Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / storvsc_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/wait.h>
25 #include <linux/sched.h>
26 #include <linux/completion.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/device.h>
34 #include <linux/hyperv.h>
35 #include <linux/mempool.h>
36 #include <linux/blkdev.h>
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_host.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_tcq.h>
42 #include <scsi/scsi_eh.h>
43 #include <scsi/scsi_devinfo.h>
44 #include <scsi/scsi_dbg.h>
45
46 /*
47 * All wire protocol details (storage protocol between the guest and the host)
48 * are consolidated here.
49 *
50 * Begin protocol definitions.
51 */
52
53 /*
54 * Version history:
55 * V1 Beta: 0.1
56 * V1 RC < 2008/1/31: 1.0
57 * V1 RC > 2008/1/31: 2.0
58 * Win7: 4.2
59 */
60
61 #define VMSTOR_CURRENT_MAJOR 4
62 #define VMSTOR_CURRENT_MINOR 2
63
64
65 /* Packet structure describing virtual storage requests. */
66 enum vstor_packet_operation {
67 VSTOR_OPERATION_COMPLETE_IO = 1,
68 VSTOR_OPERATION_REMOVE_DEVICE = 2,
69 VSTOR_OPERATION_EXECUTE_SRB = 3,
70 VSTOR_OPERATION_RESET_LUN = 4,
71 VSTOR_OPERATION_RESET_ADAPTER = 5,
72 VSTOR_OPERATION_RESET_BUS = 6,
73 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7,
74 VSTOR_OPERATION_END_INITIALIZATION = 8,
75 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9,
76 VSTOR_OPERATION_QUERY_PROPERTIES = 10,
77 VSTOR_OPERATION_ENUMERATE_BUS = 11,
78 VSTOR_OPERATION_MAXIMUM = 11
79 };
80
81 /*
82 * Platform neutral description of a scsi request -
83 * this remains the same across the write regardless of 32/64 bit
84 * note: it's patterned off the SCSI_PASS_THROUGH structure
85 */
86 #define STORVSC_MAX_CMD_LEN 0x10
87 #define STORVSC_SENSE_BUFFER_SIZE 0x12
88 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14
89
90 struct vmscsi_request {
91 u16 length;
92 u8 srb_status;
93 u8 scsi_status;
94
95 u8 port_number;
96 u8 path_id;
97 u8 target_id;
98 u8 lun;
99
100 u8 cdb_length;
101 u8 sense_info_length;
102 u8 data_in;
103 u8 reserved;
104
105 u32 data_transfer_length;
106
107 union {
108 u8 cdb[STORVSC_MAX_CMD_LEN];
109 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
110 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
111 };
112 } __attribute((packed));
113
114
115 /*
116 * This structure is sent during the intialization phase to get the different
117 * properties of the channel.
118 */
119 struct vmstorage_channel_properties {
120 u16 protocol_version;
121 u8 path_id;
122 u8 target_id;
123
124 /* Note: port number is only really known on the client side */
125 u32 port_number;
126 u32 flags;
127 u32 max_transfer_bytes;
128
129 /*
130 * This id is unique for each channel and will correspond with
131 * vendor specific data in the inquiry data.
132 */
133
134 u64 unique_id;
135 } __packed;
136
137 /* This structure is sent during the storage protocol negotiations. */
138 struct vmstorage_protocol_version {
139 /* Major (MSW) and minor (LSW) version numbers. */
140 u16 major_minor;
141
142 /*
143 * Revision number is auto-incremented whenever this file is changed
144 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not
145 * definitely indicate incompatibility--but it does indicate mismatched
146 * builds.
147 * This is only used on the windows side. Just set it to 0.
148 */
149 u16 revision;
150 } __packed;
151
152 /* Channel Property Flags */
153 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1
154 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2
155
156 struct vstor_packet {
157 /* Requested operation type */
158 enum vstor_packet_operation operation;
159
160 /* Flags - see below for values */
161 u32 flags;
162
163 /* Status of the request returned from the server side. */
164 u32 status;
165
166 /* Data payload area */
167 union {
168 /*
169 * Structure used to forward SCSI commands from the
170 * client to the server.
171 */
172 struct vmscsi_request vm_srb;
173
174 /* Structure used to query channel properties. */
175 struct vmstorage_channel_properties storage_channel_properties;
176
177 /* Used during version negotiations. */
178 struct vmstorage_protocol_version version;
179 };
180 } __packed;
181
182 /*
183 * Packet Flags:
184 *
185 * This flag indicates that the server should send back a completion for this
186 * packet.
187 */
188
189 #define REQUEST_COMPLETION_FLAG 0x1
190
191 /* Matches Windows-end */
192 enum storvsc_request_type {
193 WRITE_TYPE = 0,
194 READ_TYPE,
195 UNKNOWN_TYPE,
196 };
197
198 /*
199 * SRB status codes and masks; a subset of the codes used here.
200 */
201
202 #define SRB_STATUS_AUTOSENSE_VALID 0x80
203 #define SRB_STATUS_INVALID_LUN 0x20
204 #define SRB_STATUS_SUCCESS 0x01
205 #define SRB_STATUS_ABORTED 0x02
206 #define SRB_STATUS_ERROR 0x04
207
208 /*
209 * This is the end of Protocol specific defines.
210 */
211
212
213 /*
214 * We setup a mempool to allocate request structures for this driver
215 * on a per-lun basis. The following define specifies the number of
216 * elements in the pool.
217 */
218
219 #define STORVSC_MIN_BUF_NR 64
220 static int storvsc_ringbuffer_size = (20 * PAGE_SIZE);
221
222 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
223 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
224
225 #define STORVSC_MAX_IO_REQUESTS 128
226
227 /*
228 * In Hyper-V, each port/path/target maps to 1 scsi host adapter. In
229 * reality, the path/target is not used (ie always set to 0) so our
230 * scsi host adapter essentially has 1 bus with 1 target that contains
231 * up to 256 luns.
