Merge tag 'v3.10.71' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53 * USB Host Controller Driver framework
54 *
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
57 *
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
62 *
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
68 *
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
73 *
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 *
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor [18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor [18] = {
177 0x12, /* __u8 bLength; */
178 0x01, /* __u8 bDescriptorType; Device */
179 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
180
181 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
182 0x00, /* __u8 bDeviceSubClass; */
183 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
184 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
185
186 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
187 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
188 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
189
190 0x03, /* __u8 iManufacturer; */
191 0x02, /* __u8 iProduct; */
192 0x01, /* __u8 iSerialNumber; */
193 0x01 /* __u8 bNumConfigurations; */
194 };
195
196
197 /*-------------------------------------------------------------------------*/
198
199 /* Configuration descriptors for our root hubs */
200
201 static const u8 fs_rh_config_descriptor [] = {
202
203 /* one configuration */
204 0x09, /* __u8 bLength; */
205 0x02, /* __u8 bDescriptorType; Configuration */
206 0x19, 0x00, /* __le16 wTotalLength; */
207 0x01, /* __u8 bNumInterfaces; (1) */
208 0x01, /* __u8 bConfigurationValue; */
209 0x00, /* __u8 iConfiguration; */
210 0xc0, /* __u8 bmAttributes;
211 Bit 7: must be set,
212 6: Self-powered,
213 5: Remote wakeup,
214 4..0: resvd */
215 0x00, /* __u8 MaxPower; */
216
217 /* USB 1.1:
218 * USB 2.0, single TT organization (mandatory):
219 * one interface, protocol 0
220 *
221 * USB 2.0, multiple TT organization (optional):
222 * two interfaces, protocols 1 (like single TT)
223 * and 2 (multiple TT mode) ... config is
224 * sometimes settable
225 * NOT IMPLEMENTED
226 */
227
228 /* one interface */
229 0x09, /* __u8 if_bLength; */
230 0x04, /* __u8 if_bDescriptorType; Interface */
231 0x00, /* __u8 if_bInterfaceNumber; */
232 0x00, /* __u8 if_bAlternateSetting; */
233 0x01, /* __u8 if_bNumEndpoints; */
234 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
235 0x00, /* __u8 if_bInterfaceSubClass; */
236 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
237 0x00, /* __u8 if_iInterface; */
238
239 /* one endpoint (status change endpoint) */
240 0x07, /* __u8 ep_bLength; */
241 0x05, /* __u8 ep_bDescriptorType; Endpoint */
242 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
243 0x03, /* __u8 ep_bmAttributes; Interrupt */
244 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
246 };
247
248 static const u8 hs_rh_config_descriptor [] = {
249
250 /* one configuration */
251 0x09, /* __u8 bLength; */
252 0x02, /* __u8 bDescriptorType; Configuration */
253 0x19, 0x00, /* __le16 wTotalLength; */
254 0x01, /* __u8 bNumInterfaces; (1) */
255 0x01, /* __u8 bConfigurationValue; */
256 0x00, /* __u8 iConfiguration; */
257 0xc0, /* __u8 bmAttributes;
258 Bit 7: must be set,
259 6: Self-powered,
260 5: Remote wakeup,
261 4..0: resvd */
262 0x00, /* __u8 MaxPower; */
263
264 /* USB 1.1:
265 * USB 2.0, single TT organization (mandatory):
266 * one interface, protocol 0
267 *
268 * USB 2.0, multiple TT organization (optional):
269 * two interfaces, protocols 1 (like single TT)
270 * and 2 (multiple TT mode) ... config is
271 * sometimes settable
272 * NOT IMPLEMENTED
273 */
274
275 /* one interface */
276 0x09, /* __u8 if_bLength; */
277 0x04, /* __u8 if_bDescriptorType; Interface */
278 0x00, /* __u8 if_bInterfaceNumber; */
279 0x00, /* __u8 if_bAlternateSetting; */
280 0x01, /* __u8 if_bNumEndpoints; */
281 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
282 0x00, /* __u8 if_bInterfaceSubClass; */
283 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
284 0x00, /* __u8 if_iInterface; */
285
286 /* one endpoint (status change endpoint) */
287 0x07, /* __u8 ep_bLength; */
288 0x05, /* __u8 ep_bDescriptorType; Endpoint */
289 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
290 0x03, /* __u8 ep_bmAttributes; Interrupt */
291 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292 * see hub.c:hub_configure() for details. */
293 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
295 };
296
297 static const u8 ss_rh_config_descriptor[] = {
298 /* one configuration */
299 0x09, /* __u8 bLength; */
300 0x02, /* __u8 bDescriptorType; Configuration */
301 0x1f, 0x00, /* __le16 wTotalLength; */
302 0x01, /* __u8 bNumInterfaces; (1) */
303 0x01, /* __u8 bConfigurationValue; */
304 0x00, /* __u8 iConfiguration; */
305 0xc0, /* __u8 bmAttributes;
306 Bit 7: must be set,
307 6: Self-powered,
308 5: Remote wakeup,
309 4..0: resvd */
310 0x00, /* __u8 MaxPower; */
311
312 /* one interface */
313 0x09, /* __u8 if_bLength; */
314 0x04, /* __u8 if_bDescriptorType; Interface */
315 0x00, /* __u8 if_bInterfaceNumber; */
316 0x00, /* __u8 if_bAlternateSetting; */
317 0x01, /* __u8 if_bNumEndpoints; */
318 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
319 0x00, /* __u8 if_bInterfaceSubClass; */
320 0x00, /* __u8 if_bInterfaceProtocol; */
321 0x00, /* __u8 if_iInterface; */
322
323 /* one endpoint (status change endpoint) */
324 0x07, /* __u8 ep_bLength; */
325 0x05, /* __u8 ep_bDescriptorType; Endpoint */
326 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
327 0x03, /* __u8 ep_bmAttributes; Interrupt */
328 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329 * see hub.c:hub_configure() for details. */
330 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
332
333 /* one SuperSpeed endpoint companion descriptor */
334 0x06, /* __u8 ss_bLength */
335 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
336 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
337 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
338 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
339 };
340
341 /* authorized_default behaviour:
342 * -1 is authorized for all devices except wireless (old behaviour)
343 * 0 is unauthorized for all devices
344 * 1 is authorized for all devices
345 */
346 static int authorized_default = -1;
347 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
348 MODULE_PARM_DESC(authorized_default,
349 "Default USB device authorization: 0 is not authorized, 1 is "
350 "authorized, -1 is authorized except for wireless USB (default, "
351 "old behaviour");
352 /*-------------------------------------------------------------------------*/
353
354 /**
355 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
356 * @s: Null-terminated ASCII (actually ISO-8859-1) string
357 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
358 * @len: Length (in bytes; may be odd) of descriptor buffer.
359 *
360 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
361 * buflen, whichever is less.
362 *
363 * USB String descriptors can contain at most 126 characters; input
364 * strings longer than that are truncated.
365 */
366 static unsigned
367 ascii2desc(char const *s, u8 *buf, unsigned len)
368 {
369 unsigned n, t = 2 + 2*strlen(s);
370
371 if (t > 254)
372 t = 254; /* Longest possible UTF string descriptor */
373 if (len > t)
374 len = t;
375
376 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
377
378 n = len;
379 while (n--) {
380 *buf++ = t;
381 if (!n--)
382 break;
383 *buf++ = t >> 8;
384 t = (unsigned char)*s++;
385 }
386 return len;
387 }
388
389 /**
390 * rh_string() - provides string descriptors for root hub
391 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
392 * @hcd: the host controller for this root hub
393 * @data: buffer for output packet
394 * @len: length of the provided buffer
395 *
396 * Produces either a manufacturer, product or serial number string for the
397 * virtual root hub device.
398 * Returns the number of bytes filled in: the length of the descriptor or
399 * of the provided buffer, whichever is less.
400 */
401 static unsigned
402 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
403 {
404 char buf[100];
405 char const *s;
406 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
407
408 // language ids
409 switch (id) {
410 case 0:
411 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
412 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
413 if (len > 4)
414 len = 4;
415 memcpy(data, langids, len);
416 return len;
417 case 1:
418 /* Serial number */
419 s = hcd->self.bus_name;
420 break;
421 case 2:
422 /* Product name */
423 s = hcd->product_desc;
424 break;
425 case 3:
426 /* Manufacturer */
427 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
428 init_utsname()->release, hcd->driver->description);
429 s = buf;
430 break;
431 default:
432 /* Can't happen; caller guarantees it */
433 return 0;
434 }
435
436 return ascii2desc(s, data, len);
437 }
438
439
440 /* Root hub control transfers execute synchronously */
441 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
442 {
443 struct usb_ctrlrequest *cmd;
444 u16 typeReq, wValue, wIndex, wLength;
445 u8 *ubuf = urb->transfer_buffer;
446 /*
447 * tbuf should be as big as the BOS descriptor and
448 * the USB hub descriptor.
449 */
450 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
451 __attribute__((aligned(4)));
452 const u8 *bufp = tbuf;
453 unsigned len = 0;
454 int status;
455 u8 patch_wakeup = 0;
456 u8 patch_protocol = 0;
457
458 might_sleep();
459
460 spin_lock_irq(&hcd_root_hub_lock);
461 status = usb_hcd_link_urb_to_ep(hcd, urb);
462 spin_unlock_irq(&hcd_root_hub_lock);
463 if (status)
464 return status;
465 urb->hcpriv = hcd; /* Indicate it's queued */
466
467 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
468 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
469 wValue = le16_to_cpu (cmd->wValue);
470 wIndex = le16_to_cpu (cmd->wIndex);
471 wLength = le16_to_cpu (cmd->wLength);
472
473 if (wLength > urb->transfer_buffer_length)
474 goto error;
475
476 urb->actual_length = 0;
477 switch (typeReq) {
478
479 /* DEVICE REQUESTS */
480
481 /* The root hub's remote wakeup enable bit is implemented using
482 * driver model wakeup flags. If this system supports wakeup
483 * through USB, userspace may change the default "allow wakeup"
484 * policy through sysfs or these calls.
485 *
486 * Most root hubs support wakeup from downstream devices, for
487 * runtime power management (disabling USB clocks and reducing
488 * VBUS power usage). However, not all of them do so; silicon,
489 * board, and BIOS bugs here are not uncommon, so these can't
490 * be treated quite like external hubs.
