Merge tag 'v3.10.64' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581 {
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722 }
723
724 /*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734 {
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888 {
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905 #ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908 #endif
909 return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915 {
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949 out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959 {
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980 {
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
1022 if (PagePrivate(page)) {
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
1042 #endif
1043 return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047 .readpage = btree_readpage,
1048 .writepages = btree_writepages,
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052 .migratepage = btree_migratepage,
1053 #endif
1054 .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
1059 {
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 int ret = 0;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 free_extent_buffer(buf);
1070 return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075 {
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
1097 } else if (extent_buffer_uptodate(buf)) {
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107 {
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 bytenr, blocksize);
1112 return eb;
1113 }
1114
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1117 {
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1120
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122 bytenr, blocksize);
1123 return eb;
1124 }
1125
1126
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 buf->start + buf->len - 1);
1131 }
1132
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 buf->start, buf->start + buf->len - 1);
1137 }
1138
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 u32 blocksize, u64 parent_transid)
1141 {
1142 struct extent_buffer *buf = NULL;
1143 int ret;
1144
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 if (!buf)
1147 return NULL;
1148
1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150 return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1156 {
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1162
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
1171 }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178 {
1179 root->node = NULL;
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1185 root->ref_cows = 0;
1186 root->track_dirty = 0;
1187 root->in_radix = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1190
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1194 root->name = NULL;
1195 root->inode_tree = RB_ROOT;
1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 root->block_rsv = NULL;
1198 root->orphan_block_rsv = NULL;
1199
1200 INIT_LIST_HEAD(&root->dirty_list);
1201 INIT_LIST_HEAD(&root->root_list);
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
1204 spin_lock_init(&root->orphan_lock);
1205 spin_lock_init(&root->inode_lock);
1206 spin_lock_init(&root->accounting_lock);
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
1209 mutex_init(&root->objectid_mutex);
1210 mutex_init(&root->log_mutex);
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 atomic_set(&root->orphan_inodes, 0);
1219 root->log_transid = 0;
1220 root->last_log_commit = 0;
1221 extent_io_tree_init(&root->dirty_log_pages,
1222 fs_info->btree_inode->i_mapping);
1223
1224 memset(&root->root_key, 0, sizeof(root->root_key));
1225 memset(&root->root_item, 0, sizeof(root->root_item));
1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1228 root->defrag_trans_start = fs_info->generation;
1229 init_completion(&root->kobj_unregister);
1230 root->defrag_running = 0;
1231 root->root_key.objectid = objectid;
1232 root->anon_dev = 0;
1233
1234 spin_lock_init(&root->root_item_lock);
1235 }
1236
1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid,
1240 struct btrfs_root *root)
1241 {
1242 int ret;
1243 u32 blocksize;
1244 u64 generation;
1245
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, objectid);
1249 ret = btrfs_find_last_root(tree_root, objectid,
1250 &root->root_item, &root->root_key);
1251 if (ret > 0)
1252 return -ENOENT;
1253 else if (ret < 0)
1254 return ret;
1255
1256 generation = btrfs_root_generation(&root->root_item);
1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1258 root->commit_root = NULL;
1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1260 blocksize, generation);
1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1262 free_extent_buffer(root->node);
1263 root->node = NULL;
1264 return -EIO;
1265 }
1266 root->commit_root = btrfs_root_node(root);
1267 return 0;
1268 }
1269
1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1271 {
1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1273 if (root)
1274 root->fs_info = fs_info;
1275 return root;
1276 }
1277
1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_fs_info *fs_info,
1280 u64 objectid)
1281 {
1282 struct extent_buffer *leaf;
1283 struct btrfs_root *tree_root = fs_info->tree_root;
1284 struct btrfs_root *root;
1285 struct btrfs_key key;
1286 int ret = 0;
1287 u64 bytenr;
1288 uuid_le uuid;
1289
1290 root = btrfs_alloc_root(fs_info);
1291 if (!root)
1292 return ERR_PTR(-ENOMEM);
1293
1294 __setup_root(tree_root->nodesize, tree_root->leafsize,
1295 tree_root->sectorsize, tree_root->stripesize,
1296 root, fs_info, objectid);
1297 root->root_key.objectid = objectid;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = 0;
1300
1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 0, objectid, NULL, 0, 0, 0);
1303 if (IS_ERR(leaf)) {
1304 ret = PTR_ERR(leaf);
1305 leaf = NULL;
1306 goto fail;
1307 }
1308
1309 bytenr = leaf->start;
1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 btrfs_set_header_bytenr(leaf, leaf->start);
1312 btrfs_set_header_generation(leaf, trans->transid);
1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 btrfs_set_header_owner(leaf, objectid);
1315 root->node = leaf;
1316
1317 write_extent_buffer(leaf, fs_info->fsid,
1318 (unsigned long)btrfs_header_fsid(leaf),
1319 BTRFS_FSID_SIZE);
1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1322 BTRFS_UUID_SIZE);
1323 btrfs_mark_buffer_dirty(leaf);
1324
1325 root->commit_root = btrfs_root_node(root);
1326 root->track_dirty = 1;
1327
1328
1329 root->root_item.flags = 0;
1330 root->root_item.byte_limit = 0;
1331 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 btrfs_set_root_generation(&root->root_item, trans->transid);
1333 btrfs_set_root_level(&root->root_item, 0);
1334 btrfs_set_root_refs(&root->root_item, 1);
1335 btrfs_set_root_used(&root->root_item, leaf->len);
1336 btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 btrfs_set_root_dirid(&root->root_item, 0);
1338 uuid_le_gen(&uuid);
1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1340 root->root_item.drop_level = 0;
1341
1342 key.objectid = objectid;
1343 key.type = BTRFS_ROOT_ITEM_KEY;
1344 key.offset = 0;
1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1346 if (ret)
1347 goto fail;
1348
1349 btrfs_tree_unlock(leaf);
1350
1351 return root;
1352
1353 fail:
1354 if (leaf) {
1355 btrfs_tree_unlock(leaf);
1356 free_extent_buffer(leaf);
1357 }
1358 kfree(root);
1359
1360 return ERR_PTR(ret);
1361 }
1362
1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
1365 {
1366 struct btrfs_root *root;
1367 struct btrfs_root *tree_root = fs_info->tree_root;
1368 struct extent_buffer *leaf;
1369
1370 root = btrfs_alloc_root(fs_info);
1371 if (!root)
1372 return ERR_PTR(-ENOMEM);
1373
1374 __setup_root(tree_root->nodesize, tree_root->leafsize,
1375 tree_root->sectorsize, tree_root->stripesize,
1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1377
1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1381 /*
1382 * log trees do not get reference counted because they go away
1383 * before a real commit is actually done. They do store pointers
1384 * to file data extents, and those reference counts still get
1385 * updated (along with back refs to the log tree).
1386 */
1387 root->ref_cows = 0;
1388
1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1390 BTRFS_TREE_LOG_OBJECTID, NULL,
1391 0, 0, 0);
1392 if (IS_ERR(leaf)) {
1393 kfree(root);
1394 return ERR_CAST(leaf);
1395 }
1396
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1402 root->node = leaf;
1403
1404 write_extent_buffer(root->node, root->fs_info->fsid,
1405 (unsigned long)btrfs_header_fsid(root->node),
1406 BTRFS_FSID_SIZE);
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
1409 return root;
1410 }
1411
1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_root *log_root;
1416
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1422 return 0;
1423 }
1424
1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427 {
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1430
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1434
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1437
1438 inode_item = &log_root->root_item.inode;
1439 inode_item->generation = cpu_to_le64(1);
1440 inode_item->size = cpu_to_le64(3);
1441 inode_item->nlink = cpu_to_le32(1);
1442 inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1444
1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
1446
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
1450 root->last_log_commit = 0;
1451 return 0;
1452 }
1453
1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 struct btrfs_key *location)
1456 {
1457 struct btrfs_root *root;
1458 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1459 struct btrfs_path *path;
1460 struct extent_buffer *l;
1461 u64 generation;
1462 u32 blocksize;
1463 int ret = 0;
1464 int slot;
1465
1466 root = btrfs_alloc_root(fs_info);
1467 if (!root)
1468 return ERR_PTR(-ENOMEM);
1469 if (location->offset == (u64)-1) {
1470 ret = find_and_setup_root(tree_root, fs_info,
1471 location->objectid, root);
1472 if (ret) {
1473 kfree(root);
1474 return ERR_PTR(ret);
1475 }
1476 goto out;
1477 }
1478
1479 __setup_root(tree_root->nodesize, tree_root->leafsize,
1480 tree_root->sectorsize, tree_root->stripesize,
1481 root, fs_info, location->objectid);
1482
1483 path = btrfs_alloc_path();
1484 if (!path) {
1485 kfree(root);
1486 return ERR_PTR(-ENOMEM);
1487 }
1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1489 if (ret == 0) {
1490 l = path->nodes[0];
1491 slot = path->slots[0];
1492 btrfs_read_root_item(l, slot, &root->root_item);
1493 memcpy(&root->root_key, location, sizeof(*location));
1494 }
1495 btrfs_free_path(path);
1496 if (ret) {
1497 kfree(root);
1498 if (ret > 0)
1499 ret = -ENOENT;
1500 return ERR_PTR(ret);
1501 }
1502
1503 generation = btrfs_root_generation(&root->root_item);
1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506 blocksize, generation);
1507 if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 ret = (!root->node) ? -ENOMEM : -EIO;
1509
1510 free_extent_buffer(root->node);
1511 kfree(root);
1512 return ERR_PTR(ret);
1513 }
1514
1515 root->commit_root = btrfs_root_node(root);
1516 out:
1517 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1518 root->ref_cows = 1;
1519 btrfs_check_and_init_root_item(&root->root_item);
1520 }
1521
1522 return root;
1523 }
1524
1525 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1526 struct btrfs_key *location)
1527 {
1528 struct btrfs_root *root;
1529 int ret;
1530
1531 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1532 return fs_info->tree_root;
1533 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1534 return fs_info->extent_root;
1535 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1536 return fs_info->chunk_root;
1537 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1538 return fs_info->dev_root;
1539 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1540 return fs_info->csum_root;
1541 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1542 return fs_info->quota_root ? fs_info->quota_root :
1543 ERR_PTR(-ENOENT);
1544 again:
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)location->objectid);
1548 spin_unlock(&fs_info->fs_roots_radix_lock);
1549 if (root)
1550 return root;
1551
1552 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1553 if (IS_ERR(root))
1554 return root;
1555
1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 GFP_NOFS);
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 ret = -ENOMEM;
1561 goto fail;
1562 }
1563
1564 btrfs_init_free_ino_ctl(root);
1565 mutex_init(&root->fs_commit_mutex);
1566 spin_lock_init(&root->cache_lock);
1567 init_waitqueue_head(&root->cache_wait);
1568
1569 ret = get_anon_bdev(&root->anon_dev);
1570 if (ret)
1571 goto fail;
1572
1573 if (btrfs_root_refs(&root->root_item) == 0) {
1574 ret = -ENOENT;
1575 goto fail;
1576 }
1577
1578 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1579 if (ret < 0)
1580 goto fail;
1581 if (ret == 0)
1582 root->orphan_item_inserted = 1;
1583
1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1585 if (ret)
1586 goto fail;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
1591 root);
1592 if (ret == 0)
1593 root->in_radix = 1;
1594
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 radix_tree_preload_end();
1597 if (ret) {
1598 if (ret == -EEXIST) {
1599 free_fs_root(root);
1600 goto again;
1601 }
1602 goto fail;
1603 }
1604
1605 ret = btrfs_find_dead_roots(fs_info->tree_root,
1606 root->root_key.objectid);
1607 WARN_ON(ret);
1608 return root;
1609 fail:
1610 free_fs_root(root);
1611 return ERR_PTR(ret);
1612 }
1613
1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615 {
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 int ret = 0;
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
1620
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1623 if (!device->bdev)
1624 continue;
1625 bdi = blk_get_backing_dev_info(device->bdev);
1626 if (bdi && bdi_congested(bdi, bdi_bits)) {
1627 ret = 1;
1628 break;
1629 }
1630 }
1631 rcu_read_unlock();
1632 return ret;
1633 }
1634
1635 /*
1636 * If this fails, caller must call bdi_destroy() to get rid of the
1637 * bdi again.