232 */
233 #define STORVSC_MAX_LUNS_PER_TARGET 64
234 #define STORVSC_MAX_TARGETS 1
235 #define STORVSC_MAX_CHANNELS 1
236
237
238
239 struct storvsc_cmd_request {
240 struct list_head entry;
241 struct scsi_cmnd *cmd;
242
243 unsigned int bounce_sgl_count;
244 struct scatterlist *bounce_sgl;
245
246 struct hv_device *device;
247
248 /* Synchronize the request/response if needed */
249 struct completion wait_event;
250
251 unsigned char *sense_buffer;
252 struct hv_multipage_buffer data_buffer;
253 struct vstor_packet vstor_packet;
254 };
255
256
257 /* A storvsc device is a device object that contains a vmbus channel */
258 struct storvsc_device {
259 struct hv_device *device;
260
261 bool destroy;
262 bool drain_notify;
263 atomic_t num_outstanding_req;
264 struct Scsi_Host *host;
265
266 wait_queue_head_t waiting_to_drain;
267
268 /*
269 * Each unique Port/Path/Target represents 1 channel ie scsi
270 * controller. In reality, the pathid, targetid is always 0
271 * and the port is set by us
272 */
273 unsigned int port_number;
274 unsigned char path_id;
275 unsigned char target_id;
276
277 /* Used for vsc/vsp channel reset process */
278 struct storvsc_cmd_request init_request;
279 struct storvsc_cmd_request reset_request;
280 };
281
282 struct stor_mem_pools {
283 struct kmem_cache *request_pool;
284 mempool_t *request_mempool;
285 };
286
287 struct hv_host_device {
288 struct hv_device *dev;
289 unsigned int port;
290 unsigned char path;
291 unsigned char target;
292 };
293
294 struct storvsc_scan_work {
295 struct work_struct work;
296 struct Scsi_Host *host;
297 uint lun;
298 };
299
300 static void storvsc_device_scan(struct work_struct *work)
301 {
302 struct storvsc_scan_work *wrk;
303 uint lun;
304 struct scsi_device *sdev;
305
306 wrk = container_of(work, struct storvsc_scan_work, work);
307 lun = wrk->lun;
308
309 sdev = scsi_device_lookup(wrk->host, 0, 0, lun);
310 if (!sdev)
311 goto done;
312 scsi_rescan_device(&sdev->sdev_gendev);
313 scsi_device_put(sdev);
314
315 done:
316 kfree(wrk);
317 }
318
319 static void storvsc_bus_scan(struct work_struct *work)
320 {
321 struct storvsc_scan_work *wrk;
322 int id, order_id;
323
324 wrk = container_of(work, struct storvsc_scan_work, work);
325 for (id = 0; id < wrk->host->max_id; ++id) {
326 if (wrk->host->reverse_ordering)
327 order_id = wrk->host->max_id - id - 1;
328 else
329 order_id = id;
330
331 scsi_scan_target(&wrk->host->shost_gendev, 0,
332 order_id, SCAN_WILD_CARD, 1);
333 }
334 kfree(wrk);
335 }
336
337 static void storvsc_remove_lun(struct work_struct *work)
338 {
339 struct storvsc_scan_work *wrk;
340 struct scsi_device *sdev;
341
342 wrk = container_of(work, struct storvsc_scan_work, work);
343 if (!scsi_host_get(wrk->host))
344 goto done;
345
346 sdev = scsi_device_lookup(wrk->host, 0, 0, wrk->lun);
347
348 if (sdev) {
349 scsi_remove_device(sdev);
350 scsi_device_put(sdev);
351 }
352 scsi_host_put(wrk->host);
353
354 done:
355 kfree(wrk);
356 }
357
358 /*
359 * Major/minor macros. Minor version is in LSB, meaning that earlier flat
360 * version numbers will be interpreted as "0.x" (i.e., 1 becomes 0.1).
361 */
362
363 static inline u16 storvsc_get_version(u8 major, u8 minor)
364 {
365 u16 version;
366
367 version = ((major << 8) | minor);
368 return version;
369 }
370
371 /*
372 * We can get incoming messages from the host that are not in response to
373 * messages that we have sent out. An example of this would be messages
374 * received by the guest to notify dynamic addition/removal of LUNs. To
375 * deal with potential race conditions where the driver may be in the
376 * midst of being unloaded when we might receive an unsolicited message
377 * from the host, we have implemented a mechanism to gurantee sequential
378 * consistency:
379 *
380 * 1) Once the device is marked as being destroyed, we will fail all
381 * outgoing messages.
382 * 2) We permit incoming messages when the device is being destroyed,
383 * only to properly account for messages already sent out.
384 */
385
386 static inline struct storvsc_device *get_out_stor_device(
387 struct hv_device *device)
388 {
389 struct storvsc_device *stor_device;
390
391 stor_device = hv_get_drvdata(device);
392
393 if (stor_device && stor_device->destroy)
394 stor_device = NULL;
395
396 return stor_device;
397 }
398
399
400 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
401 {
402 dev->drain_notify = true;
403 wait_event(dev->waiting_to_drain,
404 atomic_read(&dev->num_outstanding_req) == 0);
405 dev->drain_notify = false;
406 }
407
408 static inline struct storvsc_device *get_in_stor_device(
409 struct hv_device *device)
410 {
411 struct storvsc_device *stor_device;
412
413 stor_device = hv_get_drvdata(device);
414
415 if (!stor_device)
416 goto get_in_err;
417
418 /*
419 * If the device is being destroyed; allow incoming
420 * traffic only to cleanup outstanding requests.
