Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49 #include <linux/blkdev.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u16 csum_lo;
58 __u16 csum_hi = 0;
59 __u32 csum;
60
61 csum_lo = le16_to_cpu(raw->i_checksum_lo);
62 raw->i_checksum_lo = 0;
63 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
64 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
65 csum_hi = le16_to_cpu(raw->i_checksum_hi);
66 raw->i_checksum_hi = 0;
67 }
68
69 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
70 EXT4_INODE_SIZE(inode->i_sb));
71
72 raw->i_checksum_lo = cpu_to_le16(csum_lo);
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
74 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
75 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76
77 return csum;
78 }
79
80 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
81 struct ext4_inode_info *ei)
82 {
83 __u32 provided, calculated;
84
85 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
86 cpu_to_le32(EXT4_OS_LINUX) ||
87 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return 1;
90
91 provided = le16_to_cpu(raw->i_checksum_lo);
92 calculated = ext4_inode_csum(inode, raw, ei);
93 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
94 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
95 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 else
97 calculated &= 0xFFFF;
98
99 return provided == calculated;
100 }
101
102 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
103 struct ext4_inode_info *ei)
104 {
105 __u32 csum;
106
107 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
108 cpu_to_le32(EXT4_OS_LINUX) ||
109 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
110 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 return;
112
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
122 {
123 trace_ext4_begin_ordered_truncate(inode, new_size);
124 /*
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
129 */
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned long offset);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
141 struct inode *inode, struct page *page, loff_t from,
142 loff_t length, int flags);
143
144 /*
145 * Test whether an inode is a fast symlink.
146 */
147 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 (inode->i_sb->s_blocksize >> 9) : 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (inode->i_ino != EXT4_JOURNAL_INO &&
211 ext4_should_journal_data(inode) &&
212 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages(&inode->i_data, 0);
220 ext4_ioend_shutdown(inode);
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages(&inode->i_data, 0);
230 ext4_ioend_shutdown(inode);
231
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413 {
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423 }
424
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428 /*
429 * Return the number of contiguous dirty pages in a given inode
430 * starting at page frame idx.
431 */
432 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
433 unsigned int max_pages)
434 {
435 struct address_space *mapping = inode->i_mapping;
436 pgoff_t index;
437 struct pagevec pvec;
438 pgoff_t num = 0;
439 int i, nr_pages, done = 0;
440
441 if (max_pages == 0)
442 return 0;
443 pagevec_init(&pvec, 0);
444 while (!done) {
445 index = idx;
446 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447 PAGECACHE_TAG_DIRTY,
448 (pgoff_t)PAGEVEC_SIZE);
449 if (nr_pages == 0)
450 break;
451 for (i = 0; i < nr_pages; i++) {
452 struct page *page = pvec.pages[i];
453 struct buffer_head *bh, *head;
454
455 lock_page(page);
456 if (unlikely(page->mapping != mapping) ||
457 !PageDirty(page) ||
458 PageWriteback(page) ||
459 page->index != idx) {
460 done = 1;
461 unlock_page(page);
462 break;
463 }
464 if (page_has_buffers(page)) {
465 bh = head = page_buffers(page);
466 do {
467 if (!buffer_delay(bh) &&
468 !buffer_unwritten(bh))
469 done = 1;
470 bh = bh->b_this_page;
471 } while (!done && (bh != head));
472 }
473 unlock_page(page);
474 if (done)
475 break;
476 idx++;
477 num++;
478 if (num >= max_pages) {
479 done = 1;
480 break;
481 }
482 }
483 pagevec_release(&pvec);
484 }
485 return num;
486 }
487
488 #ifdef ES_AGGRESSIVE_TEST
489 static void ext4_map_blocks_es_recheck(handle_t *handle,
490 struct inode *inode,
491 struct ext4_map_blocks *es_map,
492 struct ext4_map_blocks *map,
493 int flags)
494 {
495 int retval;
496
497 map->m_flags = 0;
498 /*
499 * There is a race window that the result is not the same.
500 * e.g. xfstests #223 when dioread_nolock enables. The reason
501 * is that we lookup a block mapping in extent status tree with
502 * out taking i_data_sem. So at the time the unwritten extent
503 * could be converted.
504 */
505 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
506 down_read((&EXT4_I(inode)->i_data_sem));
507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
508 retval = ext4_ext_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 } else {
511 retval = ext4_ind_map_blocks(handle, inode, map, flags &
512 EXT4_GET_BLOCKS_KEEP_SIZE);
513 }
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 up_read((&EXT4_I(inode)->i_data_sem));
516 /*
517 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
518 * because it shouldn't be marked in es_map->m_flags.
519 */
520 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
521
522 /*
523 * We don't check m_len because extent will be collpased in status
524 * tree. So the m_len might not equal.
525 */
526 if (es_map->m_lblk != map->m_lblk ||
527 es_map->m_flags != map->m_flags ||
528 es_map->m_pblk != map->m_pblk) {
529 printk("ES cache assertation failed for inode: %lu "
530 "es_cached ex [%d/%d/%llu/%x] != "
531 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
532 inode->i_ino, es_map->m_lblk, es_map->m_len,
533 es_map->m_pblk, es_map->m_flags, map->m_lblk,
534 map->m_len, map->m_pblk, map->m_flags,
535 retval, flags);
536 }
537 }
538 #endif /* ES_AGGRESSIVE_TEST */
539
540 /*
541 * The ext4_map_blocks() function tries to look up the requested blocks,
542 * and returns if the blocks are already mapped.
543 *
544 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
545 * and store the allocated blocks in the result buffer head and mark it
546 * mapped.
547 *
548 * If file type is extents based, it will call ext4_ext_map_blocks(),
549 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
550 * based files
551 *
552 * On success, it returns the number of blocks being mapped or allocate.
553 * if create==0 and the blocks are pre-allocated and uninitialized block,
554 * the result buffer head is unmapped. If the create ==1, it will make sure
555 * the buffer head is mapped.
556 *
557 * It returns 0 if plain look up failed (blocks have not been allocated), in
558 * that case, buffer head is unmapped
559 *
560 * It returns the error in case of allocation failure.
561 */
562 int ext4_map_blocks(handle_t *handle, struct inode *inode,
563 struct ext4_map_blocks *map, int flags)
564 {
565 struct extent_status es;
566 int retval;
567 #ifdef ES_AGGRESSIVE_TEST
568 struct ext4_map_blocks orig_map;
569
570 memcpy(&orig_map, map, sizeof(*map));
571 #endif
572
573 map->m_flags = 0;
574 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
575 "logical block %lu\n", inode->i_ino, flags, map->m_len,
576 (unsigned long) map->m_lblk);
577
578 /* Lookup extent status tree firstly */
579 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
580 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
581 map->m_pblk = ext4_es_pblock(&es) +
582 map->m_lblk - es.es_lblk;
583 map->m_flags |= ext4_es_is_written(&es) ?
584 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
585 retval = es.es_len - (map->m_lblk - es.es_lblk);
586 if (retval > map->m_len)
587 retval = map->m_len;
588 map->m_len = retval;
589 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
590 retval = 0;
591 } else {
592 BUG_ON(1);
593 }
594 #ifdef ES_AGGRESSIVE_TEST
595 ext4_map_blocks_es_recheck(handle, inode, map,
596 &orig_map, flags);
597 #endif
598 goto found;
599 }
600
601 /*
602 * Try to see if we can get the block without requesting a new
603 * file system block.
604 */
605 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
606 down_read((&EXT4_I(inode)->i_data_sem));
607 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
608 retval = ext4_ext_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
610 } else {
611 retval = ext4_ind_map_blocks(handle, inode, map, flags &
612 EXT4_GET_BLOCKS_KEEP_SIZE);
613 }
614 if (retval > 0) {
615 int ret;
616 unsigned long long status;
617
618 #ifdef ES_AGGRESSIVE_TEST
619 if (retval != map->m_len) {
620 printk("ES len assertation failed for inode: %lu "
621 "retval %d != map->m_len %d "
622 "in %s (lookup)\n", inode->i_ino, retval,
623 map->m_len, __func__);
624 }
625 #endif
626
627 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
628 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
629 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
630 !(status & EXTENT_STATUS_WRITTEN) &&
631 ext4_find_delalloc_range(inode, map->m_lblk,
632 map->m_lblk + map->m_len - 1))
633 status |= EXTENT_STATUS_DELAYED;
634 ret = ext4_es_insert_extent(inode, map->m_lblk,
635 map->m_len, map->m_pblk, status);
636 if (ret < 0)
637 retval = ret;
638 }
639 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
640 up_read((&EXT4_I(inode)->i_data_sem));
641
642 found:
643 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
644 int ret = check_block_validity(inode, map);
645 if (ret != 0)
646 return ret;
647 }
648
649 /* If it is only a block(s) look up */
650 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
651 return retval;
652
653 /*
654 * Returns if the blocks have already allocated
655 *
656 * Note that if blocks have been preallocated
657 * ext4_ext_get_block() returns the create = 0
658 * with buffer head unmapped.
659 */
660 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
661 return retval;
662
663 /*
664 * Here we clear m_flags because after allocating an new extent,
665 * it will be set again.
666 */
667 map->m_flags &= ~EXT4_MAP_FLAGS;
668
669 /*
670 * New blocks allocate and/or writing to uninitialized extent
671 * will possibly result in updating i_data, so we take
672 * the write lock of i_data_sem, and call get_blocks()
673 * with create == 1 flag.
674 */
675 down_write((&EXT4_I(inode)->i_data_sem));
676
677 /*
678 * if the caller is from delayed allocation writeout path
679 * we have already reserved fs blocks for allocation
680 * let the underlying get_block() function know to
681 * avoid double accounting
682 */
683 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
684 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
685 /*
686 * We need to check for EXT4 here because migrate
687 * could have changed the inode type in between
688 */
689 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
690 retval = ext4_ext_map_blocks(handle, inode, map, flags);
691 } else {
692 retval = ext4_ind_map_blocks(handle, inode, map, flags);
693
694 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
695 /*
696 * We allocated new blocks which will result in
697 * i_data's format changing. Force the migrate
698 * to fail by clearing migrate flags
699 */
700 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
701 }
702
703 /*
704 * Update reserved blocks/metadata blocks after successful
705 * block allocation which had been deferred till now. We don't
706 * support fallocate for non extent files. So we can update
707 * reserve space here.
708 */
709 if ((retval > 0) &&
710 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
711 ext4_da_update_reserve_space(inode, retval, 1);
712 }
713 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
714 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
715
716 if (retval > 0) {
717 int ret;
718 unsigned long long status;
719
720 #ifdef ES_AGGRESSIVE_TEST
721 if (retval != map->m_len) {
722 printk("ES len assertation failed for inode: %lu "
723 "retval %d != map->m_len %d "
724 "in %s (allocation)\n", inode->i_ino, retval,
725 map->m_len, __func__);
726 }
727 #endif
728
729 /*
730 * If the extent has been zeroed out, we don't need to update
731 * extent status tree.
732 */
733 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
734 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
735 if (ext4_es_is_written(&es))
736 goto has_zeroout;
737 }
738 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
739 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
740 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
741 !(status & EXTENT_STATUS_WRITTEN) &&
742 ext4_find_delalloc_range(inode, map->m_lblk,
743 map->m_lblk + map->m_len - 1))
744 status |= EXTENT_STATUS_DELAYED;
745 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
746 map->m_pblk, status);
747 if (ret < 0)
748 retval = ret;
749 }
750
751 has_zeroout:
752 up_write((&EXT4_I(inode)->i_data_sem));
753 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
754 int ret = check_block_validity(inode, map);
755 if (ret != 0)
756 return ret;
757 }
758 return retval;
759 }
760
761 /* Maximum number of blocks we map for direct IO at once. */
762 #define DIO_MAX_BLOCKS 4096
763
764 static int _ext4_get_block(struct inode *inode, sector_t iblock,
765 struct buffer_head *bh, int flags)
766 {
767 handle_t *handle = ext4_journal_current_handle();
768 struct ext4_map_blocks map;
769 int ret = 0, started = 0;
770 int dio_credits;
771
772 if (ext4_has_inline_data(inode))
773 return -ERANGE;
774
775 map.m_lblk = iblock;
776 map.m_len = bh->b_size >> inode->i_blkbits;
777
778 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
779 /* Direct IO write... */
780 if (map.m_len > DIO_MAX_BLOCKS)
781 map.m_len = DIO_MAX_BLOCKS;
782 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
783 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
784 dio_credits);
785 if (IS_ERR(handle)) {
786 ret = PTR_ERR(handle);
787 return ret;
788 }
789 started = 1;
790 }
791
792 ret = ext4_map_blocks(handle, inode, &map, flags);
793 if (ret > 0) {
794 map_bh(bh, inode->i_sb, map.m_pblk);
795 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
796 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 ret = 0;
798 }
799 if (started)
800 ext4_journal_stop(handle);
801 return ret;
802 }
803
804 int ext4_get_block(struct inode *inode, sector_t iblock,
805 struct buffer_head *bh, int create)
806 {
807 return _ext4_get_block(inode, iblock, bh,
808 create ? EXT4_GET_BLOCKS_CREATE : 0);
809 }
810
811 /*
812 * `handle' can be NULL if create is zero
813 */
814 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
815 ext4_lblk_t block, int create, int *errp)
816 {
817 struct ext4_map_blocks map;
818 struct buffer_head *bh;
819 int fatal = 0, err;
820
821 J_ASSERT(handle != NULL || create == 0);
822
823 map.m_lblk = block;
824 map.m_len = 1;
825 err = ext4_map_blocks(handle, inode, &map,
826 create ? EXT4_GET_BLOCKS_CREATE : 0);
827
828 /* ensure we send some value back into *errp */
829 *errp = 0;
830
831 if (create && err == 0)
832 err = -ENOSPC; /* should never happen */
833 if (err < 0)
834 *errp = err;
835 if (err <= 0)
836 return NULL;
837
838 bh = sb_getblk(inode->i_sb, map.m_pblk);
839 if (unlikely(!bh)) {
840 *errp = -ENOMEM;
841 return NULL;
842 }
843 if (map.m_flags & EXT4_MAP_NEW) {
844 J_ASSERT(create != 0);
845 J_ASSERT(handle != NULL);
846
847 /*
848 * Now that we do not always journal data, we should
849 * keep in mind whether this should always journal the
850 * new buffer as metadata. For now, regular file
851 * writes use ext4_get_block instead, so it's not a
852 * problem.
853 */
854 lock_buffer(bh);
855 BUFFER_TRACE(bh, "call get_create_access");
856 fatal = ext4_journal_get_create_access(handle, bh);
857 if (!fatal && !buffer_uptodate(bh)) {
858 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
859 set_buffer_uptodate(bh);
860 }
861 unlock_buffer(bh);
862 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, bh);
864 if (!fatal)
865 fatal = err;
866 } else {
867 BUFFER_TRACE(bh, "not a new buffer");
868 }
869 if (fatal) {
870 *errp = fatal;
871 brelse(bh);
872 bh = NULL;
873 }
874 return bh;
875 }
876
877 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
878 ext4_lblk_t block, int create, int *err)
879 {
880 struct buffer_head *bh;
881
882 bh = ext4_getblk(handle, inode, block, create, err);
883 if (!bh)
884 return bh;
885 if (buffer_uptodate(bh))
886 return bh;
887 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
888 wait_on_buffer(bh);
889 if (buffer_uptodate(bh))
890 return bh;
891 put_bh(bh);
892 *err = -EIO;
893 return NULL;
894 }
895
896 int ext4_walk_page_buffers(handle_t *handle,
897 struct buffer_head *head,
898 unsigned from,
899 unsigned to,
900 int *partial,
901 int (*fn)(handle_t *handle,
902 struct buffer_head *bh))
903 {
904 struct buffer_head *bh;
905 unsigned block_start, block_end;
906 unsigned blocksize = head->b_size;
907 int err, ret = 0;
908 struct buffer_head *next;
909
910 for (bh = head, block_start = 0;
911 ret == 0 && (bh != head || !block_start);
912 block_start = block_end, bh = next) {
913 next = bh->b_this_page;
914 block_end = block_start + blocksize;
915 if (block_end <= from || block_start >= to) {
916 if (partial && !buffer_uptodate(bh))
917 *partial = 1;
918 continue;
919 }
920 err = (*fn)(handle, bh);
921 if (!ret)
922 ret = err;
923 }
924 return ret;
925 }
926
927 /*
928 * To preserve ordering, it is essential that the hole instantiation and
929 * the data write be encapsulated in a single transaction. We cannot
930 * close off a transaction and start a new one between the ext4_get_block()
931 * and the commit_write(). So doing the jbd2_journal_start at the start of
932 * prepare_write() is the right place.
933 *
934 * Also, this function can nest inside ext4_writepage(). In that case, we
935 * *know* that ext4_writepage() has generated enough buffer credits to do the
936 * whole page. So we won't block on the journal in that case, which is good,
937 * because the caller may be PF_MEMALLOC.
938 *
939 * By accident, ext4 can be reentered when a transaction is open via
940 * quota file writes. If we were to commit the transaction while thus
941 * reentered, there can be a deadlock - we would be holding a quota
942 * lock, and the commit would never complete if another thread had a
943 * transaction open and was blocking on the quota lock - a ranking
944 * violation.
945 *
946 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
947 * will _not_ run commit under these circumstances because handle->h_ref
948 * is elevated. We'll still have enough credits for the tiny quotafile
949 * write.
950 */
951 int do_journal_get_write_access(handle_t *handle,
952 struct buffer_head *bh)
953 {
954 int dirty = buffer_dirty(bh);
955 int ret;
956
957 if (!buffer_mapped(bh) || buffer_freed(bh))
958 return 0;
959 /*
960 * __block_write_begin() could have dirtied some buffers. Clean
961 * the dirty bit as jbd2_journal_get_write_access() could complain
962 * otherwise about fs integrity issues. Setting of the dirty bit
963 * by __block_write_begin() isn't a real problem here as we clear
964 * the bit before releasing a page lock and thus writeback cannot
965 * ever write the buffer.
966 */
967 if (dirty)
968 clear_buffer_dirty(bh);
969 ret = ext4_journal_get_write_access(handle, bh);
970 if (!ret && dirty)
971 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
972 return ret;
973 }
974
975 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
976 struct buffer_head *bh_result, int create);
977 static int ext4_write_begin(struct file *file, struct address_space *mapping,
978 loff_t pos, unsigned len, unsigned flags,
979 struct page **pagep, void **fsdata)
980 {
981 struct inode *inode = mapping->host;
982 int ret, needed_blocks;
983 handle_t *handle;
984 int retries = 0;
985 struct page *page;
986 pgoff_t index;
987 unsigned from, to;
988 #if defined(FEATURE_STORAGE_PID_LOGGER)
989 extern unsigned char *page_logger;
990 struct page_pid_logger *tmp_logger;
991 unsigned long page_index;
992 extern spinlock_t g_locker;
993 unsigned long g_flags;
994 #endif
995
996 trace_ext4_write_begin(inode, pos, len, flags);
997 /*
998 * Reserve one block more for addition to orphan list in case
999 * we allocate blocks but write fails for some reason
1000 */
1001 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1002 index = pos >> PAGE_CACHE_SHIFT;
1003 from = pos & (PAGE_CACHE_SIZE - 1);
1004 to = from + len;
1005
1006 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1007 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1008 flags, pagep);
1009 if (ret < 0)
1010 return ret;
1011 if (ret == 1)
1012 return 0;
1013 }
1014
1015 /*
1016 * grab_cache_page_write_begin() can take a long time if the
1017 * system is thrashing due to memory pressure, or if the page
1018 * is being written back. So grab it first before we start
1019 * the transaction handle. This also allows us to allocate
1020 * the page (if needed) without using GFP_NOFS.
