Merge tag 'v3.10.87' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/freezer.h>
37 #include <linux/blkdev.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 static int remove_and_add_spares(struct mddev *mddev,
77 struct md_rdev *this);
78
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80
81 /*
82 * Default number of read corrections we'll attempt on an rdev
83 * before ejecting it from the array. We divide the read error
84 * count by 2 for every hour elapsed between read errors.
85 */
86 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 /*
88 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
89 * is 1000 KB/sec, so the extra system load does not show up that much.
90 * Increase it if you want to have more _guaranteed_ speed. Note that
91 * the RAID driver will use the maximum available bandwidth if the IO
92 * subsystem is idle. There is also an 'absolute maximum' reconstruction
93 * speed limit - in case reconstruction slows down your system despite
94 * idle IO detection.
95 *
96 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
97 * or /sys/block/mdX/md/sync_speed_{min,max}
98 */
99
100 static int sysctl_speed_limit_min = 1000;
101 static int sysctl_speed_limit_max = 200000;
102 static inline int speed_min(struct mddev *mddev)
103 {
104 return mddev->sync_speed_min ?
105 mddev->sync_speed_min : sysctl_speed_limit_min;
106 }
107
108 static inline int speed_max(struct mddev *mddev)
109 {
110 return mddev->sync_speed_max ?
111 mddev->sync_speed_max : sysctl_speed_limit_max;
112 }
113
114 static struct ctl_table_header *raid_table_header;
115
116 static ctl_table raid_table[] = {
117 {
118 .procname = "speed_limit_min",
119 .data = &sysctl_speed_limit_min,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = proc_dointvec,
123 },
124 {
125 .procname = "speed_limit_max",
126 .data = &sysctl_speed_limit_max,
127 .maxlen = sizeof(int),
128 .mode = S_IRUGO|S_IWUSR,
129 .proc_handler = proc_dointvec,
130 },
131 { }
132 };
133
134 static ctl_table raid_dir_table[] = {
135 {
136 .procname = "raid",
137 .maxlen = 0,
138 .mode = S_IRUGO|S_IXUGO,
139 .child = raid_table,
140 },
141 { }
142 };
143
144 static ctl_table raid_root_table[] = {
145 {
146 .procname = "dev",
147 .maxlen = 0,
148 .mode = 0555,
149 .child = raid_dir_table,
150 },
151 { }
152 };
153
154 static const struct block_device_operations md_fops;
155
156 static int start_readonly;
157
158 /* bio_clone_mddev
159 * like bio_clone, but with a local bio set
160 */
161
162 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
163 struct mddev *mddev)
164 {
165 struct bio *b;
166
167 if (!mddev || !mddev->bio_set)
168 return bio_alloc(gfp_mask, nr_iovecs);
169
170 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
171 if (!b)
172 return NULL;
173 return b;
174 }
175 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176
177 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
178 struct mddev *mddev)
179 {
180 if (!mddev || !mddev->bio_set)
181 return bio_clone(bio, gfp_mask);
182
183 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 }
185 EXPORT_SYMBOL_GPL(bio_clone_mddev);
186
187 void md_trim_bio(struct bio *bio, int offset, int size)
188 {
189 /* 'bio' is a cloned bio which we need to trim to match
190 * the given offset and size.
191 * This requires adjusting bi_sector, bi_size, and bi_io_vec
192 */
193 int i;
194 struct bio_vec *bvec;
195 int sofar = 0;
196
197 size <<= 9;
198 if (offset == 0 && size == bio->bi_size)
199 return;
200
201 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
202
203 bio_advance(bio, offset << 9);
204
205 bio->bi_size = size;
206
207 /* avoid any complications with bi_idx being non-zero*/
208 if (bio->bi_idx) {
209 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
210 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
211 bio->bi_vcnt -= bio->bi_idx;
212 bio->bi_idx = 0;
213 }
214 /* Make sure vcnt and last bv are not too big */
215 bio_for_each_segment(bvec, bio, i) {
216 if (sofar + bvec->bv_len > size)
217 bvec->bv_len = size - sofar;
218 if (bvec->bv_len == 0) {
219 bio->bi_vcnt = i;
220 break;
221 }
222 sofar += bvec->bv_len;
223 }
224 }
225 EXPORT_SYMBOL_GPL(md_trim_bio);
226
227 /*
228 * We have a system wide 'event count' that is incremented
229 * on any 'interesting' event, and readers of /proc/mdstat
230 * can use 'poll' or 'select' to find out when the event
231 * count increases.
232 *
233 * Events are:
234 * start array, stop array, error, add device, remove device,
235 * start build, activate spare
236 */
237 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
238 static atomic_t md_event_count;
239 void md_new_event(struct mddev *mddev)
240 {
241 atomic_inc(&md_event_count);
242 wake_up(&md_event_waiters);
243 }
244 EXPORT_SYMBOL_GPL(md_new_event);
245
246 /* Alternate version that can be called from interrupts
247 * when calling sysfs_notify isn't needed.
248 */
249 static void md_new_event_inintr(struct mddev *mddev)
250 {
251 atomic_inc(&md_event_count);
252 wake_up(&md_event_waiters);
253 }
254
255 /*
256 * Enables to iterate over all existing md arrays
257 * all_mddevs_lock protects this list.
258 */
259 static LIST_HEAD(all_mddevs);
260 static DEFINE_SPINLOCK(all_mddevs_lock);
261
262
263 /*
264 * iterates through all used mddevs in the system.
265 * We take care to grab the all_mddevs_lock whenever navigating
266 * the list, and to always hold a refcount when unlocked.
267 * Any code which breaks out of this loop while own
268 * a reference to the current mddev and must mddev_put it.
269 */
270 #define for_each_mddev(_mddev,_tmp) \
271 \
272 for (({ spin_lock(&all_mddevs_lock); \
273 _tmp = all_mddevs.next; \
274 _mddev = NULL;}); \
275 ({ if (_tmp != &all_mddevs) \
276 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
277 spin_unlock(&all_mddevs_lock); \
278 if (_mddev) mddev_put(_mddev); \
279 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
280 _tmp != &all_mddevs;}); \
281 ({ spin_lock(&all_mddevs_lock); \
282 _tmp = _tmp->next;}) \
283 )
284
285
286 /* Rather than calling directly into the personality make_request function,
287 * IO requests come here first so that we can check if the device is
288 * being suspended pending a reconfiguration.
289 * We hold a refcount over the call to ->make_request. By the time that
290 * call has finished, the bio has been linked into some internal structure
291 * and so is visible to ->quiesce(), so we don't need the refcount any more.
292 */
293 static void md_make_request(struct request_queue *q, struct bio *bio)
294 {
295 const int rw = bio_data_dir(bio);
296 struct mddev *mddev = q->queuedata;
297 int cpu;
298 unsigned int sectors;
299
300 if (mddev == NULL || mddev->pers == NULL
301 || !mddev->ready) {
302 bio_io_error(bio);
303 return;
304 }
305 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
306 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
307 return;
308 }
309 smp_rmb(); /* Ensure implications of 'active' are visible */
310 rcu_read_lock();
311 if (mddev->suspended) {
312 DEFINE_WAIT(__wait);
313 for (;;) {
314 prepare_to_wait(&mddev->sb_wait, &__wait,
315 TASK_UNINTERRUPTIBLE);
316 if (!mddev->suspended)
317 break;
318 rcu_read_unlock();
319 schedule();
320 rcu_read_lock();
321 }
322 finish_wait(&mddev->sb_wait, &__wait);
323 }
324 atomic_inc(&mddev->active_io);
325 rcu_read_unlock();
326
327 /*
328 * save the sectors now since our bio can
329 * go away inside make_request
330 */
331 sectors = bio_sectors(bio);
332 mddev->pers->make_request(mddev, bio);
333
334 cpu = part_stat_lock();
335 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
336 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
337 part_stat_unlock();
338
339 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
340 wake_up(&mddev->sb_wait);
341 }
342
343 /* mddev_suspend makes sure no new requests are submitted
344 * to the device, and that any requests that have been submitted
345 * are completely handled.
346 * Once ->stop is called and completes, the module will be completely
347 * unused.
348 */
349 void mddev_suspend(struct mddev *mddev)
350 {
351 BUG_ON(mddev->suspended);
352 mddev->suspended = 1;
353 synchronize_rcu();
354 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
355 mddev->pers->quiesce(mddev, 1);
356
357 del_timer_sync(&mddev->safemode_timer);
358 }
359 EXPORT_SYMBOL_GPL(mddev_suspend);
360
361 void mddev_resume(struct mddev *mddev)
362 {
363 mddev->suspended = 0;
364 wake_up(&mddev->sb_wait);
365 mddev->pers->quiesce(mddev, 0);
366
367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
368 md_wakeup_thread(mddev->thread);
369 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
370 }
371 EXPORT_SYMBOL_GPL(mddev_resume);
372
373 int mddev_congested(struct mddev *mddev, int bits)
374 {
375 return mddev->suspended;
376 }
377 EXPORT_SYMBOL(mddev_congested);
378
379 /*
380 * Generic flush handling for md
381 */
382
383 static void md_end_flush(struct bio *bio, int err)
384 {
385 struct md_rdev *rdev = bio->bi_private;
386 struct mddev *mddev = rdev->mddev;
387
388 rdev_dec_pending(rdev, mddev);
389
390 if (atomic_dec_and_test(&mddev->flush_pending)) {
391 /* The pre-request flush has finished */
392 queue_work(md_wq, &mddev->flush_work);
393 }
394 bio_put(bio);
395 }
396
397 static void md_submit_flush_data(struct work_struct *ws);
398
399 static void submit_flushes(struct work_struct *ws)
400 {
401 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
402 struct md_rdev *rdev;
403
404 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
405 atomic_set(&mddev->flush_pending, 1);
406 rcu_read_lock();
407 rdev_for_each_rcu(rdev, mddev)
408 if (rdev->raid_disk >= 0 &&
409 !test_bit(Faulty, &rdev->flags)) {
410 /* Take two references, one is dropped
411 * when request finishes, one after
412 * we reclaim rcu_read_lock
413 */
414 struct bio *bi;
415 atomic_inc(&rdev->nr_pending);
416 atomic_inc(&rdev->nr_pending);
417 rcu_read_unlock();
418 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
419 bi->bi_end_io = md_end_flush;
420 bi->bi_private = rdev;
421 bi->bi_bdev = rdev->bdev;
422 atomic_inc(&mddev->flush_pending);
423 submit_bio(WRITE_FLUSH, bi);
424 rcu_read_lock();
425 rdev_dec_pending(rdev, mddev);
426 }
427 rcu_read_unlock();
428 if (atomic_dec_and_test(&mddev->flush_pending))
429 queue_work(md_wq, &mddev->flush_work);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws)
433 {
434 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
435 struct bio *bio = mddev->flush_bio;
436
437 if (bio->bi_size == 0)
438 /* an empty barrier - all done */
439 bio_endio(bio, 0);
440 else {
441 bio->bi_rw &= ~REQ_FLUSH;
442 mddev->pers->make_request(mddev, bio);
443 }
444
445 mddev->flush_bio = NULL;
446 wake_up(&mddev->sb_wait);
447 }
448
449 void md_flush_request(struct mddev *mddev, struct bio *bio)
450 {
451 spin_lock_irq(&mddev->write_lock);
452 wait_event_lock_irq(mddev->sb_wait,
453 !mddev->flush_bio,
454 mddev->write_lock);
455 mddev->flush_bio = bio;
456 spin_unlock_irq(&mddev->write_lock);
457
458 INIT_WORK(&mddev->flush_work, submit_flushes);
459 queue_work(md_wq, &mddev->flush_work);
460 }
461 EXPORT_SYMBOL(md_flush_request);
462
463 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
464 {
465 struct mddev *mddev = cb->data;
466 md_wakeup_thread(mddev->thread);
467 kfree(cb);
468 }
469 EXPORT_SYMBOL(md_unplug);
470
471 static inline struct mddev *mddev_get(struct mddev *mddev)
472 {
473 atomic_inc(&mddev->active);
474 return mddev;
475 }
476
477 static void mddev_delayed_delete(struct work_struct *ws);
478
479 static void mddev_put(struct mddev *mddev)
480 {
481 struct bio_set *bs = NULL;
482
483 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
484 return;
485 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
486 mddev->ctime == 0 && !mddev->hold_active) {
487 /* Array is not configured at all, and not held active,
488 * so destroy it */
489 list_del_init(&mddev->all_mddevs);
490 bs = mddev->bio_set;
491 mddev->bio_set = NULL;
492 if (mddev->gendisk) {
493 /* We did a probe so need to clean up. Call
494 * queue_work inside the spinlock so that
495 * flush_workqueue() after mddev_find will
496 * succeed in waiting for the work to be done.
497 */
498 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
499 queue_work(md_misc_wq, &mddev->del_work);
500 } else
501 kfree(mddev);
502 }
503 spin_unlock(&all_mddevs_lock);
504 if (bs)
505 bioset_free(bs);
506 }
507
508 void mddev_init(struct mddev *mddev)
509 {
510 mutex_init(&mddev->open_mutex);
511 mutex_init(&mddev->reconfig_mutex);
512 mutex_init(&mddev->bitmap_info.mutex);
513 INIT_LIST_HEAD(&mddev->disks);
514 INIT_LIST_HEAD(&mddev->all_mddevs);
515 init_timer(&mddev->safemode_timer);
516 atomic_set(&mddev->active, 1);
517 atomic_set(&mddev->openers, 0);
518 atomic_set(&mddev->active_io, 0);
519 spin_lock_init(&mddev->write_lock);
520 atomic_set(&mddev->flush_pending, 0);
521 init_waitqueue_head(&mddev->sb_wait);
522 init_waitqueue_head(&mddev->recovery_wait);
523 mddev->reshape_position = MaxSector;
524 mddev->reshape_backwards = 0;
525 mddev->resync_min = 0;
526 mddev->resync_max = MaxSector;
527 mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev * mddev_find(dev_t unit)
532 {
533 struct mddev *mddev, *new = NULL;
534
535 if (unit && MAJOR(unit) != MD_MAJOR)
536 unit &= ~((1<<MdpMinorShift)-1);
537
538 retry:
539 spin_lock(&all_mddevs_lock);
540
541 if (unit) {
542 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 if (mddev->unit == unit) {
544 mddev_get(mddev);
545 spin_unlock(&all_mddevs_lock);
546 kfree(new);
547 return mddev;
548 }
549
550 if (new) {
551 list_add(&new->all_mddevs, &all_mddevs);
552 spin_unlock(&all_mddevs_lock);
553 new->hold_active = UNTIL_IOCTL;
554 return new;
555 }
556 } else if (new) {
557 /* find an unused unit number */
558 static int next_minor = 512;
559 int start = next_minor;
560 int is_free = 0;
561 int dev = 0;
562 while (!is_free) {
563 dev = MKDEV(MD_MAJOR, next_minor);
564 next_minor++;
565 if (next_minor > MINORMASK)
566 next_minor = 0;
567 if (next_minor == start) {
568 /* Oh dear, all in use. */
569 spin_unlock(&all_mddevs_lock);
570 kfree(new);
571 return NULL;
572 }
573
574 is_free = 1;
575 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 if (mddev->unit == dev) {
577 is_free = 0;
578 break;
579 }
580 }
581 new->unit = dev;
582 new->md_minor = MINOR(dev);
583 new->hold_active = UNTIL_STOP;
584 list_add(&new->all_mddevs, &all_mddevs);
585 spin_unlock(&all_mddevs_lock);
586 return new;
587 }
588 spin_unlock(&all_mddevs_lock);
589
590 new = kzalloc(sizeof(*new), GFP_KERNEL);
591 if (!new)
592 return NULL;
593
594 new->unit = unit;
595 if (MAJOR(unit) == MD_MAJOR)
596 new->md_minor = MINOR(unit);
597 else
598 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600 mddev_init(new);
601
602 goto retry;
603 }
604
605 static inline int mddev_lock(struct mddev * mddev)
606 {
607 return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609
610 static inline int mddev_is_locked(struct mddev *mddev)
611 {
612 return mutex_is_locked(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_trylock(struct mddev * mddev)
616 {
617 return mutex_trylock(&mddev->reconfig_mutex);
618 }
619
620 static struct attribute_group md_redundancy_group;
621
622 static void mddev_unlock(struct mddev * mddev)
623 {
624 if (mddev->to_remove) {
625 /* These cannot be removed under reconfig_mutex as
626 * an access to the files will try to take reconfig_mutex
627 * while holding the file unremovable, which leads to
628 * a deadlock.
629 * So hold set sysfs_active while the remove in happeing,
630 * and anything else which might set ->to_remove or my
631 * otherwise change the sysfs namespace will fail with
632 * -EBUSY if sysfs_active is still set.
633 * We set sysfs_active under reconfig_mutex and elsewhere
634 * test it under the same mutex to ensure its correct value
635 * is seen.
636 */
637 struct attribute_group *to_remove = mddev->to_remove;
638 mddev->to_remove = NULL;
639 mddev->sysfs_active = 1;
640 mutex_unlock(&mddev->reconfig_mutex);
641
642 if (mddev->kobj.sd) {
643 if (to_remove != &md_redundancy_group)
644 sysfs_remove_group(&mddev->kobj, to_remove);
645 if (mddev->pers == NULL ||
646 mddev->pers->sync_request == NULL) {
647 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648 if (mddev->sysfs_action)
649 sysfs_put(mddev->sysfs_action);
650 mddev->sysfs_action = NULL;
651 }
652 }
653 mddev->sysfs_active = 0;
654 } else
655 mutex_unlock(&mddev->reconfig_mutex);
656
657 /* As we've dropped the mutex we need a spinlock to
658 * make sure the thread doesn't disappear
659 */
660 spin_lock(&pers_lock);
661 md_wakeup_thread(mddev->thread);
662 spin_unlock(&pers_lock);
663 }
664
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 {
667 struct md_rdev *rdev;
668
669 rdev_for_each(rdev, mddev)
670 if (rdev->desc_nr == nr)
671 return rdev;
672
673 return NULL;
674 }
675
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 {
678 struct md_rdev *rdev;
679
680 rdev_for_each_rcu(rdev, mddev)
681 if (rdev->desc_nr == nr)
682 return rdev;
683
684 return NULL;
685 }
686
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 {
689 struct md_rdev *rdev;
690
691 rdev_for_each(rdev, mddev)
692 if (rdev->bdev->bd_dev == dev)
693 return rdev;
694
695 return NULL;
696 }
697
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 {
700 struct md_rdev *rdev;
701
702 rdev_for_each_rcu(rdev, mddev)
703 if (rdev->bdev->bd_dev == dev)
704 return rdev;
705
706 return NULL;
707 }
708
709 static struct md_personality *find_pers(int level, char *clevel)
710 {
711 struct md_personality *pers;
712 list_for_each_entry(pers, &pers_list, list) {
713 if (level != LEVEL_NONE && pers->level == level)
714 return pers;
715 if (strcmp(pers->name, clevel)==0)
716 return pers;
717 }
718 return NULL;
719 }
720
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 {
724 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725 return MD_NEW_SIZE_SECTORS(num_sectors);
726 }
727
728 static int alloc_disk_sb(struct md_rdev * rdev)
729 {
730 if (rdev->sb_page)
731 MD_BUG();
732
733 rdev->sb_page = alloc_page(GFP_KERNEL);
734 if (!rdev->sb_page) {
735 printk(KERN_ALERT "md: out of memory.\n");
736 return -ENOMEM;
737 }
738
739 return 0;
740 }
741
742 void md_rdev_clear(struct md_rdev *rdev)
743 {
744 if (rdev->sb_page) {
745 put_page(rdev->sb_page);
746 rdev->sb_loaded = 0;
747 rdev->sb_page = NULL;
748 rdev->sb_start = 0;
749 rdev->sectors = 0;
750 }
751 if (rdev->bb_page) {
752 put_page(rdev->bb_page);
753 rdev->bb_page = NULL;
754 }
755 kfree(rdev->badblocks.page);
756 rdev->badblocks.page = NULL;
757 }
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
759
760 static void super_written(struct bio *bio, int error)
761 {
762 struct md_rdev *rdev = bio->bi_private;
763 struct mddev *mddev = rdev->mddev;
764
765 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766 printk("md: super_written gets error=%d, uptodate=%d\n",
767 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769 md_error(mddev, rdev);
770 }
771
772 if (atomic_dec_and_test(&mddev->pending_writes))
773 wake_up(&mddev->sb_wait);
774 bio_put(bio);
775 }
776
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778 sector_t sector, int size, struct page *page)
779 {
780 /* write first size bytes of page to sector of rdev
781 * Increment mddev->pending_writes before returning
782 * and decrement it on completion, waking up sb_wait
783 * if zero is reached.
784 * If an error occurred, call md_error
785 */
786 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787
788 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789 bio->bi_sector = sector;
790 bio_add_page(bio, page, size, 0);
791 bio->bi_private = rdev;
792 bio->bi_end_io = super_written;
793
794 atomic_inc(&mddev->pending_writes);
795 submit_bio(WRITE_FLUSH_FUA, bio);
796 }
797
798 void md_super_wait(struct mddev *mddev)
799 {
800 /* wait for all superblock writes that were scheduled to complete */
801 DEFINE_WAIT(wq);
802 for(;;) {
803 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(&mddev->pending_writes)==0)
805 break;
806 schedule();
807 }
808 finish_wait(&mddev->sb_wait, &wq);
809 }
810
811 static void bi_complete(struct bio *bio, int error)
812 {
813 complete((struct completion*)bio->bi_private);
814 }
815
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817 struct page *page, int rw, bool metadata_op)
818 {
819 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820 struct completion event;
821 int ret;
822
823 rw |= REQ_SYNC;
824
825 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826 rdev->meta_bdev : rdev->bdev;
827 if (metadata_op)
828 bio->bi_sector = sector + rdev->sb_start;
829 else if (rdev->mddev->reshape_position != MaxSector &&
830 (rdev->mddev->reshape_backwards ==
831 (sector >= rdev->mddev->reshape_position)))
832 bio->bi_sector = sector + rdev->new_data_offset;
833 else
834 bio->bi_sector = sector + rdev->data_offset;
835 bio_add_page(bio, page, size, 0);
836 init_completion(&event);
837 bio->bi_private = &event;
838 bio->bi_end_io = bi_complete;
839 submit_bio(rw, bio);
840 wait_for_completion(&event);
841
842 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843 bio_put(bio);
844 return ret;
845 }
846 EXPORT_SYMBOL_GPL(sync_page_io);
847
848 static int read_disk_sb(struct md_rdev * rdev, int size)
849 {
850 char b[BDEVNAME_SIZE];
851 if (!rdev->sb_page) {
852 MD_BUG();
853 return -EINVAL;
854 }
855 if (rdev->sb_loaded)
856 return 0;
857
858
859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860 goto fail;
861 rdev->sb_loaded = 1;
862 return 0;
863
864 fail:
865 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866 bdevname(rdev->bdev,b));
867 return -EINVAL;
868 }
869
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 {
872 return sb1->set_uuid0 == sb2->set_uuid0 &&
873 sb1->set_uuid1 == sb2->set_uuid1 &&
874 sb1->set_uuid2 == sb2->set_uuid2 &&
875 sb1->set_uuid3 == sb2->set_uuid3;
876 }
877
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880 int ret;
881 mdp_super_t *tmp1, *tmp2;
882
883 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885
886 if (!tmp1 || !tmp2) {
887 ret = 0;
888 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889 goto abort;
890 }
891
892 *tmp1 = *sb1;
893 *tmp2 = *sb2;
894
895 /*
896 * nr_disks is not constant
897 */
898 tmp1->nr_disks = 0;
899 tmp2->nr_disks = 0;
900
901 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903 kfree(tmp1);
904 kfree(tmp2);
905 return ret;
906 }
907
908
909 static u32 md_csum_fold(u32 csum)
910 {
911 csum = (csum & 0xffff) + (csum >> 16);
912 return (csum & 0xffff) + (csum >> 16);
913 }
914
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
916 {
917 u64 newcsum = 0;
918 u32 *sb32 = (u32*)sb;
919 int i;
920 unsigned int disk_csum, csum;
921
922 disk_csum = sb->sb_csum;
923 sb->sb_csum = 0;
924
925 for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 newcsum += sb32[i];
927 csum = (newcsum & 0xffffffff) + (newcsum>>32);
928
929
930 #ifdef CONFIG_ALPHA
931 /* This used to use csum_partial, which was wrong for several
932 * reasons including that different results are returned on
933 * different architectures. It isn't critical that we get exactly
934 * the same return value as before (we always csum_fold before
935 * testing, and that removes any differences). However as we
936 * know that csum_partial always returned a 16bit value on
937 * alphas, do a fold to maximise conformity to previous behaviour.
938 */
939 sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941 sb->sb_csum = disk_csum;
942 #endif
943 return csum;
944 }
945
946
947 /*
948 * Handle superblock details.
949 * We want to be able to handle multiple superblock formats
950 * so we have a common interface to them all, and an array of
951 * different handlers.
952 * We rely on user-space to write the initial superblock, and support
953 * reading and updating of superblocks.
954 * Interface methods are:
955 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956 * loads and validates a superblock on dev.
957 * if refdev != NULL, compare superblocks on both devices
958 * Return:
959 * 0 - dev has a superblock that is compatible with refdev
960 * 1 - dev has a superblock that is compatible and newer than refdev
961 * so dev should be used as the refdev in future
962 * -EINVAL superblock incompatible or invalid
963 * -othererror e.g. -EIO
964 *
965 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
966 * Verify that dev is acceptable into mddev.
967 * The first time, mddev->raid_disks will be 0, and data from
968 * dev should be merged in. Subsequent calls check that dev
969 * is new enough. Return 0 or -EINVAL
970 *
971 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
972 * Update the superblock for rdev with data in mddev
973 * This does not write to disc.
974 *
975 */
976
977 struct super_type {
978 char *name;
979 struct module *owner;
980 int (*load_super)(struct md_rdev *rdev,
981 struct md_rdev *refdev,
982 int minor_version);
983 int (*validate_super)(struct mddev *mddev,
984 struct md_rdev *rdev);
985 void (*sync_super)(struct mddev *mddev,
986 struct md_rdev *rdev);
987 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
988 sector_t num_sectors);
989 int (*allow_new_offset)(struct md_rdev *rdev,
990 unsigned long long new_offset);
991 };
992
993 /*
994 * Check that the given mddev has no bitmap.
995 *
996 * This function is called from the run method of all personalities that do not
997 * support bitmaps. It prints an error message and returns non-zero if mddev
998 * has a bitmap. Otherwise, it returns 0.
999 *
1000 */
1001 int md_check_no_bitmap(struct mddev *mddev)
1002 {
1003 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 return 0;
1005 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006 mdname(mddev), mddev->pers->name);
1007 return 1;
1008 }
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1010
1011 /*
1012 * load_super for 0.90.0
1013 */
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 {
1016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017 mdp_super_t *sb;
1018 int ret;
1019
1020 /*
1021 * Calculate the position of the superblock (512byte sectors),
1022 * it's at the end of the disk.
1023 *
1024 * It also happens to be a multiple of 4Kb.
1025 */
1026 rdev->sb_start = calc_dev_sboffset(rdev);
1027
1028 ret = read_disk_sb(rdev, MD_SB_BYTES);
1029 if (ret) return ret;
1030
1031 ret = -EINVAL;
1032
1033 bdevname(rdev->bdev, b);
1034 sb = page_address(rdev->sb_page);
1035
1036 if (sb->md_magic != MD_SB_MAGIC) {
1037 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1038 b);
1039 goto abort;
1040 }
1041
1042 if (sb->major_version != 0 ||
1043 sb->minor_version < 90 ||
1044 sb->minor_version > 91) {
1045 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046 sb->major_version, sb->minor_version,
1047 b);
1048 goto abort;
1049 }
1050
1051 if (sb->raid_disks <= 0)
1052 goto abort;
1053
1054 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1056 b);
1057 goto abort;
1058 }
1059
1060 rdev->preferred_minor = sb->md_minor;
1061 rdev->data_offset = 0;
1062 rdev->new_data_offset = 0;
1063 rdev->sb_size = MD_SB_BYTES;
1064 rdev->badblocks.shift = -1;
1065
1066 if (sb->level == LEVEL_MULTIPATH)
1067 rdev->desc_nr = -1;
1068 else
1069 rdev->desc_nr = sb->this_disk.number;
1070
1071 if (!refdev) {
1072 ret = 1;
1073 } else {
1074 __u64 ev1, ev2;
1075 mdp_super_t *refsb = page_address(refdev->sb_page);
1076 if (!uuid_equal(refsb, sb)) {
1077 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078 b, bdevname(refdev->bdev,b2));
1079 goto abort;
1080 }
1081 if (!sb_equal(refsb, sb)) {
1082 printk(KERN_WARNING "md: %s has same UUID"
1083 " but different superblock to %s\n",
1084 b, bdevname(refdev->bdev, b2));
1085 goto abort;
1086 }
1087 ev1 = md_event(sb);
1088 ev2 = md_event(refsb);
1089 if (ev1 > ev2)
1090 ret = 1;
1091 else
1092 ret = 0;
1093 }
1094 rdev->sectors = rdev->sb_start;
1095 /* Limit to 4TB as metadata cannot record more than that.
1096 * (not needed for Linear and RAID0 as metadata doesn't
1097 * record this size)
1098 */
1099 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100 rdev->sectors = (2ULL << 32) - 2;
1101
1102 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103 /* "this cannot possibly happen" ... */
1104 ret = -EINVAL;
1105
1106 abort:
1107 return ret;
1108 }
1109
1110 /*
1111 * validate_super for 0.90.0
1112 */
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1114 {
1115 mdp_disk_t *desc;
1116 mdp_super_t *sb = page_address(rdev->sb_page);
1117 __u64 ev1 = md_event(sb);
1118
1119 rdev->raid_disk = -1;
1120 clear_bit(Faulty, &rdev->flags);
1121 clear_bit(In_sync, &rdev->flags);
1122 clear_bit(Bitmap_sync, &rdev->flags);
1123 clear_bit(WriteMostly, &rdev->flags);
1124
1125 if (mddev->raid_disks == 0) {
1126 mddev->major_version = 0;
1127 mddev->minor_version = sb->minor_version;
1128 mddev->patch_version = sb->patch_version;
1129 mddev->external = 0;
1130 mddev->chunk_sectors = sb->chunk_size >> 9;
1131 mddev->ctime = sb->ctime;
1132 mddev->utime = sb->utime;
1133 mddev->level = sb->level;
1134 mddev->clevel[0] = 0;
1135 mddev->layout = sb->layout;
1136 mddev->raid_disks = sb->raid_disks;
1137 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 mddev->events = ev1;
1139 mddev->bitmap_info.offset = 0;
1140 mddev->bitmap_info.space = 0;
1141 /* bitmap can use 60 K after the 4K superblocks */
1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 mddev->reshape_backwards = 0;
1145
1146 if (mddev->minor_version >= 91) {
1147 mddev->reshape_position = sb->reshape_position;
1148 mddev->delta_disks = sb->delta_disks;
1149 mddev->new_level = sb->new_level;
1150 mddev->new_layout = sb->new_layout;
1151 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 if (mddev->delta_disks < 0)
1153 mddev->reshape_backwards = 1;
1154 } else {
1155 mddev->reshape_position = MaxSector;
1156 mddev->delta_disks = 0;
1157 mddev->new_level = mddev->level;
1158 mddev->new_layout = mddev->layout;
1159 mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 }
1161
1162 if (sb->state & (1<<MD_SB_CLEAN))
1163 mddev->recovery_cp = MaxSector;
1164 else {
1165 if (sb->events_hi == sb->cp_events_hi &&
1166 sb->events_lo == sb->cp_events_lo) {
1167 mddev->recovery_cp = sb->recovery_cp;
1168 } else
1169 mddev->recovery_cp = 0;
1170 }
1171
1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177 mddev->max_disks = MD_SB_DISKS;
1178
1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 mddev->bitmap_info.file == NULL) {
1181 mddev->bitmap_info.offset =
1182 mddev->bitmap_info.default_offset;
1183 mddev->bitmap_info.space =
1184 mddev->bitmap_info.space;
1185 }
1186
1187 } else if (mddev->pers == NULL) {
1188 /* Insist on good event counter while assembling, except
1189 * for spares (which don't need an event count) */
1190 ++ev1;
1191 if (sb->disks[rdev->desc_nr].state & (
1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 if (ev1 < mddev->events)
1194 return -EINVAL;
1195 } else if (mddev->bitmap) {
1196 /* if adding to array with a bitmap, then we can accept an
1197 * older device ... but not too old.
