Merge tag 'v3.10.90' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 unsigned int core_pipe_limit;
50
51 struct core_name {
52 char *corename;
53 int used, size;
54 };
55 static atomic_t call_count = ATOMIC_INIT(1);
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn)
60 {
61 char *old_corename = cn->corename;
62
63 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
64 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
65
66 if (!cn->corename) {
67 kfree(old_corename);
68 return -ENOMEM;
69 }
70
71 return 0;
72 }
73
74 static int cn_printf(struct core_name *cn, const char *fmt, ...)
75 {
76 char *cur;
77 int need;
78 int ret;
79 va_list arg;
80
81 va_start(arg, fmt);
82 need = vsnprintf(NULL, 0, fmt, arg);
83 va_end(arg);
84
85 if (likely(need < cn->size - cn->used - 1))
86 goto out_printf;
87
88 ret = expand_corename(cn);
89 if (ret)
90 goto expand_fail;
91
92 out_printf:
93 cur = cn->corename + cn->used;
94 va_start(arg, fmt);
95 vsnprintf(cur, need + 1, fmt, arg);
96 va_end(arg);
97 cn->used += need;
98 return 0;
99
100 expand_fail:
101 return ret;
102 }
103
104 static void cn_escape(char *str)
105 {
106 for (; *str; str++)
107 if (*str == '/')
108 *str = '!';
109 }
110
111 static int cn_print_exe_file(struct core_name *cn)
112 {
113 struct file *exe_file;
114 char *pathbuf, *path;
115 int ret;
116
117 exe_file = get_mm_exe_file(current->mm);
118 if (!exe_file) {
119 char *commstart = cn->corename + cn->used;
120 ret = cn_printf(cn, "%s (path unknown)", current->comm);
121 cn_escape(commstart);
122 return ret;
123 }
124
125 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
126 if (!pathbuf) {
127 ret = -ENOMEM;
128 goto put_exe_file;
129 }
130
131 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
132 if (IS_ERR(path)) {
133 ret = PTR_ERR(path);
134 goto free_buf;
135 }
136
137 cn_escape(path);
138
139 ret = cn_printf(cn, "%s", path);
140
141 free_buf:
142 kfree(pathbuf);
143 put_exe_file:
144 fput(exe_file);
145 return ret;
146 }
147
148 /* format_corename will inspect the pattern parameter, and output a
149 * name into corename, which must have space for at least
150 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
151 */
152 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
153 {
154 const struct cred *cred = current_cred();
155 const char *pat_ptr = core_pattern;
156 int ispipe = (*pat_ptr == '|');
157 int pid_in_pattern = 0;
158 int err = 0;
159
160 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
161 cn->corename = kmalloc(cn->size, GFP_KERNEL);
162 cn->used = 0;
163
164 if (!cn->corename)
165 return -ENOMEM;
166
167 /* Repeat as long as we have more pattern to process and more output
168 space */
169 while (*pat_ptr) {
170 if (*pat_ptr != '%') {
171 if (*pat_ptr == 0)
172 goto out;
173 err = cn_printf(cn, "%c", *pat_ptr++);
174 } else {
175 switch (*++pat_ptr) {
176 /* single % at the end, drop that */
177 case 0:
178 goto out;
179 /* Double percent, output one percent */
180 case '%':
181 err = cn_printf(cn, "%c", '%');
182 break;
183 /* pid */
184 case 'p':
185 pid_in_pattern = 1;
186 err = cn_printf(cn, "%d",
187 task_tgid_vnr(current));
188 break;
189 /* uid */
190 case 'u':
191 err = cn_printf(cn, "%d", cred->uid);
192 break;
193 /* gid */
194 case 'g':
195 err = cn_printf(cn, "%d", cred->gid);
196 break;
197 case 'd':
198 err = cn_printf(cn, "%d",
199 __get_dumpable(cprm->mm_flags));
200 break;
201 /* signal that caused the coredump */
202 case 's':
203 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
204 break;
205 /* UNIX time of coredump */
206 case 't': {
207 struct timeval tv;
208 do_gettimeofday(&tv);
209 err = cn_printf(cn, "%lu", tv.tv_sec);
210 break;
211 }
212 /* hostname */
213 case 'h': {
214 char *namestart = cn->corename + cn->used;
215 down_read(&uts_sem);
216 err = cn_printf(cn, "%s",
217 utsname()->nodename);
218 up_read(&uts_sem);
219 cn_escape(namestart);
220 break;
221 }
222 /* executable */
223 case 'e': {
224 char *commstart = cn->corename + cn->used;
225 err = cn_printf(cn, "%s", current->comm);
226 cn_escape(commstart);
227 break;
228 }
229 case 'E':
230 err = cn_print_exe_file(cn);
231 break;
232 /* core limit size */
233 case 'c':
234 err = cn_printf(cn, "%lu",
235 rlimit(RLIMIT_CORE));
236 break;
237 default:
238 break;
239 }
240 ++pat_ptr;
241 }
242
243 if (err)
244 return err;
245 }
246
247 /* Backward compatibility with core_uses_pid:
248 *
249 * If core_pattern does not include a %p (as is the default)
250 * and core_uses_pid is set, then .%pid will be appended to
251 * the filename. Do not do this for piped commands. */
252 if (!ispipe && !pid_in_pattern && core_uses_pid) {
253 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
254 if (err)
255 return err;
256 }
257 out:
258 return ispipe;
259 }
260
261 static int zap_process(struct task_struct *start, int exit_code)
262 {
263 struct task_struct *t;
264 int nr = 0;
265
266 start->signal->group_exit_code = exit_code;
267 start->signal->group_stop_count = 0;
268
269 t = start;
270 do {
271 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
272 if (t != current && t->mm) {
273 sigaddset(&t->pending.signal, SIGKILL);
274 signal_wake_up(t, 1);
275 nr++;
276 }
277 } while_each_thread(start, t);
278
279 return nr;
280 }
281
282 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
283 struct core_state *core_state, int exit_code)
284 {
285 struct task_struct *g, *p;
286 unsigned long flags;
287 int nr = -EAGAIN;
288
289 spin_lock_irq(&tsk->sighand->siglock);
290 if (!signal_group_exit(tsk->signal)) {
291 mm->core_state = core_state;
292 nr = zap_process(tsk, exit_code);
293 tsk->signal->group_exit_task = tsk;
294 /* ignore all signals except SIGKILL, see prepare_signal() */
295 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
296 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
297 }
298 spin_unlock_irq(&tsk->sighand->siglock);
299 if (unlikely(nr < 0))
300 return nr;
301
302 tsk->flags |= PF_DUMPCORE;
303 if (atomic_read(&mm->mm_users) == nr + 1)
304 goto done;
305 /*
306 * We should find and kill all tasks which use this mm, and we should
307 * count them correctly into ->nr_threads. We don't take tasklist
308 * lock, but this is safe wrt:
309 *
310 * fork:
311 * None of sub-threads can fork after zap_process(leader). All
312 * processes which were created before this point should be
313 * visible to zap_threads() because copy_process() adds the new
314 * process to the tail of init_task.tasks list, and lock/unlock
315 * of ->siglock provides a memory barrier.
316 *
317 * do_exit:
318 * The caller holds mm->mmap_sem. This means that the task which
319 * uses this mm can't pass exit_mm(), so it can't exit or clear
320 * its ->mm.
321 *
322 * de_thread:
323 * It does list_replace_rcu(&leader->tasks, &current->tasks),
324 * we must see either old or new leader, this does not matter.
325 * However, it can change p->sighand, so lock_task_sighand(p)
326 * must be used. Since p->mm != NULL and we hold ->mmap_sem
327 * it can't fail.
328 *
329 * Note also that "g" can be the old leader with ->mm == NULL
330 * and already unhashed and thus removed from ->thread_group.
331 * This is OK, __unhash_process()->list_del_rcu() does not
332 * clear the ->next pointer, we will find the new leader via
333 * next_thread().
334 */
335 rcu_read_lock();
336 for_each_process(g) {
337 if (g == tsk->group_leader)
338 continue;
339 if (g->flags & PF_KTHREAD)
340 continue;
341 p = g;
342 do {
343 if (p->mm) {
344 if (unlikely(p->mm == mm)) {
345 lock_task_sighand(p, &flags);
346 nr += zap_process(p, exit_code);
347 p->signal->flags = SIGNAL_GROUP_EXIT;
348 unlock_task_sighand(p, &flags);
349 }
350 break;
351 }
352 } while_each_thread(g, p);
353 }
354 rcu_read_unlock();
355 done:
356 atomic_set(&core_state->nr_threads, nr);
357 return nr;
358 }
359
360 static int coredump_wait(int exit_code, struct core_state *core_state)
361 {
362 struct task_struct *tsk = current;
363 struct mm_struct *mm = tsk->mm;
364 int core_waiters = -EBUSY;
365
366 init_completion(&core_state->startup);
367 core_state->dumper.task = tsk;
368 core_state->dumper.next = NULL;
369
370 down_write(&mm->mmap_sem);
371 if (!mm->core_state)
372 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
373 up_write(&mm->mmap_sem);
374
375 if (core_waiters > 0) {
376 struct core_thread *ptr;
377
378 wait_for_completion(&core_state->startup);
379 /*
380 * Wait for all the threads to become inactive, so that
381 * all the thread context (extended register state, like
382 * fpu etc) gets copied to the memory.