421 */
422
423 if (stor_device->destroy &&
424 (atomic_read(&stor_device->num_outstanding_req) == 0))
425 stor_device = NULL;
426
427 get_in_err:
428 return stor_device;
429
430 }
431
432 static void destroy_bounce_buffer(struct scatterlist *sgl,
433 unsigned int sg_count)
434 {
435 int i;
436 struct page *page_buf;
437
438 for (i = 0; i < sg_count; i++) {
439 page_buf = sg_page((&sgl[i]));
440 if (page_buf != NULL)
441 __free_page(page_buf);
442 }
443
444 kfree(sgl);
445 }
446
447 static int do_bounce_buffer(struct scatterlist *sgl, unsigned int sg_count)
448 {
449 int i;
450
451 /* No need to check */
452 if (sg_count < 2)
453 return -1;
454
455 /* We have at least 2 sg entries */
456 for (i = 0; i < sg_count; i++) {
457 if (i == 0) {
458 /* make sure 1st one does not have hole */
459 if (sgl[i].offset + sgl[i].length != PAGE_SIZE)
460 return i;
461 } else if (i == sg_count - 1) {
462 /* make sure last one does not have hole */
463 if (sgl[i].offset != 0)
464 return i;
465 } else {
466 /* make sure no hole in the middle */
467 if (sgl[i].length != PAGE_SIZE || sgl[i].offset != 0)
468 return i;
469 }
470 }
471 return -1;
472 }
473
474 static struct scatterlist *create_bounce_buffer(struct scatterlist *sgl,
475 unsigned int sg_count,
476 unsigned int len,
477 int write)
478 {
479 int i;
480 int num_pages;
481 struct scatterlist *bounce_sgl;
482 struct page *page_buf;
483 unsigned int buf_len = ((write == WRITE_TYPE) ? 0 : PAGE_SIZE);
484
485 num_pages = ALIGN(len, PAGE_SIZE) >> PAGE_SHIFT;
486
487 bounce_sgl = kcalloc(num_pages, sizeof(struct scatterlist), GFP_ATOMIC);
488 if (!bounce_sgl)
489 return NULL;
490
491 sg_init_table(bounce_sgl, num_pages);
492 for (i = 0; i < num_pages; i++) {
493 page_buf = alloc_page(GFP_ATOMIC);
494 if (!page_buf)
495 goto cleanup;
496 sg_set_page(&bounce_sgl[i], page_buf, buf_len, 0);
497 }
498
499 return bounce_sgl;
500
501 cleanup:
502 destroy_bounce_buffer(bounce_sgl, num_pages);
503 return NULL;
504 }
505
506 /* Disgusting wrapper functions */
507 static inline unsigned long sg_kmap_atomic(struct scatterlist *sgl, int idx)
508 {
509 void *addr = kmap_atomic(sg_page(sgl + idx));
510 return (unsigned long)addr;
511 }
512
513 static inline void sg_kunmap_atomic(unsigned long addr)
514 {
515 kunmap_atomic((void *)addr);
516 }
517
518
519 /* Assume the original sgl has enough room */
520 static unsigned int copy_from_bounce_buffer(struct scatterlist *orig_sgl,
521 struct scatterlist *bounce_sgl,
522 unsigned int orig_sgl_count,
523 unsigned int bounce_sgl_count)
524 {
525 int i;
526 int j = 0;
527 unsigned long src, dest;
528 unsigned int srclen, destlen, copylen;
529 unsigned int total_copied = 0;
530 unsigned long bounce_addr = 0;
531 unsigned long dest_addr = 0;
532 unsigned long flags;
533
534 local_irq_save(flags);
535
536 for (i = 0; i < orig_sgl_count; i++) {
537 dest_addr = sg_kmap_atomic(orig_sgl,i) + orig_sgl[i].offset;
538 dest = dest_addr;
539 destlen = orig_sgl[i].length;
540
541 if (bounce_addr == 0)
542 bounce_addr = sg_kmap_atomic(bounce_sgl,j);
543
544 while (destlen) {
545 src = bounce_addr + bounce_sgl[j].offset;
546 srclen = bounce_sgl[j].length - bounce_sgl[j].offset;
547
548 copylen = min(srclen, destlen);
549 memcpy((void *)dest, (void *)src, copylen);
550
551 total_copied += copylen;
552 bounce_sgl[j].offset += copylen;
553 destlen -= copylen;
554 dest += copylen;
555
556 if (bounce_sgl[j].offset == bounce_sgl[j].length) {
557 /* full */
558 sg_kunmap_atomic(bounce_addr);
559 j++;
560
561 /*
562 * It is possible that the number of elements
563 * in the bounce buffer may not be equal to
564 * the number of elements in the original
565 * scatter list. Handle this correctly.
566 */
567
568 if (j == bounce_sgl_count) {
569 /*
570 * We are done; cleanup and return.
571 */
572 sg_kunmap_atomic(dest_addr - orig_sgl[i].offset);
573 local_irq_restore(flags);
574 return total_copied;
575 }
576
577 /* if we need to use another bounce buffer */
578 if (destlen || i != orig_sgl_count - 1)
579 bounce_addr = sg_kmap_atomic(bounce_sgl,j);
580 } else if (destlen == 0 && i == orig_sgl_count - 1) {
581 /* unmap the last bounce that is < PAGE_SIZE */
582 sg_kunmap_atomic(bounce_addr);
583 }
584 }
585
586 sg_kunmap_atomic(dest_addr - orig_sgl[i].offset);
587 }
588
589 local_irq_restore(flags);
590
591 return total_copied;
592 }
593
594 /* Assume the bounce_sgl has enough room ie using the create_bounce_buffer() */
595 static unsigned int copy_to_bounce_buffer(struct scatterlist *orig_sgl,
596 struct scatterlist *bounce_sgl,
597 unsigned int orig_sgl_count)
598 {
599 int i;
600 int j = 0;
601 unsigned long src, dest;
602 unsigned int srclen, destlen, copylen;
603 unsigned int total_copied = 0;
604 unsigned long bounce_addr = 0;
605 unsigned long src_addr = 0;
606 unsigned long flags;
607
608 local_irq_save(flags);
609
610 for (i = 0; i < orig_sgl_count; i++) {
611 src_addr = sg_kmap_atomic(orig_sgl,i) + orig_sgl[i].offset;
612 src = src_addr;
613 srclen = orig_sgl[i].length;
614
615 if (bounce_addr == 0)
616 bounce_addr = sg_kmap_atomic(bounce_sgl,j);
617
618 while (srclen) {
619 /* assume bounce offset always == 0 */
620 dest = bounce_addr + bounce_sgl[j].length;
621 destlen = PAGE_SIZE - bounce_sgl[j].length;
622
623 copylen = min(srclen, destlen);
624 memcpy((void *)dest, (void *)src, copylen);
625
626 total_copied += copylen;
627 bounce_sgl[j].length += copylen;
628 srclen -= copylen;
629 src += copylen;
630
631 if (bounce_sgl[j].length == PAGE_SIZE) {
632 /* full..move to next entry */
633 sg_kunmap_atomic(bounce_addr);
634 j++;
635
636 /* if we need to use another bounce buffer */
637 if (srclen || i != orig_sgl_count - 1)
638 bounce_addr = sg_kmap_atomic(bounce_sgl,j);
639
640 } else if (srclen == 0 && i == orig_sgl_count - 1) {
641 /* unmap the last bounce that is < PAGE_SIZE */
642 sg_kunmap_atomic(bounce_addr);
643 }
644 }
645
646 sg_kunmap_atomic(src_addr - orig_sgl[i].offset);
647 }
648
649 local_irq_restore(flags);
650
651 return total_copied;
652 }
653
654 static int storvsc_channel_init(struct hv_device *device)
655 {
656 struct storvsc_device *stor_device;
657 struct storvsc_cmd_request *request;
658 struct vstor_packet *vstor_packet;
659 int ret, t;
660
661 stor_device = get_out_stor_device(device);
662 if (!stor_device)
663 return -ENODEV;
664
665 request = &stor_device->init_request;
666 vstor_packet = &request->vstor_packet;
667
668 /*
669 * Now, initiate the vsc/vsp initialization protocol on the open
670 * channel
671 */
672 memset(request, 0, sizeof(struct storvsc_cmd_request));
673 init_completion(&request->wait_event);
674 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
675 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
676
677 ret = vmbus_sendpacket(device->channel, vstor_packet,
678 sizeof(struct vstor_packet),
679 (unsigned long)request,
680 VM_PKT_DATA_INBAND,
681 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
682 if (ret != 0)
683 goto cleanup;
684
685 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
686 if (t == 0) {
687 ret = -ETIMEDOUT;
688 goto cleanup;
689 }
690
691 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
692 vstor_packet->status != 0)
693 goto cleanup;
694
695
696 /* reuse the packet for version range supported */
697 memset(vstor_packet, 0, sizeof(struct vstor_packet));
698 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
699 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
700
701 vstor_packet->version.major_minor =
702 storvsc_get_version(VMSTOR_CURRENT_MAJOR, VMSTOR_CURRENT_MINOR);
703
704 /*
705 * The revision number is only used in Windows; set it to 0.
706 */
707 vstor_packet->version.revision = 0;
708
709 ret = vmbus_sendpacket(device->channel, vstor_packet,
710 sizeof(struct vstor_packet),
711 (unsigned long)request,
712 VM_PKT_DATA_INBAND,
713 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
714 if (ret != 0)
715 goto cleanup;
716
717 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
718 if (t == 0) {
719 ret = -ETIMEDOUT;
720 goto cleanup;
721 }
722
723 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
724 vstor_packet->status != 0)
725 goto cleanup;
726
727
728 memset(vstor_packet, 0, sizeof(struct vstor_packet));
729 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
730 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
731 vstor_packet->storage_channel_properties.port_number =
732 stor_device->port_number;
733
734 ret = vmbus_sendpacket(device->channel, vstor_packet,
735 sizeof(struct vstor_packet),
736 (unsigned long)request,
737 VM_PKT_DATA_INBAND,
738 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
739
740 if (ret != 0)
741 goto cleanup;
742
743 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
744 if (t == 0) {
745 ret = -ETIMEDOUT;
746 goto cleanup;
747 }
748
749 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
750 vstor_packet->status != 0)
751 goto cleanup;
752
753 stor_device->path_id = vstor_packet->storage_channel_properties.path_id;
754 stor_device->target_id
755 = vstor_packet->storage_channel_properties.target_id;
756
757 memset(vstor_packet, 0, sizeof(struct vstor_packet));
758 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
759 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
760
761 ret = vmbus_sendpacket(device->channel, vstor_packet,
762 sizeof(struct vstor_packet),
763 (unsigned long)request,
764 VM_PKT_DATA_INBAND,
765 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
766
767 if (ret != 0)
768 goto cleanup;
769
770 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
771 if (t == 0) {
772 ret = -ETIMEDOUT;
773 goto cleanup;
774 }
775
776 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
777 vstor_packet->status != 0)
778 goto cleanup;
779
780
781 cleanup:
782 return ret;
783 }
784
785 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
786 struct scsi_cmnd *scmnd,
787 struct Scsi_Host *host,
788 u8 asc, u8 ascq)
789 {
790 struct storvsc_scan_work *wrk;
791 void (*process_err_fn)(struct work_struct *work);
792 bool do_work = false;
793
794 switch (vm_srb->srb_status) {
795 case SRB_STATUS_ERROR:
796 /*
797 * If there is an error; offline the device since all
798 * error recovery strategies would have already been
799 * deployed on the host side. However, if the command
800 * were a pass-through command deal with it appropriately.
801 */
802 switch (scmnd->cmnd[0]) {
803 case ATA_16:
804 case ATA_12:
805 set_host_byte(scmnd, DID_PASSTHROUGH);
806 break;
807 /*
808 * On Some Windows hosts TEST_UNIT_READY command can return
809 * SRB_STATUS_ERROR, let the upper level code deal with it
810 * based on the sense information.
811 */
812 case TEST_UNIT_READY:
813 break;
814 default:
815 set_host_byte(scmnd, DID_TARGET_FAILURE);
816 }
817 break;
818 case SRB_STATUS_INVALID_LUN:
819 do_work = true;
820 process_err_fn = storvsc_remove_lun;
821 break;
822 case (SRB_STATUS_ABORTED | SRB_STATUS_AUTOSENSE_VALID):
823 if ((asc == 0x2a) && (ascq == 0x9)) {
824 do_work = true;
825 process_err_fn = storvsc_device_scan;
826 /*
827 * Retry the I/O that trigerred this.
828 */
829 set_host_byte(scmnd, DID_REQUEUE);
830 }
831 break;
832 }
833
834 if (!do_work)
835 return;
836
837 /*
838 * We need to schedule work to process this error; schedule it.
839 */
840 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
841 if (!wrk) {
842 set_host_byte(scmnd, DID_TARGET_FAILURE);
843 return;
844 }
845
846 wrk->host = host;
847 wrk->lun = vm_srb->lun;
848 INIT_WORK(&wrk->work, process_err_fn);
849 schedule_work(&wrk->work);
850 }
851
852
853 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request)
854 {
855 struct scsi_cmnd *scmnd = cmd_request->cmd;
856 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
857 void (*scsi_done_fn)(struct scsi_cmnd *);
858 struct scsi_sense_hdr sense_hdr;
859 struct vmscsi_request *vm_srb;
860 struct stor_mem_pools *memp = scmnd->device->hostdata;
861 struct Scsi_Host *host;
862 struct storvsc_device *stor_dev;
863 struct hv_device *dev = host_dev->dev;
864
865 stor_dev = get_in_stor_device(dev);
866 host = stor_dev->host;
867
868 vm_srb = &cmd_request->vstor_packet.vm_srb;
869 if (cmd_request->bounce_sgl_count) {
870 if (vm_srb->data_in == READ_TYPE)
871 copy_from_bounce_buffer(scsi_sglist(scmnd),
872 cmd_request->bounce_sgl,
873 scsi_sg_count(scmnd),
874 cmd_request->bounce_sgl_count);
875 destroy_bounce_buffer(cmd_request->bounce_sgl,
876 cmd_request->bounce_sgl_count);
877 }
878
879 scmnd->result = vm_srb->scsi_status;
880
881 if (scmnd->result) {
882 if (scsi_normalize_sense(scmnd->sense_buffer,
883 SCSI_SENSE_BUFFERSIZE, &sense_hdr))
884 scsi_print_sense_hdr("storvsc", &sense_hdr);
885 }
886
887 if (vm_srb->srb_status != SRB_STATUS_SUCCESS)
888 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
889 sense_hdr.ascq);
890
891 scsi_set_resid(scmnd,
892 cmd_request->data_buffer.len -
893 vm_srb->data_transfer_length);
894
895 scsi_done_fn = scmnd->scsi_done;
896
897 scmnd->host_scribble = NULL;
898 scmnd->scsi_done = NULL;
899
900 scsi_done_fn(scmnd);
901
902 mempool_free(cmd_request, memp->request_mempool);
903 }
904
905 static void storvsc_on_io_completion(struct hv_device *device,
906 struct vstor_packet *vstor_packet,
907 struct storvsc_cmd_request *request)
908 {
909 struct storvsc_device *stor_device;
910 struct vstor_packet *stor_pkt;
911
912 stor_device = hv_get_drvdata(device);
913 stor_pkt = &request->vstor_packet;
914
915 /*
916 * The current SCSI handling on the host side does
917 * not correctly handle:
918 * INQUIRY command with page code parameter set to 0x80
919 * MODE_SENSE command with cmd[2] == 0x1c
920 *
921 * Setup srb and scsi status so this won't be fatal.
922 * We do this so we can distinguish truly fatal failues
923 * (srb status == 0x4) and off-line the device in that case.
924 */
925
926 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
927 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
928 vstor_packet->vm_srb.scsi_status = 0;
929 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
930 }
931
932
933 /* Copy over the status...etc */
934 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
935 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
936 stor_pkt->vm_srb.sense_info_length =
937 vstor_packet->vm_srb.sense_info_length;
938
939 if (vstor_packet->vm_srb.scsi_status != 0 ||
940 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS){
941 dev_warn(&device->device,
942 "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
943 stor_pkt->vm_srb.cdb[0],
944 vstor_packet->vm_srb.scsi_status,
945 vstor_packet->vm_srb.srb_status);
946 }
947
948 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
949 /* CHECK_CONDITION */
950 if (vstor_packet->vm_srb.srb_status &
951 SRB_STATUS_AUTOSENSE_VALID) {
952 /* autosense data available */
953 dev_warn(&device->device,
954 "stor pkt %p autosense data valid - len %d\n",
955 request,
956 vstor_packet->vm_srb.sense_info_length);
957
958 memcpy(request->sense_buffer,
959 vstor_packet->vm_srb.sense_data,
960 vstor_packet->vm_srb.sense_info_length);
961
962 }
963 }
964
965 stor_pkt->vm_srb.data_transfer_length =
966 vstor_packet->vm_srb.data_transfer_length;
967
968 storvsc_command_completion(request);
969
970 if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
971 stor_device->drain_notify)
972 wake_up(&stor_device->waiting_to_drain);
973
974
975 }
976
977 static void storvsc_on_receive(struct hv_device *device,
978 struct vstor_packet *vstor_packet,
979 struct storvsc_cmd_request *request)
980 {
981 struct storvsc_scan_work *work;
982 struct storvsc_device *stor_device;
983
984 switch (vstor_packet->operation) {
985 case VSTOR_OPERATION_COMPLETE_IO:
986 storvsc_on_io_completion(device, vstor_packet, request);
987 break;
988
989 case VSTOR_OPERATION_REMOVE_DEVICE:
990 case VSTOR_OPERATION_ENUMERATE_BUS:
991 stor_device = get_in_stor_device(device);
992 work = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
993 if (!work)
994 return;
995
996 INIT_WORK(&work->work, storvsc_bus_scan);
997 work->host = stor_device->host;
998 schedule_work(&work->work);
999 break;
1000
1001 default:
1002 break;
1003 }
1004 }
1005
1006 static void storvsc_on_channel_callback(void *context)
1007 {
1008 struct hv_device *device = (struct hv_device *)context;
1009 struct storvsc_device *stor_device;
1010 u32 bytes_recvd;
1011 u64 request_id;
1012 unsigned char packet[ALIGN(sizeof(struct vstor_packet), 8)];
1013 struct storvsc_cmd_request *request;
1014 int ret;
1015
1016
1017 stor_device = get_in_stor_device(device);
1018 if (!stor_device)
1019 return;
1020
1021 do {
1022 ret = vmbus_recvpacket(device->channel, packet,
1023 ALIGN(sizeof(struct vstor_packet), 8),
1024 &bytes_recvd, &request_id);
1025 if (ret == 0 && bytes_recvd > 0) {
1026
1027 request = (struct storvsc_cmd_request *)
1028 (unsigned long)request_id;
1029
1030 if ((request == &stor_device->init_request) ||
1031 (request == &stor_device->reset_request)) {
1032
1033 memcpy(&request->vstor_packet, packet,
1034 sizeof(struct vstor_packet));
1035 complete(&request->wait_event);
1036 } else {
1037 storvsc_on_receive(device,
1038 (struct vstor_packet *)packet,
1039 request);
1040 }
1041 } else {
1042 break;
1043 }
1044 } while (1);
1045
1046 return;
1047 }
1048
1049 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size)
1050 {
1051 struct vmstorage_channel_properties props;
1052 int ret;
1053
1054 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1055
1056 ret = vmbus_open(device->channel,
1057 ring_size,
1058 ring_size,
1059 (void *)&props,
1060 sizeof(struct vmstorage_channel_properties),
1061 storvsc_on_channel_callback, device);
1062
1063 if (ret != 0)
1064 return ret;
1065
1066 ret = storvsc_channel_init(device);
1067
1068 return ret;
1069 }
1070
1071 static int storvsc_dev_remove(struct hv_device *device)
1072 {
1073 struct storvsc_device *stor_device;
1074 unsigned long flags;
1075
1076 stor_device = hv_get_drvdata(device);
1077
1078 spin_lock_irqsave(&device->channel->inbound_lock, flags);
1079 stor_device->destroy = true;
1080 spin_unlock_irqrestore(&device->channel->inbound_lock, flags);
1081
1082 /*
1083 * At this point, all outbound traffic should be disable. We
1084 * only allow inbound traffic (responses) to proceed so that
1085 * outstanding requests can be completed.
1086 */
1087
1088 storvsc_wait_to_drain(stor_device);
1089
1090 /*
1091 * Since we have already drained, we don't need to busy wait
1092 * as was done in final_release_stor_device()
1093 * Note that we cannot set the ext pointer to NULL until
1094 * we have drained - to drain the outgoing packets, we need to
1095 * allow incoming packets.
1096 */
1097 spin_lock_irqsave(&device->channel->inbound_lock, flags);
1098 hv_set_drvdata(device, NULL);
1099 spin_unlock_irqrestore(&device->channel->inbound_lock, flags);
1100
1101 /* Close the channel */
1102 vmbus_close(device->channel);
1103
1104 kfree(stor_device);
1105 return 0;
1106 }
1107
1108 static int storvsc_do_io(struct hv_device *device,
1109 struct storvsc_cmd_request *request)
1110 {
1111 struct storvsc_device *stor_device;
1112 struct vstor_packet *vstor_packet;
1113 int ret = 0;
1114
1115 vstor_packet = &request->vstor_packet;
1116 stor_device = get_out_stor_device(device);
1117
1118 if (!stor_device)
1119 return -ENODEV;
1120
1121
1122 request->device = device;
1123
1124
1125 vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1126
1127 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1128
1129
1130 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1131
1132
1133 vstor_packet->vm_srb.data_transfer_length =
1134 request->data_buffer.len;
1135
1136 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1137
1138 if (request->data_buffer.len) {
1139 ret = vmbus_sendpacket_multipagebuffer(device->channel,
1140 &request->data_buffer,
1141 vstor_packet,
1142 sizeof(struct vstor_packet),
1143 (unsigned long)request);
1144 } else {
1145 ret = vmbus_sendpacket(device->channel, vstor_packet,
1146 sizeof(struct vstor_packet),
1147 (unsigned long)request,
1148 VM_PKT_DATA_INBAND,
1149 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1150 }
1151
1152 if (ret != 0)
1153 return ret;
1154
1155 atomic_inc(&stor_device->num_outstanding_req);
1156
1157 return ret;
1158 }
1159
1160 static int storvsc_device_alloc(struct scsi_device *sdevice)
1161 {
1162 struct stor_mem_pools *memp;
1163 int number = STORVSC_MIN_BUF_NR;
1164
1165 memp = kzalloc(sizeof(struct stor_mem_pools), GFP_KERNEL);
1166 if (!memp)
1167 return -ENOMEM;
1168
1169 memp->request_pool =
1170 kmem_cache_create(dev_name(&sdevice->sdev_dev),
1171 sizeof(struct storvsc_cmd_request), 0,
1172 SLAB_HWCACHE_ALIGN, NULL);
1173
1174 if (!memp->request_pool)
1175 goto err0;
1176
1177 memp->request_mempool = mempool_create(number, mempool_alloc_slab,
1178 mempool_free_slab,
1179 memp->request_pool);
1180
1181 if (!memp->request_mempool)
1182 goto err1;
1183
1184 sdevice->hostdata = memp;
1185
1186 return 0;
1187
1188 err1:
1189 kmem_cache_destroy(memp->request_pool);
1190
1191 err0:
1192 kfree(memp);
1193 return -ENOMEM;
1194 }
1195
1196 static void storvsc_device_destroy(struct scsi_device *sdevice)
1197 {
1198 struct stor_mem_pools *memp = sdevice->hostdata;
1199
1200 if (!memp)
1201 return;
1202
1203 mempool_destroy(memp->request_mempool);
1204 kmem_cache_destroy(memp->request_pool);
1205 kfree(memp);
1206 sdevice->hostdata = NULL;
1207 }
1208
1209 static int storvsc_device_configure(struct scsi_device *sdevice)
1210 {
1211 scsi_adjust_queue_depth(sdevice, MSG_SIMPLE_TAG,
1212 STORVSC_MAX_IO_REQUESTS);
1213
1214 blk_queue_max_segment_size(sdevice->request_queue, PAGE_SIZE);
1215
1216 blk_queue_bounce_limit(sdevice->request_queue, BLK_BOUNCE_ANY);
1217
1218 sdevice->no_write_same = 1;
1219
1220 return 0;
1221 }
1222
1223 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1224 sector_t capacity, int *info)
1225 {
1226 sector_t nsect = capacity;
1227 sector_t cylinders = nsect;
1228 int heads, sectors_pt;
1229
1230 /*
1231 * We are making up these values; let us keep it simple.
1232 */
1233 heads = 0xff;
1234 sectors_pt = 0x3f; /* Sectors per track */
1235 sector_div(cylinders, heads * sectors_pt);
1236 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1237 cylinders = 0xffff;
1238
1239 info[0] = heads;
1240 info[1] = sectors_pt;
1241 info[2] = (int)cylinders;
1242
1243 return 0;
1244 }
1245
1246 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1247 {
1248 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1249 struct hv_device *device = host_dev->dev;
1250
1251 struct storvsc_device *stor_device;
1252 struct storvsc_cmd_request *request;
1253 struct vstor_packet *vstor_packet;
1254 int ret, t;
1255
1256
1257 stor_device = get_out_stor_device(device);
1258 if (!stor_device)
1259 return FAILED;
1260
1261 request = &stor_device->reset_request;
1262 vstor_packet = &request->vstor_packet;
1263
1264 init_completion(&request->wait_event);
1265
1266 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1267 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1268 vstor_packet->vm_srb.path_id = stor_device->path_id;
1269
1270 ret = vmbus_sendpacket(device->channel, vstor_packet,
1271 sizeof(struct vstor_packet),
1272 (unsigned long)&stor_device->reset_request,
1273 VM_PKT_DATA_INBAND,
1274 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1275 if (ret != 0)
1276 return FAILED;
1277
1278 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1279 if (t == 0)
1280 return TIMEOUT_ERROR;
1281
1282
1283 /*
1284 * At this point, all outstanding requests in the adapter
1285 * should have been flushed out and return to us
1286 * There is a potential race here where the host may be in
1287 * the process of responding when we return from here.
1288 * Just wait for all in-transit packets to be accounted for
1289 * before we return from here.
1290 */
1291 storvsc_wait_to_drain(stor_device);
1292
1293 return SUCCESS;
1294 }
1295
1296 /*
1297 * The host guarantees to respond to each command, although I/O latencies might
1298 * be unbounded on Azure. Reset the timer unconditionally to give the host a
1299 * chance to perform EH.
1300 */
1301 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1302 {
1303 return BLK_EH_RESET_TIMER;
1304 }
1305
1306 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1307 {
1308 bool allowed = true;
1309 u8 scsi_op = scmnd->cmnd[0];
1310
1311 switch (scsi_op) {
1312 /* the host does not handle WRITE_SAME, log accident usage */
1313 case WRITE_SAME:
1314 /*
1315 * smartd sends this command and the host does not handle
1316 * this. So, don't send it.
1317 */
1318 case SET_WINDOW:
1319 scmnd->result = ILLEGAL_REQUEST << 16;
1320 allowed = false;
1321 break;
1322 default:
1323 break;
1324 }
1325 return allowed;
1326 }
1327
1328 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1329 {
1330 int ret;
1331 struct hv_host_device *host_dev = shost_priv(host);
1332 struct hv_device *dev = host_dev->dev;
1333 struct storvsc_cmd_request *cmd_request;
1334 unsigned int request_size = 0;
1335 int i;
1336 struct scatterlist *sgl;
1337 unsigned int sg_count = 0;
1338 struct vmscsi_request *vm_srb;
1339 struct stor_mem_pools *memp = scmnd->device->hostdata;
1340
1341 if (!storvsc_scsi_cmd_ok(scmnd)) {
1342 scmnd->scsi_done(scmnd);
1343 return 0;
1344 }
1345
1346 request_size = sizeof(struct storvsc_cmd_request);
1347
1348 cmd_request = mempool_alloc(memp->request_mempool,
1349 GFP_ATOMIC);
1350
1351 /*
1352 * We might be invoked in an interrupt context; hence
1353 * mempool_alloc() can fail.
1354 */
1355 if (!cmd_request)
1356 return SCSI_MLQUEUE_DEVICE_BUSY;
1357
1358 memset(cmd_request, 0, sizeof(struct storvsc_cmd_request));
1359
1360 /* Setup the cmd request */
1361 cmd_request->cmd = scmnd;
1362
1363 scmnd->host_scribble = (unsigned char *)cmd_request;
1364
1365 vm_srb = &cmd_request->vstor_packet.vm_srb;
1366
1367
1368 /* Build the SRB */
1369 switch (scmnd->sc_data_direction) {
1370 case DMA_TO_DEVICE:
1371 vm_srb->data_in = WRITE_TYPE;
1372 break;
1373 case DMA_FROM_DEVICE:
1374 vm_srb->data_in = READ_TYPE;
1375 break;
1376 default:
1377 vm_srb->data_in = UNKNOWN_TYPE;
1378 break;
1379 }
1380
1381
1382 vm_srb->port_number = host_dev->port;
1383 vm_srb->path_id = scmnd->device->channel;
1384 vm_srb->target_id = scmnd->device->id;
1385 vm_srb->lun = scmnd->device->lun;
1386
1387 vm_srb->cdb_length = scmnd->cmd_len;
1388
1389 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1390
1391 cmd_request->sense_buffer = scmnd->sense_buffer;
1392
1393
1394 cmd_request->data_buffer.len = scsi_bufflen(scmnd);
1395 if (scsi_sg_count(scmnd)) {
1396 sgl = (struct scatterlist *)scsi_sglist(scmnd);
1397 sg_count = scsi_sg_count(scmnd);
1398
1399 /* check if we need to bounce the sgl */
1400 if (do_bounce_buffer(sgl, scsi_sg_count(scmnd)) != -1) {
1401 cmd_request->bounce_sgl =
1402 create_bounce_buffer(sgl, scsi_sg_count(scmnd),
1403 scsi_bufflen(scmnd),
1404 vm_srb->data_in);
1405 if (!cmd_request->bounce_sgl) {
1406 ret = SCSI_MLQUEUE_HOST_BUSY;
1407 goto queue_error;
1408 }
1409
1410 cmd_request->bounce_sgl_count =
1411 ALIGN(scsi_bufflen(scmnd), PAGE_SIZE) >>
1412 PAGE_SHIFT;
1413
1414 if (vm_srb->data_in == WRITE_TYPE)
1415 copy_to_bounce_buffer(sgl,
1416 cmd_request->bounce_sgl,
1417 scsi_sg_count(scmnd));
1418
1419 sgl = cmd_request->bounce_sgl;
1420 sg_count = cmd_request->bounce_sgl_count;
1421 }
1422
1423 cmd_request->data_buffer.offset = sgl[0].offset;
1424
1425 for (i = 0; i < sg_count; i++)
1426 cmd_request->data_buffer.pfn_array[i] =
1427 page_to_pfn(sg_page((&sgl[i])));
1428
1429 } else if (scsi_sglist(scmnd)) {
1430 cmd_request->data_buffer.offset =
1431 virt_to_phys(scsi_sglist(scmnd)) & (PAGE_SIZE-1);
1432 cmd_request->data_buffer.pfn_array[0] =
1433 virt_to_phys(scsi_sglist(scmnd)) >> PAGE_SHIFT;
1434 }
1435
1436 /* Invokes the vsc to start an IO */
1437 ret = storvsc_do_io(dev, cmd_request);
1438
1439 if (ret == -EAGAIN) {
1440 /* no more space */
1441
1442 if (cmd_request->bounce_sgl_count) {
1443 destroy_bounce_buffer(cmd_request->bounce_sgl,
1444 cmd_request->bounce_sgl_count);
1445
1446 ret = SCSI_MLQUEUE_DEVICE_BUSY;
1447 goto queue_error;
1448 }
1449 }
1450
1451 return 0;
1452
1453 queue_error:
1454 mempool_free(cmd_request, memp->request_mempool);
1455 scmnd->host_scribble = NULL;
1456 return ret;
1457 }
1458
1459 static struct scsi_host_template scsi_driver = {
1460 .module = THIS_MODULE,
1461 .name = "storvsc_host_t",
1462 .bios_param = storvsc_get_chs,
1463 .queuecommand = storvsc_queuecommand,
1464 .eh_host_reset_handler = storvsc_host_reset_handler,
1465 .eh_timed_out = storvsc_eh_timed_out,
