clusters_per_group);
3648 goto failed_mount;
3649 }
3650 if (sbi->s_blocks_per_group !=
3651 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3652 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3653 "clusters per group (%lu) inconsistent",
3654 sbi->s_blocks_per_group,
3655 sbi->s_clusters_per_group);
3656 goto failed_mount;
3657 }
3658 } else {
3659 if (clustersize != blocksize) {
3660 ext4_warning(sb, "fragment/cluster size (%d) != "
3661 "block size (%d)", clustersize,
3662 blocksize);
3663 clustersize = blocksize;
3664 }
3665 if (sbi->s_blocks_per_group > blocksize * 8) {
3666 ext4_msg(sb, KERN_ERR,
3667 "#blocks per group too big: %lu",
3668 sbi->s_blocks_per_group);
3669 goto failed_mount;
3670 }
3671 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3672 sbi->s_cluster_bits = 0;
3673 }
3674 sbi->s_cluster_ratio = clustersize / blocksize;
3675
3676 if (sbi->s_inodes_per_group > blocksize * 8) {
3677 ext4_msg(sb, KERN_ERR,
3678 "#inodes per group too big: %lu",
3679 sbi->s_inodes_per_group);
3680 goto failed_mount;
3681 }
3682
3683 /* Do we have standard group size of clustersize * 8 blocks ? */
3684 if (sbi->s_blocks_per_group == clustersize << 3)
3685 set_opt2(sb, STD_GROUP_SIZE);
3686
3687 /*
3688 * Test whether we have more sectors than will fit in sector_t,
3689 * and whether the max offset is addressable by the page cache.
3690 */
3691 err = generic_check_addressable(sb->s_blocksize_bits,
3692 ext4_blocks_count(es));
3693 if (err) {
3694 ext4_msg(sb, KERN_ERR, "filesystem"
3695 " too large to mount safely on this system");
3696 if (sizeof(sector_t) < 8)
3697 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3698 goto failed_mount;
3699 }
3700
3701 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3702 goto cantfind_ext4;
3703
3704 /* check blocks count against device size */
3705 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3706 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3707 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3708 "exceeds size of device (%llu blocks)",
3709 ext4_blocks_count(es), blocks_count);
3710 goto failed_mount;
3711 }
3712
3713 /*
3714 * It makes no sense for the first data block to be beyond the end
3715 * of the filesystem.
3716 */
3717 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3718 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3719 "block %u is beyond end of filesystem (%llu)",
3720 le32_to_cpu(es->s_first_data_block),
3721 ext4_blocks_count(es));
3722 goto failed_mount;
3723 }
3724 blocks_count = (ext4_blocks_count(es) -
3725 le32_to_cpu(es->s_first_data_block) +
3726 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3727 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3728 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3729 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3730 "(block count %llu, first data block %u, "
3731 "blocks per group %lu)", sbi->s_groups_count,
3732 ext4_blocks_count(es),
3733 le32_to_cpu(es->s_first_data_block),
3734 EXT4_BLOCKS_PER_GROUP(sb));
3735 goto failed_mount;
3736 }
3737 sbi->s_groups_count = blocks_count;
3738 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3739 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3740 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3741 EXT4_DESC_PER_BLOCK(sb);
3742 sbi->s_group_desc = ext4_kvmalloc(db_count *
3743 sizeof(struct buffer_head *),
3744 GFP_KERNEL);
3745 if (sbi->s_group_desc == NULL) {
3746 ext4_msg(sb, KERN_ERR, "not enough memory");
3747 ret = -ENOMEM;
3748 goto failed_mount;
3749 }
3750
3751 if (ext4_proc_root)
3752 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3753
3754 if (sbi->s_proc)
3755 proc_create_data("options", S_IRUGO, sbi->s_proc,
3756 &ext4_seq_options_fops, sb);
3757
3758 bgl_lock_init(sbi->s_blockgroup_lock);
3759
3760 for (i = 0; i < db_count; i++) {
3761 block = descriptor_loc(sb, logical_sb_block, i);
3762 sbi->s_group_desc[i] = sb_bread(sb, block);
3763 if (!sbi->s_group_desc[i]) {
3764 ext4_msg(sb, KERN_ERR,
3765 "can't read group descriptor %d", i);
3766 db_count = i;
3767 goto failed_mount2;
3768 }
3769 }
3770 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3771 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3772 goto failed_mount2;
3773 }
3774 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3775 if (!ext4_fill_flex_info(sb)) {
3776 ext4_msg(sb, KERN_ERR,
3777 "unable to initialize "
3778 "flex_bg meta info!");
3779 goto failed_mount2;
3780 }
3781
3782 sbi->s_gdb_count = db_count;
3783 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3784 spin_lock_init(&sbi->s_next_gen_lock);
3785
3786 init_timer(&sbi->s_err_report);
3787 sbi->s_err_report.function = print_daily_error_info;
3788 sbi->s_err_report.data = (unsigned long) sb;
3789
3790 /* Register extent status tree shrinker */
3791 ext4_es_register_shrinker(sb);
3792
3793 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3794 ext4_count_free_clusters(sb));
3795 if (!err) {
3796 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3797 ext4_count_free_inodes(sb));
3798 }
3799 if (!err) {
3800 err = percpu_counter_init(&sbi->s_dirs_counter,
3801 ext4_count_dirs(sb));
3802 }
3803 if (!err) {
3804 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3805 }
3806 if (!err) {
3807 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3808 }
3809 if (err) {
3810 ext4_msg(sb, KERN_ERR, "insufficient memory");
3811 goto failed_mount3;
3812 }
3813
3814 sbi->s_stripe = ext4_get_stripe_size(sbi);
3815 sbi->s_max_writeback_mb_bump = 128;
3816 sbi->s_extent_max_zeroout_kb = 32;
3817
3818 /*
3819 * set up enough so that it can read an inode
3820 */
3821 if (!test_opt(sb, NOLOAD) &&
3822 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3823 sb->s_op = &ext4_sops;
3824 else
3825 sb->s_op = &ext4_nojournal_sops;
3826 sb->s_export_op = &ext4_export_ops;
3827 sb->s_xattr = ext4_xattr_handlers;
3828 #ifdef CONFIG_QUOTA
3829 sb->dq_op = &ext4_quota_operations;
3830 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3831 sb->s_qcop = &ext4_qctl_sysfile_operations;
3832 else
3833 sb->s_qcop = &ext4_qctl_operations;
3834 #endif
3835 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3836
3837 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3838 mutex_init(&sbi->s_orphan_lock);
3839
3840 sb->s_root = NULL;
3841
3842 needs_recovery = (es->s_last_orphan != 0 ||
3843 EXT4_HAS_INCOMPAT_FEATURE(sb,
3844 EXT4_FEATURE_INCOMPAT_RECOVER));
3845
3846 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3847 !(sb->s_flags & MS_RDONLY))
3848 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3849 goto failed_mount3;
3850
3851 /*
3852 * The first inode we look at is the journal inode. Don't try
3853 * root first: it may be modified in the journal!