1198 */
1199 if (ev1 < mddev->bitmap->events_cleared)
1200 return 0;
1201 if (ev1 < mddev->events)
1202 set_bit(Bitmap_sync, &rdev->flags);
1203 } else {
1204 if (ev1 < mddev->events)
1205 /* just a hot-add of a new device, leave raid_disk at -1 */
1206 return 0;
1207 }
1208
1209 if (mddev->level != LEVEL_MULTIPATH) {
1210 desc = sb->disks + rdev->desc_nr;
1211
1212 if (desc->state & (1<<MD_DISK_FAULTY))
1213 set_bit(Faulty, &rdev->flags);
1214 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1215 desc->raid_disk < mddev->raid_disks */) {
1216 set_bit(In_sync, &rdev->flags);
1217 rdev->raid_disk = desc->raid_disk;
1218 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1219 /* active but not in sync implies recovery up to
1220 * reshape position. We don't know exactly where
1221 * that is, so set to zero for now */
1222 if (mddev->minor_version >= 91) {
1223 rdev->recovery_offset = 0;
1224 rdev->raid_disk = desc->raid_disk;
1225 }
1226 }
1227 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1228 set_bit(WriteMostly, &rdev->flags);
1229 } else /* MULTIPATH are always insync */
1230 set_bit(In_sync, &rdev->flags);
1231 return 0;
1232 }
1233
1234 /*
1235 * sync_super for 0.90.0
1236 */
1237 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1238 {
1239 mdp_super_t *sb;
1240 struct md_rdev *rdev2;
1241 int next_spare = mddev->raid_disks;
1242
1243
1244 /* make rdev->sb match mddev data..
1245 *
1246 * 1/ zero out disks
1247 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1248 * 3/ any empty disks < next_spare become removed
1249 *
1250 * disks[0] gets initialised to REMOVED because
1251 * we cannot be sure from other fields if it has
1252 * been initialised or not.
1253 */
1254 int i;
1255 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1256
1257 rdev->sb_size = MD_SB_BYTES;
1258
1259 sb = page_address(rdev->sb_page);
1260
1261 memset(sb, 0, sizeof(*sb));
1262
1263 sb->md_magic = MD_SB_MAGIC;
1264 sb->major_version = mddev->major_version;
1265 sb->patch_version = mddev->patch_version;
1266 sb->gvalid_words = 0; /* ignored */
1267 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1268 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1269 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1270 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1271
1272 sb->ctime = mddev->ctime;
1273 sb->level = mddev->level;
1274 sb->size = mddev->dev_sectors / 2;
1275 sb->raid_disks = mddev->raid_disks;
1276 sb->md_minor = mddev->md_minor;
1277 sb->not_persistent = 0;
1278 sb->utime = mddev->utime;
1279 sb->state = 0;
1280 sb->events_hi = (mddev->events>>32);
1281 sb->events_lo = (u32)mddev->events;
1282
1283 if (mddev->reshape_position == MaxSector)
1284 sb->minor_version = 90;
1285 else {
1286 sb->minor_version = 91;
1287 sb->reshape_position = mddev->reshape_position;
1288 sb->new_level = mddev->new_level;
1289 sb->delta_disks = mddev->delta_disks;
1290 sb->new_layout = mddev->new_layout;
1291 sb->new_chunk = mddev->new_chunk_sectors << 9;
1292 }
1293 mddev->minor_version = sb->minor_version;
1294 if (mddev->in_sync)
1295 {
1296 sb->recovery_cp = mddev->recovery_cp;
1297 sb->cp_events_hi = (mddev->events>>32);
1298 sb->cp_events_lo = (u32)mddev->events;
1299 if (mddev->recovery_cp == MaxSector)
1300 sb->state = (1<< MD_SB_CLEAN);
1301 } else
1302 sb->recovery_cp = 0;
1303
1304 sb->layout = mddev->layout;
1305 sb->chunk_size = mddev->chunk_sectors << 9;
1306
1307 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1308 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1309
1310 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1311 rdev_for_each(rdev2, mddev) {
1312 mdp_disk_t *d;
1313 int desc_nr;
1314 int is_active = test_bit(In_sync, &rdev2->flags);
1315
1316 if (rdev2->raid_disk >= 0 &&
1317 sb->minor_version >= 91)
1318 /* we have nowhere to store the recovery_offset,
1319 * but if it is not below the reshape_position,
1320 * we can piggy-back on that.
1321 */
1322 is_active = 1;
1323 if (rdev2->raid_disk < 0 ||
1324 test_bit(Faulty, &rdev2->flags))
1325 is_active = 0;
1326 if (is_active)
1327 desc_nr = rdev2->raid_disk;
1328 else
1329 desc_nr = next_spare++;
1330 rdev2->desc_nr = desc_nr;
1331 d = &sb->disks[rdev2->desc_nr];
1332 nr_disks++;
1333 d->number = rdev2->desc_nr;
1334 d->major = MAJOR(rdev2->bdev->bd_dev);
1335 d->minor = MINOR(rdev2->bdev->bd_dev);
1336 if (is_active)
1337 d->raid_disk = rdev2->raid_disk;
1338 else
1339 d->raid_disk = rdev2->desc_nr; /* compatibility */
1340 if (test_bit(Faulty, &rdev2->flags))
1341 d->state = (1<<MD_DISK_FAULTY);
1342 else if (is_active) {
1343 d->state = (1<<MD_DISK_ACTIVE);
1344 if (test_bit(In_sync, &rdev2->flags))
1345 d->state |= (1<<MD_DISK_SYNC);
1346 active++;
1347 working++;
1348 } else {
1349 d->state = 0;
1350 spare++;
1351 working++;
1352 }
1353 if (test_bit(WriteMostly, &rdev2->flags))
1354 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1355 }
1356 /* now set the "removed" and "faulty" bits on any missing devices */
1357 for (i=0 ; i < mddev->raid_disks ; i++) {
1358 mdp_disk_t *d = &sb->disks[i];
1359 if (d->state == 0 && d->number == 0) {
1360 d->number = i;
1361 d->raid_disk = i;
1362 d->state = (1<<MD_DISK_REMOVED);
1363 d->state |= (1<<MD_DISK_FAULTY);
1364 failed++;
1365 }
1366 }
1367 sb->nr_disks = nr_disks;
1368 sb->active_disks = active;
1369 sb->working_disks = working;
1370 sb->failed_disks = failed;
1371 sb->spare_disks = spare;
1372
1373 sb->this_disk = sb->disks[rdev->desc_nr];
1374 sb->sb_csum = calc_sb_csum(sb);
1375 }
1376
1377 /*
1378 * rdev_size_change for 0.90.0
1379 */
1380 static unsigned long long
1381 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1382 {
1383 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1384 return 0; /* component must fit device */
1385 if (rdev->mddev->bitmap_info.offset)
1386 return 0; /* can't move bitmap */
1387 rdev->sb_start = calc_dev_sboffset(rdev);
1388 if (!num_sectors || num_sectors > rdev->sb_start)
1389 num_sectors = rdev->sb_start;
1390 /* Limit to 4TB as metadata cannot record more than that.
1391 * 4TB == 2^32 KB, or 2*2^32 sectors.
1392 */
1393 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1394 num_sectors = (2ULL << 32) - 2;
1395 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1396 rdev->sb_page);
1397 md_super_wait(rdev->mddev);
1398 return num_sectors;
1399 }
1400
1401 static int
1402 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1403 {
1404 /* non-zero offset changes not possible with v0.90 */
1405 return new_offset == 0;
1406 }
1407
1408 /*
1409 * version 1 superblock
1410 */
1411
1412 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1413 {
1414 __le32 disk_csum;
1415 u32 csum;
1416 unsigned long long newcsum;
1417 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1418 __le32 *isuper = (__le32*)sb;
1419
1420 disk_csum = sb->sb_csum;
1421 sb->sb_csum = 0;
1422 newcsum = 0;
1423 for (; size >= 4; size -= 4)
1424 newcsum += le32_to_cpu(*isuper++);
1425
1426 if (size == 2)
1427 newcsum += le16_to_cpu(*(__le16*) isuper);
1428
1429 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1430 sb->sb_csum = disk_csum;
1431 return cpu_to_le32(csum);
1432 }
1433
1434 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1435 int acknowledged);
1436 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1437 {
1438 struct mdp_superblock_1 *sb;
1439 int ret;
1440 sector_t sb_start;
1441 sector_t sectors;
1442 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1443 int bmask;
1444
1445 /*
1446 * Calculate the position of the superblock in 512byte sectors.
1447 * It is always aligned to a 4K boundary and
1448 * depeding on minor_version, it can be:
1449 * 0: At least 8K, but less than 12K, from end of device
1450 * 1: At start of device
1451 * 2: 4K from start of device.
1452 */
1453 switch(minor_version) {
1454 case 0:
1455 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1456 sb_start -= 8*2;
1457 sb_start &= ~(sector_t)(4*2-1);
1458 break;
1459 case 1:
1460 sb_start = 0;
1461 break;
1462 case 2:
1463 sb_start = 8;
1464 break;
1465 default:
1466 return -EINVAL;
1467 }
1468 rdev->sb_start = sb_start;
1469
1470 /* superblock is rarely larger than 1K, but it can be larger,
1471 * and it is safe to read 4k, so we do that
1472 */
1473 ret = read_disk_sb(rdev, 4096);
1474 if (ret) return ret;
1475
1476
1477 sb = page_address(rdev->sb_page);
1478
1479 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1480 sb->major_version != cpu_to_le32(1) ||
1481 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1482 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1483 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1484 return -EINVAL;
1485
1486 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1487 printk("md: invalid superblock checksum on %s\n",
1488 bdevname(rdev->bdev,b));
1489 return -EINVAL;
1490 }
1491 if (le64_to_cpu(sb->data_size) < 10) {
1492 printk("md: data_size too small on %s\n",
1493 bdevname(rdev->bdev,b));
1494 return -EINVAL;
1495 }
1496 if (sb->pad0 ||
1497 sb->pad3[0] ||
1498 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1499 /* Some padding is non-zero, might be a new feature */
1500 return -EINVAL;
1501
1502 rdev->preferred_minor = 0xffff;
1503 rdev->data_offset = le64_to_cpu(sb->data_offset);
1504 rdev->new_data_offset = rdev->data_offset;
1505 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1506 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1507 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1508 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1509
1510 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1511 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1512 if (rdev->sb_size & bmask)
1513 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1514
1515 if (minor_version
1516 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1517 return -EINVAL;
1518 if (minor_version
1519 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1520 return -EINVAL;
1521
1522 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1523 rdev->desc_nr = -1;
1524 else
1525 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1526
1527 if (!rdev->bb_page) {
1528 rdev->bb_page = alloc_page(GFP_KERNEL);
1529 if (!rdev->bb_page)
1530 return -ENOMEM;
1531 }
1532 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1533 rdev->badblocks.count == 0) {
1534 /* need to load the bad block list.
1535 * Currently we limit it to one page.
1536 */
1537 s32 offset;
1538 sector_t bb_sector;
1539 u64 *bbp;
1540 int i;
1541 int sectors = le16_to_cpu(sb->bblog_size);
1542 if (sectors > (PAGE_SIZE / 512))
1543 return -EINVAL;
1544 offset = le32_to_cpu(sb->bblog_offset);
1545 if (offset == 0)
1546 return -EINVAL;
1547 bb_sector = (long long)offset;
1548 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1549 rdev->bb_page, READ, true))
1550 return -EIO;
1551 bbp = (u64 *)page_address(rdev->bb_page);
1552 rdev->badblocks.shift = sb->bblog_shift;
1553 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1554 u64 bb = le64_to_cpu(*bbp);
1555 int count = bb & (0x3ff);
1556 u64 sector = bb >> 10;
1557 sector <<= sb->bblog_shift;
1558 count <<= sb->bblog_shift;
1559 if (bb + 1 == 0)
1560 break;
1561 if (md_set_badblocks(&rdev->badblocks,
1562 sector, count, 1) == 0)
1563 return -EINVAL;
1564 }
1565 } else if (sb->bblog_offset != 0)
1566 rdev->badblocks.shift = 0;
1567
1568 if (!refdev) {
1569 ret = 1;
1570 } else {
1571 __u64 ev1, ev2;
1572 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1573
1574 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1575 sb->level != refsb->level ||
1576 sb->layout != refsb->layout ||
1577 sb->chunksize != refsb->chunksize) {
1578 printk(KERN_WARNING "md: %s has strangely different"
1579 " superblock to %s\n",
1580 bdevname(rdev->bdev,b),
1581 bdevname(refdev->bdev,b2));
1582 return -EINVAL;
1583 }
1584 ev1 = le64_to_cpu(sb->events);
1585 ev2 = le64_to_cpu(refsb->events);
1586
1587 if (ev1 > ev2)
1588 ret = 1;
1589 else
1590 ret = 0;
1591 }
1592 if (minor_version) {
1593 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1594 sectors -= rdev->data_offset;
1595 } else
1596 sectors = rdev->sb_start;
1597 if (sectors < le64_to_cpu(sb->data_size))
1598 return -EINVAL;
1599 rdev->sectors = le64_to_cpu(sb->data_size);
1600 return ret;
1601 }
1602
1603 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1604 {
1605 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1606 __u64 ev1 = le64_to_cpu(sb->events);
1607
1608 rdev->raid_disk = -1;
1609 clear_bit(Faulty, &rdev->flags);
1610 clear_bit(In_sync, &rdev->flags);
1611 clear_bit(Bitmap_sync, &rdev->flags);
1612 clear_bit(WriteMostly, &rdev->flags);
1613
1614 if (mddev->raid_disks == 0) {
1615 mddev->major_version = 1;
1616 mddev->patch_version = 0;
1617 mddev->external = 0;
1618 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1619 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1620 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1621 mddev->level = le32_to_cpu(sb->level);
1622 mddev->clevel[0] = 0;
1623 mddev->layout = le32_to_cpu(sb->layout);
1624 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1625 mddev->dev_sectors = le64_to_cpu(sb->size);
1626 mddev->events = ev1;
1627 mddev->bitmap_info.offset = 0;
1628 mddev->bitmap_info.space = 0;
1629 /* Default location for bitmap is 1K after superblock
1630 * using 3K - total of 4K
1631 */
1632 mddev->bitmap_info.default_offset = 1024 >> 9;
1633 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1634 mddev->reshape_backwards = 0;
1635
1636 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1637 memcpy(mddev->uuid, sb->set_uuid, 16);
1638
1639 mddev->max_disks = (4096-256)/2;
1640
1641 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1642 mddev->bitmap_info.file == NULL) {
1643 mddev->bitmap_info.offset =
1644 (__s32)le32_to_cpu(sb->bitmap_offset);
1645 /* Metadata doesn't record how much space is available.
1646 * For 1.0, we assume we can use up to the superblock
1647 * if before, else to 4K beyond superblock.
1648 * For others, assume no change is possible.
1649 */
1650 if (mddev->minor_version > 0)
1651 mddev->bitmap_info.space = 0;
1652 else if (mddev->bitmap_info.offset > 0)
1653 mddev->bitmap_info.space =
1654 8 - mddev->bitmap_info.offset;
1655 else
1656 mddev->bitmap_info.space =
1657 -mddev->bitmap_info.offset;
1658 }
1659
1660 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1661 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1662 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1663 mddev->new_level = le32_to_cpu(sb->new_level);
1664 mddev->new_layout = le32_to_cpu(sb->new_layout);
1665 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1666 if (mddev->delta_disks < 0 ||
1667 (mddev->delta_disks == 0 &&
1668 (le32_to_cpu(sb->feature_map)
1669 & MD_FEATURE_RESHAPE_BACKWARDS)))
1670 mddev->reshape_backwards = 1;
1671 } else {
1672 mddev->reshape_position = MaxSector;
1673 mddev->delta_disks = 0;
1674 mddev->new_level = mddev->level;
1675 mddev->new_layout = mddev->layout;
1676 mddev->new_chunk_sectors = mddev->chunk_sectors;
1677 }
1678
1679 } else if (mddev->pers == NULL) {
1680 /* Insist of good event counter while assembling, except for
1681 * spares (which don't need an event count) */
1682 ++ev1;
1683 if (rdev->desc_nr >= 0 &&
1684 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1685 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1686 if (ev1 < mddev->events)
1687 return -EINVAL;
1688 } else if (mddev->bitmap) {
1689 /* If adding to array with a bitmap, then we can accept an
1690 * older device, but not too old.
1691 */
1692 if (ev1 < mddev->bitmap->events_cleared)
1693 return 0;
1694 if (ev1 < mddev->events)
1695 set_bit(Bitmap_sync, &rdev->flags);
1696 } else {
1697 if (ev1 < mddev->events)
1698 /* just a hot-add of a new device, leave raid_disk at -1 */
1699 return 0;
1700 }
1701 if (mddev->level != LEVEL_MULTIPATH) {
1702 int role;
1703 if (rdev->desc_nr < 0 ||
1704 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1705 role = 0xffff;
1706 rdev->desc_nr = -1;
1707 } else
1708 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1709 switch(role) {
1710 case 0xffff: /* spare */
1711 break;
1712 case 0xfffe: /* faulty */
1713 set_bit(Faulty, &rdev->flags);
1714 break;
1715 default:
1716 if ((le32_to_cpu(sb->feature_map) &
1717 MD_FEATURE_RECOVERY_OFFSET))
1718 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1719 else
1720 set_bit(In_sync, &rdev->flags);
1721 rdev->raid_disk = role;
1722 break;
1723 }
1724 if (sb->devflags & WriteMostly1)
1725 set_bit(WriteMostly, &rdev->flags);
1726 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1727 set_bit(Replacement, &rdev->flags);
1728 } else /* MULTIPATH are always insync */
1729 set_bit(In_sync, &rdev->flags);
1730
1731 return 0;
1732 }
1733
1734 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1735 {
1736 struct mdp_superblock_1 *sb;
1737 struct md_rdev *rdev2;
1738 int max_dev, i;
1739 /* make rdev->sb match mddev and rdev data. */
1740
1741 sb = page_address(rdev->sb_page);
1742
1743 sb->feature_map = 0;
1744 sb->pad0 = 0;
1745 sb->recovery_offset = cpu_to_le64(0);
1746 memset(sb->pad3, 0, sizeof(sb->pad3));
1747
1748 sb->utime = cpu_to_le64((__u64)mddev->utime);
1749 sb->events = cpu_to_le64(mddev->events);
1750 if (mddev->in_sync)
1751 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1752 else
1753 sb->resync_offset = cpu_to_le64(0);
1754
1755 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1756
1757 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1758 sb->size = cpu_to_le64(mddev->dev_sectors);
1759 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1760 sb->level = cpu_to_le32(mddev->level);
1761 sb->layout = cpu_to_le32(mddev->layout);
1762
1763 if (test_bit(WriteMostly, &rdev->flags))
1764 sb->devflags |= WriteMostly1;
1765 else
1766 sb->devflags &= ~WriteMostly1;
1767 sb->data_offset = cpu_to_le64(rdev->data_offset);
1768 sb->data_size = cpu_to_le64(rdev->sectors);
1769
1770 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1771 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1772 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1773 }
1774
1775 if (rdev->raid_disk >= 0 &&
1776 !test_bit(In_sync, &rdev->flags)) {
1777 sb->feature_map |=
1778 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1779 sb->recovery_offset =
1780 cpu_to_le64(rdev->recovery_offset);
1781 }
1782 if (test_bit(Replacement, &rdev->flags))
1783 sb->feature_map |=
1784 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1785
1786 if (mddev->reshape_position != MaxSector) {
1787 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1788 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1789 sb->new_layout = cpu_to_le32(mddev->new_layout);
1790 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1791 sb->new_level = cpu_to_le32(mddev->new_level);
1792 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1793 if (mddev->delta_disks == 0 &&
1794 mddev->reshape_backwards)
1795 sb->feature_map
1796 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1797 if (rdev->new_data_offset != rdev->data_offset) {
1798 sb->feature_map
1799 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1800 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1801 - rdev->data_offset));
1802 }
1803 }
1804
1805 if (rdev->badblocks.count == 0)
1806 /* Nothing to do for bad blocks*/ ;
1807 else if (sb->bblog_offset == 0)
1808 /* Cannot record bad blocks on this device */
1809 md_error(mddev, rdev);
1810 else {
1811 struct badblocks *bb = &rdev->badblocks;
1812 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1813 u64 *p = bb->page;
1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1815 if (bb->changed) {
1816 unsigned seq;
1817
1818 retry:
1819 seq = read_seqbegin(&bb->lock);
1820
1821 memset(bbp, 0xff, PAGE_SIZE);
1822
1823 for (i = 0 ; i < bb->count ; i++) {
1824 u64 internal_bb = p[i];
1825 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1826 | BB_LEN(internal_bb));
1827 bbp[i] = cpu_to_le64(store_bb);
1828 }
1829 bb->changed = 0;
1830 if (read_seqretry(&bb->lock, seq))
1831 goto retry;
1832
1833 bb->sector = (rdev->sb_start +
1834 (int)le32_to_cpu(sb->bblog_offset));
1835 bb->size = le16_to_cpu(sb->bblog_size);
1836 }
1837 }
1838
1839 max_dev = 0;
1840 rdev_for_each(rdev2, mddev)
1841 if (rdev2->desc_nr+1 > max_dev)
1842 max_dev = rdev2->desc_nr+1;
1843
1844 if (max_dev > le32_to_cpu(sb->max_dev)) {
1845 int bmask;
1846 sb->max_dev = cpu_to_le32(max_dev);
1847 rdev->sb_size = max_dev * 2 + 256;
1848 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1849 if (rdev->sb_size & bmask)
1850 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1851 } else
1852 max_dev = le32_to_cpu(sb->max_dev);
1853
1854 for (i=0; i<max_dev;i++)
1855 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1856
1857 rdev_for_each(rdev2, mddev) {
1858 i = rdev2->desc_nr;
1859 if (test_bit(Faulty, &rdev2->flags))
1860 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1861 else if (test_bit(In_sync, &rdev2->flags))
1862 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1863 else if (rdev2->raid_disk >= 0)
1864 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865 else
1866 sb->dev_roles[i] = cpu_to_le16(0xffff);
1867 }
1868
1869 sb->sb_csum = calc_sb_1_csum(sb);
1870 }
1871
1872 static unsigned long long
1873 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1874 {
1875 struct mdp_superblock_1 *sb;
1876 sector_t max_sectors;
1877 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1878 return 0; /* component must fit device */
1879 if (rdev->data_offset != rdev->new_data_offset)
1880 return 0; /* too confusing */
1881 if (rdev->sb_start < rdev->data_offset) {
1882 /* minor versions 1 and 2; superblock before data */
1883 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1884 max_sectors -= rdev->data_offset;
1885 if (!num_sectors || num_sectors > max_sectors)
1886 num_sectors = max_sectors;
1887 } else if (rdev->mddev->bitmap_info.offset) {
1888 /* minor version 0 with bitmap we can't move */
1889 return 0;
1890 } else {
1891 /* minor version 0; superblock after data */
1892 sector_t sb_start;
1893 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1894 sb_start &= ~(sector_t)(4*2 - 1);
1895 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1896 if (!num_sectors || num_sectors > max_sectors)
1897 num_sectors = max_sectors;
1898 rdev->sb_start = sb_start;
1899 }
1900 sb = page_address(rdev->sb_page);
1901 sb->data_size = cpu_to_le64(num_sectors);
1902 sb->super_offset = rdev->sb_start;
1903 sb->sb_csum = calc_sb_1_csum(sb);
1904 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1905 rdev->sb_page);
1906 md_super_wait(rdev->mddev);
1907 return num_sectors;
1908
1909 }
1910
1911 static int
1912 super_1_allow_new_offset(struct md_rdev *rdev,
1913 unsigned long long new_offset)
1914 {
1915 /* All necessary checks on new >= old have been done */
1916 struct bitmap *bitmap;
1917 if (new_offset >= rdev->data_offset)
1918 return 1;
1919
1920 /* with 1.0 metadata, there is no metadata to tread on
1921 * so we can always move back */
1922 if (rdev->mddev->minor_version == 0)
1923 return 1;
1924
1925 /* otherwise we must be sure not to step on
1926 * any metadata, so stay:
1927 * 36K beyond start of superblock
1928 * beyond end of badblocks
1929 * beyond write-intent bitmap
1930 */
1931 if (rdev->sb_start + (32+4)*2 > new_offset)
1932 return 0;
1933 bitmap = rdev->mddev->bitmap;
1934 if (bitmap && !rdev->mddev->bitmap_info.file &&
1935 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1936 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1937 return 0;
1938 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1939 return 0;
1940
1941 return 1;
1942 }
1943
1944 static struct super_type super_types[] = {
1945 [0] = {
1946 .name = "0.90.0",
1947 .owner = THIS_MODULE,
1948 .load_super = super_90_load,
1949 .validate_super = super_90_validate,
1950 .sync_super = super_90_sync,
1951 .rdev_size_change = super_90_rdev_size_change,
1952 .allow_new_offset = super_90_allow_new_offset,
1953 },
1954 [1] = {
1955 .name = "md-1",
1956 .owner = THIS_MODULE,
1957 .load_super = super_1_load,
1958 .validate_super = super_1_validate,
1959 .sync_super = super_1_sync,
1960 .rdev_size_change = super_1_rdev_size_change,
1961 .allow_new_offset = super_1_allow_new_offset,
1962 },
1963 };
1964
1965 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1966 {
1967 if (mddev->sync_super) {
1968 mddev->sync_super(mddev, rdev);
1969 return;
1970 }
1971
1972 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1973
1974 super_types[mddev->major_version].sync_super(mddev, rdev);
1975 }
1976
1977 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1978 {
1979 struct md_rdev *rdev, *rdev2;
1980
1981 rcu_read_lock();
1982 rdev_for_each_rcu(rdev, mddev1)
1983 rdev_for_each_rcu(rdev2, mddev2)
1984 if (rdev->bdev->bd_contains ==
1985 rdev2->bdev->bd_contains) {
1986 rcu_read_unlock();
1987 return 1;
1988 }
1989 rcu_read_unlock();
1990 return 0;
1991 }
1992
1993 static LIST_HEAD(pending_raid_disks);
1994
1995 /*
1996 * Try to register data integrity profile for an mddev
1997 *
1998 * This is called when an array is started and after a disk has been kicked
1999 * from the array. It only succeeds if all working and active component devices
2000 * are integrity capable with matching profiles.
2001 */
2002 int md_integrity_register(struct mddev *mddev)
2003 {
2004 struct md_rdev *rdev, *reference = NULL;
2005
2006 if (list_empty(&mddev->disks))
2007 return 0; /* nothing to do */
2008 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2009 return 0; /* shouldn't register, or already is */
2010 rdev_for_each(rdev, mddev) {
2011 /* skip spares and non-functional disks */
2012 if (test_bit(Faulty, &rdev->flags))
2013 continue;
2014 if (rdev->raid_disk < 0)
2015 continue;
2016 if (!reference) {
2017 /* Use the first rdev as the reference */
2018 reference = rdev;
2019 continue;
2020 }
2021 /* does this rdev's profile match the reference profile? */
2022 if (blk_integrity_compare(reference->bdev->bd_disk,
2023 rdev->bdev->bd_disk) < 0)
2024 return -EINVAL;
2025 }
2026 if (!reference || !bdev_get_integrity(reference->bdev))
2027 return 0;
2028 /*
2029 * All component devices are integrity capable and have matching
2030 * profiles, register the common profile for the md device.
2031 */
2032 if (blk_integrity_register(mddev->gendisk,
2033 bdev_get_integrity(reference->bdev)) != 0) {
2034 printk(KERN_ERR "md: failed to register integrity for %s\n",
2035 mdname(mddev));
2036 return -EINVAL;
2037 }
2038 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2039 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2040 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2041 mdname(mddev));
2042 return -EINVAL;
2043 }
2044 return 0;
2045 }
2046 EXPORT_SYMBOL(md_integrity_register);
2047
2048 /* Disable data integrity if non-capable/non-matching disk is being added */
2049 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2050 {
2051 struct blk_integrity *bi_rdev;
2052 struct blk_integrity *bi_mddev;
2053
2054 if (!mddev->gendisk)
2055 return;
2056
2057 bi_rdev = bdev_get_integrity(rdev->bdev);
2058 bi_mddev = blk_get_integrity(mddev->gendisk);
2059
2060 if (!bi_mddev) /* nothing to do */
2061 return;
2062 if (rdev->raid_disk < 0) /* skip spares */
2063 return;
2064 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2065 rdev->bdev->bd_disk) >= 0)
2066 return;
2067 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2068 blk_integrity_unregister(mddev->gendisk);
2069 }
2070 EXPORT_SYMBOL(md_integrity_add_rdev);
2071
2072 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2073 {
2074 char b[BDEVNAME_SIZE];
2075 struct kobject *ko;
2076 char *s;
2077 int err;
2078
2079 if (rdev->mddev) {
2080 MD_BUG();
2081 return -EINVAL;
2082 }
2083
2084 /* prevent duplicates */
2085 if (find_rdev(mddev, rdev->bdev->bd_dev))
2086 return -EEXIST;
2087
2088 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2089 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2090 rdev->sectors < mddev->dev_sectors)) {
2091 if (mddev->pers) {
2092 /* Cannot change size, so fail
2093 * If mddev->level <= 0, then we don't care
2094 * about aligning sizes (e.g. linear)
2095 */
2096 if (mddev->level > 0)
2097 return -ENOSPC;
2098 } else
2099 mddev->dev_sectors = rdev->sectors;
2100 }
2101
2102 /* Verify rdev->desc_nr is unique.
2103 * If it is -1, assign a free number, else
2104 * check number is not in use
2105 */
2106 if (rdev->desc_nr < 0) {
2107 int choice = 0;
2108 if (mddev->pers) choice = mddev->raid_disks;
2109 while (find_rdev_nr(mddev, choice))
2110 choice++;
2111 rdev->desc_nr = choice;
2112 } else {
2113 if (find_rdev_nr(mddev, rdev->desc_nr))
2114 return -EBUSY;
2115 }
2116 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2117 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2118 mdname(mddev), mddev->max_disks);
2119 return -EBUSY;
2120 }
2121 bdevname(rdev->bdev,b);
2122 while ( (s=strchr(b, '/')) != NULL)
2123 *s = '!';
2124
2125 rdev->mddev = mddev;
2126 printk(KERN_INFO "md: bind<%s>\n", b);
2127
2128 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2129 goto fail;
2130
2131 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2132 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2133 /* failure here is OK */;
2134 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2135
2136 list_add_rcu(&rdev->same_set, &mddev->disks);
2137 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2138
2139 /* May as well allow recovery to be retried once */
2140 mddev->recovery_disabled++;
2141
2142 return 0;
2143
2144 fail:
2145 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2146 b, mdname(mddev));
2147 return err;
2148 }
2149
2150 static void md_delayed_delete(struct work_struct *ws)
2151 {
2152 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2153 kobject_del(&rdev->kobj);
2154 kobject_put(&rdev->kobj);
2155 }
2156
2157 static void unbind_rdev_from_array(struct md_rdev * rdev)
2158 {
2159 char b[BDEVNAME_SIZE];
2160 if (!rdev->mddev) {
2161 MD_BUG();
2162 return;
2163 }
2164 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2165 list_del_rcu(&rdev->same_set);
2166 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2167 rdev->mddev = NULL;
2168 sysfs_remove_link(&rdev->kobj, "block");
2169 sysfs_put(rdev->sysfs_state);
2170 rdev->sysfs_state = NULL;
2171 rdev->badblocks.count = 0;
2172 /* We need to delay this, otherwise we can deadlock when
2173 * writing to 'remove' to "dev/state". We also need
2174 * to delay it due to rcu usage.
2175 */
2176 synchronize_rcu();
2177 INIT_WORK(&rdev->del_work, md_delayed_delete);
2178 kobject_get(&rdev->kobj);
2179 queue_work(md_misc_wq, &rdev->del_work);
2180 }
2181
2182 /*
2183 * prevent the device from being mounted, repartitioned or
2184 * otherwise reused by a RAID array (or any other kernel
2185 * subsystem), by bd_claiming the device.