491 *
492 * Likewise, not all root hubs will pass wakeup events upstream,
493 * to wake up the whole system. So don't assume root hub and
494 * controller capabilities are identical.
495 */
496
497 case DeviceRequest | USB_REQ_GET_STATUS:
498 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
499 << USB_DEVICE_REMOTE_WAKEUP)
500 | (1 << USB_DEVICE_SELF_POWERED);
501 tbuf [1] = 0;
502 len = 2;
503 break;
504 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
505 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
506 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
507 else
508 goto error;
509 break;
510 case DeviceOutRequest | USB_REQ_SET_FEATURE:
511 if (device_can_wakeup(&hcd->self.root_hub->dev)
512 && wValue == USB_DEVICE_REMOTE_WAKEUP)
513 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
514 else
515 goto error;
516 break;
517 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
518 tbuf [0] = 1;
519 len = 1;
520 /* FALLTHROUGH */
521 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
522 break;
523 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
524 switch (wValue & 0xff00) {
525 case USB_DT_DEVICE << 8:
526 switch (hcd->speed) {
527 case HCD_USB3:
528 bufp = usb3_rh_dev_descriptor;
529 break;
530 case HCD_USB2:
531 bufp = usb2_rh_dev_descriptor;
532 break;
533 case HCD_USB11:
534 bufp = usb11_rh_dev_descriptor;
535 break;
536 default:
537 goto error;
538 }
539 len = 18;
540 if (hcd->has_tt)
541 patch_protocol = 1;
542 break;
543 case USB_DT_CONFIG << 8:
544 switch (hcd->speed) {
545 case HCD_USB3:
546 bufp = ss_rh_config_descriptor;
547 len = sizeof ss_rh_config_descriptor;
548 break;
549 case HCD_USB2:
550 bufp = hs_rh_config_descriptor;
551 len = sizeof hs_rh_config_descriptor;
552 break;
553 case HCD_USB11:
554 bufp = fs_rh_config_descriptor;
555 len = sizeof fs_rh_config_descriptor;
556 break;
557 default:
558 goto error;
559 }
560 if (device_can_wakeup(&hcd->self.root_hub->dev))
561 patch_wakeup = 1;
562 break;
563 case USB_DT_STRING << 8:
564 if ((wValue & 0xff) < 4)
565 urb->actual_length = rh_string(wValue & 0xff,
566 hcd, ubuf, wLength);
567 else /* unsupported IDs --> "protocol stall" */
568 goto error;
569 break;
570 case USB_DT_BOS << 8:
571 goto nongeneric;
572 default:
573 goto error;
574 }
575 break;
576 case DeviceRequest | USB_REQ_GET_INTERFACE:
577 tbuf [0] = 0;
578 len = 1;
579 /* FALLTHROUGH */
580 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
581 break;
582 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
583 // wValue == urb->dev->devaddr
584 dev_dbg (hcd->self.controller, "root hub device address %d\n",
585 wValue);
586 break;
587
588 /* INTERFACE REQUESTS (no defined feature/status flags) */
589
590 /* ENDPOINT REQUESTS */
591
592 case EndpointRequest | USB_REQ_GET_STATUS:
593 // ENDPOINT_HALT flag
594 tbuf [0] = 0;
595 tbuf [1] = 0;
596 len = 2;
597 /* FALLTHROUGH */
598 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
599 case EndpointOutRequest | USB_REQ_SET_FEATURE:
600 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
601 break;
602
603 /* CLASS REQUESTS (and errors) */
604
605 default:
606 nongeneric:
607 /* non-generic request */
608 switch (typeReq) {
609 case GetHubStatus:
610 case GetPortStatus:
611 len = 4;
612 break;
613 case GetHubDescriptor:
614 len = sizeof (struct usb_hub_descriptor);
615 break;
616 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
617 /* len is returned by hub_control */
618 break;
619 }
620 status = hcd->driver->hub_control (hcd,
621 typeReq, wValue, wIndex,
622 tbuf, wLength);
623
624 if (typeReq == GetHubDescriptor)
625 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
626 (struct usb_hub_descriptor *)tbuf);
627 break;
628 error:
629 /* "protocol stall" on error */
630 status = -EPIPE;
631 }
632
633 if (status < 0) {
634 len = 0;
635 if (status != -EPIPE) {
636 dev_dbg (hcd->self.controller,
637 "CTRL: TypeReq=0x%x val=0x%x "
638 "idx=0x%x len=%d ==> %d\n",
639 typeReq, wValue, wIndex,
640 wLength, status);
641 }
642 } else if (status > 0) {
643 /* hub_control may return the length of data copied. */
644 len = status;
645 status = 0;
646 }
647 if (len) {
648 if (urb->transfer_buffer_length < len)
649 len = urb->transfer_buffer_length;
650 urb->actual_length = len;
651 // always USB_DIR_IN, toward host
652 memcpy (ubuf, bufp, len);
653
654 /* report whether RH hardware supports remote wakeup */
655 if (patch_wakeup &&
656 len > offsetof (struct usb_config_descriptor,
657 bmAttributes))
658 ((struct usb_config_descriptor *)ubuf)->bmAttributes
659 |= USB_CONFIG_ATT_WAKEUP;
660
661 /* report whether RH hardware has an integrated TT */
662 if (patch_protocol &&
663 len > offsetof(struct usb_device_descriptor,
664 bDeviceProtocol))
665 ((struct usb_device_descriptor *) ubuf)->
666 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
667 }
668
669 /* any errors get returned through the urb completion */
670 spin_lock_irq(&hcd_root_hub_lock);
671 usb_hcd_unlink_urb_from_ep(hcd, urb);
672
673 /* This peculiar use of spinlocks echoes what real HC drivers do.
674 * Avoiding calls to local_irq_disable/enable makes the code
675 * RT-friendly.
676 */
677 spin_unlock(&hcd_root_hub_lock);
678 usb_hcd_giveback_urb(hcd, urb, status);
679 spin_lock(&hcd_root_hub_lock);
680
681 spin_unlock_irq(&hcd_root_hub_lock);
682 return 0;
683 }
684
685 /*-------------------------------------------------------------------------*/
686
687 /*
688 * Root Hub interrupt transfers are polled using a timer if the
689 * driver requests it; otherwise the driver is responsible for
690 * calling usb_hcd_poll_rh_status() when an event occurs.
691 *
692 * Completions are called in_interrupt(), but they may or may not
693 * be in_irq().
694 */
695 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
696 {
697 struct urb *urb;
698 int length;
699 unsigned long flags;
700 char buffer[6]; /* Any root hubs with > 31 ports? */
701
702 MYDBG("");
703
704 if (unlikely(!hcd->rh_pollable))
705 {
706 MYDBG("");
707 return;
708 }
709 if (!hcd->uses_new_polling && !hcd->status_urb)
710 {
711 MYDBG("");
712 return;
713 }
714
715 MYDBG("");
716 length = hcd->driver->hub_status_data(hcd, buffer);
717 MYDBG("");
718 if (length > 0) {
719 MYDBG("");
720
721 /* try to complete the status urb */
722 spin_lock_irqsave(&hcd_root_hub_lock, flags);
723 urb = hcd->status_urb;
724 if (urb) {
725 MYDBG("");
726 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
727 hcd->status_urb = NULL;
728 urb->actual_length = length;
729 memcpy(urb->transfer_buffer, buffer, length);
730
731 usb_hcd_unlink_urb_from_ep(hcd, urb);
732 spin_unlock(&hcd_root_hub_lock);
733 usb_hcd_giveback_urb(hcd, urb, 0);
734 spin_lock(&hcd_root_hub_lock);
735 } else {
736 MYDBG("");
737 length = 0;
738 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
739 }
740 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
741 }
742 MYDBG("");
743
744 /* The USB 2.0 spec says 256 ms. This is close enough and won't
745 * exceed that limit if HZ is 100. The math is more clunky than
746 * maybe expected, this is to make sure that all timers for USB devices
747 * fire at the same time to give the CPU a break in between */
748 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
749 (length == 0 && hcd->status_urb != NULL))
750 {
751 MYDBG("");
752 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
753 }
754 }
755 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
756
757 /* timer callback */
758 static void rh_timer_func (unsigned long _hcd)
759 {
760 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
761 }
762
763 /*-------------------------------------------------------------------------*/
764
765 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
766 {
767 int retval;
768 unsigned long flags;
769 unsigned len = 1 + (urb->dev->maxchild / 8);
770
771 spin_lock_irqsave (&hcd_root_hub_lock, flags);
772 if (hcd->status_urb || urb->transfer_buffer_length < len) {
773 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
774 retval = -EINVAL;
775 goto done;
776 }
777
778 retval = usb_hcd_link_urb_to_ep(hcd, urb);
779 if (retval)
780 goto done;
781
782 hcd->status_urb = urb;
783 urb->hcpriv = hcd; /* indicate it's queued */
784 if (!hcd->uses_new_polling)
785 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
786
787 /* If a status change has already occurred, report it ASAP */
788 else if (HCD_POLL_PENDING(hcd))
789 mod_timer(&hcd->rh_timer, jiffies);
790 retval = 0;
791 done:
792 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
793 return retval;
794 }
795
796 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
797 {
798 if (usb_endpoint_xfer_int(&urb->ep->desc))
799 return rh_queue_status (hcd, urb);
800 if (usb_endpoint_xfer_control(&urb->ep->desc))
801 return rh_call_control (hcd, urb);
802 return -EINVAL;
803 }
804
805 /*-------------------------------------------------------------------------*/
806
807 /* Unlinks of root-hub control URBs are legal, but they don't do anything
808 * since these URBs always execute synchronously.