383 */
384 ptr = core_state->dumper.next;
385 while (ptr != NULL) {
386 wait_task_inactive(ptr->task, 0);
387 ptr = ptr->next;
388 }
389 }
390
391 return core_waiters;
392 }
393
394 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
395 {
396 struct core_thread *curr, *next;
397 struct task_struct *task;
398
399 spin_lock_irq(&current->sighand->siglock);
400 if (core_dumped && !__fatal_signal_pending(current))
401 current->signal->group_exit_code |= 0x80;
402 current->signal->group_exit_task = NULL;
403 current->signal->flags = SIGNAL_GROUP_EXIT;
404 spin_unlock_irq(&current->sighand->siglock);
405
406 next = mm->core_state->dumper.next;
407 while ((curr = next) != NULL) {
408 next = curr->next;
409 task = curr->task;
410 /*
411 * see exit_mm(), curr->task must not see
412 * ->task == NULL before we read ->next.
413 */
414 smp_mb();
415 curr->task = NULL;
416 wake_up_process(task);
417 }
418
419 mm->core_state = NULL;
420 }
421
422 static bool dump_interrupted(void)
423 {
424 /*
425 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
426 * can do try_to_freeze() and check __fatal_signal_pending(),
427 * but then we need to teach dump_write() to restart and clear
428 * TIF_SIGPENDING.
429 */
430 return signal_pending(current);
431 }
432
433 static void wait_for_dump_helpers(struct file *file)
434 {
435 struct pipe_inode_info *pipe = file->private_data;
436
437 pipe_lock(pipe);
438 pipe->readers++;
439 pipe->writers--;
440 wake_up_interruptible_sync(&pipe->wait);
441 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
442 pipe_unlock(pipe);
443
444 /*
445 * We actually want wait_event_freezable() but then we need
446 * to clear TIF_SIGPENDING and improve dump_interrupted().
447 */
448 wait_event_interruptible(pipe->wait, pipe->readers == 1);
449
450 pipe_lock(pipe);
451 pipe->readers--;
452 pipe->writers++;
453 pipe_unlock(pipe);
454 }
455
456 /*
457 * umh_pipe_setup
458 * helper function to customize the process used
459 * to collect the core in userspace. Specifically
460 * it sets up a pipe and installs it as fd 0 (stdin)
461 * for the process. Returns 0 on success, or
462 * PTR_ERR on failure.
463 * Note that it also sets the core limit to 1. This
464 * is a special value that we use to trap recursive
465 * core dumps
466 */
467 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
468 {
469 struct file *files[2];
470 struct coredump_params *cp = (struct coredump_params *)info->data;
471 int err = create_pipe_files(files, 0);
472 if (err)
473 return err;
474
475 cp->file = files[1];
476
477 err = replace_fd(0, files[0], 0);
478 fput(files[0]);
479 /* and disallow core files too */
480 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
481
482 return err;
483 }
484
485 void do_coredump(siginfo_t *siginfo)
486 {
487 struct core_state core_state;
488 struct core_name cn;
489 struct mm_struct *mm = current->mm;
490 struct linux_binfmt * binfmt;
491 const struct cred *old_cred;
492 struct cred *cred;
493 int retval = 0;
494 int ispipe;
495 struct files_struct *displaced;
496 /* require nonrelative corefile path and be extra careful */
497 bool need_suid_safe = false;
498 bool core_dumped = false;
499 static atomic_t core_dump_count = ATOMIC_INIT(0);
500 struct coredump_params cprm = {
501 .siginfo = siginfo,
502 .regs = signal_pt_regs(),
503 .limit = rlimit(RLIMIT_CORE),
504 /*
505 * We must use the same mm->flags while dumping core to avoid
506 * inconsistency of bit flags, since this flag is not protected
507 * by any locks.