2186 */
2187 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2188 {
2189 int err = 0;
2190 struct block_device *bdev;
2191 char b[BDEVNAME_SIZE];
2192
2193 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2194 shared ? (struct md_rdev *)lock_rdev : rdev);
2195 if (IS_ERR(bdev)) {
2196 printk(KERN_ERR "md: could not open %s.\n",
2197 __bdevname(dev, b));
2198 return PTR_ERR(bdev);
2199 }
2200 rdev->bdev = bdev;
2201 return err;
2202 }
2203
2204 static void unlock_rdev(struct md_rdev *rdev)
2205 {
2206 struct block_device *bdev = rdev->bdev;
2207 rdev->bdev = NULL;
2208 if (!bdev)
2209 MD_BUG();
2210 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2211 }
2212
2213 void md_autodetect_dev(dev_t dev);
2214
2215 static void export_rdev(struct md_rdev * rdev)
2216 {
2217 char b[BDEVNAME_SIZE];
2218 printk(KERN_INFO "md: export_rdev(%s)\n",
2219 bdevname(rdev->bdev,b));
2220 if (rdev->mddev)
2221 MD_BUG();
2222 md_rdev_clear(rdev);
2223 #ifndef MODULE
2224 if (test_bit(AutoDetected, &rdev->flags))
2225 md_autodetect_dev(rdev->bdev->bd_dev);
2226 #endif
2227 unlock_rdev(rdev);
2228 kobject_put(&rdev->kobj);
2229 }
2230
2231 static void kick_rdev_from_array(struct md_rdev * rdev)
2232 {
2233 unbind_rdev_from_array(rdev);
2234 export_rdev(rdev);
2235 }
2236
2237 static void export_array(struct mddev *mddev)
2238 {
2239 struct md_rdev *rdev, *tmp;
2240
2241 rdev_for_each_safe(rdev, tmp, mddev) {
2242 if (!rdev->mddev) {
2243 MD_BUG();
2244 continue;
2245 }
2246 kick_rdev_from_array(rdev);
2247 }
2248 if (!list_empty(&mddev->disks))
2249 MD_BUG();
2250 mddev->raid_disks = 0;
2251 mddev->major_version = 0;
2252 }
2253
2254 static void print_desc(mdp_disk_t *desc)
2255 {
2256 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2257 desc->major,desc->minor,desc->raid_disk,desc->state);
2258 }
2259
2260 static void print_sb_90(mdp_super_t *sb)
2261 {
2262 int i;
2263
2264 printk(KERN_INFO
2265 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2266 sb->major_version, sb->minor_version, sb->patch_version,
2267 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2268 sb->ctime);
2269 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2270 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2271 sb->md_minor, sb->layout, sb->chunk_size);
2272 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2273 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2274 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2275 sb->failed_disks, sb->spare_disks,
2276 sb->sb_csum, (unsigned long)sb->events_lo);
2277
2278 printk(KERN_INFO);
2279 for (i = 0; i < MD_SB_DISKS; i++) {
2280 mdp_disk_t *desc;
2281
2282 desc = sb->disks + i;
2283 if (desc->number || desc->major || desc->minor ||
2284 desc->raid_disk || (desc->state && (desc->state != 4))) {
2285 printk(" D %2d: ", i);
2286 print_desc(desc);
2287 }
2288 }
2289 printk(KERN_INFO "md: THIS: ");
2290 print_desc(&sb->this_disk);
2291 }
2292
2293 static void print_sb_1(struct mdp_superblock_1 *sb)
2294 {
2295 __u8 *uuid;
2296
2297 uuid = sb->set_uuid;
2298 printk(KERN_INFO
2299 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2300 "md: Name: \"%s\" CT:%llu\n",
2301 le32_to_cpu(sb->major_version),
2302 le32_to_cpu(sb->feature_map),
2303 uuid,
2304 sb->set_name,
2305 (unsigned long long)le64_to_cpu(sb->ctime)
2306 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2307
2308 uuid = sb->device_uuid;
2309 printk(KERN_INFO
2310 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2311 " RO:%llu\n"
2312 "md: Dev:%08x UUID: %pU\n"
2313 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2314 "md: (MaxDev:%u) \n",
2315 le32_to_cpu(sb->level),
2316 (unsigned long long)le64_to_cpu(sb->size),
2317 le32_to_cpu(sb->raid_disks),
2318 le32_to_cpu(sb->layout),
2319 le32_to_cpu(sb->chunksize),
2320 (unsigned long long)le64_to_cpu(sb->data_offset),
2321 (unsigned long long)le64_to_cpu(sb->data_size),
2322 (unsigned long long)le64_to_cpu(sb->super_offset),
2323 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2324 le32_to_cpu(sb->dev_number),
2325 uuid,
2326 sb->devflags,
2327 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2328 (unsigned long long)le64_to_cpu(sb->events),
2329 (unsigned long long)le64_to_cpu(sb->resync_offset),
2330 le32_to_cpu(sb->sb_csum),
2331 le32_to_cpu(sb->max_dev)
2332 );
2333 }
2334
2335 static void print_rdev(struct md_rdev *rdev, int major_version)
2336 {
2337 char b[BDEVNAME_SIZE];
2338 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2339 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2340 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2341 rdev->desc_nr);
2342 if (rdev->sb_loaded) {
2343 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2344 switch (major_version) {
2345 case 0:
2346 print_sb_90(page_address(rdev->sb_page));
2347 break;
2348 case 1:
2349 print_sb_1(page_address(rdev->sb_page));
2350 break;
2351 }
2352 } else
2353 printk(KERN_INFO "md: no rdev superblock!\n");
2354 }
2355
2356 static void md_print_devices(void)
2357 {
2358 struct list_head *tmp;
2359 struct md_rdev *rdev;
2360 struct mddev *mddev;
2361 char b[BDEVNAME_SIZE];
2362
2363 printk("\n");
2364 printk("md: **********************************\n");
2365 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2366 printk("md: **********************************\n");
2367 for_each_mddev(mddev, tmp) {
2368
2369 if (mddev->bitmap)
2370 bitmap_print_sb(mddev->bitmap);
2371 else
2372 printk("%s: ", mdname(mddev));
2373 rdev_for_each(rdev, mddev)
2374 printk("<%s>", bdevname(rdev->bdev,b));
2375 printk("\n");
2376
2377 rdev_for_each(rdev, mddev)
2378 print_rdev(rdev, mddev->major_version);
2379 }
2380 printk("md: **********************************\n");
2381 printk("\n");
2382 }
2383
2384
2385 static void sync_sbs(struct mddev * mddev, int nospares)
2386 {
2387 /* Update each superblock (in-memory image), but
2388 * if we are allowed to, skip spares which already
2389 * have the right event counter, or have one earlier
2390 * (which would mean they aren't being marked as dirty
2391 * with the rest of the array)
2392 */
2393 struct md_rdev *rdev;
2394 rdev_for_each(rdev, mddev) {
2395 if (rdev->sb_events == mddev->events ||
2396 (nospares &&
2397 rdev->raid_disk < 0 &&
2398 rdev->sb_events+1 == mddev->events)) {
2399 /* Don't update this superblock */
2400 rdev->sb_loaded = 2;
2401 } else {
2402 sync_super(mddev, rdev);
2403 rdev->sb_loaded = 1;
2404 }
2405 }
2406 }
2407
2408 static void md_update_sb(struct mddev * mddev, int force_change)
2409 {
2410 struct md_rdev *rdev;
2411 int sync_req;
2412 int nospares = 0;
2413 int any_badblocks_changed = 0;
2414
2415 if (mddev->ro) {
2416 if (force_change)
2417 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2418 return;
2419 }
2420 repeat:
2421 /* First make sure individual recovery_offsets are correct */
2422 rdev_for_each(rdev, mddev) {
2423 if (rdev->raid_disk >= 0 &&
2424 mddev->delta_disks >= 0 &&
2425 !test_bit(In_sync, &rdev->flags) &&
2426 mddev->curr_resync_completed > rdev->recovery_offset)
2427 rdev->recovery_offset = mddev->curr_resync_completed;
2428
2429 }
2430 if (!mddev->persistent) {
2431 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2432 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2433 if (!mddev->external) {
2434 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435 rdev_for_each(rdev, mddev) {
2436 if (rdev->badblocks.changed) {
2437 rdev->badblocks.changed = 0;
2438 md_ack_all_badblocks(&rdev->badblocks);
2439 md_error(mddev, rdev);
2440 }
2441 clear_bit(Blocked, &rdev->flags);
2442 clear_bit(BlockedBadBlocks, &rdev->flags);
2443 wake_up(&rdev->blocked_wait);
2444 }
2445 }
2446 wake_up(&mddev->sb_wait);
2447 return;
2448 }
2449
2450 spin_lock_irq(&mddev->write_lock);
2451
2452 mddev->utime = get_seconds();
2453
2454 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2455 force_change = 1;
2456 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2457 /* just a clean<-> dirty transition, possibly leave spares alone,
2458 * though if events isn't the right even/odd, we will have to do
2459 * spares after all
2460 */
2461 nospares = 1;
2462 if (force_change)
2463 nospares = 0;
2464 if (mddev->degraded)
2465 /* If the array is degraded, then skipping spares is both
2466 * dangerous and fairly pointless.
2467 * Dangerous because a device that was removed from the array
2468 * might have a event_count that still looks up-to-date,
2469 * so it can be re-added without a resync.
2470 * Pointless because if there are any spares to skip,
2471 * then a recovery will happen and soon that array won't
2472 * be degraded any more and the spare can go back to sleep then.
2473 */
2474 nospares = 0;
2475
2476 sync_req = mddev->in_sync;
2477
2478 /* If this is just a dirty<->clean transition, and the array is clean
2479 * and 'events' is odd, we can roll back to the previous clean state */
2480 if (nospares
2481 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2482 && mddev->can_decrease_events
2483 && mddev->events != 1) {
2484 mddev->events--;
2485 mddev->can_decrease_events = 0;
2486 } else {
2487 /* otherwise we have to go forward and ... */
2488 mddev->events ++;
2489 mddev->can_decrease_events = nospares;
2490 }
2491
2492 if (!mddev->events) {
2493 /*
2494 * oops, this 64-bit counter should never wrap.
2495 * Either we are in around ~1 trillion A.C., assuming
2496 * 1 reboot per second, or we have a bug:
2497 */
2498 MD_BUG();
2499 mddev->events --;
2500 }
2501
2502 rdev_for_each(rdev, mddev) {
2503 if (rdev->badblocks.changed)
2504 any_badblocks_changed++;
2505 if (test_bit(Faulty, &rdev->flags))
2506 set_bit(FaultRecorded, &rdev->flags);
2507 }
2508
2509 sync_sbs(mddev, nospares);
2510 spin_unlock_irq(&mddev->write_lock);
2511
2512 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2513 mdname(mddev), mddev->in_sync);
2514
2515 bitmap_update_sb(mddev->bitmap);
2516 rdev_for_each(rdev, mddev) {
2517 char b[BDEVNAME_SIZE];
2518
2519 if (rdev->sb_loaded != 1)
2520 continue; /* no noise on spare devices */
2521
2522 if (!test_bit(Faulty, &rdev->flags) &&
2523 rdev->saved_raid_disk == -1) {
2524 md_super_write(mddev,rdev,
2525 rdev->sb_start, rdev->sb_size,
2526 rdev->sb_page);
2527 pr_debug("md: (write) %s's sb offset: %llu\n",
2528 bdevname(rdev->bdev, b),
2529 (unsigned long long)rdev->sb_start);
2530 rdev->sb_events = mddev->events;
2531 if (rdev->badblocks.size) {
2532 md_super_write(mddev, rdev,
2533 rdev->badblocks.sector,
2534 rdev->badblocks.size << 9,
2535 rdev->bb_page);
2536 rdev->badblocks.size = 0;
2537 }
2538
2539 } else if (test_bit(Faulty, &rdev->flags))
2540 pr_debug("md: %s (skipping faulty)\n",
2541 bdevname(rdev->bdev, b));
2542 else
2543 pr_debug("(skipping incremental s/r ");
2544
2545 if (mddev->level == LEVEL_MULTIPATH)
2546 /* only need to write one superblock... */
2547 break;
2548 }
2549 md_super_wait(mddev);
2550 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2551
2552 spin_lock_irq(&mddev->write_lock);
2553 if (mddev->in_sync != sync_req ||
2554 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2555 /* have to write it out again */
2556 spin_unlock_irq(&mddev->write_lock);
2557 goto repeat;
2558 }
2559 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2560 spin_unlock_irq(&mddev->write_lock);
2561 wake_up(&mddev->sb_wait);
2562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2563 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2564
2565 rdev_for_each(rdev, mddev) {
2566 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2567 clear_bit(Blocked, &rdev->flags);
2568
2569 if (any_badblocks_changed)
2570 md_ack_all_badblocks(&rdev->badblocks);
2571 clear_bit(BlockedBadBlocks, &rdev->flags);
2572 wake_up(&rdev->blocked_wait);
2573 }
2574 }
2575
2576 /* words written to sysfs files may, or may not, be \n terminated.
2577 * We want to accept with case. For this we use cmd_match.
2578 */
2579 static int cmd_match(const char *cmd, const char *str)
2580 {
2581 /* See if cmd, written into a sysfs file, matches
2582 * str. They must either be the same, or cmd can
2583 * have a trailing newline
2584 */
2585 while (*cmd && *str && *cmd == *str) {
2586 cmd++;
2587 str++;
2588 }
2589 if (*cmd == '\n')
2590 cmd++;
2591 if (*str || *cmd)
2592 return 0;
2593 return 1;
2594 }
2595
2596 struct rdev_sysfs_entry {
2597 struct attribute attr;
2598 ssize_t (*show)(struct md_rdev *, char *);
2599 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2600 };
2601
2602 static ssize_t
2603 state_show(struct md_rdev *rdev, char *page)
2604 {
2605 char *sep = "";
2606 size_t len = 0;
2607
2608 if (test_bit(Faulty, &rdev->flags) ||
2609 rdev->badblocks.unacked_exist) {
2610 len+= sprintf(page+len, "%sfaulty",sep);
2611 sep = ",";
2612 }
2613 if (test_bit(In_sync, &rdev->flags)) {
2614 len += sprintf(page+len, "%sin_sync",sep);
2615 sep = ",";
2616 }
2617 if (test_bit(WriteMostly, &rdev->flags)) {
2618 len += sprintf(page+len, "%swrite_mostly",sep);
2619 sep = ",";
2620 }
2621 if (test_bit(Blocked, &rdev->flags) ||
2622 (rdev->badblocks.unacked_exist
2623 && !test_bit(Faulty, &rdev->flags))) {
2624 len += sprintf(page+len, "%sblocked", sep);
2625 sep = ",";
2626 }
2627 if (!test_bit(Faulty, &rdev->flags) &&
2628 !test_bit(In_sync, &rdev->flags)) {
2629 len += sprintf(page+len, "%sspare", sep);
2630 sep = ",";
2631 }
2632 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2633 len += sprintf(page+len, "%swrite_error", sep);
2634 sep = ",";
2635 }
2636 if (test_bit(WantReplacement, &rdev->flags)) {
2637 len += sprintf(page+len, "%swant_replacement", sep);
2638 sep = ",";
2639 }
2640 if (test_bit(Replacement, &rdev->flags)) {
2641 len += sprintf(page+len, "%sreplacement", sep);
2642 sep = ",";
2643 }
2644
2645 return len+sprintf(page+len, "\n");
2646 }
2647
2648 static ssize_t
2649 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651 /* can write
2652 * faulty - simulates an error
2653 * remove - disconnects the device
2654 * writemostly - sets write_mostly
2655 * -writemostly - clears write_mostly
2656 * blocked - sets the Blocked flags
2657 * -blocked - clears the Blocked and possibly simulates an error
2658 * insync - sets Insync providing device isn't active
2659 * write_error - sets WriteErrorSeen
2660 * -write_error - clears WriteErrorSeen
2661 */
2662 int err = -EINVAL;
2663 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2664 md_error(rdev->mddev, rdev);
2665 if (test_bit(Faulty, &rdev->flags))
2666 err = 0;
2667 else
2668 err = -EBUSY;
2669 } else if (cmd_match(buf, "remove")) {
2670 if (rdev->raid_disk >= 0)
2671 err = -EBUSY;
2672 else {
2673 struct mddev *mddev = rdev->mddev;
2674 kick_rdev_from_array(rdev);
2675 if (mddev->pers)
2676 md_update_sb(mddev, 1);
2677 md_new_event(mddev);
2678 err = 0;
2679 }
2680 } else if (cmd_match(buf, "writemostly")) {
2681 set_bit(WriteMostly, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-writemostly")) {
2684 clear_bit(WriteMostly, &rdev->flags);
2685 err = 0;
2686 } else if (cmd_match(buf, "blocked")) {
2687 set_bit(Blocked, &rdev->flags);
2688 err = 0;
2689 } else if (cmd_match(buf, "-blocked")) {
2690 if (!test_bit(Faulty, &rdev->flags) &&
2691 rdev->badblocks.unacked_exist) {
2692 /* metadata handler doesn't understand badblocks,
2693 * so we need to fail the device
2694 */
2695 md_error(rdev->mddev, rdev);
2696 }
2697 clear_bit(Blocked, &rdev->flags);
2698 clear_bit(BlockedBadBlocks, &rdev->flags);
2699 wake_up(&rdev->blocked_wait);
2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701 md_wakeup_thread(rdev->mddev->thread);
2702
2703 err = 0;
2704 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2705 set_bit(In_sync, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "write_error")) {
2708 set_bit(WriteErrorSeen, &rdev->flags);
2709 err = 0;
2710 } else if (cmd_match(buf, "-write_error")) {
2711 clear_bit(WriteErrorSeen, &rdev->flags);
2712 err = 0;
2713 } else if (cmd_match(buf, "want_replacement")) {
2714 /* Any non-spare device that is not a replacement can
2715 * become want_replacement at any time, but we then need to
2716 * check if recovery is needed.
2717 */
2718 if (rdev->raid_disk >= 0 &&
2719 !test_bit(Replacement, &rdev->flags))
2720 set_bit(WantReplacement, &rdev->flags);
2721 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2722 md_wakeup_thread(rdev->mddev->thread);
2723 err = 0;
2724 } else if (cmd_match(buf, "-want_replacement")) {
2725 /* Clearing 'want_replacement' is always allowed.
2726 * Once replacements starts it is too late though.
2727 */
2728 err = 0;
2729 clear_bit(WantReplacement, &rdev->flags);
2730 } else if (cmd_match(buf, "replacement")) {
2731 /* Can only set a device as a replacement when array has not
2732 * yet been started. Once running, replacement is automatic
2733 * from spares, or by assigning 'slot'.
2734 */
2735 if (rdev->mddev->pers)
2736 err = -EBUSY;
2737 else {
2738 set_bit(Replacement, &rdev->flags);
2739 err = 0;
2740 }
2741 } else if (cmd_match(buf, "-replacement")) {
2742 /* Similarly, can only clear Replacement before start */
2743 if (rdev->mddev->pers)
2744 err = -EBUSY;
2745 else {
2746 clear_bit(Replacement, &rdev->flags);
2747 err = 0;
2748 }
2749 }
2750 if (!err)
2751 sysfs_notify_dirent_safe(rdev->sysfs_state);
2752 return err ? err : len;
2753 }
2754 static struct rdev_sysfs_entry rdev_state =
2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2756
2757 static ssize_t
2758 errors_show(struct md_rdev *rdev, char *page)
2759 {
2760 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2761 }
2762
2763 static ssize_t
2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766 char *e;
2767 unsigned long n = simple_strtoul(buf, &e, 10);
2768 if (*buf && (*e == 0 || *e == '\n')) {
2769 atomic_set(&rdev->corrected_errors, n);
2770 return len;
2771 }
2772 return -EINVAL;
2773 }
2774 static struct rdev_sysfs_entry rdev_errors =
2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2776
2777 static ssize_t
2778 slot_show(struct md_rdev *rdev, char *page)
2779 {
2780 if (rdev->raid_disk < 0)
2781 return sprintf(page, "none\n");
2782 else
2783 return sprintf(page, "%d\n", rdev->raid_disk);
2784 }
2785
2786 static ssize_t
2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2788 {
2789 char *e;
2790 int err;
2791 int slot = simple_strtoul(buf, &e, 10);
2792 if (strncmp(buf, "none", 4)==0)
2793 slot = -1;
2794 else if (e==buf || (*e && *e!= '\n'))
2795 return -EINVAL;
2796 if (rdev->mddev->pers && slot == -1) {
2797 /* Setting 'slot' on an active array requires also
2798 * updating the 'rd%d' link, and communicating
2799 * with the personality with ->hot_*_disk.
2800 * For now we only support removing
2801 * failed/spare devices. This normally happens automatically,
2802 * but not when the metadata is externally managed.
2803 */
2804 if (rdev->raid_disk == -1)
2805 return -EEXIST;
2806 /* personality does all needed checks */
2807 if (rdev->mddev->pers->hot_remove_disk == NULL)
2808 return -EINVAL;
2809 clear_bit(Blocked, &rdev->flags);
2810 remove_and_add_spares(rdev->mddev, rdev);
2811 if (rdev->raid_disk >= 0)
2812 return -EBUSY;
2813 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2814 md_wakeup_thread(rdev->mddev->thread);
2815 } else if (rdev->mddev->pers) {
2816 /* Activating a spare .. or possibly reactivating
2817 * if we ever get bitmaps working here.
2818 */
2819
2820 if (rdev->raid_disk != -1)
2821 return -EBUSY;
2822
2823 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2824 return -EBUSY;
2825
2826 if (rdev->mddev->pers->hot_add_disk == NULL)
2827 return -EINVAL;
2828
2829 if (slot >= rdev->mddev->raid_disks &&
2830 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2831 return -ENOSPC;
2832
2833 rdev->raid_disk = slot;
2834 if (test_bit(In_sync, &rdev->flags))
2835 rdev->saved_raid_disk = slot;
2836 else
2837 rdev->saved_raid_disk = -1;
2838 clear_bit(In_sync, &rdev->flags);
2839 clear_bit(Bitmap_sync, &rdev->flags);
2840 err = rdev->mddev->pers->
2841 hot_add_disk(rdev->mddev, rdev);
2842 if (err) {
2843 rdev->raid_disk = -1;
2844 return err;
2845 } else
2846 sysfs_notify_dirent_safe(rdev->sysfs_state);
2847 if (sysfs_link_rdev(rdev->mddev, rdev))
2848 /* failure here is OK */;
2849 /* don't wakeup anyone, leave that to userspace. */
2850 } else {
2851 if (slot >= rdev->mddev->raid_disks &&
2852 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2853 return -ENOSPC;
2854 rdev->raid_disk = slot;
2855 /* assume it is working */
2856 clear_bit(Faulty, &rdev->flags);
2857 clear_bit(WriteMostly, &rdev->flags);
2858 set_bit(In_sync, &rdev->flags);
2859 sysfs_notify_dirent_safe(rdev->sysfs_state);
2860 }
2861 return len;
2862 }
2863
2864
2865 static struct rdev_sysfs_entry rdev_slot =
2866 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2867
2868 static ssize_t
2869 offset_show(struct md_rdev *rdev, char *page)
2870 {
2871 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2872 }
2873
2874 static ssize_t
2875 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 unsigned long long offset;
2878 if (strict_strtoull(buf, 10, &offset) < 0)
2879 return -EINVAL;
2880 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2881 return -EBUSY;
2882 if (rdev->sectors && rdev->mddev->external)
2883 /* Must set offset before size, so overlap checks
2884 * can be sane */
2885 return -EBUSY;
2886 rdev->data_offset = offset;
2887 rdev->new_data_offset = offset;
2888 return len;
2889 }
2890
2891 static struct rdev_sysfs_entry rdev_offset =
2892 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2893
2894 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2895 {
2896 return sprintf(page, "%llu\n",
2897 (unsigned long long)rdev->new_data_offset);
2898 }
2899
2900 static ssize_t new_offset_store(struct md_rdev *rdev,
2901 const char *buf, size_t len)
2902 {
2903 unsigned long long new_offset;
2904 struct mddev *mddev = rdev->mddev;
2905
2906 if (strict_strtoull(buf, 10, &new_offset) < 0)
2907 return -EINVAL;
2908
2909 if (mddev->sync_thread)
2910 return -EBUSY;
2911 if (new_offset == rdev->data_offset)
2912 /* reset is always permitted */
2913 ;
2914 else if (new_offset > rdev->data_offset) {
2915 /* must not push array size beyond rdev_sectors */
2916 if (new_offset - rdev->data_offset
2917 + mddev->dev_sectors > rdev->sectors)
2918 return -E2BIG;
2919 }
2920 /* Metadata worries about other space details. */
2921
2922 /* decreasing the offset is inconsistent with a backwards
2923 * reshape.
2924 */
2925 if (new_offset < rdev->data_offset &&
2926 mddev->reshape_backwards)
2927 return -EINVAL;
2928 /* Increasing offset is inconsistent with forwards
2929 * reshape. reshape_direction should be set to
2930 * 'backwards' first.
2931 */
2932 if (new_offset > rdev->data_offset &&
2933 !mddev->reshape_backwards)
2934 return -EINVAL;
2935
2936 if (mddev->pers && mddev->persistent &&
2937 !super_types[mddev->major_version]
2938 .allow_new_offset(rdev, new_offset))
2939 return -E2BIG;
2940 rdev->new_data_offset = new_offset;
2941 if (new_offset > rdev->data_offset)
2942 mddev->reshape_backwards = 1;
2943 else if (new_offset < rdev->data_offset)
2944 mddev->reshape_backwards = 0;
2945
2946 return len;
2947 }
2948 static struct rdev_sysfs_entry rdev_new_offset =
2949 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2950
2951 static ssize_t
2952 rdev_size_show(struct md_rdev *rdev, char *page)
2953 {
2954 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2955 }
2956
2957 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2958 {
2959 /* check if two start/length pairs overlap */
2960 if (s1+l1 <= s2)
2961 return 0;
2962 if (s2+l2 <= s1)
2963 return 0;
2964 return 1;
2965 }
2966
2967 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2968 {
2969 unsigned long long blocks;
2970 sector_t new;
2971
2972 if (strict_strtoull(buf, 10, &blocks) < 0)
2973 return -EINVAL;
2974
2975 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2976 return -EINVAL; /* sector conversion overflow */
2977
2978 new = blocks * 2;
2979 if (new != blocks * 2)
2980 return -EINVAL; /* unsigned long long to sector_t overflow */
2981
2982 *sectors = new;
2983 return 0;
2984 }
2985
2986 static ssize_t
2987 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2988 {
2989 struct mddev *my_mddev = rdev->mddev;
2990 sector_t oldsectors = rdev->sectors;
2991 sector_t sectors;
2992
2993 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2994 return -EINVAL;
2995 if (rdev->data_offset != rdev->new_data_offset)
2996 return -EINVAL; /* too confusing */
2997 if (my_mddev->pers && rdev->raid_disk >= 0) {
2998 if (my_mddev->persistent) {
2999 sectors = super_types[my_mddev->major_version].
3000 rdev_size_change(rdev, sectors);
3001 if (!sectors)
3002 return -EBUSY;
3003 } else if (!sectors)
3004 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3005 rdev->data_offset;
3006 if (!my_mddev->pers->resize)
3007 /* Cannot change size for RAID0 or Linear etc */
3008 return -EINVAL;
3009 }
3010 if (sectors < my_mddev->dev_sectors)
3011 return -EINVAL; /* component must fit device */
3012
3013 rdev->sectors = sectors;
3014 if (sectors > oldsectors && my_mddev->external) {
3015 /* need to check that all other rdevs with the same ->bdev
3016 * do not overlap. We need to unlock the mddev to avoid
3017 * a deadlock. We have already changed rdev->sectors, and if
3018 * we have to change it back, we will have the lock again.
3019 */
3020 struct mddev *mddev;
3021 int overlap = 0;
3022 struct list_head *tmp;
3023
3024 mddev_unlock(my_mddev);
3025 for_each_mddev(mddev, tmp) {
3026 struct md_rdev *rdev2;
3027
3028 mddev_lock(mddev);
3029 rdev_for_each(rdev2, mddev)
3030 if (rdev->bdev == rdev2->bdev &&
3031 rdev != rdev2 &&
3032 overlaps(rdev->data_offset, rdev->sectors,
3033 rdev2->data_offset,
3034 rdev2->sectors)) {
3035 overlap = 1;
3036 break;
3037 }
3038 mddev_unlock(mddev);
3039 if (overlap) {
3040 mddev_put(mddev);
3041 break;
3042 }
3043 }
3044 mddev_lock(my_mddev);
3045 if (overlap) {
3046 /* Someone else could have slipped in a size
3047 * change here, but doing so is just silly.
3048 * We put oldsectors back because we *know* it is
3049 * safe, and trust userspace not to race with
3050 * itself
3051 */
3052 rdev->sectors = oldsectors;
3053 return -EBUSY;
3054 }
3055 }
3056 return len;
3057 }
3058
3059 static struct rdev_sysfs_entry rdev_size =
3060 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3061
3062
3063 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3064 {
3065 unsigned long long recovery_start = rdev->recovery_offset;
3066
3067 if (test_bit(In_sync, &rdev->flags) ||
3068 recovery_start == MaxSector)
3069 return sprintf(page, "none\n");
3070
3071 return sprintf(page, "%llu\n", recovery_start);
3072 }
3073
3074 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3075 {
3076 unsigned long long recovery_start;
3077
3078 if (cmd_match(buf, "none"))
3079 recovery_start = MaxSector;
3080 else if (strict_strtoull(buf, 10, &recovery_start))
3081 return -EINVAL;
3082
3083 if (rdev->mddev->pers &&
3084 rdev->raid_disk >= 0)
3085 return -EBUSY;
3086
3087 rdev->recovery_offset = recovery_start;
3088 if (recovery_start == MaxSector)
3089 set_bit(In_sync, &rdev->flags);
3090 else
3091 clear_bit(In_sync, &rdev->flags);
3092 return len;
3093 }
3094
3095 static struct rdev_sysfs_entry rdev_recovery_start =
3096 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3097
3098
3099 static ssize_t
3100 badblocks_show(struct badblocks *bb, char *page, int unack);
3101 static ssize_t
3102 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3103
3104 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3105 {
3106 return badblocks_show(&rdev->badblocks, page, 0);
3107 }
3108 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3109 {
3110 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3111 /* Maybe that ack was all we needed */
3112 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3113 wake_up(&rdev->blocked_wait);
3114 return rv;
3115 }
3116 static struct rdev_sysfs_entry rdev_bad_blocks =
3117 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3118
3119
3120 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3121 {
3122 return badblocks_show(&rdev->badblocks, page, 1);
3123 }
3124 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3125 {
3126 return badblocks_store(&rdev->badblocks, page, len, 1);
3127 }
3128 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3129 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3130
3131 static struct attribute *rdev_default_attrs[] = {
3132 &rdev_state.attr,
3133 &rdev_errors.attr,
3134 &rdev_slot.attr,
3135 &rdev_offset.attr,
3136 &rdev_new_offset.attr,
3137 &rdev_size.attr,
3138 &rdev_recovery_start.attr,
3139 &rdev_bad_blocks.attr,
3140 &rdev_unack_bad_blocks.attr,
3141 NULL,
3142 };
3143 static ssize_t
3144 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3145 {
3146 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3147 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3148 struct mddev *mddev = rdev->mddev;
3149 ssize_t rv;
3150
3151 if (!entry->show)
3152 return -EIO;
3153
3154 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3155 if (!rv) {
3156 if (rdev->mddev == NULL)
3157 rv = -EBUSY;
3158 else
3159 rv = entry->show(rdev, page);
3160 mddev_unlock(mddev);
3161 }
3162 return rv;
3163 }
3164
3165 static ssize_t
3166 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3167 const char *page, size_t length)
3168 {
3169 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3170 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3171 ssize_t rv;
3172 struct mddev *mddev = rdev->mddev;
3173
3174 if (!entry->store)
3175 return -EIO;
3176 if (!capable(CAP_SYS_ADMIN))
3177 return -EACCES;
3178 rv = mddev ? mddev_lock(mddev): -EBUSY;
3179 if (!rv) {
3180 if (rdev->mddev == NULL)
3181 rv = -EBUSY;
3182 else
3183 rv = entry->store(rdev, page, length);
3184 mddev_unlock(mddev);
3185 }
3186 return rv;
3187 }
3188
3189 static void rdev_free(struct kobject *ko)
3190 {
3191 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3192 kfree(rdev);
3193 }
3194 static const struct sysfs_ops rdev_sysfs_ops = {
3195 .show = rdev_attr_show,
3196 .store = rdev_attr_store,
3197 };
3198 static struct kobj_type rdev_ktype = {
3199 .release = rdev_free,
3200 .sysfs_ops = &rdev_sysfs_ops,
3201 .default_attrs = rdev_default_attrs,
3202 };
3203
3204 int md_rdev_init(struct md_rdev *rdev)
3205 {
3206 rdev->desc_nr = -1;
3207 rdev->saved_raid_disk = -1;
3208 rdev->raid_disk = -1;
3209 rdev->flags = 0;
3210 rdev->data_offset = 0;
3211 rdev->new_data_offset = 0;
3212 rdev->sb_events = 0;
3213 rdev->last_read_error.tv_sec = 0;
3214 rdev->last_read_error.tv_nsec = 0;
3215 rdev->sb_loaded = 0;
3216 rdev->bb_page = NULL;
3217 atomic_set(&rdev->nr_pending, 0);
3218 atomic_set(&rdev->read_errors, 0);
3219 atomic_set(&rdev->corrected_errors, 0);
3220
3221 INIT_LIST_HEAD(&rdev->same_set);
3222 init_waitqueue_head(&rdev->blocked_wait);
3223
3224 /* Add space to store bad block list.
3225 * This reserves the space even on arrays where it cannot
3226 * be used - I wonder if that matters
3227 */
3228 rdev->badblocks.count = 0;
3229 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3230 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3231 seqlock_init(&rdev->badblocks.lock);
3232 if (rdev->badblocks.page == NULL)
3233 return -ENOMEM;
3234
3235 return 0;
3236 }
3237 EXPORT_SYMBOL_GPL(md_rdev_init);
3238 /*
3239 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3240 *
3241 * mark the device faulty if:
3242 *
3243 * - the device is nonexistent (zero size)
3244 * - the device has no valid superblock
3245 *
3246 * a faulty rdev _never_ has rdev->sb set.