809 */
810 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
811 {
812 unsigned long flags;
813 int rc;
814
815 spin_lock_irqsave(&hcd_root_hub_lock, flags);
816 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
817 if (rc)
818 goto done;
819
820 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
821 ; /* Do nothing */
822
823 } else { /* Status URB */
824 if (!hcd->uses_new_polling)
825 del_timer (&hcd->rh_timer);
826 if (urb == hcd->status_urb) {
827 hcd->status_urb = NULL;
828 usb_hcd_unlink_urb_from_ep(hcd, urb);
829
830 spin_unlock(&hcd_root_hub_lock);
831 usb_hcd_giveback_urb(hcd, urb, status);
832 spin_lock(&hcd_root_hub_lock);
833 }
834 }
835 done:
836 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
837 return rc;
838 }
839
840
841
842 /*
843 * Show & store the current value of authorized_default
844 */
845 static ssize_t usb_host_authorized_default_show(struct device *dev,
846 struct device_attribute *attr,
847 char *buf)
848 {
849 struct usb_device *rh_usb_dev = to_usb_device(dev);
850 struct usb_bus *usb_bus = rh_usb_dev->bus;
851 struct usb_hcd *usb_hcd;
852
853 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
854 return -ENODEV;
855 usb_hcd = bus_to_hcd(usb_bus);
856 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
857 }
858
859 static ssize_t usb_host_authorized_default_store(struct device *dev,
860 struct device_attribute *attr,
861 const char *buf, size_t size)
862 {
863 ssize_t result;
864 unsigned val;
865 struct usb_device *rh_usb_dev = to_usb_device(dev);
866 struct usb_bus *usb_bus = rh_usb_dev->bus;
867 struct usb_hcd *usb_hcd;
868
869 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
870 return -ENODEV;
871 usb_hcd = bus_to_hcd(usb_bus);
872 result = sscanf(buf, "%u\n", &val);
873 if (result == 1) {
874 usb_hcd->authorized_default = val? 1 : 0;
875 result = size;
876 }
877 else
878 result = -EINVAL;
879 return result;
880 }
881
882 static DEVICE_ATTR(authorized_default, 0644,
883 usb_host_authorized_default_show,
884 usb_host_authorized_default_store);
885
886
887 /* Group all the USB bus attributes */
888 static struct attribute *usb_bus_attrs[] = {
889 &dev_attr_authorized_default.attr,
890 NULL,
891 };
892
893 static struct attribute_group usb_bus_attr_group = {
894 .name = NULL, /* we want them in the same directory */
895 .attrs = usb_bus_attrs,
896 };
897
898
899
900 /*-------------------------------------------------------------------------*/
901
902 /**
903 * usb_bus_init - shared initialization code
904 * @bus: the bus structure being initialized
905 *
906 * This code is used to initialize a usb_bus structure, memory for which is
907 * separately managed.
908 */
909 static void usb_bus_init (struct usb_bus *bus)
910 {
911 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
912
913 bus->devnum_next = 1;
914
915 bus->root_hub = NULL;
916 bus->busnum = -1;
917 bus->bandwidth_allocated = 0;
918 bus->bandwidth_int_reqs = 0;
919 bus->bandwidth_isoc_reqs = 0;
920
921 INIT_LIST_HEAD (&bus->bus_list);
922 }
923
924 /*-------------------------------------------------------------------------*/
925
926 /**
927 * usb_register_bus - registers the USB host controller with the usb core
928 * @bus: pointer to the bus to register
929 * Context: !in_interrupt()
930 *
931 * Assigns a bus number, and links the controller into usbcore data
932 * structures so that it can be seen by scanning the bus list.
933 */
934 static int usb_register_bus(struct usb_bus *bus)
935 {
936 int result = -E2BIG;
937 int busnum;
938
939 mutex_lock(&usb_bus_list_lock);
940 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
941 if (busnum >= USB_MAXBUS) {
942 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
943 goto error_find_busnum;
944 }
945 set_bit (busnum, busmap.busmap);
946 bus->busnum = busnum;
947
948 /* Add it to the local list of buses */
949 list_add (&bus->bus_list, &usb_bus_list);
950 mutex_unlock(&usb_bus_list_lock);
951
952 usb_notify_add_bus(bus);
953
954 dev_info (bus->controller, "new USB bus registered, assigned bus "
955 "number %d\n", bus->busnum);
956 return 0;
957
958 error_find_busnum:
959 mutex_unlock(&usb_bus_list_lock);
960 return result;
961 }
962
963 /**
964 * usb_deregister_bus - deregisters the USB host controller
965 * @bus: pointer to the bus to deregister
966 * Context: !in_interrupt()
967 *
968 * Recycles the bus number, and unlinks the controller from usbcore data
969 * structures so that it won't be seen by scanning the bus list.
970 */
971 static void usb_deregister_bus (struct usb_bus *bus)
972 {
973 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
974
975 /*
976 * NOTE: make sure that all the devices are removed by the
977 * controller code, as well as having it call this when cleaning
978 * itself up
979 */
980 mutex_lock(&usb_bus_list_lock);
981 list_del (&bus->bus_list);
982 mutex_unlock(&usb_bus_list_lock);
983
984 usb_notify_remove_bus(bus);
985
986 clear_bit (bus->busnum, busmap.busmap);
987 }
988
989 /**
990 * register_root_hub - called by usb_add_hcd() to register a root hub
991 * @hcd: host controller for this root hub
992 *
993 * This function registers the root hub with the USB subsystem. It sets up
994 * the device properly in the device tree and then calls usb_new_device()
995 * to register the usb device. It also assigns the root hub's USB address
996 * (always 1).
997 */
998 static int register_root_hub(struct usb_hcd *hcd)
999 {
1000 struct device *parent_dev = hcd->self.controller;
1001 struct usb_device *usb_dev = hcd->self.root_hub;
1002 const int devnum = 1;
1003 int retval;
1004
1005 usb_dev->devnum = devnum;
1006 usb_dev->bus->devnum_next = devnum + 1;
1007 memset (&usb_dev->bus->devmap.devicemap, 0,
1008 sizeof usb_dev->bus->devmap.devicemap);
1009 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1010 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1011
1012 mutex_lock(&usb_bus_list_lock);
1013
1014 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1015 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1016 if (retval != sizeof usb_dev->descriptor) {
1017 mutex_unlock(&usb_bus_list_lock);
1018 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1019 dev_name(&usb_dev->dev), retval);
1020 return (retval < 0) ? retval : -EMSGSIZE;
1021 }
1022 if (usb_dev->speed == USB_SPEED_SUPER) {
1023 retval = usb_get_bos_descriptor(usb_dev);
1024 if (retval < 0) {
1025 mutex_unlock(&usb_bus_list_lock);
1026 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1027 dev_name(&usb_dev->dev), retval);
1028 return retval;
1029 }
1030 }
1031
1032 retval = usb_new_device (usb_dev);
1033 if (retval) {
1034 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1035 dev_name(&usb_dev->dev), retval);
1036 } else {
1037 spin_lock_irq (&hcd_root_hub_lock);
1038 hcd->rh_registered = 1;
1039 spin_unlock_irq (&hcd_root_hub_lock);
1040
1041 /* Did the HC die before the root hub was registered? */
1042 if (HCD_DEAD(hcd))
1043 usb_hc_died (hcd); /* This time clean up */
1044 }
1045 mutex_unlock(&usb_bus_list_lock);
1046
1047 return retval;
1048 }
1049
1050 /*
1051 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1052 * @bus: the bus which the root hub belongs to
1053 * @portnum: the port which is being resumed
1054 *
1055 * HCDs should call this function when they know that a resume signal is
1056 * being sent to a root-hub port. The root hub will be prevented from
1057 * going into autosuspend until usb_hcd_end_port_resume() is called.
1058 *
1059 * The bus's private lock must be held by the caller.
1060 */
1061 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1062 {
1063 unsigned bit = 1 << portnum;
1064
1065 if (!(bus->resuming_ports & bit)) {
1066 bus->resuming_ports |= bit;
1067 pm_runtime_get_noresume(&bus->root_hub->dev);
1068 }
1069 }
1070 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1071
1072 /*
1073 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1074 * @bus: the bus which the root hub belongs to
1075 * @portnum: the port which is being resumed
1076 *
1077 * HCDs should call this function when they know that a resume signal has
1078 * stopped being sent to a root-hub port. The root hub will be allowed to
1079 * autosuspend again.
1080 *
1081 * The bus's private lock must be held by the caller.
1082 */
1083 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1084 {
1085 unsigned bit = 1 << portnum;
1086
1087 if (bus->resuming_ports & bit) {
1088 bus->resuming_ports &= ~bit;
1089 pm_runtime_put_noidle(&bus->root_hub->dev);
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1093
1094 /*-------------------------------------------------------------------------*/
1095
1096 /**
1097 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1098 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1099 * @is_input: true iff the transaction sends data to the host
1100 * @isoc: true for isochronous transactions, false for interrupt ones
1101 * @bytecount: how many bytes in the transaction.
1102 *
1103 * Returns approximate bus time in nanoseconds for a periodic transaction.
1104 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1105 * scheduled in software, this function is only used for such scheduling.
1106 */
1107 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1108 {
1109 unsigned long tmp;
1110
1111 switch (speed) {
1112 case USB_SPEED_LOW: /* INTR only */
1113 if (is_input) {
1114 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1115 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1116 } else {
1117 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1118 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1119 }
1120 case USB_SPEED_FULL: /* ISOC or INTR */
1121 if (isoc) {
1122 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1124 } else {
1125 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126 return (9107L + BW_HOST_DELAY + tmp);
1127 }
1128 case USB_SPEED_HIGH: /* ISOC or INTR */
1129 // FIXME adjust for input vs output
1130 if (isoc)
1131 tmp = HS_NSECS_ISO (bytecount);
1132 else
1133 tmp = HS_NSECS (bytecount);
1134 return tmp;
1135 default:
1136 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1137 return -1;
1138 }
1139 }
1140 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1141
1142
1143 /*-------------------------------------------------------------------------*/
1144
1145 /*
1146 * Generic HC operations.
1147 */
1148
1149 /*-------------------------------------------------------------------------*/
1150
1151 /**
1152 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1153 * @hcd: host controller to which @urb was submitted
1154 * @urb: URB being submitted
1155 *
1156 * Host controller drivers should call this routine in their enqueue()
1157 * method. The HCD's private spinlock must be held and interrupts must
1158 * be disabled. The actions carried out here are required for URB
1159 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1160 *
1161 * Returns 0 for no error, otherwise a negative error code (in which case
1162 * the enqueue() method must fail). If no error occurs but enqueue() fails
1163 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1164 * the private spinlock and returning.