1021 */
1022 retry_grab:
1023 page = grab_cache_page_write_begin(mapping, index, flags);
1024 if (!page)
1025 return -ENOMEM;
1026 unlock_page(page);
1027
1028 retry_journal:
1029 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1030 if (IS_ERR(handle)) {
1031 page_cache_release(page);
1032 return PTR_ERR(handle);
1033 }
1034
1035 lock_page(page);
1036 if (page->mapping != mapping) {
1037 /* The page got truncated from under us */
1038 unlock_page(page);
1039 page_cache_release(page);
1040 ext4_journal_stop(handle);
1041 goto retry_grab;
1042 }
1043 /* In case writeback began while the page was unlocked */
1044 wait_for_stable_page(page);
1045
1046 if (ext4_should_dioread_nolock(inode))
1047 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1048 else
1049 ret = __block_write_begin(page, pos, len, ext4_get_block);
1050
1051 if (!ret && ext4_should_journal_data(inode)) {
1052 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1053 from, to, NULL,
1054 do_journal_get_write_access);
1055 }
1056
1057 if (ret) {
1058 unlock_page(page);
1059 /*
1060 * __block_write_begin may have instantiated a few blocks
1061 * outside i_size. Trim these off again. Don't need
1062 * i_size_read because we hold i_mutex.
1063 *
1064 * Add inode to orphan list in case we crash before
1065 * truncate finishes
1066 */
1067 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1068 ext4_orphan_add(handle, inode);
1069
1070 ext4_journal_stop(handle);
1071 if (pos + len > inode->i_size) {
1072 ext4_truncate_failed_write(inode);
1073 /*
1074 * If truncate failed early the inode might
1075 * still be on the orphan list; we need to
1076 * make sure the inode is removed from the
1077 * orphan list in that case.
1078 */
1079 if (inode->i_nlink)
1080 ext4_orphan_del(NULL, inode);
1081 }
1082
1083 if (ret == -ENOSPC &&
1084 ext4_should_retry_alloc(inode->i_sb, &retries))
1085 goto retry_journal;
1086 page_cache_release(page);
1087 return ret;
1088 }
1089 *pagep = page;
1090 #if defined(FEATURE_STORAGE_PID_LOGGER)
1091 if( page_logger && (*pagep)) {
1092 //#if defined(CONFIG_FLATMEM)
1093 //page_index = (unsigned long)((*pagep) - mem_map) ;
1094 //#else
1095 page_index = (unsigned long)(__page_to_pfn(*pagep))- PHYS_PFN_OFFSET;
1096 //#endif
1097 tmp_logger =((struct page_pid_logger *)page_logger) + page_index;
1098 spin_lock_irqsave(&g_locker, g_flags);
1099 if( page_index < num_physpages) {
1100 if( tmp_logger->pid1 == 0XFFFF)
1101 tmp_logger->pid1 = current->pid;
1102 else if( tmp_logger->pid1 != current->pid)
1103 tmp_logger->pid2 = current->pid;
1104 }
1105 spin_unlock_irqrestore(&g_locker, g_flags);
1106 }
1107 #endif
1108 return ret;
1109 }
1110
1111 /* For write_end() in data=journal mode */
1112 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1113 {
1114 int ret;
1115 if (!buffer_mapped(bh) || buffer_freed(bh))
1116 return 0;
1117 set_buffer_uptodate(bh);
1118 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1119 clear_buffer_meta(bh);
1120 clear_buffer_prio(bh);
1121 return ret;
1122 }
1123
1124 /*
1125 * We need to pick up the new inode size which generic_commit_write gave us
1126 * `file' can be NULL - eg, when called from page_symlink().
1127 *
1128 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1129 * buffers are managed internally.
1130 */
1131 static int ext4_write_end(struct file *file,
1132 struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned copied,
1134 struct page *page, void *fsdata)
1135 {
1136 handle_t *handle = ext4_journal_current_handle();
1137 struct inode *inode = mapping->host;
1138 int ret = 0, ret2;
1139 int i_size_changed = 0;
1140
1141 trace_ext4_write_end(inode, pos, len, copied);
1142 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1143 ret = ext4_jbd2_file_inode(handle, inode);
1144 if (ret) {
1145 unlock_page(page);
1146 page_cache_release(page);
1147 goto errout;
1148 }
1149 }
1150
1151 if (ext4_has_inline_data(inode)) {
1152 ret = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 if (ret < 0)
1155 goto errout;
1156 copied = ret;
1157 } else
1158 copied = block_write_end(file, mapping, pos,
1159 len, copied, page, fsdata);
1160
1161 /*
1162 * No need to use i_size_read() here, the i_size
1163 * cannot change under us because we hole i_mutex.
1164 *
1165 * But it's important to update i_size while still holding page lock:
1166 * page writeout could otherwise come in and zero beyond i_size.
1167 */
1168 if (pos + copied > inode->i_size) {
1169 i_size_write(inode, pos + copied);
1170 i_size_changed = 1;
1171 }
1172
1173 if (pos + copied > EXT4_I(inode)->i_disksize) {
1174 /* We need to mark inode dirty even if
1175 * new_i_size is less that inode->i_size
1176 * but greater than i_disksize. (hint delalloc)
1177 */
1178 ext4_update_i_disksize(inode, (pos + copied));
1179 i_size_changed = 1;
1180 }
1181 unlock_page(page);
1182 page_cache_release(page);
1183
1184 /*
1185 * Don't mark the inode dirty under page lock. First, it unnecessarily
1186 * makes the holding time of page lock longer. Second, it forces lock
1187 * ordering of page lock and transaction start for journaling
1188 * filesystems.
1189 */
1190 if (i_size_changed)
1191 ext4_mark_inode_dirty(handle, inode);
1192
1193 if (copied < 0)
1194 ret = copied;
1195 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1196 /* if we have allocated more blocks and copied
1197 * less. We will have blocks allocated outside
1198 * inode->i_size. So truncate them
1199 */
1200 ext4_orphan_add(handle, inode);
1201 errout:
1202 ret2 = ext4_journal_stop(handle);
1203 if (!ret)
1204 ret = ret2;
1205
1206 if (pos + len > inode->i_size) {
1207 ext4_truncate_failed_write(inode);
1208 /*
1209 * If truncate failed early the inode might still be
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
1216
1217 return ret ? ret : copied;
1218 }
1219
1220 static int ext4_journalled_write_end(struct file *file,
1221 struct address_space *mapping,
1222 loff_t pos, unsigned len, unsigned copied,
1223 struct page *page, void *fsdata)
1224 {
1225 handle_t *handle = ext4_journal_current_handle();
1226 struct inode *inode = mapping->host;
1227 int ret = 0, ret2;
1228 int partial = 0;
1229 unsigned from, to;
1230 loff_t new_i_size;
1231
1232 trace_ext4_journalled_write_end(inode, pos, len, copied);
1233 from = pos & (PAGE_CACHE_SIZE - 1);
1234 to = from + len;
1235
1236 BUG_ON(!ext4_handle_valid(handle));
1237
1238 if (ext4_has_inline_data(inode))
1239 copied = ext4_write_inline_data_end(inode, pos, len,
1240 copied, page);
1241 else {
1242 if (copied < len) {
1243 if (!PageUptodate(page))
1244 copied = 0;
1245 page_zero_new_buffers(page, from+copied, to);
1246 }
1247
1248 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1249 to, &partial, write_end_fn);
1250 if (!partial)
1251 SetPageUptodate(page);
1252 }
1253 new_i_size = pos + copied;
1254 if (new_i_size > inode->i_size)
1255 i_size_write(inode, pos+copied);
1256 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1257 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1258 if (new_i_size > EXT4_I(inode)->i_disksize) {
1259 ext4_update_i_disksize(inode, new_i_size);
1260 ret2 = ext4_mark_inode_dirty(handle, inode);
1261 if (!ret)
1262 ret = ret2;
1263 }
1264
1265 unlock_page(page);
1266 page_cache_release(page);
1267 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1268 /* if we have allocated more blocks and copied
1269 * less. We will have blocks allocated outside
1270 * inode->i_size. So truncate them
1271 */
1272 ext4_orphan_add(handle, inode);
1273
1274 ret2 = ext4_journal_stop(handle);
1275 if (!ret)
1276 ret = ret2;
1277 if (pos + len > inode->i_size) {
1278 ext4_truncate_failed_write(inode);
1279 /*
1280 * If truncate failed early the inode might still be
1281 * on the orphan list; we need to make sure the inode
1282 * is removed from the orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
1287
1288 return ret ? ret : copied;
1289 }
1290
1291 /*
1292 * Reserve a metadata for a single block located at lblock
1293 */
1294 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1295 {
1296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1297 struct ext4_inode_info *ei = EXT4_I(inode);
1298 unsigned int md_needed;
1299 ext4_lblk_t save_last_lblock;
1300 int save_len;
1301
1302 /*
1303 * recalculate the amount of metadata blocks to reserve
1304 * in order to allocate nrblocks
1305 * worse case is one extent per block
1306 */
1307 spin_lock(&ei->i_block_reservation_lock);
1308 /*
1309 * ext4_calc_metadata_amount() has side effects, which we have
1310 * to be prepared undo if we fail to claim space.
1311 */
1312 save_len = ei->i_da_metadata_calc_len;
1313 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1314 md_needed = EXT4_NUM_B2C(sbi,
1315 ext4_calc_metadata_amount(inode, lblock));
1316 trace_ext4_da_reserve_space(inode, md_needed);
1317
1318 /*
1319 * We do still charge estimated metadata to the sb though;
1320 * we cannot afford to run out of free blocks.
1321 */
1322 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1323 ei->i_da_metadata_calc_len = save_len;
1324 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1325 spin_unlock(&ei->i_block_reservation_lock);
1326 return -ENOSPC;
1327 }
1328 ei->i_reserved_meta_blocks += md_needed;
1329 spin_unlock(&ei->i_block_reservation_lock);
1330
1331 return 0; /* success */
1332 }
1333
1334 /*
1335 * Reserve a single cluster located at lblock
1336 */
1337 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1338 {
1339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1340 struct ext4_inode_info *ei = EXT4_I(inode);
1341 unsigned int md_needed;
1342 int ret;
1343 ext4_lblk_t save_last_lblock;
1344 int save_len;
1345
1346 /*
1347 * We will charge metadata quota at writeout time; this saves
1348 * us from metadata over-estimation, though we may go over by
1349 * a small amount in the end. Here we just reserve for data.
1350 */
1351 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1352 if (ret)
1353 return ret;
1354
1355 /*
1356 * recalculate the amount of metadata blocks to reserve
1357 * in order to allocate nrblocks
1358 * worse case is one extent per block
1359 */
1360 spin_lock(&ei->i_block_reservation_lock);
1361 /*
1362 * ext4_calc_metadata_amount() has side effects, which we have
1363 * to be prepared undo if we fail to claim space.
1364 */
1365 save_len = ei->i_da_metadata_calc_len;
1366 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1367 md_needed = EXT4_NUM_B2C(sbi,
1368 ext4_calc_metadata_amount(inode, lblock));
1369 trace_ext4_da_reserve_space(inode, md_needed);
1370
1371 /*
1372 * We do still charge estimated metadata to the sb though;
1373 * we cannot afford to run out of free blocks.
1374 */
1375 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1376 ei->i_da_metadata_calc_len = save_len;
1377 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1378 spin_unlock(&ei->i_block_reservation_lock);
1379 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1380 return -ENOSPC;
1381 }
1382 ei->i_reserved_data_blocks++;
1383 ei->i_reserved_meta_blocks += md_needed;
1384 spin_unlock(&ei->i_block_reservation_lock);
1385
1386 return 0; /* success */
1387 }
1388
1389 static void ext4_da_release_space(struct inode *inode, int to_free)
1390 {
1391 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392 struct ext4_inode_info *ei = EXT4_I(inode);
1393
1394 if (!to_free)
1395 return; /* Nothing to release, exit */
1396
1397 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1398
1399 trace_ext4_da_release_space(inode, to_free);
1400 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1401 /*
1402 * if there aren't enough reserved blocks, then the
1403 * counter is messed up somewhere. Since this
1404 * function is called from invalidate page, it's
1405 * harmless to return without any action.
1406 */
1407 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1408 "ino %lu, to_free %d with only %d reserved "
1409 "data blocks", inode->i_ino, to_free,
1410 ei->i_reserved_data_blocks);
1411 WARN_ON(1);
1412 to_free = ei->i_reserved_data_blocks;
1413 }
1414 ei->i_reserved_data_blocks -= to_free;
1415
1416 if (ei->i_reserved_data_blocks == 0) {
1417 /*
1418 * We can release all of the reserved metadata blocks
1419 * only when we have written all of the delayed
1420 * allocation blocks.
1421 * Note that in case of bigalloc, i_reserved_meta_blocks,
1422 * i_reserved_data_blocks, etc. refer to number of clusters.
1423 */
1424 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1425 ei->i_reserved_meta_blocks);
1426 ei->i_reserved_meta_blocks = 0;
1427 ei->i_da_metadata_calc_len = 0;
1428 }
1429
1430 /* update fs dirty data blocks counter */
1431 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1432
1433 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1434
1435 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1436 }
1437
1438 static void ext4_da_page_release_reservation(struct page *page,
1439 unsigned long offset)
1440 {
1441 int to_release = 0, contiguous_blks = 0;
1442 struct buffer_head *head, *bh;
1443 unsigned int curr_off = 0;
1444 struct inode *inode = page->mapping->host;
1445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1446 int num_clusters;
1447 ext4_fsblk_t lblk;
1448
1449 head = page_buffers(page);
1450 bh = head;
1451 do {
1452 unsigned int next_off = curr_off + bh->b_size;
1453
1454 if ((offset <= curr_off) && (buffer_delay(bh))) {
1455 to_release++;
1456 contiguous_blks++;
1457 clear_buffer_delay(bh);
1458 } else if (contiguous_blks) {
1459 lblk = page->index <<
1460 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1461 lblk += (curr_off >> inode->i_blkbits) -
1462 contiguous_blks;
1463 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1464 contiguous_blks = 0;
1465 }
1466 curr_off = next_off;
1467 } while ((bh = bh->b_this_page) != head);
1468
1469 if (contiguous_blks) {
1470 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1471 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1472 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1473 }
1474
1475 /* If we have released all the blocks belonging to a cluster, then we
1476 * need to release the reserved space for that cluster. */
1477 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1478 while (num_clusters > 0) {
1479 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1480 ((num_clusters - 1) << sbi->s_cluster_bits);
1481 if (sbi->s_cluster_ratio == 1 ||
1482 !ext4_find_delalloc_cluster(inode, lblk))
1483 ext4_da_release_space(inode, 1);
1484
1485 num_clusters--;
1486 }
1487 }
1488
1489 /*
1490 * Delayed allocation stuff
1491 */
1492
1493 /*
1494 * mpage_da_submit_io - walks through extent of pages and try to write
1495 * them with writepage() call back
1496 *
1497 * @mpd->inode: inode
1498 * @mpd->first_page: first page of the extent
1499 * @mpd->next_page: page after the last page of the extent
1500 *
1501 * By the time mpage_da_submit_io() is called we expect all blocks
1502 * to be allocated. this may be wrong if allocation failed.
1503 *
1504 * As pages are already locked by write_cache_pages(), we can't use it
1505 */
1506 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1507 struct ext4_map_blocks *map)
1508 {
1509 struct pagevec pvec;
1510 unsigned long index, end;
1511 int ret = 0, err, nr_pages, i;
1512 struct inode *inode = mpd->inode;
1513 struct address_space *mapping = inode->i_mapping;
1514 loff_t size = i_size_read(inode);
1515 unsigned int len, block_start;
1516 struct buffer_head *bh, *page_bufs = NULL;
1517 sector_t pblock = 0, cur_logical = 0;
1518 struct ext4_io_submit io_submit;
1519
1520 BUG_ON(mpd->next_page <= mpd->first_page);
1521 memset(&io_submit, 0, sizeof(io_submit));
1522 /*
1523 * We need to start from the first_page to the next_page - 1
1524 * to make sure we also write the mapped dirty buffer_heads.
1525 * If we look at mpd->b_blocknr we would only be looking
1526 * at the currently mapped buffer_heads.
1527 */
1528 index = mpd->first_page;
1529 end = mpd->next_page - 1;
1530
1531 pagevec_init(&pvec, 0);
1532 while (index <= end) {
1533 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1534 if (nr_pages == 0)
1535 break;
1536 for (i = 0; i < nr_pages; i++) {
1537 int skip_page = 0;
1538 struct page *page = pvec.pages[i];
1539
1540 index = page->index;
1541 if (index > end)
1542 break;
1543
1544 if (index == size >> PAGE_CACHE_SHIFT)
1545 len = size & ~PAGE_CACHE_MASK;
1546 else
1547 len = PAGE_CACHE_SIZE;
1548 if (map) {
1549 cur_logical = index << (PAGE_CACHE_SHIFT -
1550 inode->i_blkbits);
1551 pblock = map->m_pblk + (cur_logical -
1552 map->m_lblk);
1553 }
1554 index++;
1555
1556 BUG_ON(!PageLocked(page));
1557 BUG_ON(PageWriteback(page));
1558
1559 bh = page_bufs = page_buffers(page);
1560 block_start = 0;
1561 do {
1562 if (map && (cur_logical >= map->m_lblk) &&
1563 (cur_logical <= (map->m_lblk +
1564 (map->m_len - 1)))) {
1565 if (buffer_delay(bh)) {
1566 clear_buffer_delay(bh);
1567 bh->b_blocknr = pblock;
1568 }
1569 if (buffer_unwritten(bh) ||
1570 buffer_mapped(bh))
1571 BUG_ON(bh->b_blocknr != pblock);
1572 if (map->m_flags & EXT4_MAP_UNINIT)
1573 set_buffer_uninit(bh);
1574 clear_buffer_unwritten(bh);
1575 }
1576
1577 /*
1578 * skip page if block allocation undone and
1579 * block is dirty
1580 */
1581 if (ext4_bh_delay_or_unwritten(NULL, bh))
1582 skip_page = 1;
1583 bh = bh->b_this_page;
1584 block_start += bh->b_size;
1585 cur_logical++;
1586 pblock++;
1587 } while (bh != page_bufs);
1588
1589 if (skip_page) {
1590 unlock_page(page);
1591 continue;
1592 }
1593
1594 clear_page_dirty_for_io(page);
1595 err = ext4_bio_write_page(&io_submit, page, len,
1596 mpd->wbc);
1597 if (!err)
1598 mpd->pages_written++;
1599 /*
1600 * In error case, we have to continue because
1601 * remaining pages are still locked
1602 */
1603 if (ret == 0)
1604 ret = err;
1605 }
1606 pagevec_release(&pvec);
1607 }
1608 ext4_io_submit(&io_submit);
1609 return ret;
1610 }
1611
1612 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1613 {
1614 int nr_pages, i;
1615 pgoff_t index, end;
1616 struct pagevec pvec;
1617 struct inode *inode = mpd->inode;
1618 struct address_space *mapping = inode->i_mapping;
1619 ext4_lblk_t start, last;
1620
1621 index = mpd->first_page;
1622 end = mpd->next_page - 1;
1623
1624 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1625 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1626 ext4_es_remove_extent(inode, start, last - start + 1);
1627
1628 pagevec_init(&pvec, 0);
1629 while (index <= end) {
1630 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1631 if (nr_pages == 0)
1632 break;
1633 for (i = 0; i < nr_pages; i++) {
1634 struct page *page = pvec.pages[i];
1635 if (page->index > end)
1636 break;
1637 BUG_ON(!PageLocked(page));
1638 BUG_ON(PageWriteback(page));
1639 block_invalidatepage(page, 0);
1640 ClearPageUptodate(page);
1641 unlock_page(page);
1642 }
1643 index = pvec.pages[nr_pages - 1]->index + 1;
1644 pagevec_release(&pvec);
1645 }
1646 return;
1647 }
1648
1649 static void ext4_print_free_blocks(struct inode *inode)
1650 {
1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 struct super_block *sb = inode->i_sb;
1653 struct ext4_inode_info *ei = EXT4_I(inode);
1654
1655 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1656 EXT4_C2B(EXT4_SB(inode->i_sb),
1657 ext4_count_free_clusters(sb)));
1658 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1660 (long long) EXT4_C2B(EXT4_SB(sb),
1661 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1662 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1663 (long long) EXT4_C2B(EXT4_SB(sb),
1664 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1665 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1667 ei->i_reserved_data_blocks);
1668 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1669 ei->i_reserved_meta_blocks);
1670 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1671 ei->i_allocated_meta_blocks);
1672 return;
1673 }
1674
1675 /*
1676 * mpage_da_map_and_submit - go through given space, map them
1677 * if necessary, and then submit them for I/O
1678 *
1679 * @mpd - bh describing space
1680 *
1681 * The function skips space we know is already mapped to disk blocks.
1682 *
1683 */
1684 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1685 {
1686 int err, blks, get_blocks_flags;
1687 struct ext4_map_blocks map, *mapp = NULL;
1688 sector_t next = mpd->b_blocknr;
1689 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1690 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1691 handle_t *handle = NULL;
1692
1693 /*
1694 * If the blocks are mapped already, or we couldn't accumulate
1695 * any blocks, then proceed immediately to the submission stage.
1696 */
1697 if ((mpd->b_size == 0) ||
1698 ((mpd->b_state & (1 << BH_Mapped)) &&
1699 !(mpd->b_state & (1 << BH_Delay)) &&
1700 !(mpd->b_state & (1 << BH_Unwritten))))
1701 goto submit_io;
1702
1703 handle = ext4_journal_current_handle();
1704 BUG_ON(!handle);
1705
1706 /*
1707 * Call ext4_map_blocks() to allocate any delayed allocation
1708 * blocks, or to convert an uninitialized extent to be
1709 * initialized (in the case where we have written into
1710 * one or more preallocated blocks).
1711 *
1712 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1713 * indicate that we are on the delayed allocation path. This
1714 * affects functions in many different parts of the allocation
1715 * call path. This flag exists primarily because we don't
1716 * want to change *many* call functions, so ext4_map_blocks()
1717 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1718 * inode's allocation semaphore is taken.
1719 *
1720 * If the blocks in questions were delalloc blocks, set
1721 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1722 * variables are updated after the blocks have been allocated.
1723 */
1724 map.m_lblk = next;
1725 map.m_len = max_blocks;
1726 /*
1727 * We're in delalloc path and it is possible that we're going to
1728 * need more metadata blocks than previously reserved. However
1729 * we must not fail because we're in writeback and there is
1730 * nothing we can do about it so it might result in data loss.
1731 * So use reserved blocks to allocate metadata if possible.
1732 */
1733 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1734 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1735 if (ext4_should_dioread_nolock(mpd->inode))
1736 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1737 if (mpd->b_state & (1 << BH_Delay))
1738 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1739
1740
1741 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1742 if (blks < 0) {
1743 struct super_block *sb = mpd->inode->i_sb;
1744
1745 err = blks;
1746 /*
1747 * If get block returns EAGAIN or ENOSPC and there
1748 * appears to be free blocks we will just let
1749 * mpage_da_submit_io() unlock all of the pages.
1750 */
1751 if (err == -EAGAIN)
1752 goto submit_io;
1753
1754 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1755 mpd->retval = err;
1756 goto submit_io;
1757 }
1758
1759 /*
1760 * get block failure will cause us to loop in
1761 * writepages, because a_ops->writepage won't be able
1762 * to make progress. The page will be redirtied by
1763 * writepage and writepages will again try to write
1764 * the same.
1765 */
1766 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1767 ext4_msg(sb, KERN_CRIT,
1768 "delayed block allocation failed for inode %lu "
1769 "at logical offset %llu with max blocks %zd "
1770 "with error %d", mpd->inode->i_ino,
1771 (unsigned long long) next,
1772 mpd->b_size >> mpd->inode->i_blkbits, err);
1773 ext4_msg(sb, KERN_CRIT,
1774 "This should not happen!! Data will be lost");
1775 if (err == -ENOSPC)
1776 ext4_print_free_blocks(mpd->inode);
1777 }
1778 /* invalidate all the pages */
1779 ext4_da_block_invalidatepages(mpd);
1780
1781 /* Mark this page range as having been completed */
1782 mpd->io_done = 1;
1783 return;
1784 }
1785 BUG_ON(blks == 0);
1786
1787 mapp = &map;
1788 if (map.m_flags & EXT4_MAP_NEW) {
1789 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1790 int i;
1791
1792 for (i = 0; i < map.m_len; i++)
1793 unmap_underlying_metadata(bdev, map.m_pblk + i);
1794 }
1795
1796 /*
1797 * Update on-disk size along with block allocation.
1798 */
1799 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1800 if (disksize > i_size_read(mpd->inode))
1801 disksize = i_size_read(mpd->inode);
1802 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1803 ext4_update_i_disksize(mpd->inode, disksize);
1804 err = ext4_mark_inode_dirty(handle, mpd->inode);
1805 if (err)
1806 ext4_error(mpd->inode->i_sb,
1807 "Failed to mark inode %lu dirty",
1808 mpd->inode->i_ino);
1809 }
1810
1811 submit_io:
1812 mpage_da_submit_io(mpd, mapp);
1813 mpd->io_done = 1;
1814 }
1815
1816 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1817 (1 << BH_Delay) | (1 << BH_Unwritten))
1818
1819 /*
1820 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1821 *
1822 * @mpd->lbh - extent of blocks
1823 * @logical - logical number of the block in the file
1824 * @b_state - b_state of the buffer head added
1825 *
1826 * the function is used to collect contig. blocks in same state
1827 */
1828 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1829 unsigned long b_state)
1830 {
1831 sector_t next;
1832 int blkbits = mpd->inode->i_blkbits;
1833 int nrblocks = mpd->b_size >> blkbits;
1834
1835 /*
1836 * XXX Don't go larger than mballoc is willing to allocate
1837 * This is a stopgap solution. We eventually need to fold
1838 * mpage_da_submit_io() into this function and then call
1839 * ext4_map_blocks() multiple times in a loop
1840 */
1841 if (nrblocks >= (8*1024*1024 >> blkbits))
1842 goto flush_it;
1843
1844 /* check if the reserved journal credits might overflow */
1845 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1846 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1847 /*
1848 * With non-extent format we are limited by the journal
1849 * credit available. Total credit needed to insert
1850 * nrblocks contiguous blocks is dependent on the
1851 * nrblocks. So limit nrblocks.
1852 */
1853 goto flush_it;
1854 }
1855 }
1856 /*
1857 * First block in the extent
1858 */
1859 if (mpd->b_size == 0) {
1860 mpd->b_blocknr = logical;
1861 mpd->b_size = 1 << blkbits;
1862 mpd->b_state = b_state & BH_FLAGS;
1863 return;
1864 }
1865
1866 next = mpd->b_blocknr + nrblocks;
1867 /*
1868 * Can we merge the block to our big extent?
1869 */
1870 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1871 mpd->b_size += 1 << blkbits;
1872 return;
1873 }
1874
1875 flush_it:
1876 /*
1877 * We couldn't merge the block to our extent, so we
1878 * need to flush current extent and start new one
1879 */
1880 mpage_da_map_and_submit(mpd);
1881 return;
1882 }
1883
1884 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1885 {
1886 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1887 }
1888
1889 /*
1890 * This function is grabs code from the very beginning of
1891 * ext4_map_blocks, but assumes that the caller is from delayed write
1892 * time. This function looks up the requested blocks and sets the
1893 * buffer delay bit under the protection of i_data_sem.
1894 */
1895 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1896 struct ext4_map_blocks *map,
1897 struct buffer_head *bh)
1898 {
1899 struct extent_status es;
1900 int retval;
1901 sector_t invalid_block = ~((sector_t) 0xffff);
1902 #ifdef ES_AGGRESSIVE_TEST
1903 struct ext4_map_blocks orig_map;
1904
1905 memcpy(&orig_map, map, sizeof(*map));
1906 #endif
1907
1908 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1909 invalid_block = ~0;
1910
1911 map->m_flags = 0;
1912 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1913 "logical block %lu\n", inode->i_ino, map->m_len,
1914 (unsigned long) map->m_lblk);
1915
1916 /* Lookup extent status tree firstly */
1917 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1918
1919 if (ext4_es_is_hole(&es)) {
1920 retval = 0;
1921 down_read((&EXT4_I(inode)->i_data_sem));
1922 goto add_delayed;
1923 }
1924
1925 /*
1926 * Delayed extent could be allocated by fallocate.
1927 * So we need to check it.
1928 */
1929 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1930 map_bh(bh, inode->i_sb, invalid_block);
1931 set_buffer_new(bh);
1932 set_buffer_delay(bh);
1933 return 0;
1934 }
1935
1936 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1937 retval = es.es_len - (iblock - es.es_lblk);
1938 if (retval > map->m_len)
1939 retval = map->m_len;
1940 map->m_len = retval;
1941 if (ext4_es_is_written(&es))
1942 map->m_flags |= EXT4_MAP_MAPPED;
1943 else if (ext4_es_is_unwritten(&es))
1944 map->m_flags |= EXT4_MAP_UNWRITTEN;
1945 else
1946 BUG_ON(1);
1947
1948 #ifdef ES_AGGRESSIVE_TEST
1949 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1950 #endif
1951 return retval;
1952 }
1953
1954 /*
1955 * Try to see if we can get the block without requesting a new
1956 * file system block.
1957 */
1958 down_read((&EXT4_I(inode)->i_data_sem));
1959 if (ext4_has_inline_data(inode)) {
1960 /*
1961 * We will soon create blocks for this page, and let
1962 * us pretend as if the blocks aren't allocated yet.
1963 * In case of clusters, we have to handle the work
1964 * of mapping from cluster so that the reserved space
1965 * is calculated properly.
1966 */
1967 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1968 ext4_find_delalloc_cluster(inode, map->m_lblk))
1969 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1970 retval = 0;
1971 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1972 retval = ext4_ext_map_blocks(NULL, inode, map,
1973 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1974 else
1975 retval = ext4_ind_map_blocks(NULL, inode, map,
1976 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1977
1978 add_delayed:
1979 if (retval == 0) {
1980 int ret;
1981 /*
1982 * XXX: __block_prepare_write() unmaps passed block,
1983 * is it OK?
1984 */
1985 /*
1986 * If the block was allocated from previously allocated cluster,
1987 * then we don't need to reserve it again. However we still need
1988 * to reserve metadata for every block we're going to write.
1989 */
1990 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1991 ret = ext4_da_reserve_space(inode, iblock);
1992 if (ret) {
1993 /* not enough space to reserve */
1994 retval = ret;
1995 goto out_unlock;
1996 }
1997 } else {
1998 ret = ext4_da_reserve_metadata(inode, iblock);
1999 if (ret) {
2000 /* not enough space to reserve */
2001 retval = ret;
2002 goto out_unlock;
2003 }
2004 }
2005
2006 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2007 ~0, EXTENT_STATUS_DELAYED);
2008 if (ret) {
2009 retval = ret;
2010 goto out_unlock;
2011 }
2012
2013 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2014 * and it should not appear on the bh->b_state.
2015 */
2016 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2017
2018 map_bh(bh, inode->i_sb, invalid_block);
2019 set_buffer_new(bh);
2020 set_buffer_delay(bh);
2021 } else if (retval > 0) {
2022 int ret;
2023 unsigned long long status;
2024
2025 #ifdef ES_AGGRESSIVE_TEST
2026 if (retval != map->m_len) {
2027 printk("ES len assertation failed for inode: %lu "
2028 "retval %d != map->m_len %d "
2029 "in %s (lookup)\n", inode->i_ino, retval,
2030 map->m_len, __func__);
2031 }
2032 #endif
2033
2034 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2035 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2036 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2037 map->m_pblk, status);
2038 if (ret != 0)
2039 retval = ret;
2040 }
2041
2042 out_unlock:
2043 up_read((&EXT4_I(inode)->i_data_sem));
2044
2045 return retval;
2046 }
2047
2048 /*
2049 * This is a special get_blocks_t callback which is used by
2050 * ext4_da_write_begin(). It will either return mapped block or
2051 * reserve space for a single block.
2052 *
2053 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2054 * We also have b_blocknr = -1 and b_bdev initialized properly
2055 *
2056 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2057 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2058 * initialized properly.
2059 */
2060 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2061 struct buffer_head *bh, int create)
2062 {
2063 struct ext4_map_blocks map;
2064 int ret = 0;
2065
2066 BUG_ON(create == 0);
2067 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2068
2069 map.m_lblk = iblock;
2070 map.m_len = 1;
2071
2072 /*
2073 * first, we need to know whether the block is allocated already
2074 * preallocated blocks are unmapped but should treated
2075 * the same as allocated blocks.
2076 */
2077 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2078 if (ret <= 0)
2079 return ret;
2080
2081 map_bh(bh, inode->i_sb, map.m_pblk);
2082 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2083
2084 if (buffer_unwritten(bh)) {
2085 /* A delayed write to unwritten bh should be marked
2086 * new and mapped. Mapped ensures that we don't do
2087 * get_block multiple times when we write to the same
2088 * offset and new ensures that we do proper zero out
2089 * for partial write.
2090 */
2091 set_buffer_new(bh);
2092 set_buffer_mapped(bh);
2093 }
2094 return 0;
2095 }
2096
2097 static int bget_one(handle_t *handle, struct buffer_head *bh)
2098 {
2099 get_bh(bh);
2100 return 0;
2101 }
2102
2103 static int bput_one(handle_t *handle, struct buffer_head *bh)
2104 {
2105 put_bh(bh);
2106 return 0;
2107 }
2108
2109 static int __ext4_journalled_writepage(struct page *page,
2110 unsigned int len)
2111 {
2112 struct address_space *mapping = page->mapping;
2113 struct inode *inode = mapping->host;
2114 struct buffer_head *page_bufs = NULL;
2115 handle_t *handle = NULL;
2116 int ret = 0, err = 0;
2117 int inline_data = ext4_has_inline_data(inode);
2118 struct buffer_head *inode_bh = NULL;
2119
2120 ClearPageChecked(page);
2121
2122 if (inline_data) {
2123 BUG_ON(page->index != 0);
2124 BUG_ON(len > ext4_get_max_inline_size(inode));
2125 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2126 if (inode_bh == NULL)
2127 goto out;
2128 } else {
2129 page_bufs = page_buffers(page);
2130 if (!page_bufs) {
2131 BUG();
2132 goto out;
2133 }
2134 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2135 NULL, bget_one);
2136 }
2137 /*
2138 * We need to release the page lock before we start the
2139 * journal, so grab a reference so the page won't disappear
2140 * out from under us.
2141 */
2142 get_page(page);
2143 unlock_page(page);
2144
2145 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2146 ext4_writepage_trans_blocks(inode));
2147 if (IS_ERR(handle)) {
2148 ret = PTR_ERR(handle);
2149 put_page(page);
2150 goto out_no_pagelock;
2151 }
2152 BUG_ON(!ext4_handle_valid(handle));
2153
2154 lock_page(page);
2155 put_page(page);
2156 if (page->mapping != mapping) {
2157 /* The page got truncated from under us */
2158 ext4_journal_stop(handle);
2159 ret = 0;
2160 goto out;
2161 }
2162
2163 if (inline_data) {
2164 ret = ext4_journal_get_write_access(handle, inode_bh);
2165
2166 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2167
2168 } else {
2169 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2170 do_journal_get_write_access);
2171
2172 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2173 write_end_fn);
2174 }
2175 if (ret == 0)
2176 ret = err;
2177 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2178 err = ext4_journal_stop(handle);
2179 if (!ret)
2180 ret = err;
2181
2182 if (!ext4_has_inline_data(inode))
2183 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2184 NULL, bput_one);
2185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2186 out:
2187 unlock_page(page);
2188 out_no_pagelock:
2189 brelse(inode_bh);
2190 return ret;
2191 }
2192
2193 /*
2194 * Note that we don't need to start a transaction unless we're journaling data
2195 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2196 * need to file the inode to the transaction's list in ordered mode because if
2197 * we are writing back data added by write(), the inode is already there and if
2198 * we are writing back data modified via mmap(), no one guarantees in which
2199 * transaction the data will hit the disk. In case we are journaling data, we
2200 * cannot start transaction directly because transaction start ranks above page
2201 * lock so we have to do some magic.
2202 *
2203 * This function can get called via...
2204 * - ext4_da_writepages after taking page lock (have journal handle)
2205 * - journal_submit_inode_data_buffers (no journal handle)
2206 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2207 * - grab_page_cache when doing write_begin (have journal handle)
2208 *
2209 * We don't do any block allocation in this function. If we have page with
2210 * multiple blocks we need to write those buffer_heads that are mapped. This
2211 * is important for mmaped based write. So if we do with blocksize 1K
2212 * truncate(f, 1024);
2213 * a = mmap(f, 0, 4096);
2214 * a[0] = 'a';
2215 * truncate(f, 4096);
2216 * we have in the page first buffer_head mapped via page_mkwrite call back
2217 * but other buffer_heads would be unmapped but dirty (dirty done via the
2218 * do_wp_page). So writepage should write the first block. If we modify
2219 * the mmap area beyond 1024 we will again get a page_fault and the
2220 * page_mkwrite callback will do the block allocation and mark the
2221 * buffer_heads mapped.
2222 *
2223 * We redirty the page if we have any buffer_heads that is either delay or
2224 * unwritten in the page.
2225 *
2226 * We can get recursively called as show below.
2227 *
2228 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2229 * ext4_writepage()
2230 *
2231 * But since we don't do any block allocation we should not deadlock.
2232 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2233 */
2234 static int ext4_writepage(struct page *page,
2235 struct writeback_control *wbc)
2236 {
2237 int ret = 0;
2238 loff_t size;
2239 unsigned int len;
2240 struct buffer_head *page_bufs = NULL;
2241 struct inode *inode = page->mapping->host;
2242 struct ext4_io_submit io_submit;
2243
2244 trace_ext4_writepage(page);
2245 size = i_size_read(inode);
2246 if (page->index == size >> PAGE_CACHE_SHIFT)
2247 len = size & ~PAGE_CACHE_MASK;
2248 else
2249 len = PAGE_CACHE_SIZE;
2250
2251 page_bufs = page_buffers(page);
2252 /*
2253 * We cannot do block allocation or other extent handling in this
2254 * function. If there are buffers needing that, we have to redirty
2255 * the page. But we may reach here when we do a journal commit via
2256 * journal_submit_inode_data_buffers() and in that case we must write
2257 * allocated buffers to achieve data=ordered mode guarantees.
2258 */
2259 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2260 ext4_bh_delay_or_unwritten)) {
2261 redirty_page_for_writepage(wbc, page);
2262 if (current->flags & PF_MEMALLOC) {
2263 /*
2264 * For memory cleaning there's no point in writing only
2265 * some buffers. So just bail out. Warn if we came here
2266 * from direct reclaim.
2267 */
2268 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2269 == PF_MEMALLOC);
2270 unlock_page(page);
2271 return 0;
2272 }
2273 }
2274
2275 if (PageChecked(page) && ext4_should_journal_data(inode))
2276 /*
2277 * It's mmapped pagecache. Add buffers and journal it. There
2278 * doesn't seem much point in redirtying the page here.
2279 */
2280 return __ext4_journalled_writepage(page, len);
2281
2282 memset(&io_submit, 0, sizeof(io_submit));
2283 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2284 ext4_io_submit(&io_submit);
2285 return ret;
2286 }
2287
2288 /*
2289 * This is called via ext4_da_writepages() to
2290 * calculate the total number of credits to reserve to fit
2291 * a single extent allocation into a single transaction,
2292 * ext4_da_writpeages() will loop calling this before
2293 * the block allocation.
2294 */
2295
2296 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2297 {
2298 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2299
2300 /*
2301 * With non-extent format the journal credit needed to
2302 * insert nrblocks contiguous block is dependent on
2303 * number of contiguous block. So we will limit
2304 * number of contiguous block to a sane value
2305 */
2306 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2307 (max_blocks > EXT4_MAX_TRANS_DATA))
2308 max_blocks = EXT4_MAX_TRANS_DATA;
2309
2310 return ext4_chunk_trans_blocks(inode, max_blocks);
2311 }
2312
2313 /*
2314 * write_cache_pages_da - walk the list of dirty pages of the given
2315 * address space and accumulate pages that need writing, and call
2316 * mpage_da_map_and_submit to map a single contiguous memory region
2317 * and then write them.
2318 */
2319 static int write_cache_pages_da(handle_t *handle,
2320 struct address_space *mapping,
2321 struct writeback_control *wbc,
2322 struct mpage_da_data *mpd,
2323 pgoff_t *done_index)
2324 {
2325 struct buffer_head *bh, *head;
2326 struct inode *inode = mapping->host;
2327 struct pagevec pvec;
2328 unsigned int nr_pages;
2329 sector_t logical;
2330 pgoff_t index, end;
2331 long nr_to_write = wbc->nr_to_write;
2332 int i, tag, ret = 0;
2333
2334 memset(mpd, 0, sizeof(struct mpage_da_data));
2335 mpd->wbc = wbc;
2336 mpd->inode = inode;
2337 pagevec_init(&pvec, 0);
2338 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2339 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2340
2341 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2342 tag = PAGECACHE_TAG_TOWRITE;
2343 else
2344 tag = PAGECACHE_TAG_DIRTY;
2345
2346 *done_index = index;
2347 while (index <= end) {
2348 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2349 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2350 if (nr_pages == 0)
2351 return 0;
2352
2353 for (i = 0; i < nr_pages; i++) {
2354 struct page *page = pvec.pages[i];
2355
2356 /*
2357 * At this point, the page may be truncated or
2358 * invalidated (changing page->mapping to NULL), or
2359 * even swizzled back from swapper_space to tmpfs file
2360 * mapping. However, page->index will not change
2361 * because we have a reference on the page.
2362 */
2363 if (page->index > end)
2364 goto out;
2365
2366 *done_index = page->index + 1;
2367
2368 /*
2369 * If we can't merge this page, and we have
2370 * accumulated an contiguous region, write it
2371 */
2372 if ((mpd->next_page != page->index) &&
2373 (mpd->next_page != mpd->first_page)) {
2374 mpage_da_map_and_submit(mpd);
2375 goto ret_extent_tail;
2376 }
2377
2378 lock_page(page);
2379
2380 /*
2381 * If the page is no longer dirty, or its
2382 * mapping no longer corresponds to inode we
2383 * are writing (which means it has been
2384 * truncated or invalidated), or the page is
2385 * already under writeback and we are not
2386 * doing a data integrity writeback, skip the page
2387 */
2388 if (!PageDirty(page) ||
2389 (PageWriteback(page) &&
2390 (wbc->sync_mode == WB_SYNC_NONE)) ||
2391 unlikely(page->mapping != mapping)) {
2392 unlock_page(page);
2393 continue;
2394 }
2395
2396 wait_on_page_writeback(page);
2397 BUG_ON(PageWriteback(page));
2398
2399 /*
2400 * If we have inline data and arrive here, it means that
2401 * we will soon create the block for the 1st page, so
2402 * we'd better clear the inline data here.
2403 */
2404 if (ext4_has_inline_data(inode)) {
2405 BUG_ON(ext4_test_inode_state(inode,
2406 EXT4_STATE_MAY_INLINE_DATA));
2407 ext4_destroy_inline_data(handle, inode);
2408 }
2409
2410 if (mpd->next_page != page->index)
2411 mpd->first_page = page->index;
2412 mpd->next_page = page->index + 1;
2413 logical = (sector_t) page->index <<
2414 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2415
2416 /* Add all dirty buffers to mpd */
2417 head = page_buffers(page);
2418 bh = head;
2419 do {
2420 BUG_ON(buffer_locked(bh));
2421 /*
2422 * We need to try to allocate unmapped blocks
2423 * in the same page. Otherwise we won't make
2424 * progress with the page in ext4_writepage
2425 */
2426 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2427 mpage_add_bh_to_extent(mpd, logical,
2428 bh->b_state);
2429 if (mpd->io_done)
2430 goto ret_extent_tail;
2431 } else if (buffer_dirty(bh) &&
2432 buffer_mapped(bh)) {
2433 /*
2434 * mapped dirty buffer. We need to
2435 * update the b_state because we look
2436 * at b_state in mpage_da_map_blocks.
2437 * We don't update b_size because if we
2438 * find an unmapped buffer_head later
2439 * we need to use the b_state flag of
2440 * that buffer_head.
2441 */
2442 if (mpd->b_size == 0)
2443 mpd->b_state =
2444 bh->b_state & BH_FLAGS;
2445 }
2446 logical++;
2447 } while ((bh = bh->b_this_page) != head);
2448
2449 if (nr_to_write > 0) {
2450 nr_to_write--;
2451 if (nr_to_write == 0 &&
2452 wbc->sync_mode == WB_SYNC_NONE)
2453 /*
2454 * We stop writing back only if we are
2455 * not doing integrity sync. In case of
2456 * integrity sync we have to keep going
2457 * because someone may be concurrently
2458 * dirtying pages, and we might have
2459 * synced a lot of newly appeared dirty
2460 * pages, but have not synced all of the
2461 * old dirty pages.
2462 */
2463 goto out;
2464 }
2465 }
2466 pagevec_release(&pvec);
2467 cond_resched();
2468 }
2469 return 0;
2470 ret_extent_tail:
2471 ret = MPAGE_DA_EXTENT_TAIL;
2472 out:
2473 pagevec_release(&pvec);
2474 cond_resched();
2475 return ret;
2476 }
2477
2478
2479 static int ext4_da_writepages(struct address_space *mapping,
2480 struct writeback_control *wbc)
2481 {
2482 pgoff_t index;
2483 int range_whole = 0;
2484 handle_t *handle = NULL;
2485 struct mpage_da_data mpd;
2486 struct inode *inode = mapping->host;
2487 int pages_written = 0;
2488 unsigned int max_pages;
2489 int range_cyclic, cycled = 1, io_done = 0;
2490 int needed_blocks, ret = 0;
2491 long desired_nr_to_write, nr_to_writebump = 0;
2492 loff_t range_start = wbc->range_start;
2493 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2494 pgoff_t done_index = 0;
2495 pgoff_t end;
2496 struct blk_plug plug;
2497
2498 trace_ext4_da_writepages(inode, wbc);
2499
2500 /*
2501 * No pages to write? This is mainly a kludge to avoid starting
2502 * a transaction for special inodes like journal inode on last iput()
2503 * because that could violate lock ordering on umount
2504 */
2505 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2506 return 0;
2507
2508 /*
2509 * If the filesystem has aborted, it is read-only, so return
2510 * right away instead of dumping stack traces later on that
2511 * will obscure the real source of the problem. We test
2512 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2513 * the latter could be true if the filesystem is mounted
2514 * read-only, and in that case, ext4_da_writepages should
2515 * *never* be called, so if that ever happens, we would want
2516 * the stack trace.
2517 */
2518 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2519 return -EROFS;
2520
2521 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2522 range_whole = 1;
2523
2524 range_cyclic = wbc->range_cyclic;
2525 if (wbc->range_cyclic) {
2526 index = mapping->writeback_index;
2527 if (index)
2528 cycled = 0;
2529 wbc->range_start = index << PAGE_CACHE_SHIFT;
2530 wbc->range_end = LLONG_MAX;
2531 wbc->range_cyclic = 0;
2532 end = -1;
2533 } else {
2534 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2535 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2536 }
2537
2538 /*
2539 * This works around two forms of stupidity. The first is in
2540 * the writeback code, which caps the maximum number of pages
2541 * written to be 1024 pages. This is wrong on multiple
2542 * levels; different architectues have a different page size,
2543 * which changes the maximum amount of data which gets
2544 * written. Secondly, 4 megabytes is way too small. XFS
2545 * forces this value to be 16 megabytes by multiplying
2546 * nr_to_write parameter by four, and then relies on its
2547 * allocator to allocate larger extents to make them
2548 * contiguous. Unfortunately this brings us to the second
2549 * stupidity, which is that ext4's mballoc code only allocates
2550 * at most 2048 blocks. So we force contiguous writes up to
2551 * the number of dirty blocks in the inode, or
2552 * sbi->max_writeback_mb_bump whichever is smaller.
2553 */
2554 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2555 if (!range_cyclic && range_whole) {
2556 if (wbc->nr_to_write == LONG_MAX)
2557 desired_nr_to_write = wbc->nr_to_write;
2558 else
2559 desired_nr_to_write = wbc->nr_to_write * 8;
2560 } else
2561 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2562 max_pages);
2563 if (desired_nr_to_write > max_pages)
2564 desired_nr_to_write = max_pages;
2565
2566 if (wbc->nr_to_write < desired_nr_to_write) {
2567 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2568 wbc->nr_to_write = desired_nr_to_write;
2569 }
2570
2571 retry:
2572 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2573 tag_pages_for_writeback(mapping, index, end);
2574
2575 blk_start_plug(&plug);
2576 while (!ret && wbc->nr_to_write > 0) {
2577
2578 /*
2579 * we insert one extent at a time. So we need
2580 * credit needed for single extent allocation.
2581 * journalled mode is currently not supported
2582 * by delalloc
2583 */
2584 BUG_ON(ext4_should_journal_data(inode));
2585 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2586
2587 /* start a new transaction*/
2588 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2589 needed_blocks);
2590 if (IS_ERR(handle)) {
2591 ret = PTR_ERR(handle);
2592 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2593 "%ld pages, ino %lu; err %d", __func__,
2594 wbc->nr_to_write, inode->i_ino, ret);
2595 blk_finish_plug(&plug);
2596 goto out_writepages;
2597 }
2598
2599 /*
2600 * Now call write_cache_pages_da() to find the next
2601 * contiguous region of logical blocks that need
2602 * blocks to be allocated by ext4 and submit them.
2603 */
2604 ret = write_cache_pages_da(handle, mapping,
2605 wbc, &mpd, &done_index);
2606 /*
2607 * If we have a contiguous extent of pages and we
2608 * haven't done the I/O yet, map the blocks and submit
2609 * them for I/O.
2610 */
2611 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2612 mpage_da_map_and_submit(&mpd);
2613 ret = MPAGE_DA_EXTENT_TAIL;
2614 }
2615 trace_ext4_da_write_pages(inode, &mpd);
2616 wbc->nr_to_write -= mpd.pages_written;
2617
2618 ext4_journal_stop(handle);
2619
2620 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2621 /* commit the transaction which would
2622 * free blocks released in the transaction
2623 * and try again
2624 */
2625 jbd2_journal_force_commit_nested(sbi->s_journal);
2626 ret = 0;
2627 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2628 /*
2629 * Got one extent now try with rest of the pages.
2630 * If mpd.retval is set -EIO, journal is aborted.
2631 * So we don't need to write any more.
2632 */
2633 pages_written += mpd.pages_written;
2634 ret = mpd.retval;
2635 io_done = 1;
2636 } else if (wbc->nr_to_write)
2637 /*
2638 * There is no more writeout needed
2639 * or we requested for a noblocking writeout
2640 * and we found the device congested
2641 */
2642 break;
2643 }
2644 blk_finish_plug(&plug);
2645 if (!io_done && !cycled) {
2646 cycled = 1;
2647 index = 0;
2648 wbc->range_start = index << PAGE_CACHE_SHIFT;
2649 wbc->range_end = mapping->writeback_index - 1;
2650 goto retry;
2651 }
2652
2653 /* Update index */
2654 wbc->range_cyclic = range_cyclic;
2655 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2656 /*
2657 * set the writeback_index so that range_cyclic
2658 * mode will write it back later
2659 */
2660 mapping->writeback_index = done_index;
2661
2662 out_writepages:
2663 wbc->nr_to_write -= nr_to_writebump;
2664 wbc->range_start = range_start;
2665 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2666 return ret;
2667 }
2668
2669 static int ext4_nonda_switch(struct super_block *sb)
2670 {
2671 s64 free_clusters, dirty_clusters;
2672 struct ext4_sb_info *sbi = EXT4_SB(sb);
2673
2674 /*
2675 * switch to non delalloc mode if we are running low
2676 * on free block. The free block accounting via percpu
2677 * counters can get slightly wrong with percpu_counter_batch getting
2678 * accumulated on each CPU without updating global counters
2679 * Delalloc need an accurate free block accounting. So switch
2680 * to non delalloc when we are near to error range.
2681 */
2682 free_clusters =
2683 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2684 dirty_clusters =
2685 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2686 /*
2687 * Start pushing delalloc when 1/2 of free blocks are dirty.
2688 */
2689 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2690 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2691
2692 if (2 * free_clusters < 3 * dirty_clusters ||
2693 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2694 /*
2695 * free block count is less than 150% of dirty blocks
2696 * or free blocks is less than watermark
2697 */
2698 return 1;
2699 }
2700 return 0;
2701 }
2702
2703 /* We always reserve for an inode update; the superblock could be there too */
2704 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2705 {
2706 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2707 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2708 return 1;
2709
2710 if (pos + len <= 0x7fffffffULL)
2711 return 1;
2712
2713 /* We might need to update the superblock to set LARGE_FILE */
2714 return 2;
2715 }
2716
2717 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2718 loff_t pos, unsigned len, unsigned flags,
2719 struct page **pagep, void **fsdata)
2720 {
2721 int ret, retries = 0;
2722 struct page *page;
2723 pgoff_t index;
2724 struct inode *inode = mapping->host;
2725 handle_t *handle;
2726
2727 index = pos >> PAGE_CACHE_SHIFT;
2728
2729 if (ext4_nonda_switch(inode->i_sb)) {
2730 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2731 return ext4_write_begin(file, mapping, pos,
2732 len, flags, pagep, fsdata);
2733 }
2734 *fsdata = (void *)0;
2735 trace_ext4_da_write_begin(inode, pos, len, flags);
2736
2737 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2738 ret = ext4_da_write_inline_data_begin(mapping, inode,
2739 pos, len, flags,
2740 pagep, fsdata);
2741 if (ret < 0)
2742 return ret;
2743 if (ret == 1)
2744 return 0;
2745 }
2746
2747 /*
2748 * grab_cache_page_write_begin() can take a long time if the
2749 * system is thrashing due to memory pressure, or if the page
2750 * is being written back. So grab it first before we start
2751 * the transaction handle. This also allows us to allocate
2752 * the page (if needed) without using GFP_NOFS.
2753 */
2754 retry_grab:
2755 page = grab_cache_page_write_begin(mapping, index, flags);
2756 if (!page)
2757 return -ENOMEM;
2758 unlock_page(page);
2759
2760 /*
2761 * With delayed allocation, we don't log the i_disksize update
2762 * if there is delayed block allocation. But we still need
2763 * to journalling the i_disksize update if writes to the end
2764 * of file which has an already mapped buffer.
2765 */
2766 retry_journal:
2767 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2768 ext4_da_write_credits(inode, pos, len));
2769 if (IS_ERR(handle)) {
2770 page_cache_release(page);
2771 return PTR_ERR(handle);
2772 }
2773
2774 lock_page(page);
2775 if (page->mapping != mapping) {
2776 /* The page got truncated from under us */
2777 unlock_page(page);
2778 page_cache_release(page);
2779 ext4_journal_stop(handle);
2780 goto retry_grab;
2781 }
2782 /* In case writeback began while the page was unlocked */
2783 wait_for_stable_page(page);
2784
2785 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2786 if (ret < 0) {
2787 unlock_page(page);
2788 ext4_journal_stop(handle);
2789 /*
2790 * block_write_begin may have instantiated a few blocks
2791 * outside i_size. Trim these off again. Don't need
2792 * i_size_read because we hold i_mutex.
2793 */
2794 if (pos + len > inode->i_size)
2795 ext4_truncate_failed_write(inode);
2796
2797 if (ret == -ENOSPC &&
2798 ext4_should_retry_alloc(inode->i_sb, &retries))
2799 goto retry_journal;
2800
2801 page_cache_release(page);
2802 return ret;
2803 }
2804
2805 *pagep = page;
2806 return ret;
2807 }
2808
2809 /*
2810 * Check if we should update i_disksize
2811 * when write to the end of file but not require block allocation
2812 */
2813 static int ext4_da_should_update_i_disksize(struct page *page,
2814 unsigned long offset)
2815 {
2816 struct buffer_head *bh;
2817 struct inode *inode = page->mapping->host;
2818 unsigned int idx;
2819 int i;
2820
2821 bh = page_buffers(page);
2822 idx = offset >> inode->i_blkbits;
2823
2824 for (i = 0; i < idx; i++)
2825 bh = bh->b_this_page;
2826
2827 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2828 return 0;
2829 return 1;
2830 }
2831
2832 static int ext4_da_write_end(struct file *file,
2833 struct address_space *mapping,
2834 loff_t pos, unsigned len, unsigned copied,
2835 struct page *page, void *fsdata)
2836 {
2837 struct inode *inode = mapping->host;
2838 int ret = 0, ret2;
2839 handle_t *handle = ext4_journal_current_handle();
2840 loff_t new_i_size;
2841 unsigned long start, end;
2842 int write_mode = (int)(unsigned long)fsdata;
2843
2844 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2845 return ext4_write_end(file, mapping, pos,
2846 len, copied, page, fsdata);
2847
2848 trace_ext4_da_write_end(inode, pos, len, copied);
2849 start = pos & (PAGE_CACHE_SIZE - 1);
2850 end = start + copied - 1;
2851
2852 /*
2853 * generic_write_end() will run mark_inode_dirty() if i_size
2854 * changes. So let's piggyback the i_disksize mark_inode_dirty
2855 * into that.
2856 */
2857 new_i_size = pos + copied;
2858 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2859 if (ext4_has_inline_data(inode) ||
2860 ext4_da_should_update_i_disksize(page, end)) {
2861 down_write(&EXT4_I(inode)->i_data_sem);
2862 if (new_i_size > EXT4_I(inode)->i_disksize)
2863 EXT4_I(inode)->i_disksize = new_i_size;
2864 up_write(&EXT4_I(inode)->i_data_sem);
2865 /* We need to mark inode dirty even if
2866 * new_i_size is less that inode->i_size
2867 * bu greater than i_disksize.(hint delalloc)
2868 */
2869 ext4_mark_inode_dirty(handle, inode);
2870 }
2871 }
2872
2873 if (write_mode != CONVERT_INLINE_DATA &&
2874 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2875 ext4_has_inline_data(inode))
2876 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2877 page);
2878 else
2879 ret2 = generic_write_end(file, mapping, pos, len, copied,
2880 page, fsdata);
2881
2882 copied = ret2;
2883 if (ret2 < 0)
2884 ret = ret2;
2885 ret2 = ext4_journal_stop(handle);
2886 if (!ret)
2887 ret = ret2;
2888
2889 return ret ? ret : copied;
2890 }
2891
2892 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2893 {
2894 /*
2895 * Drop reserved blocks
2896 */
2897 BUG_ON(!PageLocked(page));
2898 if (!page_has_buffers(page))
2899 goto out;
2900
2901 ext4_da_page_release_reservation(page, offset);
2902
2903 out:
2904 ext4_invalidatepage(page, offset);
2905
2906 return;
2907 }
2908
2909 /*
2910 * Force all delayed allocation blocks to be allocated for a given inode.
2911 */
2912 int ext4_alloc_da_blocks(struct inode *inode)
2913 {
2914 trace_ext4_alloc_da_blocks(inode);
2915
2916 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2917 !EXT4_I(inode)->i_reserved_meta_blocks)
2918 return 0;
2919
2920 /*
2921 * We do something simple for now. The filemap_flush() will
2922 * also start triggering a write of the data blocks, which is
2923 * not strictly speaking necessary (and for users of
2924 * laptop_mode, not even desirable). However, to do otherwise
2925 * would require replicating code paths in:
2926 *
2927 * ext4_da_writepages() ->
2928 * write_cache_pages() ---> (via passed in callback function)
2929 * __mpage_da_writepage() -->
2930 * mpage_add_bh_to_extent()
2931 * mpage_da_map_blocks()
2932 *
2933 * The problem is that write_cache_pages(), located in
2934 * mm/page-writeback.c, marks pages clean in preparation for
2935 * doing I/O, which is not desirable if we're not planning on
2936 * doing I/O at all.
2937 *
2938 * We could call write_cache_pages(), and then redirty all of
2939 * the pages by calling redirty_page_for_writepage() but that
2940 * would be ugly in the extreme. So instead we would need to
2941 * replicate parts of the code in the above functions,
2942 * simplifying them because we wouldn't actually intend to
2943 * write out the pages, but rather only collect contiguous
2944 * logical block extents, call the multi-block allocator, and
2945 * then update the buffer heads with the block allocations.
2946 *
2947 * For now, though, we'll cheat by calling filemap_flush(),
2948 * which will map the blocks, and start the I/O, but not
2949 * actually wait for the I/O to complete.
2950 */
2951 return filemap_flush(inode->i_mapping);
2952 }
2953
2954 /*
2955 * bmap() is special. It gets used by applications such as lilo and by
2956 * the swapper to find the on-disk block of a specific piece of data.
2957 *
2958 * Naturally, this is dangerous if the block concerned is still in the
2959 * journal. If somebody makes a swapfile on an ext4 data-journaling
2960 * filesystem and enables swap, then they may get a nasty shock when the
2961 * data getting swapped to that swapfile suddenly gets overwritten by
2962 * the original zero's written out previously to the journal and
2963 * awaiting writeback in the kernel's buffer cache.
2964 *
2965 * So, if we see any bmap calls here on a modified, data-journaled file,
2966 * take extra steps to flush any blocks which might be in the cache.
2967 */
2968 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2969 {
2970 struct inode *inode = mapping->host;
2971 journal_t *journal;
2972 int err;
2973
2974 /*
2975 * We can get here for an inline file via the FIBMAP ioctl
2976 */
2977 if (ext4_has_inline_data(inode))
2978 return 0;
2979
2980 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2981 test_opt(inode->i_sb, DELALLOC)) {
2982 /*
2983 * With delalloc we want to sync the file
2984 * so that we can make sure we allocate
2985 * blocks for file
2986 */
2987 filemap_write_and_wait(mapping);
2988 }
2989
2990 if (EXT4_JOURNAL(inode) &&
2991 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2992 /*
2993 * This is a REALLY heavyweight approach, but the use of
2994 * bmap on dirty files is expected to be extremely rare:
2995 * only if we run lilo or swapon on a freshly made file
2996 * do we expect this to happen.
2997 *
2998 * (bmap requires CAP_SYS_RAWIO so this does not
2999 * represent an unprivileged user DOS attack --- we'd be
3000 * in trouble if mortal users could trigger this path at
3001 * will.)
3002 *
3003 * NB. EXT4_STATE_JDATA is not set on files other than
3004 * regular files. If somebody wants to bmap a directory
3005 * or symlink and gets confused because the buffer
3006 * hasn't yet been flushed to disk, they deserve
3007 * everything they get.
3008 */
3009
3010 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3011 journal = EXT4_JOURNAL(inode);
3012 jbd2_journal_lock_updates(journal);
3013 err = jbd2_journal_flush(journal);
3014 jbd2_journal_unlock_updates(journal);
3015
3016 if (err)
3017 return 0;
3018 }
3019
3020 return generic_block_bmap(mapping, block, ext4_get_block);
3021 }
3022
3023 static int ext4_readpage(struct file *file, struct page *page)
3024 {
3025 int ret = -EAGAIN;
3026 struct inode *inode = page->mapping->host;
3027
3028 trace_ext4_readpage(page);
3029
3030 if (ext4_has_inline_data(inode))
3031 ret = ext4_readpage_inline(inode, page);
3032
3033 if (ret == -EAGAIN)
3034 return mpage_readpage(page, ext4_get_block);
3035
3036 return ret;
3037 }
3038
3039 static int
3040 ext4_readpages(struct file *file, struct address_space *mapping,
3041 struct list_head *pages, unsigned nr_pages)
3042 {
3043 struct inode *inode = mapping->host;
3044
3045 /* If the file has inline data, no need to do readpages. */
3046 if (ext4_has_inline_data(inode))
3047 return 0;
3048
3049 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3050 }
3051
3052 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3053 {
3054 trace_ext4_invalidatepage(page, offset);
3055
3056 /* No journalling happens on data buffers when this function is used */
3057 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3058
3059 block_invalidatepage(page, offset);
3060 }
3061
3062 static int __ext4_journalled_invalidatepage(struct page *page,
3063 unsigned long offset)
3064 {
3065 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3066
3067 trace_ext4_journalled_invalidatepage(page, offset);
3068
3069 /*
3070 * If it's a full truncate we just forget about the pending dirtying
3071 */
3072 if (offset == 0)
3073 ClearPageChecked(page);
3074
3075 return jbd2_journal_invalidatepage(journal, page, offset);
3076 }
3077
3078 /* Wrapper for aops... */
3079 static void ext4_journalled_invalidatepage(struct page *page,
3080 unsigned long offset)
3081 {
3082 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3083 }
3084
3085 static int ext4_releasepage(struct page *page, gfp_t wait)
3086 {
3087 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3088
3089 trace_ext4_releasepage(page);
3090
3091 /* Page has dirty journalled data -> cannot release */
3092 if (PageChecked(page))
3093 return 0;
3094 if (journal)
3095 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3096 else
3097 return try_to_free_buffers(page);
3098 }
3099
3100 /*
3101 * ext4_get_block used when preparing for a DIO write or buffer write.
3102 * We allocate an uinitialized extent if blocks haven't been allocated.
3103 * The extent will be converted to initialized after the IO is complete.
3104 */
3105 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3106 struct buffer_head *bh_result, int create)
3107 {
3108 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3109 inode->i_ino, create);
3110 return _ext4_get_block(inode, iblock, bh_result,
3111 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3112 }
3113
3114 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3115 struct buffer_head *bh_result, int create)
3116 {
3117 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3118 inode->i_ino, create);
3119 return _ext4_get_block(inode, iblock, bh_result,
3120 EXT4_GET_BLOCKS_NO_LOCK);
3121 }
3122
3123 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3124 ssize_t size, void *private, int ret,
3125 bool is_async)
3126 {
3127 struct inode *inode = file_inode(iocb->ki_filp);
3128 ext4_io_end_t *io_end = iocb->private;
3129
3130 /* if not async direct IO or dio with 0 bytes write, just return */
3131 if (!io_end || !size)
3132 goto out;
3133
3134 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3135 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3136 iocb->private, io_end->inode->i_ino, iocb, offset,
3137 size);
3138
3139 iocb->private = NULL;
3140
3141 /* if not aio dio with unwritten extents, just free io and return */
3142 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3143 ext4_free_io_end(io_end);
3144 out:
3145 inode_dio_done(inode);
3146 if (is_async)
3147 aio_complete(iocb, ret, 0);
3148 return;
3149 }
3150
3151 io_end->offset = offset;
3152 io_end->size = size;
3153 if (is_async) {
3154 io_end->iocb = iocb;
3155 io_end->result = ret;
3156 }
3157
3158 ext4_add_complete_io(io_end);
3159 }
3160
3161 /*
3162 * For ext4 extent files, ext4 will do direct-io write to holes,
3163 * preallocated extents, and those write extend the file, no need to
3164 * fall back to buffered IO.
3165 *
3166 * For holes, we fallocate those blocks, mark them as uninitialized
3167 * If those blocks were preallocated, we mark sure they are split, but
3168 * still keep the range to write as uninitialized.
3169 *
3170 * The unwritten extents will be converted to written when DIO is completed.
3171 * For async direct IO, since the IO may still pending when return, we
3172 * set up an end_io call back function, which will do the conversion
3173 * when async direct IO completed.
3174 *
3175 * If the O_DIRECT write will extend the file then add this inode to the
3176 * orphan list. So recovery will truncate it back to the original size
3177 * if the machine crashes during the write.
3178 *
3179 */
3180 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3181 const struct iovec *iov, loff_t offset,
3182 unsigned long nr_segs)
3183 {
3184 struct file *file = iocb->ki_filp;
3185 struct inode *inode = file->f_mapping->host;
3186 ssize_t ret;
3187 size_t count = iov_length(iov, nr_segs);
3188 int overwrite = 0;
3189 get_block_t *get_block_func = NULL;
3190 int dio_flags = 0;
3191 loff_t final_size = offset + count;
3192
3193 /* Use the old path for reads and writes beyond i_size. */
3194 if (rw != WRITE || final_size > inode->i_size)
3195 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3196
3197 BUG_ON(iocb->private == NULL);
3198
3199 /* If we do a overwrite dio, i_mutex locking can be released */
3200 overwrite = *((int *)iocb->private);
3201
3202 if (overwrite) {
3203 atomic_inc(&inode->i_dio_count);
3204 down_read(&EXT4_I(inode)->i_data_sem);
3205 mutex_unlock(&inode->i_mutex);
3206 }
3207
3208 /*
3209 * We could direct write to holes and fallocate.
3210 *
3211 * Allocated blocks to fill the hole are marked as
3212 * uninitialized to prevent parallel buffered read to expose
3213 * the stale data before DIO complete the data IO.
3214 *
3215 * As to previously fallocated extents, ext4 get_block will
3216 * just simply mark the buffer mapped but still keep the
3217 * extents uninitialized.
3218 *
3219 * For non AIO case, we will convert those unwritten extents
3220 * to written after return back from blockdev_direct_IO.
3221 *
3222 * For async DIO, the conversion needs to be deferred when the
3223 * IO is completed. The ext4 end_io callback function will be
3224 * called to take care of the conversion work. Here for async
3225 * case, we allocate an io_end structure to hook to the iocb.
3226 */
3227 iocb->private = NULL;
3228 ext4_inode_aio_set(inode, NULL);
3229 if (!is_sync_kiocb(iocb)) {
3230 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3231 if (!io_end) {
3232 ret = -ENOMEM;
3233 goto retake_lock;
3234 }
3235 io_end->flag |= EXT4_IO_END_DIRECT;
3236 iocb->private = io_end;
3237 /*
3238 * we save the io structure for current async direct
3239 * IO, so that later ext4_map_blocks() could flag the
3240 * io structure whether there is a unwritten extents
3241 * needs to be converted when IO is completed.
3242 */
3243 ext4_inode_aio_set(inode, io_end);
3244 }
3245
3246 if (overwrite) {
3247 get_block_func = ext4_get_block_write_nolock;
3248 } else {
3249 get_block_func = ext4_get_block_write;
3250 dio_flags = DIO_LOCKING;
3251 }
3252 ret = __blockdev_direct_IO(rw, iocb, inode,
3253 inode->i_sb->s_bdev, iov,
3254 offset, nr_segs,
3255 get_block_func,
3256 ext4_end_io_dio,
3257 NULL,
3258 dio_flags);
3259
3260 if (iocb->private)
3261 ext4_inode_aio_set(inode, NULL);
3262 /*
3263 * The io_end structure takes a reference to the inode, that
3264 * structure needs to be destroyed and the reference to the
3265 * inode need to be dropped, when IO is complete, even with 0
3266 * byte write, or failed.
3267 *
3268 * In the successful AIO DIO case, the io_end structure will
3269 * be destroyed and the reference to the inode will be dropped
3270 * after the end_io call back function is called.
3271 *
3272 * In the case there is 0 byte write, or error case, since VFS
3273 * direct IO won't invoke the end_io call back function, we
3274 * need to free the end_io structure here.
3275 */
3276 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3277 ext4_free_io_end(iocb->private);
3278 iocb->private = NULL;
3279 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3280 EXT4_STATE_DIO_UNWRITTEN)) {
3281 int err;
3282 /*
3283 * for non AIO case, since the IO is already
3284 * completed, we could do the conversion right here
3285 */
3286 err = ext4_convert_unwritten_extents(inode,
3287 offset, ret);
3288 if (err < 0)
3289 ret = err;
3290 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3291 }
3292
3293 retake_lock:
3294 /* take i_mutex locking again if we do a ovewrite dio */
3295 if (overwrite) {
3296 inode_dio_done(inode);
3297 up_read(&EXT4_I(inode)->i_data_sem);
3298 mutex_lock(&inode->i_mutex);
3299 }
3300
3301 return ret;
3302 }
3303
3304 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3305 const struct iovec *iov, loff_t offset,
3306 unsigned long nr_segs)
3307 {
3308 struct file *file = iocb->ki_filp;
3309 struct inode *inode = file->f_mapping->host;
3310 ssize_t ret;
3311
3312 /*
3313 * If we are doing data journalling we don't support O_DIRECT
3314 */
3315 if (ext4_should_journal_data(inode))
3316 return 0;
3317
3318 /* Let buffer I/O handle the inline data case. */
3319 if (ext4_has_inline_data(inode))
3320 return 0;
3321
3322 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3323 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3324 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3325 else
3326 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3327 trace_ext4_direct_IO_exit(inode, offset,
3328 iov_length(iov, nr_segs), rw, ret);
3329 return ret;
3330 }
3331
3332 /*
3333 * Pages can be marked dirty completely asynchronously from ext4's journalling
3334 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3335 * much here because ->set_page_dirty is called under VFS locks. The page is
3336 * not necessarily locked.
3337 *
3338 * We cannot just dirty the page and leave attached buffers clean, because the
3339 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3340 * or jbddirty because all the journalling code will explode.
3341 *
3342 * So what we do is to mark the page "pending dirty" and next time writepage
3343 * is called, propagate that into the buffers appropriately.
3344 */
3345 static int ext4_journalled_set_page_dirty(struct page *page)
3346 {
3347 SetPageChecked(page);
3348 return __set_page_dirty_nobuffers(page);
3349 }
3350
3351 static const struct address_space_operations ext4_aops = {
3352 .readpage = ext4_readpage,
3353 .readpages = ext4_readpages,
3354 .writepage = ext4_writepage,
3355 .write_begin = ext4_write_begin,
3356 .write_end = ext4_write_end,
3357 .bmap = ext4_bmap,
3358 .invalidatepage = ext4_invalidatepage,
3359 .releasepage = ext4_releasepage,
3360 .direct_IO = ext4_direct_IO,
3361 .migratepage = buffer_migrate_page,
3362 .is_partially_uptodate = block_is_partially_uptodate,
3363 .error_remove_page = generic_error_remove_page,
3364 };
3365
3366 static const struct address_space_operations ext4_journalled_aops = {
3367 .readpage = ext4_readpage,
3368 .readpages = ext4_readpages,
3369 .writepage = ext4_writepage,
3370 .write_begin = ext4_write_begin,
3371 .write_end = ext4_journalled_write_end,
3372 .set_page_dirty = ext4_journalled_set_page_dirty,
3373 .bmap = ext4_bmap,
3374 .invalidatepage = ext4_journalled_invalidatepage,
3375 .releasepage = ext4_releasepage,
3376 .direct_IO = ext4_direct_IO,
3377 .is_partially_uptodate = block_is_partially_uptodate,
3378 .error_remove_page = generic_error_remove_page,
3379 };
3380
3381 static const struct address_space_operations ext4_da_aops = {
3382 .readpage = ext4_readpage,
3383 .readpages = ext4_readpages,
3384 .writepage = ext4_writepage,
3385 .writepages = ext4_da_writepages,
3386 .write_begin = ext4_da_write_begin,
3387 .write_end = ext4_da_write_end,
3388 .bmap = ext4_bmap,
3389 .invalidatepage = ext4_da_invalidatepage,
3390 .releasepage = ext4_releasepage,
3391 .direct_IO = ext4_direct_IO,
3392 .migratepage = buffer_migrate_page,
3393 .is_partially_uptodate = block_is_partially_uptodate,
3394 .error_remove_page = generic_error_remove_page,
3395 };
3396
3397 void ext4_set_aops(struct inode *inode)
3398 {
3399 switch (ext4_inode_journal_mode(inode)) {
3400 case EXT4_INODE_ORDERED_DATA_MODE:
3401 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3402 break;
3403 case EXT4_INODE_WRITEBACK_DATA_MODE:
3404 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3405 break;
3406 case EXT4_INODE_JOURNAL_DATA_MODE:
3407 inode->i_mapping->a_ops = &ext4_journalled_aops;
3408 return;
3409 default:
3410 BUG();
3411 }
3412 if (test_opt(inode->i_sb, DELALLOC))
3413 inode->i_mapping->a_ops = &ext4_da_aops;
3414 else
3415 inode->i_mapping->a_ops = &ext4_aops;
3416 }
3417
3418
3419 /*
3420 * ext4_discard_partial_page_buffers()
3421 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3422 * This function finds and locks the page containing the offset
3423 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3424 * Calling functions that already have the page locked should call
3425 * ext4_discard_partial_page_buffers_no_lock directly.
3426 */
3427 int ext4_discard_partial_page_buffers(handle_t *handle,
3428 struct address_space *mapping, loff_t from,
3429 loff_t length, int flags)
3430 {
3431 struct inode *inode = mapping->host;
3432 struct page *page;
3433 int err = 0;
3434
3435 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3436 mapping_gfp_mask(mapping) & ~__GFP_FS);
3437 if (!page)
3438 return -ENOMEM;
3439
3440 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3441 from, length, flags);
3442
3443 unlock_page(page);
3444 page_cache_release(page);
3445 return err;
3446 }
3447
3448 /*
3449 * ext4_discard_partial_page_buffers_no_lock()
3450 * Zeros a page range of length 'length' starting from offset 'from'.
3451 * Buffer heads that correspond to the block aligned regions of the
3452 * zeroed range will be unmapped. Unblock aligned regions
3453 * will have the corresponding buffer head mapped if needed so that
3454 * that region of the page can be updated with the partial zero out.
3455 *
3456 * This function assumes that the page has already been locked. The
3457 * The range to be discarded must be contained with in the given page.
3458 * If the specified range exceeds the end of the page it will be shortened
3459 * to the end of the page that corresponds to 'from'. This function is
3460 * appropriate for updating a page and it buffer heads to be unmapped and
3461 * zeroed for blocks that have been either released, or are going to be
3462 * released.
3463 *
3464 * handle: The journal handle
3465 * inode: The files inode
3466 * page: A locked page that contains the offset "from"
3467 * from: The starting byte offset (from the beginning of the file)
3468 * to begin discarding
3469 * len: The length of bytes to discard
3470 * flags: Optional flags that may be used:
3471 *
3472 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3473 * Only zero the regions of the page whose buffer heads
3474 * have already been unmapped. This flag is appropriate
3475 * for updating the contents of a page whose blocks may
3476 * have already been released, and we only want to zero
3477 * out the regions that correspond to those released blocks.
3478 *
3479 * Returns zero on success or negative on failure.
3480 */
3481 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3482 struct inode *inode, struct page *page, loff_t from,
3483 loff_t length, int flags)
3484 {
3485 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3486 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3487 unsigned int blocksize, max, pos;
3488 ext4_lblk_t iblock;
3489 struct buffer_head *bh;
3490 int err = 0;
3491
3492 blocksize = inode->i_sb->s_blocksize;
3493 max = PAGE_CACHE_SIZE - offset;
3494
3495 if (index != page->index)
3496 return -EINVAL;
3497
3498 /*
3499 * correct length if it does not fall between
3500 * 'from' and the end of the page
3501 */
3502 if (length > max || length < 0)
3503 length = max;
3504
3505 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3506
3507 if (!page_has_buffers(page))
3508 create_empty_buffers(page, blocksize, 0);
3509
3510 /* Find the buffer that contains "offset" */
3511 bh = page_buffers(page);
3512 pos = blocksize;
3513 while (offset >= pos) {
3514 bh = bh->b_this_page;
3515 iblock++;
3516 pos += blocksize;
3517 }
3518
3519 pos = offset;
3520 while (pos < offset + length) {
3521 unsigned int end_of_block, range_to_discard;
3522
3523 err = 0;
3524
3525 /* The length of space left to zero and unmap */
3526 range_to_discard = offset + length - pos;
3527
3528 /* The length of space until the end of the block */
3529 end_of_block = blocksize - (pos & (blocksize-1));
3530
3531 /*
3532 * Do not unmap or zero past end of block
3533 * for this buffer head
3534 */
3535 if (range_to_discard > end_of_block)
3536 range_to_discard = end_of_block;
3537
3538
3539 /*
3540 * Skip this buffer head if we are only zeroing unampped
3541 * regions of the page
3542 */
3543 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3544 buffer_mapped(bh))
3545 goto next;
3546
3547 /* If the range is block aligned, unmap */
3548 if (range_to_discard == blocksize) {
3549 clear_buffer_dirty(bh);
3550 bh->b_bdev = NULL;
3551 clear_buffer_mapped(bh);
3552 clear_buffer_req(bh);
3553 clear_buffer_new(bh);
3554 clear_buffer_delay(bh);
3555 clear_buffer_unwritten(bh);
3556 clear_buffer_uptodate(bh);
3557 zero_user(page, pos, range_to_discard);
3558 BUFFER_TRACE(bh, "Buffer discarded");
3559 goto next;
3560 }
3561
3562 /*
3563 * If this block is not completely contained in the range
3564 * to be discarded, then it is not going to be released. Because
3565 * we need to keep this block, we need to make sure this part
3566 * of the page is uptodate before we modify it by writeing
3567 * partial zeros on it.
3568 */
3569 if (!buffer_mapped(bh)) {
3570 /*
3571 * Buffer head must be mapped before we can read
3572 * from the block
3573 */
3574 BUFFER_TRACE(bh, "unmapped");
3575 ext4_get_block(inode, iblock, bh, 0);
3576 /* unmapped? It's a hole - nothing to do */
3577 if (!buffer_mapped(bh)) {
3578 BUFFER_TRACE(bh, "still unmapped");
3579 goto next;
3580 }
3581 }
3582
3583 /* Ok, it's mapped. Make sure it's up-to-date */
3584 if (PageUptodate(page))
3585 set_buffer_uptodate(bh);
3586
3587 if (!buffer_uptodate(bh)) {
3588 err = -EIO;
3589 ll_rw_block(READ, 1, &bh);
3590 wait_on_buffer(bh);
3591 /* Uhhuh. Read error. Complain and punt.*/
3592 if (!buffer_uptodate(bh))
3593 goto next;
3594 }
3595
3596 if (ext4_should_journal_data(inode)) {
3597 BUFFER_TRACE(bh, "get write access");
3598 err = ext4_journal_get_write_access(handle, bh);
3599 if (err)
3600 goto next;
3601 }
3602
3603 zero_user(page, pos, range_to_discard);
3604
3605 err = 0;
3606 if (ext4_should_journal_data(inode)) {
3607 err = ext4_handle_dirty_metadata(handle, inode, bh);
3608 } else
3609 mark_buffer_dirty(bh);
3610
3611 BUFFER_TRACE(bh, "Partial buffer zeroed");
3612 next:
3613 bh = bh->b_this_page;
3614 iblock++;
3615 pos += range_to_discard;
3616 }
3617
3618 return err;
3619 }
3620
3621 int ext4_can_truncate(struct inode *inode)
3622 {
3623 if (S_ISREG(inode->i_mode))
3624 return 1;
3625 if (S_ISDIR(inode->i_mode))
3626 return 1;
3627 if (S_ISLNK(inode->i_mode))
3628 return !ext4_inode_is_fast_symlink(inode);
3629 return 0;
3630 }
3631
3632 /*
3633 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3634 * associated with the given offset and length
3635 *
3636 * @inode: File inode
3637 * @offset: The offset where the hole will begin
3638 * @len: The length of the hole
3639 *
3640 * Returns: 0 on success or negative on failure
3641 */
3642
3643 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3644 {
3645 #if 0
3646 struct inode *inode = file_inode(file);
3647 struct super_block *sb = inode->i_sb;
3648 ext4_lblk_t first_block, stop_block;
3649 struct address_space *mapping = inode->i_mapping;
3650 loff_t first_page, last_page, page_len;
3651 loff_t first_page_offset, last_page_offset;
3652 handle_t *handle;
3653 unsigned int credits;
3654 int ret = 0;
3655
3656 if (!S_ISREG(inode->i_mode))
3657 return -EOPNOTSUPP;
3658
3659 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3660 /* TODO: Add support for bigalloc file systems */
3661 return -EOPNOTSUPP;
3662 }
3663
3664 trace_ext4_punch_hole(inode, offset, length);
3665
3666 /*
3667 * Write out all dirty pages to avoid race conditions
3668 * Then release them.
3669 */
3670 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3671 ret = filemap_write_and_wait_range(mapping, offset,
3672 offset + length - 1);
3673 if (ret)
3674 return ret;
3675 }
3676
3677 mutex_lock(&inode->i_mutex);
3678 /* It's not possible punch hole on append only file */
3679 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3680 ret = -EPERM;
3681 goto out_mutex;
3682 }
3683 if (IS_SWAPFILE(inode)) {
3684 ret = -ETXTBSY;
3685 goto out_mutex;
3686 }
3687
3688 /* No need to punch hole beyond i_size */
3689 if (offset >= inode->i_size)
3690 goto out_mutex;
3691
3692 /*
3693 * If the hole extends beyond i_size, set the hole
3694 * to end after the page that contains i_size
3695 */
3696 if (offset + length > inode->i_size) {
3697 length = inode->i_size +
3698 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3699 offset;
3700 }
3701
3702 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3703 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3704
3705 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3706 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3707
3708 /* Now release the pages */
3709 if (last_page_offset > first_page_offset) {
3710 truncate_pagecache_range(inode, first_page_offset,
3711 last_page_offset - 1);
3712 }
3713
3714 /* Wait all existing dio workers, newcomers will block on i_mutex */
3715 ext4_inode_block_unlocked_dio(inode);
3716 ret = ext4_flush_unwritten_io(inode);
3717 if (ret)
3718 goto out_dio;
3719 inode_dio_wait(inode);
3720
3721 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3722 credits = ext4_writepage_trans_blocks(inode);
3723 else
3724 credits = ext4_blocks_for_truncate(inode);
3725 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3726 if (IS_ERR(handle)) {
3727 ret = PTR_ERR(handle);
3728 ext4_std_error(sb, ret);
3729 goto out_dio;
3730 }
3731
3732 /*
3733 * Now we need to zero out the non-page-aligned data in the
3734 * pages at the start and tail of the hole, and unmap the
3735 * buffer heads for the block aligned regions of the page that
3736 * were completely zeroed.
3737 */
3738 if (first_page > last_page) {
3739 /*
3740 * If the file space being truncated is contained
3741 * within a page just zero out and unmap the middle of
3742 * that page
3743 */
3744 ret = ext4_discard_partial_page_buffers(handle,
3745 mapping, offset, length, 0);
3746
3747 if (ret)
3748 goto out_stop;
3749 } else {
3750 /*
3751 * zero out and unmap the partial page that contains
3752 * the start of the hole
3753 */
3754 page_len = first_page_offset - offset;
3755 if (page_len > 0) {
3756 ret = ext4_discard_partial_page_buffers(handle, mapping,
3757 offset, page_len, 0);
3758 if (ret)
3759 goto out_stop;
3760 }
3761
3762 /*
3763 * zero out and unmap the partial page that contains
3764 * the end of the hole
3765 */
3766 page_len = offset + length - last_page_offset;
3767 if (page_len > 0) {
3768 ret = ext4_discard_partial_page_buffers(handle, mapping,
3769 last_page_offset, page_len, 0);
3770 if (ret)
3771 goto out_stop;
3772 }
3773 }
3774
3775 /*
3776 * If i_size is contained in the last page, we need to
3777 * unmap and zero the partial page after i_size
3778 */
3779 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3780 inode->i_size % PAGE_CACHE_SIZE != 0) {
3781 page_len = PAGE_CACHE_SIZE -
3782 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3783
3784 if (page_len > 0) {
3785 ret = ext4_discard_partial_page_buffers(handle,
3786 mapping, inode->i_size, page_len, 0);
3787
3788 if (ret)
3789 goto out_stop;
3790 }
3791 }
3792
3793 first_block = (offset + sb->s_blocksize - 1) >>
3794 EXT4_BLOCK_SIZE_BITS(sb);
3795 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3796
3797 /* If there are no blocks to remove, return now */
3798 if (first_block >= stop_block)
3799 goto out_stop;
3800
3801 down_write(&EXT4_I(inode)->i_data_sem);
3802 ext4_discard_preallocations(inode);
3803
3804 ret = ext4_es_remove_extent(inode, first_block,
3805 stop_block - first_block);
3806 if (ret) {
3807 up_write(&EXT4_I(inode)->i_data_sem);
3808 goto out_stop;
3809 }
3810
3811 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3812 ret = ext4_ext_remove_space(inode, first_block,
3813 stop_block - 1);
3814 else
3815 ret = ext4_free_hole_blocks(handle, inode, first_block,
3816 stop_block);
3817
3818 ext4_discard_preallocations(inode);
3819 up_write(&EXT4_I(inode)->i_data_sem);
3820 if (IS_SYNC(inode))
3821 ext4_handle_sync(handle);
3822 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3823 ext4_mark_inode_dirty(handle, inode);
3824 out_stop:
3825 ext4_journal_stop(handle);
3826 out_dio:
3827 ext4_inode_resume_unlocked_dio(inode);
3828 out_mutex:
3829 mutex_unlock(&inode->i_mutex);
3830 return ret;
3831 #else
3832 /*
3833 * Disabled as per b/28760453
3834 */
3835 return -EOPNOTSUPP;
3836 #endif
3837 }
3838
3839 /*
3840 * ext4_truncate()
3841 *
3842 * We block out ext4_get_block() block instantiations across the entire
3843 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3844 * simultaneously on behalf of the same inode.
3845 *
3846 * As we work through the truncate and commit bits of it to the journal there
3847 * is one core, guiding principle: the file's tree must always be consistent on
3848 * disk. We must be able to restart the truncate after a crash.
3849 *
3850 * The file's tree may be transiently inconsistent in memory (although it
3851 * probably isn't), but whenever we close off and commit a journal transaction,
3852 * the contents of (the filesystem + the journal) must be consistent and
3853 * restartable. It's pretty simple, really: bottom up, right to left (although
3854 * left-to-right works OK too).
3855 *
3856 * Note that at recovery time, journal replay occurs *before* the restart of
3857 * truncate against the orphan inode list.
3858 *
3859 * The committed inode has the new, desired i_size (which is the same as
3860 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3861 * that this inode's truncate did not complete and it will again call
3862 * ext4_truncate() to have another go. So there will be instantiated blocks
3863 * to the right of the truncation point in a crashed ext4 filesystem. But
3864 * that's fine - as long as they are linked from the inode, the post-crash
3865 * ext4_truncate() run will find them and release them.
3866 */
3867 void ext4_truncate(struct inode *inode)
3868 {
3869 struct ext4_inode_info *ei = EXT4_I(inode);
3870 unsigned int credits;
3871 handle_t *handle;
3872 struct address_space *mapping = inode->i_mapping;
3873 loff_t page_len;
3874
3875 /*
3876 * There is a possibility that we're either freeing the inode
3877 * or it completely new indode. In those cases we might not
3878 * have i_mutex locked because it's not necessary.
3879 */
3880 if (!(inode->i_state & (I_NEW|I_FREEING)))
3881 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3882 trace_ext4_truncate_enter(inode);
3883
3884 if (!ext4_can_truncate(inode))
3885 return;
3886
3887 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3888
3889 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3890 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3891
3892 if (ext4_has_inline_data(inode)) {
3893 int has_inline = 1;
3894
3895 ext4_inline_data_truncate(inode, &has_inline);
3896 if (has_inline)
3897 return;
3898 }
3899
3900 /*
3901 * finish any pending end_io work so we won't run the risk of
3902 * converting any truncated blocks to initialized later
3903 */
3904 ext4_flush_unwritten_io(inode);
3905
3906 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3907 credits = ext4_writepage_trans_blocks(inode);
3908 else
3909 credits = ext4_blocks_for_truncate(inode);
3910
3911 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3912 if (IS_ERR(handle)) {
3913 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3914 return;
3915 }
3916
3917 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3918 page_len = PAGE_CACHE_SIZE -
3919 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3920
3921 if (ext4_discard_partial_page_buffers(handle,
3922 mapping, inode->i_size, page_len, 0))
3923 goto out_stop;
3924 }
3925
3926 /*
3927 * We add the inode to the orphan list, so that if this
3928 * truncate spans multiple transactions, and we crash, we will
3929 * resume the truncate when the filesystem recovers. It also
3930 * marks the inode dirty, to catch the new size.
3931 *
3932 * Implication: the file must always be in a sane, consistent
3933 * truncatable state while each transaction commits.
3934 */
3935 if (ext4_orphan_add(handle, inode))
3936 goto out_stop;
3937
3938 down_write(&EXT4_I(inode)->i_data_sem);
3939
3940 ext4_discard_preallocations(inode);
3941
3942 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3943 ext4_ext_truncate(handle, inode);
3944 else
3945 ext4_ind_truncate(handle, inode);
3946
3947 up_write(&ei->i_data_sem);
3948
3949 if (IS_SYNC(inode))
3950 ext4_handle_sync(handle);
3951
3952 out_stop:
3953 /*
3954 * If this was a simple ftruncate() and the file will remain alive,
3955 * then we need to clear up the orphan record which we created above.
3956 * However, if this was a real unlink then we were called by
3957 * ext4_delete_inode(), and we allow that function to clean up the
3958 * orphan info for us.
3959 */
3960 if (inode->i_nlink)
3961 ext4_orphan_del(handle, inode);
3962
3963 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3964 ext4_mark_inode_dirty(handle, inode);
3965 ext4_journal_stop(handle);
3966
3967 trace_ext4_truncate_exit(inode);
3968 }
3969
3970 /*
3971 * ext4_get_inode_loc returns with an extra refcount against the inode's
3972 * underlying buffer_head on success. If 'in_mem' is true, we have all
3973 * data in memory that is needed to recreate the on-disk version of this
3974 * inode.
3975 */
3976 static int __ext4_get_inode_loc(struct inode *inode,
3977 struct ext4_iloc *iloc, int in_mem)
3978 {
3979 struct ext4_group_desc *gdp;
3980 struct buffer_head *bh;
3981 struct super_block *sb = inode->i_sb;
3982 ext4_fsblk_t block;
3983 int inodes_per_block, inode_offset;
3984
3985 iloc->bh = NULL;
3986 if (!ext4_valid_inum(sb, inode->i_ino))
3987 return -EIO;
3988
3989 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3990 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3991 if (!gdp)
3992 return -EIO;
3993
3994 /*
3995 * Figure out the offset within the block group inode table
3996 */
3997 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3998 inode_offset = ((inode->i_ino - 1) %
3999 EXT4_INODES_PER_GROUP(sb));
4000 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4001 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4002
4003 bh = sb_getblk(sb, block);
4004 if (unlikely(!bh))
4005 return -ENOMEM;
4006 if (!buffer_uptodate(bh)) {
4007 lock_buffer(bh);
4008
4009 /*
4010 * If the buffer has the write error flag, we have failed
4011 * to write out another inode in the same block. In this
4012 * case, we don't have to read the block because we may
4013 * read the old inode data successfully.
4014 */
4015 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4016 set_buffer_uptodate(bh);
4017
4018 if (buffer_uptodate(bh)) {
4019 /* someone brought it uptodate while we waited */
4020 unlock_buffer(bh);
4021 goto has_buffer;
4022 }
4023
4024 /*
4025 * If we have all information of the inode in memory and this
4026 * is the only valid inode in the block, we need not read the
4027 * block.
4028 */
4029 if (in_mem) {
4030 struct buffer_head *bitmap_bh;
4031 int i, start;
4032
4033 start = inode_offset & ~(inodes_per_block - 1);
4034
4035 /* Is the inode bitmap in cache? */
4036 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4037 if (unlikely(!bitmap_bh))
4038 goto make_io;
4039
4040 /*
4041 * If the inode bitmap isn't in cache then the
4042 * optimisation may end up performing two reads instead
4043 * of one, so skip it.
4044 */
4045 if (!buffer_uptodate(bitmap_bh)) {
4046 brelse(bitmap_bh);
4047 goto make_io;
4048 }
4049 for (i = start; i < start + inodes_per_block; i++) {
4050 if (i == inode_offset)
4051 continue;
4052 if (ext4_test_bit(i, bitmap_bh->b_data))
4053 break;
4054 }
4055 brelse(bitmap_bh);
4056 if (i == start + inodes_per_block) {
4057 /* all other inodes are free, so skip I/O */
4058 memset(bh->b_data, 0, bh->b_size);
4059 set_buffer_uptodate(bh);
4060 unlock_buffer(bh);
4061 goto has_buffer;
4062 }
4063 }
4064
4065 make_io:
4066 /*
4067 * If we need to do any I/O, try to pre-readahead extra
4068 * blocks from the inode table.
4069 */
4070 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4071 ext4_fsblk_t b, end, table;
4072 unsigned num;
4073 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4074
4075 table = ext4_inode_table(sb, gdp);
4076 /* s_inode_readahead_blks is always a power of 2 */
4077 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4078 if (table > b)
4079 b = table;
4080 end = b + ra_blks;
4081 num = EXT4_INODES_PER_GROUP(sb);
4082 if (ext4_has_group_desc_csum(sb))
4083 num -= ext4_itable_unused_count(sb, gdp);
4084 table += num / inodes_per_block;
4085 if (end > table)
4086 end = table;
4087 while (b <= end)
4088 sb_breadahead(sb, b++);
4089 }
4090
4091 /*
4092 * There are other valid inodes in the buffer, this inode
4093 * has in-inode xattrs, or we don't have this inode in memory.
4094 * Read the block from disk.
4095 */
4096 trace_ext4_load_inode(inode);
4097 get_bh(bh);
4098 bh->b_end_io = end_buffer_read_sync;
4099 #ifdef FEATURE_STORAGE_META_LOG
4100 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
4101 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
4102 #endif
4103 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4104 wait_on_buffer(bh);
4105 if (!buffer_uptodate(bh)) {
4106 EXT4_ERROR_INODE_BLOCK(inode, block,
4107 "unable to read itable block");
4108 brelse(bh);
4109 return -EIO;
4110 }
4111 }
4112 has_buffer:
4113 iloc->bh = bh;
4114 return 0;
4115 }
4116
4117 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4118 {
4119 /* We have all inode data except xattrs in memory here. */
4120 return __ext4_get_inode_loc(inode, iloc,
4121 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4122 }
4123
4124 void ext4_set_inode_flags(struct inode *inode)
4125 {
4126 unsigned int flags = EXT4_I(inode)->i_flags;
4127 unsigned int new_fl = 0;
4128
4129 if (flags & EXT4_SYNC_FL)
4130 new_fl |= S_SYNC;
4131 if (flags & EXT4_APPEND_FL)
4132 new_fl |= S_APPEND;
4133 if (flags & EXT4_IMMUTABLE_FL)
4134 new_fl |= S_IMMUTABLE;
4135 if (flags & EXT4_NOATIME_FL)
4136 new_fl |= S_NOATIME;
4137 if (flags & EXT4_DIRSYNC_FL)
4138 new_fl |= S_DIRSYNC;
4139 set_mask_bits(&inode->i_flags,
4140 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4141 }
4142
4143 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4144 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4145 {
4146 unsigned int vfs_fl;
4147 unsigned long old_fl, new_fl;
4148
4149 do {
4150 vfs_fl = ei->vfs_inode.i_flags;
4151 old_fl = ei->i_flags;
4152 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4153 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4154 EXT4_DIRSYNC_FL);
4155 if (vfs_fl & S_SYNC)
4156 new_fl |= EXT4_SYNC_FL;
4157 if (vfs_fl & S_APPEND)
4158 new_fl |= EXT4_APPEND_FL;
4159 if (vfs_fl & S_IMMUTABLE)
4160 new_fl |= EXT4_IMMUTABLE_FL;
4161 if (vfs_fl & S_NOATIME)
4162 new_fl |= EXT4_NOATIME_FL;
4163 if (vfs_fl & S_DIRSYNC)
4164 new_fl |= EXT4_DIRSYNC_FL;
4165 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4166 }
4167
4168 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4169 struct ext4_inode_info *ei)
4170 {
4171 blkcnt_t i_blocks ;
4172 struct inode *inode = &(ei->vfs_inode);
4173 struct super_block *sb = inode->i_sb;
4174
4175 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4176 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4177 /* we are using combined 48 bit field */
4178 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4179 le32_to_cpu(raw_inode->i_blocks_lo);
4180 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4181 /* i_blocks represent file system block size */
4182 return i_blocks << (inode->i_blkbits - 9);
4183 } else {
4184 return i_blocks;
4185 }
4186 } else {
4187 return le32_to_cpu(raw_inode->i_blocks_lo);
4188 }
4189 }
4190
4191 static inline void ext4_iget_extra_inode(struct inode *inode,
4192 struct ext4_inode *raw_inode,
4193 struct ext4_inode_info *ei)
4194 {
4195 __le32 *magic = (void *)raw_inode +
4196 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4197 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4198 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4199 ext4_find_inline_data_nolock(inode);
4200 } else
4201 EXT4_I(inode)->i_inline_off = 0;
4202 }
4203
4204 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4205 {
4206 struct ext4_iloc iloc;
4207 struct ext4_inode *raw_inode;
4208 struct ext4_inode_info *ei;
4209 struct inode *inode;
4210 journal_t *journal = EXT4_SB(sb)->s_journal;
4211 long ret;
4212 int block;
4213 uid_t i_uid;
4214 gid_t i_gid;
4215
4216 inode = iget_locked(sb, ino);
4217 if (!inode)
4218 return ERR_PTR(-ENOMEM);
4219 if (!(inode->i_state & I_NEW))
4220 return inode;
4221
4222 ei = EXT4_I(inode);
4223 iloc.bh = NULL;
4224
4225 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4226 if (ret < 0)
4227 goto bad_inode;
4228 raw_inode = ext4_raw_inode(&iloc);
4229
4230 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4231 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4232 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4233 EXT4_INODE_SIZE(inode->i_sb)) {
4234 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4235 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4236 EXT4_INODE_SIZE(inode->i_sb));
4237 ret = -EIO;
4238 goto bad_inode;
4239 }
4240 } else
4241 ei->i_extra_isize = 0;
4242
4243 /* Precompute checksum seed for inode metadata */
4244 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4246 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247 __u32 csum;
4248 __le32 inum = cpu_to_le32(inode->i_ino);
4249 __le32 gen = raw_inode->i_generation;
4250 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4251 sizeof(inum));
4252 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4253 sizeof(gen));
4254 }
4255
4256 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4257 EXT4_ERROR_INODE(inode, "checksum invalid");
4258 ret = -EIO;
4259 goto bad_inode;
4260 }
4261
4262 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4263 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4264 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4265 if (!(test_opt(inode->i_sb, NO_UID32))) {
4266 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4267 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4268 }
4269 i_uid_write(inode, i_uid);
4270 i_gid_write(inode, i_gid);
4271 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4272
4273 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4274 ei->i_inline_off = 0;
4275 ei->i_dir_start_lookup = 0;
4276 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4277 /* We now have enough fields to check if the inode was active or not.
4278 * This is needed because nfsd might try to access dead inodes
4279 * the test is that same one that e2fsck uses
4280 * NeilBrown 1999oct15
4281 */
4282 if (inode->i_nlink == 0) {
4283 if ((inode->i_mode == 0 ||
4284 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4285 ino != EXT4_BOOT_LOADER_INO) {
4286 /* this inode is deleted */
4287 ret = -ESTALE;
4288 goto bad_inode;
4289 }
4290 /* The only unlinked inodes we let through here have
4291 * valid i_mode and are being read by the orphan
4292 * recovery code: that's fine, we're about to complete
4293 * the process of deleting those.
4294 * OR it is the EXT4_BOOT_LOADER_INO which is
4295 * not initialized on a new filesystem. */
4296 }
4297 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4298 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4299 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4300 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4301 ei->i_file_acl |=
4302 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4303 inode->i_size = ext4_isize(raw_inode);
4304 ei->i_disksize = inode->i_size;
4305 #ifdef CONFIG_QUOTA
4306 ei->i_reserved_quota = 0;
4307 #endif
4308 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4309 ei->i_block_group = iloc.block_group;
4310 ei->i_last_alloc_group = ~0;
4311 /*
4312 * NOTE! The in-memory inode i_data array is in little-endian order
4313 * even on big-endian machines: we do NOT byteswap the block numbers!
4314 */
4315 for (block = 0; block < EXT4_N_BLOCKS; block++)
4316 ei->i_data[block] = raw_inode->i_block[block];
4317 INIT_LIST_HEAD(&ei->i_orphan);
4318
4319 /*
4320 * Set transaction id's of transactions that have to be committed
4321 * to finish f[data]sync. We set them to currently running transaction
4322 * as we cannot be sure that the inode or some of its metadata isn't
4323 * part of the transaction - the inode could have been reclaimed and
4324 * now it is reread from disk.
4325 */
4326 if (journal) {
4327 transaction_t *transaction;
4328 tid_t tid;
4329
4330 read_lock(&journal->j_state_lock);
4331 if (journal->j_running_transaction)
4332 transaction = journal->j_running_transaction;
4333 else
4334 transaction = journal->j_committing_transaction;
4335 if (transaction)
4336 tid = transaction->t_tid;
4337 else
4338 tid = journal->j_commit_sequence;
4339 read_unlock(&journal->j_state_lock);
4340 ei->i_sync_tid = tid;
4341 ei->i_datasync_tid = tid;
4342 }
4343
4344 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4345 if (ei->i_extra_isize == 0) {
4346 /* The extra space is currently unused. Use it. */
4347 ei->i_extra_isize = sizeof(struct ext4_inode) -
4348 EXT4_GOOD_OLD_INODE_SIZE;
4349 } else {
4350 ext4_iget_extra_inode(inode, raw_inode, ei);
4351 }
4352 }
4353
4354 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4355 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4356 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4357 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4358
4359 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4360 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4361 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4362 inode->i_version |=
4363 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4364 }
4365
4366 ret = 0;
4367 if (ei->i_file_acl &&
4368 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4369 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4370 ei->i_file_acl);
4371 ret = -EIO;
4372 goto bad_inode;
4373 } else if (!ext4_has_inline_data(inode)) {
4374 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4375 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4376 (S_ISLNK(inode->i_mode) &&
4377 !ext4_inode_is_fast_symlink(inode))))
4378 /* Validate extent which is part of inode */
4379 ret = ext4_ext_check_inode(inode);
4380 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4381 (S_ISLNK(inode->i_mode) &&
4382 !ext4_inode_is_fast_symlink(inode))) {
4383 /* Validate block references which are part of inode */
4384 ret = ext4_ind_check_inode(inode);
4385 }
4386 }
4387 if (ret)
4388 goto bad_inode;
4389
4390 if (S_ISREG(inode->i_mode)) {
4391 inode->i_op = &ext4_file_inode_operations;
4392 inode->i_fop = &ext4_file_operations;
4393 ext4_set_aops(inode);
4394 } else if (S_ISDIR(inode->i_mode)) {
4395 inode->i_op = &ext4_dir_inode_operations;
4396 inode->i_fop = &ext4_dir_operations;
4397 } else if (S_ISLNK(inode->i_mode)) {
4398 if (ext4_inode_is_fast_symlink(inode)) {
4399 inode->i_op = &ext4_fast_symlink_inode_operations;
4400 nd_terminate_link(ei->i_data, inode->i_size,
4401 sizeof(ei->i_data) - 1);
4402 } else {
4403 inode->i_op = &ext4_symlink_inode_operations;
4404 ext4_set_aops(inode);
4405 }
4406 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4407 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4408 inode->i_op = &ext4_special_inode_operations;
4409 if (raw_inode->i_block[0])
4410 init_special_inode(inode, inode->i_mode,
4411 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4412 else
4413 init_special_inode(inode, inode->i_mode,
4414 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4415 } else if (ino == EXT4_BOOT_LOADER_INO) {
4416 make_bad_inode(inode);
4417 } else {
4418 ret = -EIO;
4419 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4420 goto bad_inode;
4421 }
4422 brelse(iloc.bh);
4423 ext4_set_inode_flags(inode);
4424 unlock_new_inode(inode);
4425 return inode;
4426
4427 bad_inode:
4428 brelse(iloc.bh);
4429 iget_failed(inode);
4430 return ERR_PTR(ret);
4431 }
4432
4433 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4434 {
4435 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4436 return ERR_PTR(-EIO);
4437 return ext4_iget(sb, ino);
4438 }
4439
4440 static int ext4_inode_blocks_set(handle_t *handle,
4441 struct ext4_inode *raw_inode,
4442 struct ext4_inode_info *ei)
4443 {
4444 struct inode *inode = &(ei->vfs_inode);
4445 u64 i_blocks = inode->i_blocks;
4446 struct super_block *sb = inode->i_sb;
4447
4448 if (i_blocks <= ~0U) {
4449 /*
4450 * i_blocks can be represented in a 32 bit variable
4451 * as multiple of 512 bytes
4452 */
4453 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4454 raw_inode->i_blocks_high = 0;
4455 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4456 return 0;
4457 }
4458 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4459 return -EFBIG;
4460
4461 if (i_blocks <= 0xffffffffffffULL) {
4462 /*
4463 * i_blocks can be represented in a 48 bit variable
4464 * as multiple of 512 bytes
4465 */
4466 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4467 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4468 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4469 } else {
4470 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4471 /* i_block is stored in file system block size */
4472 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4473 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4474 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4475 }
4476 return 0;
4477 }
4478
4479 /*
4480 * Post the struct inode info into an on-disk inode location in the
4481 * buffer-cache. This gobbles the caller's reference to the
4482 * buffer_head in the inode location struct.
4483 *
4484 * The caller must have write access to iloc->bh.
4485 */
4486 static int ext4_do_update_inode(handle_t *handle,
4487 struct inode *inode,
4488 struct ext4_iloc *iloc)
4489 {
4490 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4491 struct ext4_inode_info *ei = EXT4_I(inode);
4492 struct buffer_head *bh = iloc->bh;
4493 int err = 0, rc, block;
4494 int need_datasync = 0;
4495 uid_t i_uid;
4496 gid_t i_gid;
4497
4498 /* For fields not not tracking in the in-memory inode,
4499 * initialise them to zero for new inodes. */
4500 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4501 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4502
4503 ext4_get_inode_flags(ei);
4504 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4505 i_uid = i_uid_read(inode);
4506 i_gid = i_gid_read(inode);
4507 if (!(test_opt(inode->i_sb, NO_UID32))) {
4508 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4509 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4510 /*
4511 * Fix up interoperability with old kernels. Otherwise, old inodes get
4512 * re-used with the upper 16 bits of the uid/gid intact
4513 */
4514 if (!ei->i_dtime) {
4515 raw_inode->i_uid_high =
4516 cpu_to_le16(high_16_bits(i_uid));
4517 raw_inode->i_gid_high =
4518 cpu_to_le16(high_16_bits(i_gid));
4519 } else {
4520 raw_inode->i_uid_high = 0;
4521 raw_inode->i_gid_high = 0;
4522 }
4523 } else {
4524 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4525 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4526 raw_inode->i_uid_high = 0;
4527 raw_inode->i_gid_high = 0;
4528 }
4529 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4530
4531 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4532 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4533 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4534 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4535
4536 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4537 goto out_brelse;
4538 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4539 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4540 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4541 cpu_to_le32(EXT4_OS_HURD))
4542 raw_inode->i_file_acl_high =
4543 cpu_to_le16(ei->i_file_acl >> 32);
4544 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4545 if (ei->i_disksize != ext4_isize(raw_inode)) {
4546 ext4_isize_set(raw_inode, ei->i_disksize);
4547 need_datasync = 1;
4548 }
4549 if (ei->i_disksize > 0x7fffffffULL) {
4550 struct super_block *sb = inode->i_sb;
4551 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4552 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4553 EXT4_SB(sb)->s_es->s_rev_level ==
4554 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4555 /* If this is the first large file
4556 * created, add a flag to the superblock.
4557 */
4558 err = ext4_journal_get_write_access(handle,
4559 EXT4_SB(sb)->s_sbh);
4560 if (err)
4561 goto out_brelse;
4562 ext4_update_dynamic_rev(sb);
4563 EXT4_SET_RO_COMPAT_FEATURE(sb,
4564 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4565 ext4_handle_sync(handle);
4566 err = ext4_handle_dirty_super(handle, sb);
4567 }
4568 }
4569 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4571 if (old_valid_dev(inode->i_rdev)) {
4572 raw_inode->i_block[0] =
4573 cpu_to_le32(old_encode_dev(inode->i_rdev));
4574 raw_inode->i_block[1] = 0;
4575 } else {
4576 raw_inode->i_block[0] = 0;
4577 raw_inode->i_block[1] =
4578 cpu_to_le32(new_encode_dev(inode->i_rdev));
4579 raw_inode->i_block[2] = 0;
4580 }
4581 } else if (!ext4_has_inline_data(inode)) {
4582 for (block = 0; block < EXT4_N_BLOCKS; block++)
4583 raw_inode->i_block[block] = ei->i_data[block];
4584 }
4585
4586 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4587 if (ei->i_extra_isize) {
4588 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4589 raw_inode->i_version_hi =
4590 cpu_to_le32(inode->i_version >> 32);
4591 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4592 }
4593
4594 ext4_inode_csum_set(inode, raw_inode, ei);
4595
4596 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4597 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4598 if (!err)
4599 err = rc;
4600 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4601
4602 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4603 out_brelse:
4604 brelse(bh);
4605 ext4_std_error(inode->i_sb, err);
4606 return err;
4607 }
4608
4609 /*
4610 * ext4_write_inode()
4611 *
4612 * We are called from a few places:
4613 *
4614 * - Within generic_file_write() for O_SYNC files.
4615 * Here, there will be no transaction running. We wait for any running
4616 * transaction to commit.
4617 *
4618 * - Within sys_sync(), kupdate and such.
4619 * We wait on commit, if tol to.
4620 *
4621 * - Within prune_icache() (PF_MEMALLOC == true)
4622 * Here we simply return. We can't afford to block kswapd on the
4623 * journal commit.
4624 *
4625 * In all cases it is actually safe for us to return without doing anything,
4626 * because the inode has been copied into a raw inode buffer in
4627 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4628 * knfsd.
4629 *
4630 * Note that we are absolutely dependent upon all inode dirtiers doing the
4631 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4632 * which we are interested.
4633 *
4634 * It would be a bug for them to not do this. The code:
4635 *
4636 * mark_inode_dirty(inode)
4637 * stuff();
4638 * inode->i_size = expr;
4639 *
4640 * is in error because a kswapd-driven write_inode() could occur while
4641 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4642 * will no longer be on the superblock's dirty inode list.
4643 */
4644 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4645 {
4646 int err;
4647
4648 if (current->flags & PF_MEMALLOC)
4649 return 0;
4650
4651 if (EXT4_SB(inode->i_sb)->s_journal) {
4652 if (ext4_journal_current_handle()) {
4653 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4654 dump_stack();
4655 return -EIO;
4656 }
4657
4658 if (wbc->sync_mode != WB_SYNC_ALL)
4659 return 0;
4660
4661 err = ext4_force_commit(inode->i_sb);
4662 } else {
4663 struct ext4_iloc iloc;
4664
4665 err = __ext4_get_inode_loc(inode, &iloc, 0);
4666 if (err)
4667 return err;
4668 if (wbc->sync_mode == WB_SYNC_ALL)
4669 sync_dirty_buffer(iloc.bh);
4670 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4671 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4672 "IO error syncing inode");
4673 err = -EIO;
4674 }
4675 brelse(iloc.bh);
4676 }
4677 return err;
4678 }
4679
4680 /*
4681 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4682 * buffers that are attached to a page stradding i_size and are undergoing
4683 * commit. In that case we have to wait for commit to finish and try again.
4684 */
4685 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4686 {
4687 struct page *page;
4688 unsigned offset;
4689 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4690 tid_t commit_tid = 0;
4691 int ret;
4692
4693 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4694 /*
4695 * All buffers in the last page remain valid? Then there's nothing to
4696 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4697 * blocksize case
4698 */
4699 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4700 return;
4701 while (1) {
4702 page = find_lock_page(inode->i_mapping,
4703 inode->i_size >> PAGE_CACHE_SHIFT);
4704 if (!page)
4705 return;
4706 ret = __ext4_journalled_invalidatepage(page, offset);
4707 unlock_page(page);
4708 page_cache_release(page);
4709 if (ret != -EBUSY)
4710 return;
4711 commit_tid = 0;
4712 read_lock(&journal->j_state_lock);
4713 if (journal->j_committing_transaction)
4714 commit_tid = journal->j_committing_transaction->t_tid;
4715 read_unlock(&journal->j_state_lock);
4716 if (commit_tid)
4717 jbd2_log_wait_commit(journal, commit_tid);
4718 }
4719 }
4720
4721 /*
4722 * ext4_setattr()
4723 *
4724 * Called from notify_change.
4725 *
4726 * We want to trap VFS attempts to truncate the file as soon as
4727 * possible. In particular, we want to make sure that when the VFS
4728 * shrinks i_size, we put the inode on the orphan list and modify
4729 * i_disksize immediately, so that during the subsequent flushing of
4730 * dirty pages and freeing of disk blocks, we can guarantee that any
4731 * commit will leave the blocks being flushed in an unused state on
4732 * disk. (On recovery, the inode will get truncated and the blocks will
4733 * be freed, so we have a strong guarantee that no future commit will
4734 * leave these blocks visible to the user.)
4735 *
4736 * Another thing we have to assure is that if we are in ordered mode
4737 * and inode is still attached to the committing transaction, we must
4738 * we start writeout of all the dirty pages which are being truncated.
4739 * This way we are sure that all the data written in the previous
4740 * transaction are already on disk (truncate waits for pages under
4741 * writeback).
4742 *
4743 * Called with inode->i_mutex down.
4744 */
4745 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4746 {
4747 struct inode *inode = dentry->d_inode;
4748 int error, rc = 0;
4749 int orphan = 0;
4750 const unsigned int ia_valid = attr->ia_valid;
4751
4752 error = inode_change_ok(inode, attr);
4753 if (error)
4754 return error;
4755
4756 if (is_quota_modification(inode, attr))
4757 dquot_initialize(inode);
4758 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4759 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4760 handle_t *handle;
4761
4762 /* (user+group)*(old+new) structure, inode write (sb,
4763 * inode block, ? - but truncate inode update has it) */
4764 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4765 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4766 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4767 if (IS_ERR(handle)) {
4768 error = PTR_ERR(handle);
4769 goto err_out;
4770 }
4771 error = dquot_transfer(inode, attr);
4772 if (error) {
4773 ext4_journal_stop(handle);
4774 return error;
4775 }
4776 /* Update corresponding info in inode so that everything is in
4777 * one transaction */
4778 if (attr->ia_valid & ATTR_UID)
4779 inode->i_uid = attr->ia_uid;
4780 if (attr->ia_valid & ATTR_GID)
4781 inode->i_gid = attr->ia_gid;
4782 error = ext4_mark_inode_dirty(handle, inode);
4783 ext4_journal_stop(handle);
4784 }
4785
4786 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4787 handle_t *handle;
4788 loff_t oldsize = inode->i_size;
4789
4790 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4792
4793 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4794 return -EFBIG;
4795 }
4796
4797 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4798 inode_inc_iversion(inode);
4799
4800 if (S_ISREG(inode->i_mode) &&
4801 (attr->ia_size < inode->i_size)) {
4802 if (ext4_should_order_data(inode)) {
4803 error = ext4_begin_ordered_truncate(inode,
4804 attr->ia_size);
4805 if (error)
4806 goto err_out;
4807 }
4808 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4809 if (IS_ERR(handle)) {
4810 error = PTR_ERR(handle);
4811 goto err_out;
4812 }
4813 if (ext4_handle_valid(handle)) {
4814 error = ext4_orphan_add(handle, inode);
4815 orphan = 1;
4816 }
4817 EXT4_I(inode)->i_disksize = attr->ia_size;
4818 rc = ext4_mark_inode_dirty(handle, inode);
4819 if (!error)
4820 error = rc;
4821 ext4_journal_stop(handle);
4822 if (error) {
4823 ext4_orphan_del(NULL, inode);
4824 goto err_out;
4825 }
4826 }
4827
4828 i_size_write(inode, attr->ia_size);
4829 /*
4830 * Blocks are going to be removed from the inode. Wait
4831 * for dio in flight. Temporarily disable
4832 * dioread_nolock to prevent livelock.
4833 */
4834 if (orphan) {
4835 if (!ext4_should_journal_data(inode)) {
4836 ext4_inode_block_unlocked_dio(inode);
4837 inode_dio_wait(inode);
4838 ext4_inode_resume_unlocked_dio(inode);
4839 } else
4840 ext4_wait_for_tail_page_commit(inode);
4841 }
4842 /*
4843 * Truncate pagecache after we've waited for commit
4844 * in data=journal mode to make pages freeable.
4845 */
4846 truncate_pagecache(inode, oldsize, inode->i_size);
4847 }
4848 /*
4849 * We want to call ext4_truncate() even if attr->ia_size ==
4850 * inode->i_size for cases like truncation of fallocated space
4851 */
4852 if (attr->ia_valid & ATTR_SIZE)
4853 ext4_truncate(inode);
4854
4855 if (!rc) {
4856 setattr_copy(inode, attr);
4857 mark_inode_dirty(inode);
4858 }
4859
4860 /*
4861 * If the call to ext4_truncate failed to get a transaction handle at
4862 * all, we need to clean up the in-core orphan list manually.
4863 */
4864 if (orphan && inode->i_nlink)
4865 ext4_orphan_del(NULL, inode);
4866
4867 if (!rc && (ia_valid & ATTR_MODE))
4868 rc = ext4_acl_chmod(inode);
4869
4870 err_out:
4871 ext4_std_error(inode->i_sb, error);
4872 if (!error)
4873 error = rc;
4874 return error;
4875 }
4876
4877 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4878 struct kstat *stat)
4879 {
4880 struct inode *inode;
4881 unsigned long long delalloc_blocks;
4882
4883 inode = dentry->d_inode;
4884 generic_fillattr(inode, stat);
4885
4886 /*
4887 * We can't update i_blocks if the block allocation is delayed
4888 * otherwise in the case of system crash before the real block
4889 * allocation is done, we will have i_blocks inconsistent with
4890 * on-disk file blocks.
4891 * We always keep i_blocks updated together with real
4892 * allocation. But to not confuse with user, stat
4893 * will return the blocks that include the delayed allocation
4894 * blocks for this file.
4895 */
4896 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4897 EXT4_I(inode)->i_reserved_data_blocks);
4898
4899 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4900 return 0;
4901 }
4902
4903 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4904 {
4905 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4906 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4907 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4908 }
4909
4910 /*
4911 * Account for index blocks, block groups bitmaps and block group
4912 * descriptor blocks if modify datablocks and index blocks
4913 * worse case, the indexs blocks spread over different block groups
4914 *
4915 * If datablocks are discontiguous, they are possible to spread over
4916 * different block groups too. If they are contiguous, with flexbg,
4917 * they could still across block group boundary.
4918 *
4919 * Also account for superblock, inode, quota and xattr blocks
4920 */
4921 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4922 {
4923 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4924 int gdpblocks;
4925 int idxblocks;
4926 int ret = 0;
4927
4928 /*
4929 * How many index blocks need to touch to modify nrblocks?
4930 * The "Chunk" flag indicating whether the nrblocks is
4931 * physically contiguous on disk
4932 *
4933 * For Direct IO and fallocate, they calls get_block to allocate
4934 * one single extent at a time, so they could set the "Chunk" flag
4935 */
4936 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4937
4938 ret = idxblocks;
4939
4940 /*
4941 * Now let's see how many group bitmaps and group descriptors need
4942 * to account
4943 */
4944 groups = idxblocks;
4945 if (chunk)
4946 groups += 1;
4947 else
4948 groups += nrblocks;
4949
4950 gdpblocks = groups;
4951 if (groups > ngroups)
4952 groups = ngroups;
4953 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4954 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4955
4956 /* bitmaps and block group descriptor blocks */
4957 ret += groups + gdpblocks;
4958
4959 /* Blocks for super block, inode, quota and xattr blocks */
4960 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4961
4962 return ret;
4963 }
4964
4965 /*
4966 * Calculate the total number of credits to reserve to fit
4967 * the modification of a single pages into a single transaction,
4968 * which may include multiple chunks of block allocations.
4969 *
4970 * This could be called via ext4_write_begin()
4971 *
4972 * We need to consider the worse case, when
4973 * one new block per extent.
4974 */
4975 int ext4_writepage_trans_blocks(struct inode *inode)
4976 {
4977 int bpp = ext4_journal_blocks_per_page(inode);
4978 int ret;
4979
4980 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4981
4982 /* Account for data blocks for journalled mode */
4983 if (ext4_should_journal_data(inode))
4984 ret += bpp;
4985 return ret;
4986 }
4987
4988 /*
4989 * Calculate the journal credits for a chunk of data modification.
4990 *
4991 * This is called from DIO, fallocate or whoever calling
4992 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4993 *
4994 * journal buffers for data blocks are not included here, as DIO
4995 * and fallocate do no need to journal data buffers.
4996 */
4997 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4998 {
4999 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5000 }
5001
5002 /*
5003 * The caller must have previously called ext4_reserve_inode_write().
5004 * Give this, we know that the caller already has write access to iloc->bh.
5005 */
5006 int ext4_mark_iloc_dirty(handle_t *handle,
5007 struct inode *inode, struct ext4_iloc *iloc)
5008 {
5009 int err = 0;
5010
5011 if (IS_I_VERSION(inode))
5012 inode_inc_iversion(inode);
5013
5014 /* the do_update_inode consumes one bh->b_count */
5015 get_bh(iloc->bh);
5016
5017 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5018 err = ext4_do_update_inode(handle, inode, iloc);
5019 put_bh(iloc->bh);
5020 return err;
5021 }
5022
5023 /*
5024 * On success, We end up with an outstanding reference count against
5025 * iloc->bh. This _must_ be cleaned up later.
5026 */
5027
5028 int
5029 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5030 struct ext4_iloc *iloc)
5031 {
5032 int err;
5033
5034 err = ext4_get_inode_loc(inode, iloc);
5035 if (!err) {
5036 BUFFER_TRACE(iloc->bh, "get_write_access");
5037 err = ext4_journal_get_write_access(handle, iloc->bh);
5038 if (err) {
5039 brelse(iloc->bh);
5040 iloc->bh = NULL;
5041 }
5042 }
5043 ext4_std_error(inode->i_sb, err);
5044 return err;
5045 }
5046
5047 /*
5048 * Expand an inode by new_extra_isize bytes.
5049 * Returns 0 on success or negative error number on failure.
5050 */
5051 static int ext4_expand_extra_isize(struct inode *inode,
5052 unsigned int new_extra_isize,
5053 struct ext4_iloc iloc,
5054 handle_t *handle)
5055 {
5056 struct ext4_inode *raw_inode;
5057 struct ext4_xattr_ibody_header *header;
5058
5059 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5060 return 0;
5061
5062 raw_inode = ext4_raw_inode(&iloc);
5063
5064 header = IHDR(inode, raw_inode);
5065
5066 /* No extended attributes present */
5067 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5068 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5069 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5070 new_extra_isize);
5071 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5072 return 0;
5073 }
5074
5075 /* try to expand with EAs present */
5076 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5077 raw_inode, handle);
5078 }
5079
5080 /*
5081 * What we do here is to mark the in-core inode as clean with respect to inode
5082 * dirtiness (it may still be data-dirty).
5083 * This means that the in-core inode may be reaped by prune_icache
5084 * without having to perform any I/O. This is a very good thing,
5085 * because *any* task may call prune_icache - even ones which
5086 * have a transaction open against a different journal.
5087 *
5088 * Is this cheating? Not really. Sure, we haven't written the
5089 * inode out, but prune_icache isn't a user-visible syncing function.
5090 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5091 * we start and wait on commits.
5092 */
5093 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5094 {
5095 struct ext4_iloc iloc;
5096 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5097 static unsigned int mnt_count;
5098 int err, ret;
5099
5100 might_sleep();
5101 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5102 err = ext4_reserve_inode_write(handle, inode, &iloc);
5103 if (err)
5104 return err;
5105 if (ext4_handle_valid(handle) &&
5106 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5107 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5108 /*
5109 * We need extra buffer credits since we may write into EA block
5110 * with this same handle. If journal_extend fails, then it will
5111 * only result in a minor loss of functionality for that inode.
5112 * If this is felt to be critical, then e2fsck should be run to
5113 * force a large enough s_min_extra_isize.
5114 */
5115 if ((jbd2_journal_extend(handle,
5116 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5117 ret = ext4_expand_extra_isize(inode,
5118 sbi->s_want_extra_isize,
5119 iloc, handle);
5120 if (ret) {
5121 ext4_set_inode_state(inode,
5122 EXT4_STATE_NO_EXPAND);
5123 if (mnt_count !=
5124 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5125 ext4_warning(inode->i_sb,
5126 "Unable to expand inode %lu. Delete"
5127 " some EAs or run e2fsck.",
5128 inode->i_ino);
5129 mnt_count =
5130 le16_to_cpu(sbi->s_es->s_mnt_count);
5131 }
5132 }
5133 }
5134 }
5135 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5136 }
5137
5138 /*
5139 * ext4_dirty_inode() is called from __mark_inode_dirty()
5140 *
5141 * We're really interested in the case where a file is being extended.
5142 * i_size has been changed by generic_commit_write() and we thus need
5143 * to include the updated inode in the current transaction.
5144 *
5145 * Also, dquot_alloc_block() will always dirty the inode when blocks
5146 * are allocated to the file.
5147 *
5148 * If the inode is marked synchronous, we don't honour that here - doing
5149 * so would cause a commit on atime updates, which we don't bother doing.
5150 * We handle synchronous inodes at the highest possible level.
5151 */
5152 void ext4_dirty_inode(struct inode *inode, int flags)
5153 {
5154 handle_t *handle;
5155
5156 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5157 if (IS_ERR(handle))
5158 goto out;
5159
5160 ext4_mark_inode_dirty(handle, inode);
5161
5162 ext4_journal_stop(handle);
5163 out:
5164 return;
5165 }
5166
5167 #if 0
5168 /*
5169 * Bind an inode's backing buffer_head into this transaction, to prevent
5170 * it from being flushed to disk early. Unlike
5171 * ext4_reserve_inode_write, this leaves behind no bh reference and
5172 * returns no iloc structure, so the caller needs to repeat the iloc
5173 * lookup to mark the inode dirty later.
5174 */
5175 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5176 {
5177 struct ext4_iloc iloc;
5178
5179 int err = 0;
5180 if (handle) {
5181 err = ext4_get_inode_loc(inode, &iloc);
5182 if (!err) {
5183 BUFFER_TRACE(iloc.bh, "get_write_access");
5184 err = jbd2_journal_get_write_access(handle, iloc.bh);
5185 if (!err)
5186 err = ext4_handle_dirty_metadata(handle,
5187 NULL,
5188 iloc.bh);
5189 brelse(iloc.bh);
5190 }
5191 }
5192 ext4_std_error(inode->i_sb, err);
5193 return err;
5194 }
5195 #endif
5196
5197 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5198 {
5199 journal_t *journal;
5200 handle_t *handle;
5201 int err;
5202
5203 /*
5204 * We have to be very careful here: changing a data block's
5205 * journaling status dynamically is dangerous. If we write a
5206 * data block to the journal, change the status and then delete
5207 * that block, we risk forgetting to revoke the old log record
5208 * from the journal and so a subsequent replay can corrupt data.
5209 * So, first we make sure that the journal is empty and that
5210 * nobody is changing anything.
5211 */
5212
5213 journal = EXT4_JOURNAL(inode);
5214 if (!journal)
5215 return 0;
5216 if (is_journal_aborted(journal))
5217 return -EROFS;
5218 /* We have to allocate physical blocks for delalloc blocks
5219 * before flushing journal. otherwise delalloc blocks can not
5220 * be allocated any more. even more truncate on delalloc blocks
5221 * could trigger BUG by flushing delalloc blocks in journal.
5222 * There is no delalloc block in non-journal data mode.
5223 */
5224 if (val && test_opt(inode->i_sb, DELALLOC)) {
5225 err = ext4_alloc_da_blocks(inode);
5226 if (err < 0)
5227 return err;
5228 }
5229
5230 /* Wait for all existing dio workers */
5231 ext4_inode_block_unlocked_dio(inode);
5232 inode_dio_wait(inode);
5233
5234 jbd2_journal_lock_updates(journal);
5235
5236 /*
5237 * OK, there are no updates running now, and all cached data is
5238 * synced to disk. We are now in a completely consistent state
5239 * which doesn't have anything in the journal, and we know that
5240 * no filesystem updates are running, so it is safe to modify
5241 * the inode's in-core data-journaling state flag now.
5242 */
5243
5244 if (val)
5245 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5246 else {
5247 jbd2_journal_flush(journal);
5248 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5249 }
5250 ext4_set_aops(inode);
5251
5252 jbd2_journal_unlock_updates(journal);
5253 ext4_inode_resume_unlocked_dio(inode);
5254
5255 /* Finally we can mark the inode as dirty. */
5256
5257 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5258 if (IS_ERR(handle))
5259 return PTR_ERR(handle);
5260
5261 err = ext4_mark_inode_dirty(handle, inode);
5262 ext4_handle_sync(handle);
5263 ext4_journal_stop(handle);
5264 ext4_std_error(inode->i_sb, err);
5265
5266 return err;
5267 }
5268
5269 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5270 {
5271 return !buffer_mapped(bh);
5272 }
5273
5274 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5275 {
5276 struct page *page = vmf->page;
5277 loff_t size;
5278 unsigned long len;
5279 int ret;
5280 struct file *file = vma->vm_file;
5281 struct inode *inode = file_inode(file);
5282 struct address_space *mapping = inode->i_mapping;
5283 handle_t *handle;
5284 get_block_t *get_block;
5285 int retries = 0;
5286
5287 sb_start_pagefault(inode->i_sb);
5288 file_update_time(vma->vm_file);
5289 /* Delalloc case is easy... */
5290 if (test_opt(inode->i_sb, DELALLOC) &&
5291 !ext4_should_journal_data(inode) &&
5292 !ext4_nonda_switch(inode->i_sb)) {
5293 do {
5294 ret = __block_page_mkwrite(vma, vmf,
5295 ext4_da_get_block_prep);
5296 } while (ret == -ENOSPC &&
5297 ext4_should_retry_alloc(inode->i_sb, &retries));
5298 goto out_ret;
5299 }
5300
5301 lock_page(page);
5302 size = i_size_read(inode);
5303 /* Page got truncated from under us? */
5304 if (page->mapping != mapping || page_offset(page) > size) {
5305 unlock_page(page);
5306 ret = VM_FAULT_NOPAGE;
5307 goto out;
5308 }
5309
5310 if (page->index == size >> PAGE_CACHE_SHIFT)
5311 len = size & ~PAGE_CACHE_MASK;
5312 else
5313 len = PAGE_CACHE_SIZE;
5314 /*
5315 * Return if we have all the buffers mapped. This avoids the need to do
5316 * journal_start/journal_stop which can block and take a long time
5317 */
5318 if (page_has_buffers(page)) {
5319 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5320 0, len, NULL,
5321 ext4_bh_unmapped)) {
5322 /* Wait so that we don't change page under IO */
5323 wait_for_stable_page(page);
5324 ret = VM_FAULT_LOCKED;
5325 goto out;
5326 }
5327 }
5328 unlock_page(page);
5329 /* OK, we need to fill the hole... */
5330 if (ext4_should_dioread_nolock(inode))
5331 get_block = ext4_get_block_write;
5332 else
5333 get_block = ext4_get_block;
5334 retry_alloc:
5335 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5336 ext4_writepage_trans_blocks(inode));
5337 if (IS_ERR(handle)) {
5338 ret = VM_FAULT_SIGBUS;
5339 goto out;
5340 }
5341 ret = __block_page_mkwrite(vma, vmf, get_block);
5342 if (!ret && ext4_should_journal_data(inode)) {
5343 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5344 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5345 unlock_page(page);
5346 ret = VM_FAULT_SIGBUS;
5347 ext4_journal_stop(handle);
5348 goto out;
5349 }
5350 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5351 }
5352 ext4_journal_stop(handle);
5353 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5354 goto retry_alloc;
5355 out_ret:
5356 ret = block_page_mkwrite_return(ret);
5357 out:
5358 sb_end_pagefault(inode->i_sb);
5359 return ret;
5360 }