1466 .slave_alloc = storvsc_device_alloc,
1467 .slave_destroy = storvsc_device_destroy,
1468 .slave_configure = storvsc_device_configure,
1469 .cmd_per_lun = 1,
1470 /* 64 max_queue * 1 target */
1471 .can_queue = STORVSC_MAX_IO_REQUESTS*STORVSC_MAX_TARGETS,
1472 .this_id = -1,
1473 /* no use setting to 0 since ll_blk_rw reset it to 1 */
1474 /* currently 32 */
1475 .sg_tablesize = MAX_MULTIPAGE_BUFFER_COUNT,
1476 .use_clustering = DISABLE_CLUSTERING,
1477 /* Make sure we dont get a sg segment crosses a page boundary */
1478 .dma_boundary = PAGE_SIZE-1,
1479 .no_write_same = 1,
1480 };
1481
1482 enum {
1483 SCSI_GUID,
1484 IDE_GUID,
1485 };
1486
1487 static const struct hv_vmbus_device_id id_table[] = {
1488 /* SCSI guid */
1489 { HV_SCSI_GUID,
1490 .driver_data = SCSI_GUID
1491 },
1492 /* IDE guid */
1493 { HV_IDE_GUID,
1494 .driver_data = IDE_GUID
1495 },
1496 { },
1497 };
1498
1499 MODULE_DEVICE_TABLE(vmbus, id_table);
1500
1501 static int storvsc_probe(struct hv_device *device,
1502 const struct hv_vmbus_device_id *dev_id)
1503 {
1504 int ret;
1505 struct Scsi_Host *host;
1506 struct hv_host_device *host_dev;
1507 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1508 int target = 0;
1509 struct storvsc_device *stor_device;
1510
1511 host = scsi_host_alloc(&scsi_driver,
1512 sizeof(struct hv_host_device));
1513 if (!host)
1514 return -ENOMEM;
1515
1516 host_dev = shost_priv(host);
1517 memset(host_dev, 0, sizeof(struct hv_host_device));
1518
1519 host_dev->port = host->host_no;
1520 host_dev->dev = device;
1521
1522
1523 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1524 if (!stor_device) {
1525 ret = -ENOMEM;
1526 goto err_out0;
1527 }
1528
1529 stor_device->destroy = false;
1530 init_waitqueue_head(&stor_device->waiting_to_drain);
1531 stor_device->device = device;
1532 stor_device->host = host;
1533 hv_set_drvdata(device, stor_device);
1534
1535 stor_device->port_number = host->host_no;
1536 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size);
1537 if (ret)
1538 goto err_out1;
1539
1540 host_dev->path = stor_device->path_id;
1541 host_dev->target = stor_device->target_id;
1542
1543 /* max # of devices per target */
1544 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
1545 /* max # of targets per channel */
1546 host->max_id = STORVSC_MAX_TARGETS;
1547 /* max # of channels */
1548 host->max_channel = STORVSC_MAX_CHANNELS - 1;
1549 /* max cmd length */
1550 host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1551
1552 /* Register the HBA and start the scsi bus scan */
1553 ret = scsi_add_host(host, &device->device);
1554 if (ret != 0)
1555 goto err_out2;
1556
1557 if (!dev_is_ide) {
1558 scsi_scan_host(host);
1559 } else {
1560 target = (device->dev_instance.b[5] << 8 |
1561 device->dev_instance.b[4]);
1562 ret = scsi_add_device(host, 0, target, 0);
1563 if (ret) {
1564 scsi_remove_host(host);
1565 goto err_out2;
1566 }
1567 }
1568 return 0;
1569
1570 err_out2:
1571 /*
1572 * Once we have connected with the host, we would need to
1573 * to invoke storvsc_dev_remove() to rollback this state and
1574 * this call also frees up the stor_device; hence the jump around
1575 * err_out1 label.
1576 */
1577 storvsc_dev_remove(device);
1578 goto err_out0;
1579
1580 err_out1:
1581 kfree(stor_device);
1582
1583 err_out0:
1584 scsi_host_put(host);
1585 return ret;
1586 }
1587
1588 static int storvsc_remove(struct hv_device *dev)
1589 {
1590 struct storvsc_device *stor_device = hv_get_drvdata(dev);
1591 struct Scsi_Host *host = stor_device->host;
1592
1593 scsi_remove_host(host);
1594 storvsc_dev_remove(dev);
1595 scsi_host_put(host);
1596
1597 return 0;
1598 }
1599
1600 static struct hv_driver storvsc_drv = {
1601 .name = KBUILD_MODNAME,
1602 .id_table = id_table,
1603 .probe = storvsc_probe,
1604 .remove = storvsc_remove,
1605 };
1606
1607 static int __init storvsc_drv_init(void)
1608 {
1609 u32 max_outstanding_req_per_channel;
1610
1611 /*
1612 * Divide the ring buffer data size (which is 1 page less
1613 * than the ring buffer size since that page is reserved for
1614 * the ring buffer indices) by the max request size (which is
1615 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
1616 */
1617 max_outstanding_req_per_channel =
1618 ((storvsc_ringbuffer_size - PAGE_SIZE) /
1619 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
1620 sizeof(struct vstor_packet) + sizeof(u64),
1621 sizeof(u64)));
1622
1623 if (max_outstanding_req_per_channel <
1624 STORVSC_MAX_IO_REQUESTS)
1625 return -EINVAL;
1626
1627 return vmbus_driver_register(&storvsc_drv);
1628 }
1629
1630 static void __exit storvsc_drv_exit(void)
1631 {
1632 vmbus_driver_unregister(&storvsc_drv);
1633 }
1634
1635 MODULE_LICENSE("GPL");
1636 MODULE_VERSION(HV_DRV_VERSION);
1637 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
1638 module_init(storvsc_drv_init);
1639 module_exit(storvsc_drv_exit);