3247 */
3248 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3249 {
3250 char b[BDEVNAME_SIZE];
3251 int err;
3252 struct md_rdev *rdev;
3253 sector_t size;
3254
3255 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3256 if (!rdev) {
3257 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3258 return ERR_PTR(-ENOMEM);
3259 }
3260
3261 err = md_rdev_init(rdev);
3262 if (err)
3263 goto abort_free;
3264 err = alloc_disk_sb(rdev);
3265 if (err)
3266 goto abort_free;
3267
3268 err = lock_rdev(rdev, newdev, super_format == -2);
3269 if (err)
3270 goto abort_free;
3271
3272 kobject_init(&rdev->kobj, &rdev_ktype);
3273
3274 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3275 if (!size) {
3276 printk(KERN_WARNING
3277 "md: %s has zero or unknown size, marking faulty!\n",
3278 bdevname(rdev->bdev,b));
3279 err = -EINVAL;
3280 goto abort_free;
3281 }
3282
3283 if (super_format >= 0) {
3284 err = super_types[super_format].
3285 load_super(rdev, NULL, super_minor);
3286 if (err == -EINVAL) {
3287 printk(KERN_WARNING
3288 "md: %s does not have a valid v%d.%d "
3289 "superblock, not importing!\n",
3290 bdevname(rdev->bdev,b),
3291 super_format, super_minor);
3292 goto abort_free;
3293 }
3294 if (err < 0) {
3295 printk(KERN_WARNING
3296 "md: could not read %s's sb, not importing!\n",
3297 bdevname(rdev->bdev,b));
3298 goto abort_free;
3299 }
3300 }
3301
3302 return rdev;
3303
3304 abort_free:
3305 if (rdev->bdev)
3306 unlock_rdev(rdev);
3307 md_rdev_clear(rdev);
3308 kfree(rdev);
3309 return ERR_PTR(err);
3310 }
3311
3312 /*
3313 * Check a full RAID array for plausibility
3314 */
3315
3316
3317 static void analyze_sbs(struct mddev * mddev)
3318 {
3319 int i;
3320 struct md_rdev *rdev, *freshest, *tmp;
3321 char b[BDEVNAME_SIZE];
3322
3323 freshest = NULL;
3324 rdev_for_each_safe(rdev, tmp, mddev)
3325 switch (super_types[mddev->major_version].
3326 load_super(rdev, freshest, mddev->minor_version)) {
3327 case 1:
3328 freshest = rdev;
3329 break;
3330 case 0:
3331 break;
3332 default:
3333 printk( KERN_ERR \
3334 "md: fatal superblock inconsistency in %s"
3335 " -- removing from array\n",
3336 bdevname(rdev->bdev,b));
3337 kick_rdev_from_array(rdev);
3338 }
3339
3340
3341 super_types[mddev->major_version].
3342 validate_super(mddev, freshest);
3343
3344 i = 0;
3345 rdev_for_each_safe(rdev, tmp, mddev) {
3346 if (mddev->max_disks &&
3347 (rdev->desc_nr >= mddev->max_disks ||
3348 i > mddev->max_disks)) {
3349 printk(KERN_WARNING
3350 "md: %s: %s: only %d devices permitted\n",
3351 mdname(mddev), bdevname(rdev->bdev, b),
3352 mddev->max_disks);
3353 kick_rdev_from_array(rdev);
3354 continue;
3355 }
3356 if (rdev != freshest)
3357 if (super_types[mddev->major_version].
3358 validate_super(mddev, rdev)) {
3359 printk(KERN_WARNING "md: kicking non-fresh %s"
3360 " from array!\n",
3361 bdevname(rdev->bdev,b));
3362 kick_rdev_from_array(rdev);
3363 continue;
3364 }
3365 if (mddev->level == LEVEL_MULTIPATH) {
3366 rdev->desc_nr = i++;
3367 rdev->raid_disk = rdev->desc_nr;
3368 set_bit(In_sync, &rdev->flags);
3369 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3370 rdev->raid_disk = -1;
3371 clear_bit(In_sync, &rdev->flags);
3372 }
3373 }
3374 }
3375
3376 /* Read a fixed-point number.
3377 * Numbers in sysfs attributes should be in "standard" units where
3378 * possible, so time should be in seconds.
3379 * However we internally use a a much smaller unit such as
3380 * milliseconds or jiffies.
3381 * This function takes a decimal number with a possible fractional
3382 * component, and produces an integer which is the result of
3383 * multiplying that number by 10^'scale'.
3384 * all without any floating-point arithmetic.
3385 */
3386 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3387 {
3388 unsigned long result = 0;
3389 long decimals = -1;
3390 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3391 if (*cp == '.')
3392 decimals = 0;
3393 else if (decimals < scale) {
3394 unsigned int value;
3395 value = *cp - '0';
3396 result = result * 10 + value;
3397 if (decimals >= 0)
3398 decimals++;
3399 }
3400 cp++;
3401 }
3402 if (*cp == '\n')
3403 cp++;
3404 if (*cp)
3405 return -EINVAL;
3406 if (decimals < 0)
3407 decimals = 0;
3408 while (decimals < scale) {
3409 result *= 10;
3410 decimals ++;
3411 }
3412 *res = result;
3413 return 0;
3414 }
3415
3416
3417 static void md_safemode_timeout(unsigned long data);
3418
3419 static ssize_t
3420 safe_delay_show(struct mddev *mddev, char *page)
3421 {
3422 int msec = (mddev->safemode_delay*1000)/HZ;
3423 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3424 }
3425 static ssize_t
3426 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3427 {
3428 unsigned long msec;
3429
3430 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3431 return -EINVAL;
3432 if (msec == 0)
3433 mddev->safemode_delay = 0;
3434 else {
3435 unsigned long old_delay = mddev->safemode_delay;
3436 mddev->safemode_delay = (msec*HZ)/1000;
3437 if (mddev->safemode_delay == 0)
3438 mddev->safemode_delay = 1;
3439 if (mddev->safemode_delay < old_delay)
3440 md_safemode_timeout((unsigned long)mddev);
3441 }
3442 return len;
3443 }
3444 static struct md_sysfs_entry md_safe_delay =
3445 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3446
3447 static ssize_t
3448 level_show(struct mddev *mddev, char *page)
3449 {
3450 struct md_personality *p = mddev->pers;
3451 if (p)
3452 return sprintf(page, "%s\n", p->name);
3453 else if (mddev->clevel[0])
3454 return sprintf(page, "%s\n", mddev->clevel);
3455 else if (mddev->level != LEVEL_NONE)
3456 return sprintf(page, "%d\n", mddev->level);
3457 else
3458 return 0;
3459 }
3460
3461 static ssize_t
3462 level_store(struct mddev *mddev, const char *buf, size_t len)
3463 {
3464 char clevel[16];
3465 ssize_t rv = len;
3466 struct md_personality *pers;
3467 long level;
3468 void *priv;
3469 struct md_rdev *rdev;
3470
3471 if (mddev->pers == NULL) {
3472 if (len == 0)
3473 return 0;
3474 if (len >= sizeof(mddev->clevel))
3475 return -ENOSPC;
3476 strncpy(mddev->clevel, buf, len);
3477 if (mddev->clevel[len-1] == '\n')
3478 len--;
3479 mddev->clevel[len] = 0;
3480 mddev->level = LEVEL_NONE;
3481 return rv;
3482 }
3483
3484 /* request to change the personality. Need to ensure:
3485 * - array is not engaged in resync/recovery/reshape
3486 * - old personality can be suspended
3487 * - new personality will access other array.
3488 */
3489
3490 if (mddev->sync_thread ||
3491 mddev->reshape_position != MaxSector ||
3492 mddev->sysfs_active)
3493 return -EBUSY;
3494
3495 if (!mddev->pers->quiesce) {
3496 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3497 mdname(mddev), mddev->pers->name);
3498 return -EINVAL;
3499 }
3500
3501 /* Now find the new personality */
3502 if (len == 0 || len >= sizeof(clevel))
3503 return -EINVAL;
3504 strncpy(clevel, buf, len);
3505 if (clevel[len-1] == '\n')
3506 len--;
3507 clevel[len] = 0;
3508 if (strict_strtol(clevel, 10, &level))
3509 level = LEVEL_NONE;
3510
3511 if (request_module("md-%s", clevel) != 0)
3512 request_module("md-level-%s", clevel);
3513 spin_lock(&pers_lock);
3514 pers = find_pers(level, clevel);
3515 if (!pers || !try_module_get(pers->owner)) {
3516 spin_unlock(&pers_lock);
3517 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3518 return -EINVAL;
3519 }
3520 spin_unlock(&pers_lock);
3521
3522 if (pers == mddev->pers) {
3523 /* Nothing to do! */
3524 module_put(pers->owner);
3525 return rv;
3526 }
3527 if (!pers->takeover) {
3528 module_put(pers->owner);
3529 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3530 mdname(mddev), clevel);
3531 return -EINVAL;
3532 }
3533
3534 rdev_for_each(rdev, mddev)
3535 rdev->new_raid_disk = rdev->raid_disk;
3536
3537 /* ->takeover must set new_* and/or delta_disks
3538 * if it succeeds, and may set them when it fails.
3539 */
3540 priv = pers->takeover(mddev);
3541 if (IS_ERR(priv)) {
3542 mddev->new_level = mddev->level;
3543 mddev->new_layout = mddev->layout;
3544 mddev->new_chunk_sectors = mddev->chunk_sectors;
3545 mddev->raid_disks -= mddev->delta_disks;
3546 mddev->delta_disks = 0;
3547 mddev->reshape_backwards = 0;
3548 module_put(pers->owner);
3549 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3550 mdname(mddev), clevel);
3551 return PTR_ERR(priv);
3552 }
3553
3554 /* Looks like we have a winner */
3555 mddev_suspend(mddev);
3556 mddev->pers->stop(mddev);
3557
3558 if (mddev->pers->sync_request == NULL &&
3559 pers->sync_request != NULL) {
3560 /* need to add the md_redundancy_group */
3561 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3562 printk(KERN_WARNING
3563 "md: cannot register extra attributes for %s\n",
3564 mdname(mddev));
3565 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3566 }
3567 if (mddev->pers->sync_request != NULL &&
3568 pers->sync_request == NULL) {
3569 /* need to remove the md_redundancy_group */
3570 if (mddev->to_remove == NULL)
3571 mddev->to_remove = &md_redundancy_group;
3572 }
3573
3574 if (mddev->pers->sync_request == NULL &&
3575 mddev->external) {
3576 /* We are converting from a no-redundancy array
3577 * to a redundancy array and metadata is managed
3578 * externally so we need to be sure that writes
3579 * won't block due to a need to transition
3580 * clean->dirty
3581 * until external management is started.
3582 */
3583 mddev->in_sync = 0;
3584 mddev->safemode_delay = 0;
3585 mddev->safemode = 0;
3586 }
3587
3588 rdev_for_each(rdev, mddev) {
3589 if (rdev->raid_disk < 0)
3590 continue;
3591 if (rdev->new_raid_disk >= mddev->raid_disks)
3592 rdev->new_raid_disk = -1;
3593 if (rdev->new_raid_disk == rdev->raid_disk)
3594 continue;
3595 sysfs_unlink_rdev(mddev, rdev);
3596 }
3597 rdev_for_each(rdev, mddev) {
3598 if (rdev->raid_disk < 0)
3599 continue;
3600 if (rdev->new_raid_disk == rdev->raid_disk)
3601 continue;
3602 rdev->raid_disk = rdev->new_raid_disk;
3603 if (rdev->raid_disk < 0)
3604 clear_bit(In_sync, &rdev->flags);
3605 else {
3606 if (sysfs_link_rdev(mddev, rdev))
3607 printk(KERN_WARNING "md: cannot register rd%d"
3608 " for %s after level change\n",
3609 rdev->raid_disk, mdname(mddev));
3610 }
3611 }
3612
3613 module_put(mddev->pers->owner);
3614 mddev->pers = pers;
3615 mddev->private = priv;
3616 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3617 mddev->level = mddev->new_level;
3618 mddev->layout = mddev->new_layout;
3619 mddev->chunk_sectors = mddev->new_chunk_sectors;
3620 mddev->delta_disks = 0;
3621 mddev->reshape_backwards = 0;
3622 mddev->degraded = 0;
3623 if (mddev->pers->sync_request == NULL) {
3624 /* this is now an array without redundancy, so
3625 * it must always be in_sync
3626 */
3627 mddev->in_sync = 1;
3628 del_timer_sync(&mddev->safemode_timer);
3629 }
3630 blk_set_stacking_limits(&mddev->queue->limits);
3631 pers->run(mddev);
3632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 mddev_resume(mddev);
3634 sysfs_notify(&mddev->kobj, NULL, "level");
3635 md_new_event(mddev);
3636 return rv;
3637 }
3638
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3641
3642
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3645 {
3646 /* just a number, not meaningful for all levels */
3647 if (mddev->reshape_position != MaxSector &&
3648 mddev->layout != mddev->new_layout)
3649 return sprintf(page, "%d (%d)\n",
3650 mddev->new_layout, mddev->layout);
3651 return sprintf(page, "%d\n", mddev->layout);
3652 }
3653
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3656 {
3657 char *e;
3658 unsigned long n = simple_strtoul(buf, &e, 10);
3659
3660 if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3662
3663 if (mddev->pers) {
3664 int err;
3665 if (mddev->pers->check_reshape == NULL)
3666 return -EBUSY;
3667 mddev->new_layout = n;
3668 err = mddev->pers->check_reshape(mddev);
3669 if (err) {
3670 mddev->new_layout = mddev->layout;
3671 return err;
3672 }
3673 } else {
3674 mddev->new_layout = n;
3675 if (mddev->reshape_position == MaxSector)
3676 mddev->layout = n;
3677 }
3678 return len;
3679 }
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3682
3683
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3686 {
3687 if (mddev->raid_disks == 0)
3688 return 0;
3689 if (mddev->reshape_position != MaxSector &&
3690 mddev->delta_disks != 0)
3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692 mddev->raid_disks - mddev->delta_disks);
3693 return sprintf(page, "%d\n", mddev->raid_disks);
3694 }
3695
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3697
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3700 {
3701 char *e;
3702 int rv = 0;
3703 unsigned long n = simple_strtoul(buf, &e, 10);
3704
3705 if (!*buf || (*e && *e != '\n'))
3706 return -EINVAL;
3707
3708 if (mddev->pers)
3709 rv = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3713
3714 rdev_for_each(rdev, mddev) {
3715 if (olddisks < n &&
3716 rdev->data_offset < rdev->new_data_offset)
3717 return -EINVAL;
3718 if (olddisks > n &&
3719 rdev->data_offset > rdev->new_data_offset)
3720 return -EINVAL;
3721 }
3722 mddev->delta_disks = n - olddisks;
3723 mddev->raid_disks = n;
3724 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725 } else
3726 mddev->raid_disks = n;
3727 return rv ? rv : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 char *e;
3747 unsigned long n = simple_strtoul(buf, &e, 10);
3748
3749 if (!*buf || (*e && *e != '\n'))
3750 return -EINVAL;
3751
3752 if (mddev->pers) {
3753 int err;
3754 if (mddev->pers->check_reshape == NULL)
3755 return -EBUSY;
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err) {
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 return err;
3761 }
3762 } else {
3763 mddev->new_chunk_sectors = n >> 9;
3764 if (mddev->reshape_position == MaxSector)
3765 mddev->chunk_sectors = n >> 9;
3766 }
3767 return len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783 char *e;
3784 unsigned long long n = simple_strtoull(buf, &e, 10);
3785
3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787 return -EBUSY;
3788 if (cmd_match(buf, "none"))
3789 n = MaxSector;
3790 else if (!*buf || (*e && *e != '\n'))
3791 return -EINVAL;
3792
3793 mddev->recovery_cp = n;
3794 if (mddev->pers)
3795 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3796 return len;
3797 }
3798 static struct md_sysfs_entry md_resync_start =
3799 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3800
3801 /*
3802 * The array state can be:
3803 *
3804 * clear
3805 * No devices, no size, no level
3806 * Equivalent to STOP_ARRAY ioctl
3807 * inactive
3808 * May have some settings, but array is not active
3809 * all IO results in error
3810 * When written, doesn't tear down array, but just stops it
3811 * suspended (not supported yet)
3812 * All IO requests will block. The array can be reconfigured.
3813 * Writing this, if accepted, will block until array is quiescent
3814 * readonly
3815 * no resync can happen. no superblocks get written.
3816 * write requests fail
3817 * read-auto
3818 * like readonly, but behaves like 'clean' on a write request.
3819 *
3820 * clean - no pending writes, but otherwise active.
3821 * When written to inactive array, starts without resync
3822 * If a write request arrives then
3823 * if metadata is known, mark 'dirty' and switch to 'active'.
3824 * if not known, block and switch to write-pending
3825 * If written to an active array that has pending writes, then fails.
3826 * active
3827 * fully active: IO and resync can be happening.
3828 * When written to inactive array, starts with resync
3829 *
3830 * write-pending
3831 * clean, but writes are blocked waiting for 'active' to be written.
3832 *
3833 * active-idle
3834 * like active, but no writes have been seen for a while (100msec).
3835 *
3836 */
3837 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3838 write_pending, active_idle, bad_word};
3839 static char *array_states[] = {
3840 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3841 "write-pending", "active-idle", NULL };
3842
3843 static int match_word(const char *word, char **list)
3844 {
3845 int n;
3846 for (n=0; list[n]; n++)
3847 if (cmd_match(word, list[n]))
3848 break;
3849 return n;
3850 }
3851
3852 static ssize_t
3853 array_state_show(struct mddev *mddev, char *page)
3854 {
3855 enum array_state st = inactive;
3856
3857 if (mddev->pers)
3858 switch(mddev->ro) {
3859 case 1:
3860 st = readonly;
3861 break;
3862 case 2:
3863 st = read_auto;
3864 break;
3865 case 0:
3866 if (mddev->in_sync)
3867 st = clean;
3868 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3869 st = write_pending;
3870 else if (mddev->safemode)
3871 st = active_idle;
3872 else
3873 st = active;
3874 }
3875 else {
3876 if (list_empty(&mddev->disks) &&
3877 mddev->raid_disks == 0 &&
3878 mddev->dev_sectors == 0)
3879 st = clear;
3880 else
3881 st = inactive;
3882 }
3883 return sprintf(page, "%s\n", array_states[st]);
3884 }
3885
3886 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3887 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3888 static int do_md_run(struct mddev * mddev);
3889 static int restart_array(struct mddev *mddev);
3890
3891 static ssize_t
3892 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3893 {
3894 int err = -EINVAL;
3895 enum array_state st = match_word(buf, array_states);
3896 switch(st) {
3897 case bad_word:
3898 break;
3899 case clear:
3900 /* stopping an active array */
3901 err = do_md_stop(mddev, 0, NULL);
3902 break;
3903 case inactive:
3904 /* stopping an active array */
3905 if (mddev->pers)
3906 err = do_md_stop(mddev, 2, NULL);
3907 else
3908 err = 0; /* already inactive */
3909 break;
3910 case suspended:
3911 break; /* not supported yet */
3912 case readonly:
3913 if (mddev->pers)
3914 err = md_set_readonly(mddev, NULL);
3915 else {
3916 mddev->ro = 1;
3917 set_disk_ro(mddev->gendisk, 1);
3918 err = do_md_run(mddev);
3919 }
3920 break;
3921 case read_auto:
3922 if (mddev->pers) {
3923 if (mddev->ro == 0)
3924 err = md_set_readonly(mddev, NULL);
3925 else if (mddev->ro == 1)
3926 err = restart_array(mddev);
3927 if (err == 0) {
3928 mddev->ro = 2;
3929 set_disk_ro(mddev->gendisk, 0);
3930 }
3931 } else {
3932 mddev->ro = 2;
3933 err = do_md_run(mddev);
3934 }
3935 break;
3936 case clean:
3937 if (mddev->pers) {
3938 restart_array(mddev);
3939 spin_lock_irq(&mddev->write_lock);
3940 if (atomic_read(&mddev->writes_pending) == 0) {
3941 if (mddev->in_sync == 0) {
3942 mddev->in_sync = 1;
3943 if (mddev->safemode == 1)
3944 mddev->safemode = 0;
3945 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3946 }
3947 err = 0;
3948 } else
3949 err = -EBUSY;
3950 spin_unlock_irq(&mddev->write_lock);
3951 } else
3952 err = -EINVAL;
3953 break;
3954 case active:
3955 if (mddev->pers) {
3956 restart_array(mddev);
3957 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3958 wake_up(&mddev->sb_wait);
3959 err = 0;
3960 } else {
3961 mddev->ro = 0;
3962 set_disk_ro(mddev->gendisk, 0);
3963 err = do_md_run(mddev);
3964 }
3965 break;
3966 case write_pending:
3967 case active_idle:
3968 /* these cannot be set */
3969 break;
3970 }
3971 if (err)
3972 return err;
3973 else {
3974 if (mddev->hold_active == UNTIL_IOCTL)
3975 mddev->hold_active = 0;
3976 sysfs_notify_dirent_safe(mddev->sysfs_state);
3977 return len;
3978 }
3979 }
3980 static struct md_sysfs_entry md_array_state =
3981 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3982
3983 static ssize_t
3984 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3985 return sprintf(page, "%d\n",
3986 atomic_read(&mddev->max_corr_read_errors));
3987 }
3988
3989 static ssize_t
3990 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3991 {
3992 char *e;
3993 unsigned long n = simple_strtoul(buf, &e, 10);
3994
3995 if (*buf && (*e == 0 || *e == '\n')) {
3996 atomic_set(&mddev->max_corr_read_errors, n);
3997 return len;
3998 }
3999 return -EINVAL;
4000 }
4001
4002 static struct md_sysfs_entry max_corr_read_errors =
4003 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4004 max_corrected_read_errors_store);
4005
4006 static ssize_t
4007 null_show(struct mddev *mddev, char *page)
4008 {
4009 return -EINVAL;
4010 }
4011
4012 static ssize_t
4013 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4014 {
4015 /* buf must be %d:%d\n? giving major and minor numbers */
4016 /* The new device is added to the array.
4017 * If the array has a persistent superblock, we read the
4018 * superblock to initialise info and check validity.
4019 * Otherwise, only checking done is that in bind_rdev_to_array,
4020 * which mainly checks size.
4021 */
4022 char *e;
4023 int major = simple_strtoul(buf, &e, 10);
4024 int minor;
4025 dev_t dev;
4026 struct md_rdev *rdev;
4027 int err;
4028
4029 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4030 return -EINVAL;
4031 minor = simple_strtoul(e+1, &e, 10);
4032 if (*e && *e != '\n')
4033 return -EINVAL;
4034 dev = MKDEV(major, minor);
4035 if (major != MAJOR(dev) ||
4036 minor != MINOR(dev))
4037 return -EOVERFLOW;
4038
4039
4040 if (mddev->persistent) {
4041 rdev = md_import_device(dev, mddev->major_version,
4042 mddev->minor_version);
4043 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4044 struct md_rdev *rdev0
4045 = list_entry(mddev->disks.next,
4046 struct md_rdev, same_set);
4047 err = super_types[mddev->major_version]
4048 .load_super(rdev, rdev0, mddev->minor_version);
4049 if (err < 0)
4050 goto out;
4051 }
4052 } else if (mddev->external)
4053 rdev = md_import_device(dev, -2, -1);
4054 else
4055 rdev = md_import_device(dev, -1, -1);
4056
4057 if (IS_ERR(rdev))
4058 return PTR_ERR(rdev);
4059 err = bind_rdev_to_array(rdev, mddev);
4060 out:
4061 if (err)
4062 export_rdev(rdev);
4063 return err ? err : len;
4064 }
4065
4066 static struct md_sysfs_entry md_new_device =
4067 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4068
4069 static ssize_t
4070 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4071 {
4072 char *end;
4073 unsigned long chunk, end_chunk;
4074
4075 if (!mddev->bitmap)
4076 goto out;
4077 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4078 while (*buf) {
4079 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4080 if (buf == end) break;
4081 if (*end == '-') { /* range */
4082 buf = end + 1;
4083 end_chunk = simple_strtoul(buf, &end, 0);
4084 if (buf == end) break;
4085 }
4086 if (*end && !isspace(*end)) break;
4087 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4088 buf = skip_spaces(end);
4089 }
4090 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4091 out:
4092 return len;
4093 }
4094
4095 static struct md_sysfs_entry md_bitmap =
4096 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4097
4098 static ssize_t
4099 size_show(struct mddev *mddev, char *page)
4100 {
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long)mddev->dev_sectors / 2);
4103 }
4104
4105 static int update_size(struct mddev *mddev, sector_t num_sectors);
4106
4107 static ssize_t
4108 size_store(struct mddev *mddev, const char *buf, size_t len)
4109 {
4110 /* If array is inactive, we can reduce the component size, but
4111 * not increase it (except from 0).
4112 * If array is active, we can try an on-line resize
4113 */
4114 sector_t sectors;
4115 int err = strict_blocks_to_sectors(buf, &sectors);
4116
4117 if (err < 0)
4118 return err;
4119 if (mddev->pers) {
4120 err = update_size(mddev, sectors);
4121 md_update_sb(mddev, 1);
4122 } else {
4123 if (mddev->dev_sectors == 0 ||
4124 mddev->dev_sectors > sectors)
4125 mddev->dev_sectors = sectors;
4126 else
4127 err = -ENOSPC;
4128 }
4129 return err ? err : len;
4130 }
4131
4132 static struct md_sysfs_entry md_size =
4133 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4134
4135
4136 /* Metadata version.
4137 * This is one of
4138 * 'none' for arrays with no metadata (good luck...)
4139 * 'external' for arrays with externally managed metadata,
4140 * or N.M for internally known formats
4141 */
4142 static ssize_t
4143 metadata_show(struct mddev *mddev, char *page)
4144 {
4145 if (mddev->persistent)
4146 return sprintf(page, "%d.%d\n",
4147 mddev->major_version, mddev->minor_version);
4148 else if (mddev->external)
4149 return sprintf(page, "external:%s\n", mddev->metadata_type);
4150 else
4151 return sprintf(page, "none\n");
4152 }
4153
4154 static ssize_t
4155 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4156 {
4157 int major, minor;
4158 char *e;
4159 /* Changing the details of 'external' metadata is
4160 * always permitted. Otherwise there must be
4161 * no devices attached to the array.
4162 */
4163 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4164 ;
4165 else if (!list_empty(&mddev->disks))
4166 return -EBUSY;
4167
4168 if (cmd_match(buf, "none")) {
4169 mddev->persistent = 0;
4170 mddev->external = 0;
4171 mddev->major_version = 0;
4172 mddev->minor_version = 90;
4173 return len;
4174 }
4175 if (strncmp(buf, "external:", 9) == 0) {
4176 size_t namelen = len-9;
4177 if (namelen >= sizeof(mddev->metadata_type))
4178 namelen = sizeof(mddev->metadata_type)-1;
4179 strncpy(mddev->metadata_type, buf+9, namelen);
4180 mddev->metadata_type[namelen] = 0;
4181 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4182 mddev->metadata_type[--namelen] = 0;
4183 mddev->persistent = 0;
4184 mddev->external = 1;
4185 mddev->major_version = 0;
4186 mddev->minor_version = 90;
4187 return len;
4188 }
4189 major = simple_strtoul(buf, &e, 10);
4190 if (e==buf || *e != '.')