508 */
509 .mm_flags = mm->flags,
510 };
511
512 audit_core_dumps(siginfo->si_signo);
513
514 binfmt = mm->binfmt;
515 if (!binfmt || !binfmt->core_dump) {
516 printk(KERN_WARNING "Skip process %d(%s) core dump(!binfmt?%s)\n",
517 task_tgid_vnr(current), current->comm, (!binfmt) ? "yes":"no");
518 goto fail;
519 }
520 if (!__get_dumpable(cprm.mm_flags)) {
521 printk(KERN_WARNING "Skip process %d(%s) core dump(mm_flags:%x)\n",
522 task_tgid_vnr(current), current->comm, (unsigned int)cprm.mm_flags);
523 goto fail;
524 }
525
526 cred = prepare_creds();
527 if (!cred) {
528 printk(KERN_WARNING "Skip process %d(%s) core dump(prepare_creds failed)\n",
529 task_tgid_vnr(current), current->comm);
530 goto fail;
531 }
532 /*
533 * We cannot trust fsuid as being the "true" uid of the process
534 * nor do we know its entire history. We only know it was tainted
535 * so we dump it as root in mode 2, and only into a controlled
536 * environment (pipe handler or fully qualified path).
537 */
538 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
539 /* Setuid core dump mode */
540 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
541 need_suid_safe = true;
542 }
543
544 retval = coredump_wait(siginfo->si_signo, &core_state);
545 if (retval < 0)
546 goto fail_creds;
547
548 old_cred = override_creds(cred);
549
550 ispipe = format_corename(&cn, &cprm);
551
552 if (ispipe) {
553 int dump_count;
554 char **helper_argv;
555 struct subprocess_info *sub_info;
556
557 if (ispipe < 0) {
558 printk(KERN_WARNING "format_corename failed\n");
559 printk(KERN_WARNING "Aborting core\n");
560 goto fail_corename;
561 }
562
563 if (cprm.limit == 1) {
564 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
565 *
566 * Normally core limits are irrelevant to pipes, since
567 * we're not writing to the file system, but we use
568 * cprm.limit of 1 here as a speacial value, this is a
569 * consistent way to catch recursive crashes.
570 * We can still crash if the core_pattern binary sets
571 * RLIM_CORE = !1, but it runs as root, and can do
572 * lots of stupid things.
573 *
574 * Note that we use task_tgid_vnr here to grab the pid
575 * of the process group leader. That way we get the
576 * right pid if a thread in a multi-threaded
577 * core_pattern process dies.
578 */
579 printk(KERN_WARNING
580 "Process %d(%s) has RLIMIT_CORE set to 1\n",
581 task_tgid_vnr(current), current->comm);
582 printk(KERN_WARNING "Aborting core\n");
583 goto fail_unlock;
584 }
585 cprm.limit = RLIM_INFINITY;
586
587 dump_count = atomic_inc_return(&core_dump_count);
588 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
589 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
590 task_tgid_vnr(current), current->comm);
591 printk(KERN_WARNING "Skipping core dump\n");
592 goto fail_dropcount;
593 }
594
595 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
596 if (!helper_argv) {
597 printk(KERN_WARNING "%s failed to allocate memory\n",
598 __func__);
599 goto fail_dropcount;
600 }
601
602 retval = -ENOMEM;
603 sub_info = call_usermodehelper_setup(helper_argv[0],
604 helper_argv, NULL, GFP_KERNEL,
605 umh_pipe_setup, NULL, &cprm);
606 if (sub_info)
607 retval = call_usermodehelper_exec(sub_info,
608 UMH_WAIT_EXEC);
609
610 argv_free(helper_argv);
611 if (retval) {
612 printk(KERN_INFO "Core dump to %s pipe failed\n",
613 cn.corename);
614 goto close_fail;
615 }
616 } else {
617 struct inode *inode;
618
619 if (cprm.limit < binfmt->min_coredump)
620 goto fail_unlock;
621
622 if (need_suid_safe && cn.corename[0] != '/') {
623 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
624 "to fully qualified path!\n",
625 task_tgid_vnr(current), current->comm);
626 printk(KERN_WARNING "Skipping core dump\n");
627 goto fail_unlock;
628 }
629
630 /*
631 * Unlink the file if it exists unless this is a SUID
632 * binary - in that case, we're running around with root
633 * privs and don't want to unlink another user's coredump.
634 */
635 if (!need_suid_safe) {
636 mm_segment_t old_fs;
637
638 old_fs = get_fs();
639 set_fs(KERNEL_DS);
640 /*
641 * If it doesn't exist, that's fine. If there's some
642 * other problem, we'll catch it at the filp_open().