1165 */
1166 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1167 {
1168 int rc = 0;
1169
1170 spin_lock(&hcd_urb_list_lock);
1171
1172 /* Check that the URB isn't being killed */
1173 if (unlikely(atomic_read(&urb->reject))) {
1174 rc = -EPERM;
1175 goto done;
1176 }
1177
1178 if (unlikely(!urb->ep->enabled)) {
1179 rc = -ENOENT;
1180 goto done;
1181 }
1182
1183 if (unlikely(!urb->dev->can_submit)) {
1184 rc = -EHOSTUNREACH;
1185 goto done;
1186 }
1187
1188 /*
1189 * Check the host controller's state and add the URB to the
1190 * endpoint's queue.
1191 */
1192 if (HCD_RH_RUNNING(hcd)) {
1193 urb->unlinked = 0;
1194 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1195 } else {
1196 rc = -ESHUTDOWN;
1197 goto done;
1198 }
1199 done:
1200 spin_unlock(&hcd_urb_list_lock);
1201 return rc;
1202 }
1203 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1204
1205 /**
1206 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1207 * @hcd: host controller to which @urb was submitted
1208 * @urb: URB being checked for unlinkability
1209 * @status: error code to store in @urb if the unlink succeeds
1210 *
1211 * Host controller drivers should call this routine in their dequeue()
1212 * method. The HCD's private spinlock must be held and interrupts must
1213 * be disabled. The actions carried out here are required for making
1214 * sure than an unlink is valid.
1215 *
1216 * Returns 0 for no error, otherwise a negative error code (in which case
1217 * the dequeue() method must fail). The possible error codes are:
1218 *
1219 * -EIDRM: @urb was not submitted or has already completed.
1220 * The completion function may not have been called yet.
1221 *
1222 * -EBUSY: @urb has already been unlinked.
1223 */
1224 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1225 int status)
1226 {
1227 struct list_head *tmp;
1228
1229 /* insist the urb is still queued */
1230 list_for_each(tmp, &urb->ep->urb_list) {
1231 if (tmp == &urb->urb_list)
1232 break;
1233 }
1234 if (tmp != &urb->urb_list)
1235 return -EIDRM;
1236
1237 /* Any status except -EINPROGRESS means something already started to
1238 * unlink this URB from the hardware. So there's no more work to do.
1239 */
1240 if (urb->unlinked)
1241 return -EBUSY;
1242 urb->unlinked = status;
1243 return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1246
1247 /**
1248 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1249 * @hcd: host controller to which @urb was submitted
1250 * @urb: URB being unlinked
1251 *
1252 * Host controller drivers should call this routine before calling
1253 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1254 * interrupts must be disabled. The actions carried out here are required
1255 * for URB completion.
1256 */
1257 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1258 {
1259 /* clear all state linking urb to this dev (and hcd) */
1260 spin_lock(&hcd_urb_list_lock);
1261 list_del_init(&urb->urb_list);
1262 spin_unlock(&hcd_urb_list_lock);
1263 }
1264 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1265
1266 /*
1267 * Some usb host controllers can only perform dma using a small SRAM area.
1268 * The usb core itself is however optimized for host controllers that can dma
1269 * using regular system memory - like pci devices doing bus mastering.
1270 *
1271 * To support host controllers with limited dma capabilites we provide dma
1272 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1273 * For this to work properly the host controller code must first use the
1274 * function dma_declare_coherent_memory() to point out which memory area
1275 * that should be used for dma allocations.
1276 *
1277 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1278 * dma using dma_alloc_coherent() which in turn allocates from the memory
1279 * area pointed out with dma_declare_coherent_memory().
1280 *
1281 * So, to summarize...
1282 *
1283 * - We need "local" memory, canonical example being
1284 * a small SRAM on a discrete controller being the
1285 * only memory that the controller can read ...
1286 * (a) "normal" kernel memory is no good, and
1287 * (b) there's not enough to share
1288 *
1289 * - The only *portable* hook for such stuff in the
1290 * DMA framework is dma_declare_coherent_memory()
1291 *
1292 * - So we use that, even though the primary requirement
1293 * is that the memory be "local" (hence addressible
1294 * by that device), not "coherent".
1295 *
1296 */
1297
1298 static int hcd_alloc_coherent(struct usb_bus *bus,
1299 gfp_t mem_flags, dma_addr_t *dma_handle,
1300 void **vaddr_handle, size_t size,
1301 enum dma_data_direction dir)
1302 {
1303 unsigned char *vaddr;
1304
1305 if (*vaddr_handle == NULL) {
1306 WARN_ON_ONCE(1);
1307 return -EFAULT;
1308 }
1309
1310 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1311 mem_flags, dma_handle);
1312 if (!vaddr)
1313 return -ENOMEM;
1314
1315 /*
1316 * Store the virtual address of the buffer at the end
1317 * of the allocated dma buffer. The size of the buffer
1318 * may be uneven so use unaligned functions instead
1319 * of just rounding up. It makes sense to optimize for
1320 * memory footprint over access speed since the amount
1321 * of memory available for dma may be limited.
1322 */
1323 put_unaligned((unsigned long)*vaddr_handle,
1324 (unsigned long *)(vaddr + size));
1325
1326 if (dir == DMA_TO_DEVICE)
1327 memcpy(vaddr, *vaddr_handle, size);
1328
1329 *vaddr_handle = vaddr;
1330 return 0;
1331 }
1332
1333 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1334 void **vaddr_handle, size_t size,
1335 enum dma_data_direction dir)
1336 {
1337 unsigned char *vaddr = *vaddr_handle;
1338
1339 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1340
1341 if (dir == DMA_FROM_DEVICE)
1342 memcpy(vaddr, *vaddr_handle, size);
1343
1344 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1345
1346 *vaddr_handle = vaddr;
1347 *dma_handle = 0;
1348 }
1349
1350 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1353 dma_unmap_single(hcd->self.controller,
1354 urb->setup_dma,
1355 sizeof(struct usb_ctrlrequest),
1356 DMA_TO_DEVICE);
1357 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1358 hcd_free_coherent(urb->dev->bus,
1359 &urb->setup_dma,
1360 (void **) &urb->setup_packet,
1361 sizeof(struct usb_ctrlrequest),
1362 DMA_TO_DEVICE);
1363
1364 /* Make it safe to call this routine more than once */
1365 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1366 }
1367 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1368
1369 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1370 {
1371 if (hcd->driver->unmap_urb_for_dma)
1372 hcd->driver->unmap_urb_for_dma(hcd, urb);
1373 else
1374 usb_hcd_unmap_urb_for_dma(hcd, urb);
1375 }
1376
1377 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378 {
1379 enum dma_data_direction dir;
1380
1381 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1382
1383 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1384 if (urb->transfer_flags & URB_DMA_MAP_SG)
1385 dma_unmap_sg(hcd->self.controller,
1386 urb->sg,
1387 urb->num_sgs,
1388 dir);
1389 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1390 dma_unmap_page(hcd->self.controller,
1391 urb->transfer_dma,
1392 urb->transfer_buffer_length,
1393 dir);
1394 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1395 dma_unmap_single(hcd->self.controller,
1396 urb->transfer_dma,
1397 urb->transfer_buffer_length,
1398 dir);
1399 else if (urb->transfer_flags & URB_MAP_LOCAL)
1400 hcd_free_coherent(urb->dev->bus,
1401 &urb->transfer_dma,
1402 &urb->transfer_buffer,
1403 urb->transfer_buffer_length,
1404 dir);
1405
1406 /* Make it safe to call this routine more than once */
1407 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1408 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1409 }
1410 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1411
1412 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1413 gfp_t mem_flags)
1414 {
1415 if (hcd->driver->map_urb_for_dma)
1416 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1417 else
1418 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1419 }
1420
1421 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1422 gfp_t mem_flags)
1423 {
1424 enum dma_data_direction dir;
1425 int ret = 0;
1426
1427 /* Map the URB's buffers for DMA access.
1428 * Lower level HCD code should use *_dma exclusively,
1429 * unless it uses pio or talks to another transport,
1430 * or uses the provided scatter gather list for bulk.
1431 */
1432
1433 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1434 if (hcd->self.uses_pio_for_control)
1435 return ret;
1436 if (hcd->self.uses_dma) {
1437 urb->setup_dma = dma_map_single(
1438 hcd->self.controller,
1439 urb->setup_packet,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 if (dma_mapping_error(hcd->self.controller,
1443 urb->setup_dma))
1444 return -EAGAIN;
1445 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1446 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1447 ret = hcd_alloc_coherent(
1448 urb->dev->bus, mem_flags,
1449 &urb->setup_dma,
1450 (void **)&urb->setup_packet,
1451 sizeof(struct usb_ctrlrequest),
1452 DMA_TO_DEVICE);
1453 if (ret)
1454 return ret;
1455 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1456 }
1457 }
1458
1459 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1460 if (urb->transfer_buffer_length != 0
1461 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1462 if (hcd->self.uses_dma) {
1463 if (urb->num_sgs) {
1464 int n;
1465
1466 /* We don't support sg for isoc transfers ! */
1467 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1468 WARN_ON(1);
1469 return -EINVAL;
1470 }
1471
1472 n = dma_map_sg(
1473 hcd->self.controller,
1474 urb->sg,
1475 urb->num_sgs,
1476 dir);
1477 if (n <= 0)
1478 ret = -EAGAIN;
1479 else
1480 urb->transfer_flags |= URB_DMA_MAP_SG;
1481 urb->num_mapped_sgs = n;
1482 if (n != urb->num_sgs)
1483 urb->transfer_flags |=
1484 URB_DMA_SG_COMBINED;
1485 } else if (urb->sg) {
1486 struct scatterlist *sg = urb->sg;
1487 urb->transfer_dma = dma_map_page(
1488 hcd->self.controller,
1489 sg_page(sg),
1490 sg->offset,
1491 urb->transfer_buffer_length,
1492 dir);
1493 if (dma_mapping_error(hcd->self.controller,
1494 urb->transfer_dma))
1495 ret = -EAGAIN;
1496 else
1497 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1498 } else {
1499 urb->transfer_dma = dma_map_single(
1500 hcd->self.controller,
1501 urb->transfer_buffer,
1502 urb->transfer_buffer_length,
1503 dir);
1504 if (dma_mapping_error(hcd->self.controller,
1505 urb->transfer_dma))
1506 ret = -EAGAIN;
1507 else
1508 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1509 }
1510 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1511 ret = hcd_alloc_coherent(
1512 urb->dev->bus, mem_flags,
1513 &urb->transfer_dma,
1514 &urb->transfer_buffer,
1515 urb->transfer_buffer_length,
1516 dir);
1517 if (ret == 0)
1518 urb->transfer_flags |= URB_MAP_LOCAL;
1519 }
1520 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1521 URB_SETUP_MAP_LOCAL)))
1522 usb_hcd_unmap_urb_for_dma(hcd, urb);
1523 }
1524 return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1527
1528 /*-------------------------------------------------------------------------*/
1529
1530 /* may be called in any context with a valid urb->dev usecount
1531 * caller surrenders "ownership" of urb
1532 * expects usb_submit_urb() to have sanity checked and conditioned all
1533 * inputs in the urb
1534 */
1535 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1536 {
1537 int status;
1538 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1539
1540 /* increment urb's reference count as part of giving it to the HCD
1541 * (which will control it). HCD guarantees that it either returns
1542 * an error or calls giveback(), but not both.