1638 */
1639 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1640 {
1641 int err;
1642
1643 bdi->capabilities = BDI_CAP_MAP_COPY;
1644 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1645 if (err)
1646 return err;
1647
1648 bdi->ra_pages = default_backing_dev_info.ra_pages;
1649 bdi->congested_fn = btrfs_congested_fn;
1650 bdi->congested_data = info;
1651 return 0;
1652 }
1653
1654 /*
1655 * called by the kthread helper functions to finally call the bio end_io
1656 * functions. This is where read checksum verification actually happens
1657 */
1658 static void end_workqueue_fn(struct btrfs_work *work)
1659 {
1660 struct bio *bio;
1661 struct end_io_wq *end_io_wq;
1662 struct btrfs_fs_info *fs_info;
1663 int error;
1664
1665 end_io_wq = container_of(work, struct end_io_wq, work);
1666 bio = end_io_wq->bio;
1667 fs_info = end_io_wq->info;
1668
1669 error = end_io_wq->error;
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
1672 kfree(end_io_wq);
1673 bio_endio(bio, error);
1674 }
1675
1676 static int cleaner_kthread(void *arg)
1677 {
1678 struct btrfs_root *root = arg;
1679
1680 set_freezable();
1681
1682 do {
1683 int again = 0;
1684
1685 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1686 down_read_trylock(&root->fs_info->sb->s_umount)) {
1687 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1688 btrfs_run_delayed_iputs(root);
1689 again = btrfs_clean_one_deleted_snapshot(root);
1690 mutex_unlock(&root->fs_info->cleaner_mutex);
1691 }
1692 btrfs_run_defrag_inodes(root->fs_info);
1693 up_read(&root->fs_info->sb->s_umount);
1694 }
1695
1696 if (!try_to_freeze() && !again) {
1697 set_current_state(TASK_INTERRUPTIBLE);
1698 if (!kthread_freezable_should_stop(NULL))
1699 schedule();
1700 __set_current_state(TASK_RUNNING);
1701 }
1702 } while (!kthread_freezable_should_stop(NULL));
1703 return 0;
1704 }
1705
1706 static int transaction_kthread(void *arg)
1707 {
1708 struct btrfs_root *root = arg;
1709 struct btrfs_trans_handle *trans;
1710 struct btrfs_transaction *cur;
1711 u64 transid;
1712 unsigned long now;
1713 unsigned long delay;
1714 bool cannot_commit;
1715
1716 set_freezable();
1717
1718 do {
1719 cannot_commit = false;
1720 delay = HZ * 30;
1721 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1722
1723 spin_lock(&root->fs_info->trans_lock);
1724 cur = root->fs_info->running_transaction;
1725 if (!cur) {
1726 spin_unlock(&root->fs_info->trans_lock);
1727 goto sleep;
1728 }
1729
1730 now = get_seconds();
1731 if (!cur->blocked &&
1732 (now < cur->start_time || now - cur->start_time < 30)) {
1733 spin_unlock(&root->fs_info->trans_lock);
1734 delay = HZ * 5;
1735 goto sleep;
1736 }
1737 transid = cur->transid;
1738 spin_unlock(&root->fs_info->trans_lock);
1739
1740 /* If the file system is aborted, this will always fail. */
1741 trans = btrfs_attach_transaction(root);
1742 if (IS_ERR(trans)) {
1743 if (PTR_ERR(trans) != -ENOENT)
1744 cannot_commit = true;
1745 goto sleep;
1746 }
1747 if (transid == trans->transid) {
1748 btrfs_commit_transaction(trans, root);
1749 } else {
1750 btrfs_end_transaction(trans, root);
1751 }
1752 sleep:
1753 wake_up_process(root->fs_info->cleaner_kthread);
1754 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1755
1756 if (!try_to_freeze()) {
1757 set_current_state(TASK_INTERRUPTIBLE);
1758 if (!kthread_freezable_should_stop(NULL) &&
1759 (!btrfs_transaction_blocked(root->fs_info) ||
1760 cannot_commit))
1761 schedule_timeout(delay);
1762 __set_current_state(TASK_RUNNING);
1763 }
1764 } while (!kthread_freezable_should_stop(NULL));
1765 return 0;
1766 }
1767
1768 /*
1769 * this will find the highest generation in the array of
1770 * root backups. The index of the highest array is returned,
1771 * or -1 if we can't find anything.
1772 *
1773 * We check to make sure the array is valid by comparing the
1774 * generation of the latest root in the array with the generation
1775 * in the super block. If they don't match we pitch it.
1776 */
1777 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1778 {
1779 u64 cur;
1780 int newest_index = -1;
1781 struct btrfs_root_backup *root_backup;
1782 int i;
1783
1784 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1785 root_backup = info->super_copy->super_roots + i;
1786 cur = btrfs_backup_tree_root_gen(root_backup);
1787 if (cur == newest_gen)
1788 newest_index = i;
1789 }
1790
1791 /* check to see if we actually wrapped around */
1792 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1793 root_backup = info->super_copy->super_roots;
1794 cur = btrfs_backup_tree_root_gen(root_backup);
1795 if (cur == newest_gen)
1796 newest_index = 0;
1797 }
1798 return newest_index;
1799 }
1800
1801
1802 /*
1803 * find the oldest backup so we know where to store new entries
1804 * in the backup array. This will set the backup_root_index
1805 * field in the fs_info struct
1806 */
1807 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1808 u64 newest_gen)
1809 {
1810 int newest_index = -1;
1811
1812 newest_index = find_newest_super_backup(info, newest_gen);
1813 /* if there was garbage in there, just move along */
1814 if (newest_index == -1) {
1815 info->backup_root_index = 0;
1816 } else {
1817 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1818 }
1819 }
1820
1821 /*
1822 * copy all the root pointers into the super backup array.
1823 * this will bump the backup pointer by one when it is
1824 * done
1825 */
1826 static void backup_super_roots(struct btrfs_fs_info *info)
1827 {
1828 int next_backup;
1829 struct btrfs_root_backup *root_backup;
1830 int last_backup;
1831
1832 next_backup = info->backup_root_index;
1833 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1834 BTRFS_NUM_BACKUP_ROOTS;
1835
1836 /*
1837 * just overwrite the last backup if we're at the same generation
1838 * this happens only at umount
1839 */
1840 root_backup = info->super_for_commit->super_roots + last_backup;
1841 if (btrfs_backup_tree_root_gen(root_backup) ==
1842 btrfs_header_generation(info->tree_root->node))
1843 next_backup = last_backup;
1844
1845 root_backup = info->super_for_commit->super_roots + next_backup;
1846
1847 /*
1848 * make sure all of our padding and empty slots get zero filled
1849 * regardless of which ones we use today
1850 */
1851 memset(root_backup, 0, sizeof(*root_backup));
1852
1853 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1854
1855 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1856 btrfs_set_backup_tree_root_gen(root_backup,
1857 btrfs_header_generation(info->tree_root->node));
1858
1859 btrfs_set_backup_tree_root_level(root_backup,
1860 btrfs_header_level(info->tree_root->node));
1861
1862 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1863 btrfs_set_backup_chunk_root_gen(root_backup,
1864 btrfs_header_generation(info->chunk_root->node));
1865 btrfs_set_backup_chunk_root_level(root_backup,
1866 btrfs_header_level(info->chunk_root->node));
1867
1868 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1869 btrfs_set_backup_extent_root_gen(root_backup,
1870 btrfs_header_generation(info->extent_root->node));
1871 btrfs_set_backup_extent_root_level(root_backup,
1872 btrfs_header_level(info->extent_root->node));
1873
1874 /*
1875 * we might commit during log recovery, which happens before we set
1876 * the fs_root. Make sure it is valid before we fill it in.
1877 */
1878 if (info->fs_root && info->fs_root->node) {
1879 btrfs_set_backup_fs_root(root_backup,
1880 info->fs_root->node->start);
1881 btrfs_set_backup_fs_root_gen(root_backup,
1882 btrfs_header_generation(info->fs_root->node));
1883 btrfs_set_backup_fs_root_level(root_backup,
1884 btrfs_header_level(info->fs_root->node));
1885 }
1886
1887 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1888 btrfs_set_backup_dev_root_gen(root_backup,
1889 btrfs_header_generation(info->dev_root->node));
1890 btrfs_set_backup_dev_root_level(root_backup,
1891 btrfs_header_level(info->dev_root->node));
1892
1893 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1894 btrfs_set_backup_csum_root_gen(root_backup,
1895 btrfs_header_generation(info->csum_root->node));
1896 btrfs_set_backup_csum_root_level(root_backup,
1897 btrfs_header_level(info->csum_root->node));
1898
1899 btrfs_set_backup_total_bytes(root_backup,
1900 btrfs_super_total_bytes(info->super_copy));
1901 btrfs_set_backup_bytes_used(root_backup,
1902 btrfs_super_bytes_used(info->super_copy));
1903 btrfs_set_backup_num_devices(root_backup,
1904 btrfs_super_num_devices(info->super_copy));
1905
1906 /*
1907 * if we don't copy this out to the super_copy, it won't get remembered
1908 * for the next commit
1909 */
1910 memcpy(&info->super_copy->super_roots,
1911 &info->super_for_commit->super_roots,
1912 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1913 }
1914
1915 /*
1916 * this copies info out of the root backup array and back into
1917 * the in-memory super block. It is meant to help iterate through
1918 * the array, so you send it the number of backups you've already
1919 * tried and the last backup index you used.