4191 return -EINVAL;
4192 buf = e+1;
4193 minor = simple_strtoul(buf, &e, 10);
4194 if (e==buf || (*e && *e != '\n') )
4195 return -EINVAL;
4196 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4197 return -ENOENT;
4198 mddev->major_version = major;
4199 mddev->minor_version = minor;
4200 mddev->persistent = 1;
4201 mddev->external = 0;
4202 return len;
4203 }
4204
4205 static struct md_sysfs_entry md_metadata =
4206 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4207
4208 static ssize_t
4209 action_show(struct mddev *mddev, char *page)
4210 {
4211 char *type = "idle";
4212 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4213 type = "frozen";
4214 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4215 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4217 type = "reshape";
4218 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4219 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4220 type = "resync";
4221 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4222 type = "check";
4223 else
4224 type = "repair";
4225 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4226 type = "recover";
4227 }
4228 return sprintf(page, "%s\n", type);
4229 }
4230
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4233 {
4234 if (!mddev->pers || !mddev->pers->sync_request)
4235 return -EINVAL;
4236
4237 if (cmd_match(page, "frozen"))
4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239 else
4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4241
4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243 if (mddev->sync_thread) {
4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245 md_reap_sync_thread(mddev);
4246 }
4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249 return -EBUSY;
4250 else if (cmd_match(page, "resync"))
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 else if (cmd_match(page, "recover")) {
4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 } else if (cmd_match(page, "reshape")) {
4256 int err;
4257 if (mddev->pers->start_reshape == NULL)
4258 return -EINVAL;
4259 err = mddev->pers->start_reshape(mddev);
4260 if (err)
4261 return err;
4262 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263 } else {
4264 if (cmd_match(page, "check"))
4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 else if (!cmd_match(page, "repair"))
4267 return -EINVAL;
4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4270 }
4271 if (mddev->ro == 2) {
4272 /* A write to sync_action is enough to justify
4273 * canceling read-auto mode
4274 */
4275 mddev->ro = 0;
4276 md_wakeup_thread(mddev->sync_thread);
4277 }
4278 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4279 md_wakeup_thread(mddev->thread);
4280 sysfs_notify_dirent_safe(mddev->sysfs_action);
4281 return len;
4282 }
4283
4284 static ssize_t
4285 mismatch_cnt_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%llu\n",
4288 (unsigned long long)
4289 atomic64_read(&mddev->resync_mismatches));
4290 }
4291
4292 static struct md_sysfs_entry md_scan_mode =
4293 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4294
4295
4296 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4297
4298 static ssize_t
4299 sync_min_show(struct mddev *mddev, char *page)
4300 {
4301 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4302 mddev->sync_speed_min ? "local": "system");
4303 }
4304
4305 static ssize_t
4306 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4307 {
4308 int min;
4309 char *e;
4310 if (strncmp(buf, "system", 6)==0) {
4311 mddev->sync_speed_min = 0;
4312 return len;
4313 }
4314 min = simple_strtoul(buf, &e, 10);
4315 if (buf == e || (*e && *e != '\n') || min <= 0)
4316 return -EINVAL;
4317 mddev->sync_speed_min = min;
4318 return len;
4319 }
4320
4321 static struct md_sysfs_entry md_sync_min =
4322 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4323
4324 static ssize_t
4325 sync_max_show(struct mddev *mddev, char *page)
4326 {
4327 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4328 mddev->sync_speed_max ? "local": "system");
4329 }
4330
4331 static ssize_t
4332 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4333 {
4334 int max;
4335 char *e;
4336 if (strncmp(buf, "system", 6)==0) {
4337 mddev->sync_speed_max = 0;
4338 return len;
4339 }
4340 max = simple_strtoul(buf, &e, 10);
4341 if (buf == e || (*e && *e != '\n') || max <= 0)
4342 return -EINVAL;
4343 mddev->sync_speed_max = max;
4344 return len;
4345 }
4346
4347 static struct md_sysfs_entry md_sync_max =
4348 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4349
4350 static ssize_t
4351 degraded_show(struct mddev *mddev, char *page)
4352 {
4353 return sprintf(page, "%d\n", mddev->degraded);
4354 }
4355 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4356
4357 static ssize_t
4358 sync_force_parallel_show(struct mddev *mddev, char *page)
4359 {
4360 return sprintf(page, "%d\n", mddev->parallel_resync);
4361 }
4362
4363 static ssize_t
4364 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4365 {
4366 long n;
4367
4368 if (strict_strtol(buf, 10, &n))
4369 return -EINVAL;
4370
4371 if (n != 0 && n != 1)
4372 return -EINVAL;
4373
4374 mddev->parallel_resync = n;
4375
4376 if (mddev->sync_thread)
4377 wake_up(&resync_wait);
4378
4379 return len;
4380 }
4381
4382 /* force parallel resync, even with shared block devices */
4383 static struct md_sysfs_entry md_sync_force_parallel =
4384 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4385 sync_force_parallel_show, sync_force_parallel_store);
4386
4387 static ssize_t
4388 sync_speed_show(struct mddev *mddev, char *page)
4389 {
4390 unsigned long resync, dt, db;
4391 if (mddev->curr_resync == 0)
4392 return sprintf(page, "none\n");
4393 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4394 dt = (jiffies - mddev->resync_mark) / HZ;
4395 if (!dt) dt++;
4396 db = resync - mddev->resync_mark_cnt;
4397 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4398 }
4399
4400 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4401
4402 static ssize_t
4403 sync_completed_show(struct mddev *mddev, char *page)
4404 {
4405 unsigned long long max_sectors, resync;
4406
4407 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4408 return sprintf(page, "none\n");
4409
4410 if (mddev->curr_resync == 1 ||
4411 mddev->curr_resync == 2)
4412 return sprintf(page, "delayed\n");
4413
4414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4415 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4416 max_sectors = mddev->resync_max_sectors;
4417 else
4418 max_sectors = mddev->dev_sectors;
4419
4420 resync = mddev->curr_resync_completed;
4421 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4422 }
4423
4424 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4425
4426 static ssize_t
4427 min_sync_show(struct mddev *mddev, char *page)
4428 {
4429 return sprintf(page, "%llu\n",
4430 (unsigned long long)mddev->resync_min);
4431 }
4432 static ssize_t
4433 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 unsigned long long min;
4436 if (strict_strtoull(buf, 10, &min))
4437 return -EINVAL;
4438 if (min > mddev->resync_max)
4439 return -EINVAL;
4440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 return -EBUSY;
4442
4443 /* Must be a multiple of chunk_size */
4444 if (mddev->chunk_sectors) {
4445 sector_t temp = min;
4446 if (sector_div(temp, mddev->chunk_sectors))
4447 return -EINVAL;
4448 }
4449 mddev->resync_min = min;
4450
4451 return len;
4452 }
4453
4454 static struct md_sysfs_entry md_min_sync =
4455 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4456
4457 static ssize_t
4458 max_sync_show(struct mddev *mddev, char *page)
4459 {
4460 if (mddev->resync_max == MaxSector)
4461 return sprintf(page, "max\n");
4462 else
4463 return sprintf(page, "%llu\n",
4464 (unsigned long long)mddev->resync_max);
4465 }
4466 static ssize_t
4467 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4468 {
4469 if (strncmp(buf, "max", 3) == 0)
4470 mddev->resync_max = MaxSector;
4471 else {
4472 unsigned long long max;
4473 if (strict_strtoull(buf, 10, &max))
4474 return -EINVAL;
4475 if (max < mddev->resync_min)
4476 return -EINVAL;
4477 if (max < mddev->resync_max &&
4478 mddev->ro == 0 &&
4479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4480 return -EBUSY;
4481
4482 /* Must be a multiple of chunk_size */
4483 if (mddev->chunk_sectors) {
4484 sector_t temp = max;
4485 if (sector_div(temp, mddev->chunk_sectors))
4486 return -EINVAL;
4487 }
4488 mddev->resync_max = max;
4489 }
4490 wake_up(&mddev->recovery_wait);
4491 return len;
4492 }
4493
4494 static struct md_sysfs_entry md_max_sync =
4495 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4496
4497 static ssize_t
4498 suspend_lo_show(struct mddev *mddev, char *page)
4499 {
4500 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4501 }
4502
4503 static ssize_t
4504 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4505 {
4506 char *e;
4507 unsigned long long new = simple_strtoull(buf, &e, 10);
4508 unsigned long long old = mddev->suspend_lo;
4509
4510 if (mddev->pers == NULL ||
4511 mddev->pers->quiesce == NULL)
4512 return -EINVAL;
4513 if (buf == e || (*e && *e != '\n'))
4514 return -EINVAL;
4515
4516 mddev->suspend_lo = new;
4517 if (new >= old)
4518 /* Shrinking suspended region */
4519 mddev->pers->quiesce(mddev, 2);
4520 else {
4521 /* Expanding suspended region - need to wait */
4522 mddev->pers->quiesce(mddev, 1);
4523 mddev->pers->quiesce(mddev, 0);
4524 }
4525 return len;
4526 }
4527 static struct md_sysfs_entry md_suspend_lo =
4528 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4529
4530
4531 static ssize_t
4532 suspend_hi_show(struct mddev *mddev, char *page)
4533 {
4534 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4535 }
4536
4537 static ssize_t
4538 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4539 {
4540 char *e;
4541 unsigned long long new = simple_strtoull(buf, &e, 10);
4542 unsigned long long old = mddev->suspend_hi;
4543
4544 if (mddev->pers == NULL ||
4545 mddev->pers->quiesce == NULL)
4546 return -EINVAL;
4547 if (buf == e || (*e && *e != '\n'))
4548 return -EINVAL;
4549
4550 mddev->suspend_hi = new;
4551 if (new <= old)
4552 /* Shrinking suspended region */
4553 mddev->pers->quiesce(mddev, 2);
4554 else {
4555 /* Expanding suspended region - need to wait */
4556 mddev->pers->quiesce(mddev, 1);
4557 mddev->pers->quiesce(mddev, 0);
4558 }
4559 return len;
4560 }
4561 static struct md_sysfs_entry md_suspend_hi =
4562 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4563
4564 static ssize_t
4565 reshape_position_show(struct mddev *mddev, char *page)
4566 {
4567 if (mddev->reshape_position != MaxSector)
4568 return sprintf(page, "%llu\n",
4569 (unsigned long long)mddev->reshape_position);
4570 strcpy(page, "none\n");
4571 return 5;
4572 }
4573
4574 static ssize_t
4575 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4576 {
4577 struct md_rdev *rdev;
4578 char *e;
4579 unsigned long long new = simple_strtoull(buf, &e, 10);
4580 if (mddev->pers)
4581 return -EBUSY;
4582 if (buf == e || (*e && *e != '\n'))
4583 return -EINVAL;
4584 mddev->reshape_position = new;
4585 mddev->delta_disks = 0;
4586 mddev->reshape_backwards = 0;
4587 mddev->new_level = mddev->level;
4588 mddev->new_layout = mddev->layout;
4589 mddev->new_chunk_sectors = mddev->chunk_sectors;
4590 rdev_for_each(rdev, mddev)
4591 rdev->new_data_offset = rdev->data_offset;
4592 return len;
4593 }
4594
4595 static struct md_sysfs_entry md_reshape_position =
4596 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4597 reshape_position_store);
4598
4599 static ssize_t
4600 reshape_direction_show(struct mddev *mddev, char *page)
4601 {
4602 return sprintf(page, "%s\n",
4603 mddev->reshape_backwards ? "backwards" : "forwards");
4604 }
4605
4606 static ssize_t
4607 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4608 {
4609 int backwards = 0;
4610 if (cmd_match(buf, "forwards"))
4611 backwards = 0;
4612 else if (cmd_match(buf, "backwards"))
4613 backwards = 1;
4614 else
4615 return -EINVAL;
4616 if (mddev->reshape_backwards == backwards)
4617 return len;
4618
4619 /* check if we are allowed to change */
4620 if (mddev->delta_disks)
4621 return -EBUSY;
4622
4623 if (mddev->persistent &&
4624 mddev->major_version == 0)
4625 return -EINVAL;
4626
4627 mddev->reshape_backwards = backwards;
4628 return len;
4629 }
4630
4631 static struct md_sysfs_entry md_reshape_direction =
4632 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4633 reshape_direction_store);
4634
4635 static ssize_t
4636 array_size_show(struct mddev *mddev, char *page)
4637 {
4638 if (mddev->external_size)
4639 return sprintf(page, "%llu\n",
4640 (unsigned long long)mddev->array_sectors/2);
4641 else
4642 return sprintf(page, "default\n");
4643 }
4644
4645 static ssize_t
4646 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4647 {
4648 sector_t sectors;
4649
4650 if (strncmp(buf, "default", 7) == 0) {
4651 if (mddev->pers)
4652 sectors = mddev->pers->size(mddev, 0, 0);
4653 else
4654 sectors = mddev->array_sectors;
4655
4656 mddev->external_size = 0;
4657 } else {
4658 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4659 return -EINVAL;
4660 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4661 return -E2BIG;
4662
4663 mddev->external_size = 1;
4664 }
4665
4666 mddev->array_sectors = sectors;
4667 if (mddev->pers) {
4668 set_capacity(mddev->gendisk, mddev->array_sectors);
4669 revalidate_disk(mddev->gendisk);
4670 }
4671 return len;
4672 }
4673
4674 static struct md_sysfs_entry md_array_size =
4675 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4676 array_size_store);
4677
4678 static struct attribute *md_default_attrs[] = {
4679 &md_level.attr,
4680 &md_layout.attr,
4681 &md_raid_disks.attr,
4682 &md_chunk_size.attr,
4683 &md_size.attr,
4684 &md_resync_start.attr,
4685 &md_metadata.attr,
4686 &md_new_device.attr,
4687 &md_safe_delay.attr,
4688 &md_array_state.attr,
4689 &md_reshape_position.attr,
4690 &md_reshape_direction.attr,
4691 &md_array_size.attr,
4692 &max_corr_read_errors.attr,
4693 NULL,
4694 };
4695
4696 static struct attribute *md_redundancy_attrs[] = {
4697 &md_scan_mode.attr,
4698 &md_mismatches.attr,
4699 &md_sync_min.attr,
4700 &md_sync_max.attr,
4701 &md_sync_speed.attr,
4702 &md_sync_force_parallel.attr,
4703 &md_sync_completed.attr,
4704 &md_min_sync.attr,
4705 &md_max_sync.attr,
4706 &md_suspend_lo.attr,
4707 &md_suspend_hi.attr,
4708 &md_bitmap.attr,
4709 &md_degraded.attr,
4710 NULL,
4711 };
4712 static struct attribute_group md_redundancy_group = {
4713 .name = NULL,
4714 .attrs = md_redundancy_attrs,
4715 };
4716
4717
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4720 {
4721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723 ssize_t rv;
4724
4725 if (!entry->show)
4726 return -EIO;
4727 spin_lock(&all_mddevs_lock);
4728 if (list_empty(&mddev->all_mddevs)) {
4729 spin_unlock(&all_mddevs_lock);
4730 return -EBUSY;
4731 }
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4734
4735 rv = mddev_lock(mddev);
4736 if (!rv) {
4737 rv = entry->show(mddev, page);
4738 mddev_unlock(mddev);
4739 }
4740 mddev_put(mddev);
4741 return rv;
4742 }
4743
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746 const char *page, size_t length)
4747 {
4748 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750 ssize_t rv;
4751
4752 if (!entry->store)
4753 return -EIO;
4754 if (!capable(CAP_SYS_ADMIN))
4755 return -EACCES;
4756 spin_lock(&all_mddevs_lock);
4757 if (list_empty(&mddev->all_mddevs)) {
4758 spin_unlock(&all_mddevs_lock);
4759 return -EBUSY;
4760 }
4761 mddev_get(mddev);
4762 spin_unlock(&all_mddevs_lock);
4763 if (entry->store == new_dev_store)
4764 flush_workqueue(md_misc_wq);
4765 rv = mddev_lock(mddev);
4766 if (!rv) {
4767 rv = entry->store(mddev, page, length);
4768 mddev_unlock(mddev);
4769 }
4770 mddev_put(mddev);
4771 return rv;
4772 }
4773
4774 static void md_free(struct kobject *ko)
4775 {
4776 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4777
4778 if (mddev->sysfs_state)
4779 sysfs_put(mddev->sysfs_state);
4780
4781 if (mddev->gendisk) {
4782 del_gendisk(mddev->gendisk);
4783 put_disk(mddev->gendisk);
4784 }
4785 if (mddev->queue)
4786 blk_cleanup_queue(mddev->queue);
4787
4788 kfree(mddev);
4789 }
4790
4791 static const struct sysfs_ops md_sysfs_ops = {
4792 .show = md_attr_show,
4793 .store = md_attr_store,
4794 };
4795 static struct kobj_type md_ktype = {
4796 .release = md_free,
4797 .sysfs_ops = &md_sysfs_ops,
4798 .default_attrs = md_default_attrs,
4799 };
4800
4801 int mdp_major = 0;
4802
4803 static void mddev_delayed_delete(struct work_struct *ws)
4804 {
4805 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4806
4807 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808 kobject_del(&mddev->kobj);
4809 kobject_put(&mddev->kobj);
4810 }
4811
4812 static int md_alloc(dev_t dev, char *name)
4813 {
4814 static DEFINE_MUTEX(disks_mutex);
4815 struct mddev *mddev = mddev_find(dev);
4816 struct gendisk *disk;
4817 int partitioned;
4818 int shift;
4819 int unit;
4820 int error;
4821
4822 if (!mddev)
4823 return -ENODEV;
4824
4825 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826 shift = partitioned ? MdpMinorShift : 0;
4827 unit = MINOR(mddev->unit) >> shift;
4828
4829 /* wait for any previous instance of this device to be
4830 * completely removed (mddev_delayed_delete).
4831 */
4832 flush_workqueue(md_misc_wq);
4833
4834 mutex_lock(&disks_mutex);
4835 error = -EEXIST;
4836 if (mddev->gendisk)
4837 goto abort;
4838
4839 if (name) {
4840 /* Need to ensure that 'name' is not a duplicate.
4841 */
4842 struct mddev *mddev2;
4843 spin_lock(&all_mddevs_lock);
4844
4845 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846 if (mddev2->gendisk &&
4847 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848 spin_unlock(&all_mddevs_lock);
4849 goto abort;
4850 }
4851 spin_unlock(&all_mddevs_lock);
4852 }
4853
4854 error = -ENOMEM;
4855 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856 if (!mddev->queue)
4857 goto abort;
4858 mddev->queue->queuedata = mddev;
4859
4860 blk_queue_make_request(mddev->queue, md_make_request);
4861 blk_set_stacking_limits(&mddev->queue->limits);
4862
4863 disk = alloc_disk(1 << shift);
4864 if (!disk) {
4865 blk_cleanup_queue(mddev->queue);
4866 mddev->queue = NULL;
4867 goto abort;
4868 }
4869 disk->major = MAJOR(mddev->unit);
4870 disk->first_minor = unit << shift;
4871 if (name)
4872 strcpy(disk->disk_name, name);
4873 else if (partitioned)
4874 sprintf(disk->disk_name, "md_d%d", unit);
4875 else
4876 sprintf(disk->disk_name, "md%d", unit);
4877 disk->fops = &md_fops;
4878 disk->private_data = mddev;
4879 disk->queue = mddev->queue;
4880 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881 /* Allow extended partitions. This makes the
4882 * 'mdp' device redundant, but we can't really
4883 * remove it now.
4884 */
4885 disk->flags |= GENHD_FL_EXT_DEVT;
4886 mddev->gendisk = disk;
4887 /* As soon as we call add_disk(), another thread could get
4888 * through to md_open, so make sure it doesn't get too far
4889 */
4890 mutex_lock(&mddev->open_mutex);
4891 add_disk(disk);
4892
4893 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894 &disk_to_dev(disk)->kobj, "%s", "md");
4895 if (error) {
4896 /* This isn't possible, but as kobject_init_and_add is marked
4897 * __must_check, we must do something with the result
4898 */
4899 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900 disk->disk_name);
4901 error = 0;
4902 }
4903 if (mddev->kobj.sd &&
4904 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905 printk(KERN_DEBUG "pointless warning\n");
4906 mutex_unlock(&mddev->open_mutex);
4907 abort:
4908 mutex_unlock(&disks_mutex);
4909 if (!error && mddev->kobj.sd) {
4910 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4912 }
4913 mddev_put(mddev);
4914 return error;
4915 }
4916
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4918 {
4919 md_alloc(dev, NULL);
4920 return NULL;
4921 }
4922
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4924 {
4925 /* val must be "md_*" where * is not all digits.
4926 * We allocate an array with a large free minor number, and
4927 * set the name to val. val must not already be an active name.
4928 */
4929 int len = strlen(val);
4930 char buf[DISK_NAME_LEN];
4931
4932 while (len && val[len-1] == '\n')
4933 len--;
4934 if (len >= DISK_NAME_LEN)
4935 return -E2BIG;
4936 strlcpy(buf, val, len+1);
4937 if (strncmp(buf, "md_", 3) != 0)
4938 return -EINVAL;
4939 return md_alloc(0, buf);
4940 }
4941
4942 static void md_safemode_timeout(unsigned long data)
4943 {
4944 struct mddev *mddev = (struct mddev *) data;
4945
4946 if (!atomic_read(&mddev->writes_pending)) {
4947 mddev->safemode = 1;
4948 if (mddev->external)
4949 sysfs_notify_dirent_safe(mddev->sysfs_state);
4950 }
4951 md_wakeup_thread(mddev->thread);
4952 }
4953
4954 static int start_dirty_degraded;
4955
4956 int md_run(struct mddev *mddev)
4957 {
4958 int err;
4959 struct md_rdev *rdev;
4960 struct md_personality *pers;
4961
4962 if (list_empty(&mddev->disks))
4963 /* cannot run an array with no devices.. */
4964 return -EINVAL;
4965
4966 if (mddev->pers)
4967 return -EBUSY;
4968 /* Cannot run until previous stop completes properly */
4969 if (mddev->sysfs_active)
4970 return -EBUSY;
4971
4972 /*
4973 * Analyze all RAID superblock(s)
4974 */
4975 if (!mddev->raid_disks) {
4976 if (!mddev->persistent)
4977 return -EINVAL;
4978 analyze_sbs(mddev);
4979 }
4980
4981 if (mddev->level != LEVEL_NONE)
4982 request_module("md-level-%d", mddev->level);
4983 else if (mddev->clevel[0])
4984 request_module("md-%s", mddev->clevel);
4985
4986 /*
4987 * Drop all container device buffers, from now on
4988 * the only valid external interface is through the md
4989 * device.
4990 */
4991 rdev_for_each(rdev, mddev) {
4992 if (test_bit(Faulty, &rdev->flags))
4993 continue;
4994 sync_blockdev(rdev->bdev);
4995 invalidate_bdev(rdev->bdev);
4996
4997 /* perform some consistency tests on the device.
4998 * We don't want the data to overlap the metadata,
4999 * Internal Bitmap issues have been handled elsewhere.
5000 */
5001 if (rdev->meta_bdev) {
5002 /* Nothing to check */;
5003 } else if (rdev->data_offset < rdev->sb_start) {
5004 if (mddev->dev_sectors &&
5005 rdev->data_offset + mddev->dev_sectors
5006 > rdev->sb_start) {
5007 printk("md: %s: data overlaps metadata\n",
5008 mdname(mddev));
5009 return -EINVAL;
5010 }
5011 } else {
5012 if (rdev->sb_start + rdev->sb_size/512
5013 > rdev->data_offset) {
5014 printk("md: %s: metadata overlaps data\n",
5015 mdname(mddev));
5016 return -EINVAL;
5017 }
5018 }
5019 sysfs_notify_dirent_safe(rdev->sysfs_state);
5020 }
5021
5022 if (mddev->bio_set == NULL)
5023 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5024
5025 spin_lock(&pers_lock);
5026 pers = find_pers(mddev->level, mddev->clevel);
5027 if (!pers || !try_module_get(pers->owner)) {
5028 spin_unlock(&pers_lock);
5029 if (mddev->level != LEVEL_NONE)
5030 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031 mddev->level);
5032 else
5033 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034 mddev->clevel);
5035 return -EINVAL;
5036 }
5037 mddev->pers = pers;
5038 spin_unlock(&pers_lock);
5039 if (mddev->level != pers->level) {
5040 mddev->level = pers->level;
5041 mddev->new_level = pers->level;
5042 }
5043 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5044
5045 if (mddev->reshape_position != MaxSector &&
5046 pers->start_reshape == NULL) {
5047 /* This personality cannot handle reshaping... */
5048 mddev->pers = NULL;
5049 module_put(pers->owner);
5050 return -EINVAL;
5051 }
5052
5053 if (pers->sync_request) {
5054 /* Warn if this is a potentially silly
5055 * configuration.
5056 */
5057 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058 struct md_rdev *rdev2;
5059 int warned = 0;
5060
5061 rdev_for_each(rdev, mddev)
5062 rdev_for_each(rdev2, mddev) {
5063 if (rdev < rdev2 &&
5064 rdev->bdev->bd_contains ==
5065 rdev2->bdev->bd_contains) {
5066 printk(KERN_WARNING
5067 "%s: WARNING: %s appears to be"
5068 " on the same physical disk as"
5069 " %s.\n",
5070 mdname(mddev),
5071 bdevname(rdev->bdev,b),
5072 bdevname(rdev2->bdev,b2));
5073 warned = 1;
5074 }
5075 }
5076
5077 if (warned)
5078 printk(KERN_WARNING
5079 "True protection against single-disk"
5080 " failure might be compromised.\n");
5081 }
5082
5083 mddev->recovery = 0;
5084 /* may be over-ridden by personality */
5085 mddev->resync_max_sectors = mddev->dev_sectors;
5086
5087 mddev->ok_start_degraded = start_dirty_degraded;
5088
5089 if (start_readonly && mddev->ro == 0)
5090 mddev->ro = 2; /* read-only, but switch on first write */
5091
5092 err = mddev->pers->run(mddev);
5093 if (err)
5094 printk(KERN_ERR "md: pers->run() failed ...\n");
5095 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097 " but 'external_size' not in effect?\n", __func__);
5098 printk(KERN_ERR
5099 "md: invalid array_size %llu > default size %llu\n",
5100 (unsigned long long)mddev->array_sectors / 2,
5101 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102 err = -EINVAL;
5103 mddev->pers->stop(mddev);
5104 }
5105 if (err == 0 && mddev->pers->sync_request &&
5106 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107 err = bitmap_create(mddev);
5108 if (err) {
5109 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110 mdname(mddev), err);
5111 mddev->pers->stop(mddev);
5112 }
5113 }
5114 if (err) {
5115 module_put(mddev->pers->owner);
5116 mddev->pers = NULL;
5117 bitmap_destroy(mddev);
5118 return err;
5119 }
5120 if (mddev->pers->sync_request) {
5121 if (mddev->kobj.sd &&
5122 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123 printk(KERN_WARNING
5124 "md: cannot register extra attributes for %s\n",
5125 mdname(mddev));
5126 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128 mddev->ro = 0;
5129
5130 atomic_set(&mddev->writes_pending,0);
5131 atomic_set(&mddev->max_corr_read_errors,
5132 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133 mddev->safemode = 0;
5134 mddev->safemode_timer.function = md_safemode_timeout;
5135 mddev->safemode_timer.data = (unsigned long) mddev;
5136 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137 mddev->in_sync = 1;
5138 smp_wmb();
5139 mddev->ready = 1;
5140 rdev_for_each(rdev, mddev)
5141 if (rdev->raid_disk >= 0)
5142 if (sysfs_link_rdev(mddev, rdev))
5143 /* failure here is OK */;
5144
5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146
5147 if (mddev->flags)
5148 md_update_sb(mddev, 0);
5149
5150 md_new_event(mddev);
5151 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 sysfs_notify_dirent_safe(mddev->sysfs_action);
5153 sysfs_notify(&mddev->kobj, NULL, "degraded");
5154 return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(md_run);
5157
5158 static int do_md_run(struct mddev *mddev)
5159 {
5160 int err;
5161
5162 err = md_run(mddev);
5163 if (err)
5164 goto out;
5165 err = bitmap_load(mddev);
5166 if (err) {
5167 bitmap_destroy(mddev);
5168 goto out;
5169 }
5170
5171 md_wakeup_thread(mddev->thread);
5172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5173
5174 set_capacity(mddev->gendisk, mddev->array_sectors);
5175 revalidate_disk(mddev->gendisk);
5176 mddev->changed = 1;
5177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179 return err;
5180 }
5181
5182 static int restart_array(struct mddev *mddev)
5183 {
5184 struct gendisk *disk = mddev->gendisk;
5185
5186 /* Complain if it has no devices */
5187 if (list_empty(&mddev->disks))
5188 return -ENXIO;
5189 if (!mddev->pers)
5190 return -EINVAL;
5191 if (!mddev->ro)
5192 return -EBUSY;
5193 mddev->safemode = 0;
5194 mddev->ro = 0;
5195 set_disk_ro(disk, 0);
5196 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197 mdname(mddev));
5198 /* Kick recovery or resync if necessary */
5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 md_wakeup_thread(mddev->thread);
5201 md_wakeup_thread(mddev->sync_thread);
5202 sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 return 0;
5204 }
5205
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207 * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5209 {
5210 struct inode *inode = file->f_mapping->host;
5211
5212 spin_lock(&inode->i_lock);
5213 if (atomic_read(&inode->i_writecount) > 1) {
5214 spin_unlock(&inode->i_lock);
5215 return -ETXTBSY;
5216 }
5217 atomic_set(&inode->i_writecount, -1);
5218 spin_unlock(&inode->i_lock);
5219
5220 return 0;
5221 }
5222
5223 void restore_bitmap_write_access(struct file *file)
5224 {
5225 struct inode *inode = file->f_mapping->host;
5226
5227 spin_lock(&inode->i_lock);
5228 atomic_set(&inode->i_writecount, 1);
5229 spin_unlock(&inode->i_lock);
5230 }
5231
5232 static void md_clean(struct mddev *mddev)
5233 {
5234 mddev->array_sectors = 0;
5235 mddev->external_size = 0;
5236 mddev->dev_sectors = 0;
5237 mddev->raid_disks = 0;
5238 mddev->recovery_cp = 0;
5239 mddev->resync_min = 0;
5240 mddev->resync_max = MaxSector;
5241 mddev->reshape_position = MaxSector;
5242 mddev->external = 0;
5243 mddev->persistent = 0;
5244 mddev->level = LEVEL_NONE;
5245 mddev->clevel[0] = 0;
5246 mddev->flags = 0;
5247 mddev->ro = 0;
5248 mddev->metadata_type[0] = 0;
5249 mddev->chunk_sectors = 0;
5250 mddev->ctime = mddev->utime = 0;
5251 mddev->layout = 0;
5252 mddev->max_disks = 0;
5253 mddev->events = 0;
5254 mddev->can_decrease_events = 0;
5255 mddev->delta_disks = 0;
5256 mddev->reshape_backwards = 0;
5257 mddev->new_level = LEVEL_NONE;
5258 mddev->new_layout = 0;
5259 mddev->new_chunk_sectors = 0;
5260 mddev->curr_resync = 0;
5261 atomic64_set(&mddev->resync_mismatches, 0);
5262 mddev->suspend_lo = mddev->suspend_hi = 0;
5263 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264 mddev->recovery = 0;
5265 mddev->in_sync = 0;
5266 mddev->changed = 0;
5267 mddev->degraded = 0;
5268 mddev->safemode = 0;
5269 mddev->merge_check_needed = 0;
5270 mddev->bitmap_info.offset = 0;
5271 mddev->bitmap_info.default_offset = 0;
5272 mddev->bitmap_info.default_space = 0;
5273 mddev->bitmap_info.chunksize = 0;
5274 mddev->bitmap_info.daemon_sleep = 0;
5275 mddev->bitmap_info.max_write_behind = 0;
5276 }
5277
5278 static void __md_stop_writes(struct mddev *mddev)
5279 {
5280 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281 if (mddev->sync_thread) {
5282 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283 md_reap_sync_thread(mddev);
5284 }
5285
5286 del_timer_sync(&mddev->safemode_timer);
5287
5288 bitmap_flush(mddev);
5289 md_super_wait(mddev);
5290
5291 if (mddev->ro == 0 &&
5292 (!mddev->in_sync || mddev->flags)) {
5293 /* mark array as shutdown cleanly */
5294 mddev->in_sync = 1;
5295 md_update_sb(mddev, 1);
5296 }
5297 }
5298
5299 void md_stop_writes(struct mddev *mddev)
5300 {
5301 mddev_lock(mddev);
5302 __md_stop_writes(mddev);
5303 mddev_unlock(mddev);
5304 }
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5306
5307 static void __md_stop(struct mddev *mddev)
5308 {
5309 mddev->ready = 0;
5310 mddev->pers->stop(mddev);
5311 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5312 mddev->to_remove = &md_redundancy_group;
5313 module_put(mddev->pers->owner);
5314 mddev->pers = NULL;
5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5316 }
5317
5318 void md_stop(struct mddev *mddev)
5319 {
5320 /* stop the array and free an attached data structures.
5321 * This is called from dm-raid
5322 */
5323 __md_stop(mddev);
5324 bitmap_destroy(mddev);
5325 if (mddev->bio_set)
5326 bioset_free(mddev->bio_set);
5327 }
5328
5329 EXPORT_SYMBOL_GPL(md_stop);
5330
5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5332 {
5333 int err = 0;
5334 mutex_lock(&mddev->open_mutex);
5335 if (atomic_read(&mddev->openers) > !!bdev) {
5336 printk("md: %s still in use.\n",mdname(mddev));
5337 err = -EBUSY;
5338 goto out;
5339 }
5340 if (bdev)
5341 sync_blockdev(bdev);
5342 if (mddev->pers) {
5343 __md_stop_writes(mddev);
5344
5345 err = -ENXIO;
5346 if (mddev->ro==1)
5347 goto out;
5348 mddev->ro = 1;
5349 set_disk_ro(mddev->gendisk, 1);
5350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 sysfs_notify_dirent_safe(mddev->sysfs_state);
5352 err = 0;
5353 }
5354 out:
5355 mutex_unlock(&mddev->open_mutex);
5356 return err;
5357 }
5358
5359 /* mode:
5360 * 0 - completely stop and dis-assemble array
5361 * 2 - stop but do not disassemble array
5362 */
5363 static int do_md_stop(struct mddev * mddev, int mode,
5364 struct block_device *bdev)
5365 {
5366 struct gendisk *disk = mddev->gendisk;
5367 struct md_rdev *rdev;
5368
5369 mutex_lock(&mddev->open_mutex);
5370 if (atomic_read(&mddev->openers) > !!bdev ||
5371 mddev->sysfs_active) {
5372 printk("md: %s still in use.\n",mdname(mddev));
5373 mutex_unlock(&mddev->open_mutex);
5374 return -EBUSY;
5375 }
5376 if (bdev)
5377 /* It is possible IO was issued on some other
5378 * open file which was closed before we took ->open_mutex.
5379 * As that was not the last close __blkdev_put will not
5380 * have called sync_blockdev, so we must.
5381 */
5382 sync_blockdev(bdev);
5383
5384 if (mddev->pers) {
5385 if (mddev->ro)
5386 set_disk_ro(disk, 0);
5387
5388 __md_stop_writes(mddev);
5389 __md_stop(mddev);
5390 mddev->queue->merge_bvec_fn = NULL;
5391 mddev->queue->backing_dev_info.congested_fn = NULL;
5392
5393 /* tell userspace to handle 'inactive' */
5394 sysfs_notify_dirent_safe(mddev->sysfs_state);
5395
5396 rdev_for_each(rdev, mddev)
5397 if (rdev->raid_disk >= 0)
5398 sysfs_unlink_rdev(mddev, rdev);
5399
5400 set_capacity(disk, 0);
5401 mutex_unlock(&mddev->open_mutex);
5402 mddev->changed = 1;
5403 revalidate_disk(disk);
5404
5405 if (mddev->ro)
5406 mddev->ro = 0;
5407 } else
5408 mutex_unlock(&mddev->open_mutex);
5409 /*
5410 * Free resources if final stop
5411 */
5412 if (mode == 0) {
5413 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5414
5415 bitmap_destroy(mddev);
5416 if (mddev->bitmap_info.file) {
5417 restore_bitmap_write_access(mddev->bitmap_info.file);
5418 fput(mddev->bitmap_info.file);
5419 mddev->bitmap_info.file = NULL;
5420 }
5421 mddev->bitmap_info.offset = 0;
5422
5423 export_array(mddev);
5424
5425 md_clean(mddev);
5426 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5427 if (mddev->hold_active == UNTIL_STOP)
5428 mddev->hold_active = 0;
5429 }
5430 blk_integrity_unregister(disk);
5431 md_new_event(mddev);
5432 sysfs_notify_dirent_safe(mddev->sysfs_state);
5433 return 0;
5434 }
5435
5436 #ifndef MODULE
5437 static void autorun_array(struct mddev *mddev)
5438 {
5439 struct md_rdev *rdev;
5440 int err;
5441
5442 if (list_empty(&mddev->disks))
5443 return;
5444
5445 printk(KERN_INFO "md: running: ");
5446
5447 rdev_for_each(rdev, mddev) {
5448 char b[BDEVNAME_SIZE];
5449 printk("<%s>", bdevname(rdev->bdev,b));
5450 }
5451 printk("\n");
5452
5453 err = do_md_run(mddev);
5454 if (err) {
5455 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5456 do_md_stop(mddev, 0, NULL);
5457 }
5458 }
5459
5460 /*
5461 * lets try to run arrays based on all disks that have arrived
5462 * until now. (those are in pending_raid_disks)
5463 *
5464 * the method: pick the first pending disk, collect all disks with
5465 * the same UUID, remove all from the pending list and put them into
5466 * the 'same_array' list. Then order this list based on superblock
5467 * update time (freshest comes first), kick out 'old' disks and
5468 * compare superblocks. If everything's fine then run it.
5469 *
5470 * If "unit" is allocated, then bump its reference count
5471 */
5472 static void autorun_devices(int part)
5473 {
5474 struct md_rdev *rdev0, *rdev, *tmp;
5475 struct mddev *mddev;
5476 char b[BDEVNAME_SIZE];
5477
5478 printk(KERN_INFO "md: autorun ...\n");
5479 while (!list_empty(&pending_raid_disks)) {
5480 int unit;
5481 dev_t dev;
5482 LIST_HEAD(candidates);
5483 rdev0 = list_entry(pending_raid_disks.next,
5484 struct md_rdev, same_set);
5485
5486 printk(KERN_INFO "md: considering %s ...\n",
5487 bdevname(rdev0->bdev,b));
5488 INIT_LIST_HEAD(&candidates);
5489 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5490 if (super_90_load(rdev, rdev0, 0) >= 0) {
5491 printk(KERN_INFO "md: adding %s ...\n",
5492 bdevname(rdev->bdev,b));
5493 list_move(&rdev->same_set, &candidates);
5494 }
5495 /*
5496 * now we have a set of devices, with all of them having
5497 * mostly sane superblocks. It's time to allocate the
5498 * mddev.
5499 */
5500 if (part) {
5501 dev = MKDEV(mdp_major,
5502 rdev0->preferred_minor << MdpMinorShift);
5503 unit = MINOR(dev) >> MdpMinorShift;
5504 } else {
5505 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5506 unit = MINOR(dev);
5507 }
5508 if (rdev0->preferred_minor != unit) {
5509 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5510 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5511 break;
5512 }
5513
5514 md_probe(dev, NULL, NULL);
5515 mddev = mddev_find(dev);
5516 if (!mddev || !mddev->gendisk) {
5517 if (mddev)
5518 mddev_put(mddev);
5519 printk(KERN_ERR
5520 "md: cannot allocate memory for md drive.\n");
5521 break;
5522 }
5523 if (mddev_lock(mddev))
5524 printk(KERN_WARNING "md: %s locked, cannot run\n",
5525 mdname(mddev));
5526 else if (mddev->raid_disks || mddev->major_version
5527 || !list_empty(&mddev->disks)) {
5528 printk(KERN_WARNING
5529 "md: %s already running, cannot run %s\n",
5530 mdname(mddev), bdevname(rdev0->bdev,b));
5531 mddev_unlock(mddev);
5532 } else {
5533 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5534 mddev->persistent = 1;
5535 rdev_for_each_list(rdev, tmp, &candidates) {
5536 list_del_init(&rdev->same_set);
5537 if (bind_rdev_to_array(rdev, mddev))
5538 export_rdev(rdev);
5539 }
5540 autorun_array(mddev);
5541 mddev_unlock(mddev);
5542 }
5543 /* on success, candidates will be empty, on error
5544 * it won't...
5545 */
5546 rdev_for_each_list(rdev, tmp, &candidates) {
5547 list_del_init(&rdev->same_set);
5548 export_rdev(rdev);
5549 }
5550 mddev_put(mddev);
5551 }
5552 printk(KERN_INFO "md: ... autorun DONE.\n");
5553 }
5554 #endif /* !MODULE */
5555
5556 static int get_version(void __user * arg)
5557 {
5558 mdu_version_t ver;
5559
5560 ver.major = MD_MAJOR_VERSION;
5561 ver.minor = MD_MINOR_VERSION;
5562 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5563
5564 if (copy_to_user(arg, &ver, sizeof(ver)))
5565 return -EFAULT;
5566
5567 return 0;
5568 }
5569
5570 static int get_array_info(struct mddev * mddev, void __user * arg)
5571 {
5572 mdu_array_info_t info;
5573 int nr,working,insync,failed,spare;
5574 struct md_rdev *rdev;
5575
5576 nr = working = insync = failed = spare = 0;
5577 rcu_read_lock();
5578 rdev_for_each_rcu(rdev, mddev) {
5579 nr++;
5580 if (test_bit(Faulty, &rdev->flags))
5581 failed++;
5582 else {
5583 working++;
5584 if (test_bit(In_sync, &rdev->flags))
5585 insync++;
5586 else
5587 spare++;
5588 }
5589 }
5590 rcu_read_unlock();
5591
5592 info.major_version = mddev->major_version;
5593 info.minor_version = mddev->minor_version;
5594 info.patch_version = MD_PATCHLEVEL_VERSION;
5595 info.ctime = mddev->ctime;
5596 info.level = mddev->level;
5597 info.size = mddev->dev_sectors / 2;
5598 if (info.size != mddev->dev_sectors / 2) /* overflow */
5599 info.size = -1;
5600 info.nr_disks = nr;
5601 info.raid_disks = mddev->raid_disks;
5602 info.md_minor = mddev->md_minor;
5603 info.not_persistent= !mddev->persistent;
5604
5605 info.utime = mddev->utime;
5606 info.state = 0;
5607 if (mddev->in_sync)
5608 info.state = (1<<MD_SB_CLEAN);
5609 if (mddev->bitmap && mddev->bitmap_info.offset)
5610 info.state = (1<<MD_SB_BITMAP_PRESENT);
5611 info.active_disks = insync;
5612 info.working_disks = working;
5613 info.failed_disks = failed;
5614 info.spare_disks = spare;
5615
5616 info.layout = mddev->layout;
5617 info.chunk_size = mddev->chunk_sectors << 9;
5618
5619 if (copy_to_user(arg, &info, sizeof(info)))
5620 return -EFAULT;
5621
5622 return 0;
5623 }
5624
5625 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5626 {
5627 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5628 char *ptr, *buf = NULL;
5629 int err = -ENOMEM;
5630
5631 if (md_allow_write(mddev))
5632 file = kzalloc(sizeof(*file), GFP_NOIO);
5633 else
5634 file = kzalloc(sizeof(*file), GFP_KERNEL);
5635
5636 if (!file)
5637 goto out;
5638
5639 /* bitmap disabled, zero the first byte and copy out */
5640 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5641 file->pathname[0] = '\0';
5642 goto copy_out;
5643 }
5644
5645 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5646 if (!buf)
5647 goto out;
5648
5649 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5650 buf, sizeof(file->pathname));
5651 if (IS_ERR(ptr))
5652 goto out;
5653
5654 strcpy(file->pathname, ptr);
5655
5656 copy_out:
5657 err = 0;
5658 if (copy_to_user(arg, file, sizeof(*file)))
5659 err = -EFAULT;
5660 out:
5661 kfree(buf);
5662 kfree(file);
5663 return err;
5664 }
5665
5666 static int get_disk_info(struct mddev * mddev, void __user * arg)
5667 {
5668 mdu_disk_info_t info;
5669 struct md_rdev *rdev;
5670
5671 if (copy_from_user(&info, arg, sizeof(info)))
5672 return -EFAULT;
5673
5674 rcu_read_lock();
5675 rdev = find_rdev_nr_rcu(mddev, info.number);
5676 if (rdev) {
5677 info.major = MAJOR(rdev->bdev->bd_dev);
5678 info.minor = MINOR(rdev->bdev->bd_dev);
5679 info.raid_disk = rdev->raid_disk;
5680 info.state = 0;
5681 if (test_bit(Faulty, &rdev->flags))
5682 info.state |= (1<<MD_DISK_FAULTY);
5683 else if (test_bit(In_sync, &rdev->flags)) {
5684 info.state |= (1<<MD_DISK_ACTIVE);
5685 info.state |= (1<<MD_DISK_SYNC);
5686 }
5687 if (test_bit(WriteMostly, &rdev->flags))
5688 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5689 } else {
5690 info.major = info.minor = 0;
5691 info.raid_disk = -1;
5692 info.state = (1<<MD_DISK_REMOVED);
5693 }
5694 rcu_read_unlock();
5695
5696 if (copy_to_user(arg, &info, sizeof(info)))
5697 return -EFAULT;
5698
5699 return 0;
5700 }
5701
5702 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5703 {
5704 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5705 struct md_rdev *rdev;
5706 dev_t dev = MKDEV(info->major,info->minor);
5707
5708 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5709 return -EOVERFLOW;
5710
5711 if (!mddev->raid_disks) {
5712 int err;
5713 /* expecting a device which has a superblock */
5714 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5715 if (IS_ERR(rdev)) {
5716 printk(KERN_WARNING
5717 "md: md_import_device returned %ld\n",
5718 PTR_ERR(rdev));
5719 return PTR_ERR(rdev);
5720 }
5721 if (!list_empty(&mddev->disks)) {
5722 struct md_rdev *rdev0
5723 = list_entry(mddev->disks.next,
5724 struct md_rdev, same_set);
5725 err = super_types[mddev->major_version]
5726 .load_super(rdev, rdev0, mddev->minor_version);
5727 if (err < 0) {
5728 printk(KERN_WARNING
5729 "md: %s has different UUID to %s\n",
5730 bdevname(rdev->bdev,b),
5731 bdevname(rdev0->bdev,b2));
5732 export_rdev(rdev);
5733 return -EINVAL;
5734 }
5735 }
5736 err = bind_rdev_to_array(rdev, mddev);
5737 if (err)
5738 export_rdev(rdev);
5739 return err;
5740 }
5741
5742 /*
5743 * add_new_disk can be used once the array is assembled
5744 * to add "hot spares". They must already have a superblock
5745 * written
5746 */
5747 if (mddev->pers) {
5748 int err;
5749 if (!mddev->pers->hot_add_disk) {
5750 printk(KERN_WARNING
5751 "%s: personality does not support diskops!\n",
5752 mdname(mddev));
5753 return -EINVAL;
5754 }
5755 if (mddev->persistent)
5756 rdev = md_import_device(dev, mddev->major_version,
5757 mddev->minor_version);
5758 else
5759 rdev = md_import_device(dev, -1, -1);
5760 if (IS_ERR(rdev)) {
5761 printk(KERN_WARNING
5762 "md: md_import_device returned %ld\n",
5763 PTR_ERR(rdev));
5764 return PTR_ERR(rdev);
5765 }
5766 /* set saved_raid_disk if appropriate */
5767 if (!mddev->persistent) {
5768 if (info->state & (1<<MD_DISK_SYNC) &&
5769 info->raid_disk < mddev->raid_disks) {
5770 rdev->raid_disk = info->raid_disk;
5771 set_bit(In_sync, &rdev->flags);
5772 clear_bit(Bitmap_sync, &rdev->flags);
5773 } else
5774 rdev->raid_disk = -1;
5775 } else
5776 super_types[mddev->major_version].
5777 validate_super(mddev, rdev);
5778 if ((info->state & (1<<MD_DISK_SYNC)) &&
5779 rdev->raid_disk != info->raid_disk) {
5780 /* This was a hot-add request, but events doesn't
5781 * match, so reject it.
5782 */
5783 export_rdev(rdev);
5784 return -EINVAL;
5785 }
5786
5787 if (test_bit(In_sync, &rdev->flags))
5788 rdev->saved_raid_disk = rdev->raid_disk;
5789 else
5790 rdev->saved_raid_disk = -1;
5791
5792 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5793 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5794 set_bit(WriteMostly, &rdev->flags);
5795 else
5796 clear_bit(WriteMostly, &rdev->flags);
5797
5798 rdev->raid_disk = -1;
5799 err = bind_rdev_to_array(rdev, mddev);
5800 if (!err && !mddev->pers->hot_remove_disk) {
5801 /* If there is hot_add_disk but no hot_remove_disk
5802 * then added disks for geometry changes,
5803 * and should be added immediately.
5804 */
5805 super_types[mddev->major_version].
5806 validate_super(mddev, rdev);
5807 err = mddev->pers->hot_add_disk(mddev, rdev);
5808 if (err)
5809 unbind_rdev_from_array(rdev);
5810 }
5811 if (err)
5812 export_rdev(rdev);
5813 else
5814 sysfs_notify_dirent_safe(rdev->sysfs_state);
5815
5816 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5817 if (mddev->degraded)
5818 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5819 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5820 if (!err)
5821 md_new_event(mddev);
5822 md_wakeup_thread(mddev->thread);
5823 return err;
5824 }
5825
5826 /* otherwise, add_new_disk is only allowed
5827 * for major_version==0 superblocks
5828 */
5829 if (mddev->major_version != 0) {
5830 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5831 mdname(mddev));
5832 return -EINVAL;
5833 }
5834
5835 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5836 int err;
5837 rdev = md_import_device(dev, -1, 0);
5838 if (IS_ERR(rdev)) {
5839 printk(KERN_WARNING
5840 "md: error, md_import_device() returned %ld\n",
5841 PTR_ERR(rdev));
5842 return PTR_ERR(rdev);
5843 }
5844 rdev->desc_nr = info->number;
5845 if (info->raid_disk < mddev->raid_disks)
5846 rdev->raid_disk = info->raid_disk;
5847 else
5848 rdev->raid_disk = -1;
5849
5850 if (rdev->raid_disk < mddev->raid_disks)
5851 if (info->state & (1<<MD_DISK_SYNC))
5852 set_bit(In_sync, &rdev->flags);
5853
5854 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5855 set_bit(WriteMostly, &rdev->flags);
5856
5857 if (!mddev->persistent) {
5858 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5859 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5860 } else
5861 rdev->sb_start = calc_dev_sboffset(rdev);
5862 rdev->sectors = rdev->sb_start;
5863
5864 err = bind_rdev_to_array(rdev, mddev);
5865 if (err) {
5866 export_rdev(rdev);
5867 return err;
5868 }
5869 }
5870
5871 return 0;
5872 }
5873
5874 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5875 {
5876 char b[BDEVNAME_SIZE];
5877 struct md_rdev *rdev;
5878
5879 rdev = find_rdev(mddev, dev);
5880 if (!rdev)
5881 return -ENXIO;
5882
5883 clear_bit(Blocked, &rdev->flags);
5884 remove_and_add_spares(mddev, rdev);
5885
5886 if (rdev->raid_disk >= 0)
5887 goto busy;
5888
5889 kick_rdev_from_array(rdev);
5890 md_update_sb(mddev, 1);
5891 md_new_event(mddev);
5892
5893 return 0;
5894 busy:
5895 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5896 bdevname(rdev->bdev,b), mdname(mddev));
5897 return -EBUSY;
5898 }
5899
5900 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5901 {
5902 char b[BDEVNAME_SIZE];
5903 int err;
5904 struct md_rdev *rdev;
5905
5906 if (!mddev->pers)
5907 return -ENODEV;
5908
5909 if (mddev->major_version != 0) {
5910 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5911 " version-0 superblocks.\n",
5912 mdname(mddev));
5913 return -EINVAL;
5914 }
5915 if (!mddev->pers->hot_add_disk) {
5916 printk(KERN_WARNING
5917 "%s: personality does not support diskops!\n",
5918 mdname(mddev));
5919 return -EINVAL;
5920 }
5921
5922 rdev = md_import_device(dev, -1, 0);
5923 if (IS_ERR(rdev)) {
5924 printk(KERN_WARNING
5925 "md: error, md_import_device() returned %ld\n",
5926 PTR_ERR(rdev));
5927 return -EINVAL;
5928 }
5929
5930 if (mddev->persistent)
5931 rdev->sb_start = calc_dev_sboffset(rdev);
5932 else
5933 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5934
5935 rdev->sectors = rdev->sb_start;
5936
5937 if (test_bit(Faulty, &rdev->flags)) {
5938 printk(KERN_WARNING
5939 "md: can not hot-add faulty %s disk to %s!\n",
5940 bdevname(rdev->bdev,b), mdname(mddev));
5941 err = -EINVAL;
5942 goto abort_export;
5943 }
5944 clear_bit(In_sync, &rdev->flags);
5945 rdev->desc_nr = -1;
5946 rdev->saved_raid_disk = -1;
5947 err = bind_rdev_to_array(rdev, mddev);
5948 if (err)
5949 goto abort_export;
5950
5951 /*
5952 * The rest should better be atomic, we can have disk failures
5953 * noticed in interrupt contexts ...
5954 */
5955
5956 rdev->raid_disk = -1;
5957
5958 md_update_sb(mddev, 1);
5959
5960 /*
5961 * Kick recovery, maybe this spare has to be added to the
5962 * array immediately.
5963 */
5964 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5965 md_wakeup_thread(mddev->thread);
5966 md_new_event(mddev);
5967 return 0;
5968
5969 abort_export:
5970 export_rdev(rdev);
5971 return err;
5972 }
5973
5974 static int set_bitmap_file(struct mddev *mddev, int fd)
5975 {
5976 int err;
5977
5978 if (mddev->pers) {
5979 if (!mddev->pers->quiesce)
5980 return -EBUSY;
5981 if (mddev->recovery || mddev->sync_thread)
5982 return -EBUSY;
5983 /* we should be able to change the bitmap.. */
5984 }
5985
5986
5987 if (fd >= 0) {
5988 if (mddev->bitmap)
5989 return -EEXIST; /* cannot add when bitmap is present */
5990 mddev->bitmap_info.file = fget(fd);
5991
5992 if (mddev->bitmap_info.file == NULL) {
5993 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5994 mdname(mddev));
5995 return -EBADF;
5996 }
5997
5998 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5999 if (err) {
6000 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6001 mdname(mddev));
6002 fput(mddev->bitmap_info.file);
6003 mddev->bitmap_info.file = NULL;
6004 return err;
6005 }
6006 mddev->bitmap_info.offset = 0; /* file overrides offset */
6007 } else if (mddev->bitmap == NULL)
6008 return -ENOENT; /* cannot remove what isn't there */
6009 err = 0;
6010 if (mddev->pers) {
6011 mddev->pers->quiesce(mddev, 1);
6012 if (fd >= 0) {
6013 err = bitmap_create(mddev);
6014 if (!err)
6015 err = bitmap_load(mddev);
6016 }
6017 if (fd < 0 || err) {
6018 bitmap_destroy(mddev);
6019 fd = -1; /* make sure to put the file */
6020 }
6021 mddev->pers->quiesce(mddev, 0);
6022 }
6023 if (fd < 0) {
6024 if (mddev->bitmap_info.file) {
6025 restore_bitmap_write_access(mddev->bitmap_info.file);
6026 fput(mddev->bitmap_info.file);
6027 }
6028 mddev->bitmap_info.file = NULL;
6029 }
6030
6031 return err;
6032 }
6033
6034 /*
6035 * set_array_info is used two different ways
6036 * The original usage is when creating a new array.
6037 * In this usage, raid_disks is > 0 and it together with
6038 * level, size, not_persistent,layout,chunksize determine the
6039 * shape of the array.
6040 * This will always create an array with a type-0.90.0 superblock.
6041 * The newer usage is when assembling an array.
6042 * In this case raid_disks will be 0, and the major_version field is
6043 * use to determine which style super-blocks are to be found on the devices.
6044 * The minor and patch _version numbers are also kept incase the
6045 * super_block handler wishes to interpret them.
6046 */
6047 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6048 {
6049
6050 if (info->raid_disks == 0) {
6051 /* just setting version number for superblock loading */
6052 if (info->major_version < 0 ||
6053 info->major_version >= ARRAY_SIZE(super_types) ||
6054 super_types[info->major_version].name == NULL) {
6055 /* maybe try to auto-load a module? */
6056 printk(KERN_INFO
6057 "md: superblock version %d not known\n",
6058 info->major_version);
6059 return -EINVAL;
6060 }
6061 mddev->major_version = info->major_version;
6062 mddev->minor_version = info->minor_version;
6063 mddev->patch_version = info->patch_version;
6064 mddev->persistent = !info->not_persistent;
6065 /* ensure mddev_put doesn't delete this now that there
6066 * is some minimal configuration.
6067 */
6068 mddev->ctime = get_seconds();
6069 return 0;
6070 }
6071 mddev->major_version = MD_MAJOR_VERSION;
6072 mddev->minor_version = MD_MINOR_VERSION;
6073 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6074 mddev->ctime = get_seconds();
6075
6076 mddev->level = info->level;
6077 mddev->clevel[0] = 0;
6078 mddev->dev_sectors = 2 * (sector_t)info->size;
6079 mddev->raid_disks = info->raid_disks;
6080 /* don't set md_minor, it is determined by which /dev/md* was
6081 * openned
6082 */
6083 if (info->state & (1<<MD_SB_CLEAN))
6084 mddev->recovery_cp = MaxSector;
6085 else
6086 mddev->recovery_cp = 0;
6087 mddev->persistent = ! info->not_persistent;
6088 mddev->external = 0;
6089
6090 mddev->layout = info->layout;
6091 mddev->chunk_sectors = info->chunk_size >> 9;
6092
6093 mddev->max_disks = MD_SB_DISKS;
6094
6095 if (mddev->persistent)
6096 mddev->flags = 0;
6097 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6098
6099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6100 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6101 mddev->bitmap_info.offset = 0;
6102
6103 mddev->reshape_position = MaxSector;
6104
6105 /*
6106 * Generate a 128 bit UUID
6107 */
6108 get_random_bytes(mddev->uuid, 16);
6109
6110 mddev->new_level = mddev->level;
6111 mddev->new_chunk_sectors = mddev->chunk_sectors;
6112 mddev->new_layout = mddev->layout;
6113 mddev->delta_disks = 0;
6114 mddev->reshape_backwards = 0;
6115
6116 return 0;
6117 }
6118
6119 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6120 {
6121 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6122
6123 if (mddev->external_size)
6124 return;
6125
6126 mddev->array_sectors = array_sectors;
6127 }
6128 EXPORT_SYMBOL(md_set_array_sectors);
6129
6130 static int update_size(struct mddev *mddev, sector_t num_sectors)
6131 {
6132 struct md_rdev *rdev;
6133 int rv;
6134 int fit = (num_sectors == 0);
6135
6136 if (mddev->pers->resize == NULL)
6137 return -EINVAL;
6138 /* The "num_sectors" is the number of sectors of each device that
6139 * is used. This can only make sense for arrays with redundancy.
6140 * linear and raid0 always use whatever space is available. We can only
6141 * consider changing this number if no resync or reconstruction is
6142 * happening, and if the new size is acceptable. It must fit before the
6143 * sb_start or, if that is <data_offset, it must fit before the size
6144 * of each device. If num_sectors is zero, we find the largest size
6145 * that fits.
6146 */
6147 if (mddev->sync_thread)
6148 return -EBUSY;
6149
6150 rdev_for_each(rdev, mddev) {
6151 sector_t avail = rdev->sectors;
6152
6153 if (fit && (num_sectors == 0 || num_sectors > avail))
6154 num_sectors = avail;
6155 if (avail < num_sectors)
6156 return -ENOSPC;
6157 }
6158 rv = mddev->pers->resize(mddev, num_sectors);
6159 if (!rv)
6160 revalidate_disk(mddev->gendisk);
6161 return rv;
6162 }
6163
6164 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6165 {
6166 int rv;
6167 struct md_rdev *rdev;
6168 /* change the number of raid disks */
6169 if (mddev->pers->check_reshape == NULL)
6170 return -EINVAL;
6171 if (raid_disks <= 0 ||
6172 (mddev->max_disks && raid_disks >= mddev->max_disks))
6173 return -EINVAL;
6174 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6175 return -EBUSY;
6176
6177 rdev_for_each(rdev, mddev) {
6178 if (mddev->raid_disks < raid_disks &&
6179 rdev->data_offset < rdev->new_data_offset)
6180 return -EINVAL;
6181 if (mddev->raid_disks > raid_disks &&
6182 rdev->data_offset > rdev->new_data_offset)
6183 return -EINVAL;
6184 }
6185
6186 mddev->delta_disks = raid_disks - mddev->raid_disks;
6187 if (mddev->delta_disks < 0)
6188 mddev->reshape_backwards = 1;
6189 else if (mddev->delta_disks > 0)
6190 mddev->reshape_backwards = 0;
6191
6192 rv = mddev->pers->check_reshape(mddev);
6193 if (rv < 0) {
6194 mddev->delta_disks = 0;
6195 mddev->reshape_backwards = 0;
6196 }
6197 return rv;
6198 }
6199
6200
6201 /*
6202 * update_array_info is used to change the configuration of an
6203 * on-line array.
6204 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6205 * fields in the info are checked against the array.
6206 * Any differences that cannot be handled will cause an error.
6207 * Normally, only one change can be managed at a time.
6208 */
6209 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6210 {
6211 int rv = 0;
6212 int cnt = 0;
6213 int state = 0;
6214
6215 /* calculate expected state,ignoring low bits */
6216 if (mddev->bitmap && mddev->bitmap_info.offset)
6217 state |= (1 << MD_SB_BITMAP_PRESENT);
6218
6219 if (mddev->major_version != info->major_version ||
6220 mddev->minor_version != info->minor_version ||
6221 /* mddev->patch_version != info->patch_version || */
6222 mddev->ctime != info->ctime ||
6223 mddev->level != info->level ||
6224 /* mddev->layout != info->layout || */
6225 mddev->persistent != !info->not_persistent ||
6226 mddev->chunk_sectors != info->chunk_size >> 9 ||
6227 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6228 ((state^info->state) & 0xfffffe00)
6229 )
6230 return -EINVAL;
6231 /* Check there is only one change */
6232 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6233 cnt++;
6234 if (mddev->raid_disks != info->raid_disks)
6235 cnt++;
6236 if (mddev->layout != info->layout)
6237 cnt++;
6238 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6239 cnt++;
6240 if (cnt == 0)
6241 return 0;
6242 if (cnt > 1)
6243 return -EINVAL;
6244
6245 if (mddev->layout != info->layout) {
6246 /* Change layout
6247 * we don't need to do anything at the md level, the
6248 * personality will take care of it all.
6249 */
6250 if (mddev->pers->check_reshape == NULL)
6251 return -EINVAL;
6252 else {
6253 mddev->new_layout = info->layout;
6254 rv = mddev->pers->check_reshape(mddev);
6255 if (rv)
6256 mddev->new_layout = mddev->layout;
6257 return rv;
6258 }
6259 }
6260 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6261 rv = update_size(mddev, (sector_t)info->size * 2);
6262
6263 if (mddev->raid_disks != info->raid_disks)
6264 rv = update_raid_disks(mddev, info->raid_disks);
6265
6266 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6267 if (mddev->pers->quiesce == NULL)
6268 return -EINVAL;
6269 if (mddev->recovery || mddev->sync_thread)
6270 return -EBUSY;
6271 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6272 /* add the bitmap */
6273 if (mddev->bitmap)
6274 return -EEXIST;
6275 if (mddev->bitmap_info.default_offset == 0)
6276 return -EINVAL;
6277 mddev->bitmap_info.offset =
6278 mddev->bitmap_info.default_offset;
6279 mddev->bitmap_info.space =
6280 mddev->bitmap_info.default_space;
6281 mddev->pers->quiesce(mddev, 1);
6282 rv = bitmap_create(mddev);
6283 if (!rv)
6284 rv = bitmap_load(mddev);
6285 if (rv)
6286 bitmap_destroy(mddev);
6287 mddev->pers->quiesce(mddev, 0);
6288 } else {
6289 /* remove the bitmap */
6290 if (!mddev->bitmap)
6291 return -ENOENT;
6292 if (mddev->bitmap->storage.file)
6293 return -EINVAL;
6294 mddev->pers->quiesce(mddev, 1);
6295 bitmap_destroy(mddev);
6296 mddev->pers->quiesce(mddev, 0);
6297 mddev->bitmap_info.offset = 0;
6298 }
6299 }
6300 md_update_sb(mddev, 1);
6301 return rv;
6302 }
6303
6304 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6305 {
6306 struct md_rdev *rdev;
6307 int err = 0;
6308
6309 if (mddev->pers == NULL)
6310 return -ENODEV;
6311
6312 rcu_read_lock();
6313 rdev = find_rdev_rcu(mddev, dev);
6314 if (!rdev)
6315 err = -ENODEV;
6316 else {
6317 md_error(mddev, rdev);
6318 if (!test_bit(Faulty, &rdev->flags))
6319 err = -EBUSY;
6320 }
6321 rcu_read_unlock();
6322 return err;
6323 }
6324
6325 /*
6326 * We have a problem here : there is no easy way to give a CHS
6327 * virtual geometry. We currently pretend that we have a 2 heads
6328 * 4 sectors (with a BIG number of cylinders...). This drives
6329 * dosfs just mad... ;-)
6330 */
6331 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6332 {
6333 struct mddev *mddev = bdev->bd_disk->private_data;
6334
6335 geo->heads = 2;
6336 geo->sectors = 4;
6337 geo->cylinders = mddev->array_sectors / 8;
6338 return 0;
6339 }
6340
6341 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6342 unsigned int cmd, unsigned long arg)
6343 {
6344 int err = 0;
6345 void __user *argp = (void __user *)arg;
6346 struct mddev *mddev = NULL;
6347 int ro;
6348
6349 switch (cmd) {
6350 case RAID_VERSION:
6351 case GET_ARRAY_INFO:
6352 case GET_DISK_INFO:
6353 break;
6354 default:
6355 if (!capable(CAP_SYS_ADMIN))
6356 return -EACCES;
6357 }
6358
6359 /*
6360 * Commands dealing with the RAID driver but not any
6361 * particular array:
6362 */
6363 switch (cmd) {
6364 case RAID_VERSION:
6365 err = get_version(argp);
6366 goto done;
6367
6368 case PRINT_RAID_DEBUG:
6369 err = 0;
6370 md_print_devices();
6371 goto done;
6372
6373 #ifndef MODULE
6374 case RAID_AUTORUN:
6375 err = 0;
6376 autostart_arrays(arg);
6377 goto done;
6378 #endif
6379 default:;
6380 }
6381
6382 /*
6383 * Commands creating/starting a new array:
6384 */
6385
6386 mddev = bdev->bd_disk->private_data;
6387
6388 if (!mddev) {
6389 BUG();
6390 goto abort;
6391 }
6392
6393 /* Some actions do not requires the mutex */
6394 switch (cmd) {
6395 case GET_ARRAY_INFO:
6396 if (!mddev->raid_disks && !mddev->external)
6397 err = -ENODEV;
6398 else
6399 err = get_array_info(mddev, argp);
6400 goto abort;
6401
6402 case GET_DISK_INFO:
6403 if (!mddev->raid_disks && !mddev->external)
6404 err = -ENODEV;
6405 else
6406 err = get_disk_info(mddev, argp);
6407 goto abort;
6408
6409 case SET_DISK_FAULTY:
6410 err = set_disk_faulty(mddev, new_decode_dev(arg));
6411 goto abort;
6412 }
6413
6414 if (cmd == ADD_NEW_DISK)
6415 /* need to ensure md_delayed_delete() has completed */
6416 flush_workqueue(md_misc_wq);
6417
6418 err = mddev_lock(mddev);
6419 if (err) {
6420 printk(KERN_INFO
6421 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6422 err, cmd);
6423 goto abort;
6424 }
6425
6426 if (cmd == SET_ARRAY_INFO) {
6427 mdu_array_info_t info;
6428 if (!arg)
6429 memset(&info, 0, sizeof(info));
6430 else if (copy_from_user(&info, argp, sizeof(info))) {
6431 err = -EFAULT;
6432 goto abort_unlock;
6433 }
6434 if (mddev->pers) {
6435 err = update_array_info(mddev, &info);
6436 if (err) {
6437 printk(KERN_WARNING "md: couldn't update"
6438 " array info. %d\n", err);
6439 goto abort_unlock;
6440 }
6441 goto done_unlock;
6442 }
6443 if (!list_empty(&mddev->disks)) {
6444 printk(KERN_WARNING
6445 "md: array %s already has disks!\n",
6446 mdname(mddev));
6447 err = -EBUSY;
6448 goto abort_unlock;
6449 }
6450 if (mddev->raid_disks) {
6451 printk(KERN_WARNING
6452 "md: array %s already initialised!\n",
6453 mdname(mddev));
6454 err = -EBUSY;
6455 goto abort_unlock;
6456 }
6457 err = set_array_info(mddev, &info);
6458 if (err) {
6459 printk(KERN_WARNING "md: couldn't set"
6460 " array info. %d\n", err);
6461 goto abort_unlock;
6462 }
6463 goto done_unlock;
6464 }
6465
6466 /*
6467 * Commands querying/configuring an existing array:
6468 */
6469 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6470 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6471 if ((!mddev->raid_disks && !mddev->external)
6472 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6473 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6474 && cmd != GET_BITMAP_FILE) {
6475 err = -ENODEV;
6476 goto abort_unlock;
6477 }
6478
6479 /*
6480 * Commands even a read-only array can execute:
6481 */
6482 switch (cmd) {
6483 case GET_BITMAP_FILE:
6484 err = get_bitmap_file(mddev, argp);
6485 goto done_unlock;
6486
6487 case RESTART_ARRAY_RW:
6488 err = restart_array(mddev);
6489 goto done_unlock;
6490
6491 case STOP_ARRAY:
6492 err = do_md_stop(mddev, 0, bdev);
6493 goto done_unlock;
6494
6495 case STOP_ARRAY_RO:
6496 err = md_set_readonly(mddev, bdev);
6497 goto done_unlock;
6498
6499 case HOT_REMOVE_DISK:
6500 err = hot_remove_disk(mddev, new_decode_dev(arg));
6501 goto done_unlock;
6502
6503 case ADD_NEW_DISK:
6504 /* We can support ADD_NEW_DISK on read-only arrays
6505 * on if we are re-adding a preexisting device.
6506 * So require mddev->pers and MD_DISK_SYNC.
6507 */
6508 if (mddev->pers) {
6509 mdu_disk_info_t info;
6510 if (copy_from_user(&info, argp, sizeof(info)))
6511 err = -EFAULT;
6512 else if (!(info.state & (1<<MD_DISK_SYNC)))
6513 /* Need to clear read-only for this */
6514 break;
6515 else
6516 err = add_new_disk(mddev, &info);
6517 goto done_unlock;
6518 }
6519 break;
6520
6521 case BLKROSET:
6522 if (get_user(ro, (int __user *)(arg))) {
6523 err = -EFAULT;
6524 goto done_unlock;
6525 }
6526 err = -EINVAL;
6527
6528 /* if the bdev is going readonly the value of mddev->ro
6529 * does not matter, no writes are coming
6530 */
6531 if (ro)
6532 goto done_unlock;
6533
6534 /* are we are already prepared for writes? */
6535 if (mddev->ro != 1)
6536 goto done_unlock;
6537
6538 /* transitioning to readauto need only happen for
6539 * arrays that call md_write_start
6540 */
6541 if (mddev->pers) {
6542 err = restart_array(mddev);
6543 if (err == 0) {
6544 mddev->ro = 2;
6545 set_disk_ro(mddev->gendisk, 0);
6546 }
6547 }
6548 goto done_unlock;
6549 }
6550
6551 /*
6552 * The remaining ioctls are changing the state of the
6553 * superblock, so we do not allow them on read-only arrays.
6554 * However non-MD ioctls (e.g. get-size) will still come through
6555 * here and hit the 'default' below, so only disallow
6556 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6557 */
6558 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6559 if (mddev->ro == 2) {
6560 mddev->ro = 0;
6561 sysfs_notify_dirent_safe(mddev->sysfs_state);
6562 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6563 /* mddev_unlock will wake thread */
6564 /* If a device failed while we were read-only, we
6565 * need to make sure the metadata is updated now.
6566 */
6567 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6568 mddev_unlock(mddev);
6569 wait_event(mddev->sb_wait,
6570 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6571 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6572 mddev_lock(mddev);
6573 }
6574 } else {
6575 err = -EROFS;
6576 goto abort_unlock;
6577 }
6578 }
6579
6580 switch (cmd) {
6581 case ADD_NEW_DISK:
6582 {
6583 mdu_disk_info_t info;
6584 if (copy_from_user(&info, argp, sizeof(info)))
6585 err = -EFAULT;
6586 else
6587 err = add_new_disk(mddev, &info);
6588 goto done_unlock;
6589 }
6590
6591 case HOT_ADD_DISK:
6592 err = hot_add_disk(mddev, new_decode_dev(arg));
6593 goto done_unlock;
6594
6595 case RUN_ARRAY:
6596 err = do_md_run(mddev);
6597 goto done_unlock;
6598
6599 case SET_BITMAP_FILE:
6600 err = set_bitmap_file(mddev, (int)arg);
6601 goto done_unlock;
6602
6603 default:
6604 err = -EINVAL;
6605 goto abort_unlock;
6606 }
6607
6608 done_unlock:
6609 abort_unlock:
6610 if (mddev->hold_active == UNTIL_IOCTL &&
6611 err != -EINVAL)
6612 mddev->hold_active = 0;
6613 mddev_unlock(mddev);
6614
6615 return err;
6616 done:
6617 if (err)
6618 MD_BUG();
6619 abort:
6620 return err;
6621 }
6622 #ifdef CONFIG_COMPAT
6623 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6624 unsigned int cmd, unsigned long arg)
6625 {
6626 switch (cmd) {
6627 case HOT_REMOVE_DISK:
6628 case HOT_ADD_DISK:
6629 case SET_DISK_FAULTY:
6630 case SET_BITMAP_FILE:
6631 /* These take in integer arg, do not convert */
6632 break;
6633 default:
6634 arg = (unsigned long)compat_ptr(arg);
6635 break;
6636 }
6637
6638 return md_ioctl(bdev, mode, cmd, arg);
6639 }
6640 #endif /* CONFIG_COMPAT */
6641
6642 static int md_open(struct block_device *bdev, fmode_t mode)
6643 {
6644 /*
6645 * Succeed if we can lock the mddev, which confirms that
6646 * it isn't being stopped right now.
6647 */
6648 struct mddev *mddev = mddev_find(bdev->bd_dev);
6649 int err;
6650
6651 if (!mddev)
6652 return -ENODEV;
6653
6654 if (mddev->gendisk != bdev->bd_disk) {
6655 /* we are racing with mddev_put which is discarding this
6656 * bd_disk.
6657 */
6658 mddev_put(mddev);
6659 /* Wait until bdev->bd_disk is definitely gone */
6660 flush_workqueue(md_misc_wq);
6661 /* Then retry the open from the top */
6662 return -ERESTARTSYS;
6663 }
6664 BUG_ON(mddev != bdev->bd_disk->private_data);
6665
6666 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6667 goto out;
6668
6669 err = 0;
6670 atomic_inc(&mddev->openers);
6671 mutex_unlock(&mddev->open_mutex);
6672
6673 check_disk_change(bdev);
6674 out:
6675 return err;
6676 }
6677
6678 static void md_release(struct gendisk *disk, fmode_t mode)
6679 {
6680 struct mddev *mddev = disk->private_data;
6681
6682 BUG_ON(!mddev);
6683 atomic_dec(&mddev->openers);
6684 mddev_put(mddev);
6685 }
6686
6687 static int md_media_changed(struct gendisk *disk)
6688 {
6689 struct mddev *mddev = disk->private_data;
6690
6691 return mddev->changed;
6692 }
6693
6694 static int md_revalidate(struct gendisk *disk)
6695 {
6696 struct mddev *mddev = disk->private_data;
6697
6698 mddev->changed = 0;
6699 return 0;
6700 }
6701 static const struct block_device_operations md_fops =
6702 {
6703 .owner = THIS_MODULE,
6704 .open = md_open,
6705 .release = md_release,
6706 .ioctl = md_ioctl,
6707 #ifdef CONFIG_COMPAT
6708 .compat_ioctl = md_compat_ioctl,
6709 #endif
6710 .getgeo = md_getgeo,
6711 .media_changed = md_media_changed,
6712 .revalidate_disk= md_revalidate,
6713 };
6714
6715 static int md_thread(void * arg)
6716 {
6717 struct md_thread *thread = arg;
6718
6719 /*
6720 * md_thread is a 'system-thread', it's priority should be very
6721 * high. We avoid resource deadlocks individually in each
6722 * raid personality. (RAID5 does preallocation) We also use RR and
6723 * the very same RT priority as kswapd, thus we will never get
6724 * into a priority inversion deadlock.
6725 *
6726 * we definitely have to have equal or higher priority than
6727 * bdflush, otherwise bdflush will deadlock if there are too
6728 * many dirty RAID5 blocks.
6729 */
6730
6731 allow_signal(SIGKILL);
6732 while (!kthread_should_stop()) {
6733
6734 /* We need to wait INTERRUPTIBLE so that
6735 * we don't add to the load-average.
6736 * That means we need to be sure no signals are
6737 * pending
6738 */
6739 if (signal_pending(current))
6740 flush_signals(current);
6741
6742 wait_event_interruptible_timeout
6743 (thread->wqueue,
6744 test_bit(THREAD_WAKEUP, &thread->flags)
6745 || kthread_should_stop(),
6746 thread->timeout);
6747
6748 clear_bit(THREAD_WAKEUP, &thread->flags);
6749 if (!kthread_should_stop())
6750 thread->run(thread);
6751 }
6752
6753 return 0;
6754 }
6755
6756 void md_wakeup_thread(struct md_thread *thread)
6757 {
6758 if (thread) {
6759 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6760 set_bit(THREAD_WAKEUP, &thread->flags);
6761 wake_up(&thread->wqueue);
6762 }
6763 }
6764
6765 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6766 struct mddev *mddev, const char *name)
6767 {
6768 struct md_thread *thread;
6769
6770 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6771 if (!thread)
6772 return NULL;
6773
6774 init_waitqueue_head(&thread->wqueue);
6775
6776 thread->run = run;
6777 thread->mddev = mddev;
6778 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6779 thread->tsk = kthread_run(md_thread, thread,
6780 "%s_%s",
6781 mdname(thread->mddev),
6782 name);
6783 if (IS_ERR(thread->tsk)) {
6784 kfree(thread);
6785 return NULL;
6786 }
6787 return thread;
6788 }
6789
6790 void md_unregister_thread(struct md_thread **threadp)
6791 {
6792 struct md_thread *thread = *threadp;
6793 if (!thread)
6794 return;
6795 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6796 /* Locking ensures that mddev_unlock does not wake_up a
6797 * non-existent thread
6798 */
6799 spin_lock(&pers_lock);
6800 *threadp = NULL;
6801 spin_unlock(&pers_lock);
6802
6803 kthread_stop(thread->tsk);
6804 kfree(thread);
6805 }
6806
6807 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6808 {
6809 if (!mddev) {
6810 MD_BUG();
6811 return;
6812 }
6813
6814 if (!rdev || test_bit(Faulty, &rdev->flags))
6815 return;
6816
6817 if (!mddev->pers || !mddev->pers->error_handler)
6818 return;
6819 mddev->pers->error_handler(mddev,rdev);
6820 if (mddev->degraded)
6821 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6822 sysfs_notify_dirent_safe(rdev->sysfs_state);
6823 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6824 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6825 md_wakeup_thread(mddev->thread);
6826 if (mddev->event_work.func)
6827 queue_work(md_misc_wq, &mddev->event_work);
6828 md_new_event_inintr(mddev);
6829 }
6830
6831 /* seq_file implementation /proc/mdstat */
6832
6833 static void status_unused(struct seq_file *seq)
6834 {
6835 int i = 0;
6836 struct md_rdev *rdev;
6837
6838 seq_printf(seq, "unused devices: ");
6839
6840 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6841 char b[BDEVNAME_SIZE];
6842 i++;
6843 seq_printf(seq, "%s ",
6844 bdevname(rdev->bdev,b));
6845 }
6846 if (!i)
6847 seq_printf(seq, "<none>");
6848
6849 seq_printf(seq, "\n");
6850 }
6851
6852
6853 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6854 {
6855 sector_t max_sectors, resync, res;
6856 unsigned long dt, db;
6857 sector_t rt;
6858 int scale;
6859 unsigned int per_milli;
6860
6861 if (mddev->curr_resync <= 3)
6862 resync = 0;
6863 else
6864 resync = mddev->curr_resync
6865 - atomic_read(&mddev->recovery_active);
6866
6867 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6868 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6869 max_sectors = mddev->resync_max_sectors;
6870 else
6871 max_sectors = mddev->dev_sectors;
6872
6873 /*
6874 * Should not happen.
6875 */
6876 if (!max_sectors) {
6877 MD_BUG();
6878 return;
6879 }
6880 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6881 * in a sector_t, and (max_sectors>>scale) will fit in a
6882 * u32, as those are the requirements for sector_div.
6883 * Thus 'scale' must be at least 10
6884 */
6885 scale = 10;
6886 if (sizeof(sector_t) > sizeof(unsigned long)) {
6887 while ( max_sectors/2 > (1ULL<<(scale+32)))
6888 scale++;
6889 }
6890 res = (resync>>scale)*1000;
6891 sector_div(res, (u32)((max_sectors>>scale)+1));
6892
6893 per_milli = res;
6894 {
6895 int i, x = per_milli/50, y = 20-x;
6896 seq_printf(seq, "[");
6897 for (i = 0; i < x; i++)
6898 seq_printf(seq, "=");
6899 seq_printf(seq, ">");
6900 for (i = 0; i < y; i++)
6901 seq_printf(seq, ".");
6902 seq_printf(seq, "] ");
6903 }
6904 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6905 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6906 "reshape" :
6907 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6908 "check" :
6909 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6910 "resync" : "recovery"))),
6911 per_milli/10, per_milli % 10,
6912 (unsigned long long) resync/2,
6913 (unsigned long long) max_sectors/2);
6914
6915 /*
6916 * dt: time from mark until now
6917 * db: blocks written from mark until now
6918 * rt: remaining time
6919 *
6920 * rt is a sector_t, so could be 32bit or 64bit.
6921 * So we divide before multiply in case it is 32bit and close
6922 * to the limit.
6923 * We scale the divisor (db) by 32 to avoid losing precision
6924 * near the end of resync when the number of remaining sectors
6925 * is close to 'db'.
6926 * We then divide rt by 32 after multiplying by db to compensate.
6927 * The '+1' avoids division by zero if db is very small.
6928 */
6929 dt = ((jiffies - mddev->resync_mark) / HZ);
6930 if (!dt) dt++;
6931 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6932 - mddev->resync_mark_cnt;
6933
6934 rt = max_sectors - resync; /* number of remaining sectors */
6935 sector_div(rt, db/32+1);
6936 rt *= dt;
6937 rt >>= 5;
6938
6939 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6940 ((unsigned long)rt % 60)/6);
6941
6942 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6943 }
6944
6945 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6946 {
6947 struct list_head *tmp;
6948 loff_t l = *pos;
6949 struct mddev *mddev;
6950
6951 if (l >= 0x10000)
6952 return NULL;
6953 if (!l--)
6954 /* header */
6955 return (void*)1;
6956
6957 spin_lock(&all_mddevs_lock);
6958 list_for_each(tmp,&all_mddevs)
6959 if (!l--) {
6960 mddev = list_entry(tmp, struct mddev, all_mddevs);
6961 mddev_get(mddev);
6962 spin_unlock(&all_mddevs_lock);
6963 return mddev;
6964 }
6965 spin_unlock(&all_mddevs_lock);
6966 if (!l--)
6967 return (void*)2;/* tail */
6968 return NULL;
6969 }
6970
6971 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6972 {
6973 struct list_head *tmp;
6974 struct mddev *next_mddev, *mddev = v;
6975
6976 ++*pos;
6977 if (v == (void*)2)
6978 return NULL;
6979
6980 spin_lock(&all_mddevs_lock);
6981 if (v == (void*)1)
6982 tmp = all_mddevs.next;
6983 else
6984 tmp = mddev->all_mddevs.next;
6985 if (tmp != &all_mddevs)
6986 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6987 else {
6988 next_mddev = (void*)2;
6989 *pos = 0x10000;
6990 }
6991 spin_unlock(&all_mddevs_lock);
6992
6993 if (v != (void*)1)
6994 mddev_put(mddev);
6995 return next_mddev;
6996
6997 }
6998
6999 static void md_seq_stop(struct seq_file *seq, void *v)
7000 {
7001 struct mddev *mddev = v;
7002
7003 if (mddev && v != (void*)1 && v != (void*)2)
7004 mddev_put(mddev);
7005 }
7006
7007 static int md_seq_show(struct seq_file *seq, void *v)
7008 {
7009 struct mddev *mddev = v;
7010 sector_t sectors;
7011 struct md_rdev *rdev;
7012
7013 if (v == (void*)1) {
7014 struct md_personality *pers;
7015 seq_printf(seq, "Personalities : ");
7016 spin_lock(&pers_lock);
7017 list_for_each_entry(pers, &pers_list, list)
7018 seq_printf(seq, "[%s] ", pers->name);
7019
7020 spin_unlock(&pers_lock);
7021 seq_printf(seq, "\n");
7022 seq->poll_event = atomic_read(&md_event_count);
7023 return 0;
7024 }
7025 if (v == (void*)2) {
7026 status_unused(seq);
7027 return 0;
7028 }
7029
7030 if (mddev_lock(mddev) < 0)
7031 return -EINTR;
7032
7033 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7034 seq_printf(seq, "%s : %sactive", mdname(mddev),
7035 mddev->pers ? "" : "in");
7036 if (mddev->pers) {
7037 if (mddev->ro==1)
7038 seq_printf(seq, " (read-only)");
7039 if (mddev->ro==2)
7040 seq_printf(seq, " (auto-read-only)");
7041 seq_printf(seq, " %s", mddev->pers->name);
7042 }
7043
7044 sectors = 0;
7045 rdev_for_each(rdev, mddev) {
7046 char b[BDEVNAME_SIZE];
7047 seq_printf(seq, " %s[%d]",
7048 bdevname(rdev->bdev,b), rdev->desc_nr);
7049 if (test_bit(WriteMostly, &rdev->flags))
7050 seq_printf(seq, "(W)");
7051 if (test_bit(Faulty, &rdev->flags)) {
7052 seq_printf(seq, "(F)");
7053 continue;
7054 }
7055 if (rdev->raid_disk < 0)
7056 seq_printf(seq, "(S)"); /* spare */
7057 if (test_bit(Replacement, &rdev->flags))
7058 seq_printf(seq, "(R)");
7059 sectors += rdev->sectors;
7060 }
7061
7062 if (!list_empty(&mddev->disks)) {
7063 if (mddev->pers)
7064 seq_printf(seq, "\n %llu blocks",
7065 (unsigned long long)
7066 mddev->array_sectors / 2);
7067 else
7068 seq_printf(seq, "\n %llu blocks",
7069 (unsigned long long)sectors / 2);
7070 }
7071 if (mddev->persistent) {
7072 if (mddev->major_version != 0 ||
7073 mddev->minor_version != 90) {
7074 seq_printf(seq," super %d.%d",
7075 mddev->major_version,
7076 mddev->minor_version);
7077 }
7078 } else if (mddev->external)
7079 seq_printf(seq, " super external:%s",
7080 mddev->metadata_type);
7081 else
7082 seq_printf(seq, " super non-persistent");
7083
7084 if (mddev->pers) {
7085 mddev->pers->status(seq, mddev);
7086 seq_printf(seq, "\n ");
7087 if (mddev->pers->sync_request) {
7088 if (mddev->curr_resync > 2) {
7089 status_resync(seq, mddev);
7090 seq_printf(seq, "\n ");
7091 } else if (mddev->curr_resync >= 1)
7092 seq_printf(seq, "\tresync=DELAYED\n ");
7093 else if (mddev->recovery_cp < MaxSector)
7094 seq_printf(seq, "\tresync=PENDING\n ");
7095 }
7096 } else
7097 seq_printf(seq, "\n ");
7098
7099 bitmap_status(seq, mddev->bitmap);
7100
7101 seq_printf(seq, "\n");
7102 }
7103 mddev_unlock(mddev);
7104
7105 return 0;
7106 }
7107
7108 static const struct seq_operations md_seq_ops = {
7109 .start = md_seq_start,
7110 .next = md_seq_next,
7111 .stop = md_seq_stop,
7112 .show = md_seq_show,
7113 };
7114
7115 static int md_seq_open(struct inode *inode, struct file *file)
7116 {
7117 struct seq_file *seq;
7118 int error;
7119
7120 error = seq_open(file, &md_seq_ops);
7121 if (error)
7122 return error;
7123
7124 seq = file->private_data;
7125 seq->poll_event = atomic_read(&md_event_count);
7126 return error;
7127 }
7128
7129 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7130 {
7131 struct seq_file *seq = filp->private_data;
7132 int mask;
7133
7134 poll_wait(filp, &md_event_waiters, wait);
7135
7136 /* always allow read */
7137 mask = POLLIN | POLLRDNORM;
7138
7139 if (seq->poll_event != atomic_read(&md_event_count))
7140 mask |= POLLERR | POLLPRI;
7141 return mask;
7142 }
7143
7144 static const struct file_operations md_seq_fops = {
7145 .owner = THIS_MODULE,
7146 .open = md_seq_open,
7147 .read = seq_read,
7148 .llseek = seq_lseek,
7149 .release = seq_release_private,
7150 .poll = mdstat_poll,
7151 };
7152
7153 int register_md_personality(struct md_personality *p)
7154 {
7155 spin_lock(&pers_lock);
7156 list_add_tail(&p->list, &pers_list);
7157 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7158 spin_unlock(&pers_lock);
7159 return 0;
7160 }
7161
7162 int unregister_md_personality(struct md_personality *p)
7163 {
7164 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7165 spin_lock(&pers_lock);
7166 list_del_init(&p->list);
7167 spin_unlock(&pers_lock);
7168 return 0;
7169 }
7170
7171 static int is_mddev_idle(struct mddev *mddev, int init)
7172 {
7173 struct md_rdev * rdev;
7174 int idle;
7175 int curr_events;
7176
7177 idle = 1;
7178 rcu_read_lock();
7179 rdev_for_each_rcu(rdev, mddev) {
7180 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7181 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7182 (int)part_stat_read(&disk->part0, sectors[1]) -
7183 atomic_read(&disk->sync_io);
7184 /* sync IO will cause sync_io to increase before the disk_stats
7185 * as sync_io is counted when a request starts, and
7186 * disk_stats is counted when it completes.
7187 * So resync activity will cause curr_events to be smaller than
7188 * when there was no such activity.
7189 * non-sync IO will cause disk_stat to increase without
7190 * increasing sync_io so curr_events will (eventually)
7191 * be larger than it was before. Once it becomes
7192 * substantially larger, the test below will cause
7193 * the array to appear non-idle, and resync will slow
7194 * down.
7195 * If there is a lot of outstanding resync activity when
7196 * we set last_event to curr_events, then all that activity
7197 * completing might cause the array to appear non-idle
7198 * and resync will be slowed down even though there might
7199 * not have been non-resync activity. This will only
7200 * happen once though. 'last_events' will soon reflect
7201 * the state where there is little or no outstanding
7202 * resync requests, and further resync activity will
7203 * always make curr_events less than last_events.
7204 *
7205 */
7206 if (init || curr_events - rdev->last_events > 64) {
7207 rdev->last_events = curr_events;
7208 idle = 0;
7209 }
7210 }
7211 rcu_read_unlock();
7212 return idle;
7213 }
7214
7215 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7216 {
7217 /* another "blocks" (512byte) blocks have been synced */
7218 atomic_sub(blocks, &mddev->recovery_active);
7219 wake_up(&mddev->recovery_wait);
7220 if (!ok) {
7221 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7222 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7223 md_wakeup_thread(mddev->thread);
7224 // stop recovery, signal do_sync ....
7225 }
7226 }
7227
7228
7229 /* md_write_start(mddev, bi)
7230 * If we need to update some array metadata (e.g. 'active' flag
7231 * in superblock) before writing, schedule a superblock update
7232 * and wait for it to complete.
7233 */
7234 void md_write_start(struct mddev *mddev, struct bio *bi)
7235 {
7236 int did_change = 0;
7237 if (bio_data_dir(bi) != WRITE)
7238 return;
7239
7240 BUG_ON(mddev->ro == 1);
7241 if (mddev->ro == 2) {
7242 /* need to switch to read/write */
7243 mddev->ro = 0;
7244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7245 md_wakeup_thread(mddev->thread);
7246 md_wakeup_thread(mddev->sync_thread);
7247 did_change = 1;
7248 }
7249 atomic_inc(&mddev->writes_pending);
7250 if (mddev->safemode == 1)
7251 mddev->safemode = 0;
7252 if (mddev->in_sync) {
7253 spin_lock_irq(&mddev->write_lock);
7254 if (mddev->in_sync) {
7255 mddev->in_sync = 0;
7256 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7257 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7258 md_wakeup_thread(mddev->thread);
7259 did_change = 1;
7260 }
7261 spin_unlock_irq(&mddev->write_lock);
7262 }
7263 if (did_change)
7264 sysfs_notify_dirent_safe(mddev->sysfs_state);
7265 wait_event(mddev->sb_wait,
7266 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7267 }
7268
7269 void md_write_end(struct mddev *mddev)
7270 {
7271 if (atomic_dec_and_test(&mddev->writes_pending)) {
7272 if (mddev->safemode == 2)
7273 md_wakeup_thread(mddev->thread);
7274 else if (mddev->safemode_delay)
7275 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7276 }
7277 }
7278
7279 /* md_allow_write(mddev)
7280 * Calling this ensures that the array is marked 'active' so that writes
7281 * may proceed without blocking. It is important to call this before
7282 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7283 * Must be called with mddev_lock held.
7284 *
7285 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7286 * is dropped, so return -EAGAIN after notifying userspace.
7287 */
7288 int md_allow_write(struct mddev *mddev)
7289 {
7290 if (!mddev->pers)
7291 return 0;
7292 if (mddev->ro)
7293 return 0;
7294 if (!mddev->pers->sync_request)
7295 return 0;
7296
7297 spin_lock_irq(&mddev->write_lock);
7298 if (mddev->in_sync) {
7299 mddev->in_sync = 0;
7300 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7301 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7302 if (mddev->safemode_delay &&
7303 mddev->safemode == 0)
7304 mddev->safemode = 1;
7305 spin_unlock_irq(&mddev->write_lock);
7306 md_update_sb(mddev, 0);
7307 sysfs_notify_dirent_safe(mddev->sysfs_state);
7308 } else
7309 spin_unlock_irq(&mddev->write_lock);
7310
7311 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7312 return -EAGAIN;
7313 else
7314 return 0;
7315 }
7316 EXPORT_SYMBOL_GPL(md_allow_write);
7317
7318 #define SYNC_MARKS 10
7319 #define SYNC_MARK_STEP (3*HZ)
7320 #define UPDATE_FREQUENCY (5*60*HZ)
7321 void md_do_sync(struct md_thread *thread)
7322 {
7323 struct mddev *mddev = thread->mddev;
7324 struct mddev *mddev2;
7325 unsigned int currspeed = 0,
7326 window;
7327 sector_t max_sectors,j, io_sectors;
7328 unsigned long mark[SYNC_MARKS];
7329 unsigned long update_time;
7330 sector_t mark_cnt[SYNC_MARKS];
7331 int last_mark,m;
7332 struct list_head *tmp;
7333 sector_t last_check;
7334 int skipped = 0;
7335 struct md_rdev *rdev;
7336 char *desc;
7337 struct blk_plug plug;
7338
7339 /* just incase thread restarts... */
7340 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7341 return;
7342 if (mddev->ro) {/* never try to sync a read-only array */
7343 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7344 return;
7345 }
7346
7347 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7348 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7349 desc = "data-check";
7350 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7351 desc = "requested-resync";
7352 else
7353 desc = "resync";
7354 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7355 desc = "reshape";
7356 else
7357 desc = "recovery";
7358
7359 /* we overload curr_resync somewhat here.
7360 * 0 == not engaged in resync at all
7361 * 2 == checking that there is no conflict with another sync
7362 * 1 == like 2, but have yielded to allow conflicting resync to
7363 * commense
7364 * other == active in resync - this many blocks
7365 *
7366 * Before starting a resync we must have set curr_resync to
7367 * 2, and then checked that every "conflicting" array has curr_resync
7368 * less than ours. When we find one that is the same or higher
7369 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7370 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7371 * This will mean we have to start checking from the beginning again.
7372 *
7373 */
7374
7375 set_freezable();
7376
7377 do {
7378 mddev->curr_resync = 2;
7379
7380 try_again:
7381
7382 if (kthread_freezable_should_stop(NULL))
7383 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7384
7385 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7386 goto skip;
7387 for_each_mddev(mddev2, tmp) {
7388 if (mddev2 == mddev)
7389 continue;
7390 if (!mddev->parallel_resync
7391 && mddev2->curr_resync
7392 && match_mddev_units(mddev, mddev2)) {
7393 DEFINE_WAIT(wq);
7394 if (mddev < mddev2 && mddev->curr_resync == 2) {
7395 /* arbitrarily yield */
7396 mddev->curr_resync = 1;
7397 wake_up(&resync_wait);
7398 }
7399 if (mddev > mddev2 && mddev->curr_resync == 1)
7400 /* no need to wait here, we can wait the next
7401 * time 'round when curr_resync == 2
7402 */
7403 continue;
7404
7405 try_to_freeze();
7406
7407 /* We need to wait 'interruptible' so as not to
7408 * contribute to the load average, and not to
7409 * be caught by 'softlockup'
7410 */
7411 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7412 if (!kthread_should_stop() &&
7413 mddev2->curr_resync >= mddev->curr_resync) {
7414 printk(KERN_INFO "md: delaying %s of %s"
7415 " until %s has finished (they"
7416 " share one or more physical units)\n",
7417 desc, mdname(mddev), mdname(mddev2));
7418 mddev_put(mddev2);
7419 try_to_freeze();
7420 if (signal_pending(current))
7421 flush_signals(current);
7422 schedule();
7423 finish_wait(&resync_wait, &wq);
7424 goto try_again;
7425 }
7426 finish_wait(&resync_wait, &wq);
7427 }
7428 }
7429 } while (mddev->curr_resync < 2);
7430
7431 j = 0;
7432 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7433 /* resync follows the size requested by the personality,
7434 * which defaults to physical size, but can be virtual size
7435 */
7436 max_sectors = mddev->resync_max_sectors;
7437 atomic64_set(&mddev->resync_mismatches, 0);
7438 /* we don't use the checkpoint if there's a bitmap */
7439 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7440 j = mddev->resync_min;
7441 else if (!mddev->bitmap)
7442 j = mddev->recovery_cp;
7443
7444 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7445 max_sectors = mddev->resync_max_sectors;
7446 else {
7447 /* recovery follows the physical size of devices */
7448 max_sectors = mddev->dev_sectors;
7449 j = MaxSector;
7450 rcu_read_lock();
7451 rdev_for_each_rcu(rdev, mddev)
7452 if (rdev->raid_disk >= 0 &&
7453 !test_bit(Faulty, &rdev->flags) &&
7454 !test_bit(In_sync, &rdev->flags) &&
7455 rdev->recovery_offset < j)
7456 j = rdev->recovery_offset;
7457 rcu_read_unlock();
7458
7459 /* If there is a bitmap, we need to make sure all
7460 * writes that started before we added a spare
7461 * complete before we start doing a recovery.
7462 * Otherwise the write might complete and (via
7463 * bitmap_endwrite) set a bit in the bitmap after the
7464 * recovery has checked that bit and skipped that
7465 * region.
7466 */
7467 if (mddev->bitmap) {
7468 mddev->pers->quiesce(mddev, 1);
7469 mddev->pers->quiesce(mddev, 0);
7470 }
7471 }
7472
7473 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7474 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7475 " %d KB/sec/disk.\n", speed_min(mddev));
7476 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7477 "(but not more than %d KB/sec) for %s.\n",
7478 speed_max(mddev), desc);
7479
7480 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7481
7482 io_sectors = 0;
7483 for (m = 0; m < SYNC_MARKS; m++) {
7484 mark[m] = jiffies;
7485 mark_cnt[m] = io_sectors;
7486 }
7487 last_mark = 0;
7488 mddev->resync_mark = mark[last_mark];
7489 mddev->resync_mark_cnt = mark_cnt[last_mark];
7490
7491 /*
7492 * Tune reconstruction:
7493 */
7494 window = 32*(PAGE_SIZE/512);
7495 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7496 window/2, (unsigned long long)max_sectors/2);
7497
7498 atomic_set(&mddev->recovery_active, 0);
7499 last_check = 0;
7500
7501 if (j>2) {
7502 printk(KERN_INFO
7503 "md: resuming %s of %s from checkpoint.\n",
7504 desc, mdname(mddev));
7505 mddev->curr_resync = j;
7506 } else
7507 mddev->curr_resync = 3; /* no longer delayed */
7508 mddev->curr_resync_completed = j;
7509 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7510 md_new_event(mddev);
7511 update_time = jiffies;
7512
7513 blk_start_plug(&plug);
7514 while (j < max_sectors) {
7515 sector_t sectors;
7516
7517 skipped = 0;
7518
7519 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7520 ((mddev->curr_resync > mddev->curr_resync_completed &&
7521 (mddev->curr_resync - mddev->curr_resync_completed)
7522 > (max_sectors >> 4)) ||
7523 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7524 (j - mddev->curr_resync_completed)*2
7525 >= mddev->resync_max - mddev->curr_resync_completed
7526 )) {
7527 /* time to update curr_resync_completed */
7528 wait_event(mddev->recovery_wait,
7529 atomic_read(&mddev->recovery_active) == 0);
7530 mddev->curr_resync_completed = j;
7531 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7532 j > mddev->recovery_cp)
7533 mddev->recovery_cp = j;
7534 update_time = jiffies;
7535 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7536 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7537 }
7538
7539 while (j >= mddev->resync_max && !kthread_should_stop()) {
7540 /* As this condition is controlled by user-space,
7541 * we can block indefinitely, so use '_interruptible'
7542 * to avoid triggering warnings.
7543 */
7544 flush_signals(current); /* just in case */
7545 wait_event_interruptible(mddev->recovery_wait,
7546 mddev->resync_max > j
7547 || kthread_should_stop());
7548 }
7549
7550 if (kthread_freezable_should_stop(NULL))
7551 goto interrupted;
7552
7553 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7554 currspeed < speed_min(mddev));
7555 if (sectors == 0) {
7556 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7557 goto out;
7558 }
7559
7560 if (!skipped) { /* actual IO requested */
7561 io_sectors += sectors;
7562 atomic_add(sectors, &mddev->recovery_active);
7563 }
7564
7565 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7566 break;
7567
7568 j += sectors;
7569 if (j > 2)
7570 mddev->curr_resync = j;
7571 mddev->curr_mark_cnt = io_sectors;
7572 if (last_check == 0)
7573 /* this is the earliest that rebuild will be
7574 * visible in /proc/mdstat
7575 */
7576 md_new_event(mddev);
7577
7578 if (last_check + window > io_sectors || j == max_sectors)
7579 continue;
7580
7581 last_check = io_sectors;
7582 repeat:
7583 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7584 /* step marks */
7585 int next = (last_mark+1) % SYNC_MARKS;
7586
7587 mddev->resync_mark = mark[next];
7588 mddev->resync_mark_cnt = mark_cnt[next];
7589 mark[next] = jiffies;
7590 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7591 last_mark = next;
7592 }
7593
7594 if (kthread_freezable_should_stop(NULL))
7595 goto interrupted;
7596
7597
7598 /*
7599 * this loop exits only if either when we are slower than
7600 * the 'hard' speed limit, or the system was IO-idle for
7601 * a jiffy.
7602 * the system might be non-idle CPU-wise, but we only care
7603 * about not overloading the IO subsystem. (things like an
7604 * e2fsck being done on the RAID array should execute fast)
7605 */
7606 cond_resched();
7607
7608 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7609 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7610
7611 if (currspeed > speed_min(mddev)) {
7612 if ((currspeed > speed_max(mddev)) ||
7613 !is_mddev_idle(mddev, 0)) {
7614 msleep(500);
7615 goto repeat;
7616 }
7617 }
7618 }
7619 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7620 /*
7621 * this also signals 'finished resyncing' to md_stop
7622 */
7623 out:
7624 blk_finish_plug(&plug);
7625 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7626
7627 /* tell personality that we are finished */
7628 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7629
7630 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7631 mddev->curr_resync > 2) {
7632 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7633 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7634 if (mddev->curr_resync >= mddev->recovery_cp) {
7635 printk(KERN_INFO
7636 "md: checkpointing %s of %s.\n",
7637 desc, mdname(mddev));
7638 if (test_bit(MD_RECOVERY_ERROR,
7639 &mddev->recovery))
7640 mddev->recovery_cp =
7641 mddev->curr_resync_completed;
7642 else
7643 mddev->recovery_cp =
7644 mddev->curr_resync;
7645 }
7646 } else
7647 mddev->recovery_cp = MaxSector;
7648 } else {
7649 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7650 mddev->curr_resync = MaxSector;
7651 rcu_read_lock();
7652 rdev_for_each_rcu(rdev, mddev)
7653 if (rdev->raid_disk >= 0 &&
7654 mddev->delta_disks >= 0 &&
7655 !test_bit(Faulty, &rdev->flags) &&
7656 !test_bit(In_sync, &rdev->flags) &&
7657 rdev->recovery_offset < mddev->curr_resync)
7658 rdev->recovery_offset = mddev->curr_resync;
7659 rcu_read_unlock();
7660 }
7661 }
7662 skip:
7663 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7664
7665 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7666 /* We completed so min/max setting can be forgotten if used. */
7667 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7668 mddev->resync_min = 0;
7669 mddev->resync_max = MaxSector;
7670 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7671 mddev->resync_min = mddev->curr_resync_completed;
7672 mddev->curr_resync = 0;
7673 wake_up(&resync_wait);
7674 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7675 md_wakeup_thread(mddev->thread);
7676 return;
7677
7678 interrupted:
7679 /*
7680 * got a signal, exit.
7681 */
7682 printk(KERN_INFO
7683 "md: md_do_sync() got signal ... exiting\n");
7684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7685 goto out;
7686
7687 }
7688 EXPORT_SYMBOL_GPL(md_do_sync);
7689
7690 static int remove_and_add_spares(struct mddev *mddev,
7691 struct md_rdev *this)
7692 {
7693 struct md_rdev *rdev;
7694 int spares = 0;
7695 int removed = 0;
7696
7697 rdev_for_each(rdev, mddev)
7698 if ((this == NULL || rdev == this) &&
7699 rdev->raid_disk >= 0 &&
7700 !test_bit(Blocked, &rdev->flags) &&
7701 (test_bit(Faulty, &rdev->flags) ||
7702 ! test_bit(In_sync, &rdev->flags)) &&
7703 atomic_read(&rdev->nr_pending)==0) {
7704 if (mddev->pers->hot_remove_disk(
7705 mddev, rdev) == 0) {
7706 sysfs_unlink_rdev(mddev, rdev);
7707 rdev->raid_disk = -1;
7708 removed++;
7709 }
7710 }
7711 if (removed && mddev->kobj.sd)
7712 sysfs_notify(&mddev->kobj, NULL, "degraded");
7713
7714 if (this)
7715 goto no_add;
7716
7717 rdev_for_each(rdev, mddev) {
7718 if (rdev->raid_disk >= 0 &&
7719 !test_bit(In_sync, &rdev->flags) &&
7720 !test_bit(Faulty, &rdev->flags))
7721 spares++;
7722 if (rdev->raid_disk >= 0)
7723 continue;
7724 if (test_bit(Faulty, &rdev->flags))
7725 continue;
7726 if (mddev->ro &&
7727 ! (rdev->saved_raid_disk >= 0 &&
7728 !test_bit(Bitmap_sync, &rdev->flags)))
7729 continue;
7730
7731 rdev->recovery_offset = 0;
7732 if (mddev->pers->
7733 hot_add_disk(mddev, rdev) == 0) {
7734 if (sysfs_link_rdev(mddev, rdev))
7735 /* failure here is OK */;
7736 spares++;
7737 md_new_event(mddev);
7738 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7739 }
7740 }
7741 no_add:
7742 if (removed)
7743 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7744 return spares;
7745 }
7746
7747 /*
7748 * This routine is regularly called by all per-raid-array threads to
7749 * deal with generic issues like resync and super-block update.
7750 * Raid personalities that don't have a thread (linear/raid0) do not
7751 * need this as they never do any recovery or update the superblock.
7752 *
7753 * It does not do any resync itself, but rather "forks" off other threads
7754 * to do that as needed.
7755 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7756 * "->recovery" and create a thread at ->sync_thread.
7757 * When the thread finishes it sets MD_RECOVERY_DONE
7758 * and wakeups up this thread which will reap the thread and finish up.
7759 * This thread also removes any faulty devices (with nr_pending == 0).
7760 *
7761 * The overall approach is:
7762 * 1/ if the superblock needs updating, update it.
7763 * 2/ If a recovery thread is running, don't do anything else.
7764 * 3/ If recovery has finished, clean up, possibly marking spares active.
7765 * 4/ If there are any faulty devices, remove them.
7766 * 5/ If array is degraded, try to add spares devices
7767 * 6/ If array has spares or is not in-sync, start a resync thread.
7768 */
7769 void md_check_recovery(struct mddev *mddev)
7770 {
7771 #ifdef CONFIG_FREEZER
7772 if (mddev->suspended || unlikely(atomic_read(&system_freezing_cnt)))
7773 return;
7774 #endif
7775
7776 if (mddev->bitmap)
7777 bitmap_daemon_work(mddev);
7778
7779 if (signal_pending(current)) {
7780 if (mddev->pers->sync_request && !mddev->external) {
7781 printk(KERN_INFO "md: %s in immediate safe mode\n",
7782 mdname(mddev));
7783 mddev->safemode = 2;
7784 }
7785 flush_signals(current);
7786 }
7787
7788 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7789 return;
7790 if ( ! (
7791 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7792 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7793 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7794 (mddev->external == 0 && mddev->safemode == 1) ||
7795 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7796 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7797 ))
7798 return;
7799
7800 if (mddev_trylock(mddev)) {
7801 int spares = 0;
7802
7803 if (mddev->ro) {
7804 /* On a read-only array we can:
7805 * - remove failed devices
7806 * - add already-in_sync devices if the array itself
7807 * is in-sync.
7808 * As we only add devices that are already in-sync,
7809 * we can activate the spares immediately.
7810 */
7811 remove_and_add_spares(mddev, NULL);
7812 /* There is no thread, but we need to call
7813 * ->spare_active and clear saved_raid_disk
7814 */
7815 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7816 md_reap_sync_thread(mddev);
7817 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7818 goto unlock;
7819 }
7820
7821 if (!mddev->external) {
7822 int did_change = 0;
7823 spin_lock_irq(&mddev->write_lock);
7824 if (mddev->safemode &&
7825 !atomic_read(&mddev->writes_pending) &&
7826 !mddev->in_sync &&
7827 mddev->recovery_cp == MaxSector) {
7828 mddev->in_sync = 1;
7829 did_change = 1;
7830 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7831 }
7832 if (mddev->safemode == 1)
7833 mddev->safemode = 0;
7834 spin_unlock_irq(&mddev->write_lock);
7835 if (did_change)
7836 sysfs_notify_dirent_safe(mddev->sysfs_state);
7837 }
7838
7839 if (mddev->flags)
7840 md_update_sb(mddev, 0);
7841
7842 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7843 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7844 /* resync/recovery still happening */
7845 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7846 goto unlock;
7847 }
7848 if (mddev->sync_thread) {
7849 md_reap_sync_thread(mddev);
7850 goto unlock;
7851 }
7852 /* Set RUNNING before clearing NEEDED to avoid
7853 * any transients in the value of "sync_action".
7854 */
7855 mddev->curr_resync_completed = 0;
7856 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7857 /* Clear some bits that don't mean anything, but
7858 * might be left set
7859 */
7860 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7861 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7862
7863 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7864 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7865 goto unlock;
7866 /* no recovery is running.
7867 * remove any failed drives, then
7868 * add spares if possible.
7869 * Spares are also removed and re-added, to allow
7870 * the personality to fail the re-add.
7871 */
7872
7873 if (mddev->reshape_position != MaxSector) {
7874 if (mddev->pers->check_reshape == NULL ||
7875 mddev->pers->check_reshape(mddev) != 0)
7876 /* Cannot proceed */
7877 goto unlock;
7878 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7879 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7880 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7881 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7882 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7883 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7884 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7885 } else if (mddev->recovery_cp < MaxSector) {
7886 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7887 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7888 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7889 /* nothing to be done ... */
7890 goto unlock;
7891
7892 if (mddev->pers->sync_request) {
7893 if (spares) {
7894 /* We are adding a device or devices to an array
7895 * which has the bitmap stored on all devices.
7896 * So make sure all bitmap pages get written
7897 */
7898 bitmap_write_all(mddev->bitmap);
7899 }
7900 mddev->sync_thread = md_register_thread(md_do_sync,
7901 mddev,
7902 "resync");
7903 if (!mddev->sync_thread) {
7904 printk(KERN_ERR "%s: could not start resync"
7905 " thread...\n",
7906 mdname(mddev));
7907 /* leave the spares where they are, it shouldn't hurt */
7908 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7909 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7910 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7911 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7912 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7913 } else
7914 md_wakeup_thread(mddev->sync_thread);
7915 sysfs_notify_dirent_safe(mddev->sysfs_action);
7916 md_new_event(mddev);
7917 }
7918 unlock:
7919 if (!mddev->sync_thread) {
7920 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7921 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7922 &mddev->recovery))
7923 if (mddev->sysfs_action)
7924 sysfs_notify_dirent_safe(mddev->sysfs_action);
7925 }
7926 mddev_unlock(mddev);
7927 }
7928 }
7929
7930 void md_reap_sync_thread(struct mddev *mddev)
7931 {
7932 struct md_rdev *rdev;
7933
7934 /* resync has finished, collect result */
7935 md_unregister_thread(&mddev->sync_thread);
7936 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7937 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7938 /* success...*/
7939 /* activate any spares */
7940 if (mddev->pers->spare_active(mddev)) {
7941 sysfs_notify(&mddev->kobj, NULL,
7942 "degraded");
7943 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7944 }
7945 }
7946 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7947 mddev->pers->finish_reshape)
7948 mddev->pers->finish_reshape(mddev);
7949
7950 /* If array is no-longer degraded, then any saved_raid_disk
7951 * information must be scrapped. Also if any device is now
7952 * In_sync we must scrape the saved_raid_disk for that device
7953 * do the superblock for an incrementally recovered device
7954 * written out.
7955 */
7956 rdev_for_each(rdev, mddev)
7957 if (!mddev->degraded ||
7958 test_bit(In_sync, &rdev->flags))
7959 rdev->saved_raid_disk = -1;
7960
7961 md_update_sb(mddev, 1);
7962 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7963 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7964 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7965 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7966 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7967 /* flag recovery needed just to double check */
7968 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7969 sysfs_notify_dirent_safe(mddev->sysfs_action);
7970 md_new_event(mddev);
7971 if (mddev->event_work.func)
7972 queue_work(md_misc_wq, &mddev->event_work);
7973 }
7974
7975 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7976 {
7977 sysfs_notify_dirent_safe(rdev->sysfs_state);
7978 wait_event_timeout(rdev->blocked_wait,
7979 !test_bit(Blocked, &rdev->flags) &&
7980 !test_bit(BlockedBadBlocks, &rdev->flags),
7981 msecs_to_jiffies(5000));
7982 rdev_dec_pending(rdev, mddev);
7983 }
7984 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7985
7986 void md_finish_reshape(struct mddev *mddev)
7987 {
7988 /* called be personality module when reshape completes. */
7989 struct md_rdev *rdev;
7990
7991 rdev_for_each(rdev, mddev) {
7992 if (rdev->data_offset > rdev->new_data_offset)
7993 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7994 else
7995 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7996 rdev->data_offset = rdev->new_data_offset;
7997 }
7998 }
7999 EXPORT_SYMBOL(md_finish_reshape);
8000
8001 /* Bad block management.
8002 * We can record which blocks on each device are 'bad' and so just
8003 * fail those blocks, or that stripe, rather than the whole device.
8004 * Entries in the bad-block table are 64bits wide. This comprises:
8005 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8006 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8007 * A 'shift' can be set so that larger blocks are tracked and
8008 * consequently larger devices can be covered.
8009 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8010 *
8011 * Locking of the bad-block table uses a seqlock so md_is_badblock
8012 * might need to retry if it is very unlucky.
8013 * We will sometimes want to check for bad blocks in a bi_end_io function,
8014 * so we use the write_seqlock_irq variant.
8015 *
8016 * When looking for a bad block we specify a range and want to
8017 * know if any block in the range is bad. So we binary-search
8018 * to the last range that starts at-or-before the given endpoint,
8019 * (or "before the sector after the target range")
8020 * then see if it ends after the given start.
8021 * We return
8022 * 0 if there are no known bad blocks in the range
8023 * 1 if there are known bad block which are all acknowledged
8024 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8025 * plus the start/length of the first bad section we overlap.
8026 */
8027 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8028 sector_t *first_bad, int *bad_sectors)
8029 {
8030 int hi;
8031 int lo;
8032 u64 *p = bb->page;
8033 int rv;
8034 sector_t target = s + sectors;
8035 unsigned seq;
8036
8037 if (bb->shift > 0) {
8038 /* round the start down, and the end up */
8039 s >>= bb->shift;
8040 target += (1<<bb->shift) - 1;
8041 target >>= bb->shift;
8042 sectors = target - s;
8043 }
8044 /* 'target' is now the first block after the bad range */
8045
8046 retry:
8047 seq = read_seqbegin(&bb->lock);
8048 lo = 0;
8049 rv = 0;
8050 hi = bb->count;
8051
8052 /* Binary search between lo and hi for 'target'
8053 * i.e. for the last range that starts before 'target'
8054 */
8055 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8056 * are known not to be the last range before target.
8057 * VARIANT: hi-lo is the number of possible
8058 * ranges, and decreases until it reaches 1
8059 */
8060 while (hi - lo > 1) {
8061 int mid = (lo + hi) / 2;
8062 sector_t a = BB_OFFSET(p[mid]);
8063 if (a < target)
8064 /* This could still be the one, earlier ranges
8065 * could not. */
8066 lo = mid;
8067 else
8068 /* This and later ranges are definitely out. */
8069 hi = mid;
8070 }
8071 /* 'lo' might be the last that started before target, but 'hi' isn't */
8072 if (hi > lo) {
8073 /* need to check all range that end after 's' to see if
8074 * any are unacknowledged.
8075 */
8076 while (lo >= 0 &&
8077 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8078 if (BB_OFFSET(p[lo]) < target) {
8079 /* starts before the end, and finishes after
8080 * the start, so they must overlap
8081 */
8082 if (rv != -1 && BB_ACK(p[lo]))
8083 rv = 1;
8084 else
8085 rv = -1;
8086 *first_bad = BB_OFFSET(p[lo]);
8087 *bad_sectors = BB_LEN(p[lo]);
8088 }
8089 lo--;
8090 }
8091 }
8092
8093 if (read_seqretry(&bb->lock, seq))
8094 goto retry;
8095
8096 return rv;
8097 }
8098 EXPORT_SYMBOL_GPL(md_is_badblock);
8099
8100 /*
8101 * Add a range of bad blocks to the table.
8102 * This might extend the table, or might contract it
8103 * if two adjacent ranges can be merged.
8104 * We binary-search to find the 'insertion' point, then
8105 * decide how best to handle it.
8106 */
8107 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8108 int acknowledged)
8109 {
8110 u64 *p;
8111 int lo, hi;
8112 int rv = 1;
8113 unsigned long flags;
8114
8115 if (bb->shift < 0)
8116 /* badblocks are disabled */
8117 return 0;
8118
8119 if (bb->shift) {
8120 /* round the start down, and the end up */
8121 sector_t next = s + sectors;
8122 s >>= bb->shift;
8123 next += (1<<bb->shift) - 1;
8124 next >>= bb->shift;
8125 sectors = next - s;
8126 }
8127
8128 write_seqlock_irqsave(&bb->lock, flags);
8129
8130 p = bb->page;
8131 lo = 0;
8132 hi = bb->count;
8133 /* Find the last range that starts at-or-before 's' */
8134 while (hi - lo > 1) {
8135 int mid = (lo + hi) / 2;
8136 sector_t a = BB_OFFSET(p[mid]);
8137 if (a <= s)
8138 lo = mid;
8139 else
8140 hi = mid;
8141 }
8142 if (hi > lo && BB_OFFSET(p[lo]) > s)
8143 hi = lo;
8144
8145 if (hi > lo) {
8146 /* we found a range that might merge with the start
8147 * of our new range
8148 */
8149 sector_t a = BB_OFFSET(p[lo]);
8150 sector_t e = a + BB_LEN(p[lo]);
8151 int ack = BB_ACK(p[lo]);
8152 if (e >= s) {
8153 /* Yes, we can merge with a previous range */
8154 if (s == a && s + sectors >= e)
8155 /* new range covers old */
8156 ack = acknowledged;
8157 else
8158 ack = ack && acknowledged;
8159
8160 if (e < s + sectors)
8161 e = s + sectors;
8162 if (e - a <= BB_MAX_LEN) {
8163 p[lo] = BB_MAKE(a, e-a, ack);
8164 s = e;
8165 } else {
8166 /* does not all fit in one range,
8167 * make p[lo] maximal
8168 */
8169 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8170 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8171 s = a + BB_MAX_LEN;
8172 }
8173 sectors = e - s;
8174 }
8175 }
8176 if (sectors && hi < bb->count) {
8177 /* 'hi' points to the first range that starts after 's'.
8178 * Maybe we can merge with the start of that range */
8179 sector_t a = BB_OFFSET(p[hi]);
8180 sector_t e = a + BB_LEN(p[hi]);
8181 int ack = BB_ACK(p[hi]);
8182 if (a <= s + sectors) {
8183 /* merging is possible */
8184 if (e <= s + sectors) {
8185 /* full overlap */
8186 e = s + sectors;
8187 ack = acknowledged;
8188 } else
8189 ack = ack && acknowledged;
8190
8191 a = s;
8192 if (e - a <= BB_MAX_LEN) {
8193 p[hi] = BB_MAKE(a, e-a, ack);
8194 s = e;
8195 } else {
8196 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8197 s = a + BB_MAX_LEN;
8198 }
8199 sectors = e - s;
8200 lo = hi;
8201 hi++;
8202 }
8203 }
8204 if (sectors == 0 && hi < bb->count) {
8205 /* we might be able to combine lo and hi */
8206 /* Note: 's' is at the end of 'lo' */
8207 sector_t a = BB_OFFSET(p[hi]);
8208 int lolen = BB_LEN(p[lo]);
8209 int hilen = BB_LEN(p[hi]);
8210 int newlen = lolen + hilen - (s - a);
8211 if (s >= a && newlen < BB_MAX_LEN) {
8212 /* yes, we can combine them */
8213 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8214 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8215 memmove(p + hi, p + hi + 1,
8216 (bb->count - hi - 1) * 8);
8217 bb->count--;
8218 }
8219 }
8220 while (sectors) {
8221 /* didn't merge (it all).
8222 * Need to add a range just before 'hi' */
8223 if (bb->count >= MD_MAX_BADBLOCKS) {
8224 /* No room for more */
8225 rv = 0;
8226 break;
8227 } else {
8228 int this_sectors = sectors;
8229 memmove(p + hi + 1, p + hi,
8230 (bb->count - hi) * 8);
8231 bb->count++;
8232
8233 if (this_sectors > BB_MAX_LEN)
8234 this_sectors = BB_MAX_LEN;
8235 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8236 sectors -= this_sectors;
8237 s += this_sectors;
8238 }
8239 }
8240
8241 bb->changed = 1;
8242 if (!acknowledged)
8243 bb->unacked_exist = 1;
8244 write_sequnlock_irqrestore(&bb->lock, flags);
8245
8246 return rv;
8247 }
8248
8249 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8250 int is_new)
8251 {
8252 int rv;
8253 if (is_new)
8254 s += rdev->new_data_offset;
8255 else
8256 s += rdev->data_offset;
8257 rv = md_set_badblocks(&rdev->badblocks,
8258 s, sectors, 0);
8259 if (rv) {
8260 /* Make sure they get written out promptly */
8261 sysfs_notify_dirent_safe(rdev->sysfs_state);
8262 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8263 md_wakeup_thread(rdev->mddev->thread);
8264 }
8265 return rv;
8266 }
8267 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8268
8269 /*
8270 * Remove a range of bad blocks from the table.
8271 * This may involve extending the table if we spilt a region,
8272 * but it must not fail. So if the table becomes full, we just
8273 * drop the remove request.
8274 */
8275 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8276 {
8277 u64 *p;
8278 int lo, hi;
8279 sector_t target = s + sectors;
8280 int rv = 0;
8281
8282 if (bb->shift > 0) {
8283 /* When clearing we round the start up and the end down.
8284 * This should not matter as the shift should align with
8285 * the block size and no rounding should ever be needed.
8286 * However it is better the think a block is bad when it
8287 * isn't than to think a block is not bad when it is.
8288 */
8289 s += (1<<bb->shift) - 1;
8290 s >>= bb->shift;
8291 target >>= bb->shift;
8292 sectors = target - s;
8293 }
8294
8295 write_seqlock_irq(&bb->lock);
8296
8297 p = bb->page;
8298 lo = 0;
8299 hi = bb->count;
8300 /* Find the last range that starts before 'target' */
8301 while (hi - lo > 1) {
8302 int mid = (lo + hi) / 2;
8303 sector_t a = BB_OFFSET(p[mid]);
8304 if (a < target)
8305 lo = mid;
8306 else
8307 hi = mid;
8308 }
8309 if (hi > lo) {
8310 /* p[lo] is the last range that could overlap the
8311 * current range. Earlier ranges could also overlap,
8312 * but only this one can overlap the end of the range.
8313 */
8314 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8315 /* Partial overlap, leave the tail of this range */
8316 int ack = BB_ACK(p[lo]);
8317 sector_t a = BB_OFFSET(p[lo]);
8318 sector_t end = a + BB_LEN(p[lo]);
8319
8320 if (a < s) {
8321 /* we need to split this range */
8322 if (bb->count >= MD_MAX_BADBLOCKS) {
8323 rv = 0;
8324 goto out;
8325 }
8326 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8327 bb->count++;
8328 p[lo] = BB_MAKE(a, s-a, ack);
8329 lo++;
8330 }
8331 p[lo] = BB_MAKE(target, end - target, ack);
8332 /* there is no longer an overlap */
8333 hi = lo;
8334 lo--;
8335 }
8336 while (lo >= 0 &&
8337 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8338 /* This range does overlap */
8339 if (BB_OFFSET(p[lo]) < s) {
8340 /* Keep the early parts of this range. */
8341 int ack = BB_ACK(p[lo]);
8342 sector_t start = BB_OFFSET(p[lo]);
8343 p[lo] = BB_MAKE(start, s - start, ack);
8344 /* now low doesn't overlap, so.. */
8345 break;
8346 }
8347 lo--;
8348 }
8349 /* 'lo' is strictly before, 'hi' is strictly after,
8350 * anything between needs to be discarded
8351 */
8352 if (hi - lo > 1) {
8353 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8354 bb->count -= (hi - lo - 1);
8355 }
8356 }
8357
8358 bb->changed = 1;
8359 out:
8360 write_sequnlock_irq(&bb->lock);
8361 return rv;
8362 }
8363
8364 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8365 int is_new)
8366 {
8367 if (is_new)
8368 s += rdev->new_data_offset;
8369 else
8370 s += rdev->data_offset;
8371 return md_clear_badblocks(&rdev->badblocks,
8372 s, sectors);
8373 }
8374 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8375
8376 /*
8377 * Acknowledge all bad blocks in a list.
8378 * This only succeeds if ->changed is clear. It is used by
8379 * in-kernel metadata updates
8380 */
8381 void md_ack_all_badblocks(struct badblocks *bb)
8382 {
8383 if (bb->page == NULL || bb->changed)
8384 /* no point even trying */
8385 return;
8386 write_seqlock_irq(&bb->lock);
8387
8388 if (bb->changed == 0 && bb->unacked_exist) {
8389 u64 *p = bb->page;
8390 int i;
8391 for (i = 0; i < bb->count ; i++) {
8392 if (!BB_ACK(p[i])) {
8393 sector_t start = BB_OFFSET(p[i]);
8394 int len = BB_LEN(p[i]);
8395 p[i] = BB_MAKE(start, len, 1);
8396 }
8397 }
8398 bb->unacked_exist = 0;
8399 }
8400 write_sequnlock_irq(&bb->lock);
8401 }
8402 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8403
8404 /* sysfs access to bad-blocks list.
8405 * We present two files.
8406 * 'bad-blocks' lists sector numbers and lengths of ranges that
8407 * are recorded as bad. The list is truncated to fit within
8408 * the one-page limit of sysfs.
8409 * Writing "sector length" to this file adds an acknowledged
8410 * bad block list.
8411 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8412 * been acknowledged. Writing to this file adds bad blocks
8413 * without acknowledging them. This is largely for testing.
8414 */
8415
8416 static ssize_t
8417 badblocks_show(struct badblocks *bb, char *page, int unack)
8418 {
8419 size_t len;
8420 int i;
8421 u64 *p = bb->page;
8422 unsigned seq;
8423
8424 if (bb->shift < 0)
8425 return 0;
8426
8427 retry:
8428 seq = read_seqbegin(&bb->lock);
8429
8430 len = 0;
8431 i = 0;
8432
8433 while (len < PAGE_SIZE && i < bb->count) {
8434 sector_t s = BB_OFFSET(p[i]);
8435 unsigned int length = BB_LEN(p[i]);
8436 int ack = BB_ACK(p[i]);
8437 i++;
8438
8439 if (unack && ack)
8440 continue;
8441
8442 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8443 (unsigned long long)s << bb->shift,
8444 length << bb->shift);
8445 }
8446 if (unack && len == 0)
8447 bb->unacked_exist = 0;
8448
8449 if (read_seqretry(&bb->lock, seq))
8450 goto retry;
8451
8452 return len;
8453 }
8454
8455 #define DO_DEBUG 1
8456
8457 static ssize_t
8458 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8459 {
8460 unsigned long long sector;
8461 int length;
8462 char newline;
8463 #ifdef DO_DEBUG
8464 /* Allow clearing via sysfs *only* for testing/debugging.
8465 * Normally only a successful write may clear a badblock
8466 */
8467 int clear = 0;
8468 if (page[0] == '-') {
8469 clear = 1;
8470 page++;
8471 }
8472 #endif /* DO_DEBUG */
8473
8474 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8475 case 3:
8476 if (newline != '\n')
8477 return -EINVAL;
8478 case 2:
8479 if (length <= 0)
8480 return -EINVAL;
8481 break;
8482 default:
8483 return -EINVAL;
8484 }
8485
8486 #ifdef DO_DEBUG
8487 if (clear) {
8488 md_clear_badblocks(bb, sector, length);
8489 return len;
8490 }
8491 #endif /* DO_DEBUG */
8492 if (md_set_badblocks(bb, sector, length, !unack))
8493 return len;
8494 else
8495 return -ENOSPC;
8496 }
8497
8498 static int md_notify_reboot(struct notifier_block *this,
8499 unsigned long code, void *x)
8500 {
8501 struct list_head *tmp;
8502 struct mddev *mddev;
8503 int need_delay = 0;
8504
8505 for_each_mddev(mddev, tmp) {
8506 if (mddev_trylock(mddev)) {
8507 if (mddev->pers)
8508 __md_stop_writes(mddev);
8509 if (mddev->persistent)
8510 mddev->safemode = 2;
8511 mddev_unlock(mddev);
8512 }
8513 need_delay = 1;
8514 }
8515 /*
8516 * certain more exotic SCSI devices are known to be
8517 * volatile wrt too early system reboots. While the
8518 * right place to handle this issue is the given
8519 * driver, we do want to have a safe RAID driver ...
8520 */
8521 if (need_delay)
8522 mdelay(1000*1);
8523
8524 return NOTIFY_DONE;
8525 }
8526
8527 static struct notifier_block md_notifier = {
8528 .notifier_call = md_notify_reboot,
8529 .next = NULL,
8530 .priority = INT_MAX, /* before any real devices */
8531 };
8532
8533 static void md_geninit(void)
8534 {
8535 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8536
8537 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8538 }
8539
8540 static int __init md_init(void)
8541 {
8542 int ret = -ENOMEM;
8543
8544 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8545 if (!md_wq)
8546 goto err_wq;
8547
8548 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8549 if (!md_misc_wq)
8550 goto err_misc_wq;
8551
8552 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8553 goto err_md;
8554
8555 if ((ret = register_blkdev(0, "mdp")) < 0)
8556 goto err_mdp;
8557 mdp_major = ret;
8558
8559 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8560 md_probe, NULL, NULL);
8561 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8562 md_probe, NULL, NULL);
8563
8564 register_reboot_notifier(&md_notifier);
8565 raid_table_header = register_sysctl_table(raid_root_table);
8566
8567 md_geninit();
8568 return 0;
8569
8570 err_mdp:
8571 unregister_blkdev(MD_MAJOR, "md");
8572 err_md:
8573 destroy_workqueue(md_misc_wq);
8574 err_misc_wq:
8575 destroy_workqueue(md_wq);
8576 err_wq:
8577 return ret;
8578 }
8579
8580 #ifndef MODULE
8581
8582 /*
8583 * Searches all registered partitions for autorun RAID arrays
8584 * at boot time.
8585 */
8586
8587 static LIST_HEAD(all_detected_devices);
8588 struct detected_devices_node {
8589 struct list_head list;
8590 dev_t dev;
8591 };
8592
8593 void md_autodetect_dev(dev_t dev)
8594 {
8595 struct detected_devices_node *node_detected_dev;
8596
8597 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8598 if (node_detected_dev) {
8599 node_detected_dev->dev = dev;
8600 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8601 } else {
8602 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8603 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8604 }
8605 }
8606
8607
8608 static void autostart_arrays(int part)
8609 {
8610 struct md_rdev *rdev;
8611 struct detected_devices_node *node_detected_dev;
8612 dev_t dev;
8613 int i_scanned, i_passed;
8614
8615 i_scanned = 0;
8616 i_passed = 0;
8617
8618 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8619
8620 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8621 i_scanned++;
8622 node_detected_dev = list_entry(all_detected_devices.next,
8623 struct detected_devices_node, list);
8624 list_del(&node_detected_dev->list);
8625 dev = node_detected_dev->dev;
8626 kfree(node_detected_dev);
8627 rdev = md_import_device(dev,0, 90);
8628 if (IS_ERR(rdev))
8629 continue;
8630
8631 if (test_bit(Faulty, &rdev->flags)) {
8632 MD_BUG();
8633 continue;
8634 }
8635 set_bit(AutoDetected, &rdev->flags);
8636 list_add(&rdev->same_set, &pending_raid_disks);
8637 i_passed++;
8638 }
8639
8640 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8641 i_scanned, i_passed);
8642
8643 autorun_devices(part);
8644 }
8645
8646 #endif /* !MODULE */
8647
8648 static __exit void md_exit(void)
8649 {
8650 struct mddev *mddev;
8651 struct list_head *tmp;
8652
8653 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8654 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8655
8656 unregister_blkdev(MD_MAJOR,"md");
8657 unregister_blkdev(mdp_major, "mdp");
8658 unregister_reboot_notifier(&md_notifier);
8659 unregister_sysctl_table(raid_table_header);
8660 remove_proc_entry("mdstat", NULL);
8661 for_each_mddev(mddev, tmp) {
8662 export_array(mddev);
8663 mddev->hold_active = 0;
8664 }
8665 destroy_workqueue(md_misc_wq);
8666 destroy_workqueue(md_wq);
8667 }
8668
8669 subsys_initcall(md_init);
8670 module_exit(md_exit)
8671
8672 static int get_ro(char *buffer, struct kernel_param *kp)
8673 {
8674 return sprintf(buffer, "%d", start_readonly);
8675 }
8676 static int set_ro(const char *val, struct kernel_param *kp)
8677 {
8678 char *e;
8679 int num = simple_strtoul(val, &e, 10);
8680 if (*val && (*e == '\0' || *e == '\n')) {
8681 start_readonly = num;
8682 return 0;
8683 }
8684 return -EINVAL;
8685 }
8686
8687 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8688 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8689
8690 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8691
8692 EXPORT_SYMBOL(register_md_personality);
8693 EXPORT_SYMBOL(unregister_md_personality);
8694 EXPORT_SYMBOL(md_error);
8695 EXPORT_SYMBOL(md_done_sync);
8696 EXPORT_SYMBOL(md_write_start);
8697 EXPORT_SYMBOL(md_write_end);
8698 EXPORT_SYMBOL(md_register_thread);
8699 EXPORT_SYMBOL(md_unregister_thread);
8700 EXPORT_SYMBOL(md_wakeup_thread);
8701 EXPORT_SYMBOL(md_check_recovery);
8702 EXPORT_SYMBOL(md_reap_sync_thread);
8703 MODULE_LICENSE("GPL");
8704 MODULE_DESCRIPTION("MD RAID framework");
8705 MODULE_ALIAS("md");
8706 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);