643 */
644 (void) sys_unlink((const char __user *)cn.corename);
645 set_fs(old_fs);
646 }
647
648 /*
649 * There is a race between unlinking and creating the
650 * file, but if that causes an EEXIST here, that's
651 * fine - another process raced with us while creating
652 * the corefile, and the other process won. To userspace,
653 * what matters is that at least one of the two processes
654 * writes its coredump successfully, not which one.
655 */
656 cprm.file = filp_open(cn.corename,
657 O_CREAT | 2 | O_NOFOLLOW |
658 O_LARGEFILE | O_EXCL,
659 0600);
660 if (IS_ERR(cprm.file))
661 goto fail_unlock;
662
663 inode = file_inode(cprm.file);
664 if (inode->i_nlink > 1)
665 goto close_fail;
666 if (d_unhashed(cprm.file->f_path.dentry))
667 goto close_fail;
668 /*
669 * AK: actually i see no reason to not allow this for named
670 * pipes etc, but keep the previous behaviour for now.
671 */
672 if (!S_ISREG(inode->i_mode))
673 goto close_fail;
674 /*
675 * Dont allow local users get cute and trick others to coredump
676 * into their pre-created files.
677 */
678 if (!uid_eq(inode->i_uid, current_fsuid()))
679 goto close_fail;
680 if (!cprm.file->f_op || !cprm.file->f_op->write)
681 goto close_fail;
682 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
683 goto close_fail;
684 }
685
686 /* get us an unshared descriptor table; almost always a no-op */
687 retval = unshare_files(&displaced);
688 if (retval)
689 goto close_fail;
690 if (displaced)
691 put_files_struct(displaced);
692 if (!dump_interrupted()) {
693 file_start_write(cprm.file);
694 printk(KERN_WARNING "before %d core dump\n", current->pid);
695 core_dumped = binfmt->core_dump(&cprm);
696 file_end_write(cprm.file);
697 }
698 else
699 printk(KERN_WARNING "before %d core dump interrupted error\n", current->pid);
700 if (ispipe && core_pipe_limit)
701 wait_for_dump_helpers(cprm.file);
702 close_fail:
703 if (cprm.file)
704 filp_close(cprm.file, NULL);
705 fail_dropcount:
706 if (ispipe)
707 atomic_dec(&core_dump_count);
708 fail_unlock:
709 kfree(cn.corename);
710 fail_corename:
711 coredump_finish(mm, core_dumped);
712 revert_creds(old_cred);
713 fail_creds:
714 put_cred(cred);
715 fail:
716 return;
717 }
718
719 /*
720 * Core dumping helper functions. These are the only things you should
721 * do on a core-file: use only these functions to write out all the
722 * necessary info.
723 */
724 int dump_write(struct file *file, const void *addr, int nr)
725 {
726 if (!dump_interrupted()) {
727 if (access_ok(VERIFY_READ, addr, nr)) {
728 int pipe_ret = file->f_op->write(file, addr, nr, &file->f_pos);
729 if (pipe_ret == nr) {
730 return 1;
731 }
732 if (pipe_ret == -ERESTARTSYS) {
733 }
734 else {
735 printk(KERN_WARNING "coredump(%d): pipe dump write error nr:%d, ret:%d\n", current->pid, nr, pipe_ret);
736 }
737 }
738 else {
739 printk(KERN_WARNING "coredump(%d): access verify error\n", current->pid);
740 }
741 }
742 else {
743 printk(KERN_WARNING "coredump(%d): interrupted error\n", current->pid);
744 }
745 return 0;
746 }
747 EXPORT_SYMBOL(dump_write);
748
749 int dump_seek(struct file *file, loff_t off)
750 {
751 int ret = 1;
752
753 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
754 if (dump_interrupted() ||
755 file->f_op->llseek(file, off, SEEK_CUR) < 0)
756 return 0;
757 } else {
758 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
759
760 if (!buf)
761 return 0;
762 while (off > 0) {
763 unsigned long n = off;
764
765 if (n > PAGE_SIZE)
766 n = PAGE_SIZE;
767 if (!dump_write(file, buf, n)) {
768 ret = 0;
769 break;
770 }
771 off -= n;
772 }
773 free_page((unsigned long)buf);
774 }
775 return ret;
776 }
777 EXPORT_SYMBOL(dump_seek);