1920 *
1921 * this returns -1 when it has tried all the backups
1922 */
1923 static noinline int next_root_backup(struct btrfs_fs_info *info,
1924 struct btrfs_super_block *super,
1925 int *num_backups_tried, int *backup_index)
1926 {
1927 struct btrfs_root_backup *root_backup;
1928 int newest = *backup_index;
1929
1930 if (*num_backups_tried == 0) {
1931 u64 gen = btrfs_super_generation(super);
1932
1933 newest = find_newest_super_backup(info, gen);
1934 if (newest == -1)
1935 return -1;
1936
1937 *backup_index = newest;
1938 *num_backups_tried = 1;
1939 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1940 /* we've tried all the backups, all done */
1941 return -1;
1942 } else {
1943 /* jump to the next oldest backup */
1944 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1945 BTRFS_NUM_BACKUP_ROOTS;
1946 *backup_index = newest;
1947 *num_backups_tried += 1;
1948 }
1949 root_backup = super->super_roots + newest;
1950
1951 btrfs_set_super_generation(super,
1952 btrfs_backup_tree_root_gen(root_backup));
1953 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1954 btrfs_set_super_root_level(super,
1955 btrfs_backup_tree_root_level(root_backup));
1956 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1957
1958 /*
1959 * fixme: the total bytes and num_devices need to match or we should
1960 * need a fsck
1961 */
1962 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1963 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1964 return 0;
1965 }
1966
1967 /* helper to cleanup workers */
1968 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1969 {
1970 btrfs_stop_workers(&fs_info->generic_worker);
1971 btrfs_stop_workers(&fs_info->fixup_workers);
1972 btrfs_stop_workers(&fs_info->delalloc_workers);
1973 btrfs_stop_workers(&fs_info->workers);
1974 btrfs_stop_workers(&fs_info->endio_workers);
1975 btrfs_stop_workers(&fs_info->endio_meta_workers);
1976 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1977 btrfs_stop_workers(&fs_info->rmw_workers);
1978 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1979 btrfs_stop_workers(&fs_info->endio_write_workers);
1980 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1981 btrfs_stop_workers(&fs_info->submit_workers);
1982 btrfs_stop_workers(&fs_info->delayed_workers);
1983 btrfs_stop_workers(&fs_info->caching_workers);
1984 btrfs_stop_workers(&fs_info->readahead_workers);
1985 btrfs_stop_workers(&fs_info->flush_workers);
1986 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1987 }
1988
1989 /* helper to cleanup tree roots */
1990 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1991 {
1992 free_extent_buffer(info->tree_root->node);
1993 free_extent_buffer(info->tree_root->commit_root);
1994 info->tree_root->node = NULL;
1995 info->tree_root->commit_root = NULL;
1996
1997 if (info->dev_root) {
1998 free_extent_buffer(info->dev_root->node);
1999 free_extent_buffer(info->dev_root->commit_root);
2000 info->dev_root->node = NULL;
2001 info->dev_root->commit_root = NULL;
2002 }
2003 if (info->extent_root) {
2004 free_extent_buffer(info->extent_root->node);
2005 free_extent_buffer(info->extent_root->commit_root);
2006 info->extent_root->node = NULL;
2007 info->extent_root->commit_root = NULL;
2008 }
2009 if (info->csum_root) {
2010 free_extent_buffer(info->csum_root->node);
2011 free_extent_buffer(info->csum_root->commit_root);
2012 info->csum_root->node = NULL;
2013 info->csum_root->commit_root = NULL;
2014 }
2015 if (info->quota_root) {
2016 free_extent_buffer(info->quota_root->node);
2017 free_extent_buffer(info->quota_root->commit_root);
2018 info->quota_root->node = NULL;
2019 info->quota_root->commit_root = NULL;
2020 }
2021 if (chunk_root) {
2022 free_extent_buffer(info->chunk_root->node);
2023 free_extent_buffer(info->chunk_root->commit_root);
2024 info->chunk_root->node = NULL;
2025 info->chunk_root->commit_root = NULL;
2026 }
2027 }
2028
2029 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2030 {
2031 int ret;
2032 struct btrfs_root *gang[8];
2033 int i;
2034
2035 while (!list_empty(&fs_info->dead_roots)) {
2036 gang[0] = list_entry(fs_info->dead_roots.next,
2037 struct btrfs_root, root_list);
2038 list_del(&gang[0]->root_list);
2039
2040 if (gang[0]->in_radix) {
2041 btrfs_free_fs_root(fs_info, gang[0]);
2042 } else {
2043 free_extent_buffer(gang[0]->node);
2044 free_extent_buffer(gang[0]->commit_root);
2045 kfree(gang[0]);
2046 }
2047 }
2048
2049 while (1) {
2050 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2051 (void **)gang, 0,
2052 ARRAY_SIZE(gang));
2053 if (!ret)
2054 break;
2055 for (i = 0; i < ret; i++)
2056 btrfs_free_fs_root(fs_info, gang[i]);
2057 }
2058 }
2059
2060 int open_ctree(struct super_block *sb,
2061 struct btrfs_fs_devices *fs_devices,
2062 char *options)
2063 {
2064 u32 sectorsize;
2065 u32 nodesize;
2066 u32 leafsize;
2067 u32 blocksize;
2068 u32 stripesize;
2069 u64 generation;
2070 u64 features;
2071 struct btrfs_key location;
2072 struct buffer_head *bh;
2073 struct btrfs_super_block *disk_super;
2074 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2075 struct btrfs_root *tree_root;
2076 struct btrfs_root *extent_root;
2077 struct btrfs_root *csum_root;
2078 struct btrfs_root *chunk_root;
2079 struct btrfs_root *dev_root;
2080 struct btrfs_root *quota_root;
2081 struct btrfs_root *log_tree_root;
2082 int ret;
2083 int err = -EINVAL;
2084 int num_backups_tried = 0;
2085 int backup_index = 0;
2086
2087 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2088 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2089 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2090 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2091 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2092 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2093
2094 if (!tree_root || !extent_root || !csum_root ||
2095 !chunk_root || !dev_root || !quota_root) {
2096 err = -ENOMEM;
2097 goto fail;
2098 }
2099
2100 ret = init_srcu_struct(&fs_info->subvol_srcu);
2101 if (ret) {
2102 err = ret;
2103 goto fail;
2104 }
2105
2106 ret = setup_bdi(fs_info, &fs_info->bdi);
2107 if (ret) {
2108 err = ret;
2109 goto fail_srcu;
2110 }
2111
2112 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2113 if (ret) {
2114 err = ret;
2115 goto fail_bdi;
2116 }
2117 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2118 (1 + ilog2(nr_cpu_ids));
2119
2120 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2121 if (ret) {
2122 err = ret;
2123 goto fail_dirty_metadata_bytes;
2124 }
2125
2126 fs_info->btree_inode = new_inode(sb);
2127 if (!fs_info->btree_inode) {
2128 err = -ENOMEM;
2129 goto fail_delalloc_bytes;
2130 }
2131
2132 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2133
2134 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2135 INIT_LIST_HEAD(&fs_info->trans_list);
2136 INIT_LIST_HEAD(&fs_info->dead_roots);
2137 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2138 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2139 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2140 spin_lock_init(&fs_info->delalloc_lock);
2141 spin_lock_init(&fs_info->trans_lock);
2142 spin_lock_init(&fs_info->fs_roots_radix_lock);
2143 spin_lock_init(&fs_info->delayed_iput_lock);
2144 spin_lock_init(&fs_info->defrag_inodes_lock);
2145 spin_lock_init(&fs_info->free_chunk_lock);
2146 spin_lock_init(&fs_info->tree_mod_seq_lock);
2147 spin_lock_init(&fs_info->super_lock);
2148 rwlock_init(&fs_info->tree_mod_log_lock);
2149 mutex_init(&fs_info->reloc_mutex);
2150 seqlock_init(&fs_info->profiles_lock);
2151
2152 init_completion(&fs_info->kobj_unregister);
2153 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2154 INIT_LIST_HEAD(&fs_info->space_info);
2155 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2156 btrfs_mapping_init(&fs_info->mapping_tree);
2157 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2158 BTRFS_BLOCK_RSV_GLOBAL);
2159 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2160 BTRFS_BLOCK_RSV_DELALLOC);
2161 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2162 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2163 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2164 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2165 BTRFS_BLOCK_RSV_DELOPS);
2166 atomic_set(&fs_info->nr_async_submits, 0);
2167 atomic_set(&fs_info->async_delalloc_pages, 0);
2168 atomic_set(&fs_info->async_submit_draining, 0);
2169 atomic_set(&fs_info->nr_async_bios, 0);
2170 atomic_set(&fs_info->defrag_running, 0);
2171 atomic64_set(&fs_info->tree_mod_seq, 0);
2172 fs_info->sb = sb;
2173 fs_info->max_inline = 8192 * 1024;
2174 fs_info->metadata_ratio = 0;
2175 fs_info->defrag_inodes = RB_ROOT;
2176 fs_info->trans_no_join = 0;
2177 fs_info->free_chunk_space = 0;
2178 fs_info->tree_mod_log = RB_ROOT;
2179
2180 /* readahead state */
2181 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2182 spin_lock_init(&fs_info->reada_lock);
2183
2184 fs_info->thread_pool_size = min_t(unsigned long,
2185 num_online_cpus() + 2, 8);
2186
2187 INIT_LIST_HEAD(&fs_info->ordered_extents);
2188 spin_lock_init(&fs_info->ordered_extent_lock);
2189 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2190 GFP_NOFS);
2191 if (!fs_info->delayed_root) {
2192 err = -ENOMEM;
2193 goto fail_iput;
2194 }
2195 btrfs_init_delayed_root(fs_info->delayed_root);
2196
2197 mutex_init(&fs_info->scrub_lock);
2198 atomic_set(&fs_info->scrubs_running, 0);
2199 atomic_set(&fs_info->scrub_pause_req, 0);
2200 atomic_set(&fs_info->scrubs_paused, 0);
2201 atomic_set(&fs_info->scrub_cancel_req, 0);
2202 init_waitqueue_head(&fs_info->scrub_pause_wait);
2203 init_rwsem(&fs_info->scrub_super_lock);
2204 fs_info->scrub_workers_refcnt = 0;
2205 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2206 fs_info->check_integrity_print_mask = 0;
2207 #endif
2208
2209 spin_lock_init(&fs_info->balance_lock);
2210 mutex_init(&fs_info->balance_mutex);
2211 atomic_set(&fs_info->balance_running, 0);
2212 atomic_set(&fs_info->balance_pause_req, 0);
2213 atomic_set(&fs_info->balance_cancel_req, 0);
2214 fs_info->balance_ctl = NULL;
2215 init_waitqueue_head(&fs_info->balance_wait_q);
2216
2217 sb->s_blocksize = 4096;
2218 sb->s_blocksize_bits = blksize_bits(4096);
2219 sb->s_bdi = &fs_info->bdi;
2220
2221 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2222 set_nlink(fs_info->btree_inode, 1);
2223 /*
2224 * we set the i_size on the btree inode to the max possible int.