1543 */
1544 usb_get_urb(urb);
1545 atomic_inc(&urb->use_count);
1546 atomic_inc(&urb->dev->urbnum);
1547 usbmon_urb_submit(&hcd->self, urb);
1548
1549 /* NOTE requirements on root-hub callers (usbfs and the hub
1550 * driver, for now): URBs' urb->transfer_buffer must be
1551 * valid and usb_buffer_{sync,unmap}() not be needed, since
1552 * they could clobber root hub response data. Also, control
1553 * URBs must be submitted in process context with interrupts
1554 * enabled.
1555 */
1556
1557 if (is_root_hub(urb->dev)) {
1558 status = rh_urb_enqueue(hcd, urb);
1559 } else {
1560 status = map_urb_for_dma(hcd, urb, mem_flags);
1561 if (likely(status == 0)) {
1562 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1563 if (unlikely(status))
1564 unmap_urb_for_dma(hcd, urb);
1565 }
1566 }
1567
1568 if (unlikely(status)) {
1569 usbmon_urb_submit_error(&hcd->self, urb, status);
1570 urb->hcpriv = NULL;
1571 INIT_LIST_HEAD(&urb->urb_list);
1572 atomic_dec(&urb->use_count);
1573 atomic_dec(&urb->dev->urbnum);
1574 if (atomic_read(&urb->reject))
1575 wake_up(&usb_kill_urb_queue);
1576 usb_put_urb(urb);
1577 }
1578 return status;
1579 }
1580
1581 /*-------------------------------------------------------------------------*/
1582
1583 /* this makes the hcd giveback() the urb more quickly, by kicking it
1584 * off hardware queues (which may take a while) and returning it as
1585 * soon as practical. we've already set up the urb's return status,
1586 * but we can't know if the callback completed already.
1587 */
1588 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1589 {
1590 int value;
1591
1592 if (is_root_hub(urb->dev))
1593 value = usb_rh_urb_dequeue(hcd, urb, status);
1594 else {
1595
1596 /* The only reason an HCD might fail this call is if
1597 * it has not yet fully queued the urb to begin with.
1598 * Such failures should be harmless. */
1599 value = hcd->driver->urb_dequeue(hcd, urb, status);
1600 }
1601 return value;
1602 }
1603
1604 /*
1605 * called in any context
1606 *
1607 * caller guarantees urb won't be recycled till both unlink()
1608 * and the urb's completion function return
1609 */
1610 int usb_hcd_unlink_urb (struct urb *urb, int status)
1611 {
1612 struct usb_hcd *hcd;
1613 struct usb_device *udev = urb->dev;
1614 int retval = -EIDRM;
1615 unsigned long flags;
1616
1617 /* Prevent the device and bus from going away while
1618 * the unlink is carried out. If they are already gone
1619 * then urb->use_count must be 0, since disconnected
1620 * devices can't have any active URBs.
1621 */
1622 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1623 if (atomic_read(&urb->use_count) > 0) {
1624 retval = 0;
1625 usb_get_dev(udev);
1626 }
1627 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1628 if (retval == 0) {
1629 hcd = bus_to_hcd(urb->dev->bus);
1630 retval = unlink1(hcd, urb, status);
1631 if (retval == 0)
1632 retval = -EINPROGRESS;
1633 else if (retval != -EIDRM && retval != -EBUSY)
1634 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1635 urb, retval);
1636 usb_put_dev(udev);
1637 }
1638 return retval;
1639 }
1640
1641 /*-------------------------------------------------------------------------*/
1642
1643 /**
1644 * usb_hcd_giveback_urb - return URB from HCD to device driver
1645 * @hcd: host controller returning the URB
1646 * @urb: urb being returned to the USB device driver.
1647 * @status: completion status code for the URB.
1648 * Context: in_interrupt()
1649 *
1650 * This hands the URB from HCD to its USB device driver, using its
1651 * completion function. The HCD has freed all per-urb resources
1652 * (and is done using urb->hcpriv). It also released all HCD locks;
1653 * the device driver won't cause problems if it frees, modifies,
1654 * or resubmits this URB.
1655 *
1656 * If @urb was unlinked, the value of @status will be overridden by
1657 * @urb->unlinked. Erroneous short transfers are detected in case
1658 * the HCD hasn't checked for them.
1659 */
1660 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1661 {
1662 urb->hcpriv = NULL;
1663 if (unlikely(urb->unlinked))
1664 status = urb->unlinked;
1665 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1666 urb->actual_length < urb->transfer_buffer_length &&
1667 !status))
1668 status = -EREMOTEIO;
1669
1670 unmap_urb_for_dma(hcd, urb);
1671 usbmon_urb_complete(&hcd->self, urb, status);
1672 usb_unanchor_urb(urb);
1673
1674 /* pass ownership to the completion handler */
1675 urb->status = status;
1676 urb->complete (urb);
1677 atomic_dec (&urb->use_count);
1678 if (unlikely(atomic_read(&urb->reject)))
1679 wake_up (&usb_kill_urb_queue);
1680 usb_put_urb (urb);
1681 }
1682 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1683
1684 /*-------------------------------------------------------------------------*/
1685
1686 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1687 * queue to drain completely. The caller must first insure that no more
1688 * URBs can be submitted for this endpoint.
1689 */
1690 void usb_hcd_flush_endpoint(struct usb_device *udev,
1691 struct usb_host_endpoint *ep)
1692 {
1693 struct usb_hcd *hcd;
1694 struct urb *urb;
1695
1696 if (!ep)
1697 return;
1698 might_sleep();
1699 hcd = bus_to_hcd(udev->bus);
1700
1701 /* No more submits can occur */
1702 spin_lock_irq(&hcd_urb_list_lock);
1703 rescan:
1704 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1705 int is_in;
1706
1707 if (urb->unlinked)
1708 continue;
1709 usb_get_urb (urb);
1710 is_in = usb_urb_dir_in(urb);
1711 spin_unlock(&hcd_urb_list_lock);
1712
1713 /* kick hcd */
1714 unlink1(hcd, urb, -ESHUTDOWN);
1715 dev_dbg (hcd->self.controller,
1716 "shutdown urb %p ep%d%s%s\n",
1717 urb, usb_endpoint_num(&ep->desc),
1718 is_in ? "in" : "out",
1719 ({ char *s;
1720
1721 switch (usb_endpoint_type(&ep->desc)) {
1722 case USB_ENDPOINT_XFER_CONTROL:
1723 s = ""; break;
1724 case USB_ENDPOINT_XFER_BULK:
1725 s = "-bulk"; break;
1726 case USB_ENDPOINT_XFER_INT:
1727 s = "-intr"; break;
1728 default:
1729 s = "-iso"; break;
1730 };
1731 s;
1732 }));
1733 usb_put_urb (urb);
1734
1735 /* list contents may have changed */
1736 spin_lock(&hcd_urb_list_lock);
1737 goto rescan;
1738 }
1739 spin_unlock_irq(&hcd_urb_list_lock);
1740
1741 /* Wait until the endpoint queue is completely empty */
1742 while (!list_empty (&ep->urb_list)) {
1743 spin_lock_irq(&hcd_urb_list_lock);
1744
1745 /* The list may have changed while we acquired the spinlock */
1746 urb = NULL;
1747 if (!list_empty (&ep->urb_list)) {
1748 urb = list_entry (ep->urb_list.prev, struct urb,
1749 urb_list);
1750 usb_get_urb (urb);
1751 }
1752 spin_unlock_irq(&hcd_urb_list_lock);
1753
1754 if (urb) {
1755 usb_kill_urb (urb);
1756 usb_put_urb (urb);
1757 }
1758 }
1759 }
1760
1761 /**
1762 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1763 * the bus bandwidth
1764 * @udev: target &usb_device
1765 * @new_config: new configuration to install
1766 * @cur_alt: the current alternate interface setting
1767 * @new_alt: alternate interface setting that is being installed
1768 *
1769 * To change configurations, pass in the new configuration in new_config,
1770 * and pass NULL for cur_alt and new_alt.
1771 *
1772 * To reset a device's configuration (put the device in the ADDRESSED state),
1773 * pass in NULL for new_config, cur_alt, and new_alt.
1774 *
1775 * To change alternate interface settings, pass in NULL for new_config,
1776 * pass in the current alternate interface setting in cur_alt,
1777 * and pass in the new alternate interface setting in new_alt.
1778 *
1779 * Returns an error if the requested bandwidth change exceeds the
1780 * bus bandwidth or host controller internal resources.