3854 */
3855 if (!test_opt(sb, NOLOAD) &&
3856 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3857 if (ext4_load_journal(sb, es, journal_devnum))
3858 goto failed_mount3;
3859 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3860 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3861 ext4_msg(sb, KERN_ERR, "required journal recovery "
3862 "suppressed and not mounted read-only");
3863 goto failed_mount_wq;
3864 } else {
3865 clear_opt(sb, DATA_FLAGS);
3866 sbi->s_journal = NULL;
3867 needs_recovery = 0;
3868 goto no_journal;
3869 }
3870
3871 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3872 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3873 JBD2_FEATURE_INCOMPAT_64BIT)) {
3874 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3875 goto failed_mount_wq;
3876 }
3877
3878 if (!set_journal_csum_feature_set(sb)) {
3879 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3880 "feature set");
3881 goto failed_mount_wq;
3882 }
3883
3884 /* We have now updated the journal if required, so we can
3885 * validate the data journaling mode. */
3886 switch (test_opt(sb, DATA_FLAGS)) {
3887 case 0:
3888 /* No mode set, assume a default based on the journal
3889 * capabilities: ORDERED_DATA if the journal can
3890 * cope, else JOURNAL_DATA
3891 */
3892 if (jbd2_journal_check_available_features
3893 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3894 set_opt(sb, ORDERED_DATA);
3895 else
3896 set_opt(sb, JOURNAL_DATA);
3897 break;
3898
3899 case EXT4_MOUNT_ORDERED_DATA:
3900 case EXT4_MOUNT_WRITEBACK_DATA:
3901 if (!jbd2_journal_check_available_features
3902 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3903 ext4_msg(sb, KERN_ERR, "Journal does not support "
3904 "requested data journaling mode");
3905 goto failed_mount_wq;
3906 }
3907 default:
3908 break;
3909 }
3910 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3911
3912 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3913
3914 /*
3915 * The journal may have updated the bg summary counts, so we
3916 * need to update the global counters.
3917 */
3918 percpu_counter_set(&sbi->s_freeclusters_counter,
3919 ext4_count_free_clusters(sb));
3920 percpu_counter_set(&sbi->s_freeinodes_counter,
3921 ext4_count_free_inodes(sb));
3922 percpu_counter_set(&sbi->s_dirs_counter,
3923 ext4_count_dirs(sb));
3924 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3925
3926 no_journal:
3927 /*
3928 * Get the # of file system overhead blocks from the
3929 * superblock if present.
3930 */
3931 if (es->s_overhead_clusters)
3932 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3933 else {
3934 err = ext4_calculate_overhead(sb);
3935 if (err)
3936 goto failed_mount_wq;
3937 }
3938
3939 /*
3940 * The maximum number of concurrent works can be high and
3941 * concurrency isn't really necessary. Limit it to 1.
3942 */
3943 EXT4_SB(sb)->dio_unwritten_wq =
3944 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3945 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3946 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3947 ret = -ENOMEM;
3948 goto failed_mount_wq;
3949 }
3950
3951 /*
3952 * The jbd2_journal_load will have done any necessary log recovery,
3953 * so we can safely mount the rest of the filesystem now.
3954 */
3955
3956 root = ext4_iget(sb, EXT4_ROOT_INO);
3957 if (IS_ERR(root)) {
3958 ext4_msg(sb, KERN_ERR, "get root inode failed");
3959 ret = PTR_ERR(root);
3960 root = NULL;
3961 goto failed_mount4;
3962 }
3963 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3964 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3965 iput(root);
3966 goto failed_mount4;
3967 }
3968 sb->s_root = d_make_root(root);
3969 if (!sb->s_root) {
3970 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3971 ret = -ENOMEM;
3972 goto failed_mount4;
3973 }
3974
3975 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3976 sb->s_flags |= MS_RDONLY;
3977
3978 /* determine the minimum size of new large inodes, if present */
3979 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3980 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3981 EXT4_GOOD_OLD_INODE_SIZE;
3982 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3983 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3984 if (sbi->s_want_extra_isize <
3985 le16_to_cpu(es->s_want_extra_isize))
3986 sbi->s_want_extra_isize =
3987 le16_to_cpu(es->s_want_extra_isize);
3988 if (sbi->s_want_extra_isize <
3989 le16_to_cpu(es->s_min_extra_isize))
3990 sbi->s_want_extra_isize =
3991 le16_to_cpu(es->s_min_extra_isize);
3992 }
3993 }
3994 /* Check if enough inode space is available */
3995 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3996 sbi->s_inode_size) {
3997 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3998 EXT4_GOOD_OLD_INODE_SIZE;
3999 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4000 "available");
4001 }
4002
4003 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4004 if (err) {
4005 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4006 "reserved pool", ext4_calculate_resv_clusters(sb));
4007 goto failed_mount4a;
4008 }
4009
4010 err = ext4_setup_system_zone(sb);
4011 if (err) {
4012 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4013 "zone (%d)", err);
4014 goto failed_mount4a;
4015 }
4016
4017 ext4_ext_init(sb);
4018 err = ext4_mb_init(sb);
4019 if (err) {
4020 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4021 err);
4022 goto failed_mount5;
4023 }
4024
4025 err = ext4_register_li_request(sb, first_not_zeroed);
4026 if (err)
4027 goto failed_mount6;
4028
4029 sbi->s_kobj.kset = ext4_kset;
4030 init_completion(&sbi->s_kobj_unregister);
4031 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4032 "%s", sb->s_id);
4033 if (err)
4034 goto failed_mount7;
4035
4036 #ifdef CONFIG_QUOTA
4037 /* Enable quota usage during mount. */
4038 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4039 !(sb->s_flags & MS_RDONLY)) {
4040 err = ext4_enable_quotas(sb);
4041 if (err)
4042 goto failed_mount8;
4043 }
4044 #endif /* CONFIG_QUOTA */
4045
4046 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4047 ext4_orphan_cleanup(sb, es);
4048 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4049 if (needs_recovery) {
4050 ext4_msg(sb, KERN_INFO, "recovery complete");
4051 ext4_mark_recovery_complete(sb, es);
4052 }
4053 if (EXT4_SB(sb)->s_journal) {
4054 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4055 descr = " journalled data mode";
4056 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4057 descr = " ordered data mode";
4058 else
4059 descr = " writeback data mode";
4060 } else
4061 descr = "out journal";
4062
4063 if (test_opt(sb, DISCARD)) {
4064 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4065 if (!blk_queue_discard(q))
4066 ext4_msg(sb, KERN_WARNING,
4067 "mounting with \"discard\" option, but "
4068 "the device does not support discard");
4069 }
4070
4071 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4072 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4073 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4074
4075 if (es->s_error_count)
4076 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4077
4078 kfree(orig_data);
4079 return 0;
4080
4081 cantfind_ext4:
4082 if (!silent)
4083 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4084 goto failed_mount;
4085
4086 #ifdef CONFIG_QUOTA
4087 failed_mount8:
4088 kobject_del(&sbi->s_kobj);
4089 #endif