2225 * the real end of the address space is determined by all of
2226 * the devices in the system
2227 */
2228 fs_info->btree_inode->i_size = OFFSET_MAX;
2229 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2230 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2231
2232 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2233 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2234 fs_info->btree_inode->i_mapping);
2235 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2236 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2237
2238 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2239
2240 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2241 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2242 sizeof(struct btrfs_key));
2243 set_bit(BTRFS_INODE_DUMMY,
2244 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2245 insert_inode_hash(fs_info->btree_inode);
2246
2247 spin_lock_init(&fs_info->block_group_cache_lock);
2248 fs_info->block_group_cache_tree = RB_ROOT;
2249 fs_info->first_logical_byte = (u64)-1;
2250
2251 extent_io_tree_init(&fs_info->freed_extents[0],
2252 fs_info->btree_inode->i_mapping);
2253 extent_io_tree_init(&fs_info->freed_extents[1],
2254 fs_info->btree_inode->i_mapping);
2255 fs_info->pinned_extents = &fs_info->freed_extents[0];
2256 fs_info->do_barriers = 1;
2257
2258
2259 mutex_init(&fs_info->ordered_operations_mutex);
2260 mutex_init(&fs_info->tree_log_mutex);
2261 mutex_init(&fs_info->chunk_mutex);
2262 mutex_init(&fs_info->transaction_kthread_mutex);
2263 mutex_init(&fs_info->cleaner_mutex);
2264 mutex_init(&fs_info->volume_mutex);
2265 init_rwsem(&fs_info->extent_commit_sem);
2266 init_rwsem(&fs_info->cleanup_work_sem);
2267 init_rwsem(&fs_info->subvol_sem);
2268 fs_info->dev_replace.lock_owner = 0;
2269 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2270 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2271 mutex_init(&fs_info->dev_replace.lock_management_lock);
2272 mutex_init(&fs_info->dev_replace.lock);
2273
2274 spin_lock_init(&fs_info->qgroup_lock);
2275 mutex_init(&fs_info->qgroup_ioctl_lock);
2276 fs_info->qgroup_tree = RB_ROOT;
2277 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2278 fs_info->qgroup_seq = 1;
2279 fs_info->quota_enabled = 0;
2280 fs_info->pending_quota_state = 0;
2281 mutex_init(&fs_info->qgroup_rescan_lock);
2282
2283 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2284 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2285
2286 init_waitqueue_head(&fs_info->transaction_throttle);
2287 init_waitqueue_head(&fs_info->transaction_wait);
2288 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2289 init_waitqueue_head(&fs_info->async_submit_wait);
2290
2291 ret = btrfs_alloc_stripe_hash_table(fs_info);
2292 if (ret) {
2293 err = ret;
2294 goto fail_alloc;
2295 }
2296
2297 __setup_root(4096, 4096, 4096, 4096, tree_root,
2298 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2299
2300 invalidate_bdev(fs_devices->latest_bdev);
2301
2302 /*
2303 * Read super block and check the signature bytes only
2304 */
2305 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2306 if (!bh) {
2307 err = -EINVAL;
2308 goto fail_alloc;
2309 }
2310
2311 /*
2312 * We want to check superblock checksum, the type is stored inside.
2313 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2314 */
2315 if (btrfs_check_super_csum(bh->b_data)) {
2316 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2317 err = -EINVAL;
2318 goto fail_alloc;
2319 }
2320
2321 /*
2322 * super_copy is zeroed at allocation time and we never touch the
2323 * following bytes up to INFO_SIZE, the checksum is calculated from
2324 * the whole block of INFO_SIZE
2325 */
2326 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2327 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2328 sizeof(*fs_info->super_for_commit));
2329 brelse(bh);
2330
2331 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2332
2333 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2334 if (ret) {
2335 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2336 err = -EINVAL;
2337 goto fail_alloc;
2338 }
2339
2340 disk_super = fs_info->super_copy;
2341 if (!btrfs_super_root(disk_super))
2342 goto fail_alloc;
2343
2344 /* check FS state, whether FS is broken. */
2345 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2346 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2347
2348 /*
2349 * run through our array of backup supers and setup
2350 * our ring pointer to the oldest one
2351 */
2352 generation = btrfs_super_generation(disk_super);
2353 find_oldest_super_backup(fs_info, generation);
2354
2355 /*
2356 * In the long term, we'll store the compression type in the super
2357 * block, and it'll be used for per file compression control.
2358 */
2359 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2360
2361 ret = btrfs_parse_options(tree_root, options);
2362 if (ret) {
2363 err = ret;
2364 goto fail_alloc;
2365 }
2366
2367 features = btrfs_super_incompat_flags(disk_super) &
2368 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2369 if (features) {
2370 printk(KERN_ERR "BTRFS: couldn't mount because of "
2371 "unsupported optional features (%Lx).\n",
2372 (unsigned long long)features);
2373 err = -EINVAL;
2374 goto fail_alloc;
2375 }
2376
2377 if (btrfs_super_leafsize(disk_super) !=
2378 btrfs_super_nodesize(disk_super)) {
2379 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2380 "blocksizes don't match. node %d leaf %d\n",
2381 btrfs_super_nodesize(disk_super),
2382 btrfs_super_leafsize(disk_super));
2383 err = -EINVAL;
2384 goto fail_alloc;
2385 }
2386 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2388 "blocksize (%d) was too large\n",
2389 btrfs_super_leafsize(disk_super));
2390 err = -EINVAL;
2391 goto fail_alloc;
2392 }
2393
2394 features = btrfs_super_incompat_flags(disk_super);
2395 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2396 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2397 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2398
2399 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2400 printk(KERN_ERR "btrfs: has skinny extents\n");
2401
2402 /*
2403 * flag our filesystem as having big metadata blocks if
2404 * they are bigger than the page size
2405 */
2406 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2407 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2408 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2409 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2410 }
2411
2412 nodesize = btrfs_super_nodesize(disk_super);
2413 leafsize = btrfs_super_leafsize(disk_super);
2414 sectorsize = btrfs_super_sectorsize(disk_super);
2415 stripesize = btrfs_super_stripesize(disk_super);
2416 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2417 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2418
2419 /*
2420 * mixed block groups end up with duplicate but slightly offset
2421 * extent buffers for the same range. It leads to corruptions
2422 */
2423 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2424 (sectorsize != leafsize)) {
2425 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2426 "are not allowed for mixed block groups on %s\n",
2427 sb->s_id);
2428 goto fail_alloc;
2429 }
2430
2431 /*
2432 * Needn't use the lock because there is no other task which will
2433 * update the flag.
2434 */
2435 btrfs_set_super_incompat_flags(disk_super, features);
2436
2437 features = btrfs_super_compat_ro_flags(disk_super) &
2438 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2439 if (!(sb->s_flags & MS_RDONLY) && features) {
2440 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2441 "unsupported option features (%Lx).\n",
2442 (unsigned long long)features);
2443 err = -EINVAL;
2444 goto fail_alloc;
2445 }
2446
2447 btrfs_init_workers(&fs_info->generic_worker,
2448 "genwork", 1, NULL);
2449
2450 btrfs_init_workers(&fs_info->workers, "worker",
2451 fs_info->thread_pool_size,
2452 &fs_info->generic_worker);
2453
2454 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2455 fs_info->thread_pool_size,
2456 &fs_info->generic_worker);
2457
2458 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2459 fs_info->thread_pool_size,
2460 &fs_info->generic_worker);
2461
2462 btrfs_init_workers(&fs_info->submit_workers, "submit",
2463 min_t(u64, fs_devices->num_devices,
2464 fs_info->thread_pool_size),
2465 &fs_info->generic_worker);
2466
2467 btrfs_init_workers(&fs_info->caching_workers, "cache",
2468 2, &fs_info->generic_worker);
2469
2470 /* a higher idle thresh on the submit workers makes it much more
2471 * likely that bios will be send down in a sane order to the
2472 * devices
2473 */
2474 fs_info->submit_workers.idle_thresh = 64;
2475
2476 fs_info->workers.idle_thresh = 16;
2477 fs_info->workers.ordered = 1;
2478
2479 fs_info->delalloc_workers.idle_thresh = 2;
2480 fs_info->delalloc_workers.ordered = 1;
2481
2482 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2483 &fs_info->generic_worker);
2484 btrfs_init_workers(&fs_info->endio_workers, "endio",
2485 fs_info->thread_pool_size,
2486 &fs_info->generic_worker);
2487 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2488 fs_info->thread_pool_size,
2489 &fs_info->generic_worker);
2490 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2491 "endio-meta-write", fs_info->thread_pool_size,
2492 &fs_info->generic_worker);
2493 btrfs_init_workers(&fs_info->endio_raid56_workers,
2494 "endio-raid56", fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
2496 btrfs_init_workers(&fs_info->rmw_workers,
2497 "rmw", fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
2499 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2500 fs_info->thread_pool_size,
2501 &fs_info->generic_worker);
2502 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2503 1, &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2505 fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2507 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2508 fs_info->thread_pool_size,
2509 &fs_info->generic_worker);
2510 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2511 &fs_info->generic_worker);
2512
2513 /*
2514 * endios are largely parallel and should have a very
2515 * low idle thresh
2516 */
2517 fs_info->endio_workers.idle_thresh = 4;
2518 fs_info->endio_meta_workers.idle_thresh = 4;
2519 fs_info->endio_raid56_workers.idle_thresh = 4;
2520 fs_info->rmw_workers.idle_thresh = 2;
2521
2522 fs_info->endio_write_workers.idle_thresh = 2;
2523 fs_info->endio_meta_write_workers.idle_thresh = 2;
2524 fs_info->readahead_workers.idle_thresh = 2;
2525
2526 /*
2527 * btrfs_start_workers can really only fail because of ENOMEM so just
2528 * return -ENOMEM if any of these fail.