1781 */
1782 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1783 struct usb_host_config *new_config,
1784 struct usb_host_interface *cur_alt,
1785 struct usb_host_interface *new_alt)
1786 {
1787 int num_intfs, i, j;
1788 struct usb_host_interface *alt = NULL;
1789 int ret = 0;
1790 struct usb_hcd *hcd;
1791 struct usb_host_endpoint *ep;
1792
1793 hcd = bus_to_hcd(udev->bus);
1794 if (!hcd->driver->check_bandwidth)
1795 return 0;
1796
1797 /* Configuration is being removed - set configuration 0 */
1798 if (!new_config && !cur_alt) {
1799 for (i = 1; i < 16; ++i) {
1800 ep = udev->ep_out[i];
1801 if (ep)
1802 hcd->driver->drop_endpoint(hcd, udev, ep);
1803 ep = udev->ep_in[i];
1804 if (ep)
1805 hcd->driver->drop_endpoint(hcd, udev, ep);
1806 }
1807 hcd->driver->check_bandwidth(hcd, udev);
1808 return 0;
1809 }
1810 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1811 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1812 * of the bus. There will always be bandwidth for endpoint 0, so it's
1813 * ok to exclude it.
1814 */
1815 if (new_config) {
1816 num_intfs = new_config->desc.bNumInterfaces;
1817 /* Remove endpoints (except endpoint 0, which is always on the
1818 * schedule) from the old config from the schedule
1819 */
1820 for (i = 1; i < 16; ++i) {
1821 ep = udev->ep_out[i];
1822 if (ep) {
1823 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1824 if (ret < 0)
1825 goto reset;
1826 }
1827 ep = udev->ep_in[i];
1828 if (ep) {
1829 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1830 if (ret < 0)
1831 goto reset;
1832 }
1833 }
1834 for (i = 0; i < num_intfs; ++i) {
1835 struct usb_host_interface *first_alt;
1836 int iface_num;
1837
1838 first_alt = &new_config->intf_cache[i]->altsetting[0];
1839 iface_num = first_alt->desc.bInterfaceNumber;
1840 /* Set up endpoints for alternate interface setting 0 */
1841 alt = usb_find_alt_setting(new_config, iface_num, 0);
1842 if (!alt)
1843 /* No alt setting 0? Pick the first setting. */
1844 alt = first_alt;
1845
1846 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1847 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1848 if (ret < 0)
1849 goto reset;
1850 }
1851 }
1852 }
1853 if (cur_alt && new_alt) {
1854 struct usb_interface *iface = usb_ifnum_to_if(udev,
1855 cur_alt->desc.bInterfaceNumber);
1856
1857 if (!iface)
1858 return -EINVAL;
1859 if (iface->resetting_device) {
1860 /*
1861 * The USB core just reset the device, so the xHCI host
1862 * and the device will think alt setting 0 is installed.
1863 * However, the USB core will pass in the alternate
1864 * setting installed before the reset as cur_alt. Dig
1865 * out the alternate setting 0 structure, or the first
1866 * alternate setting if a broken device doesn't have alt
1867 * setting 0.
1868 */
1869 cur_alt = usb_altnum_to_altsetting(iface, 0);
1870 if (!cur_alt)
1871 cur_alt = &iface->altsetting[0];
1872 }
1873
1874 /* Drop all the endpoints in the current alt setting */
1875 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1876 ret = hcd->driver->drop_endpoint(hcd, udev,
1877 &cur_alt->endpoint[i]);
1878 if (ret < 0)
1879 goto reset;
1880 }
1881 /* Add all the endpoints in the new alt setting */
1882 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1883 ret = hcd->driver->add_endpoint(hcd, udev,
1884 &new_alt->endpoint[i]);
1885 if (ret < 0)
1886 goto reset;
1887 }
1888 }
1889 ret = hcd->driver->check_bandwidth(hcd, udev);
1890 reset:
1891 if (ret < 0)
1892 hcd->driver->reset_bandwidth(hcd, udev);
1893 return ret;
1894 }
1895
1896 /* Disables the endpoint: synchronizes with the hcd to make sure all
1897 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1898 * have been called previously. Use for set_configuration, set_interface,
1899 * driver removal, physical disconnect.
1900 *
1901 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1902 * type, maxpacket size, toggle, halt status, and scheduling.
1903 */
1904 void usb_hcd_disable_endpoint(struct usb_device *udev,
1905 struct usb_host_endpoint *ep)
1906 {
1907 struct usb_hcd *hcd;
1908
1909 might_sleep();
1910 hcd = bus_to_hcd(udev->bus);
1911 if (hcd->driver->endpoint_disable)
1912 hcd->driver->endpoint_disable(hcd, ep);
1913 }
1914
1915 /**
1916 * usb_hcd_reset_endpoint - reset host endpoint state
1917 * @udev: USB device.
1918 * @ep: the endpoint to reset.
1919 *
1920 * Resets any host endpoint state such as the toggle bit, sequence
1921 * number and current window.
1922 */
1923 void usb_hcd_reset_endpoint(struct usb_device *udev,
1924 struct usb_host_endpoint *ep)
1925 {
1926 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1927
1928 if (hcd->driver->endpoint_reset)
1929 hcd->driver->endpoint_reset(hcd, ep);
1930 else {
1931 int epnum = usb_endpoint_num(&ep->desc);
1932 int is_out = usb_endpoint_dir_out(&ep->desc);
1933 int is_control = usb_endpoint_xfer_control(&ep->desc);
1934
1935 usb_settoggle(udev, epnum, is_out, 0);
1936 if (is_control)
1937 usb_settoggle(udev, epnum, !is_out, 0);
1938 }
1939 }
1940
1941 /**
1942 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1943 * @interface: alternate setting that includes all endpoints.
1944 * @eps: array of endpoints that need streams.
1945 * @num_eps: number of endpoints in the array.
1946 * @num_streams: number of streams to allocate.
1947 * @mem_flags: flags hcd should use to allocate memory.
1948 *
1949 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1950 * Drivers may queue multiple transfers to different stream IDs, which may
1951 * complete in a different order than they were queued.
1952 */
1953 int usb_alloc_streams(struct usb_interface *interface,
1954 struct usb_host_endpoint **eps, unsigned int num_eps,
1955 unsigned int num_streams, gfp_t mem_flags)
1956 {
1957 struct usb_hcd *hcd;
1958 struct usb_device *dev;
1959 int i;
1960
1961 dev = interface_to_usbdev(interface);
1962 hcd = bus_to_hcd(dev->bus);
1963 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1964 return -EINVAL;
1965 if (dev->speed != USB_SPEED_SUPER)
1966 return -EINVAL;
1967 if (dev->state < USB_STATE_CONFIGURED)
1968 return -ENODEV;
1969
1970 /* Streams only apply to bulk endpoints. */
1971 for (i = 0; i < num_eps; i++)
1972 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1973 return -EINVAL;
1974
1975 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1976 num_streams, mem_flags);
1977 }
1978 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1979
1980 /**
1981 * usb_free_streams - free bulk endpoint stream IDs.
1982 * @interface: alternate setting that includes all endpoints.
1983 * @eps: array of endpoints to remove streams from.
1984 * @num_eps: number of endpoints in the array.
1985 * @mem_flags: flags hcd should use to allocate memory.
1986 *
1987 * Reverts a group of bulk endpoints back to not using stream IDs.
1988 * Can fail if we are given bad arguments, or HCD is broken.
1989 */
1990 void usb_free_streams(struct usb_interface *interface,
1991 struct usb_host_endpoint **eps, unsigned int num_eps,
1992 gfp_t mem_flags)
1993 {
1994 struct usb_hcd *hcd;
1995 struct usb_device *dev;
1996 int i;
1997
1998 dev = interface_to_usbdev(interface);
1999 hcd = bus_to_hcd(dev->bus);
2000 if (dev->speed != USB_SPEED_SUPER)
2001 return;
2002
2003 /* Streams only apply to bulk endpoints. */
2004 for (i = 0; i < num_eps; i++)
2005 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2006 return;
2007
2008 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2009 }
2010 EXPORT_SYMBOL_GPL(usb_free_streams);
2011
2012 /* Protect against drivers that try to unlink URBs after the device
2013 * is gone, by waiting until all unlinks for @udev are finished.
2014 * Since we don't currently track URBs by device, simply wait until
2015 * nothing is running in the locked region of usb_hcd_unlink_urb().
2016 */
2017 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2018 {
2019 spin_lock_irq(&hcd_urb_unlink_lock);
2020 spin_unlock_irq(&hcd_urb_unlink_lock);
2021 }
2022
2023 /*-------------------------------------------------------------------------*/
2024
2025 /* called in any context */
2026 int usb_hcd_get_frame_number (struct usb_device *udev)
2027 {
2028 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2029
2030 if (!HCD_RH_RUNNING(hcd))
2031 return -ESHUTDOWN;
2032 return hcd->driver->get_frame_number (hcd);
2033 }
2034
2035 /*-------------------------------------------------------------------------*/
2036
2037 #ifdef CONFIG_PM
2038
2039 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2040 {
2041 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2042 int status;
2043 int old_state = hcd->state;
2044
2045 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2046 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2047 rhdev->do_remote_wakeup);
2048 if (HCD_DEAD(hcd)) {
2049 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2050 return 0;
2051 }
2052
2053 if (!hcd->driver->bus_suspend) {
2054 status = -ENOENT;
2055 } else {
2056 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2057 hcd->state = HC_STATE_QUIESCING;
2058 status = hcd->driver->bus_suspend(hcd);
2059 }
2060 if (status == 0) {
2061 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2062 hcd->state = HC_STATE_SUSPENDED;
2063
2064 /* Did we race with a root-hub wakeup event? */
2065 if (rhdev->do_remote_wakeup) {
2066 char buffer[6];
2067
2068 status = hcd->driver->hub_status_data(hcd, buffer);
2069 if (status != 0) {
2070 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2071 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2072 status = -EBUSY;
2073 }
2074 }
2075 } else {
2076 spin_lock_irq(&hcd_root_hub_lock);
2077 if (!HCD_DEAD(hcd)) {
2078 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2079 hcd->state = old_state;
2080 }
2081 spin_unlock_irq(&hcd_root_hub_lock);
2082 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2083 "suspend", status);
2084 }
2085 return status;
2086 }
2087
2088 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2089 {
2090 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2091 int status;
2092 int old_state = hcd->state;
2093
2094 dev_dbg(&rhdev->dev, "usb %sresume\n",
2095 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2096 if (HCD_DEAD(hcd)) {
2097 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2098 return 0;
2099 }
2100 if (!hcd->driver->bus_resume)
2101 return -ENOENT;
2102 if (HCD_RH_RUNNING(hcd))
2103 return 0;
2104
2105 hcd->state = HC_STATE_RESUMING;
2106 status = hcd->driver->bus_resume(hcd);
2107 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2108 if (status == 0) {
2109 struct usb_device *udev;
2110 int port1;
2111
2112 spin_lock_irq(&hcd_root_hub_lock);
2113 if (!HCD_DEAD(hcd)) {
2114 usb_set_device_state(rhdev, rhdev->actconfig
2115 ? USB_STATE_CONFIGURED
2116 : USB_STATE_ADDRESS);
2117 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2118 hcd->state = HC_STATE_RUNNING;
2119 }
2120 spin_unlock_irq(&hcd_root_hub_lock);
2121
2122 /*
2123 * Check whether any of the enabled ports on the root hub are
2124 * unsuspended. If they are then a TRSMRCY delay is needed
2125 * (this is what the USB-2 spec calls a "global resume").