4090 failed_mount7:
4091 ext4_unregister_li_request(sb);
4092 failed_mount6:
4093 ext4_mb_release(sb);
4094 failed_mount5:
4095 ext4_ext_release(sb);
4096 ext4_release_system_zone(sb);
4097 failed_mount4a:
4098 dput(sb->s_root);
4099 sb->s_root = NULL;
4100 failed_mount4:
4101 ext4_msg(sb, KERN_ERR, "mount failed");
4102 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4103 failed_mount_wq:
4104 if (sbi->s_journal) {
4105 jbd2_journal_destroy(sbi->s_journal);
4106 sbi->s_journal = NULL;
4107 }
4108 failed_mount3:
4109 ext4_es_unregister_shrinker(sb);
4110 del_timer(&sbi->s_err_report);
4111 if (sbi->s_flex_groups)
4112 ext4_kvfree(sbi->s_flex_groups);
4113 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4114 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4115 percpu_counter_destroy(&sbi->s_dirs_counter);
4116 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4117 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4118 if (sbi->s_mmp_tsk)
4119 kthread_stop(sbi->s_mmp_tsk);
4120 failed_mount2:
4121 for (i = 0; i < db_count; i++)
4122 brelse(sbi->s_group_desc[i]);
4123 ext4_kvfree(sbi->s_group_desc);
4124 failed_mount:
4125 if (sbi->s_chksum_driver)
4126 crypto_free_shash(sbi->s_chksum_driver);
4127 if (sbi->s_proc) {
4128 remove_proc_entry("options", sbi->s_proc);
4129 remove_proc_entry(sb->s_id, ext4_proc_root);
4130 }
4131 #ifdef CONFIG_QUOTA
4132 for (i = 0; i < MAXQUOTAS; i++)
4133 kfree(sbi->s_qf_names[i]);
4134 #endif
4135 ext4_blkdev_remove(sbi);
4136 brelse(bh);
4137 out_fail:
4138 sb->s_fs_info = NULL;
4139 kfree(sbi->s_blockgroup_lock);
4140 kfree(sbi);
4141 out_free_orig:
4142 kfree(orig_data);
4143 return err ? err : ret;
4144 }
4145
4146 /*
4147 * Setup any per-fs journal parameters now. We'll do this both on
4148 * initial mount, once the journal has been initialised but before we've
4149 * done any recovery; and again on any subsequent remount.
4150 */
4151 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4152 {
4153 struct ext4_sb_info *sbi = EXT4_SB(sb);
4154
4155 journal->j_commit_interval = sbi->s_commit_interval;
4156 journal->j_min_batch_time = sbi->s_min_batch_time;
4157 journal->j_max_batch_time = sbi->s_max_batch_time;
4158
4159 write_lock(&journal->j_state_lock);
4160 if (test_opt(sb, BARRIER))
4161 journal->j_flags |= JBD2_BARRIER;
4162 else
4163 journal->j_flags &= ~JBD2_BARRIER;
4164 if (test_opt(sb, DATA_ERR_ABORT))
4165 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4166 else
4167 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4168 write_unlock(&journal->j_state_lock);
4169 }
4170
4171 static journal_t *ext4_get_journal(struct super_block *sb,
4172 unsigned int journal_inum)
4173 {
4174 struct inode *journal_inode;
4175 journal_t *journal;
4176
4177 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4178
4179 /* First, test for the existence of a valid inode on disk. Bad
4180 * things happen if we iget() an unused inode, as the subsequent
4181 * iput() will try to delete it. */
4182
4183 journal_inode = ext4_iget(sb, journal_inum);
4184 if (IS_ERR(journal_inode)) {
4185 ext4_msg(sb, KERN_ERR, "no journal found");
4186 return NULL;
4187 }
4188 if (!journal_inode->i_nlink) {
4189 make_bad_inode(journal_inode);
4190 iput(journal_inode);
4191 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4192 return NULL;
4193 }
4194
4195 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4196 journal_inode, journal_inode->i_size);
4197 if (!S_ISREG(journal_inode->i_mode)) {
4198 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4199 iput(journal_inode);
4200 return NULL;
4201 }
4202
4203 journal = jbd2_journal_init_inode(journal_inode);
4204 if (!journal) {
4205 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4206 iput(journal_inode);
4207 return NULL;
4208 }
4209 journal->j_private = sb;
4210 ext4_init_journal_params(sb, journal);
4211 return journal;
4212 }
4213
4214 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4215 dev_t j_dev)
4216 {
4217 struct buffer_head *bh;
4218 journal_t *journal;
4219 ext4_fsblk_t start;
4220 ext4_fsblk_t len;
4221 int hblock, blocksize;
4222 ext4_fsblk_t sb_block;
4223 unsigned long offset;
4224 struct ext4_super_block *es;
4225 struct block_device *bdev;
4226
4227 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4228
4229 bdev = ext4_blkdev_get(j_dev, sb);
4230 if (bdev == NULL)
4231 return NULL;
4232
4233 blocksize = sb->s_blocksize;
4234 hblock = bdev_logical_block_size(bdev);
4235 if (blocksize < hblock) {
4236 ext4_msg(sb, KERN_ERR,
4237 "blocksize too small for journal device");
4238 goto out_bdev;
4239 }
4240
4241 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4242 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4243 set_blocksize(bdev, blocksize);
4244 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4245 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4246 "external journal");
4247 goto out_bdev;
4248 }
4249
4250 es = (struct ext4_super_block *) (bh->b_data + offset);
4251 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4252 !(le32_to_cpu(es->s_feature_incompat) &
4253 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4254 ext4_msg(sb, KERN_ERR, "external journal has "
4255 "bad superblock");
4256 brelse(bh);
4257 goto out_bdev;
4258 }
4259
4260 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4261 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4262 brelse(bh);
4263 goto out_bdev;
4264 }
4265
4266 len = ext4_blocks_count(es);
4267 start = sb_block + 1;
4268 brelse(bh); /* we're done with the superblock */
4269
4270 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4271 start, len, blocksize);
4272 if (!journal) {
4273 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4274 goto out_bdev;
4275 }
4276 journal->j_private = sb;
4277 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4278 wait_on_buffer(journal->j_sb_buffer);
4279 if (!buffer_uptodate(journal->j_sb_buffer)) {
4280 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4281 goto out_journal;
4282 }
4283 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4284 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4285 "user (unsupported) - %d",
4286 be32_to_cpu(journal->j_superblock->s_nr_users));
4287 goto out_journal;
4288 }
4289 EXT4_SB(sb)->journal_bdev = bdev;
4290 ext4_init_journal_params(sb, journal);
4291 return journal;
4292
4293 out_journal:
4294 jbd2_journal_destroy(journal);
4295 out_bdev:
4296 ext4_blkdev_put(bdev);
4297 return NULL;
4298 }
4299
4300 static int ext4_load_journal(struct super_block *sb,
4301 struct ext4_super_block *es,
4302 unsigned long journal_devnum)
4303 {
4304 journal_t *journal;
4305 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4306 dev_t journal_dev;
4307 int err = 0;
4308 int really_read_only;
4309
4310 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4311
4312 if (journal_devnum &&
4313 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4314 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4315 "numbers have changed");
4316 journal_dev = new_decode_dev(journal_devnum);
4317 } else
4318 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4319
4320 really_read_only = bdev_read_only(sb->s_bdev);
4321
4322 /*
4323 * Are we loading a blank journal or performing recovery after a
4324 * crash? For recovery, we need to check in advance whether we
4325 * can get read-write access to the device.
4326 */
4327 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4328 if (sb->s_flags & MS_RDONLY) {
4329 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4330 "required on readonly filesystem");
4331 if (really_read_only) {
4332 ext4_msg(sb, KERN_ERR, "write access "
4333 "unavailable, cannot proceed");
4334 return -EROFS;
4335 }
4336 ext4_msg(sb, KERN_INFO, "write access will "
4337 "be enabled during recovery");
4338 }
4339 }
4340
4341 if (journal_inum && journal_dev) {
4342 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4343 "and inode journals!");
4344 return -EINVAL;
4345 }
4346
4347 if (journal_inum) {
4348 if (!(journal = ext4_get_journal(sb, journal_inum)))
4349 return -EINVAL;
4350 } else {
4351 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4352 return -EINVAL;
4353 }
4354
4355 if (!(journal->j_flags & JBD2_BARRIER))
4356 ext4_msg(sb, KERN_INFO, "barriers disabled");
4357
4358 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4359 err = jbd2_journal_wipe(journal, !really_read_only);
4360 if (!err) {
4361 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4362 if (save)
4363 memcpy(save, ((char *) es) +
4364 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4365 err = jbd2_journal_load(journal);
4366 if (save)
4367 memcpy(((char *) es) + EXT4_S_ERR_START,
4368 save, EXT4_S_ERR_LEN);
4369 kfree(save);
4370 }
4371
4372 if (err) {
4373 ext4_msg(sb, KERN_ERR, "error loading journal");
4374 jbd2_journal_destroy(journal);
4375 return err;
4376 }
4377
4378 EXT4_SB(sb)->s_journal = journal;
4379 ext4_clear_journal_err(sb, es);
4380
4381 if (!really_read_only && journal_devnum &&
4382 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4383 es->s_journal_dev = cpu_to_le32(journal_devnum);
4384
4385 /* Make sure we flush the recovery flag to disk. */
4386 ext4_commit_super(sb, 1);
4387 }
4388
4389 return 0;
4390 }
4391
4392 static int ext4_commit_super(struct super_block *sb, int sync)
4393 {
4394 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4395 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4396 int error = 0;
4397
4398 if (!sbh || block_device_ejected(sb))
4399 return error;
4400 if (buffer_write_io_error(sbh)) {
4401 /*
4402 * Oh, dear. A previous attempt to write the
4403 * superblock failed. This could happen because the
4404 * USB device was yanked out. Or it could happen to
4405 * be a transient write error and maybe the block will
4406 * be remapped. Nothing we can do but to retry the
4407 * write and hope for the best.
4408 */
4409 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4410 "superblock detected");
4411 clear_buffer_write_io_error(sbh);
4412 set_buffer_uptodate(sbh);
4413 }
4414 /*
4415 * If the file system is mounted read-only, don't update the
4416 * superblock write time. This avoids updating the superblock
4417 * write time when we are mounting the root file system
4418 * read/only but we need to replay the journal; at that point,
4419 * for people who are east of GMT and who make their clock
4420 * tick in localtime for Windows bug-for-bug compatibility,
4421 * the clock is set in the future, and this will cause e2fsck
4422 * to complain and force a full file system check.
4423 */
4424 if (!(sb->s_flags & MS_RDONLY))
4425 es->s_wtime = cpu_to_le32(get_seconds());
4426 if (sb->s_bdev->bd_part)
4427 es->s_kbytes_written =
4428 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4429 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4430 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4431 else
4432 es->s_kbytes_written =
4433 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4434 ext4_free_blocks_count_set(es,
4435 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4436 &EXT4_SB(sb)->s_freeclusters_counter)));
4437 es->s_free_inodes_count =
4438 cpu_to_le32(percpu_counter_sum_positive(
4439 &EXT4_SB(sb)->s_freeinodes_counter));
4440 BUFFER_TRACE(sbh, "marking dirty");
4441 ext4_superblock_csum_set(sb);
4442 mark_buffer_dirty(sbh);
4443 if (sync) {
4444 error = sync_dirty_buffer(sbh);
4445 if (error)
4446 return error;
4447
4448 error = buffer_write_io_error(sbh);
4449 if (error) {
4450 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4451 "superblock");
4452 clear_buffer_write_io_error(sbh);
4453 set_buffer_uptodate(sbh);
4454 }
4455 }
4456 return error;
4457 }
4458
4459 /*
4460 * Have we just finished recovery? If so, and if we are mounting (or
4461 * remounting) the filesystem readonly, then we will end up with a
4462 * consistent fs on disk. Record that fact.
4463 */
4464 static void ext4_mark_recovery_complete(struct super_block *sb,
4465 struct ext4_super_block *es)
4466 {
4467 journal_t *journal = EXT4_SB(sb)->s_journal;
4468
4469 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4470 BUG_ON(journal != NULL);
4471 return;
4472 }
4473 jbd2_journal_lock_updates(journal);
4474 if (jbd2_journal_flush(journal) < 0)
4475 goto out;
4476
4477 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4478 sb->s_flags & MS_RDONLY) {
4479 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4480 ext4_commit_super(sb, 1);
4481 }
4482
4483 out:
4484 jbd2_journal_unlock_updates(journal);
4485 }
4486
4487 /*
4488 * If we are mounting (or read-write remounting) a filesystem whose journal
4489 * has recorded an error from a previous lifetime, move that error to the
4490 * main filesystem now.
4491 */
4492 static void ext4_clear_journal_err(struct super_block *sb,
4493 struct ext4_super_block *es)
4494 {
4495 journal_t *journal;
4496 int j_errno;
4497 const char *errstr;
4498
4499 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4500
4501 journal = EXT4_SB(sb)->s_journal;
4502
4503 /*
4504 * Now check for any error status which may have been recorded in the
4505 * journal by a prior ext4_error() or ext4_abort()
4506 */
4507
4508 j_errno = jbd2_journal_errno(journal);
4509 if (j_errno) {
4510 char nbuf[16];
4511
4512 errstr = ext4_decode_error(sb, j_errno, nbuf);
4513 ext4_warning(sb, "Filesystem error recorded "
4514 "from previous mount: %s", errstr);
4515 ext4_warning(sb, "Marking fs in need of filesystem check.");
4516
4517 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4518 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4519 ext4_commit_super(sb, 1);
4520
4521 jbd2_journal_clear_err(journal);
4522 jbd2_journal_update_sb_errno(journal);
4523 }
4524 }
4525
4526 /*
4527 * Force the running and committing transactions to commit,
4528 * and wait on the commit.
4529 */
4530 int ext4_force_commit(struct super_block *sb)
4531 {
4532 journal_t *journal;
4533
4534 if (sb->s_flags & MS_RDONLY)
4535 return 0;
4536
4537 journal = EXT4_SB(sb)->s_journal;
4538 return ext4_journal_force_commit(journal);
4539 }
4540
4541 static int ext4_sync_fs(struct super_block *sb, int wait)
4542 {
4543 int ret = 0;
4544 tid_t target;
4545 struct ext4_sb_info *sbi = EXT4_SB(sb);
4546
4547 trace_ext4_sync_fs(sb, wait);
4548 flush_workqueue(sbi->dio_unwritten_wq);
4549 /*
4550 * Writeback quota in non-journalled quota case - journalled quota has
4551 * no dirty dquots
4552 */
4553 dquot_writeback_dquots(sb, -1);
4554 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4555 if (wait)
4556 jbd2_log_wait_commit(sbi->s_journal, target);
4557 }
4558 return ret;
4559 }
4560
4561 /*
4562 * LVM calls this function before a (read-only) snapshot is created. This
4563 * gives us a chance to flush the journal completely and mark the fs clean.
4564 *
4565 * Note that only this function cannot bring a filesystem to be in a clean
4566 * state independently. It relies on upper layer to stop all data & metadata
4567 * modifications.
4568 */
4569 static int ext4_freeze(struct super_block *sb)
4570 {
4571 int error = 0;
4572 journal_t *journal;
4573
4574 if (sb->s_flags & MS_RDONLY)
4575 return 0;
4576
4577 journal = EXT4_SB(sb)->s_journal;
4578
4579 /* Now we set up the journal barrier. */
4580 jbd2_journal_lock_updates(journal);
4581
4582 /*
4583 * Don't clear the needs_recovery flag if we failed to flush
4584 * the journal.
4585 */
4586 error = jbd2_journal_flush(journal);
4587 if (error < 0)
4588 goto out;
4589
4590 /* Journal blocked and flushed, clear needs_recovery flag. */
4591 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4592 error = ext4_commit_super(sb, 1);
4593 out:
4594 /* we rely on upper layer to stop further updates */
4595 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4596 return error;
4597 }
4598
4599 /*
4600 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4601 * flag here, even though the filesystem is not technically dirty yet.
4602 */
4603 static int ext4_unfreeze(struct super_block *sb)
4604 {
4605 if (sb->s_flags & MS_RDONLY)
4606 return 0;
4607
4608 /* Reset the needs_recovery flag before the fs is unlocked. */
4609 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4610 ext4_commit_super(sb, 1);
4611 return 0;
4612 }
4613
4614 /*
4615 * Structure to save mount options for ext4_remount's benefit
4616 */
4617 struct ext4_mount_options {
4618 unsigned long s_mount_opt;
4619 unsigned long s_mount_opt2;
4620 kuid_t s_resuid;
4621 kgid_t s_resgid;
4622 unsigned long s_commit_interval;
4623 u32 s_min_batch_time, s_max_batch_time;
4624 #ifdef CONFIG_QUOTA
4625 int s_jquota_fmt;
4626 char *s_qf_names[MAXQUOTAS];
4627 #endif
4628 };
4629
4630 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4631 {
4632 struct ext4_super_block *es;
4633 struct ext4_sb_info *sbi = EXT4_SB(sb);
4634 unsigned long old_sb_flags;
4635 struct ext4_mount_options old_opts;
4636 int enable_quota = 0;
4637 ext4_group_t g;
4638 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4639 int err = 0;
4640 #ifdef CONFIG_QUOTA
4641 int i, j;
4642 #endif
4643 char *orig_data = kstrdup(data, GFP_KERNEL);
4644
4645 /* Store the original options */
4646 old_sb_flags = sb->s_flags;
4647 old_opts.s_mount_opt = sbi->s_mount_opt;
4648 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4649 old_opts.s_resuid = sbi->s_resuid;
4650 old_opts.s_resgid = sbi->s_resgid;
4651 old_opts.s_commit_interval = sbi->s_commit_interval;
4652 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4653 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4654 #ifdef CONFIG_QUOTA
4655 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4656 for (i = 0; i < MAXQUOTAS; i++)
4657 if (sbi->s_qf_names[i]) {
4658 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4659 GFP_KERNEL);
4660 if (!old_opts.s_qf_names[i]) {
4661 for (j = 0; j < i; j++)
4662 kfree(old_opts.s_qf_names[j]);
4663 kfree(orig_data);
4664 return -ENOMEM;
4665 }
4666 } else
4667 old_opts.s_qf_names[i] = NULL;
4668 #endif
4669 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4670 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4671
4672 /*
4673 * Allow the "check" option to be passed as a remount option.
4674 */
4675 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4676 err = -EINVAL;
4677 goto restore_opts;
4678 }
4679
4680 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4681 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4682 ext4_msg(sb, KERN_ERR, "can't mount with "
4683 "both data=journal and delalloc");
4684 err = -EINVAL;
4685 goto restore_opts;
4686 }
4687 if (test_opt(sb, DIOREAD_NOLOCK)) {
4688 ext4_msg(sb, KERN_ERR, "can't mount with "
4689 "both data=journal and dioread_nolock");
4690 err = -EINVAL;
4691 goto restore_opts;
4692 }
4693 }
4694
4695 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4696 ext4_abort(sb, "Abort forced by user");
4697
4698 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4699 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4700
4701 es = sbi->s_es;
4702
4703 if (sbi->s_journal) {
4704 ext4_init_journal_params(sb, sbi->s_journal);
4705 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4706 }
4707
4708 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4709 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4710 err = -EROFS;
4711 goto restore_opts;
4712 }
4713
4714 if (*flags & MS_RDONLY) {
4715 err = dquot_suspend(sb, -1);
4716 if (err < 0)
4717 goto restore_opts;
4718
4719 /*
4720 * First of all, the unconditional stuff we have to do
4721 * to disable replay of the journal when we next remount
4722 */
4723 sb->s_flags |= MS_RDONLY;
4724
4725 /*
4726 * OK, test if we are remounting a valid rw partition
4727 * readonly, and if so set the rdonly flag and then
4728 * mark the partition as valid again.
4729 */
4730 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4731 (sbi->s_mount_state & EXT4_VALID_FS))
4732 es->s_state = cpu_to_le16(sbi->s_mount_state);
4733
4734 if (sbi->s_journal)
4735 ext4_mark_recovery_complete(sb, es);
4736 } else {
4737 /* Make sure we can mount this feature set readwrite */
4738 if (!ext4_feature_set_ok(sb, 0)) {
4739 err = -EROFS;
4740 goto restore_opts;
4741 }
4742 /*
4743 * Make sure the group descriptor checksums
4744 * are sane. If they aren't, refuse to remount r/w.
4745 */
4746 for (g = 0; g < sbi->s_groups_count; g++) {
4747 struct ext4_group_desc *gdp =
4748 ext4_get_group_desc(sb, g, NULL);
4749
4750 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4751 ext4_msg(sb, KERN_ERR,
4752 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4753 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4754 le16_to_cpu(gdp->bg_checksum));
4755 err = -EINVAL;
4756 goto restore_opts;
4757 }
4758 }
4759
4760 /*
4761 * If we have an unprocessed orphan list hanging
4762 * around from a previously readonly bdev mount,
4763 * require a full umount/remount for now.
4764 */
4765 if (es->s_last_orphan) {
4766 ext4_msg(sb, KERN_WARNING, "Couldn't "
4767 "remount RDWR because of unprocessed "
4768 "orphan inode list. Please "
4769 "umount/remount instead");
4770 err = -EINVAL;
4771 goto restore_opts;
4772 }
4773
4774 /*
4775 * Mounting a RDONLY partition read-write, so reread
4776 * and store the current valid flag. (It may have
4777 * been changed by e2fsck since we originally mounted
4778 * the partition.)
4779 */
4780 if (sbi->s_journal)
4781 ext4_clear_journal_err(sb, es);
4782 sbi->s_mount_state = le16_to_cpu(es->s_state);
4783 if (!ext4_setup_super(sb, es, 0))
4784 sb->s_flags &= ~MS_RDONLY;
4785 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4786 EXT4_FEATURE_INCOMPAT_MMP))
4787 if (ext4_multi_mount_protect(sb,
4788 le64_to_cpu(es->s_mmp_block))) {
4789 err = -EROFS;
4790 goto restore_opts;
4791 }
4792 enable_quota = 1;
4793 }
4794 }
4795
4796 /*
4797 * Reinitialize lazy itable initialization thread based on
4798 * current settings
4799 */
4800 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4801 ext4_unregister_li_request(sb);
4802 else {
4803 ext4_group_t first_not_zeroed;
4804 first_not_zeroed = ext4_has_uninit_itable(sb);
4805 ext4_register_li_request(sb, first_not_zeroed);
4806 }
4807
4808 ext4_setup_system_zone(sb);
4809 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4810 ext4_commit_super(sb, 1);
4811
4812 #ifdef CONFIG_QUOTA
4813 /* Release old quota file names */
4814 for (i = 0; i < MAXQUOTAS; i++)
4815 kfree(old_opts.s_qf_names[i]);
4816 if (enable_quota) {
4817 if (sb_any_quota_suspended(sb))
4818 dquot_resume(sb, -1);
4819 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4820 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4821 err = ext4_enable_quotas(sb);
4822 if (err)
4823 goto restore_opts;
4824 }
4825 }
4826 #endif
4827
4828 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4829 kfree(orig_data);
4830 return 0;
4831
4832 restore_opts:
4833 sb->s_flags = old_sb_flags;
4834 sbi->s_mount_opt = old_opts.s_mount_opt;
4835 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4836 sbi->s_resuid = old_opts.s_resuid;
4837 sbi->s_resgid = old_opts.s_resgid;
4838 sbi->s_commit_interval = old_opts.s_commit_interval;
4839 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4840 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4841 #ifdef CONFIG_QUOTA
4842 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4843 for (i = 0; i < MAXQUOTAS; i++) {
4844 kfree(sbi->s_qf_names[i]);
4845 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4846 }
4847 #endif
4848 kfree(orig_data);
4849 return err;
4850 }
4851
4852 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4853 {
4854 struct super_block *sb = dentry->d_sb;
4855 struct ext4_sb_info *sbi = EXT4_SB(sb);
4856 struct ext4_super_block *es = sbi->s_es;
4857 ext4_fsblk_t overhead = 0, resv_blocks;
4858 u64 fsid;
4859 s64 bfree;
4860 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4861
4862 if (!test_opt(sb, MINIX_DF))
4863 overhead = sbi->s_overhead;
4864
4865 buf->f_type = EXT4_SUPER_MAGIC;
4866 buf->f_bsize = sb->s_blocksize;
4867 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4868 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4869 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4870 /* prevent underflow in case that few free space is available */
4871 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4872 buf->f_bavail = buf->f_bfree -
4873 (ext4_r_blocks_count(es) + resv_blocks);
4874 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4875 buf->f_bavail = 0;
4876 buf->f_files = le32_to_cpu(es->s_inodes_count);
4877 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4878 buf->f_namelen = EXT4_NAME_LEN;
4879 fsid = le64_to_cpup((void *)es->s_uuid) ^
4880 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4881 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4882 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4883
4884 return 0;
4885 }
4886
4887 /* Helper function for writing quotas on sync - we need to start transaction
4888 * before quota file is locked for write. Otherwise the are possible deadlocks:
4889 * Process 1 Process 2
4890 * ext4_create() quota_sync()
4891 * jbd2_journal_start() write_dquot()
4892 * dquot_initialize() down(dqio_mutex)
4893 * down(dqio_mutex) jbd2_journal_start()
4894 *
4895 */
4896
4897 #ifdef CONFIG_QUOTA
4898
4899 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4900 {
4901 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4902 }
4903
4904 static int ext4_write_dquot(struct dquot *dquot)
4905 {
4906 int ret, err;
4907 handle_t *handle;
4908 struct inode *inode;
4909
4910 inode = dquot_to_inode(dquot);
4911 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4912 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4913 if (IS_ERR(handle))
4914 return PTR_ERR(handle);
4915 ret = dquot_commit(dquot);
4916 err = ext4_journal_stop(handle);
4917 if (!ret)
4918 ret = err;
4919 return ret;
4920 }
4921
4922 static int ext4_acquire_dquot(struct dquot *dquot)
4923 {
4924 int ret, err;
4925 handle_t *handle;
4926
4927 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4928 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4929 if (IS_ERR(handle))
4930 return PTR_ERR(handle);
4931 ret = dquot_acquire(dquot);
4932 err = ext4_journal_stop(handle);
4933 if (!ret)
4934 ret = err;
4935 return ret;
4936 }
4937
4938 static int ext4_release_dquot(struct dquot *dquot)
4939 {
4940 int ret, err;
4941 handle_t *handle;
4942
4943 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4944 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4945 if (IS_ERR(handle)) {
4946 /* Release dquot anyway to avoid endless cycle in dqput() */
4947 dquot_release(dquot);
4948 return PTR_ERR(handle);
4949 }
4950 ret = dquot_release(dquot);
4951 err = ext4_journal_stop(handle);
4952 if (!ret)
4953 ret = err;
4954 return ret;
4955 }
4956
4957 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4958 {
4959 struct super_block *sb = dquot->dq_sb;
4960 struct ext4_sb_info *sbi = EXT4_SB(sb);
4961
4962 /* Are we journaling quotas? */
4963 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4964 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4965 dquot_mark_dquot_dirty(dquot);
4966 return ext4_write_dquot(dquot);
4967 } else {
4968 return dquot_mark_dquot_dirty(dquot);
4969 }
4970 }
4971
4972 static int ext4_write_info(struct super_block *sb, int type)
4973 {
4974 int ret, err;
4975 handle_t *handle;
4976
4977 /* Data block + inode block */
4978 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4979 if (IS_ERR(handle))
4980 return PTR_ERR(handle);
4981 ret = dquot_commit_info(sb, type);
4982 err = ext4_journal_stop(handle);
4983 if (!ret)
4984 ret = err;
4985 return ret;
4986 }
4987
4988 /*
4989 * Turn on quotas during mount time - we need to find
4990 * the quota file and such...
4991 */
4992 static int ext4_quota_on_mount(struct super_block *sb, int type)
4993 {
4994 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4995 EXT4_SB(sb)->s_jquota_fmt, type);
4996 }
4997
4998 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
4999 {
5000 struct ext4_inode_info *ei = EXT4_I(inode);
5001
5002 /* The first argument of lockdep_set_subclass has to be
5003 * *exactly* the same as the argument to init_rwsem() --- in
5004 * this case, in init_once() --- or lockdep gets unhappy
5005 * because the name of the lock is set using the
5006 * stringification of the argument to init_rwsem().
5007 */
5008 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5009 lockdep_set_subclass(&ei->i_data_sem, subclass);
5010 }
5011
5012 /*
5013 * Standard function to be called on quota_on
5014 */
5015 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5016 struct path *path)
5017 {
5018 int err;
5019
5020 if (!test_opt(sb, QUOTA))
5021 return -EINVAL;
5022
5023 /* Quotafile not on the same filesystem? */
5024 if (path->dentry->d_sb != sb)
5025 return -EXDEV;
5026 /* Journaling quota? */
5027 if (EXT4_SB(sb)->s_qf_names[type]) {
5028 /* Quotafile not in fs root? */
5029 if (path->dentry->d_parent != sb->s_root)
5030 ext4_msg(sb, KERN_WARNING,
5031 "Quota file not on filesystem root. "
5032 "Journaled quota will not work");
5033 }
5034
5035 /*
5036 * When we journal data on quota file, we have to flush journal to see
5037 * all updates to the file when we bypass pagecache...
5038 */
5039 if (EXT4_SB(sb)->s_journal &&
5040 ext4_should_journal_data(path->dentry->d_inode)) {
5041 /*
5042 * We don't need to lock updates but journal_flush() could
5043 * otherwise be livelocked...
5044 */
5045 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5046 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5047 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5048 if (err)
5049 return err;
5050 }
5051 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5052 err = dquot_quota_on(sb, type, format_id, path);
5053 if (err)
5054 lockdep_set_quota_inode(path->dentry->d_inode,
5055 I_DATA_SEM_NORMAL);
5056 return err;
5057 }
5058
5059 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5060 unsigned int flags)
5061 {
5062 int err;
5063 struct inode *qf_inode;
5064 unsigned long qf_inums[MAXQUOTAS] = {
5065 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5066 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5067 };
5068
5069 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5070
5071 if (!qf_inums[type])
5072 return -EPERM;
5073
5074 qf_inode = ext4_iget(sb, qf_inums[type]);
5075 if (IS_ERR(qf_inode)) {
5076 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5077 return PTR_ERR(qf_inode);
5078 }
5079
5080 /* Don't account quota for quota files to avoid recursion */
5081 qf_inode->i_flags |= S_NOQUOTA;
5082 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5083 err = dquot_enable(qf_inode, type, format_id, flags);
5084 iput(qf_inode);
5085 if (err)
5086 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5087
5088 return err;
5089 }
5090
5091 /* Enable usage tracking for all quota types. */
5092 static int ext4_enable_quotas(struct super_block *sb)
5093 {
5094 int type, err = 0;
5095 unsigned long qf_inums[MAXQUOTAS] = {
5096 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5097 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5098 };
5099
5100 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5101 for (type = 0; type < MAXQUOTAS; type++) {
5102 if (qf_inums[type]) {
5103 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5104 DQUOT_USAGE_ENABLED);
5105 if (err) {
5106 ext4_warning(sb,
5107 "Failed to enable quota tracking "
5108 "(type=%d, err=%d). Please run "
5109 "e2fsck to fix.", type, err);
5110 return err;
5111 }
5112 }
5113 }
5114 return 0;
5115 }
5116
5117 /*
5118 * quota_on function that is used when QUOTA feature is set.
5119 */
5120 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5121 int format_id)
5122 {
5123 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5124 return -EINVAL;
5125
5126 /*
5127 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5128 */
5129 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5130 }
5131
5132 static int ext4_quota_off(struct super_block *sb, int type)
5133 {
5134 struct inode *inode = sb_dqopt(sb)->files[type];
5135 handle_t *handle;
5136
5137 /* Force all delayed allocation blocks to be allocated.
5138 * Caller already holds s_umount sem */
5139 if (test_opt(sb, DELALLOC))
5140 sync_filesystem(sb);
5141
5142 if (!inode)
5143 goto out;
5144
5145 /* Update modification times of quota files when userspace can
5146 * start looking at them */
5147 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5148 if (IS_ERR(handle))
5149 goto out;
5150 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5151 ext4_mark_inode_dirty(handle, inode);
5152 ext4_journal_stop(handle);
5153
5154 out:
5155 return dquot_quota_off(sb, type);
5156 }
5157
5158 /*
5159 * quota_off function that is used when QUOTA feature is set.
5160 */
5161 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5162 {
5163 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5164 return -EINVAL;
5165
5166 /* Disable only the limits. */
5167 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5168 }
5169
5170 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5171 * acquiring the locks... As quota files are never truncated and quota code
5172 * itself serializes the operations (and no one else should touch the files)
5173 * we don't have to be afraid of races */
5174 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5175 size_t len, loff_t off)
5176 {
5177 struct inode *inode = sb_dqopt(sb)->files[type];
5178 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5179 int err = 0;
5180 int offset = off & (sb->s_blocksize - 1);
5181 int tocopy;
5182 size_t toread;
5183 struct buffer_head *bh;
5184 loff_t i_size = i_size_read(inode);
5185
5186 if (off > i_size)
5187 return 0;
5188 if (off+len > i_size)
5189 len = i_size-off;
5190 toread = len;
5191 while (toread > 0) {
5192 tocopy = sb->s_blocksize - offset < toread ?
5193 sb->s_blocksize - offset : toread;
5194 bh = ext4_bread(NULL, inode, blk, 0, &err);
5195 if (err)
5196 return err;
5197 if (!bh) /* A hole? */
5198 memset(data, 0, tocopy);
5199 else
5200 memcpy(data, bh->b_data+offset, tocopy);
5201 brelse(bh);
5202 offset = 0;
5203 toread -= tocopy;
5204 data += tocopy;
5205 blk++;
5206 }
5207 return len;
5208 }
5209
5210 /* Write to quotafile (we know the transaction is already started and has
5211 * enough credits) */
5212 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5213 const char *data, size_t len, loff_t off)
5214 {
5215 struct inode *inode = sb_dqopt(sb)->files[type];
5216 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5217 int err = 0;
5218 int offset = off & (sb->s_blocksize - 1);
5219 struct buffer_head *bh;
5220 handle_t *handle = journal_current_handle();
5221
5222 if (EXT4_SB(sb)->s_journal && !handle) {
5223 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5224 " cancelled because transaction is not started",
5225 (unsigned long long)off, (unsigned long long)len);
5226 return -EIO;
5227 }
5228 /*
5229 * Since we account only one data block in transaction credits,
5230 * then it is impossible to cross a block boundary.
5231 */
5232 if (sb->s_blocksize - offset < len) {
5233 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5234 " cancelled because not block aligned",
5235 (unsigned long long)off, (unsigned long long)len);
5236 return -EIO;
5237 }
5238
5239 bh = ext4_bread(handle, inode, blk, 1, &err);
5240 if (!bh)
5241 goto out;
5242 err = ext4_journal_get_write_access(handle, bh);
5243 if (err) {
5244 brelse(bh);
5245 goto out;
5246 }
5247 lock_buffer(bh);
5248 memcpy(bh->b_data+offset, data, len);
5249 flush_dcache_page(bh->b_page);
5250 unlock_buffer(bh);
5251 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5252 brelse(bh);
5253 out:
5254 if (err)
5255 return err;
5256 if (inode->i_size < off + len) {
5257 i_size_write(inode, off + len);
5258 EXT4_I(inode)->i_disksize = inode->i_size;
5259 ext4_mark_inode_dirty(handle, inode);
5260 }
5261 return len;
5262 }
5263
5264 #endif
5265
5266 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5267 const char *dev_name, void *data)
5268 {
5269 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5270 }
5271
5272 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5273 static inline void register_as_ext2(void)
5274 {
5275 int err = register_filesystem(&ext2_fs_type);
5276 if (err)
5277 printk(KERN_WARNING
5278 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5279 }
5280
5281 static inline void unregister_as_ext2(void)
5282 {
5283 unregister_filesystem(&ext2_fs_type);
5284 }
5285
5286 static inline int ext2_feature_set_ok(struct super_block *sb)
5287 {
5288 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5289 return 0;
5290 if (sb->s_flags & MS_RDONLY)
5291 return 1;
5292 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5293 return 0;
5294 return 1;
5295 }
5296 #else
5297 static inline void register_as_ext2(void) { }
5298 static inline void unregister_as_ext2(void) { }
5299 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5300 #endif
5301
5302 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5303 static inline void register_as_ext3(void)
5304 {
5305 int err = register_filesystem(&ext3_fs_type);
5306 if (err)
5307 printk(KERN_WARNING
5308 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5309 }
5310
5311 static inline void unregister_as_ext3(void)
5312 {
5313 unregister_filesystem(&ext3_fs_type);
5314 }
5315
5316 static inline int ext3_feature_set_ok(struct super_block *sb)
5317 {
5318 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5319 return 0;
5320 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5321 return 0;
5322 if (sb->s_flags & MS_RDONLY)
5323 return 1;
5324 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5325 return 0;
5326 return 1;
5327 }
5328 #else
5329 static inline void register_as_ext3(void) { }
5330 static inline void unregister_as_ext3(void) { }
5331 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5332 #endif
5333
5334 static struct file_system_type ext4_fs_type = {
5335 .owner = THIS_MODULE,
5336 .name = "ext4",
5337 .mount = ext4_mount,
5338 .kill_sb = kill_block_super,
5339 .fs_flags = FS_REQUIRES_DEV,
5340 };
5341 MODULE_ALIAS_FS("ext4");
5342
5343 static int __init ext4_init_feat_adverts(void)
5344 {
5345 struct ext4_features *ef;
5346 int ret = -ENOMEM;
5347
5348 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5349 if (!ef)
5350 goto out;
5351
5352 ef->f_kobj.kset = ext4_kset;
5353 init_completion(&ef->f_kobj_unregister);
5354 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5355 "features");
5356 if (ret) {
5357 kfree(ef);
5358 goto out;
5359 }
5360
5361 ext4_feat = ef;
5362 ret = 0;
5363 out:
5364 return ret;
5365 }
5366
5367 static void ext4_exit_feat_adverts(void)
5368 {
5369 kobject_put(&ext4_feat->f_kobj);
5370 wait_for_completion(&ext4_feat->f_kobj_unregister);
5371 kfree(ext4_feat);
5372 }
5373
5374 /* Shared across all ext4 file systems */
5375 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5376 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5377
5378 static int __init ext4_init_fs(void)
5379 {
5380 int i, err;
5381
5382 ext4_li_info = NULL;
5383 mutex_init(&ext4_li_mtx);
5384
5385 /* Build-time check for flags consistency */
5386 ext4_check_flag_values();
5387
5388 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5389 mutex_init(&ext4__aio_mutex[i]);
5390 init_waitqueue_head(&ext4__ioend_wq[i]);
5391 }
5392
5393 err = ext4_init_es();
5394 if (err)
5395 return err;
5396
5397 err = ext4_init_pageio();
5398 if (err)
5399 goto out7;
5400
5401 err = ext4_init_system_zone();
5402 if (err)
5403 goto out6;
5404 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5405 if (!ext4_kset) {
5406 err = -ENOMEM;
5407 goto out5;
5408 }
5409 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5410
5411 err = ext4_init_feat_adverts();
5412 if (err)
5413 goto out4;
5414
5415 err = ext4_init_mballoc();
5416 if (err)
5417 goto out3;
5418
5419 err = ext4_init_xattr();
5420 if (err)
5421 goto out2;
5422 err = init_inodecache();
5423 if (err)
5424 goto out1;
5425 register_as_ext3();
5426 register_as_ext2();
5427 err = register_filesystem(&ext4_fs_type);
5428 if (err)
5429 goto out;
5430
5431 return 0;
5432 out:
5433 unregister_as_ext2();
5434 unregister_as_ext3();
5435 destroy_inodecache();
5436 out1:
5437 ext4_exit_xattr();
5438 out2:
5439 ext4_exit_mballoc();
5440 out3:
5441 ext4_exit_feat_adverts();
5442 out4:
5443 if (ext4_proc_root)
5444 remove_proc_entry("fs/ext4", NULL);
5445 kset_unregister(ext4_kset);
5446 out5:
5447 ext4_exit_system_zone();
5448 out6:
5449 ext4_exit_pageio();
5450 out7:
5451 ext4_exit_es();
5452
5453 return err;
5454 }
5455
5456 static void __exit ext4_exit_fs(void)
5457 {
5458 ext4_destroy_lazyinit_thread();
5459 unregister_as_ext2();
5460 unregister_as_ext3();
5461 unregister_filesystem(&ext4_fs_type);
5462 destroy_inodecache();
5463 ext4_exit_xattr();
5464 ext4_exit_mballoc();
5465 ext4_exit_feat_adverts();
5466 remove_proc_entry("fs/ext4", NULL);
5467 kset_unregister(ext4_kset);
5468 ext4_exit_system_zone();
5469 ext4_exit_pageio();
5470 ext4_exit_es();
5471 }
5472
5473 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5474 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5475 MODULE_LICENSE("GPL");
5476 module_init(ext4_init_fs)
5477 module_exit(ext4_exit_fs)