2529 */
2530 ret = btrfs_start_workers(&fs_info->workers);
2531 ret |= btrfs_start_workers(&fs_info->generic_worker);
2532 ret |= btrfs_start_workers(&fs_info->submit_workers);
2533 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2534 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2535 ret |= btrfs_start_workers(&fs_info->endio_workers);
2536 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2537 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2538 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2539 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2540 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2541 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2542 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2543 ret |= btrfs_start_workers(&fs_info->caching_workers);
2544 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2545 ret |= btrfs_start_workers(&fs_info->flush_workers);
2546 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2547 if (ret) {
2548 err = -ENOMEM;
2549 goto fail_sb_buffer;
2550 }
2551
2552 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2553 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2554 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2555
2556 tree_root->nodesize = nodesize;
2557 tree_root->leafsize = leafsize;
2558 tree_root->sectorsize = sectorsize;
2559 tree_root->stripesize = stripesize;
2560
2561 sb->s_blocksize = sectorsize;
2562 sb->s_blocksize_bits = blksize_bits(sectorsize);
2563
2564 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2565 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2566 goto fail_sb_buffer;
2567 }
2568
2569 if (sectorsize != PAGE_SIZE) {
2570 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2571 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2572 goto fail_sb_buffer;
2573 }
2574
2575 mutex_lock(&fs_info->chunk_mutex);
2576 ret = btrfs_read_sys_array(tree_root);
2577 mutex_unlock(&fs_info->chunk_mutex);
2578 if (ret) {
2579 printk(KERN_WARNING "btrfs: failed to read the system "
2580 "array on %s\n", sb->s_id);
2581 goto fail_sb_buffer;
2582 }
2583
2584 blocksize = btrfs_level_size(tree_root,
2585 btrfs_super_chunk_root_level(disk_super));
2586 generation = btrfs_super_chunk_root_generation(disk_super);
2587
2588 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2589 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2590
2591 chunk_root->node = read_tree_block(chunk_root,
2592 btrfs_super_chunk_root(disk_super),
2593 blocksize, generation);
2594 if (!chunk_root->node ||
2595 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2596 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2597 sb->s_id);
2598 goto fail_tree_roots;
2599 }
2600 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2601 chunk_root->commit_root = btrfs_root_node(chunk_root);
2602
2603 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2604 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2605 BTRFS_UUID_SIZE);
2606
2607 ret = btrfs_read_chunk_tree(chunk_root);
2608 if (ret) {
2609 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2610 sb->s_id);
2611 goto fail_tree_roots;
2612 }
2613
2614 /*
2615 * keep the device that is marked to be the target device for the
2616 * dev_replace procedure
2617 */
2618 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2619
2620 if (!fs_devices->latest_bdev) {
2621 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2622 sb->s_id);
2623 goto fail_tree_roots;
2624 }
2625
2626 retry_root_backup:
2627 blocksize = btrfs_level_size(tree_root,
2628 btrfs_super_root_level(disk_super));
2629 generation = btrfs_super_generation(disk_super);
2630
2631 tree_root->node = read_tree_block(tree_root,
2632 btrfs_super_root(disk_super),
2633 blocksize, generation);
2634 if (!tree_root->node ||
2635 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2636 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2637 sb->s_id);
2638
2639 goto recovery_tree_root;
2640 }
2641
2642 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2643 tree_root->commit_root = btrfs_root_node(tree_root);
2644
2645 ret = find_and_setup_root(tree_root, fs_info,
2646 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2647 if (ret)
2648 goto recovery_tree_root;
2649 extent_root->track_dirty = 1;
2650
2651 ret = find_and_setup_root(tree_root, fs_info,
2652 BTRFS_DEV_TREE_OBJECTID, dev_root);
2653 if (ret)
2654 goto recovery_tree_root;
2655 dev_root->track_dirty = 1;
2656
2657 ret = find_and_setup_root(tree_root, fs_info,
2658 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2659 if (ret)
2660 goto recovery_tree_root;
2661 csum_root->track_dirty = 1;
2662
2663 ret = find_and_setup_root(tree_root, fs_info,
2664 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2665 if (ret) {
2666 kfree(quota_root);
2667 quota_root = fs_info->quota_root = NULL;
2668 } else {
2669 quota_root->track_dirty = 1;
2670 fs_info->quota_enabled = 1;
2671 fs_info->pending_quota_state = 1;
2672 }
2673
2674 fs_info->generation = generation;
2675 fs_info->last_trans_committed = generation;
2676
2677 ret = btrfs_recover_balance(fs_info);
2678 if (ret) {
2679 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2680 goto fail_block_groups;
2681 }
2682
2683 ret = btrfs_init_dev_stats(fs_info);
2684 if (ret) {
2685 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2686 ret);
2687 goto fail_block_groups;
2688 }
2689
2690 ret = btrfs_init_dev_replace(fs_info);
2691 if (ret) {
2692 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2693 goto fail_block_groups;
2694 }
2695
2696 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2697
2698 ret = btrfs_init_space_info(fs_info);
2699 if (ret) {
2700 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2701 goto fail_block_groups;
2702 }
2703
2704 ret = btrfs_read_block_groups(extent_root);
2705 if (ret) {
2706 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2707 goto fail_block_groups;
2708 }
2709 fs_info->num_tolerated_disk_barrier_failures =
2710 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2711 if (fs_info->fs_devices->missing_devices >
2712 fs_info->num_tolerated_disk_barrier_failures &&
2713 !(sb->s_flags & MS_RDONLY)) {
2714 printk(KERN_WARNING
2715 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2716 goto fail_block_groups;
2717 }
2718
2719 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2720 "btrfs-cleaner");
2721 if (IS_ERR(fs_info->cleaner_kthread))
2722 goto fail_block_groups;
2723
2724 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2725 tree_root,
2726 "btrfs-transaction");
2727 if (IS_ERR(fs_info->transaction_kthread))
2728 goto fail_cleaner;
2729
2730 if (!btrfs_test_opt(tree_root, SSD) &&
2731 !btrfs_test_opt(tree_root, NOSSD) &&
2732 !fs_info->fs_devices->rotating) {
2733 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2734 "mode\n");
2735 btrfs_set_opt(fs_info->mount_opt, SSD);
2736 }
2737
2738 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2739 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2740 ret = btrfsic_mount(tree_root, fs_devices,
2741 btrfs_test_opt(tree_root,
2742 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2743 1 : 0,
2744 fs_info->check_integrity_print_mask);
2745 if (ret)
2746 printk(KERN_WARNING "btrfs: failed to initialize"
2747 " integrity check module %s\n", sb->s_id);
2748 }
2749 #endif
2750 ret = btrfs_read_qgroup_config(fs_info);
2751 if (ret)
2752 goto fail_trans_kthread;
2753
2754 /* do not make disk changes in broken FS */
2755 if (btrfs_super_log_root(disk_super) != 0) {
2756 u64 bytenr = btrfs_super_log_root(disk_super);
2757
2758 if (fs_devices->rw_devices == 0) {
2759 printk(KERN_WARNING "Btrfs log replay required "
2760 "on RO media\n");
2761 err = -EIO;
2762 goto fail_qgroup;
2763 }
2764 blocksize =
2765 btrfs_level_size(tree_root,
2766 btrfs_super_log_root_level(disk_super));
2767
2768 log_tree_root = btrfs_alloc_root(fs_info);
2769 if (!log_tree_root) {
2770 err = -ENOMEM;
2771 goto fail_qgroup;
2772 }
2773
2774 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2775 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2776
2777 log_tree_root->node = read_tree_block(tree_root, bytenr,
2778 blocksize,
2779 generation + 1);
2780 if (!log_tree_root->node ||
2781 !extent_buffer_uptodate(log_tree_root->node)) {
2782 printk(KERN_ERR "btrfs: failed to read log tree\n");
2783 free_extent_buffer(log_tree_root->node);
2784 kfree(log_tree_root);
2785 goto fail_trans_kthread;
2786 }
2787 /* returns with log_tree_root freed on success */
2788 ret = btrfs_recover_log_trees(log_tree_root);
2789 if (ret) {
2790 btrfs_error(tree_root->fs_info, ret,
2791 "Failed to recover log tree");
2792 free_extent_buffer(log_tree_root->node);
2793 kfree(log_tree_root);
2794 goto fail_trans_kthread;
2795 }
2796
2797 if (sb->s_flags & MS_RDONLY) {
2798 ret = btrfs_commit_super(tree_root);
2799 if (ret)
2800 goto fail_trans_kthread;
2801 }
2802 }
2803
2804 ret = btrfs_find_orphan_roots(tree_root);
2805 if (ret)
2806 goto fail_trans_kthread;
2807
2808 if (!(sb->s_flags & MS_RDONLY)) {
2809 ret = btrfs_cleanup_fs_roots(fs_info);
2810 if (ret)
2811 goto fail_trans_kthread;
2812
2813 ret = btrfs_recover_relocation(tree_root);
2814 if (ret < 0) {
2815 printk(KERN_WARNING
2816 "btrfs: failed to recover relocation\n");
2817 err = -EINVAL;
2818 goto fail_qgroup;
2819 }
2820 }
2821
2822 location.objectid = BTRFS_FS_TREE_OBJECTID;
2823 location.type = BTRFS_ROOT_ITEM_KEY;
2824 location.offset = (u64)-1;
2825
2826 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2827 if (!fs_info->fs_root)
2828 goto fail_qgroup;
2829 if (IS_ERR(fs_info->fs_root)) {
2830 err = PTR_ERR(fs_info->fs_root);
2831 goto fail_qgroup;
2832 }
2833
2834 if (sb->s_flags & MS_RDONLY)
2835 return 0;
2836
2837 down_read(&fs_info->cleanup_work_sem);
2838 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2839 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2840 up_read(&fs_info->cleanup_work_sem);
2841 close_ctree(tree_root);
2842 return ret;
2843 }
2844 up_read(&fs_info->cleanup_work_sem);
2845
2846 ret = btrfs_resume_balance_async(fs_info);
2847 if (ret) {
2848 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2849 close_ctree(tree_root);
2850 return ret;
2851 }
2852
2853 ret = btrfs_resume_dev_replace_async(fs_info);
2854 if (ret) {
2855 pr_warn("btrfs: failed to resume dev_replace\n");
2856 close_ctree(tree_root);
2857 return ret;
2858 }
2859
2860 return 0;
2861
2862 fail_qgroup:
2863 btrfs_free_qgroup_config(fs_info);
2864 fail_trans_kthread:
2865 kthread_stop(fs_info->transaction_kthread);
2866 btrfs_cleanup_transaction(fs_info->tree_root);
2867 del_fs_roots(fs_info);
2868 fail_cleaner:
2869 kthread_stop(fs_info->cleaner_kthread);
2870
2871 /*
2872 * make sure we're done with the btree inode before we stop our
2873 * kthreads
2874 */
2875 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2876
2877 fail_block_groups:
2878 btrfs_put_block_group_cache(fs_info);
2879 btrfs_free_block_groups(fs_info);
2880
2881 fail_tree_roots:
2882 free_root_pointers(fs_info, 1);
2883 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2884
2885 fail_sb_buffer:
2886 btrfs_stop_all_workers(fs_info);
2887 fail_alloc:
2888 fail_iput:
2889 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2890
2891 iput(fs_info->btree_inode);
2892 fail_delalloc_bytes:
2893 percpu_counter_destroy(&fs_info->delalloc_bytes);
2894 fail_dirty_metadata_bytes:
2895 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2896 fail_bdi:
2897 bdi_destroy(&fs_info->bdi);
2898 fail_srcu:
2899 cleanup_srcu_struct(&fs_info->subvol_srcu);
2900 fail:
2901 btrfs_free_stripe_hash_table(fs_info);
2902 btrfs_close_devices(fs_info->fs_devices);
2903 return err;
2904
2905 recovery_tree_root:
2906 if (!btrfs_test_opt(tree_root, RECOVERY))
2907 goto fail_tree_roots;
2908
2909 free_root_pointers(fs_info, 0);
2910
2911 /* don't use the log in recovery mode, it won't be valid */
2912 btrfs_set_super_log_root(disk_super, 0);
2913
2914 /* we can't trust the free space cache either */
2915 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2916
2917 ret = next_root_backup(fs_info, fs_info->super_copy,
2918 &num_backups_tried, &backup_index);
2919 if (ret == -1)
2920 goto fail_block_groups;
2921 goto retry_root_backup;
2922 }
2923
2924 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2925 {
2926 if (uptodate) {
2927 set_buffer_uptodate(bh);
2928 } else {
2929 struct btrfs_device *device = (struct btrfs_device *)
2930 bh->b_private;
2931
2932 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2933 "I/O error on %s\n",
2934 rcu_str_deref(device->name));
2935 /* note, we dont' set_buffer_write_io_error because we have
2936 * our own ways of dealing with the IO errors
2937 */
2938 clear_buffer_uptodate(bh);
2939 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2940 }
2941 unlock_buffer(bh);
2942 put_bh(bh);
2943 }
2944
2945 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2946 {
2947 struct buffer_head *bh;
2948 struct buffer_head *latest = NULL;
2949 struct btrfs_super_block *super;
2950 int i;
2951 u64 transid = 0;
2952 u64 bytenr;
2953
2954 /* we would like to check all the supers, but that would make
2955 * a btrfs mount succeed after a mkfs from a different FS.
2956 * So, we need to add a special mount option to scan for
2957 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2958 */
2959 for (i = 0; i < 1; i++) {
2960 bytenr = btrfs_sb_offset(i);
2961 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2962 break;
2963 bh = __bread(bdev, bytenr / 4096, 4096);
2964 if (!bh)
2965 continue;
2966
2967 super = (struct btrfs_super_block *)bh->b_data;
2968 if (btrfs_super_bytenr(super) != bytenr ||
2969 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2970 brelse(bh);
2971 continue;
2972 }
2973
2974 if (!latest || btrfs_super_generation(super) > transid) {
2975 brelse(latest);
2976 latest = bh;
2977 transid = btrfs_super_generation(super);
2978 } else {
2979 brelse(bh);
2980 }
2981 }
2982 return latest;
2983 }
2984
2985 /*
2986 * this should be called twice, once with wait == 0 and
2987 * once with wait == 1. When wait == 0 is done, all the buffer heads
2988 * we write are pinned.
2989 *
2990 * They are released when wait == 1 is done.
2991 * max_mirrors must be the same for both runs, and it indicates how
2992 * many supers on this one device should be written.
2993 *
2994 * max_mirrors == 0 means to write them all.
2995 */
2996 static int write_dev_supers(struct btrfs_device *device,
2997 struct btrfs_super_block *sb,
2998 int do_barriers, int wait, int max_mirrors)
2999 {
3000 struct buffer_head *bh;
3001 int i;
3002 int ret;
3003 int errors = 0;
3004 u32 crc;
3005 u64 bytenr;
3006
3007 if (max_mirrors == 0)
3008 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3009
3010 for (i = 0; i < max_mirrors; i++) {
3011 bytenr = btrfs_sb_offset(i);
3012 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3013 break;
3014
3015 if (wait) {
3016 bh = __find_get_block(device->bdev, bytenr / 4096,
3017 BTRFS_SUPER_INFO_SIZE);
3018 if (!bh) {
3019 errors++;
3020 continue;
3021 }
3022 wait_on_buffer(bh);
3023 if (!buffer_uptodate(bh))
3024 errors++;
3025
3026 /* drop our reference */
3027 brelse(bh);
3028
3029 /* drop the reference from the wait == 0 run */
3030 brelse(bh);
3031 continue;
3032 } else {
3033 btrfs_set_super_bytenr(sb, bytenr);
3034
3035 crc = ~(u32)0;
3036 crc = btrfs_csum_data((char *)sb +
3037 BTRFS_CSUM_SIZE, crc,
3038 BTRFS_SUPER_INFO_SIZE -
3039 BTRFS_CSUM_SIZE);
3040 btrfs_csum_final(crc, sb->csum);
3041
3042 /*
3043 * one reference for us, and we leave it for the
3044 * caller
3045 */
3046 bh = __getblk(device->bdev, bytenr / 4096,
3047 BTRFS_SUPER_INFO_SIZE);
3048 if (!bh) {
3049 printk(KERN_ERR "btrfs: couldn't get super "
3050 "buffer head for bytenr %Lu\n", bytenr);
3051 errors++;
3052 continue;
3053 }
3054
3055 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3056
3057 /* one reference for submit_bh */
3058 get_bh(bh);
3059
3060 set_buffer_uptodate(bh);
3061 lock_buffer(bh);
3062 bh->b_end_io = btrfs_end_buffer_write_sync;
3063 bh->b_private = device;
3064 }
3065
3066 /*
3067 * we fua the first super. The others we allow
3068 * to go down lazy.
3069 */
3070 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3071 if (ret)
3072 errors++;
3073 }
3074 return errors < i ? 0 : -1;
3075 }
3076
3077 /*
3078 * endio for the write_dev_flush, this will wake anyone waiting
3079 * for the barrier when it is done
3080 */
3081 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3082 {
3083 if (err) {
3084 if (err == -EOPNOTSUPP)
3085 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3086 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3087 }
3088 if (bio->bi_private)
3089 complete(bio->bi_private);
3090 bio_put(bio);
3091 }
3092
3093 /*
3094 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3095 * sent down. With wait == 1, it waits for the previous flush.
3096 *
3097 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3098 * capable
3099 */
3100 static int write_dev_flush(struct btrfs_device *device, int wait)
3101 {
3102 struct bio *bio;
3103 int ret = 0;
3104
3105 if (device->nobarriers)
3106 return 0;
3107
3108 if (wait) {
3109 bio = device->flush_bio;
3110 if (!bio)
3111 return 0;
3112
3113 wait_for_completion(&device->flush_wait);
3114
3115 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3116 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3117 rcu_str_deref(device->name));
3118 device->nobarriers = 1;
3119 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3120 ret = -EIO;
3121 btrfs_dev_stat_inc_and_print(device,
3122 BTRFS_DEV_STAT_FLUSH_ERRS);
3123 }
3124
3125 /* drop the reference from the wait == 0 run */
3126 bio_put(bio);
3127 device->flush_bio = NULL;
3128
3129 return ret;
3130 }
3131
3132 /*
3133 * one reference for us, and we leave it for the
3134 * caller
3135 */
3136 device->flush_bio = NULL;
3137 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3138 if (!bio)
3139 return -ENOMEM;
3140
3141 bio->bi_end_io = btrfs_end_empty_barrier;
3142 bio->bi_bdev = device->bdev;
3143 init_completion(&device->flush_wait);
3144 bio->bi_private = &device->flush_wait;
3145 device->flush_bio = bio;
3146
3147 bio_get(bio);
3148 btrfsic_submit_bio(WRITE_FLUSH, bio);
3149
3150 return 0;
3151 }
3152
3153 /*
3154 * send an empty flush down to each device in parallel,
3155 * then wait for them
3156 */
3157 static int barrier_all_devices(struct btrfs_fs_info *info)
3158 {
3159 struct list_head *head;
3160 struct btrfs_device *dev;
3161 int errors_send = 0;
3162 int errors_wait = 0;
3163 int ret;
3164
3165 /* send down all the barriers */
3166 head = &info->fs_devices->devices;
3167 list_for_each_entry_rcu(dev, head, dev_list) {
3168 if (dev->missing)
3169 continue;
3170 if (!dev->bdev) {
3171 errors_send++;
3172 continue;
3173 }
3174 if (!dev->in_fs_metadata || !dev->writeable)
3175 continue;
3176
3177 ret = write_dev_flush(dev, 0);
3178 if (ret)
3179 errors_send++;
3180 }
3181
3182 /* wait for all the barriers */
3183 list_for_each_entry_rcu(dev, head, dev_list) {
3184 if (dev->missing)
3185 continue;
3186 if (!dev->bdev) {
3187 errors_wait++;
3188 continue;
3189 }
3190 if (!dev->in_fs_metadata || !dev->writeable)
3191 continue;
3192
3193 ret = write_dev_flush(dev, 1);
3194 if (ret)
3195 errors_wait++;
3196 }
3197 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3198 errors_wait > info->num_tolerated_disk_barrier_failures)
3199 return -EIO;
3200 return 0;
3201 }
3202
3203 int btrfs_calc_num_tolerated_disk_barrier_failures(
3204 struct btrfs_fs_info *fs_info)
3205 {
3206 struct btrfs_ioctl_space_info space;
3207 struct btrfs_space_info *sinfo;
3208 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3209 BTRFS_BLOCK_GROUP_SYSTEM,
3210 BTRFS_BLOCK_GROUP_METADATA,
3211 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3212 int num_types = 4;
3213 int i;
3214 int c;
3215 int num_tolerated_disk_barrier_failures =
3216 (int)fs_info->fs_devices->num_devices;
3217
3218 for (i = 0; i < num_types; i++) {
3219 struct btrfs_space_info *tmp;
3220
3221 sinfo = NULL;
3222 rcu_read_lock();
3223 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3224 if (tmp->flags == types[i]) {
3225 sinfo = tmp;
3226 break;
3227 }
3228 }
3229 rcu_read_unlock();
3230
3231 if (!sinfo)
3232 continue;
3233
3234 down_read(&sinfo->groups_sem);
3235 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3236 if (!list_empty(&sinfo->block_groups[c])) {
3237 u64 flags;
3238
3239 btrfs_get_block_group_info(
3240 &sinfo->block_groups[c], &space);
3241 if (space.total_bytes == 0 ||
3242 space.used_bytes == 0)
3243 continue;
3244 flags = space.flags;
3245 /*
3246 * return
3247 * 0: if dup, single or RAID0 is configured for
3248 * any of metadata, system or data, else
3249 * 1: if RAID5 is configured, or if RAID1 or
3250 * RAID10 is configured and only two mirrors
3251 * are used, else
3252 * 2: if RAID6 is configured, else
3253 * num_mirrors - 1: if RAID1 or RAID10 is
3254 * configured and more than
3255 * 2 mirrors are used.
3256 */
3257 if (num_tolerated_disk_barrier_failures > 0 &&
3258 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3259 BTRFS_BLOCK_GROUP_RAID0)) ||
3260 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3261 == 0)))
3262 num_tolerated_disk_barrier_failures = 0;
3263 else if (num_tolerated_disk_barrier_failures > 1) {
3264 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3265 BTRFS_BLOCK_GROUP_RAID5 |
3266 BTRFS_BLOCK_GROUP_RAID10)) {
3267 num_tolerated_disk_barrier_failures = 1;
3268 } else if (flags &
3269 BTRFS_BLOCK_GROUP_RAID5) {
3270 num_tolerated_disk_barrier_failures = 2;
3271 }
3272 }
3273 }
3274 }
3275 up_read(&sinfo->groups_sem);
3276 }
3277
3278 return num_tolerated_disk_barrier_failures;
3279 }
3280
3281 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3282 {
3283 struct list_head *head;
3284 struct btrfs_device *dev;
3285 struct btrfs_super_block *sb;
3286 struct btrfs_dev_item *dev_item;
3287 int ret;
3288 int do_barriers;
3289 int max_errors;
3290 int total_errors = 0;
3291 u64 flags;
3292
3293 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3294 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3295 backup_super_roots(root->fs_info);
3296
3297 sb = root->fs_info->super_for_commit;
3298 dev_item = &sb->dev_item;
3299
3300 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3301 head = &root->fs_info->fs_devices->devices;
3302
3303 if (do_barriers) {
3304 ret = barrier_all_devices(root->fs_info);
3305 if (ret) {
3306 mutex_unlock(
3307 &root->fs_info->fs_devices->device_list_mutex);
3308 btrfs_error(root->fs_info, ret,
3309 "errors while submitting device barriers.");
3310 return ret;
3311 }
3312 }
3313
3314 list_for_each_entry_rcu(dev, head, dev_list) {
3315 if (!dev->bdev) {
3316 total_errors++;
3317 continue;
3318 }
3319 if (!dev->in_fs_metadata || !dev->writeable)
3320 continue;
3321
3322 btrfs_set_stack_device_generation(dev_item, 0);
3323 btrfs_set_stack_device_type(dev_item, dev->type);
3324 btrfs_set_stack_device_id(dev_item, dev->devid);
3325 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3326 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3327 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3328 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3329 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3330 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3331 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3332
3333 flags = btrfs_super_flags(sb);
3334 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3335
3336 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3337 if (ret)
3338 total_errors++;
3339 }
3340 if (total_errors > max_errors) {
3341 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3342 total_errors);
3343
3344 /* This shouldn't happen. FUA is masked off if unsupported */
3345 BUG();
3346 }
3347
3348 total_errors = 0;
3349 list_for_each_entry_rcu(dev, head, dev_list) {
3350 if (!dev->bdev)
3351 continue;
3352 if (!dev->in_fs_metadata || !dev->writeable)
3353 continue;
3354
3355 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3356 if (ret)
3357 total_errors++;
3358 }
3359 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3360 if (total_errors > max_errors) {
3361 btrfs_error(root->fs_info, -EIO,
3362 "%d errors while writing supers", total_errors);
3363 return -EIO;
3364 }
3365 return 0;
3366 }
3367
3368 int write_ctree_super(struct btrfs_trans_handle *trans,
3369 struct btrfs_root *root, int max_mirrors)
3370 {
3371 int ret;
3372
3373 ret = write_all_supers(root, max_mirrors);
3374 return ret;
3375 }
3376
3377 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3378 {
3379 spin_lock(&fs_info->fs_roots_radix_lock);
3380 radix_tree_delete(&fs_info->fs_roots_radix,
3381 (unsigned long)root->root_key.objectid);
3382 spin_unlock(&fs_info->fs_roots_radix_lock);
3383
3384 if (btrfs_root_refs(&root->root_item) == 0)
3385 synchronize_srcu(&fs_info->subvol_srcu);
3386
3387 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3388 btrfs_free_log(NULL, root);
3389 btrfs_free_log_root_tree(NULL, fs_info);
3390 }
3391
3392 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3393 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3394 free_fs_root(root);
3395 }
3396
3397 static void free_fs_root(struct btrfs_root *root)
3398 {
3399 iput(root->cache_inode);
3400 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3401 if (root->anon_dev)
3402 free_anon_bdev(root->anon_dev);
3403 free_extent_buffer(root->node);
3404 free_extent_buffer(root->commit_root);
3405 kfree(root->free_ino_ctl);
3406 kfree(root->free_ino_pinned);
3407 kfree(root->name);
3408 kfree(root);
3409 }
3410
3411 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3412 {
3413 u64 root_objectid = 0;
3414 struct btrfs_root *gang[8];
3415 int i;
3416 int ret;
3417
3418 while (1) {
3419 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3420 (void **)gang, root_objectid,
3421 ARRAY_SIZE(gang));
3422 if (!ret)
3423 break;
3424
3425 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3426 for (i = 0; i < ret; i++) {
3427 int err;
3428
3429 root_objectid = gang[i]->root_key.objectid;
3430 err = btrfs_orphan_cleanup(gang[i]);
3431 if (err)
3432 return err;
3433 }
3434 root_objectid++;
3435 }
3436 return 0;
3437 }
3438
3439 int btrfs_commit_super(struct btrfs_root *root)
3440 {
3441 struct btrfs_trans_handle *trans;
3442 int ret;
3443
3444 mutex_lock(&root->fs_info->cleaner_mutex);
3445 btrfs_run_delayed_iputs(root);
3446 mutex_unlock(&root->fs_info->cleaner_mutex);
3447 wake_up_process(root->fs_info->cleaner_kthread);
3448
3449 /* wait until ongoing cleanup work done */
3450 down_write(&root->fs_info->cleanup_work_sem);
3451 up_write(&root->fs_info->cleanup_work_sem);
3452
3453 trans = btrfs_join_transaction(root);
3454 if (IS_ERR(trans))
3455 return PTR_ERR(trans);
3456 ret = btrfs_commit_transaction(trans, root);
3457 if (ret)
3458 return ret;
3459 /* run commit again to drop the original snapshot */
3460 trans = btrfs_join_transaction(root);
3461 if (IS_ERR(trans))
3462 return PTR_ERR(trans);
3463 ret = btrfs_commit_transaction(trans, root);
3464 if (ret)
3465 return ret;
3466 ret = btrfs_write_and_wait_transaction(NULL, root);
3467 if (ret) {
3468 btrfs_error(root->fs_info, ret,
3469 "Failed to sync btree inode to disk.");
3470 return ret;
3471 }
3472
3473 ret = write_ctree_super(NULL, root, 0);
3474 return ret;
3475 }
3476
3477 int close_ctree(struct btrfs_root *root)
3478 {
3479 struct btrfs_fs_info *fs_info = root->fs_info;
3480 int ret;
3481
3482 fs_info->closing = 1;
3483 smp_mb();
3484
3485 /* pause restriper - we want to resume on mount */
3486 btrfs_pause_balance(fs_info);
3487
3488 btrfs_dev_replace_suspend_for_unmount(fs_info);
3489
3490 btrfs_scrub_cancel(fs_info);
3491
3492 /* wait for any defraggers to finish */
3493 wait_event(fs_info->transaction_wait,
3494 (atomic_read(&fs_info->defrag_running) == 0));
3495
3496 /* clear out the rbtree of defraggable inodes */
3497 btrfs_cleanup_defrag_inodes(fs_info);
3498
3499 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3500 ret = btrfs_commit_super(root);
3501 if (ret)
3502 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3503 }
3504
3505 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3506 btrfs_error_commit_super(root);
3507
3508 btrfs_put_block_group_cache(fs_info);
3509
3510 kthread_stop(fs_info->transaction_kthread);
3511 kthread_stop(fs_info->cleaner_kthread);
3512
3513 fs_info->closing = 2;
3514 smp_mb();
3515
3516 btrfs_free_qgroup_config(root->fs_info);
3517
3518 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3519 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3520 percpu_counter_sum(&fs_info->delalloc_bytes));
3521 }
3522
3523 btrfs_free_block_groups(fs_info);
3524
3525 /*
3526 * we must make sure there is not any read request to
3527 * submit after we stopping all workers.
3528 */
3529 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3530 btrfs_stop_all_workers(fs_info);
3531
3532 del_fs_roots(fs_info);
3533
3534 free_root_pointers(fs_info, 1);
3535
3536 iput(fs_info->btree_inode);
3537
3538 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3539 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3540 btrfsic_unmount(root, fs_info->fs_devices);
3541 #endif
3542
3543 btrfs_close_devices(fs_info->fs_devices);
3544 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3545
3546 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3547 percpu_counter_destroy(&fs_info->delalloc_bytes);
3548 bdi_destroy(&fs_info->bdi);
3549 cleanup_srcu_struct(&fs_info->subvol_srcu);
3550
3551 btrfs_free_stripe_hash_table(fs_info);
3552
3553 return 0;
3554 }
3555
3556 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3557 int atomic)
3558 {
3559 int ret;
3560 struct inode *btree_inode = buf->pages[0]->mapping->host;
3561
3562 ret = extent_buffer_uptodate(buf);
3563 if (!ret)
3564 return ret;
3565
3566 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3567 parent_transid, atomic);
3568 if (ret == -EAGAIN)
3569 return ret;
3570 return !ret;
3571 }
3572
3573 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3574 {
3575 return set_extent_buffer_uptodate(buf);
3576 }
3577
3578 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3579 {
3580 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3581 u64 transid = btrfs_header_generation(buf);
3582 int was_dirty;
3583
3584 btrfs_assert_tree_locked(buf);
3585 if (transid != root->fs_info->generation)
3586 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3587 "found %llu running %llu\n",
3588 (unsigned long long)buf->start,
3589 (unsigned long long)transid,
3590 (unsigned long long)root->fs_info->generation);
3591 was_dirty = set_extent_buffer_dirty(buf);
3592 if (!was_dirty)
3593 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3594 buf->len,
3595 root->fs_info->dirty_metadata_batch);
3596 }
3597
3598 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3599 int flush_delayed)
3600 {
3601 /*
3602 * looks as though older kernels can get into trouble with
3603 * this code, they end up stuck in balance_dirty_pages forever
3604 */
3605 int ret;
3606
3607 if (current->flags & PF_MEMALLOC)
3608 return;
3609
3610 if (flush_delayed)
3611 btrfs_balance_delayed_items(root);
3612
3613 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3614 BTRFS_DIRTY_METADATA_THRESH);
3615 if (ret > 0) {
3616 balance_dirty_pages_ratelimited(
3617 root->fs_info->btree_inode->i_mapping);
3618 }
3619 return;
3620 }
3621
3622 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3623 {
3624 __btrfs_btree_balance_dirty(root, 1);
3625 }
3626
3627 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3628 {
3629 __btrfs_btree_balance_dirty(root, 0);
3630 }
3631
3632 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3633 {
3634 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3635 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3636 }
3637
3638 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3639 int read_only)
3640 {
3641 /*
3642 * Placeholder for checks
3643 */
3644 return 0;
3645 }
3646
3647 static void btrfs_error_commit_super(struct btrfs_root *root)
3648 {
3649 mutex_lock(&root->fs_info->cleaner_mutex);
3650 btrfs_run_delayed_iputs(root);
3651 mutex_unlock(&root->fs_info->cleaner_mutex);
3652
3653 down_write(&root->fs_info->cleanup_work_sem);
3654 up_write(&root->fs_info->cleanup_work_sem);
3655
3656 /* cleanup FS via transaction */
3657 btrfs_cleanup_transaction(root);
3658 }
3659
3660 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3661 struct btrfs_root *root)
3662 {
3663 struct btrfs_inode *btrfs_inode;
3664 struct list_head splice;
3665
3666 INIT_LIST_HEAD(&splice);
3667
3668 mutex_lock(&root->fs_info->ordered_operations_mutex);
3669 spin_lock(&root->fs_info->ordered_extent_lock);
3670
3671 list_splice_init(&t->ordered_operations, &splice);
3672 while (!list_empty(&splice)) {
3673 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3674 ordered_operations);
3675
3676 list_del_init(&btrfs_inode->ordered_operations);
3677 spin_unlock(&root->fs_info->ordered_extent_lock);
3678
3679 btrfs_invalidate_inodes(btrfs_inode->root);
3680
3681 spin_lock(&root->fs_info->ordered_extent_lock);
3682 }
3683
3684 spin_unlock(&root->fs_info->ordered_extent_lock);
3685 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3686 }
3687
3688 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3689 {
3690 struct btrfs_ordered_extent *ordered;
3691
3692 spin_lock(&root->fs_info->ordered_extent_lock);
3693 /*
3694 * This will just short circuit the ordered completion stuff which will
3695 * make sure the ordered extent gets properly cleaned up.
3696 */
3697 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3698 root_extent_list)
3699 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3700 spin_unlock(&root->fs_info->ordered_extent_lock);
3701 }
3702
3703 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3704 struct btrfs_root *root)
3705 {
3706 struct rb_node *node;
3707 struct btrfs_delayed_ref_root *delayed_refs;
3708 struct btrfs_delayed_ref_node *ref;
3709 int ret = 0;
3710
3711 delayed_refs = &trans->delayed_refs;
3712
3713 spin_lock(&delayed_refs->lock);
3714 if (delayed_refs->num_entries == 0) {
3715 spin_unlock(&delayed_refs->lock);
3716 printk(KERN_INFO "delayed_refs has NO entry\n");
3717 return ret;
3718 }
3719
3720 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3721 struct btrfs_delayed_ref_head *head = NULL;
3722
3723 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3724 atomic_set(&ref->refs, 1);
3725 if (btrfs_delayed_ref_is_head(ref)) {
3726
3727 head = btrfs_delayed_node_to_head(ref);
3728 if (!mutex_trylock(&head->mutex)) {
3729 atomic_inc(&ref->refs);
3730 spin_unlock(&delayed_refs->lock);
3731
3732 /* Need to wait for the delayed ref to run */
3733 mutex_lock(&head->mutex);
3734 mutex_unlock(&head->mutex);
3735 btrfs_put_delayed_ref(ref);
3736
3737 spin_lock(&delayed_refs->lock);
3738 continue;
3739 }
3740
3741 if (head->must_insert_reserved)
3742 btrfs_pin_extent(root, ref->bytenr,
3743 ref->num_bytes, 1);
3744 btrfs_free_delayed_extent_op(head->extent_op);
3745 delayed_refs->num_heads--;
3746 if (list_empty(&head->cluster))
3747 delayed_refs->num_heads_ready--;
3748 list_del_init(&head->cluster);
3749 }
3750
3751 ref->in_tree = 0;
3752 rb_erase(&ref->rb_node, &delayed_refs->root);
3753 delayed_refs->num_entries--;
3754 if (head)
3755 mutex_unlock(&head->mutex);
3756 spin_unlock(&delayed_refs->lock);
3757 btrfs_put_delayed_ref(ref);
3758
3759 cond_resched();
3760 spin_lock(&delayed_refs->lock);
3761 }
3762
3763 spin_unlock(&delayed_refs->lock);
3764
3765 return ret;
3766 }
3767
3768 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3769 {
3770 struct btrfs_pending_snapshot *snapshot;
3771 struct list_head splice;
3772
3773 INIT_LIST_HEAD(&splice);
3774
3775 list_splice_init(&t->pending_snapshots, &splice);
3776
3777 while (!list_empty(&splice)) {
3778 snapshot = list_entry(splice.next,
3779 struct btrfs_pending_snapshot,
3780 list);
3781 snapshot->error = -ECANCELED;
3782 list_del_init(&snapshot->list);
3783 }
3784 }
3785
3786 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3787 {
3788 struct btrfs_inode *btrfs_inode;
3789 struct list_head splice;
3790
3791 INIT_LIST_HEAD(&splice);
3792
3793 spin_lock(&root->fs_info->delalloc_lock);
3794 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3795
3796 while (!list_empty(&splice)) {
3797 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3798 delalloc_inodes);
3799
3800 list_del_init(&btrfs_inode->delalloc_inodes);
3801 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3802 &btrfs_inode->runtime_flags);
3803 spin_unlock(&root->fs_info->delalloc_lock);
3804
3805 btrfs_invalidate_inodes(btrfs_inode->root);
3806
3807 spin_lock(&root->fs_info->delalloc_lock);
3808 }
3809
3810 spin_unlock(&root->fs_info->delalloc_lock);
3811 }
3812
3813 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3814 struct extent_io_tree *dirty_pages,
3815 int mark)
3816 {
3817 int ret;
3818 struct extent_buffer *eb;
3819 u64 start = 0;
3820 u64 end;
3821
3822 while (1) {
3823 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3824 mark, NULL);
3825 if (ret)
3826 break;
3827
3828 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3829 while (start <= end) {
3830 eb = btrfs_find_tree_block(root, start,
3831 root->leafsize);
3832 start += root->leafsize;
3833 if (!eb)
3834 continue;
3835 wait_on_extent_buffer_writeback(eb);
3836
3837 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3838 &eb->bflags))
3839 clear_extent_buffer_dirty(eb);
3840 free_extent_buffer_stale(eb);
3841 }
3842 }
3843
3844 return ret;
3845 }
3846
3847 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3848 struct extent_io_tree *pinned_extents)
3849 {
3850 struct extent_io_tree *unpin;
3851 u64 start;
3852 u64 end;
3853 int ret;
3854 bool loop = true;
3855
3856 unpin = pinned_extents;
3857 again:
3858 while (1) {
3859 ret = find_first_extent_bit(unpin, 0, &start, &end,
3860 EXTENT_DIRTY, NULL);
3861 if (ret)
3862 break;
3863
3864 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3865 btrfs_error_unpin_extent_range(root, start, end);
3866 cond_resched();
3867 }
3868
3869 if (loop) {
3870 if (unpin == &root->fs_info->freed_extents[0])
3871 unpin = &root->fs_info->freed_extents[1];
3872 else
3873 unpin = &root->fs_info->freed_extents[0];
3874 loop = false;
3875 goto again;
3876 }
3877
3878 return 0;
3879 }
3880
3881 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3882 struct btrfs_root *root)
3883 {
3884 btrfs_destroy_delayed_refs(cur_trans, root);
3885 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3886 cur_trans->dirty_pages.dirty_bytes);
3887
3888 /* FIXME: cleanup wait for commit */
3889 cur_trans->in_commit = 1;
3890 cur_trans->blocked = 1;
3891 wake_up(&root->fs_info->transaction_blocked_wait);
3892
3893 btrfs_evict_pending_snapshots(cur_trans);
3894
3895 cur_trans->blocked = 0;
3896 wake_up(&root->fs_info->transaction_wait);
3897
3898 cur_trans->commit_done = 1;
3899 wake_up(&cur_trans->commit_wait);
3900
3901 btrfs_destroy_delayed_inodes(root);
3902 btrfs_assert_delayed_root_empty(root);
3903
3904 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3905 EXTENT_DIRTY);
3906 btrfs_destroy_pinned_extent(root,
3907 root->fs_info->pinned_extents);
3908
3909 /*
3910 memset(cur_trans, 0, sizeof(*cur_trans));
3911 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3912 */
3913 }
3914
3915 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3916 {
3917 struct btrfs_transaction *t;
3918 LIST_HEAD(list);
3919
3920 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3921
3922 spin_lock(&root->fs_info->trans_lock);
3923 list_splice_init(&root->fs_info->trans_list, &list);
3924 root->fs_info->trans_no_join = 1;
3925 spin_unlock(&root->fs_info->trans_lock);
3926
3927 while (!list_empty(&list)) {
3928 t = list_entry(list.next, struct btrfs_transaction, list);
3929
3930 btrfs_destroy_ordered_operations(t, root);
3931
3932 btrfs_destroy_ordered_extents(root);
3933
3934 btrfs_destroy_delayed_refs(t, root);
3935
3936 /* FIXME: cleanup wait for commit */
3937 t->in_commit = 1;
3938 t->blocked = 1;
3939 smp_mb();
3940 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3941 wake_up(&root->fs_info->transaction_blocked_wait);
3942
3943 btrfs_evict_pending_snapshots(t);
3944
3945 t->blocked = 0;
3946 smp_mb();
3947 if (waitqueue_active(&root->fs_info->transaction_wait))
3948 wake_up(&root->fs_info->transaction_wait);
3949
3950 t->commit_done = 1;
3951 smp_mb();
3952 if (waitqueue_active(&t->commit_wait))
3953 wake_up(&t->commit_wait);
3954
3955 btrfs_destroy_delayed_inodes(root);
3956 btrfs_assert_delayed_root_empty(root);
3957
3958 btrfs_destroy_delalloc_inodes(root);
3959
3960 spin_lock(&root->fs_info->trans_lock);
3961 root->fs_info->running_transaction = NULL;
3962 spin_unlock(&root->fs_info->trans_lock);
3963
3964 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3965 EXTENT_DIRTY);
3966
3967 btrfs_destroy_pinned_extent(root,
3968 root->fs_info->pinned_extents);
3969
3970 atomic_set(&t->use_count, 0);
3971 list_del_init(&t->list);
3972 memset(t, 0, sizeof(*t));
3973 kmem_cache_free(btrfs_transaction_cachep, t);
3974 }
3975
3976 spin_lock(&root->fs_info->trans_lock);
3977 root->fs_info->trans_no_join = 0;
3978 spin_unlock(&root->fs_info->trans_lock);
3979 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3980
3981 return 0;
3982 }
3983
3984 static struct extent_io_ops btree_extent_io_ops = {
3985 .readpage_end_io_hook = btree_readpage_end_io_hook,
3986 .readpage_io_failed_hook = btree_io_failed_hook,
3987 .submit_bio_hook = btree_submit_bio_hook,
3988 /* note we're sharing with inode.c for the merge bio hook */
3989 .merge_bio_hook = btrfs_merge_bio_hook,
3990 };