2126 * Otherwise we can skip the delay.
2127 */
2128 usb_hub_for_each_child(rhdev, port1, udev) {
2129 if (udev->state != USB_STATE_NOTATTACHED &&
2130 !udev->port_is_suspended) {
2131 usleep_range(10000, 11000); /* TRSMRCY */
2132 break;
2133 }
2134 }
2135 } else {
2136 hcd->state = old_state;
2137 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2138 "resume", status);
2139 if (status != -ESHUTDOWN)
2140 usb_hc_died(hcd);
2141 }
2142 return status;
2143 }
2144
2145 #endif /* CONFIG_PM */
2146
2147 #ifdef CONFIG_PM_RUNTIME
2148
2149 /* Workqueue routine for root-hub remote wakeup */
2150 static void hcd_resume_work(struct work_struct *work)
2151 {
2152 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2153 struct usb_device *udev = hcd->self.root_hub;
2154
2155 usb_lock_device(udev);
2156 usb_remote_wakeup(udev);
2157 usb_unlock_device(udev);
2158 }
2159
2160 /**
2161 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2162 * @hcd: host controller for this root hub
2163 *
2164 * The USB host controller calls this function when its root hub is
2165 * suspended (with the remote wakeup feature enabled) and a remote
2166 * wakeup request is received. The routine submits a workqueue request
2167 * to resume the root hub (that is, manage its downstream ports again).
2168 */
2169 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2170 {
2171 unsigned long flags;
2172
2173 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2174 if (hcd->rh_registered) {
2175 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2176 queue_work(pm_wq, &hcd->wakeup_work);
2177 }
2178 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2179 }
2180 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2181
2182 #endif /* CONFIG_PM_RUNTIME */
2183
2184 /*-------------------------------------------------------------------------*/
2185
2186 #ifdef CONFIG_USB_OTG
2187
2188 /**
2189 * usb_bus_start_enum - start immediate enumeration (for OTG)
2190 * @bus: the bus (must use hcd framework)
2191 * @port_num: 1-based number of port; usually bus->otg_port
2192 * Context: in_interrupt()
2193 *
2194 * Starts enumeration, with an immediate reset followed later by
2195 * khubd identifying and possibly configuring the device.
2196 * This is needed by OTG controller drivers, where it helps meet
2197 * HNP protocol timing requirements for starting a port reset.
2198 */
2199 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2200 {
2201 struct usb_hcd *hcd;
2202 int status = -EOPNOTSUPP;
2203
2204 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2205 * boards with root hubs hooked up to internal devices (instead of
2206 * just the OTG port) may need more attention to resetting...
2207 */
2208 hcd = container_of (bus, struct usb_hcd, self);
2209 if (port_num && hcd->driver->start_port_reset)
2210 status = hcd->driver->start_port_reset(hcd, port_num);
2211
2212 /* run khubd shortly after (first) root port reset finishes;
2213 * it may issue others, until at least 50 msecs have passed.
2214 */
2215 if (status == 0)
2216 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2217 return status;
2218 }
2219 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2220
2221 #endif
2222
2223 /*-------------------------------------------------------------------------*/
2224
2225 /**
2226 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2227 * @irq: the IRQ being raised
2228 * @__hcd: pointer to the HCD whose IRQ is being signaled
2229 *
2230 * If the controller isn't HALTed, calls the driver's irq handler.
2231 * Checks whether the controller is now dead.
2232 */
2233 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2234 {
2235 struct usb_hcd *hcd = __hcd;
2236 unsigned long flags;
2237 irqreturn_t rc;
2238
2239 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2240 * when the first handler doesn't use it. So let's just
2241 * assume it's never used.
2242 */
2243 local_irq_save(flags);
2244
2245 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2246 rc = IRQ_NONE;
2247 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2248 rc = IRQ_NONE;
2249 else
2250 rc = IRQ_HANDLED;
2251
2252 local_irq_restore(flags);
2253 return rc;
2254 }
2255 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2256
2257 /*-------------------------------------------------------------------------*/
2258
2259 /**
2260 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2261 * @hcd: pointer to the HCD representing the controller
2262 *
2263 * This is called by bus glue to report a USB host controller that died
2264 * while operations may still have been pending. It's called automatically
2265 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2266 *
2267 * Only call this function with the primary HCD.
2268 */
2269 void usb_hc_died (struct usb_hcd *hcd)
2270 {
2271 unsigned long flags;
2272
2273 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2274
2275 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2276 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2277 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2278 if (hcd->rh_registered) {
2279 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2280
2281 /* make khubd clean up old urbs and devices */
2282 usb_set_device_state (hcd->self.root_hub,
2283 USB_STATE_NOTATTACHED);
2284 usb_kick_khubd (hcd->self.root_hub);
2285 }
2286 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2287 hcd = hcd->shared_hcd;
2288 if (hcd->rh_registered) {
2289 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2290
2291 /* make khubd clean up old urbs and devices */
2292 usb_set_device_state(hcd->self.root_hub,
2293 USB_STATE_NOTATTACHED);
2294 usb_kick_khubd(hcd->self.root_hub);
2295 }
2296 }
2297 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2298 /* Make sure that the other roothub is also deallocated. */
2299 }
2300 EXPORT_SYMBOL_GPL (usb_hc_died);
2301
2302 /*-------------------------------------------------------------------------*/
2303
2304 /**
2305 * usb_create_shared_hcd - create and initialize an HCD structure
2306 * @driver: HC driver that will use this hcd
2307 * @dev: device for this HC, stored in hcd->self.controller
2308 * @bus_name: value to store in hcd->self.bus_name
2309 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2310 * PCI device. Only allocate certain resources for the primary HCD
2311 * Context: !in_interrupt()
2312 *
2313 * Allocate a struct usb_hcd, with extra space at the end for the
2314 * HC driver's private data. Initialize the generic members of the
2315 * hcd structure.
2316 *
2317 * If memory is unavailable, returns NULL.
2318 */
2319 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2320 struct device *dev, const char *bus_name,
2321 struct usb_hcd *primary_hcd)
2322 {
2323 struct usb_hcd *hcd;
2324
2325 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2326 if (!hcd) {
2327 dev_dbg (dev, "hcd alloc failed\n");
2328 return NULL;
2329 }
2330 if (primary_hcd == NULL) {
2331 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2332 GFP_KERNEL);
2333 if (!hcd->bandwidth_mutex) {
2334 kfree(hcd);
2335 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2336 return NULL;
2337 }
2338 mutex_init(hcd->bandwidth_mutex);
2339 dev_set_drvdata(dev, hcd);
2340 } else {
2341 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2342 hcd->primary_hcd = primary_hcd;
2343 primary_hcd->primary_hcd = primary_hcd;
2344 hcd->shared_hcd = primary_hcd;
2345 primary_hcd->shared_hcd = hcd;
2346 }
2347
2348 kref_init(&hcd->kref);
2349
2350 usb_bus_init(&hcd->self);
2351 hcd->self.controller = dev;
2352 hcd->self.bus_name = bus_name;
2353 hcd->self.uses_dma = (dev->dma_mask != NULL);
2354
2355 init_timer(&hcd->rh_timer);
2356 hcd->rh_timer.function = rh_timer_func;
2357 hcd->rh_timer.data = (unsigned long) hcd;
2358 #ifdef CONFIG_PM_RUNTIME
2359 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2360 #endif
2361
2362 hcd->driver = driver;
2363 hcd->speed = driver->flags & HCD_MASK;
2364 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2365 "USB Host Controller";
2366 return hcd;
2367 }
2368 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2369
2370 /**
2371 * usb_create_hcd - create and initialize an HCD structure
2372 * @driver: HC driver that will use this hcd
2373 * @dev: device for this HC, stored in hcd->self.controller
2374 * @bus_name: value to store in hcd->self.bus_name
2375 * Context: !in_interrupt()
2376 *
2377 * Allocate a struct usb_hcd, with extra space at the end for the
2378 * HC driver's private data. Initialize the generic members of the
2379 * hcd structure.
2380 *
2381 * If memory is unavailable, returns NULL.
2382 */
2383 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2384 struct device *dev, const char *bus_name)
2385 {
2386 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2387 }
2388 EXPORT_SYMBOL_GPL(usb_create_hcd);
2389
2390 /*
2391 * Roothubs that share one PCI device must also share the bandwidth mutex.
2392 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2393 * deallocated.
2394 *
2395 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2396 * freed. When hcd_release() is called for the non-primary HCD, set the
2397 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2398 * freed shortly).
2399 */
2400 static void hcd_release (struct kref *kref)
2401 {
2402 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2403
2404 if (usb_hcd_is_primary_hcd(hcd))
2405 kfree(hcd->bandwidth_mutex);
2406 else
2407 hcd->shared_hcd->shared_hcd = NULL;
2408 kfree(hcd);
2409 }
2410
2411 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2412 {
2413 if (hcd)
2414 kref_get (&hcd->kref);
2415 return hcd;
2416 }
2417 EXPORT_SYMBOL_GPL(usb_get_hcd);
2418
2419 void usb_put_hcd (struct usb_hcd *hcd)
2420 {
2421 if (hcd)
2422 kref_put (&hcd->kref, hcd_release);
2423 }
2424 EXPORT_SYMBOL_GPL(usb_put_hcd);
2425
2426 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2427 {
2428 if (!hcd->primary_hcd)
2429 return 1;
2430 return hcd == hcd->primary_hcd;
2431 }
2432 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2433
2434 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2435 {
2436 if (!hcd->driver->find_raw_port_number)
2437 return port1;
2438
2439 return hcd->driver->find_raw_port_number(hcd, port1);
2440 }
2441
2442 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2443 unsigned int irqnum, unsigned long irqflags)
2444 {
2445 int retval;
2446
2447 if (hcd->driver->irq) {
2448
2449 /* IRQF_DISABLED doesn't work as advertised when used together
2450 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2451 * interrupts we can remove it here.
2452 */
2453 if (irqflags & IRQF_SHARED)
2454 irqflags &= ~IRQF_DISABLED;
2455
2456 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2457 hcd->driver->description, hcd->self.busnum);
2458 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2459 hcd->irq_descr, hcd);
2460 if (retval != 0) {
2461 dev_err(hcd->self.controller,
2462 "request interrupt %d failed\n",
2463 irqnum);
2464 return retval;
2465 }
2466 hcd->irq = irqnum;
2467 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2468 (hcd->driver->flags & HCD_MEMORY) ?
2469 "io mem" : "io base",
2470 (unsigned long long)hcd->rsrc_start);
2471 } else {
2472 hcd->irq = 0;
2473 if (hcd->rsrc_start)
2474 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2475 (hcd->driver->flags & HCD_MEMORY) ?
2476 "io mem" : "io base",
2477 (unsigned long long)hcd->rsrc_start);
2478 }
2479 return 0;
2480 }
2481
2482 /**
2483 * usb_add_hcd - finish generic HCD structure initialization and register
2484 * @hcd: the usb_hcd structure to initialize
2485 * @irqnum: Interrupt line to allocate
2486 * @irqflags: Interrupt type flags
2487 *
2488 * Finish the remaining parts of generic HCD initialization: allocate the
2489 * buffers of consistent memory, register the bus, request the IRQ line,
2490 * and call the driver's reset() and start() routines.
2491 */
2492 int usb_add_hcd(struct usb_hcd *hcd,
2493 unsigned int irqnum, unsigned long irqflags)
2494 {
2495 int retval;
2496 struct usb_device *rhdev;
2497
2498 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2499
2500 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2501 if (authorized_default < 0 || authorized_default > 1)
2502 hcd->authorized_default = hcd->wireless? 0 : 1;
2503 else
2504 hcd->authorized_default = authorized_default;
2505 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2506
2507 /* HC is in reset state, but accessible. Now do the one-time init,
2508 * bottom up so that hcds can customize the root hubs before khubd
2509 * starts talking to them. (Note, bus id is assigned early too.)
2510 */
2511 if ((retval = hcd_buffer_create(hcd)) != 0) {
2512 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2513 return retval;
2514 }
2515
2516 if ((retval = usb_register_bus(&hcd->self)) < 0)
2517 goto err_register_bus;
2518
2519 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2520 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2521 retval = -ENOMEM;
2522 goto err_allocate_root_hub;
2523 }
2524 hcd->self.root_hub = rhdev;
2525
2526 switch (hcd->speed) {
2527 case HCD_USB11:
2528 rhdev->speed = USB_SPEED_FULL;
2529 break;
2530 case HCD_USB2:
2531 rhdev->speed = USB_SPEED_HIGH;
2532 break;
2533 case HCD_USB3:
2534 rhdev->speed = USB_SPEED_SUPER;
2535 break;
2536 default:
2537 retval = -EINVAL;
2538 goto err_set_rh_speed;
2539 }
2540
2541 /* wakeup flag init defaults to "everything works" for root hubs,
2542 * but drivers can override it in reset() if needed, along with
2543 * recording the overall controller's system wakeup capability.
2544 */
2545 device_set_wakeup_capable(&rhdev->dev, 1);
2546
2547 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2548 * registered. But since the controller can die at any time,
2549 * let's initialize the flag before touching the hardware.
2550 */
2551 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2552
2553 /* "reset" is misnamed; its role is now one-time init. the controller
2554 * should already have been reset (and boot firmware kicked off etc).
2555 */
2556 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2557 dev_err(hcd->self.controller, "can't setup\n");
2558 goto err_hcd_driver_setup;
2559 }
2560 hcd->rh_pollable = 1;
2561
2562 /* NOTE: root hub and controller capabilities may not be the same */
2563 if (device_can_wakeup(hcd->self.controller)
2564 && device_can_wakeup(&hcd->self.root_hub->dev))
2565 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2566
2567 /* enable irqs just before we start the controller,
2568 * if the BIOS provides legacy PCI irqs.
2569 */
2570 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2571 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2572 if (retval)
2573 goto err_request_irq;
2574 }
2575
2576 hcd->state = HC_STATE_RUNNING;
2577 retval = hcd->driver->start(hcd);
2578 if (retval < 0) {
2579 dev_err(hcd->self.controller, "startup error %d\n", retval);
2580 goto err_hcd_driver_start;
2581 }
2582
2583 /* starting here, usbcore will pay attention to this root hub */
2584 if ((retval = register_root_hub(hcd)) != 0)
2585 goto err_register_root_hub;
2586
2587 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2588 if (retval < 0) {
2589 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2590 retval);
2591 goto error_create_attr_group;
2592 }
2593 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2594 usb_hcd_poll_rh_status(hcd);
2595
2596 /*
2597 * Host controllers don't generate their own wakeup requests;
2598 * they only forward requests from the root hub. Therefore
2599 * controllers should always be enabled for remote wakeup.
2600 */
2601 device_wakeup_enable(hcd->self.controller);
2602 return retval;
2603
2604 error_create_attr_group:
2605 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2606 if (HC_IS_RUNNING(hcd->state))
2607 hcd->state = HC_STATE_QUIESCING;
2608 spin_lock_irq(&hcd_root_hub_lock);
2609 hcd->rh_registered = 0;
2610 spin_unlock_irq(&hcd_root_hub_lock);
2611
2612 #ifdef CONFIG_PM_RUNTIME
2613 cancel_work_sync(&hcd->wakeup_work);
2614 #endif
2615 mutex_lock(&usb_bus_list_lock);
2616 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2617 mutex_unlock(&usb_bus_list_lock);
2618 err_register_root_hub:
2619 hcd->rh_pollable = 0;
2620 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2621 del_timer_sync(&hcd->rh_timer);
2622 hcd->driver->stop(hcd);
2623 hcd->state = HC_STATE_HALT;
2624 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2625 del_timer_sync(&hcd->rh_timer);
2626 err_hcd_driver_start:
2627 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2628 free_irq(irqnum, hcd);
2629 err_request_irq:
2630 err_hcd_driver_setup:
2631 err_set_rh_speed:
2632 usb_put_dev(hcd->self.root_hub);
2633 err_allocate_root_hub:
2634 usb_deregister_bus(&hcd->self);
2635 err_register_bus:
2636 hcd_buffer_destroy(hcd);
2637 return retval;
2638 }
2639 EXPORT_SYMBOL_GPL(usb_add_hcd);
2640
2641 /**
2642 * usb_remove_hcd - shutdown processing for generic HCDs
2643 * @hcd: the usb_hcd structure to remove
2644 * Context: !in_interrupt()
2645 *
2646 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2647 * invoking the HCD's stop() method.
2648 */
2649 void usb_remove_hcd(struct usb_hcd *hcd)
2650 {
2651 struct usb_device *rhdev = hcd->self.root_hub;
2652
2653 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2654
2655 usb_get_dev(rhdev);
2656 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2657
2658 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2659 if (HC_IS_RUNNING (hcd->state))
2660 hcd->state = HC_STATE_QUIESCING;
2661
2662 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2663 spin_lock_irq (&hcd_root_hub_lock);
2664 hcd->rh_registered = 0;
2665 spin_unlock_irq (&hcd_root_hub_lock);
2666
2667 #ifdef CONFIG_PM_RUNTIME
2668 cancel_work_sync(&hcd->wakeup_work);
2669 #endif
2670
2671 mutex_lock(&usb_bus_list_lock);
2672 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2673 mutex_unlock(&usb_bus_list_lock);
2674
2675 /* Prevent any more root-hub status calls from the timer.
2676 * The HCD might still restart the timer (if a port status change
2677 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2678 * the hub_status_data() callback.
2679 */
2680 hcd->rh_pollable = 0;
2681 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2682 del_timer_sync(&hcd->rh_timer);
2683
2684 hcd->driver->stop(hcd);
2685 hcd->state = HC_STATE_HALT;
2686
2687 /* In case the HCD restarted the timer, stop it again. */
2688 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2689 del_timer_sync(&hcd->rh_timer);
2690
2691 if (usb_hcd_is_primary_hcd(hcd)) {
2692 if (hcd->irq > 0)
2693 free_irq(hcd->irq, hcd);
2694 }
2695
2696 usb_put_dev(hcd->self.root_hub);
2697 usb_deregister_bus(&hcd->self);
2698 hcd_buffer_destroy(hcd);
2699 }
2700 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2701
2702 void
2703 usb_hcd_platform_shutdown(struct platform_device* dev)
2704 {
2705 struct usb_hcd *hcd = platform_get_drvdata(dev);
2706
2707 if (hcd->driver->shutdown)
2708 hcd->driver->shutdown(hcd);
2709 }
2710 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2711
2712 /*-------------------------------------------------------------------------*/
2713
2714 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2715
2716 struct usb_mon_operations *mon_ops;
2717
2718 /*
2719 * The registration is unlocked.
2720 * We do it this way because we do not want to lock in hot paths.
2721 *
2722 * Notice that the code is minimally error-proof. Because usbmon needs
2723 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2724 */
2725
2726 int usb_mon_register (struct usb_mon_operations *ops)
2727 {
2728
2729 if (mon_ops)
2730 return -EBUSY;
2731
2732 mon_ops = ops;
2733 mb();
2734 return 0;
2735 }
2736 EXPORT_SYMBOL_GPL (usb_mon_register);
2737
2738 void usb_mon_deregister (void)
2739 {
2740
2741 if (mon_ops == NULL) {
2742 printk(KERN_ERR "USB: monitor was not registered\n");
2743 return;
2744 }
2745 mon_ops = NULL;
2746 mb();
2747 }
2748 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2749
2750 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */